Sample records for circulating memory antigen-specific

  1. Antigen-Specific lgA B Memory Cell Responses to Shigella Antigens Elicited in Volunteers Immunized with Live Attenuated Shigella flexneri 2a Oral Vaccine Candidates

    DTIC Science & Technology

    2011-01-01

    parenterally (e.g. small· pox vaccine [33]) and orally (e.g., rotavirus vaccines [34]) and parenteral conjugate vaccines consisting of bacterial polysacchar...Angel, Evaluation of circulating intestinally committed memory B cells in children vaccinated with attenuated human rotavirus vaccine, Viral lmmunol...Soler, E. C. Butcher, D. Bass, J. Angel, M.A. Franco, H.B. Greenberg, Maturation and trafficking markers on rotavirus -specific B cells during

  2. Reduced Memory CD4+ T-Cell Generation in the Circulation of Young Children May Contribute to the Otitis-Prone Condition

    PubMed Central

    Sharma, Sharad K.; Casey, Janet R.

    2011-01-01

    Background. An explanation for the immunologic dysfunction that causes children to be prone to repeated episodes of acute otitis media (AOM) has long been sought. Poor antibody response has been associated with the otitis-prone condition; however, there is no precise mechanistic explanation for this condition. Methods. Non–otitis-prone and otitis-prone children with AOM or nasopharyngeal (NP) colonization caused by either Streptococcus pneumoniae or Haemophilus influenzae were compared for pathogen-specific CD4+ T-helper memory responses by stimulating peripheral blood mononuclear cells using 6 vaccine candidate S. pneumoniae and 3 H. influenzae protein antigens. Samples were analyzed by multi-parameter flow cytometry. Results. Significantly reduced percentages of functional CD45RALow memory CD4+ T cells producing specific cytokines (interferon γ, interleukin [IL]–2, IL-4 and IL-17a) were observed in otitis-prone children following AOM and NP colonization with either S. pneumoniae or H. influenzae. Immunoglobulin (Ig) G responses to the studied protein antigens were reduced, which suggests that antigen-specific B-cell function may be compromised as a result of poor T-cell help. Staphylococcal enterotoxin B stimulated similar cytokine patterns in memory CD4+T cells in both groups of children. Conclusions. Otitis-prone children have suboptimal circulating functional T-helper memory and reduced IgG responses to S. pneumoniae or H. influenzae after colonization and after AOM; this immune dysfunction causes susceptibility to recurrent AOM infections. PMID:21791667

  3. Loss of memory B cells impairs maintenance of long-term serologic memory during HIV-1 infection.

    PubMed

    Titanji, Kehmia; De Milito, Angelo; Cagigi, Alberto; Thorstensson, Rigmor; Grützmeier, Sven; Atlas, Ann; Hejdeman, Bo; Kroon, Frank P; Lopalco, Lucia; Nilsson, Anna; Chiodi, Francesca

    2006-09-01

    Circulating memory B cells are severely reduced in the peripheral blood of HIV-1-infected patients. We investigated whether dysfunctional serologic memory to non-HIV antigens is related to disease progression by evaluating the frequency of memory B cells, plasma IgG, plasma levels of antibodies to measles, and Streptococcus pneumoniae, and enumerating measles-specific antibody-secreting cells in patients with primary, chronic, and long-term nonprogressive HIV-1 infection. We also evaluated the in vitro production of IgM and IgG antibodies against measles and S pneumoniae antigens following polyclonal activation of peripheral blood mononuclear cells (PBMCs) from patients. The percentage of memory B cells correlated with CD4+ T-cell counts in patients, thus representing a marker of disease progression. While patients with primary and chronic infection had severe defects in serologic memory, long-term nonprogressors had memory B-cell frequency and levels of antigen-specific antibodies comparable with controls. We also evaluated the effect of antiretroviral therapy on these serologic memory defects and found that antiretroviral therapy did not restore serologic memory in primary or in chronic infection. We suggest that HIV infection impairs maintenance of long-term serologic immunity to HIV-1-unrelated antigens and this defect is initiated early in infection. This may have important consequences for the response of HIV-infected patients to immunizations.

  4. B-Cell Responses to Pregnancy-Restricted and -Unrestricted Plasmodium falciparum Erythrocyte Membrane Protein 1 Antigens in Ghanaian Women Naturally Exposed to Malaria Parasites

    PubMed Central

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F.; Barfod, Lea

    2014-01-01

    Protective immunity to Plasmodium falciparum malaria acquired after natural exposure is largely antibody mediated. IgG-specific P. falciparum EMP1 (PfEMP1) proteins on the infected erythrocyte surface are particularly important. The transient antibody responses and the slowly acquired protective immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme-linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods (pregnancy) to responses specific for comparable antigens expressed independent of pregnancy. Our data indicate that PfEMP1-specific B-cell memory is adequately acquired even when antigen exposure is infrequent (e.g., VAR2CSA-type PfEMP1). Furthermore, immunological memory specific for VAR2CSA-type PfEMP1 can be maintained for many years without antigen reexposure and after circulating antigen-specific IgG has disappeared. The study provides evidence that natural exposure to P. falciparum leads to formation of durable B-cell immunity to clinically important PfEMP1 antigens. This has encouraging implications for current efforts to develop PfEMP1-based vaccines. PMID:24566620

  5. Naïve and memory CD8 T cell pool homeostasis in advanced aging: impact of age and of antigen-specific responses to cytomegalovirus.

    PubMed

    Vescovini, Rosanna; Fagnoni, Francesco Fausto; Telera, Anna Rita; Bucci, Laura; Pedrazzoni, Mario; Magalini, Francesca; Stella, Adriano; Pasin, Federico; Medici, Maria Cristina; Calderaro, Adriana; Volpi, Riccardo; Monti, Daniela; Franceschi, Claudio; Nikolich-Žugich, Janko; Sansoni, Paolo

    2014-04-01

    Alterations in the circulating CD8+ T cell pool, with a loss of naïve and accumulation of effector/effector memory cells, are pronounced in older adults. However, homeostatic forces that dictate such changes remain incompletely understood. This observational cross-sectional study explored the basis for variability of CD8+ T cell number and composition of its main subsets: naïve, central memory and effector memory T cells, in 131 cytomegalovirus (CMV) seropositive subjects aged over 60 years. We found great heterogeneity of CD8+ T cell numbers, which was mainly due to variability of the CD8 + CD28- T cell subset regardless of age. Analysis, by multiple regression, of distinct factors revealed that age was a predictor for the loss in absolute number of naïve T cells, but was not associated with changes in central or effector memory CD8+ T cell subsets. By contrast, the size of CD8+ T cells specific to pp65 and IE-1 antigens of CMV, predicted CD28 - CD8+ T cell, antigen-experienced CD8+ T cell, and even total CD8+ T cell numbers, but not naïve CD8+ T cell loss. These results indicate a clear dichotomy between the homeostasis of naïve and antigen-experienced subsets of CD8+ T cells which are independently affected, in human later life, by age and antigen-specific responses to CMV, respectively.

  6. Dynamics of T cell, antigen-presenting cell, and pathogen interactions during recall responses in the lymph node.

    PubMed

    Chtanova, Tatyana; Han, Seong-Ji; Schaeffer, Marie; van Dooren, Giel G; Herzmark, Paul; Striepen, Boris; Robey, Ellen A

    2009-08-21

    Memory T cells circulate through lymph nodes where they are poised to respond rapidly upon re-exposure to a pathogen; however, the dynamics of memory T cell, antigen-presenting cell, and pathogen interactions during recall responses are largely unknown. We used a mouse model of infection with the intracellular protozoan parasite, Toxoplasma gondii, in conjunction with two-photon microscopy, to address this question. After challenge, memory T cells migrated more rapidly than naive T cells, relocalized toward the subcapsular sinus (SCS) near invaded macrophages, and engaged in prolonged interactions with infected cells. Parasite invasion of T cells occurred by direct transfer of the parasite from the target cell into the T cell and corresponded to an antigen-specific increase in the rate of T cell invasion. Our results provide insight into cellular interactions during recall responses and suggest a mechanism of pathogen subversion of the immune response.

  7. Strategic priming with multiple antigens can yield memory cell phenotypes optimized for infection with Mycobacterium tuberculosis: A computational study

    DOE PAGES

    Ziraldo, Cordelia; Gong, Chang; Kirschner, Denise E.; ...

    2016-01-06

    Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. While many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likelymore » key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of Memory Design Space. As a result, given a set of desired characteristics for Ag-specific memory populations, we can use our model as a tool to predict vaccine formulations that will generate those populations.« less

  8. Strategic priming with multiple antigens can yield memory cell phenotypes optimized for infection with Mycobacterium tuberculosis: A computational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziraldo, Cordelia; Gong, Chang; Kirschner, Denise E.

    Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. While many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likelymore » key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of Memory Design Space. As a result, given a set of desired characteristics for Ag-specific memory populations, we can use our model as a tool to predict vaccine formulations that will generate those populations.« less

  9. Origin and Function of Circulating Plasmablasts during Acute Viral Infections.

    PubMed

    Fink, Katja

    2012-01-01

    Activated B cells proliferate and differentiate into antibody-producing cells, long-lived plasma cells, and memory B cells after immunization or infection. Repeated encounter of the same antigen triggers the rapid re-activation of pre-existing specific memory B cells, which then potentially enter new germinal center reactions and differentiate into short-lived plasmablasts or remain in the system as memory B cells. Short-lived class-switched IgG and IgA plasmablasts appear in the circulation transiently and the frequency of these cells can be remarkably high. The specificities and affinities of single plasmablasts in humans have been reported for several viral infections, so far most extensively for influenza and HIV. In general, the immunoglobulin variable regions of plasmablasts are highly mutated and diverse, suggesting that plasmablasts are derived from memory B cells, yet it is unclear which memory B cell subsets are activated and whether activated memory B cells adapt or mature before differentiation. This review summarizes what is known about the phenotype and the origin of human plasmablasts in the context of viral infections and whether these cells can be predictors of long-lived immunity.

  10. Scarcity of autoreactive human blood IgA+ memory B cells

    PubMed Central

    Prigent, Julie; Lorin, Valérie; Kök, Ayrin; Hieu, Thierry; Bourgeau, Salomé

    2016-01-01

    Class‐switched memory B cells are key components of the “reactive” humoral immunity, which ensures a fast and massive secretion of high‐affinity antigen‐specific antibodies upon antigenic challenge. In humans, IgA class‐switched (IgA+) memory B cells and IgA antibodies are abundant in the blood. Although circulating IgA+ memory B cells and their corresponding secreted immunoglobulins likely possess major protective and/or regulatory immune roles, little is known about their specificity and function. Here, we show that IgA+ and IgG+ memory B‐cell antibodies cloned from the same healthy humans share common immunoglobulin gene features. IgA and IgG memory antibodies have comparable lack of reactivity to vaccines, common mucosa‐tropic viruses and commensal bacteria. However, the IgA+ memory B‐cell compartment contains fewer polyreactive clones and importantly, only rare self‐reactive clones compared to IgG+ memory B cells. Self‐reactivity of IgAs is acquired following B‐cell affinity maturation but not antibody class switching. Together, our data suggest the existence of different regulatory mechanisms for removing autoreactive clones from the IgG+ and IgA+ memory B‐cell repertoires, and/or different maturation pathways potentially reflecting the distinct nature and localization of the cognate antigens recognized by individual B‐cell populations. PMID:27469325

  11. Increased peripheral blood CD4+ T cell responses to deamidated but not to native gliadin in children with coeliac disease

    PubMed Central

    Lammi, A; Arikoski, P; Vaarala, O; Kinnunen, T; Ilonen, J

    2012-01-01

    T cell recognition of gliadin from dietary gluten is essential for the pathogenesis of coeliac disease (CD). The aim of the present study was to analyse whether gliadin-specific T cells are detectable in the circulation of children with newly diagnosed coeliac disease by using a sensitive carboxfluorescein diacetate succinimidyl ester (CFSE) dilution method. Peripheral blood CD4+ T cell responses were analysed in 20 children at diagnosis of CD and compared to those in 64 healthy control children carrying the CD-associated human leucocyte antigen (HLA)-DQ2 or -DQ8 alleles. Deamidated gliadin (gTG)-specific T cells were detectable in the peripheral blood of more than half the children with CD (11 of 20, 55%) compared to 15 of 64 (23·4%) of the control children (P = 0·008). Proliferative responses to gTG were also significantly stronger in children with CD than in controls (P = 0·01). In contrast, T cells specific to native gliadin were detectable at comparable frequencies in children with CD (two of 19, 10·5%) and controls (13 of 64, 20·3%). gTG-specific T cells had a memory phenotype more often than those specific to native gliadin in children with CD (P = 0·02), whereas controls had similar percentages of memory cells in both stimulations. Finally, gTG-specific CD4+ T cells had a higher expression of the gut-homing molecule β7 integrin than those specific to the control antigen tetanus toxoid. Collectively, our current results demonstrate that the frequency of circulating memory CD4+ T cells specific to gTG but not native gliadin is increased in children with newly diagnosed CD. PMID:22471282

  12. Increased peripheral blood CD4+ T cell responses to deamidated but not to native gliadin in children with coeliac disease.

    PubMed

    Lammi, A; Arikoski, P; Vaarala, O; Kinnunen, T; Ilonen, J

    2012-05-01

    T cell recognition of gliadin from dietary gluten is essential for the pathogenesis of coeliac disease (CD). The aim of the present study was to analyse whether gliadin-specific T cells are detectable in the circulation of children with newly diagnosed coeliac disease by using a sensitive carboxfluorescein diacetate succinimidyl ester (CFSE) dilution method. Peripheral blood CD4(+) T cell responses were analysed in 20 children at diagnosis of CD and compared to those in 64 healthy control children carrying the CD-associated human leucocyte antigen (HLA)-DQ2 or -DQ8 alleles. Deamidated gliadin (gTG)-specific T cells were detectable in the peripheral blood of more than half the children with CD (11 of 20, 55%) compared to 15 of 64 (23.4%) of the control children (P = 0.008). Proliferative responses to gTG were also significantly stronger in children with CD than in controls (P = 0.01). In contrast, T cells specific to native gliadin were detectable at comparable frequencies in children with CD (two of 19, 10.5%) and controls (13 of 64, 20.3%). gTG-specific T cells had a memory phenotype more often than those specific to native gliadin in children with CD (P = 0.02), whereas controls had similar percentages of memory cells in both stimulations. Finally, gTG-specific CD4(+) T cells had a higher expression of the gut-homing molecule β7 integrin than those specific to the control antigen tetanus toxoid. Collectively, our current results demonstrate that the frequency of circulating memory CD4(+) T cells specific to gTG but not native gliadin is increased in children with newly diagnosed CD. © 2012 The Authors;Clinical and Experimental Immunology © 2012 British Society for Immunology.

  13. Analysis of antigen-specific B-cell memory directly ex vivo.

    PubMed

    McHeyzer-Williams, Louise J; McHeyzer-Williams, Michael G

    2004-01-01

    Helper T-cell-regulated B-cell memory develops in response to initial antigen priming as a cellular product of the germinal center (GC) reaction. On antigen recall, memory response precursors expand rapidly with exaggerated differentiation into plasma cells to produce the high-titer, high-affinity antibody(Ab) that typifies the memory B-cell response in vivo. We have devised a high-resolution flow cytometric strategy to quantify the emergence and maintenance of antigen-specific memory B cells directly ex vivo. Extended cell surface phenotype establishes a level of cellular diversity not previously appreciated for the memory B-cell compartment. Using an "exclusion transfer" strategy, we ascertain the capacity of two distinct memory B-cell populations to transfer antigen-specific memory into naive adoptive hosts. Finally, we sequence expressed messenger ribonucleic acid (mRNA) from single cells within the population to estimate the level of somatic hypermutation as the best molecular indicator of B-cell memory. In this chapter, we describe the methods used in each of these four sections that serve to provide high-resolution quantification of antigen-specific B-cell memory responses directly ex vivo.

  14. Circulating gluten-specific FOXP3+CD39+ regulatory T cells have impaired suppressive function in patients with celiac disease.

    PubMed

    Cook, Laura; Munier, C Mee Ling; Seddiki, Nabila; van Bockel, David; Ontiveros, Noé; Hardy, Melinda Y; Gillies, Jana K; Levings, Megan K; Reid, Hugh H; Petersen, Jan; Rossjohn, Jamie; Anderson, Robert P; Zaunders, John J; Tye-Din, Jason A; Kelleher, Anthony D

    2017-12-01

    Celiac disease is a chronic immune-mediated inflammatory disorder of the gut triggered by dietary gluten. Although the effector T-cell response in patients with celiac disease has been well characterized, the role of regulatory T (Treg) cells in the loss of tolerance to gluten remains poorly understood. We sought to define whether patients with celiac disease have a dysfunction or lack of gluten-specific forkhead box protein 3 (FOXP3) + Treg cells. Treated patients with celiac disease underwent oral wheat challenge to stimulate recirculation of gluten-specific T cells. Peripheral blood was collected before and after challenge. To comprehensively measure the gluten-specific CD4 + T-cell response, we paired traditional IFN-γ ELISpot with an assay to detect antigen-specific CD4 + T cells that does not rely on tetramers, antigen-stimulated cytokine production, or proliferation but rather on antigen-induced coexpression of CD25 and OX40 (CD134). Numbers of circulating gluten-specific Treg cells and effector T cells both increased significantly after oral wheat challenge, peaking at day 6. Surprisingly, we found that approximately 80% of the ex vivo circulating gluten-specific CD4 + T cells were FOXP3 + CD39 + Treg cells, which reside within the pool of memory CD4 + CD25 + CD127 low CD45RO + Treg cells. Although we observed normal suppressive function in peripheral polyclonal Treg cells from patients with celiac disease, after a short in vitro expansion, the gluten-specific FOXP3 + CD39 + Treg cells exhibited significantly reduced suppressive function compared with polyclonal Treg cells. This study provides the first estimation of FOXP3 + CD39 + Treg cell frequency within circulating gluten-specific CD4 + T cells after oral gluten challenge of patients with celiac disease. FOXP3 + CD39 + Treg cells comprised a major proportion of all circulating gluten-specific CD4 + T cells but had impaired suppressive function, indicating that Treg cell dysfunction might be a key contributor to disease pathogenesis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection.

    PubMed

    Martin, Matthew D; Kim, Marie T; Shan, Qiang; Sompallae, Ramakrishna; Xue, Hai-Hui; Harty, John T; Badovinac, Vladimir P

    2015-10-01

    Memory CD8 T cells confer increased protection to immune hosts upon secondary viral, bacterial, and parasitic infections. The level of protection provided depends on the numbers, quality (functional ability), and location of memory CD8 T cells present at the time of infection. While primary memory CD8 T cells can be maintained for the life of the host, the full extent of phenotypic and functional changes that occur over time after initial antigen encounter remains poorly characterized. Here we show that critical properties of circulating primary memory CD8 T cells, including location, phenotype, cytokine production, maintenance, secondary proliferation, secondary memory generation potential, and mitochondrial function change with time after infection. Interestingly, phenotypic and functional alterations in the memory population are not due solely to shifts in the ratio of effector (CD62Llo) and central memory (CD62Lhi) cells, but also occur within defined CD62Lhi memory CD8 T cell subsets. CD62Lhi memory cells retain the ability to efficiently produce cytokines with time after infection. However, while it is was not formally tested whether changes in CD62Lhi memory CD8 T cells over time occur in a cell intrinsic manner or are due to selective death and/or survival, the gene expression profiles of CD62Lhi memory CD8 T cells change, phenotypic heterogeneity decreases, and mitochondrial function and proliferative capacity in either a lymphopenic environment or in response to antigen re-encounter increase with time. Importantly, and in accordance with their enhanced proliferative and metabolic capabilities, protection provided against chronic LCMV clone-13 infection increases over time for both circulating memory CD8 T cell populations and for CD62Lhi memory cells. Taken together, the data in this study reveal that memory CD8 T cells continue to change with time after infection and suggest that the outcome of vaccination strategies designed to elicit protective memory CD8 T cells using single or prime-boost immunizations depends upon the timing between antigen encounters.

  16. A Memory B Cell Crossmatch Assay for Quantification of Donor-Specific Memory B Cells in the Peripheral Blood of HLA-Immunized Individuals.

    PubMed

    Karahan, G E; de Vaal, Y J H; Krop, J; Wehmeier, C; Roelen, D L; Claas, F H J; Heidt, S

    2017-10-01

    Humoral responses against mismatched donor HLA are routinely measured as serum HLA antibodies, which are mainly produced by bone marrow-residing plasma cells. Individuals with a history of alloimmunization but lacking serum antibodies may harbor circulating dormant memory B cells, which may rapidly become plasma cells on antigen reencounter. Currently available methods to detect HLA-specific memory B cells are scarce and insufficient in quantifying the complete donor-specific memory B cell response due to their dependence on synthetic HLA molecules. We present a highly sensitive and specific tool for quantifying donor-specific memory B cells in peripheral blood of individuals using cell lysates covering the complete HLA class I and class II repertoire of an individual. Using this enzyme-linked immunospot (ELISpot) assay, we found a median frequency of 31 HLA class I and 89 HLA class II-specific memory B cells per million IgG-producing cells directed at paternal HLA in peripheral blood samples from women (n = 22) with a history of pregnancy, using cell lysates from spouses. The donor-specific memory B cell ELISpot can be used in HLA diagnostic laboratories as a cross-match assay to quantify donor-specific memory B cells in patients with a history of sensitizing events. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  17. Dendritic Cell Immaturity during Infancy Restricts the Capacity To Express Vaccine-Specific T-Cell Memory

    PubMed Central

    Upham, John W.; Rate, Angela; Rowe, Julie; Kusel, Merci; Sly, Peter D.; Holt, Patrick G.

    2006-01-01

    The capacity of the immune system in infants to develop stable T-cell memory in response to vaccination is attenuated, and the mechanism(s) underlying this developmental deficiency in humans is poorly understood. The present study focuses on the capacity for expression of in vitro recall responses to tetanus and diphtheria antigens in lymphocytes from 12-month-old infants vaccinated during the first 6 months of life. We demonstrate that supplementation of infant lymphocytes with “matured” dendritic cells (DC) cultured from autologous CD14+ precursors unmasks previously covert cellular immunity in the form of Th2-skewed cytokine production. Supplementation of adult lymphocytes with comparable prematured autologous DC also boosted vaccine-specific T-cell memory expression, but in contrast to the case for the infants, these cytokine responses were heavily Th1 skewed. Compared to adults, infants had significantly fewer circulating myeloid DC (P < 0.0001) and plasmacytoid DC (P < 0.0001) as a proportion of peripheral blood mononuclear cells. These findings suggest that deficiencies in the numbers of antigen-presenting cells and their functional competence at 12 months of age limit the capacity to express effector memory responses and are potentially a key factor in reduced vaccine responsiveness in infants. PMID:16428758

  18. TLR-adjuvanted nanoparticle vaccines differentially influence the quality and longevity of responses to malaria antigen Pfs25.

    PubMed

    Thompson, Elizabeth A; Ols, Sebastian; Miura, Kazutoyo; Rausch, Kelly; Narum, David L; Spångberg, Mats; Juraska, Michal; Wille-Reece, Ulrike; Weiner, Amy; Howard, Randall F; Long, Carole A; Duffy, Patrick E; Johnston, Lloyd; O'Neil, Conlin P; Loré, Karin

    2018-05-17

    Transmission-blocking vaccines (TBVs) are considered an integral element of malaria eradication efforts. Despite promising evaluations of Plasmodium falciparum Pfs25-based TBVs in mice, clinical trials have failed to induce robust and long-lived Ab titers, in part due to the poorly immunogenic nature of Pfs25. Using nonhuman primates, we demonstrate that multiple aspects of Pfs25 immunity were enhanced by antigen encapsulation in poly(lactic-co-glycolic acid)-based [(PLGA)-based] synthetic vaccine particles (SVP[Pfs25]) and potent TLR-based adjuvants. SVP[Pfs25] increased Ab titers, Pfs25-specific plasmablasts, circulating memory B cells, and plasma cells in the bone marrow when benchmarked against the clinically tested multimeric form Pfs25-EPA given with GLA-LSQ. SVP[Pfs25] also induced the first reported Pfs25-specific circulating Th1 and Tfh cells to our knowledge. Multivariate correlative analysis indicated several mechanisms for the improved Ab responses. While Pfs25-specific B cells were responsible for increasing Ab titers, T cell responses stimulated increased Ab avidity. The innate immune activation differentially stimulated by the adjuvants revealed a strong correlation between type I IFN polarization, induced by R848 and CpG, and increased Ab half-life and longevity. Collectively, the data identify ways to improve vaccine-induced immunity to poorly immunogenic proteins, both by the choice of antigen and adjuvant formulation, and highlight underlying immunological mechanisms.

  19. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses.

    PubMed

    Paust, Silke; Gill, Harvinder S; Wang, Bao-Zhong; Flynn, Michael P; Moseman, E Ashley; Senman, Balimkiz; Szczepanik, Marian; Telenti, Amalio; Askenase, Philip W; Compans, Richard W; von Andrian, Ulrich H

    2010-12-01

    Hepatic natural killer (NK) cells mediate antigen-specific contact hypersensitivity (CHS) in mice deficient in T cells and B cells. We report here that hepatic NK cells, but not splenic or naive NK cells, also developed specific memory of vaccines containing antigens from influenza, vesicular stomatitis virus (VSV) or human immunodeficiency virus type 1 (HIV-1). Adoptive transfer of virus-sensitized NK cells into naive recipient mice enhanced the survival of the mice after lethal challenge with the sensitizing virus but not after lethal challenge with a different virus. NK cell memory of haptens and viruses depended on CXCR6, a chemokine receptor on hepatic NK cells that was required for the persistence of memory NK cells but not for antigen recognition. Thus, hepatic NK cells can develop adaptive immunity to structurally diverse antigens, an activity that requires NK cell-expressed CXCR6.

  20. Niches for the Long-Term Maintenance of Tissue-Resident Memory T Cells

    PubMed Central

    Takamura, Shiki

    2018-01-01

    Tissue-resident memory T cells (TRM cells) are a population of immune cells that reside in the lymphoid and non-lymphoid organs without recirculation through the blood. These important cells occupy and utilize unique anatomical and physiological niches that are distinct from those for other memory T cell populations, such as central memory T cells in the secondary lymphoid organs and effector memory T cells that circulate through the tissues. CD8+ TRM cells typically localize in the epithelial layers of barrier tissues where they are optimally positioned to act as sentinels to trigger antigen-specific protection against reinfection. CD4+ TRM cells typically localize below the epithelial layers, such as below the basement membrane, and cluster in lymphoid structures designed to optimize interactions with antigen-presenting cells upon reinfection. A key feature of TRM populations is their ability to be maintained in barrier tissues for prolonged periods of time. For example, skin CD8+ TRM cells displace epidermal niches originally occupied by γδ T cells, thereby enabling their stable persistence for years. It is also clear that the long-term maintenance of TRM cells in different microenvironments is dependent on multiple tissue-specific survival cues, although the specific details are poorly understood. However, not all TRM persist over the long term. Recently, we identified a new spatial niche for the maintenance of CD8+ TRM cells in the lung, which is created at the site of tissue regeneration after injury [termed repair-associated memory depots (RAMD)]. The short-lived nature of RAMD potentially explains the short lifespans of CD8+ TRM cells in this particular tissue. Clearly, a better understanding of the niche-dependent maintenance of TRM cells will be important for the development of vaccines designed to promote barrier immunity. In this review, we discuss recent advances in our understanding of the properties and nature of tissue-specific niches that maintain TRM cells in different tissues. PMID:29904388

  1. Long-term memory cellular immune response to dengue virus after a natural primary infection.

    PubMed

    Sierra, Beatríz; García, Gissel; Pérez, Ana B; Morier, Luis; Rodríguez, Rayner; Alvarez, Mayling; Guzmán, María G

    2002-06-01

    This study was conducted to examine the memory T-cell response to dengue virus 20 years after a primary infection. We took advantage of the exceptional epidemiologic situation in Cuba, where the population initially suffered two large successive epidemics due to dengue virus 1 and 2 respectively over a 4-year period. Thereafter, no dengue virus circulation was subsequently observed, except for the Santiago de Cuba municipality. T-cell response was evaluated in peripheral blood mononuclear cells (PBMCs) from 20 individuals with history of a primary infection by dengue virus 1 or 2. Methods previously shown to induce lymphoproliferation of CD4+ memory T-cell subpopulations were used. We evaluated the proliferative responses generated in those PBMCs after stimulation with dengue virus 1, 2, 3 and 4 antigens in a serotype-specific and serotype-crossreactive way. Serotype-specific and serotype-crossreactive lymphoproliferative responses in all PBMCs donated by dengue immune donors were observed. The serotype-crossreactive response for dengue 2 was stronger than for the rest of the serotypes. This is the first report of cellular memory lymphocyte response specific for dengue virus detected 20 years after a primary infection by dengue.

  2. A novel dendritic cell-based direct ex vivo assay for detection and enumeration of circulating antigen-specific human T cells.

    PubMed

    Carrio, Roberto; Zhang, Ge; Drake, Donald R; Schanen, Brian C

    2018-05-07

    Although a variety of assays have been used to examine T cell responses in vitro, standardized ex vivo detection of antigen-specific CD4 + T cells from human circulatory PBMCs remains constrained by low-dimensional characterization outputs and the need for polyclonal, mitogen-induced expansion methods to generate detectable response signals. To overcome these limitations, we developed a novel methodology utilizing antigen-pulsed autologous human dendritic target cells in a rapid and sensitive assay to accurately enumerate antigen-specific CD4 + T cell precursor frequency by multiparametric flow cytometry. With this approach, we demonstrate the ability to reproducibly quantitate poly-functional T cell responses following both primary and recall antigenic stimulation. Furthermore, this approach enables more comprehensive phenotypic profiling of circulating antigen-specific CD4 + T cells, providing valuable insights into the pre-existing polarization of antigen-specific T cells in humans. Combined, this approach permits sensitive and detailed ex vivo detection of antigen-specific CD4 + T cells delivering an important tool for advancing vaccine, immune-oncology and other therapeutic studies.

  3. Novel fusion proteins for the antigen-specific staining and elimination of B cell receptor-positive cell populations demonstrated by a tetanus toxoid fragment C (TTC) model antigen.

    PubMed

    Klose, Diana; Saunders, Ute; Barth, Stefan; Fischer, Rainer; Jacobi, Annett Marita; Nachreiner, Thomas

    2016-02-17

    In an earlier study we developed a unique strategy allowing us to specifically eliminate antigen-specific murine B cells via their distinct B cell receptors using a new class of fusion proteins. In the present work we elaborated our idea to demonstrate the feasibility of specifically addressing and eliminating human memory B cells. The present study reveals efficient adaptation of the general approach to selectively target and eradicate human memory B cells. In order to demonstrate the feasibility we engineered a fusion protein following the principle of recombinant immunotoxins by combining a model antigen (tetanus toxoid fragment C, TTC) for B cell receptor targeting and a truncated version of Pseudomonas aeruginosa exotoxin A (ETA') to induce apoptosis after cellular uptake. The TTC-ETA' fusion protein not only selectively bound to a TTC-reactive murine B cell hybridoma cell line in vitro but also to freshly isolated human memory B cells from immunized donors ex vivo. Specific toxicity was confirmed on an antigen-specific population of human CD27(+) memory B cells. This protein engineering strategy can be used as a generalized platform approach for the construction of therapeutic fusion proteins with disease-relevant antigens as B cell receptor-binding domains, offering a promising approach for the specific depletion of autoreactive B-lymphocytes in B cell-driven autoimmune diseases.

  4. Transient detection of Chlamydial-specific Th1 memory cells in the peripheral circulation of women with history of Chlamydia trachomatis genital tract infection.

    PubMed

    Vicetti Miguel, Rodolfo D; Reighard, Seth D; Chavez, Jean M; Rabe, Lorna K; Maryak, Samantha A; Wiesenfeld, Harold C; Cherpes, Thomas L

    2012-12-01

    Development of safe and effective Chlamydia trachomatis vaccines requires better understanding of the host immune responses elicited by natural infection. Peripheral blood mononuclear cells isolated from women with or without history of genital tract chlamydial infection were stimulated with inactivated C. trachomatis elementary bodies (EB) in ELISPOT assays that enumerated frequencies of cells producing interferon (IFN)-γ or interleukin (IL)-17. IFN-γ-positive cells were highest among women sampled 30-60 days after diagnosis of C. trachomatis infection and treatment initiation, while the numbers of IFN-γ-positive cells were equally low among uninfected women and women sampled <30 or >60 days after diagnosis of infection. Conversely, IL-17-positive cell numbers were uniformly low among all participants. Dramatically reduced numbers of Chlamydia-specific Th1 memory cells in the peripheral circulation of study participants sampled more than 2 months after diagnosis, and initiation of treatment provides new insight into the results from C. trachomatis vaccine trials, in which immunization with EB provided only short-lived protection. Our results also suggest that an effective vaccine against this weakly antigenic intracellular pathogen will need to generate immunological memory more durable than that elicited by natural infection. © 2012 John Wiley & Sons A/S.

  5. CHEMOKINE RECEPTOR 7 (CCR7)-EXPRESSION AND IFNγ PRODUCTION DEFINE VACCINE-SPECIFIC CANINE T CELL SUBSETS

    PubMed Central

    Hartley, Ashley N.; Tarleton, Rick L.

    2015-01-01

    Canines suffer from and serve as strong translational animals models for many immunological disorders and infectious diseases. Routine vaccination has been a mainstay of protecting dogs through the stimulation of robust antibody responses and expansion of memory T cell populations. Commercially available reagents and described techniques are limited for identifying and characterizing canine T cell subsets and evaluating T cell-specific effector function. To define reagents for delineating naïve versus activated T cells and identify antigen-specific T cells, we tested anti-human and anti-bovine T-cell specific cell surface marker reagents for cross-reactivity with canine peripheral blood mononuclear cells (PBMCs. Both CD4+ and CD8+ T cells from healthy canine donors showed reactivity to CCL19-Ig, a CCR7 ligand, and coexpression with CD62L. An in vitro stimulation with concanavalin A validated downregulation of CCR7 and CD62L expression on stimulated healthy control PBMCs, consistent with an activated T cell phenotype. Anti-IFNγ antibodies identified antigen-specific IFNγ-producing CD4+ and CD8+ T cells upon in vitro vaccine antigen PBMC stimulation. PBMC isolation within 24 hours of sample collection allowed for efficient cell recovery and accurate T cell effector function characterization. These data provide a reagent and techniques platform via flow cytometry for identifying canine T cell subsets and characterizing circulating antigen-specific canine T cells for potential use in diagnostic and field settings. PMID:25758065

  6. Effects of immunosuppression on circulating adeno-associated virus capsid-specific T cells in humans.

    PubMed

    Parzych, Elizabeth M; Li, Hua; Yin, Xiangfan; Liu, Qin; Wu, Te-Lang; Podsakoff, Gregory M; High, Katherine A; Levine, Matthew H; Ertl, Hildegund C J

    2013-04-01

    In humans adeno-associated virus (AAV)-mediated gene transfer is followed by expansion of AAV capsid-specific T cells, evidence of cell damage, and loss of transgene product expression, implicating immunological rejection of vector-transduced cells, which may be prevented by immunosuppressive drugs. We undertook this study to assess the effect of immunosuppression (IS) used for organ transplantation on immune responses to AAV capsid antigens. Recipients of liver or kidney transplants were tested before and 4 weeks after induction of IS in comparison with matched samples from healthy human adults and an additional cohort with comorbid conditions similar to those of the transplant patients. Our data show that transplant patients and comorbid control subjects have markedly higher frequencies of circulating AAV capsid-specific T cells compared with healthy adults. On average, IS resulted in a reduction of AAV-specific CD4⁺ T cells, whereas numbers of circulating CD8⁺ effector and central memory T cells tended to increase. Independent of the type of transplant or the IS regimens, the trend of AAV capsid-specific T cell responses after drug treatment varied; in some patients responses were unaffected whereas others showed decreases or even pronounced increases, casting doubt on the usefulness of prophylactic IS for AAV vector recipients.

  7. Effects of Immunosuppression on Circulating Adeno-Associated Virus Capsid-Specific T cells in Humans

    PubMed Central

    Parzych, Elizabeth M.; Li, Hua; Yin, Xiangfan; Liu, Qin; Wu, Te-Lang; Podsakoff, Gregory M.; High, Katherine A.; Levine, Matthew H.

    2013-01-01

    Abstract In humans adeno-associated virus (AAV)-mediated gene transfer is followed by expansion of AAV capsid-specific T cells, evidence of cell damage, and loss of transgene product expression, implicating immunological rejection of vector-transduced cells, which may be prevented by immunosuppressive drugs. We undertook this study to assess the effect of immunosuppression (IS) used for organ transplantation on immune responses to AAV capsid antigens. Recipients of liver or kidney transplants were tested before and 4 weeks after induction of IS in comparison with matched samples from healthy human adults and an additional cohort with comorbid conditions similar to those of the transplant patients. Our data show that transplant patients and comorbid control subjects have markedly higher frequencies of circulating AAV capsid-specific T cells compared with healthy adults. On average, IS resulted in a reduction of AAV-specific CD4+ T cells, whereas numbers of circulating CD8+ effector and central memory T cells tended to increase. Independent of the type of transplant or the IS regimens, the trend of AAV capsid-specific T cell responses after drug treatment varied; in some patients responses were unaffected whereas others showed decreases or even pronounced increases, casting doubt on the usefulness of prophylactic IS for AAV vector recipients. PMID:23461589

  8. Routine detection of Epstein-Barr virus specific T-cells in the peripheral blood by flow cytometry

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Stowe, R. P.; Pierson, D. L.; Sams, C. F.

    2001-01-01

    The ability to detect cytomegalovirus-specific T-cells (CD4(+)) in the peripheral blood by flow cytometry has been recently described by Picker et al. In this method, cells are incubated with viral antigen and responding (cytokine producing) T-cells are then identified by flow cytometry. To date, this technique has not been reliably used to detect Epstein-Barr virus (EBV)-specific T-cells primarily due to the superantigen/mitogenic properties of the virus which non-specifically activate T-cells. By modifying culture conditions under which the antigens are presented, we have overcome this limitation and developed an assay to detect and quantitate EBV-specific T-cells. The detection of cytokine producing T-cells by flow cytometry requires an extremely strong signal (such as culture in the presence of PMA and ionomycin). Our data indicate that in modified culture conditions (early removal of viral antigen) the non-specific activation of T-cells by EBV is reduced, but antigen presentation will continue uninhibited. Using this method, EBV-specific T-cells may be legitimately detected using flow cytometry. No reduction in the numbers of antigen-specific T-cells was observed by the early removal of target antigen when verified using cytomegalovirus antigen (a virus with no non-specific T-cell activation properties). In EBV-seropositive individuals, the phenotype of the EBV-specific cytokine producing T-cells was evaluated using four-color flow cytometry and found to be CD45(+), CD3(+), CD4(+), CD45RA(-), CD69(+), CD25(-). This phenotype indicates the stimulation of circulating previously unactivated memory T-cells. No cytokine production was observed in CD4(+) T-cells from EBV-seronegative individuals, confirming the specificity of this assay. In addition, the use of four color cytometry (CD45, CD3, CD69, IFNgamma/IL-2) allows the total quantitative assessment of EBV-specific T-cells while monitoring the interference of EBV non-specific mitogenic activity. This method may have significant utility for the monitoring of the immune response to latent virus infection/reactivation.

  9. MHC class II/ESO tetramer-based generation of in vitro primed anti-tumor T-helper lines for adoptive cell therapy of cancer.

    PubMed

    Poli, Caroline; Raffin, Caroline; Dojcinovic, Danijel; Luescher, Immanuel; Ayyoub, Maha; Valmori, Danila

    2013-02-01

    Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO-monospecific polyclonal T(H) lines from non-immune individuals. This is an approach that is of potential interest for adoptive cell therapy of patients bearing ESO-expressing cancers.

  10. Different Dynamics for IgG and IgA Memory B Cells in Adolescents following a Meningococcal Serogroup C Tetanus Toxoid Conjugate Booster Vaccination Nine Years after Priming: A Role for Priming Age?

    PubMed Central

    Stoof, Susanne P.; Buisman, Anne-Marie; van Rooijen, Debbie M.; Boonacker, Rianne; van der Klis, Fiona R. M.; Sanders, Elisabeth A. M.; Berbers, Guy A. M.

    2015-01-01

    Background Antibody levels wane rapidly after Meningococcal serogroup C conjugate (MenCC) vaccination in young children, rendering the need for an adolescent booster dose. It is not clear whether circulating memory B cells are associated with persistence of MenC-specific antibody levels. Methods Measurement of MenC-specific IgG and IgA memory B cells and levels of serum and salivary MenC-specific IgG and IgA in healthy 10-, 12- and 15-year-olds prior to and one month and one year after a MenCC booster vaccination. All participants had received a primary MenCC vaccination nine years earlier. Results The number of circulating MenC-specific IgG memory B cells prior to booster was low and not predictive for MenC-specific IgG responses in serum or saliva post-booster, whereas the number of MenC-specific IgA memory B cells pre-booster positively correlated with MenC-specific IgA levels in saliva post-booster (R = 0.5, P<0.05). The booster induced a clear increase in the number of MenC-specific IgG and IgA memory B cells. The number of MenC-PS-specific IgG memory B cells at 1 month post-booster was highest in the 12-year-olds. The number of MenC-specific memory B cells at one month post-booster showed no correlation with the rate of MenC-specific antibody decay throughout the first year post-booster. Conclusions Circulating MenC-specific IgA memory B cells correlate with IgA responses in saliva, whereas circulating MenC-specific IgG memory B cells are not predictive for MenC-specific IgG responses in serum or saliva. Our results are suggestive for age-dependent differences in pre-existing memory against MenC. PMID:26458006

  11. Different Dynamics for IgG and IgA Memory B Cells in Adolescents following a Meningococcal Serogroup C Tetanus Toxoid Conjugate Booster Vaccination Nine Years after Priming: A Role for Priming Age?

    PubMed

    Stoof, Susanne P; Buisman, Anne-Marie; van Rooijen, Debbie M; Boonacker, Rianne; van der Klis, Fiona R M; Sanders, Elisabeth A M; Berbers, Guy A M

    2015-01-01

    Antibody levels wane rapidly after Meningococcal serogroup C conjugate (MenCC) vaccination in young children, rendering the need for an adolescent booster dose. It is not clear whether circulating memory B cells are associated with persistence of MenC-specific antibody levels. Measurement of MenC-specific IgG and IgA memory B cells and levels of serum and salivary MenC-specific IgG and IgA in healthy 10-, 12- and 15-year-olds prior to and one month and one year after a MenCC booster vaccination. All participants had received a primary MenCC vaccination nine years earlier. The number of circulating MenC-specific IgG memory B cells prior to booster was low and not predictive for MenC-specific IgG responses in serum or saliva post-booster, whereas the number of MenC-specific IgA memory B cells pre-booster positively correlated with MenC-specific IgA levels in saliva post-booster (R = 0.5, P<0.05). The booster induced a clear increase in the number of MenC-specific IgG and IgA memory B cells. The number of MenC-PS-specific IgG memory B cells at 1 month post-booster was highest in the 12-year-olds. The number of MenC-specific memory B cells at one month post-booster showed no correlation with the rate of MenC-specific antibody decay throughout the first year post-booster. Circulating MenC-specific IgA memory B cells correlate with IgA responses in saliva, whereas circulating MenC-specific IgG memory B cells are not predictive for MenC-specific IgG responses in serum or saliva. Our results are suggestive for age-dependent differences in pre-existing memory against MenC.

  12. Phenotypic analysis of perennial airborne allergen-specific CD4+ T cells in atopic and non-atopic individuals.

    PubMed

    Crack, L R; Chan, H W; McPherson, T; Ogg, G S

    2011-11-01

    Accumulating evidence suggests that T cells play an important role in the pathogenesis of atopic dermatitis (AD); yet, little is known of the differentiation status of CD4+ T cells specific for common environmental allergens, such as the major cat allergen, Fel d 1. To determine the frequency, differentiation phenotype and function of circulating Fel d 1-specific CD4+ T cells in adult individuals with severe persistent AD in comparison with healthy controls. Using HLA class II tetrameric complexes based on a HLA-DPB1*0401-restricted Fel d 1 epitope, ex vivo and cultured T cell frequency and phenotype were analysed in individuals with AD and healthy controls. Cytokine secretion was measured by ex vivo and cultured IL-4 and IFN-γ ELISpots. Ex vivo Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopics and non-atopics express high levels of CCR7, CD62L, CD27 and CD28, placing the cells largely within the central memory subgroup. However, the functional phenotype was distinct, with greater IL-4 production from the cells derived from atopics, which correlated with disease severity. Circulating Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopic and non-atopic donors maintain a central memory phenotype; however in atopics, the cells had greater Th2 effector function, compatible with a disease model of altered antigen delivery in atopic individuals. © 2011 Blackwell Publishing Ltd.

  13. Immunodetection of Fasciola gigantica Circulating Antigen in Sera of Infected Individuals for Laboratory Diagnosis of Human Fascioliasis

    PubMed Central

    Attallah, Abdelfattah M.; Bughdadi, Faisal A.; El-Shazly, Atef M.

    2013-01-01

    Currently, the laboratory diagnosis of human fascioliasis is based on the parasitological examination of parasite eggs in stool specimens and serological detection of specific antibodies in serum samples, which are often unreliable diagnostic approaches. Ideally, a sensitive and specific diagnostic test for Fasciola infection should be based on the detection of circulating Fasciola antigen, which implies active infection. Here, a 27-kDa-molecular-mass antigen was identified in a Fasciola gigantica adult worm antigen preparation, excretory-secretory products, and sera from F. gigantica-infected individuals, and it was not detected in antigenic extracts of other parasites and sera from noninfected individuals. The target antigen was isolated and partially characterized as a protein. Immunoperoxidase staining located the target epitope within teguments and guts of F. gigantica adult worms. The performance characteristics of a newly developed enzyme-linked immunosorbent assay (ELISA) based on F. gigantica circulating antigen detection in serum (FgCA-27 ELISA) were investigated using sera of 120 parasitologically diagnosed F. gigantica-infected individuals and 80 noninfected individuals. The area under the receiving operating characteristic (ROC) curve (AUC) for ELISA was significantly high (AUC = 0.961, P < 0.0001) for discriminating Fasciola-infected and noninfected individuals. The developed assay showed high degrees of sensitivity, specificity, and efficiency (>93%), and a significant correlation (r = 0.715, P < 0.0001) between antigen level and parasite egg count was shown. In conclusion, a 27-kDa Fasciola antigen was identified in sera of F. gigantica-infected individuals. A highly sensitive and specific Fasciola antigen detection assay, FgCA-27 ELISA, was developed for laboratory diagnosis of human fascioliasis. PMID:23945158

  14. Immunodetection of Fasciola gigantica circulating antigen in sera of infected individuals for laboratory diagnosis of human fascioliasis.

    PubMed

    Attallah, Abdelfattah M; Bughdadi, Faisal A; El-Shazly, Atef M; Ismail, Hisham

    2013-10-01

    Currently, the laboratory diagnosis of human fascioliasis is based on the parasitological examination of parasite eggs in stool specimens and serological detection of specific antibodies in serum samples, which are often unreliable diagnostic approaches. Ideally, a sensitive and specific diagnostic test for Fasciola infection should be based on the detection of circulating Fasciola antigen, which implies active infection. Here, a 27-kDa-molecular-mass antigen was identified in a Fasciola gigantica adult worm antigen preparation, excretory-secretory products, and sera from F. gigantica-infected individuals, and it was not detected in antigenic extracts of other parasites and sera from noninfected individuals. The target antigen was isolated and partially characterized as a protein. Immunoperoxidase staining located the target epitope within teguments and guts of F. gigantica adult worms. The performance characteristics of a newly developed enzyme-linked immunosorbent assay (ELISA) based on F. gigantica circulating antigen detection in serum (FgCA-27 ELISA) were investigated using sera of 120 parasitologically diagnosed F. gigantica-infected individuals and 80 noninfected individuals. The area under the receiving operating characteristic (ROC) curve (AUC) for ELISA was significantly high (AUC = 0.961, P < 0.0001) for discriminating Fasciola-infected and noninfected individuals. The developed assay showed high degrees of sensitivity, specificity, and efficiency (>93%), and a significant correlation (r = 0.715, P < 0.0001) between antigen level and parasite egg count was shown. In conclusion, a 27-kDa Fasciola antigen was identified in sera of F. gigantica-infected individuals. A highly sensitive and specific Fasciola antigen detection assay, FgCA-27 ELISA, was developed for laboratory diagnosis of human fascioliasis.

  15. Antigen challenge leads to in vivo activation and elimination of highly polarized TH1 memory T cells

    PubMed Central

    Hayashi, Nobuki; Liu, Dacai; Min, Booki; Ben-Sasson, Shlomo Z.; Paul, William E.

    2002-01-01

    TH1 memory T cells derived from T cell receptor transgenic mice, in which the T cell antigen receptor is specific for a cytochrome C peptide in association with I-Ek, were transferred into normal B10.A mice and allowed to adopt a resting phenotype. When challenged, 30–60 days after transfer, with i.v. cytochrome C, the transgenic cells rapidly became activated, expressed mRNA for IFNγ, and began to divide. However, after 48 h, the frequency of the cells fell progressively, reaching levels only slightly above the limit of detection by day 8 and thereafter remain depressed for up to 90 days. The remaining cells were anergic as shown by limitation in proliferation and IFNγ production in response to in vitro antigen stimulation. Even if challenged with antigen emulsified in complete Freund's adjuvant, the overall pattern was similar, except that in the draining lymph nodes, the surviving antigen-specific cells were not anergic, although spleen cells were still strikingly anergic. Thus, antigenic challenge of mice possessing resting memory TH1 CD4 T cells leads to the unanticipated loss of most of the specific cells and an apparent depletion rather than enhancement of immunologic memory. PMID:11959916

  16. Memory vs memory-like: The different facets of CD8+ T-cell memory in HCV infection.

    PubMed

    Hofmann, Maike; Wieland, Dominik; Pircher, Hanspeter; Thimme, Robert

    2018-05-01

    Memory CD8 + T cells are essential in orchestrating protection from re-infection. Hallmarks of virus-specific memory CD8 + T cells are the capacity to mount recall responses with rapid induction of effector cell function and antigen-independent survival. Growing evidence reveals that even chronic infection does not preclude virus-specific CD8 + T-cell memory formation. However, whether this kind of CD8 + T-cell memory that is established during chronic infection is indeed functional and provides protection from re-infection is still unclear. Human chronic hepatitis C virus infection represents a unique model system to study virus-specific CD8 + T-cell memory formation during and after cessation of persisting antigen stimulation. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Virus-specific CD4+ memory phenotype T cells are abundant in unexposed adults

    PubMed Central

    Su, Laura F.; Kidd, Brian A.; Han, Arnold; Kotzin, Jonathan J.; Davis, Mark M.

    2013-01-01

    While T cell memory is generally thought to require direct antigen exposure, we find an abundance of memory phenotype cells (20–90%, averaging over 50%) of CD4+ T cells specific for viral antigens in adults that have never been infected. These cells express the appropriate memory markers and genes, rapidly produce cytokines, and have clonally expanded. This contrasts with newborns where the same T cell receptor (TCR) specificities are almost entirely naïve, which may explain the vulnerability of young children to infections. One mechanism for this phenomenon is TCR cross-reactivity to environmental antigens and in support of this we find extensive cross-recognition by HIV-1 and influenza-reactive T lymphocytes to other microbial peptides and the expansion of one of these following influenza vaccination. Thus the presence of these memory phenotype T cells has significant implications for immunity to novel pathogens, child and adult health, and the influence of pathogen-rich versus hygienic environments. PMID:23395677

  18. Induction of long term mucosal immunological memory in humans by an oral inactivated multivalent enterotoxigenic Escherichia coli vaccine.

    PubMed

    Lundgren, Anna; Jertborn, Marianne; Svennerholm, Ann-Mari

    2016-06-08

    We have evaluated the capacity of an oral multivalent enterotoxigenic Escherichia coli (ETEC) vaccine (MEV) to induce mucosal immunological memory. MEV consists of four inactivated E. coli strains over-expressing the major colonization factors (CFs) CFA/I, CS3, CS5 and CS6 and the LTB-related toxoid LCTBA. Memory responses were analyzed by comparing the magnitudes and kinetics of intestine-derived antibody-secreting cell responses to a single dose of MEV in three groups of adult Swedish volunteers (n=16-19 subjects per group) in a Phase I trial: non-immunized controls (I) and subjects who in a previous Phase I trial 13-23 months earlier had received two biweekly doses of MEV (II) or MEV+double mutant LT (dmLT) adjuvant (III). Responses against CFs and LTB were analyzed in antibodies in lymphocyte secretions (ALS) of blood mononuclear cells collected before (day 0) and 4/5 and 7 days after immunization. Specific circulating memory B cells present at the time of the single dose vaccination were also studied to determine if such cells may reflect mucosal memory. Considerably higher and significantly more frequent IgA ALS responses against all CFs and LTB were induced by the single vaccine dose in the previously immunized than in non-immunized volunteers. Furthermore, peak IgA ALS responses against all antigens were observed on days 4/5 in most of the previously immunized subjects whereas only a few previously non-vaccinated individuals responded before day 7. Priming with adjuvant did not influence memory responses. Circulating vaccine specific IgA memory B cells were not detected, whereas anti-toxin IgG memory B cells were identified 13-23 months after priming vaccination. We conclude that MEV induces functional mucosal immunological memory which remains at least 1-2 years. Furthermore, our results support that analysis of antibody-secreting cell responses after booster vaccination may be a useful approach to evaluate longstanding mucosal immunological memory in humans. ISRCTN27096290. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry

    PubMed Central

    Woda, Marcia; Mathew, Anuja

    2015-01-01

    Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at −80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV+ B cells from immune, but not naïve donors secreted antibodies that bound intact virions after in vitro stimulation. Overall, Alexa Fluor dye labeled -DENV are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. PMID:25497702

  20. Immune signatures of protective spleen memory CD8 T cells.

    PubMed

    Brinza, Lilia; Djebali, Sophia; Tomkowiak, Martine; Mafille, Julien; Loiseau, Céline; Jouve, Pierre-Emmanuel; de Bernard, Simon; Buffat, Laurent; Lina, Bruno; Ottmann, Michèle; Rosa-Calatrava, Manuel; Schicklin, Stéphane; Bonnefoy, Nathalie; Lauvau, Grégoire; Grau, Morgan; Wencker, Mélanie; Arpin, Christophe; Walzer, Thierry; Leverrier, Yann; Marvel, Jacqueline

    2016-11-24

    Memory CD8 T lymphocyte populations are remarkably heterogeneous and differ in their ability to protect the host. In order to identify the whole range of qualities uniquely associated with protective memory cells we compared the gene expression signatures of two qualities of memory CD8 T cells sharing the same antigenic-specificity: protective (Influenza-induced, Flu-TM) and non-protective (peptide-induced, TIM) spleen memory CD8 T cells. Although Flu-TM and TIM express classical phenotypic memory markers and are polyfunctional, only Flu-TM protects against a lethal viral challenge. Protective memory CD8 T cells express a unique set of genes involved in migration and survival that correlate with their unique capacity to rapidly migrate within the infected lung parenchyma in response to influenza infection. We also enlighten a new set of poised genes expressed by protective cells that is strongly enriched in cytokines and chemokines such as Ccl1, Ccl9 and Gm-csf. CCL1 and GM-CSF genes are also poised in human memory CD8 T cells. These immune signatures are also induced by two other pathogens (vaccinia virus and Listeria monocytogenes). The immune signatures associated with immune protection were identified on circulating cells, i.e. those that are easily accessible for immuno-monitoring and could help predict vaccines efficacy.

  1. Environmental factor and inflammation-driven alteration of the total peripheral T-cell compartment in granulomatosis with polyangiitis.

    PubMed

    Kerstein, Anja; Schüler, Silke; Cabral-Marques, Otávio; Fazio, Juliane; Häsler, Robert; Müller, Antje; Pitann, Silke; Moosig, Frank; Klapa, Sebastian; Haas, Christian; Kabelitz, Dieter; Riemekasten, Gabriela; Wolters, Steffen; Lamprecht, Peter

    2017-03-01

    Autoimmune diseases are initiated by a combination of predisposing genetic and environmental factors resulting in self-perpetuating chronic inflammation and tissue damage. Autoantibody production and an imbalance of effector and regulatory T-cells are hallmarks of autoimmune dysregulation. While expansion of circulating effector memory T-cells is linked to disease pathogenesis and progression, the causes driving alterations of the peripheral T-cell compartment have remained poorly understood so far. In granulomatosis with polyangiitis (GPA), a prototypical autoimmune disorder of unknown aetiology, we performed for the first time a combined approach using phenotyping, transcriptome and functional analyses of T-cell populations to evaluate triggers of memory T-cell expansion. In more detail, we found increased percentages of circulating CD4+CD28-, CD8+CD28- and CD4+CD161+ single-positive and CD4+CD8+ double-positive T-cells in GPA. Transcriptomic profiling of sorted T-cell populations showed major differences between GPA and healthy controls reflecting antigen- (bacteria, viruses, fungi) and cytokine-driven impact on T-cell populations in GPA. Concomitant cytomegalovirus (CMV) and Epstein-Barr virus (EBV) - positivity was associated with a significant increase in the percentage of CD28- T-cells in GPA-patients compared to sole CMV- or EBV-positivity or CMV- and EBV-negativity. T-cells specific for other viruses (influenza A virus, metapneumovirus, respiratory syncytial virus) and the autoantigen proteinase 3 (PR3) were infrequently detected in GPA. Antigen-specific T-cells were not specifically enriched in any of the T-cell subsets. Altogether, on a genetic and cellular basis, here we show that alterations of the peripheral T-cell compartment are driven by inflammation and various environmental factors including concomitant CMV and EBV infection. Our study provides novel insights into mechanisms driving autoimmune disease and on potential therapeutic targets. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Homologous Prime-Boost Vaccination with OVA Entrapped in Self-Adjuvanting Archaeosomes Induces High Numbers of OVA-Specific CD8+ T Cells that Protect Against Subcutaneous B16-OVA Melanoma

    PubMed Central

    Stark, Felicity C.; McCluskie, Michael J.; Krishnan, Lakshmi

    2016-01-01

    Homologous prime-boost vaccinations with live vectors typically fail to induce repeated strong CD8+ T cell responses due to the induction of anti-vector immunity, highlighting the need for alternative delivery vehicles. The unique ether lipids of archaea may be constituted into liposomes, archaeosomes, which do not induce anti-carrier responses, making them an ideal candidate for use in repeat vaccination systems. Herein, we evaluated in mice the maximum threshold of antigen-specific CD8+ T cell responses that may be induced by multiple homologous immunizations with ovalbumin (OVA) entrapped in archaeosomes derived from the ether glycerolipids of the archaeon Methanobrevibacter smithii (MS-OVA). Up to three immunizations with MS-OVA administered in optimized intervals (to allow for sufficient resting of the primed cells prior to boosting), induced a potent anti-OVA CD8+ T cell response of up to 45% of all circulating CD8+ T cells. Additional MS-OVA injections did not add any further benefit in increasing the memory of CD8+ T cell frequency. In contrast, OVA expressed by Listeria monocytogenes (LM-OVA), an intracellular bacterial vector failed to evoke a boosting effect after the second injection, resulting in significantly reduced antigen-specific CD8+ T cell frequencies. Furthermore, repeated vaccination with MS-OVA skewed the response increasingly towards an effector memory (CD62low) phenotype. Vaccinated animals were challenged with B16-OVA at late time points after vaccination (+7 months) and were afforded protection compared to control. Therefore, archaeosomes constituted a robust particulate delivery system to unravel the kinetics of CD8+ T cell response induction and memory maintenance and constitute an efficient vaccination regimen optimized for tumor protection. PMID:27869670

  3. Protective Capacity of Memory CD8+ T Cells is Dictated by Antigen Exposure History and Nature of the Infection

    PubMed Central

    Nolz, Jeffrey C.; Harty, John T.

    2011-01-01

    SUMMARY Infection or vaccination confers heightened resistance to pathogen re-challenge due to quantitative and qualitative differences between naïve and primary memory T cells. Herein, we show that secondary (boosted) memory CD8+ T cells were better than primary memory CD8+ T cells in controlling some, but not all acute infections with diverse pathogens. However, secondary memory CD8+ T cells were less efficient than an equal number of primary memory cells at preventing chronic LCMV infection and are more susceptible to functional exhaustion. Importantly, localization of memory CD8+ T cells within lymph nodes, which is reduced by antigen re-stimulation, was critical for both viral control in lymph nodes and for the sustained CD8+ T cell response required to prevent chronic LCMV infection. Thus, repeated antigen-stimulation shapes memory CD8+ T cell populations to either enhance or decrease per cell protective immunity in a pathogen-specific manner, a concept of importance in vaccine design against specific diseases. PMID:21549619

  4. CD8α+ DC trans-presentation of IL-15 to naïve CD8+ T cells produces antigen inexperienced T cells in the periphery with memory phenotype and function

    PubMed Central

    Sosinowski, Tomasz; White, Jason T.; Cross, Eric; Haluszczak, Catherine; Marrack, Philippa; Gapin, Laurent; Kedl, Ross M.

    2013-01-01

    Various populations of memory phenotype CD8+ T cells have been described over the last 15–20 years, all of which possess elevated effector functions relative to naïve phenotype cells. Using a technique for isolating antigen specific cells from unprimed hosts, we recently identified a new subset of cells, specific for nominal antigen, but phenotypically and functionally similar to memory cells arising as a result of homeostatic proliferation (HP). We show here that these “Virtual Memory” cells are independent of previously identified “innate memory” cells, arising as a result of their response to IL-15 trans-presentation by lymphoid tissue-resident CD8α+ DCs in the periphery. The absence of IL-15, CD8+ T cell expression of either CD122 or Eomes, or of CD8a+ DCs all lead to the loss of Virtual Memory cells in the host. Our results show that CD8+ T cell homeostatic expansion is an active process within the non-lymphopenic environment, is mediated by IL-15, and produces antigen inexperienced memory cells which retain the capacity to respond to nominal antigen with memory-like function. Preferential engagement of these “Virtual Memory” T cells into a vaccine response could dramatically enhance the rate by which immune protection develops. PMID:23355737

  5. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry.

    PubMed

    Woda, Marcia; Mathew, Anuja

    2015-01-01

    Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at -80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV(+) B cells from immune, but not naïve donors secreted antibodies that bound DENV after in vitro stimulation. Overall, Alexa Fluor dye-labeled DENVs are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. IL-15 regulates memory CD8+ T cell O-glycan synthesis and affects trafficking

    PubMed Central

    Nolz, Jeffrey C.; Harty, John T.

    2014-01-01

    Memory and naive CD8+ T cells exhibit distinct trafficking patterns. Specifically, memory but not naive CD8+ T cells are recruited to inflamed tissues in an antigen-independent manner. However, the molecular mechanisms that regulate memory CD8+ T cell trafficking are largely unknown. Here, using murine models of infection and T cell transfer, we found that memory but not naive CD8+ T cells dynamically regulate expression of core 2 O-glycans, which interact with P- and E-selectins to modulate trafficking to inflamed tissues. Following infection, antigen-specific effector CD8+ T cells strongly expressed core 2 O-glycans, but this glycosylation pattern was lost by most memory CD8+ T cells. After unrelated infection or inflammatory challenge, memory CD8+ T cells synthesized core 2 O-glycans independently of antigen restimulation. The presence of core 2 O-glycans subsequently directed these cells to inflamed tissue. Memory and naive CD8+ T cells exhibited the opposite pattern of epigenetic modifications at the Gcnt1 locus, which encodes the enzyme that initiates core 2 O-glycan synthesis. The open chromatin configuration in memory CD8+ T cells permitted de novo generation of core 2 O-glycans in a TCR-independent, but IL-15–dependent, manner. Thus, IL-15 stimulation promotes antigen-experienced memory CD8+ T cells to generate core 2 O-glycans, which subsequently localize them to inflamed tissues. These findings suggest that CD8+ memory T cell trafficking potentially can be manipulated to improve host defense and immunotherapy. PMID:24509081

  7. Single-Cell Tracking Reveals a Role for Pre-Existing CCR5+ Memory Th1 Cells in the Control of Rhinovirus-A39 After Experimental Challenge in Humans.

    PubMed

    Muehling, Lyndsey M; Turner, Ronald B; Brown, Kenneth B; Wright, Paul W; Patrie, James T; Lahtinen, Sampo J; Lehtinen, Markus J; Kwok, William W; Woodfolk, Judith A

    2018-01-17

    Little is known about T cells that respond to human rhinovirus in vivo, due to timing of infection, viral diversity, and complex T-cell specificities. We tracked circulating CD4+ T cells with identical epitope specificities that responded to intranasal challenge with rhinovirus (RV)-A39, and we assessed T-cell signatures in the nose. Cells were monitored using a mixture of 2 capsid-specific major histocompatibility complex II tetramers over a 7-week period, before and after RV-A39 challenge, in 16 human leukocyte antigen-DR4+ subjects who participated in a trial of Bifidobacterium lactis (Bl-04) supplementation. Pre-existing tetramer+ T cells were linked to delayed viral shedding, enriched for activated CCR5+ Th1 effectors, and included a minor interleukin-21+ T follicular helper cell subset. After RV challenge, expansion and activation of virus-specific CCR5+ Th1 effectors was restricted to subjects who had a rise in neutralizing antibodies, and tetramer-negative CCR5+ effector memory types were comodulated. In the nose, CXCR3-CCR5+ T cells present during acute infection were activated effector memory type, whereas CXCR3+ cells were central memory type, and cognate chemokine ligands were elevated over baseline. Probiotic had no T-cell effects. We conclude that virus-specific CCR5+ effector memory CD4+ T cells primed by previous exposure to related viruses contribute to the control of rhinovirus. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  8. Reduced Serum IgG Responses to Pneumococcal Antigens in Otitis-Prone Children May Be Due to Poor Memory B-Cell Generation

    PubMed Central

    Sharma, Sharad K.; Casey, Janet R.

    2012-01-01

    A low level of serum antibody to antigens expressed by Streptococcus pneumoniae has been proposed to explain the susceptibility of children to recurrent episodes of acute otitis media (hereafter, “otitis-prone children”). By use of enzyme-linked immunospot assays, the percentages of memory B cells to pneumococcal protein antigens PhtD, LytB, PcpA, PhtE, and Ply were compared between otitis-prone and non–otitis-prone children at the time of acute otitis media or nasopharyngeal colonization with S. pneumoniae. We found significantly lower percentages of memory B cells to 3 pneumococcal protein antigens (PhtD, PhtE, and Ply) and reduced antigen-specific immunoglobulin G concentrations in otitis-prone children, compared with non–otitis-prone children. PMID:22383675

  9. Immune Impact Induced by PROSTVAC (PSA-TRICOM), a Therapeutic Vaccine for Prostate Cancer

    PubMed Central

    Gulley, James L.; Madan, Ravi A.; Tsang, Kwong Y.; Jochems, Caroline; Marté, Jennifer L.; Farsaci, Benedetto; Tucker, Jo A.; Hodge, James W.; Liewehr, David J.; Steinberg, Seth M.; Heery, Christopher R.; Schlom, Jeffrey

    2013-01-01

    PSA-TRICOM (PROSTVAC) is a novel vector-based vaccine designed to generate a robust immune response against prostate-specific antigen (PSA)–expressing tumor cells. The purpose of this report is to present an overview of both published studies and new data in the evaluation of immune responses to the PSA-TRICOM vaccine platform, currently in phase III testing. Of 104 patients tested for T-cell responses, 57% (59/104) demonstrated a ≥ 2-fold increase in PSA-specific T cells 4 weeks after vaccine (median 5-fold increase) compared with pre-vaccine, and 68% (19/28) of patients tested mounted post-vaccine immune responses to tumor-associated antigens not present in the vaccine (antigen-spreading). The PSA-specific immune responses observed 28 days after vaccine (i.e., likely memory cells) are quantitatively similar to the levels of circulating T cells specific for influenza seen in the same patients. Measurements of systemic immune response to PSA may underestimate the true therapeutic immune response (as this does not account for cells that have trafficked to the tumor) and does not include antigen-spreading. Furthermore, while the entire PSA gene is the vaccine, only one epitope of PSA is evaluated in the T-cell responses. Since this therapeutic vaccine is directed at generating a cellular/Th1 immune response (T-cell costimulatory molecules and use of a viral vector), it is not surprising that < 0.6% of patients (2/349) tested have evidence of PSA antibody-induction following vaccine. This suggests that post-vaccine PSA kinetics were not affected by PSA antibodies. An ongoing phase III study will evaluate the systemic immune responses and correlation with clinical outcomes. PMID:24778277

  10. Development of Epstein-Barr virus-specific memory T cell receptor clonotypes in acute infectious mononucleosis

    PubMed Central

    1996-01-01

    The importance of cytotoxic T lymphocytes (CTLs) in the immunosurveillance of Epstein-Barr virus (EBV)-infected B cells is firmly established, and the viral antigens of CTL recognition in latent infection are well defined. The epitopes targeted by CTLs during primary infection have not been identified, however, and there is only limited information about T cell receptor (TCR) selection. In the present report, we have monitored the development of memory TCR-beta clonotypes selected in response to natural EBV infection in a longitudinal study of an HLA-B8+ individual with acute infectious mononucleosis (IM). By stimulating peripheral blood lymphocytes with HLA-B8+ EBV-transformed B lymphoblastoid cells, the primary virus- specific CTL response was shown to include specificities for two HLA-B8- restricted antigenic determinants, FLRGRAYGL and QAKWRLQTL, which are encoded within the latent EBV nuclear antigen EBNA-3. TCR-beta sequence analysis of CTL clones specific for each epitope showed polyclonal TCR- beta repertoire selection, with structural restrictions on recognition that indicated antigen-driven selection. Furthermore, longitudinal repertoire analysis revealed long-term preservation of a multiclonal effector response throughout convalescence, with the reemergence of distinct memory T cell clonotypes sharing similar structural restrictions. Tracking the progression of specific TCR-beta clonotypes and antigen-specific TCR-V beta family gene expression in the peripheral repertoire ex vivo using semiquantitative PCR strongly suggested that selective TCR-beta expansions were present at the clonotype level, but not at the TCR-V beta family level. Overall, in this first analysis of antigen-specific TCR development in IM, a picture of polyclonal TCR stimulation is apparent. This diversity may be especially important in the establishment of an effective CTL control during acute EBV infection and in recovery from disease. PMID:8920869

  11. B-cell polyclonal activation and Epstein-Barr viral abortive lytic cycle are two key features in acute infectious mononucleosis.

    PubMed

    Al Tabaa, Yassine; Tuaillon, Edouard; Jeziorski, Eric; Ouedraogo, David Eric; Bolloré, Karine; Rubbo, Pierre-Alain; Foulongne, Vincent; Rodière, Michel; Vendrell, Jean-Pierre

    2011-09-01

    Acute infectious mononucleosis (AIM) is generally associated with a large EBV B cell reservoir cells and an intense B-cell polyclonal activation whereas the number of quiescent EBV-infected memory B cells in chronically EBV-infected healthy controls is very low. To evaluate the extent and functionality of ex vivo B-cell polyclonal activation, quantify the EBV DNA integrated in B cells, enumerate the functional EBV DNA reservoir in B cells and circulating B cells spontaneously secreting EBV antigens in AIM. Circulating B cells and B cells differentiating into plamablasts and plasma cells, early (BZLF1)- and late viral antigen (gp350)-secreting-cells (SCs) were enumerated in six AIM patients and seven healthy EBV carriers. In vitro B-cell polyclonal activation induced 8000-24,000 BZLF1- and 1000-3000gp350-SCs/10(6) B cells, respectively. These data suggest that only 11.1-19.5% of cells expressing BZLF1 synthesized gp350 and so completed the EBV-lytic cycle. Furthermore, circulating spontaneous BZLF1- and gp350-SCs that reflect ongoing viral replication were rare (20-120 and 10-30/10(6) B cells, respectively), and their low numbers contrasted with the high levels of circulating plasma cells (1.1-10.2% of CD19(+) B cells). The in vivo terminal-B-cell differentiation into plasma cells could unmask EBV B-cell reservoir to specific cytotoxic T-cell response and combined with a predominant abortive functional-EBV-reservoir, strongly contribute to rapid decay of cellular EBV reservoir in AIM. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Verification of immune response optimality through cybernetic modeling.

    PubMed

    Batt, B C; Kompala, D S

    1990-02-09

    An immune response cascade that is T cell independent begins with the stimulation of virgin lymphocytes by antigen to differentiate into large lymphocytes. These immune cells can either replicate themselves or differentiate into plasma cells or memory cells. Plasma cells produce antibody at a specific rate up to two orders of magnitude greater than large lymphocytes. However, plasma cells have short life-spans and cannot replicate. Memory cells produce only surface antibody, but in the event of a subsequent infection by the same antigen, memory cells revert rapidly to large lymphocytes. Immunologic memory is maintained throughout the organism's lifetime. Many immunologists believe that the optimal response strategy calls for large lymphocytes to replicate first, then differentiate into plasma cells and when the antigen has been nearly eliminated, they form memory cells. A mathematical model incorporating the concept of cybernetics has been developed to study the optimality of the immune response. Derived from the matching law of microeconomics, cybernetic variables control the allocation of large lymphocytes to maximize the instantaneous antibody production rate at any time during the response in order to most efficiently inactivate the antigen. A mouse is selected as the model organism and bacteria as the replicating antigen. In addition to verifying the optimal switching strategy, results showing how the immune response is affected by antigen growth rate, initial antigen concentration, and the number of antibodies required to eliminate an antigen are included.

  13. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells.

    PubMed

    Hurton, Lenka V; Singh, Harjeet; Najjar, Amer M; Switzer, Kirsten C; Mi, Tiejuan; Maiti, Sourindra; Olivares, Simon; Rabinovich, Brian; Huls, Helen; Forget, Marie-Andrée; Datar, Vrushali; Kebriaei, Partow; Lee, Dean A; Champlin, Richard E; Cooper, Laurence J N

    2016-11-29

    Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (T SCM ) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR + T cells with preserved T SCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19 + leukemia. Long-lived T cells were CD45RO neg CCR7 + CD95 + , phenotypically most similar to T SCM , and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR + T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials.

  14. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells

    PubMed Central

    Hurton, Lenka V.; Singh, Harjeet; Najjar, Amer M.; Switzer, Kirsten C.; Mi, Tiejuan; Maiti, Sourindra; Olivares, Simon; Rabinovich, Brian; Huls, Helen; Forget, Marie-Andrée; Datar, Vrushali; Kebriaei, Partow; Lee, Dean A.; Champlin, Richard E.; Cooper, Laurence J. N.

    2016-01-01

    Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (TSCM) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR+ T cells with preserved TSCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19+ leukemia. Long-lived T cells were CD45ROnegCCR7+CD95+, phenotypically most similar to TSCM, and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR+ T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials. PMID:27849617

  15. Recombinant MHC Tetramers for Isolation of Virus-Specific CD8+ Cells from Healthy Donors: Potential Approach for Cell Therapy of Posttransplant Cytomegalovirus Infection.

    PubMed

    Vdovin, A S; Filkin, S Y; Yefimova, P R; Sheetikov, S A; Kapranov, N M; Davydova, Y O; Egorov, E S; Khamaganova, E G; Drokov, M Y; Kuzmina, L A; Parovichnikova, E N; Efimov, G A; Savchenko, V G

    2016-11-01

    Patients undergoing allogeneic hematopoietic stem cell transplantation have a high risk of cytomegalovirus reactivation, which in the absence of T-cell immunity can result in the development of an acute inflammatory reaction and damage of internal organs. Transfusion of the virus-specific donor T-lymphocytes represents an alternative to a highly toxic and often ineffective antiviral therapy. Potentially promising cell therapy approach comprises transfusion of cytotoxic T-lymphocytes, specific to the viral antigens, immediately after their isolation from the donor's blood circulation without any in vitro expansion. Specific T-cells could be separated from potentially alloreactive lymphocytes using recombinant major histocompatibility complex (MHC) multimers, carrying synthetic viral peptides. Rapid transfusion of virus-specific T-cells to patients has several crucial advantages in comparison with methods based on the in vitro expansion of the cells. About 30% of hematopoietic stem cell donors and 46% of transplant recipients at the National Research Center for Hematology were carriers of the HLA-A*02 allele. Moreover, 94% of Russian donors have an immune response against the cytomegalovirus (CMV). Using recombinant HLA-A*02 multimers carrying an immunodominant cytomegalovirus peptide (NLV), we have shown that the majority of healthy donors have pronounced T-cell immunity against this antigen, whereas shortly after the transplantation the patients do not have specific T-lymphocytes. The donor cells have the immune phenotype of memory cells and can be activated and proliferate after stimulation with the specific antigen. Donor lymphocytes can be substantially enriched to significant purity by magnetic separation with recombinant MHC multimers and are not activated upon cocultivation with the antigen-presenting cells from HLA-incompatible donors without addition of the specific antigen. This study demonstrated that strong immune response to CMV of healthy donors and prevalence of HLA-A*02 allele in the Russian population make it possible to isolate a significant number of virus-specific cells using HLA-A*02-NLV multimers. After the transfusion, these cells should protect patients from CMV without development of allogeneic immune response.

  16. Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge

    PubMed Central

    Magini, Diletta; Giovani, Cinzia; Mangiavacchi, Simona; Maccari, Silvia; Cecchi, Raffaella; Ulmer, Jeffrey B.; De Gregorio, Ennio; Geall, Andrew J.; Brazzoli, Michela; Bertholet, Sylvie

    2016-01-01

    Current hemagglutinin (HA)-based seasonal influenza vaccines induce vaccine strain-specific neutralizing antibodies that usually fail to provide protection against mismatched circulating viruses. Inclusion in the vaccine of highly conserved internal proteins such as the nucleoprotein (NP) and the matrix protein 1 (M1) was shown previously to increase vaccine efficacy by eliciting cross-reactive T-cells. However, appropriate delivery systems are required for efficient priming of T-cell responses. In this study, we demonstrated that administration of novel self-amplifying mRNA (SAM®) vectors expressing influenza NP (SAM(NP)), M1 (SAM(M1)), and NP and M1 (SAM(M1-NP)) delivered with lipid nanoparticles (LNP) induced robust polyfunctional CD4 T helper 1 cells, while NP-containing SAM also induced cytotoxic CD8 T cells. Robust expansions of central memory (TCM) and effector memory (TEM) CD4 and CD8 T cells were also measured. An enhanced recruitment of NP-specific cytotoxic CD8 T cells was observed in the lungs of SAM(NP)-immunized mice after influenza infection that paralleled with reduced lung viral titers and pathology, and increased survival after homologous and heterosubtypic influenza challenge. Finally, we demonstrated for the first time that the co-administration of RNA (SAM(M1-NP)) and protein (monovalent inactivated influenza vaccine (MIIV)) was feasible, induced simultaneously NP-, M1- and HA-specific T cells and HA-specific neutralizing antibodies, and enhanced MIIV efficacy against a heterologous challenge. In conclusion, systemic administration of SAM vectors expressing conserved internal influenza antigens induced protective immune responses in mice, supporting the SAM® platform as another promising strategy for the development of broad-spectrum universal influenza vaccines. PMID:27525409

  17. The CD8+ memory T-cell state of readiness is actively maintained and reversible

    PubMed Central

    Allam, Atef; Conze, Dietrich B.; Giardino Torchia, Maria Letizia; Munitic, Ivana; Yagita, Hideo; Sowell, Ryan T.; Marzo, Amanda L.

    2009-01-01

    The ability of the adaptive immune system to respond rapidly and robustly upon repeated antigen exposure is known as immunologic memory, and it is thought that acquisition of memory T-cell function is an irreversible differentiation event. In this study, we report that many phenotypic and functional characteristics of antigen-specific CD8 memory T cells are lost when they are deprived of contact with dendritic cells. Under these circumstances, memory T cells reverted from G1 to the G0 cell-cycle state and responded to stimulation like naive T cells, as assessed by proliferation, dependence upon costimulation, and interferon-γ production, without losing cell surface markers associated with memory. The memory state was maintained by signaling via members of the tumor necrosis factor receptor superfamily, CD27 and 4-1BB. Foxo1, a transcription factor involved in T-cell quiescence, was reduced in memory cells, and stimulation of naive CD8 cells via CD27 caused Foxo1 to be phosphorylated and emigrate from the nucleus in a phosphatidylinositol-3 kinase–dependent manner. Consistent with these results, maintenance of G1 in vivo was compromised in antigen-specific memory T cells in vesicular stomatitis virus-infected CD27-deficient mice. Therefore, sustaining the functional phenotype of T memory cells requires active signaling and maintenance. PMID:19617575

  18. Memory T cells maintain protracted protection against malaria.

    PubMed

    Krzych, Urszula; Zarling, Stasya; Pichugin, Alexander

    2014-10-01

    Immunologic memory is one of the cardinal features of antigen-specific immune responses, and the persistence of memory cells contributes to prophylactic immunizations against infectious agents. Adequately maintained memory T and B cell pools assure a fast, effective and specific response against re-infections. However, many aspects of immunologic memory are still poorly understood, particularly immunologic memory inducible by parasites, for example, Plasmodium spp., the causative agents of malaria. For example, memory responses to Plasmodium antigens amongst residents of malaria endemic areas appear to be either inadequately developed or maintained, because persons who survive episodes of childhood malaria remain vulnerable to intermittent malaria infections. By contrast, multiple exposures of humans and laboratory rodents to radiation-attenuated Plasmodium sporozoites (γ-spz) induce sterile and long-lasting protection against experimental sporozoite challenge. Multifactorial immune mechanisms maintain this protracted and sterile protection. While the presence of memory CD4 T cell subsets has been associated with lasting protection in humans exposed to multiple bites from Anopheles mosquitoes infected with attenuated Plasmodium falciparum, memory CD8 T cells maintain protection induced with Plasmodium yoelii and Plasmodium berghei γ-spz in murine models. In this review, we discuss our observations that show memory CD8 T cells specific for antigens expressed by P. berghei liver stage parasites as an indispensable component for the maintenance of protracted protective immunity against experimental malaria infection; moreover, the provision of an Ag-depot assures a quick recall of memory T cells as IFN-γ-producing effector CD8 T cells and IL-4- producing CD4 T cells that collaborate with B cells for an effective antibody response. Published by Elsevier B.V.

  19. Homologous Prime-Boost Vaccination with OVA Entrapped in Self-Adjuvanting Archaeosomes Induces High Numbers of OVA-Specific CD8⁺ T Cells that Protect Against Subcutaneous B16-OVA Melanoma.

    PubMed

    Stark, Felicity C; McCluskie, Michael J; Krishnan, Lakshmi

    2016-11-17

    Homologous prime-boost vaccinations with live vectors typically fail to induce repeated strong CD8⁺ T cell responses due to the induction of anti-vector immunity, highlighting the need for alternative delivery vehicles. The unique ether lipids of archaea may be constituted into liposomes, archaeosomes, which do not induce anti-carrier responses, making them an ideal candidate for use in repeat vaccination systems. Herein, we evaluated in mice the maximum threshold of antigen-specific CD8⁺ T cell responses that may be induced by multiple homologous immunizations with ovalbumin (OVA) entrapped in archaeosomes derived from the ether glycerolipids of the archaeon Methanobrevibacter smithii (MS-OVA). Up to three immunizations with MS-OVA administered in optimized intervals (to allow for sufficient resting of the primed cells prior to boosting), induced a potent anti-OVA CD8⁺ T cell response of up to 45% of all circulating CD8⁺ T cells. Additional MS-OVA injections did not add any further benefit in increasing the memory of CD8⁺ T cell frequency. In contrast, OVA expressed by Listeria monocytogenes (LM-OVA), an intracellular bacterial vector failed to evoke a boosting effect after the second injection, resulting in significantly reduced antigen-specific CD8⁺ T cell frequencies. Furthermore, repeated vaccination with MS-OVA skewed the response increasingly towards an effector memory (CD62 low ) phenotype. Vaccinated animals were challenged with B16-OVA at late time points after vaccination (+7 months) and were afforded protection compared to control. Therefore, archaeosomes constituted a robust particulate delivery system to unravel the kinetics of CD8⁺ T cell response induction and memory maintenance and constitute an efficient vaccination regimen optimized for tumor protection.

  20. On the dynamics of acute EBV infection and the pathogenesis of infectious mononucleosis

    PubMed Central

    Hadinoto, Vey; Shapiro, Michael; Greenough, Thomas C.; Sullivan, John L.; Luzuriaga, Katherine

    2008-01-01

    Memory B cells latently infected with Epstein-Barr virus (mBLats) in the blood disappear rapidly on presentation with acute symptomatic primary infection (acute infectious mononucleosis [AIM]). They undergo a simple exponential decay (average half-life: 7.5 ± 3.7 days) similar to that of normal memory B cells. The cytotoxic T lymphocyte (CTL) response to immediate early (IE) lytic antigens (CTLIEs) also decays over this time period, but no such correlation was observed for the CTL response to lytic or latent antigens or to the levels of virions shed into saliva. We have estimated the average half-life of CTLIEs to be 73 (± 23) days. We propose that cycles of infection and reactivation occur in the initial stages of infection that produce high levels of mBLats in the circulation. Eventually the immune response arises and minimizes these cycles leaving the high levels of mBLats in the blood to decay through simple memory B-cell homeostasis mechanisms. This triggers the cells to reactivate the virus whereupon most are killed by CTLIEs before they can release virus and infect new cells. The release of antigens caused by this large-scale destruction of infected cells may trigger the symptoms of AIM and be a cofactor in other AIM-associated diseases. PMID:17991806

  1. CD4+ virtual memory: Antigen-inexperienced T cells reside in the naïve, regulatory, and memory T cell compartments at similar frequencies, implications for autoimmunity.

    PubMed

    Marusina, Alina I; Ono, Yoko; Merleev, Alexander A; Shimoda, Michiko; Ogawa, Hiromi; Wang, Elizabeth A; Kondo, Kayo; Olney, Laura; Luxardi, Guillaume; Miyamura, Yoshinori; Yilma, Tilahun D; Villalobos, Itzel Bustos; Bergstrom, Jennifer W; Kronenberg, Daniel G; Soulika, Athena M; Adamopoulos, Iannis E; Maverakis, Emanual

    2017-02-01

    It is widely accepted that central and effector memory CD4 + T cells originate from naïve T cells after they have encountered their cognate antigen in the setting of appropriate co-stimulation. However, if this were true the diversity of T cell receptor (TCR) sequences within the naïve T cell compartment should be far greater than that of the memory T cell compartment, which is not supported by TCR sequencing data. Here we demonstrate that aged mice with far fewer naïve T cells, respond to the model antigen, hen eggwhite lysozyme (HEL), by utilizing the same TCR sequence as their younger counterparts. CD4 + T cell repertoire analysis of highly purified T cell populations from naive animals revealed that the HEL-specific clones displayed effector and central "memory" cell surface phenotypes even prior to having encountered their cognate antigen. Furthermore, HEL-inexperienced CD4 + T cells were found to reside within the naïve, regulatory, central memory, and effector memory T cell populations at similar frequencies and the majority of the CD4 + T cells within the regulatory and memory populations were unexpanded. These findings support a new paradigm for CD4 + T cell maturation in which a specific clone can undergo a differentiation process to exhibit a "memory" or regulatory phenotype without having undergone a clonal expansion event. It also demonstrates that a foreign-specific T cell is just as likely to reside within the regulatory T cell compartment as it would the naïve compartment, arguing against the specificity of the regulatory T cell compartment being skewed towards self-reactive T cell clones. Finally, we demonstrate that the same set of foreign and autoreactive CD4 + T cell clones are repetitively generated throughout adulthood. The latter observation argues against T cell-depleting strategies or autologous stem cell transplantation as therapies for autoimmunity-as the immune system has the ability to regenerate pathogenic clones. Published by Elsevier Ltd.

  2. CD4 T-Cell Memory Generation and Maintenance

    PubMed Central

    Gasper, David J.; Tejera, Melba Marie; Suresh, M.

    2014-01-01

    Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage. Here, we discuss the evidence for lineage-specific CD4 T-cell memory and summarize the known factors contributing to memory-cell generation, plasticity, and long-term maintenance. PMID:24940912

  3. Distinct Effects of Saracatinib on Memory CD8+ T-cell Differentiation

    PubMed Central

    Takai, Shinji; Sabzevari, Helen; Farsaci, Benedetto; Schlom, Jeffrey; Greiner, John W.

    2012-01-01

    Immunologic memory involving CD8+ T-cells is a hallmark of an adaptive antigen-specific immune response and comprises a critical component of protective immunity. Designing approaches that enhance long-term T-cell memory would, for the most part, fortify vaccines and enhance host protection against infectious diseases and, perhaps, cancer immunotherapy. A better understanding of the cellular programs involved in the antigen-specific T-cell response has led to new approaches that target the magnitude and quality of the memory T-cell response. Here we show that T-cells from T-cell receptor transgenic mice for the nucleoprotein of influenza virus NP68 exhibit the distinct phases priming, expansion, contraction, memory - of an antigen-specific T-cell response when exposed in vitro to the cognate peptide. Saracatinib, a specific inhibitor of Src family kinases, administered at low doses during the expansion or contraction phases, increased CD62Lhigh/CD44high central memory CD8+ T-cells and IFN-γ production, while suppressing immunity when added during the priming phase. These effects by saracatinib were not accompanied by the expected decline of Src family kinases, but were accompanied by Akt-mTOR suppression and/or mediated via another pathway. Increased central memory cells by saracatinib were recapitulated in mice using a poxvirus-based influenza vaccine, thus underscoring the importance of dose and timing of the inhibitor in the context of memory T-cell differentiation. Finally, vaccine plus saracatinib treatment showed better protection against tumor challenge. The immune-potentiating effects on CD8+ T-cells by a low dose of saracatinib might afford better protection from pathogen or cancer when combined with vaccine. PMID:22450814

  4. Evaluation of Antigen-Specific IgM and IgG Production during an In Vitro Peripheral Blood Mononuclear Cell Culture Assay.

    PubMed

    Matsuda, Yoshiko; Imamura, Ryoichi; Takahara, Shiro

    2017-01-01

    The recent attention given to diseases associated with memory B-cell (mBC)-produced antibodies (Abs) suggests the need for a similar in vitro assay to evaluate the functions of mBCs. Here, we cultured peripheral blood mononuclear cells (PBMCs) with the intent to collect mBC-derived Abs in vitro and maintain their cell-cell contact-dependent interactions with helper T-cells. PBMCs were cultured with interleukin (IL)-21, CpG-oligodeoxynucleotides (ODN), phorbol myristate acetate (PMA), and phytohemagglutinin/leucoagglutinin (PHA-L) in 24-well flat-bottom plates (5 × 10 5  cells/well). A culture supernatant analysis of PBMCs from healthy donors ( n  = 10) indicated that antigen-specific IgM Ab levels in a PBMC culture supernatant might be better able to demonstrate the antigen sensitization status in a smaller peripheral blood sample, compared to IgG because Epstein-Barr virus-specific IgM mBCs circulate peripherally at a significantly higher frequency once antiviral humoral immunity has stabilized. Thus, our in vitro assay demonstrated the potential significance of antigen-specific IgM Ab production in the culture supernatants. Furthermore, an analysis of cultured PBMCs from allograft kidney recipients ( n  = 16) sensitized with de novo donor-specific human leukocyte antigen (HLA)-specific Abs (DSAs) showed that IgM-type HLA-specific Abs were detected mainly from the culture supernatants from PBMCs of patients with stable graft function, whereas IgG isotype HLA Abs were detectable only from patients with biopsy-proven antibody-mediated rejection. In other words, these IgG isotype Abs also represented an activated humoral immune response in vivo . Additionally, IgM- and IgG-expressing mBCs from healthy donors ( n  = 5) were cultured with IL-21, CpG-ODN, and a supernatant produced by stimulating CD19 + B-cell-depleted PBMCs with PHA-L and PMA in 24-well flat-bottom plates (1 × 10 5  cells/well), and the resulting in vitro analysis provided some information regarding the biological processes of IgG and IgM mBCs in peripheral blood. Taken together, our findings suggest that antigen-specific Ab subtype analyses of supernatants from cultured PBMCs might more effectively and accurately reflect a patient's Ab-associated pathological condition vs. than serum IgG and IgM levels.

  5. In vitro antigen-induced, antigen-specific antibody production in man. Specific and polyclonal components, kinetics, and cellular requirements

    PubMed Central

    1981-01-01

    A highly specific and reproducible antigen-induced, antigen-specific culture and assay system for antibody production by human peripheral blood B lymphocytes has been developed. The system is clearly T cell and monocyte dependent and is independent of exogenous mitogens. The major factors in our ability to trigger specific antibody production with antigen alone have been the use of extremely low concentrations of antigen in vitro (doses several orders of magnitude below those inducing a peak blastogenic response), careful attention to in vitro cell density and culture vessel geometry, and appreciation of the kinetics of the circulating antigen-inducible B cell repertoire. A dichotomy and overlap between antigen-induced, antigen-specific and antigen-induced, polyclonal responses was observed in the study of doubly immunized individuals. Whereas antibody responses highly specific for the antigen in culture were observed under one set of culture conditions (flat-bottomed vessels, 1.5 x 10(6) cells), switching to another culture system (round-bottomed vessels, 5 x 10(5) cells) resulted in polyclonal responses to antigen. Despite these culture condition-related differences in the induction of antibody synthesis, the suppression of specific antibody production that occurred at high concentrations of antigen was specific only for the antigen in culture. The capability to easily and reproducibly look at truly antigen-induced, antigen specific antibody production should be a major tool in furthering the understanding of human B cell activation and immunoregulation. PMID:6169778

  6. Antigen-specific IgA B memory cell responses to Shigella antigens elicited in volunteers immunized with live attenuated Shigella flexneri 2a oral vaccine candidates

    PubMed Central

    Simon, J. K.; Maciel, M.; Weld, E.D.; Wahid, R.; Pasetti, M.F.; Picking, W.L.; Kotloff, K. L.; Levine, M. M.; Sztein, M. B.

    2011-01-01

    We studied the induction of antigen-specific IgA memory B cells (BM) in volunteers who received live attenuated Shigella flexneri 2a vaccines. Subjects ingested a single oral dose of 107, 108 or 109 CFU of S. flexneri 2a with deletions in guaBA (CVD 1204) or in guaBA, set and sen (CVD 1208). Antigen-specific serum and stool antibody responses to LPS and Ipa B were measured on days 0, 7, 14, 28 and 42. IgA BM cells specific to LPS, Ipa B and total IgA were assessed on days 0 and 28. We show the induction of significant LPS-specific IgA BM cells in anti-LPS IgA seroresponders. Positive correlations were found between anti-LPS IgA BM cells and anti-LPS IgA in serum and stool; IgA BM cell responses to IpaB were also observed. These BM cell responses are likely play an important role in modulating the magnitude and longevity of the humoral response. PMID:21388888

  7. Comparative efficacy of antigen and antibody detection tests for human trichinellosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanoska, D.; Cuperlovic, K.; Gamble, H.R.

    1989-02-01

    Sera collected from patients with suspected or confirmed exposure to Trichinella spiralis were tested for circulating parasite antigens and antiparasite antibodies. Using an immunoradiometric assay, excretory--secretory antigens from muscle-stage larvae of T. spiralis were detected in the sera of 47% of 62 patients with clinical trichinellosis and 13% of 39 patients without clinical signs but suspected of exposure to infected meat. In comparison, antibodies were detected using an indirect immunofluorescent test in the circulation of 100% of the 62 patients with clinical trichinellosis and 46% of the 39 patients with suspected exposure. The presence of antibodies specific to excretory-secretory productsmore » of T. spiralis muscle larvae was confirmed in the majority of the samples tested by a monoclonal antibody-based competitive inhibition assay. These results indicate that antibody detection is a more sensitive diagnostic method for human trichinellosis, but that antigen detection might be a useful confirmatory test because it is a direct demonstration of parasite products in the circulation.« less

  8. Chicken egg yolk antibodies (IgY) for detecting circulating antigens of Schistosoma japonicum.

    PubMed

    Cai, Yu-Chun; Guo, Jian; Chen, Shao-Hong; Tian, Li-Guang; Steinmann, Peter; Chen, Mu-Xin; Li, Hao; Ai, Lin; Chen, Jia-Xu

    2012-09-01

    IgY isolated from egg yolk has been widely used in immunodiagnostic tests, including tests to detect circulating antigen (soluble egg antigen or SEA) of Schistosoma japonicum. A sandwich ELISA was established using a combination of anti-S. japonicum SEA-IgY polyclonal antibodies and IgM monoclonal antibodies. To explore sensitivity and specificity of the sandwich ELISA, serum samples from 43 patients infected with S. japonicum were tested. All acute cases and 91.3% of the chronic cases showed a positive reaction. Only 5% of the control sera from healthy persons gave a positive response. Cross-reactions with antibodies to nine other parasites were rare. The developed immunoassay is reasonably sensitive and specific. It could be used for field research and treatment efficacy assessments. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Antigen-dependent proliferation and cytokine induction in respiratory syncytial virus-infected cotton rats reflect the presence of effector-memory T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Bettina W.M.; Onuska, Jaya M.; Niewiesk, Stefan

    2005-06-20

    Respiratory syncytial virus (RSV) is a major cause of lower airway disease in infants and children. Immunity to RSV is not long lasting, resulting in re-occurring infections throughout life. Effective long-lived immunity results when central-memory T cells that proliferate vigorously and secrete IL-2 are present. In contrast, effector-memory T cells that mainly produce IFN-{gamma}, facilitate virus clearance but are not long lived. To identify the type of memory response induced after RSV-A (Long) infection, we characterized the kinetics of the antigen-specific immune response and identified the types of cytokines induced. RSV-specific lymphocytic proliferation following primary and secondary infection was similar,more » and in both cases responses waned within a short period of time. In addition, mRNA for IFN-{gamma} but not IL-2 was induced in RSV-specific CD4{sup +} T cells. This supports the idea that the presence of effector-memory rather than central-memory T cells contributes to the ineffectiveness of the immune response to RSV.« less

  10. Filarial infection modulates the immune response to Mycobacterium tuberculosis through expansion of CD4+ IL-4 memory T cells

    PubMed Central

    Chatterjee, Soumya; Clark, Carolyn E.; Lugli, Enrico; Roederer, Mario; Nutman, Thomas B.

    2015-01-01

    Exaggerated CD4+T helper 2-specific cytokine producing memory T cell responses developing concomitantly with a T helper1 response might have a detrimental role in immunity to infection caused by Mycobacterium tuberculosis (Mtb). To assess the dynamics of antigen (Ag)-specific memory T cell compartments in the context of filarial infection we used multiparameter flow cytometry on PBMCs from 25 microfilaremic filarial -infected (Inf) and 14 filarial-uninfected (Uninf) subjects following stimulation with filarial (BmA) or with the Mycobacterium tuberculosis (Mtb)-specific Ag CFP10. Our data demonstrated that the Inf group not only had a marked increase in BmA-specific CD4+IL-4+ cells (Median net frequency compared to baseline (Fo)=0.09% vs. 0.01%, p=0.038) but also to CFP10 (Fo =0.16% vs. 0.007%, p=0.04) and Staphylococcal Enterotoxin B (SEB) (Fo =0.49% vs. 0.26%, p=0.04). The Inf subjects showed a BmA-specific expansion of CD4+CD45RO+IL-4+ producing central memory (TCM, CD45RO+CCR7+CD27+) (Fo =1.1% vs. 0.5%, p=0.04) as well as effector memory (TEM CD45RO+CCR7-CD27-) (Fo =1.5% vs. 0.2%, p=0.03) with a similar but non-significant response to CFP10. In addition, there was expansion of CD4+ IL-4+ CD45RA+ CCR7+CD27+ (naïve-like) in Inf individuals compared to Uninf subjects. Among Inf subjects with definitive latent tuberculosis , there were no differences in frequencies of IL-4 producing cells within any of the memory compartments compared to the Uninf group. Our data suggest that filarial infection induces antigen-specific, exaggerated IL-4 responses in distinct T cell memory compartments to Mtb-specific antigens, which are attenuated in subjects who are able to mount a delayed type hypersensitivity reaction to Mtb. PMID:25667413

  11. Progesterone impairs antigen-non-specific immune protection by CD8 T memory cells via interferon-γ gene hypermethylation.

    PubMed

    Yao, Yushi; Li, Hui; Ding, Jie; Xia, Yixin; Wang, Lei

    2017-11-01

    Pregnant women and animals have increased susceptibility to a variety of intracellular pathogens including Listeria monocytogenes (LM), which has been associated with significantly increased level of sex hormones such as progesterone. CD8 T memory(Tm) cell-mediated antigen-non-specific IFN-γ responses are critically required in the host defense against LM. However, whether and how increased progesterone during pregnancy modulates CD8 Tm cell-mediated antigen-non-specific IFN-γ production and immune protection against LM remain poorly understood. Here we show in pregnant women that increased serum progesterone levels are associated with DNA hypermethylation of IFN-γ gene promoter region and decreased IFN-γ production in CD8 Tm cells upon antigen-non-specific stimulation ex vivo. Moreover, IFN-γ gene hypermethylation and significantly reduced IFN-γ production post LM infection in antigen-non-specific CD8 Tm cells are also observed in pregnant mice or progesterone treated non-pregnant female mice, which is a reversible phenotype following demethylation treatment. Importantly, antigen-non-specific CD8 Tm cells from progesterone treated mice have impaired anti-LM protection when adoptive transferred in either pregnant wild type mice or IFN-γ-deficient mice, and demethylation treatment rescues the adoptive protection of such CD8 Tm cells. These data demonstrate that increased progesterone impairs immune protective functions of antigen-non-specific CD8 Tm cells via inducing IFN-γ gene hypermethylation. Our findings thus provide insights into a new mechanism through which increased female sex hormone regulate CD8 Tm cell functions during pregnancy.

  12. Progesterone impairs antigen-non-specific immune protection by CD8 T memory cells via interferon-γ gene hypermethylation

    PubMed Central

    Yao, Yushi; Li, Hui; Ding, Jie; Xia, Yixin

    2017-01-01

    Pregnant women and animals have increased susceptibility to a variety of intracellular pathogens including Listeria monocytogenes (LM), which has been associated with significantly increased level of sex hormones such as progesterone. CD8 T memory(Tm) cell-mediated antigen-non-specific IFN-γ responses are critically required in the host defense against LM. However, whether and how increased progesterone during pregnancy modulates CD8 Tm cell-mediated antigen-non-specific IFN-γ production and immune protection against LM remain poorly understood. Here we show in pregnant women that increased serum progesterone levels are associated with DNA hypermethylation of IFN-γ gene promoter region and decreased IFN-γ production in CD8 Tm cells upon antigen-non-specific stimulation ex vivo. Moreover, IFN-γ gene hypermethylation and significantly reduced IFN-γ production post LM infection in antigen-non-specific CD8 Tm cells are also observed in pregnant mice or progesterone treated non-pregnant female mice, which is a reversible phenotype following demethylation treatment. Importantly, antigen-non-specific CD8 Tm cells from progesterone treated mice have impaired anti-LM protection when adoptive transferred in either pregnant wild type mice or IFN-γ-deficient mice, and demethylation treatment rescues the adoptive protection of such CD8 Tm cells. These data demonstrate that increased progesterone impairs immune protective functions of antigen-non-specific CD8 Tm cells via inducing IFN-γ gene hypermethylation. Our findings thus provide insights into a new mechanism through which increased female sex hormone regulate CD8 Tm cell functions during pregnancy. PMID:29155896

  13. Antigenicity of the 2015-2016 seasonal H1N1 human influenza virus HA and NA proteins.

    PubMed

    Clark, Amelia M; DeDiego, Marta L; Anderson, Christopher S; Wang, Jiong; Yang, Hongmei; Nogales, Aitor; Martinez-Sobrido, Luis; Zand, Martin S; Sangster, Mark Y; Topham, David J

    2017-01-01

    Antigenic drift of the hemagglutinin (HA) and neuraminidase (NA) influenza virus proteins contributes to reduced vaccine efficacy. To analyze antigenic drift in human seasonal H1N1 viruses derived from the 2009 pandemic H1N1 virus (pH1N1-like viruses) accounts for the limited effectiveness (around 40%) of vaccination against pH1N1-like viruses during the 2015-2016 season, nasal washes/swabs collected from adult subjects in the Rochester, NY area, were used to sequence and isolate the circulating viruses. The HA and NA proteins from viruses circulating during the 2015-2016 season encoded eighteen and fourteen amino acid differences, respectively, when compared to A/California/04/2009, a strain circulating at the origin of the 2009 pandemic. The circulating strains belonged to subclade 6B.1, defined by HA amino acid substitutions S101N, S179N, and I233T. Hemagglutination-inhibiting (HAI) and HA-specific neutralizing serum antibody (Ab) titers from around 50% of pH1N1-like virus-infected subjects and immune ferrets were 2-4 fold lower for the 2015-2016 circulating strains compared to the vaccine strain. In addition, using a luminex-based mPlex HA assay, the binding of human sera from subjects infected with pH1N1-like viruses to the HA proteins from circulating and vaccine strains was not identical, strongly suggesting antigenic differences in the HA protein. Additionally, NA inhibition (NAI) Ab titers in human sera from pH1N1-like virus-infected subjects increased after the infection and there were measurable antigenic differences between the NA protein of circulating strains and the vaccine strain using both ferret and human antisera. Despite having been vaccinated, infected subjects exhibited low HAI Ab titers against the vaccine and circulating strains. This suggests that poor responses to the H1N1 component of the vaccine as well as antigenic differences in the HA and NA proteins of currently circulating pH1N1-like viruses could be contributing to risk of infection even after vaccination.

  14. Antigenicity of the 2015–2016 seasonal H1N1 human influenza virus HA and NA proteins

    PubMed Central

    Anderson, Christopher S.; Wang, Jiong; Yang, Hongmei; Nogales, Aitor; Martinez-Sobrido, Luis; Zand, Martin S.; Sangster, Mark Y.; Topham, David J.

    2017-01-01

    Antigenic drift of the hemagglutinin (HA) and neuraminidase (NA) influenza virus proteins contributes to reduced vaccine efficacy. To analyze antigenic drift in human seasonal H1N1 viruses derived from the 2009 pandemic H1N1 virus (pH1N1-like viruses) accounts for the limited effectiveness (around 40%) of vaccination against pH1N1-like viruses during the 2015–2016 season, nasal washes/swabs collected from adult subjects in the Rochester, NY area, were used to sequence and isolate the circulating viruses. The HA and NA proteins from viruses circulating during the 2015–2016 season encoded eighteen and fourteen amino acid differences, respectively, when compared to A/California/04/2009, a strain circulating at the origin of the 2009 pandemic. The circulating strains belonged to subclade 6B.1, defined by HA amino acid substitutions S101N, S179N, and I233T. Hemagglutination-inhibiting (HAI) and HA-specific neutralizing serum antibody (Ab) titers from around 50% of pH1N1-like virus-infected subjects and immune ferrets were 2–4 fold lower for the 2015–2016 circulating strains compared to the vaccine strain. In addition, using a luminex-based mPlex HA assay, the binding of human sera from subjects infected with pH1N1-like viruses to the HA proteins from circulating and vaccine strains was not identical, strongly suggesting antigenic differences in the HA protein. Additionally, NA inhibition (NAI) Ab titers in human sera from pH1N1-like virus-infected subjects increased after the infection and there were measurable antigenic differences between the NA protein of circulating strains and the vaccine strain using both ferret and human antisera. Despite having been vaccinated, infected subjects exhibited low HAI Ab titers against the vaccine and circulating strains. This suggests that poor responses to the H1N1 component of the vaccine as well as antigenic differences in the HA and NA proteins of currently circulating pH1N1-like viruses could be contributing to risk of infection even after vaccination. PMID:29145498

  15. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism.

    PubMed

    Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S; Tellides, George; Lakkis, Fadi G

    2004-01-01

    CD4(+)CD25(+) regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8(+) T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8(+) T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8(+) T cells was observed when Treg cells lacked CD30 or when CD30 ligand-CD30 interaction was blocked with anti-CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses.

  16. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism

    PubMed Central

    Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S.; Tellides, George; Lakkis, Fadi G.

    2004-01-01

    CD4+CD25+ regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8+ T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8+ T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8+ T cells was observed when Treg cells lacked CD30 or when CD30 ligand–CD30 interaction was blocked with anti–CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses. PMID:14722622

  17. IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells

    PubMed Central

    Ben-Sasson, Shlomo Z.; Hogg, Alison; Hu-Li, Jane; Wingfield, Paul; Chen, Xi; Crank, Michelle; Caucheteux, Stephane; Ratner-Hurevich, Maya; Berzofsky, Jay A.; Nir-Paz, Ran

    2013-01-01

    Here, we show that interleukin-1 (IL-1) enhances antigen-driven CD8 T cell responses. When administered to recipients of OT-I T cell receptor transgenic CD8 T cells specific for an ovalbumin (OVA) peptide, IL-1 results in an increase in the numbers of wild-type but not IL1R1−/− OT-I cells, particularly in spleen, liver, and lung, upon immunization with OVA and lipopolysaccharide. IL-1 administration also results in an enhancement in the frequency of antigen-specific cells that are granzyme B+, have cytotoxic activity, and/ or produce interferon γ (IFN-γ). Cells primed in the presence of IL-1 display enhanced expression of granzyme B and increased capacity to produce IFN-γ when rechallenged 2 mo after priming. In three in vivo models, IL-1 enhances the protective value of weak immunogens. Thus, IL-1 has a marked enhancing effect on antigen-specific CD8 T cell expansion, differentiation, migration to the periphery, and memory. PMID:23460726

  18. Antigen-Bound and Free β-Amyloid Autoantibodies in Serum of Healthy Adults

    PubMed Central

    Leirer, Vera Maria; von Arnim, Christine A. F.; Elbert, Thomas; Przybylski, Michael; Kolassa, Iris-Tatjana; Manea, Marilena

    2012-01-01

    Physiological β-amyloid autoantibodies (Aβ-autoantibodies) are currently investigated as potential diagnostic and therapeutic tools for Alzheimer’s disease (AD). In previous studies, their determination in serum and cerebrospinal fluid (CSF) using indirect ELISA has provided controversial results, which may be due to the presence of preformed Aβ antigen-antibody immune complexes. Based on the epitope specificity of the Aβ-autoantibodies, recently elucidated in our laboratory, we developed (a) a sandwich ELISA for the determination of circulating Aβ-IgG immune complexes and (b) an indirect ELISA for the determination of free Aβ-autoantibodies. This methodology was applied to the analysis of serum samples from healthy individuals within the age range of 18 to 89 years. Neuropsychological examination of the participants in this study indicated non-pathological, age-related cognitive decline, revealed especially by tests of visual memory and executive function, as well as speed-related tasks. The ELISA serum determinations showed significantly higher levels of Aβ-IgG immune complexes compared to free Aβ-autoantibodies, while no correlation with age or cognitive performance of the participants was found. PMID:22973459

  19. Functional heterogeneity of memory B lymphocytes: in vivo analysis of TD-primed B cells responsive to secondary stimulation with TD and TI antigens.

    PubMed

    Rennick, D M; Morrow, P R; Benjamini, E

    1983-08-01

    The functional heterogeneity of memory B cells induced by a single determinant, consisting of a decapeptide representing amino acid residues 103-112 of tobacco mosaic virus protein (TMVP), was analyzed. Decapeptide specific antibodies were elicited in mice adoptively transferred with TMVP-immune spleen cells when challenged with TMVP, decapeptide conjugated to succinylated human gamma-globulin (SHGG), or decapeptide conjugated to Brucella abortus (BA). Whereas secondary stimulation by either TMVP or decapeptide-SHGG was dependent on appropriately primed T cells, stimulation by decapeptide-BA was independent of conventional T cell help. Furthermore, memory B cells responsive to TMVP (TD), decapeptide-SHGG (TD), or decapeptide-BA (TI. 1 prototype) were shown to consist of overlapping populations because adoptive recipients of TMVP-primed cells challenged simultaneously with TD and TI decapeptide antigens did not result in a higher antibody response than that elicited by one of the TD antigens injected alone. However, decapeptide-BA consistently induced a smaller antidecapeptide response than either TMVP or decapeptide-SHGG. This suggested that only a fraction of the memory B cell population which was activated by the original priming antigen (thymus-dependent) was also responsive to secondary in vivo stimulation by the priming hapten conjugated to Brucella abortus. Detailed analyses of the antibodies induced in the recipients of TMVP-immune spleen cells after secondary challenge with either TMVP, decapeptide-SHGG, or decapeptide-BA failed to distinguish between the responsive memory B cells; the antidecapeptide antibodies induced by all three immunogens shared the same fine specificities and immunoglobulin isotype composition. These data are viewed as further evidence that subsets of TD-primed B cells, which may display differential sensitivity to cross-stimulation with TD and TI forms of the antigen, represent distinct stages of memory B cell maturation within a common B cell lineage. In support of this conclusion, we establish a developmental relationship between TI and/or TD responsive decapeptide memory B cell in the following communication.

  20. Tissue-associated self-antigens containing exosomes: Role in allograft rejection.

    PubMed

    Sharma, Monal; Ravichandran, Ranjithkumar; Bansal, Sandhya; Bremner, Ross M; Smith, Michael A; Mohanakumar, T

    2018-06-15

    Exosomes are extracellular vesicles that express self-antigens (SAgs) and donor human leukocyte antigens. Tissue-specific exosomes can be detected in the circulation following lung, heart, kidney and islet cell transplantations. We collected serum samples from patients who had undergone lung (n = 30), heart (n = 8), or kidney (n = 15) transplantations to isolate circulating exosomes. Exosome purity was analyzed by Western blot, using CD9 exosome-specific markers. Tissue-associated lung SAgs, collagen V (Col-V) and K-alpha 1 tubulin (Kα1T), heart SAgs, myosin and vimentin, and kidney SAgs, fibronectin and collagen IV (Col-IV), were identified using western blot. Lung transplant recipients diagnosed with bronchiolitis obliterans syndrome had exosomes with higher expression of Col-V (4.2-fold) and Kα1T (37.1-fold) than stable. Exosomes isolated from heart transplant recipients diagnosed with coronary artery vasculopathy had a 3.9-fold increase in myosin and a 4.7-fold increase in vimentin compared with stable. Further, Kidney transplant recipients diagnosed with transplant glomerulopathy had circulating exosomes with a 2-fold increased expression of fibronectin and 2.5-fold increase in Col-IV compared with stable. We conclude that circulating exosomes with tissue associated SAgs have the potential to be a noninvasive biomarker for allograft rejection. Copyright © 2018. Published by Elsevier Inc.

  1. Mucosal immunization in macaques upregulates the innate APOBEC 3G anti-viral factor in CD4(+) memory T cells.

    PubMed

    Wang, Yufei; Bergmeier, Lesley A; Stebbings, Richard; Seidl, Thomas; Whittall, Trevor; Singh, Mahavir; Berry, Neil; Almond, Neil; Lehner, Thomas

    2009-02-05

    APOBEC3G is an innate intracellular anti-viral factor which deaminates retroviral cytidine to uridine. In vivo studies of APOBEC3G (A3G) were carried out in rhesus macaques, following mucosal immunization with SIV antigens and CCR5 peptides, linked to the 70kDa heat shock protein. A progressive increase in A3G mRNA was elicited in PBMC after each immunization (p<0.0002 to p< or =0.02), which was maintained for at least 17 weeks. Analysis of memory T cells showed a significant increase in A3G mRNA and protein in CD4(+)CCR5(+) memory T cells in circulating (p=0.0001), splenic (p=0.0001), iliac lymph nodes (p=0.002) and rectal (p=0.01) cells of the immunized compared with unimmunized macaques. Mucosal challenge with SIVmac 251 showed a significant increase in A3G mRNA in the CD4(+)CCR5(+) circulating cells (p<0.01) and the draining iliac lymph node cells (p<0.05) in the immunized uninfected macaques, consistent with a protective effect exerted by A3G. The results suggest that mucosal immunization in a non-human primate can induce features of a memory response to an innate anti-viral factor in CCR5(+)CD4(+) memory and CD4(+)CD95(+)CCR7(-) effector memory T cells.

  2. Lipopolysaccharide-specific memory B cell responses to an attenuated live cholera vaccine are associated with protection against Vibrio cholerae infection.

    PubMed

    Haney, Douglas J; Lock, Michael D; Gurwith, Marc; Simon, Jakub K; Ishioka, Glenn; Cohen, Mitchell B; Kirkpatrick, Beth D; Lyon, Caroline E; Chen, Wilbur H; Sztein, Marcelo B; Levine, Myron M; Harris, Jason B

    2018-05-11

    The single-dose live attenuated vaccine CVD 103-HgR protects against experimental Vibrio cholerae infection in cholera-naïve adults for at least 6 months after vaccination. While vaccine-induced vibriocidal seroconversion is associated with protection, vibriocidal titers decline rapidly from their peak 1-2 weeks after vaccination. Although vaccine-induced memory B cells (MBCs) might mediate sustained protection in individuals without detectable circulating antibodies, it is unknown whether oral cholera vaccination induces a MBC response. In a study that enrolled North American adults, we measured lipopolysaccharide (LPS)- and cholera toxin (CtxB)-specific MBC responses to PXVX0200 (derived from the CVD 103-HgR strain) and assessed stool volumes following experimental Vibrio cholerae infection. We then evaluated the association between vaccine-induced MBC responses and protection against cholera. There was a significant increase in % CT-specific IgG, % LPS-specific IgG, and % LPS-specific IgA MBCs which persisted 180 days after vaccination as well as a significant association between vaccine-induced increase in % LPS-specific IgA MBCs and lower post-challenge stool volume (r = -0.56, p < 0.001). Oral cholera vaccination induces antigen-specific MBC responses, and the anamnestic LPS-specific responses may contribute to long-term protection and provide correlates of the duration of vaccine-induced protection. NCT01895855. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Antigen-specific B memory cell responses to lipopolysaccharide (LPS) and invasion plasmid antigen (Ipa) B elicited in volunteers vaccinated with live-attenuated Shigella flexneri 2a vaccine candidates.

    PubMed

    Simon, J K; Wahid, R; Maciel, M; Picking, W L; Kotloff, K L; Levine, M M; Sztein, M B

    2009-01-22

    We evaluated B memory responses in healthy adult volunteers who received one oral dose of live-attenuated Shigella flexneri 2a vaccine. LPS-specific B(M) cells increased from a median of 0 at baseline to 20 spot forming cells (SFC)/10(6) expanded cells following vaccination (p=0.008). A strong correlation was found between post-vaccination anti-LPS B(M) cell counts and peak serum anti-LPS IgG titers (rs=0.95, p=0.0003). Increases in B(M) specific for IpaB approaching significance were also observed. In sum, oral vaccination with live-attenuated S. flexneri 2a elicits B(M) cells to LPS and IpaB, suggesting that B(M) responses to Shigella antigens should be further studied as a suitable surrogate of protection in shigellosis.

  4. Antigen-specific B memory cell responses to lipopolysaccharide (LPS) and invasion plasmid antigen (Ipa) B elicited in volunteers vaccinated with live-attenuated Shigella flexneri 2a vaccine candidates

    PubMed Central

    Simon, J.K.; Wahid, R.; Maciel, M.; Picking, W.L.; Kotloff, K.L.; Levine, M.M.; Sztein, M.B.

    2013-01-01

    We evaluated B memory responses in healthy adult volunteers who received one oral dose of live-attenuated Shigella flexneri 2a vaccine. LPS-specific BM cells increased from a median of 0 at baseline to 20 spot forming cells (SFC)/106 expanded cells following vaccination (p = 0.008). A strong correlation was found between post-vaccination anti-LPS BM cell counts and peak serum anti-LPS IgG titers (rs = 0.95, p = 0.0003). Increases in BM specific for IpaB approaching significance were also observed. In sum, oral vaccination with live-attenuated S. flexneri 2a elicits BM cells to LPS and IpaB, suggesting that BM responses to Shigella antigens should be further studied as a suitable surrogate of protection in shigellosis. PMID:19022324

  5. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response.

    PubMed

    Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun

    2015-10-01

    Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Cross-reactions of sera from dogs infected with Angiostrongylus vasorum in commercially available Dirofilaria immitis test kits.

    PubMed

    Schnyder, Manuela; Deplazes, Peter

    2012-11-13

    Dirofilaria immitis and Angiostrongylus vasorum are both important potentially fatal canine nematodes with overlapping endemic areas, especially in Europe. The preadult and adult stages of both species are living in the Arteria pulmonalis and the right heart, and diagnostically detectable circulating parasite antigens have been demonstrated for both species. For the detection of D. immitis infections, a variety of commercial tests have been developed, however, they have not been evaluated for cross-reactions against circulating antigens of A. vasorum. In this study, potential cross-reactions of sera from 16 dogs, which were experimentally infected with A. vasorum and which had circulating antigens as confirmed by a species-specific ELISA, were evaluated for the detection of A. vasorum antigen in six commercially available D. immitis test kits. In three fast tests (Witness® Dirofilaria, SensPERT® Canine Heartworm, SNAP® 4Dx® Plus), all sera were negative. One fast membrane ELISA (SNAP® HTWM RT Test) was positive with four sera (25%), and one serum delivered a non-valid result twice. In the PetChek® HTWM PF Test, depending on the interpretation protocol, 5 or 8 dogs (31.2 - 50%) were positive. With the DiroCHEK®-ELISA, a single A. vasorum-infected dog (6.2%) tested positive. Due to potential cross-reactions with A. vasorum in commercially available test kits for the detection of D. immitis antigen, the simultaneous use of highly specific diagnostic methods for the differentiation of these two canine heart worms is recommended.

  7. A High Frequency of HIV-Specific Circulating Follicular Helper T Cells Is Associated with Preserved Memory B Cell Responses in HIV Controllers.

    PubMed

    Claireaux, M; Galperin, M; Benati, D; Nouël, A; Mukhopadhyay, M; Klingler, J; de Truchis, P; Zucman, D; Hendou, S; Boufassa, F; Moog, C; Lambotte, O; Chakrabarti, L A

    2018-05-08

    Follicular helper T cells (Tfh) play an essential role in the affinity maturation of the antibody response by providing help to B cells. To determine whether this CD4 + T cell subset may contribute to the spontaneous control of HIV infection, we analyzed the phenotype and function of circulating Tfh (cTfh) in patients from the ANRS CO21 CODEX cohort who naturally controlled HIV-1 replication to undetectable levels and compared them to treated patients with similarly low viral loads. HIV-specific cTfh (Tet + ), detected by Gag-major histocompatibility complex class II (MHC-II) tetramer labeling in the CD45RA - CXCR5 + CD4 + T cell population, proved more frequent in the controller group ( P = 0.002). The frequency of PD-1 expression in Tet + cTfh was increased in both groups (median, >75%) compared to total cTfh (<30%), but the intensity of PD-1 expression per cell remained higher in the treated patient group ( P = 0.02), pointing to the persistence of abnormal immune activation in treated patients. The function of cTfh, analyzed by the capacity to promote IgG secretion in cocultures with autologous memory B cells, did not show major differences between groups in terms of total IgG production but proved significantly more efficient in the controller group when measuring HIV-specific IgG production. The frequency of Tet + cTfh correlated with HIV-specific IgG production ( R = 0.71 for Gag-specific and R = 0.79 for Env-specific IgG, respectively). Taken together, our findings indicate that key cTfh-B cell interactions are preserved in controlled HIV infection, resulting in potent memory B cell responses that may play an underappreciated role in HIV control. IMPORTANCE The rare patients who spontaneously control HIV replication in the absence of therapy provide a unique model to identify determinants of an effective anti-HIV immune response. HIV controllers show signs of particularly efficient antiviral T cell responses, while their humoral response was until recently considered to play only a minor role in viral control. However, emerging evidence suggests that HIV controllers maintain a significant but "silent" antiviral memory B cell population that can be reactivated upon antigenic stimulation. We report that cTfh help likely contributes to the persistence of controller memory B cell responses, as the frequency of HIV-specific cTfh correlated with the induction of HIV-specific antibodies in functional assays. These findings suggest that T follicular help may contribute to HIV control and highlight the need for inducing such help in HIV vaccine strategies that aim at eliciting persistent B cell responses. Copyright © 2018 Claireaux et al.

  8. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection.

    PubMed

    Glennie, Nelson D; Yeramilli, Venkata A; Beiting, Daniel P; Volk, Susan W; Weaver, Casey T; Scott, Phillip

    2015-08-24

    Leishmaniasis causes a significant disease burden worldwide. Although Leishmania-infected patients become refractory to reinfection after disease resolution, effective immune protection has not yet been achieved by human vaccines. Although circulating Leishmania-specific T cells are known to play a critical role in immunity, the role of memory T cells present in peripheral tissues has not been explored. Here, we identify a population of skin-resident Leishmania-specific memory CD4+ T cells. These cells produce IFN-γ and remain resident in the skin when transplanted by skin graft onto naive mice. They function to recruit circulating T cells to the skin in a CXCR3-dependent manner, resulting in better control of the parasites. Our findings are the first to demonstrate that CD4+ TRM cells form in response to a parasitic infection, and indicate that optimal protective immunity to Leishmania, and thus the success of a vaccine, may depend on generating both circulating and skin-resident memory T cells. © 2015 Glennie et al.

  9. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection

    PubMed Central

    Glennie, Nelson D.; Yeramilli, Venkata A.; Beiting, Daniel P.; Volk, Susan W.; Weaver, Casey T.

    2015-01-01

    Leishmaniasis causes a significant disease burden worldwide. Although Leishmania-infected patients become refractory to reinfection after disease resolution, effective immune protection has not yet been achieved by human vaccines. Although circulating Leishmania-specific T cells are known to play a critical role in immunity, the role of memory T cells present in peripheral tissues has not been explored. Here, we identify a population of skin-resident Leishmania-specific memory CD4+ T cells. These cells produce IFN-γ and remain resident in the skin when transplanted by skin graft onto naive mice. They function to recruit circulating T cells to the skin in a CXCR3-dependent manner, resulting in better control of the parasites. Our findings are the first to demonstrate that CD4+ TRM cells form in response to a parasitic infection, and indicate that optimal protective immunity to Leishmania, and thus the success of a vaccine, may depend on generating both circulating and skin-resident memory T cells. PMID:26216123

  10. Effector CD8 T cells dedifferentiate into long-lived memory cells.

    PubMed

    Youngblood, Ben; Hale, J Scott; Kissick, Haydn T; Ahn, Eunseon; Xu, Xiaojin; Wieland, Andreas; Araki, Koichi; West, Erin E; Ghoneim, Hazem E; Fan, Yiping; Dogra, Pranay; Davis, Carl W; Konieczny, Bogumila T; Antia, Rustom; Cheng, Xiaodong; Ahmed, Rafi

    2017-12-21

    Memory CD8 T cells that circulate in the blood and are present in lymphoid organs are an essential component of long-lived T cell immunity. These memory CD8 T cells remain poised to rapidly elaborate effector functions upon re-exposure to pathogens, but also have many properties in common with naive cells, including pluripotency and the ability to migrate to the lymph nodes and spleen. Thus, memory cells embody features of both naive and effector cells, fuelling a long-standing debate centred on whether memory T cells develop from effector cells or directly from naive cells. Here we show that long-lived memory CD8 T cells are derived from a subset of effector T cells through a process of dedifferentiation. To assess the developmental origin of memory CD8 T cells, we investigated changes in DNA methylation programming at naive and effector cell-associated genes in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection in mice. Methylation profiling of terminal effector versus memory-precursor CD8 T cell subsets showed that, rather than retaining a naive epigenetic state, the subset of cells that gives rise to memory cells acquired de novo DNA methylation programs at naive-associated genes and became demethylated at the loci of classically defined effector molecules. Conditional deletion of the de novo methyltransferase Dnmt3a at an early stage of effector differentiation resulted in reduced methylation and faster re-expression of naive-associated genes, thereby accelerating the development of memory cells. Longitudinal phenotypic and epigenetic characterization of the memory-precursor effector subset of virus-specific CD8 T cells transferred into antigen-free mice revealed that differentiation to memory cells was coupled to erasure of de novo methylation programs and re-expression of naive-associated genes. Thus, epigenetic repression of naive-associated genes in effector CD8 T cells can be reversed in cells that develop into long-lived memory CD8 T cells while key effector genes remain demethylated, demonstrating that memory T cells arise from a subset of fate-permissive effector T cells.

  11. Glioma antigen.

    PubMed

    Toda, Masahiro

    2012-01-01

    Because several antigenic peptides of human tumors that are recognized by T-lymphocytes have been identified, immune responses against cancer can now be artificially manipulated. Furthermore, since T-lymphocytes have been found to play an important role in the rejection of tumors by the host and also to have antigen-specific proliferative potentials and memory mechanisms, T-lymphocytes are thought to play a central role in cancer vaccination. Although multidisciplinary therapies have been attempted for the treatment of gliomas, the results remain unsatisfactory. For the development of new therapies against gliomas, it is required to identify tumor antigens as targets for specific immunotherapy. In this chapter, recent progress in research on glioma antigens is described.

  12. Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites

    DOE PAGES

    Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun; ...

    2015-07-13

    Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less

  13. Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun

    Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less

  14. Autoreactive T effector memory differentiation mirrors β-cell function in type 1 diabetes.

    PubMed

    Yeo, Lorraine; Woodwyk, Alyssa; Sood, Sanjana; Lorenc, Anna; Eichmann, Martin; Pujol-Autonell, Irma; Melchiotti, Rossella; Skowera, Ania; Fidanis, Efthymios; Dolton, Garry M; Tungatt, Katie; Sewell, Andrew K; Heck, Susanne; Saxena, Alka; Beam, Craig A; Peakman, Mark

    2018-05-31

    In type 1 diabetes, cytotoxic CD8 T cells with specificity for β-cell autoantigens are found in the pancreatic islets where they are implicated in the destruction of insulin-secreting β cells. In contrast, the disease relevance of β-cell-reactive CD8 T cells that are detectable in the circulation, and their relationship to β-cell function, are not known. Here, we tracked multiple, circulating β-cell-reactive CD8 T cell subsets and measured β-cell function longitudinally for two years, starting immediately after diagnosis of type 1 diabetes. We found that change in β-cell-specific effector memory CD8 T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8 T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer specific protein 37 and CD16, and reduced expression of CD28) compared with their CD57-negative counterparts, and network association modelling indicated that the dynamics of β-cell-reactive CD57+ effector memory CD8 T cell subsets were strongly linked. Thus, coordinated changes in circulating β-cell-specific CD8 T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.

  15. Organic memory device with self-assembly monolayered aptamer conjugated nanoparticles

    NASA Astrophysics Data System (ADS)

    Oh, Sewook; Kim, Minkeun; Kim, Yejin; Jung, Hunsang; Yoon, Tae-Sik; Choi, Young-Jin; Jung Kang, Chi; Moon, Myeong-Ju; Jeong, Yong-Yeon; Park, In-Kyu; Ho Lee, Hyun

    2013-08-01

    An organic memory structure using monolayered aptamer conjugated gold nanoparticles (Au NPs) as charge storage nodes was demonstrated. Metal-pentacene-insulator-semiconductor device was adopted for the non-volatile memory effect through self assembly monolayer of A10-aptamer conjugated Au NPs, which was formed on functionalized insulator surface with prostate-specific membrane antigen protein. The capacitance versus voltage (C-V) curves obtained for the monolayered Au NPs capacitor exhibited substantial flat-band voltage shift (ΔVFB) or memory window of 3.76 V under (+/-)7 V voltage sweep. The memory device format can be potentially expanded to a highly specific capacitive sensor for the aptamer-specific biomolecule detection.

  16. Circulating precursor CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure.

    PubMed

    He, Jing; Tsai, Louis M; Leong, Yew Ann; Hu, Xin; Ma, Cindy S; Chevalier, Nina; Sun, Xiaolin; Vandenberg, Kirsten; Rockman, Steve; Ding, Yan; Zhu, Lei; Wei, Wei; Wang, Changqi; Karnowski, Alexander; Belz, Gabrielle T; Ghali, Joanna R; Cook, Matthew C; Riminton, D Sean; Veillette, André; Schwartzberg, Pamela L; Mackay, Fabienne; Brink, Robert; Tangye, Stuart G; Vinuesa, Carola G; Mackay, Charles R; Li, Zhanguo; Yu, Di

    2013-10-17

    Follicular B helper T (Tfh) cells support high affinity and long-term antibody responses. Here we found that within circulating CXCR5⁺ CD4⁺ T cells in humans and mice, the CCR7(lo)PD-1(hi) subset has a partial Tfh effector phenotype, whereas CCR7(hi)PD-1(lo) cells have a resting phenotype. The circulating CCR7(lo)PD-1(hi) subset was indicative of active Tfh differentiation in lymphoid organs and correlated with clinical indices in autoimmune diseases. Thus the CCR7(lo)PD-1(hi) subset provides a biomarker to monitor protective antibody responses during infection or vaccination and pathogenic antibody responses in autoimmune diseases. Differentiation of both CCR7(hi)PD-1(lo) and CCR7(lo)PD-1(hi) subsets required ICOS and BCL6, but not SAP, suggesting that circulating CXCR5⁺ helper T cells are primarily generated before germinal centers. Upon antigen reencounter, CCR7(lo)PD-1(hi) CXCR5⁺ precursors rapidly differentiate into mature Tfh cells to promote antibody responses. Therefore, circulating CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells are generated during active Tfh differentiation and represent a new mechanism of immunological early memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Retention of Ag-specific memory CD4+ T cells in the draining lymph node indicates lymphoid tissue resident memory populations.

    PubMed

    Marriott, Clare L; Dutton, Emma E; Tomura, Michio; Withers, David R

    2017-05-01

    Several different memory T-cell populations have now been described based upon surface receptor expression and migratory capabilities. Here we have assessed murine endogenous memory CD4 + T cells generated within a draining lymph node and their subsequent migration to other secondary lymphoid tissues. Having established a model response targeting a specific peripheral lymph node, we temporally labelled all the cells within draining lymph node using photoconversion. Tracking of photoconverted and non-photoconverted Ag-specific CD4 + T cells revealed the rapid establishment of a circulating memory population in all lymph nodes within days of immunisation. Strikingly, a resident memory CD4 + T cell population became established in the draining lymph node and persisted for several months in the absence of detectable migration to other lymphoid tissue. These cells most closely resembled effector memory T cells, usually associated with circulation through non-lymphoid tissue, but here, these cells were retained in the draining lymph node. These data indicate that lymphoid tissue resident memory CD4 + T-cell populations are generated in peripheral lymph nodes following immunisation. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Exposure of FVIII in the Presence of Phosphatidyl Serine Reduces Generation of Memory B-Cells and Induces Regulatory T-Cell-Mediated Hyporesponsiveness in Hemophilia A Mice.

    PubMed

    Ramakrishnan, Radha; Davidowitz, Andrew; Balu-Iyer, Sathy V

    2015-08-01

    A major complication of replacement therapy with Factor VIII (FVIII) for hemophilia A (HA) is the development of unwanted immune responses. Previous studies showed that administration of FVIII in the presence of phosphatidyl serine (PS) reduced the development of anti-FVIII antibodies in HA mice. However, the impact of PS-mediated effects on immunological memory, such as generation of memory B-cells, is not clear. The effect of PS on memory B-cells was therefore investigated using adoptive transfer approach in FVIII(-/-) HA mice. Adoptive transfer of memory B-cells from a PS-FVIII-treated group to naïve mice followed by challenge of the recipient mice with FVIII showed a significantly reduced anti-FVIII antibody response in the recipient mice, compared with animals that received memory B-cells from free FVIII and FVIII-charge matched phosphatidyl glycerol (PG) group. The decrease in memory B-cell response is accompanied by an increase in FoxP3 expressing regulatory T-cells (Tregs). Flow cytometry studies showed that the generation of Tregs is higher in PS-treated animals as compared with FVIII and FVIII-PG treated animals. The PS-mediated hyporesponsiveness was found to be antigen-specific. The PS-FVIII immunization showed hyporesponsiveness toward FVIII rechallenge but not against ovalbumin (OVA) rechallenge, an unrelated antigen. This demonstrates that PS reduces immunologic memory of FVIII and induces antigen-specific peripheral tolerance in HA mice. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Tumour cell lysate-loaded dendritic cell vaccine induces biochemical and memory immune response in castration-resistant prostate cancer patients

    PubMed Central

    Reyes, D; Salazar, L; Espinoza, E; Pereda, C; Castellón, E; Valdevenito, R; Huidobro, C; Inés Becker, M; Lladser, A; López, M N; Salazar-Onfray, F

    2013-01-01

    Background: Recently, we produced a tumour antigen-presenting cells (TAPCells) vaccine using a melanoma cell lysate, called TRIMEL, as an antigen source and an activation factor. Tumour antigen-presenting cells induced immunological responses and increased melanoma patient survival. Herein, we investigated the effect of TAPCells loaded with prostate cancer cell lysates (PCCL) as an antigen source, and TRIMEL as a dendritic cell (DC) activation factor; which were co-injected with the Concholepas concholepas haemocyanin (CCH) as an adjuvant on castration-resistant prostate cancer (CRPC) patients. Methods: The lysate mix capacity, for inducing T-cell activation, was analysed by flow cytometry and Elispot. Delayed-type hypersensitivity (DTH) reaction against PCCL, frequency of CD8+ memory T cells (Tm) in blood and prostate-specific antigen (PSA) levels in serum were measured in treated patients. Results: The lysate mix induced functional mature DCs that were capable of activating PCCL-specific T cells. No relevant adverse reactions were observed. Six out of 14 patients showed a significant decrease in levels of PSA. DTH+ patients showed a prolonged PSA doubling-time after treatment. Expansion of functional central and effector CD8+ Tm were detected. Conclusion: Treatment of CRPC patients with lysate-loaded TAPCells and CCH as an adjuvant is safe: generating biochemical and memory immune responses. However, the limited number of cases requires confirmation in a phase II clinical trial. PMID:23989944

  20. Tumour cell lysate-loaded dendritic cell vaccine induces biochemical and memory immune response in castration-resistant prostate cancer patients.

    PubMed

    Reyes, D; Salazar, L; Espinoza, E; Pereda, C; Castellón, E; Valdevenito, R; Huidobro, C; Inés Becker, M; Lladser, A; López, M N; Salazar-Onfray, F

    2013-09-17

    Recently, we produced a tumour antigen-presenting cells (TAPCells) vaccine using a melanoma cell lysate, called TRIMEL, as an antigen source and an activation factor. Tumour antigen-presenting cells induced immunological responses and increased melanoma patient survival. Herein, we investigated the effect of TAPCells loaded with prostate cancer cell lysates (PCCL) as an antigen source, and TRIMEL as a dendritic cell (DC) activation factor; which were co-injected with the Concholepas concholepas haemocyanin (CCH) as an adjuvant on castration-resistant prostate cancer (CRPC) patients. The lysate mix capacity, for inducing T-cell activation, was analysed by flow cytometry and Elispot. Delayed-type hypersensitivity (DTH) reaction against PCCL, frequency of CD8(+) memory T cells (Tm) in blood and prostate-specific antigen (PSA) levels in serum were measured in treated patients. The lysate mix induced functional mature DCs that were capable of activating PCCL-specific T cells. No relevant adverse reactions were observed. Six out of 14 patients showed a significant decrease in levels of PSA. DTH(+) patients showed a prolonged PSA doubling-time after treatment. Expansion of functional central and effector CD8(+) Tm were detected. Treatment of CRPC patients with lysate-loaded TAPCells and CCH as an adjuvant is safe: generating biochemical and memory immune responses. However, the limited number of cases requires confirmation in a phase II clinical trial.

  1. How do plants achieve immunity? Defence without specialized immune cells.

    PubMed

    Spoel, Steven H; Dong, Xinnian

    2012-01-25

    Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.

  2. CD8+ T cells produce a dialyzable antigen-specific activator of dendritic cells

    PubMed Central

    Myles, Ian A.; Zhao, Ming; Nardone, Glenn; Olano, Lisa R.; Reckhow, Jensen D.; Saleem, Danial; Break, Timothy J.; Lionakis, Michail S.; Myers, Timothy G.; Gardina, Paul J.; Kirkpatrick, Charles H.; Holland, Steven M.; Datta, Sandip K.

    2017-01-01

    Cellular lysates from PPD+ donors have been reported to transfer tuberculin reactivity to naïve recipients, but not diphtheria reactivity, and vice versa. A historically controversial topic, the terms "transfer factor" and "DLE" were used to characterize the reactivity-transferring properties of lysates. Intrigued by these reported phenomena, we found that the cellular extract derived from antigen-specific memory CD8+ T cells induces IL-6 from antigen-matched APCs. This ultimately elicits IL-17 from bystander memory CD8+ T cells. We have identified that dialyzable peptide sequences, S100a9, and the TCR β chain from CD8+ T cells contribute to the molecular nature of this activity. We further show that extracts from antigen-targeted T cells enhance immunity to Staphylococcus aureus and Candida albicans. These effects are sensitive to immunization protocols and extraction methodology in ways that may explain past discrepancies in the reproducibility of passive cellular immunity. PMID:27515950

  3. Lawrence Transfer Factor: Transference of Specific Immune Memory by Dialyzable Leukocyte Extract from a CD8+ T Cell Line.

    PubMed

    Wang, Jason F; Park, Andrew J; Rendini, Tina; Levis, William R

    2017-12-01

    Lawrence transfer factor (TF) is defined as dialyzable leukocyte extract (DLE) that can transfer antigen-specific cell-mediated immunity from a person testing positive for the antigen in a delayed type hypersensitivity skin test manner to a person negative for the same antigen. A recent article by Myles et al1 has identified a DLE isolated from an established CD8+ T cell line capable of transferring antigen-specific immunity. The DLE contains a portion of the beta chain of the T cell receptor and additional nucleotide and protein factors that are being subjected to further modern biochemical analysis. After months of study that included interviews of TF physician-scientists, we conclude that an antigen-specific TF exists for most, if not all, antigens. By working from a CD8+ T cell line with modern biochemical technology, it should be possible to identify and patent products capable of treating infectious diseases, antigen-responsive cancers, and autoimmune disorders.

  4. Studies on B-cell memory. III. T-dependent aspect of B memory generation in mice immunized with T-independent type-2(TI-2) antigen.

    PubMed

    Hosokawa, T; Tanaka, Y; Aoike, A; Kawai, K; Muramatsu, S

    1984-09-01

    The time course of B-cell memory development to a dinitrophenyl (DNP) T-independent type-2 (TI-2) antigen was investigated by adoptive cell transfer. Strong IgM and IgG memory developed in BALB/c mice after immunization with DNP-dextran, to be recalled by challenge with either T-dependent (TD) antigen or TI-2 antigen. However, only weak IgM memory and very feeble IgG memory were detected in athymic nude mice receiving the same immunization as euthymic mice. Once memory was established under probable T cell influence, its recall by TI-2 antigen challenge seemed independent of T cell help and did not require sharing of carriers between priming and challenge antigens. The following may be concluded. (i) Long-term IgM and IgG memory is induced by TI-2 antigen priming in the presence of functional T cells. (ii) The class switch from IgM to IgG in the memory B cell pool is driven effectively by TI-2 antigen and is probably T cell-dependent.

  5. [Identification of Env-specific monoclonal antibodies from Chinese HIV-1 infected person by magnetic beads separating B cells and single cell RT-PCR cloning].

    PubMed

    Huang, Xiang-Ying; Yu, Shuang-Qing; Cheng, Zhan; Ye, Jing-Rong; Xu, Ke; Feng, Xia; Zeng, Yi

    2013-04-01

    To establish a simple and practical method for screening of Env-specific monoclonal antibodies from HIV-1 infected individuals. Human B cells were purified by negative sorting from PBMCs and memory B cells were further enriched using anti-CD27 microbeads. Gp120 antigen labbled with biotin was incubated with memory B cells to specifically bind IgG on cells membrane. The memory B cells expressing the Env-specific antibody were harvested by magnetic beads separating, counted and diluted to the level of single cell in each PCR well that loading with catch buffer containing RNase inhibitor to get RNAs. The antibody genes were amplified by single cell RT-PCR and nested PCR, cloned into eukaryotic expression vectors and transfected into 293T cells. The binding activity of recombinant antibodies to Env were tested by ELISA. Three monocolonal Env-specific antibodies were isolated from one HIV-1 infected individual. We can obtain Env-specific antibody by biotin labbled antigen, magnetic beads separating technique coupled with single cell RT-PCR and expression cloning.

  6. Cross-reactions of sera from dogs infected with Angiostrongylus vasorum in commercially available Dirofilaria immitis test kits

    PubMed Central

    2012-01-01

    Background Dirofilaria immitis and Angiostrongylus vasorum are both important potentially fatal canine nematodes with overlapping endemic areas, especially in Europe. The preadult and adult stages of both species are living in the Arteria pulmonalis and the right heart, and diagnostically detectable circulating parasite antigens have been demonstrated for both species. For the detection of D. immitis infections, a variety of commercial tests have been developed, however, they have not been evaluated for cross-reactions against circulating antigens of A. vasorum. Methods In this study, potential cross-reactions of sera from 16 dogs, which were experimentally infected with A. vasorum and which had circulating antigens as confirmed by a species-specific ELISA, were evaluated for the detection of A. vasorum antigen in six commercially available D. immitis test kits. Results In three fast tests (Witness® Dirofilaria, SensPERT® Canine Heartworm, SNAP® 4Dx® Plus), all sera were negative. One fast membrane ELISA (SNAP® HTWM RT Test) was positive with four sera (25%), and one serum delivered a non-valid result twice. In the PetChek® HTWM PF Test, depending on the interpretation protocol, 5 or 8 dogs (31.2 – 50%) were positive. With the DiroCHEK®-ELISA, a single A. vasorum-infected dog (6.2%) tested positive. Conclusions Due to potential cross-reactions with A. vasorum in commercially available test kits for the detection of D. immitis antigen, the simultaneous use of highly specific diagnostic methods for the differentiation of these two canine heart worms is recommended. PMID:23148786

  7. Definition of Drosophila hemocyte subsets by cell-type specific antigens.

    PubMed

    Kurucz, Eva; Váczi, B; Márkus, R; Laurinyecz, Barbara; Vilmos, P; Zsámboki, J; Csorba, Kinga; Gateff, Elisabeth; Hultmark, D; Andó, I

    2007-01-01

    We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes.

  8. Detection and Characterization of CD8+ Autoreactive Memory Stem T Cells in Patients With Type 1 Diabetes.

    PubMed

    Vignali, Debora; Cantarelli, Elisa; Bordignon, Carlotta; Canu, Adriana; Citro, Antonio; Annoni, Andrea; Piemonti, Lorenzo; Monti, Paolo

    2018-05-01

    Stem memory T cells (Tscm) constitute the earliest developmental stage of memory T cells, displaying stem cell-like properties, such as self-renewal capacity. Their superior immune reconstitution potential has sparked interest in cancer immune therapy, vaccine development, and immune reconstitution, whereas their role in autoimmunity is largely unexplored. Here we show that autoreactive CD8 + Tscm specific for β-cell antigens GAD65, insulin, and IGRP are present in patients with type 1 diabetes (T1D). In vitro, the generation of autoreactive Tscm from naive precursors required the presence of the homeostatic cytokine interleukin-7 (IL-7). IL-7 promotes glucose uptake via overexpression of GLUT1 and upregulation of the glycolytic enzyme hexokinase 2. Even though metabolism depends on glucose uptake, the subsequent oxidation of pyruvate in the mitochondria was necessary for Tscm generation from naive precursors. In patients with T1D, high expression of GLUT1 was a hallmark of circulating Tscm, and targeting glucose uptake via GLUT1 using the selective inhibitor WZB117 resulted in inhibition of Tscm generation and expansion. Our results suggest that autoreactive Tscm are present in patients with T1D and can be selectively targeted by inhibition of glucose metabolism. © 2018 by the American Diabetes Association.

  9. Vaccination Expands Antigen-Specific CD4+ Memory T Cells and Mobilizes Bystander Central Memory T Cells

    PubMed Central

    Li Causi, Eleonora; Parikh, Suraj C.; Chudley, Lindsey; Layfield, David M.; Ottensmeier, Christian H.; Stevenson, Freda K.; Di Genova, Gianfranco

    2015-01-01

    CD4+ T helper memory (Thmem) cells influence both natural and vaccine-boosted immunity, but mechanisms for their maintenance remain unclear. Pro-survival signals from the common gamma-chain cytokines, in particular IL-7, appear important. Previously we showed in healthy volunteers that a booster vaccination with tetanus toxoid (TT) expanded peripheral blood TT-specific Thmem cells as expected, but was accompanied by parallel increase of Thmem cells specific for two unrelated and non cross-reactive common recall antigens. Here, in a new cohort of healthy human subjects, we compare blood vaccine-specific and bystander Thmem cells in terms of differentiation stage, function, activation and proliferative status. Both responses peaked 1 week post-vaccination. Vaccine-specific cytokine-producing Thmem cells were predominantly effector memory, whereas bystander cells were mainly of central memory phenotype. Importantly, TT-specific Thmem cells were activated (CD38High HLA-DR+), cycling or recently divided (Ki-67+), and apparently vulnerable to death (IL-7RαLow and Bcl-2 Low). In contrast, bystander Thmem cells were resting (CD38Low HLA-DR- Ki-67-) with high expression of IL-7Rα and Bcl-2. These findings allow a clear distinction between vaccine-specific and bystander Thmem cells, suggesting the latter do not derive from recent proliferation but from cells mobilized from as yet undefined reservoirs. Furthermore, they reveal the interdependent dynamics of specific and bystander T-cell responses which will inform assessments of responses to vaccines. PMID:26332995

  10. Superior In Vitro Stimulation of Human CD8+ T-Cells by Whole Virus versus Split Virus Influenza Vaccines

    PubMed Central

    Distler, Eva; Dass, Martin; Wagner, Eva M.; Plachter, Bodo; Probst, Hans Christian; Strand, Dennis; Hartwig, Udo F.; Karner, Anita; Aichinger, Gerald; Kistner, Otfried; Landfester, Katharina; Herr, Wolfgang

    2014-01-01

    Pandemic and seasonal influenza viruses cause considerable morbidity and mortality in the general human population. Protection from severe disease may result from vaccines that activate antigen-presenting DC for effective stimulation of influenza-specific memory T cells. Special attention is paid to vaccine-induced CD8+ T-cell responses, because they are mainly directed against conserved internal influenza proteins thereby presumably mediating cross-protection against circulating seasonal as well as emerging pandemic virus strains. Our study showed that influenza whole virus vaccines of major seasonal A and B strains activated DC more efficiently than those of pandemic swine-origin H1N1 and pandemic-like avian H5N1 strains. In contrast, influenza split virus vaccines had a low ability to activate DC, regardless which strain was investigated. We also observed that whole virus vaccines stimulated virus-specific CD8+ memory T cells much stronger compared to split virus counterparts, whereas both vaccine formats activated CD4+ Th cell responses similarly. Moreover, our data showed that whole virus vaccine material is delivered into the cytosolic pathway of DC for effective activation of virus-specific CD8+ T cells. We conclude that vaccines against seasonal and pandemic (-like) influenza strains that aim to stimulate cross-reacting CD8+ T cells should include whole virus rather than split virus formulations. PMID:25072749

  11. Suppression of allo-human leucocyte antigen (HLA) antibodies secreted by B memory cells in vitro: intravenous immunoglobulin (IVIg) versus a monoclonal anti-HLA-E IgG that mimics HLA-I reactivities of IVIg.

    PubMed

    Zhu, D; Ravindranath, M H; Terasaki, P I; Miyazaki, T; Pham, T; Jucaud, V

    2014-08-01

    B memory cells remain in circulation and secrete alloantibodies without antigen exposure > 20 years after alloimmunization postpartum or by transplantation. These long-lived B cells are resistant to cytostatic drugs. Therapeutically, intravenous immunoglobulin (IVIg) is administered to reduce allo-human leucocyte antigen (HLA) antibodies pre- and post-transplantation, but the mechanism of reduction remains unclear. Recently, we reported that IVIg reacts with several HLA-I alleles and the HLA reactivity of IVIg is lost after its HLA-E reactivity is adsorbed out. Therefore, we have generated an anti-HLA-E monoclonal antibody that mimics the HLA-reactivity of IVIg to investigate whether this antibody suppresses IgG secretion, as does IVIg. B cells were purified from the blood of a woman in whose blood the B memory cells remained without antigen exposure > 20 years after postpartum alloimmunization. The B cells were stimulated with cytokines using a well-defined culture system. The anti-HLA-E monoclonal antibody (mAb) significantly suppressed the allo-HLA class-II IgG produced by the B cells, and that this suppression was far superior to that by IVIg. These findings were confirmed with HLA-I antibody secreted by the immortalized B cell line, developed from the blood of another alloimmunized woman. The binding affinity of the anti-HLA-E mAb for peptide sequences shared (i.e. shared epitopes) between HLA-E and other β2-microglobulin-free HLA heavy chains (open conformers) on the cell surface of B cells may act as a ligand and signal suppression of IgG production of activated B memory cells. We propose that anti-HLA-E monoclonal antibody may also be useful to suppress allo-HLA IgG production in vivo. © 2014 British Society for Immunology.

  12. Effective Respiratory CD8 T-Cell Immunity to Influenza Virus Induced by Intranasal Carbomer-Lecithin-Adjuvanted Non-replicating Vaccines

    PubMed Central

    Gasper, David J.; Neldner, Brandon; Plisch, Erin H.; Rustom, Hani; Imai, Hirotaka; Kawaoka, Yoshihiro; Suresh, M.

    2016-01-01

    CD8+ cytotoxic T lymphocytes (CTLs) are critical for clearing many viral infections, and protective CTL memory can be induced by vaccination with attenuated viruses and vectors. Non-replicating vaccines are typically potentiated by the addition of adjuvants that enhance humoral responses, however few are capable of generating CTL responses. Adjuplex is a carbomer-lecithin-based adjuvant demonstrated to elicit robust humoral immunity to non-replicating antigens. We report that mice immunized with non-replicating Adjuplex-adjuvanted vaccines generated robust antigen-specific CTL responses. Vaccination by the subcutaneous or the intranasal route stimulated systemic and mucosal CTL memory respectively. However, only CTL memory induced by intranasal vaccination was protective against influenza viral challenge, and correlated with an enhancement of memory CTLs in the airways and CD103+ CD69+ CXCR3+ resident memory-like CTLs in the lungs. Mechanistically, Myd88-deficient mice mounted primary CTL responses to Adjuplex vaccines that were similar in magnitude to wild-type mice, but exhibited altered differentiation of effector cell subsets. Immune potentiating effects of Adjuplex entailed alterations in the frequency of antigen-presenting-cell subsets in vaccine draining lymph nodes, and in the lungs and airways following intranasal vaccination. Further, Adjuplex enhanced the ability of dendritic cells to promote antigen-induced proliferation of naïve CD8 T cells by modulating antigen uptake, its intracellular localization, and rate of processing. Taken together, we have identified an adjuvant that elicits both systemic and mucosal CTL memory to non-replicating antigens, and engenders protective CTL-based heterosubtypic immunity to influenza A virus in the respiratory tract. Further, findings presented in this manuscript have provided key insights into the mechanisms and factors that govern the induction and programming of systemic and protective memory CTLs in the respiratory tract. PMID:27997610

  13. Effective Respiratory CD8 T-Cell Immunity to Influenza Virus Induced by Intranasal Carbomer-Lecithin-Adjuvanted Non-replicating Vaccines.

    PubMed

    Gasper, David J; Neldner, Brandon; Plisch, Erin H; Rustom, Hani; Carrow, Emily; Imai, Hirotaka; Kawaoka, Yoshihiro; Suresh, M

    2016-12-01

    CD8+ cytotoxic T lymphocytes (CTLs) are critical for clearing many viral infections, and protective CTL memory can be induced by vaccination with attenuated viruses and vectors. Non-replicating vaccines are typically potentiated by the addition of adjuvants that enhance humoral responses, however few are capable of generating CTL responses. Adjuplex is a carbomer-lecithin-based adjuvant demonstrated to elicit robust humoral immunity to non-replicating antigens. We report that mice immunized with non-replicating Adjuplex-adjuvanted vaccines generated robust antigen-specific CTL responses. Vaccination by the subcutaneous or the intranasal route stimulated systemic and mucosal CTL memory respectively. However, only CTL memory induced by intranasal vaccination was protective against influenza viral challenge, and correlated with an enhancement of memory CTLs in the airways and CD103+ CD69+ CXCR3+ resident memory-like CTLs in the lungs. Mechanistically, Myd88-deficient mice mounted primary CTL responses to Adjuplex vaccines that were similar in magnitude to wild-type mice, but exhibited altered differentiation of effector cell subsets. Immune potentiating effects of Adjuplex entailed alterations in the frequency of antigen-presenting-cell subsets in vaccine draining lymph nodes, and in the lungs and airways following intranasal vaccination. Further, Adjuplex enhanced the ability of dendritic cells to promote antigen-induced proliferation of naïve CD8 T cells by modulating antigen uptake, its intracellular localization, and rate of processing. Taken together, we have identified an adjuvant that elicits both systemic and mucosal CTL memory to non-replicating antigens, and engenders protective CTL-based heterosubtypic immunity to influenza A virus in the respiratory tract. Further, findings presented in this manuscript have provided key insights into the mechanisms and factors that govern the induction and programming of systemic and protective memory CTLs in the respiratory tract.

  14. A Higher Activation Threshold of Memory CD8+ T Cells Has a Fitness Cost That Is Modified by TCR Affinity during Tuberculosis.

    PubMed

    Carpenter, Stephen M; Nunes-Alves, Cláudio; Booty, Matthew G; Way, Sing Sing; Behar, Samuel M

    2016-01-01

    T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection.

  15. A Higher Activation Threshold of Memory CD8+ T Cells Has a Fitness Cost That Is Modified by TCR Affinity during Tuberculosis

    PubMed Central

    Carpenter, Stephen M.; Nunes-Alves, Cláudio; Booty, Matthew G.; Way, Sing Sing; Behar, Samuel M.

    2016-01-01

    T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection. PMID:26745507

  16. Optimization of a human IgG B-cell ELISpot assay for the analysis of vaccine-induced B-cell responses.

    PubMed

    Jahnmatz, Maja; Kesa, Gun; Netterlid, Eva; Buisman, Anne-Marie; Thorstensson, Rigmor; Ahlborg, Niklas

    2013-05-31

    B-cell responses after infection or vaccination are often measured as serum titers of antigen-specific antibodies. Since this does not address the aspect of memory B-cell activity, it may not give a complete picture of the B-cell response. Analysis of memory B cells by ELISpot is therefore an important complement to conventional serology. B-cell ELISpot was developed more than 25 years ago and many assay protocols/reagents would benefit from optimization. We therefore aimed at developing an optimized B-cell ELISpot for the analysis of vaccine-induced human IgG-secreting memory B cells. A protocol was developed based on new monoclonal antibodies to human IgG and biotin-avidin amplification to increase the sensitivity. After comparison of various compounds commonly used to in vitro-activate memory B cells for ELISpot analysis, the TLR agonist R848 plus interleukin (IL)-2 was selected as the most efficient activator combination. The new protocol was subsequently compared to an established protocol, previously used in vaccine studies, based on polyclonal antibodies without biotin avidin amplification and activation of memory B-cells using a mix of antigen, CpG, IL-2 and IL-10. The new protocol displayed significantly better detection sensitivity, shortened the incubation time needed for the activation of memory B cells and reduced the amount of antigen required for the assay. The functionality of the new protocol was confirmed by analyzing specific memory B cells to five different antigens, induced in a limited number of subjects vaccinated against tetanus, diphtheria and pertussis. The limited number of subjects did not allow for a direct comparison with other vaccine studies. Optimization of the B-cell ELISpot will facilitate an improved analysis of IgG-secreting B cells in vaccine studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization.

    PubMed

    Nakamoto, Nobuhiro; Kaplan, David E; Coleclough, Jennifer; Li, Yun; Valiga, Mary E; Kaminski, Mary; Shaked, Abraham; Olthoff, Kim; Gostick, Emma; Price, David A; Freeman, Gordon J; Wherry, E John; Chang, Kyong-Mi

    2008-06-01

    The immunoinhibitory receptor programmed death-1 (PD-1) is up-regulated on dysfunctional virus-specific CD8 T cells during chronic viral infections, and blockade of PD-1/PD-ligand (PD-L) interactions can restore their function. As hepatitis C virus (HCV) persists in the liver with immune-mediated disease pathogenesis, we examined the role of PD-1/PD-L pathway in antigen-specific CD8 T-cell dysfunction in the liver and blood of HCV-infected patients. PD-1 expression and function of circulating CD8 T cells specific for HCV, Epstein-Barr virus, and influenza virus were examined ex vivo and following antigenic stimulation in vitro in patients with acute, chronic, and resolved HCV infection using class I tetramers and flow cytometry. Intrahepatic CD8 T cells were examined from liver explants of chronically HCV-infected transplant recipients. Intrahepatic HCV-specific CD8 T cells from chronically HCV-infected patients were highly PD-1 positive, profoundly dysfunctional, and unexpectedly refractory to PD-1/PD-L blockade, contrasting from circulating PD-1-intermediate HCV-specific CD8 T cells with responsiveness to PD-1/PD-L blockade. This intrahepatic functional impairment was HCV-specific and directly associated with the level of PD-1 expression. Highly PD-1-positive intrahepatic CD8 T cells were more phenotypically exhausted with increased cytotoxic T-lymphocyte antigen 4 and reduced CD28 and CD127 expression, suggesting that active antigen-specific stimulation in the liver induces a profound functional exhaustion not reversible by PD-1/PD-L blockade alone. HCV-specific CD8 T-cell dysfunction and responsiveness to PD-1/PD-L blockade are defined by their PD-1 expression and compartmentalization. These findings provide new and clinically relevant insight to differential antigen-specific CD8 T-cell exhaustion and their functional restoration.

  18. Functional restoration of HCV-specific CD8 T-cells by PD1 blockade is defined by PD1 expression and compartmentalization

    PubMed Central

    Nakamoto, Nobuhiro; Kaplan, David E.; Coleclough, Jennifer; Li, Yun; Kaminski, Mary; Shaked, Abraham; Olthoff, Kim; Gostick, Emma; Price, David A.; Freeman, Gordon J.; Wherry, E. John; Chang, Kyong-Mi

    2008-01-01

    Background & Aims The immuno-inhibitory receptor Programmed Death-1 (PD-1) is upregulated on dysfunctional virus-specific CD8 T-cells during chronic viral infections and blockade of PD-1:PD-ligand (PD-L) interactions can restore their function. As hepatitis C virus (HCV) persists in the liver with immune-mediated disease pathogenesis, we examined the role of PD1/PD-L pathway in antigen-specific CD8 T-cell dysfunction in the liver and blood of HCV-infected patients. Methods PD-1 expression and function of circulating CD8 T-cells specific for HCV, EBV and Flu were examined ex vivo and following antigenic stimulation in vitro in patients with acute, chronic and resolved HCV infection using class I tetramers and flow cytometry. Intrahepatic CD8 T-cells were examined from liver explants of chronically HCV-infected transplant recipients. Results Intrahepatic HCV-specific CD8 T-cells from chronically HCV-infected patients were highly PD-1-positive, profoundly dysfunctional and unexpectedly refractory to PD-1:PD-L blockade, contrasting from circulating PD-1-intermediate HCV-specific CD8 T-cells with responsiveness to PD-1:PD-L blockade. This intrahepatic functional impairment was HCV-specific and directly associated with the level of PD-1 expression. Highly PD-1-positive intrahepatic CD8 T-cells were more phenotypically exhausted with increased cytotoxic T-lymphocyte antigen 4 (CTLA-4) and reduced CD28 and CD127 expression, suggesting that active antigen-specific stimulation in the liver induces a profound functional exhaustion not reversible by PD-1:PD-L blockade alone. Conclusion HCV-specific CD8 T-cell dysfunction and responsiveness to PD-1:PD-L blockade are defined by their PD-1 expression and compartmentalization. These findings provide new and clinically relevant insight to differential antigen-specific CD8 T-cell exhaustion and their functional restoration. PMID:18549878

  19. Humans with chronic granulomatous disease maintain humoral immunologic memory despite low frequencies of circulating memory B cells

    PubMed Central

    Santich, Brian H.; Kim, Jin Young; Posada, Jacqueline G.; Ho, Jason; Buckner, Clarisa M.; Wang, Wei; Kardava, Lela; Garofalo, Mary; Marciano, Beatriz E.; Manischewitz, Jody; King, Lisa R.; Khurana, Surender; Chun, Tae-Wook; Golding, Hana; Fauci, Anthony S.; Malech, Harry L.

    2012-01-01

    CD27+ memory B cells are reduced in the blood of patients with chronic granulomatous disease (CGD) for reasons and consequences that remain unclear. Here we confirm not only decreased CD27+ but also IgG+ B cells in the blood of CGD patients compared with healthy donors (HDs). However, among IgG+ B cells, the ratio of CD27− to CD27+ was significantly higher in CGD patients compared with HDs. Similar to conventional memory B cells, CD27−IgG+ B cells of CGD patients expressed activation markers and had undergone somatic hypermutation, albeit at levels lower than their CD27+ counterparts. Functional analyses revealed slight reductions in frequencies of total IgG but not influenza-specific memory B-cell responses, as measured by Elispot in CGD patients compared with HDs. Serum IgG levels and influenza-specific antibodies were also normal in these CGD patients. Finally, we provide evidence that influenza-specific memory B cells can be present within the CD27−IgG+ B-cell compartment. Together, these findings show that, despite reduced circulating CD27+ memory B cells, CGD patients maintain an intact humoral immunologic memory, with potential contribution from CD27− B cells. PMID:23074274

  20. Humans with chronic granulomatous disease maintain humoral immunologic memory despite low frequencies of circulating memory B cells.

    PubMed

    Moir, Susan; De Ravin, Suk See; Santich, Brian H; Kim, Jin Young; Posada, Jacqueline G; Ho, Jason; Buckner, Clarisa M; Wang, Wei; Kardava, Lela; Garofalo, Mary; Marciano, Beatriz E; Manischewitz, Jody; King, Lisa R; Khurana, Surender; Chun, Tae-Wook; Golding, Hana; Fauci, Anthony S; Malech, Harry L

    2012-12-06

    CD27(+) memory B cells are reduced in the blood of patients with chronic granulomatous disease (CGD) for reasons and consequences that remain unclear. Here we confirm not only decreased CD27(+) but also IgG(+) B cells in the blood of CGD patients compared with healthy donors (HDs). However, among IgG(+) B cells, the ratio of CD27(-) to CD27(+) was significantly higher in CGD patients compared with HDs. Similar to conventional memory B cells, CD27(-)IgG(+) B cells of CGD patients expressed activation markers and had undergone somatic hypermutation, albeit at levels lower than their CD27(+) counterparts. Functional analyses revealed slight reductions in frequencies of total IgG but not influenza-specific memory B-cell responses, as measured by Elispot in CGD patients compared with HDs. Serum IgG levels and influenza-specific antibodies were also normal in these CGD patients. Finally, we provide evidence that influenza-specific memory B cells can be present within the CD27(-)IgG(+) B-cell compartment. Together, these findings show that, despite reduced circulating CD27(+) memory B cells, CGD patients maintain an intact humoral immunologic memory, with potential contribution from CD27(-) B cells.

  1. Effect of oestradiol and pathogen-associated molecular patterns on class II-mediated antigen presentation and immunomodulatory molecule expression in the mouse female reproductive tract

    PubMed Central

    Ochiel, Daniel O; Rossoll, Richard M; Schaefer, Todd M; Wira, Charles R

    2012-01-01

    Cells of the female reproductive tract (FRT) can present antigen to naive and memory T cells. However, the effects of oestrogen, known to modulate immune responses, on antigen presentation in the FRT remain undefined. In the present study, DO11.10 T-cell antigen receptor transgenic mice specific for the class II MHC-restricted ovalbumin (OVA) 323–339 peptide were used to study the effects of oestradiol and pathogen-associated molecular patterns on antigen presentation in the FRT. We report here that oestradiol inhibited antigen presentation of OVA by uterine epithelial cells, uterine stromal cells and vaginal cells to OVA-specific memory T cells. When ovariectomized animals were treated with oestradiol for 1 or 3 days, antigen presentation was decreased by 20–80%. In contrast, incubation with PAMP increased antigen presentation by epithelial cells (Pam3Cys), stromal cells (peptidoglycan, Pam3Cys) and vaginal cells (Pam3Cys). In contrast, CpG inhibited both stromal and vaginal cell antigen presentation. Analysis of mRNA expression by reverse transcription PCR indicated that oestradiol inhibited CD40, CD80 and class II in the uterus and CD40, CD86 and class II in the vagina. Expression in isolated uterine and vaginal cells paralleled that seen in whole tissues. In contrast, oestradiol increased polymeric immunoglobulin receptor mRNA expression in the uterus and decreased it in the vagina. These results indicate that antigen-presenting cells in the uterus and vagina are responsive to oestradiol, which inhibits antigen presentation and co-stimulatory molecule expression. Further, these findings suggest that antigen-presenting cells in the uterus and vagina respond to selected Toll-like receptor agonists with altered antigen presentation. PMID:22043860

  2. Dynamics of Dengue Virus (DENV)–Specific B Cells in the Response to DENV Serotype 1 Infections, Using Flow Cytometry With Labeled Virions

    PubMed Central

    Woda, Marcia; Friberg, Heather; Currier, Jeffrey R.; Srikiatkhachorn, Anon; Macareo, Louis R.; Green, Sharone; Jarman, Richard G.; Rothman, Alan L.; Mathew, Anuja

    2016-01-01

    Background. The development of reagents to identify and characterize antigen-specific B cells has been challenging. Methods. We recently developed Alexa Fluor–labeled dengue viruses (AF DENVs) to characterize antigen-specific B cells in the peripheral blood of DENV-immune individuals. Results. In this study, we used AF DENV serotype 1 (AF DENV-1) together with AF DENV-2 on peripheral blood mononuclear cells (PBMCs) from children in Thailand with acute primary or secondary DENV-1 infections to analyze the phenotypes of antigen-specific B cells that reflected their exposure or clinical diagnosis. DENV serotype-specific and cross-reactive B cells were identified in PBMCs from all subjects. Frequencies of AF DENV+ class-switched memory B cells (IgD−CD27+ CD19+ cells) reached up to 8% during acute infection and early convalescence. AF DENV–labeled B cells expressed high levels of CD27 and CD38 during acute infection, characteristic of plasmablasts, and transitioned into memory B cells (CD38−CD27+) at the early convalescent time point. There was higher activation of memory B cells early during acute secondary infection, suggesting reactivation from a previous DENV infection. Conclusions. AF DENVs reveal changes in the phenotype of DENV serotype–specific and cross-reactive B cells during and after natural DENV infection and could be useful in analysis of the response to DENV vaccination. PMID:27443614

  3. Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy

    PubMed Central

    Srivastava, Pragya; Paluch, Benjamin E.; Matsuzaki, Junko; James, Smitha R.; Collamat-Lai, Golda; Blagitko-Dorfs, Nadja; Ford, Laurie Ann; Naqash, Rafeh; Lübbert, Michael; Karpf, Adam R.; Nemeth, Michael J.; Griffiths, Elizabeth A.

    2016-01-01

    Cancer testis antigens (CTAs) are promising cancer associated antigens in solid tumors, but in acute myeloid leukemia, dense promoter methylation silences their expression. Leukemia cell lines exposed to HMAs induce expression of CTAs. We hypothesized that AML patients treated with standard of care decitabine (20mg/m2 per day for 10 days) would demonstrate induced expression of CTAs. Peripheral blood blasts serially isolated from AML patients treated with decitabine were evaluated for CTA gene expression and demethylation. Induction of NY-ESO-1 and MAGEA3/A6, were observed following decitabine. Re-expression of NY-ESO-1 and MAGEA3/A6 was associated with both promoter specific and global (LINE-1) hypomethylation. NY-ESO-1 and MAGEA3/A6 mRNA levels were increased irrespective of clinical response, suggesting that these antigens might be applicable even in patients who are not responsive to HMA therapy. Circulating blasts harvested after decitabine demonstrate induced NY-ESO-1 expression sufficient to activate NY-ESO-1 specific CD8+ T-cells. Induction of CTA expression sufficient for recognition by T-cells occurs in AML patients receiving decitabine. Vaccination against NY-ESO-1 in this patient population is feasible. PMID:26883197

  4. Vaccine-elicited SIV and HIV envelope-specific IgA and IgG memory B cells in rhesus macaque peripheral blood correlate with functional antibody responses and reduced viremia

    PubMed Central

    Brocca-Cofano, Egidio; McKinnon, Katherine; Demberg, Thorsten; Venzon, David; Hidajat, Rachmat; Xiao, Peng; Daltabuit-Test, Mara; Patterson, L. Jean; Robert-Guroff, Marjorie

    2011-01-01

    An effective HIV vaccine requires strong systemic and mucosal, cellular and humoral immunity. Numerous non-human primate studies have investigated memory T cells, but not memory B cells. Humoral immunologic memory is mediated by long-lived antibody-secreting plasma cells and differentiation of memory B cells into short-lived plasma blasts following re-exposure to immunizing antigen. Here we studied memory B cells in vaccinated rhesus macaques. PBMC were stimulated polyclonally using CD40 Ligand, IL-21 and CpG to induce B cell proliferation and differentiation into antibody secreting cells (ASC). Flow cytometry was used for phenotyping and evaluating proliferation by CFSE dilution. B cell responses were quantified by ELISPOT. Methodology was established using PBMC of vaccinated elite-controller macaques that exhibited strong, multi-functional antibody activities. Subsequently, memory B cells elicited by two replicating Ad-recombinant prime/envelope boost regimens were retrospectively evaluated pre- and post- SIV and SHIV challenges. The vaccine regimens induced SIV and HIV Env-specific IgG and IgA memory B cells. Prior to challenge, IgA memory B cells were more numerous than IgG memory B cells, reflecting the mucosal priming immunizations. Pre- and post-challenge memory B cells were correlated with functional antibody responses including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell-mediated viral inhibition (ADCVI) and transcytosis inhibition. Post-challenge, Env-specific IgG and IgA memory B cells were correlated with reduced chronic viremia. We conclude that functional antibody responses elicited by our prime/boost regimen were effectively incorporated into the memory B cell pool where they contributed to control of viremia following re-exposure to the immunizing antigen. PMID:21382487

  5. Efficient Culture of Human Naïve and Memory B cells for Use as Antigen-presenting Cells

    PubMed Central

    Su, Kuei-Ying; Watanabe, Akiko; Yeh, Chen-Hao; Kelsoe, Garnett; Kuraoka, Masayuki

    2016-01-01

    The ability to culture and expand B cells in vitro has become a useful tool for studying human immunity. A limitation of current methods for human B-cell culture is the capacity to support mature B-cell proliferation. We have developed a culture method to support the efficient activation and proliferation of both naïve and memory human B cells. This culture supports extensive B-cell proliferation, with approximately 103-fold increases following 8 days in culture, and 106-fold increases when cultures are split and cultured for 8 more days. In culture, a significant fraction of naïve B cells undergo isotype switching and differentiate into plasmacytes. Culture-derived (CD) B cells are readily cryopreserved, and when recovered, retain their ability to proliferate and differentiate. Significantly, proliferating CD B cells express high levels of MHCII, CD80, and CD86. CD B cells act as APCs and present both alloantigens and microbial antigens to T cells. We are able to activate and expand antigen-specific memory B cells; these cultured cells are highly effective in presenting antigen to T cells. We have characterized the TCR repertoire of rare antigen-specific CD4+ T cells that proliferated in response to tetanus toxoid (TT) presented by autologous CD B cells. TCR Vβ usage by TT-activated CD4+ T cells differs from both resting and unspecifically activated CD4+ T cells. Moreover, we found that TT-specific TCR Vβ usage by CD4+ T cells was substantially different between donors. This culture method provides a platform for studying the BCR and TCR repertoires within a single individual. PMID:27815447

  6. Shark immunity bites back: affinity maturation and memory response in the nurse shark, Ginglymostoma cirratum.

    PubMed

    Dooley, Helen; Flajnik, Martin F

    2005-03-01

    The cartilaginous fish are the oldest phylogenetic group in which all of the molecular components of the adaptive immune system have been found. Although early studies clearly showed that sharks could produce an IgM-based response following immunization, evidence for memory, affinity maturation and roles for the other isotypes (notably IgNAR) in this group remained inconclusive. The data presented here illustrate that the nurse shark (Ginglymostoma cirratum) is able to produce not only an IgM response, but we also show for the first time a highly antigen-specific IgNAR response. Additionally, under appropriate conditions, a memory response for both isotypes can be elicited. Analysis of the response shows differential expression of pentameric and monomeric IgM. Pentameric IgM provides the 'first line of defense' through high-avidity, low-affinity interaction with antigen. In contrast, monomeric IgM and IgNAR seem responsible for the specific, antigen-driven response. We propose the presence of distinct lineages of B cells in sharks. As there is no conventional isotype switching, each lineage seems pre-determined to express a single isotype (IgM versus IgNAR). However, our data suggest that there may also be specific lineages for the different forms (pentameric versus monomeric) of the IgM isotype.

  7. B Cells and B Cell Blasts Withstand Cryopreservation While Retaining Their Functionality for Producing Antibody.

    PubMed

    Fecher, Philipp; Caspell, Richard; Naeem, Villian; Karulin, Alexey Y; Kuerten, Stefanie; Lehmann, Paul V

    2018-05-31

    In individuals who have once developed humoral immunity to an infectious/foreign antigen, the antibodies present in their body can mediate instant protection when the antigen re-enters. Such antigen-specific antibodies can be readily detected in the serum. Long term humoral immunity is, however, also critically dependent on the ability of memory B cells to engage in a secondary antibody response upon re-exposure to the antigen. Antibody molecules in the body are short lived, having a half-life of weeks, while memory B cells have a life span of decades. Therefore, the presence of serum antibodies is not always a reliable indicator of B cell memory and comprehensive monitoring of humoral immunity requires that both serum antibodies and memory B cells be assessed. The prevailing view is that resting memory B cells and B cell blasts in peripheral blood mononuclear cells (PBMC) cannot be cryopreserved without losing their antibody secreting function, and regulated high throughput immune monitoring of B cell immunity is therefore confined to-and largely limited by-the need to test freshly isolated PBMC. Using optimized protocols for freezing and thawing of PBMC, and four color ImmunoSpot ® analysis for the simultaneous detection of all immunoglobulin classes/subclasses we show here that both resting memory B cells and B cell blasts retain their ability to secrete antibody after thawing, and thus demonstrate the feasibility of B cell immune monitoring using cryopreserved PBMC.

  8. The role of cytokines in T-cell memory in health and disease.

    PubMed

    Raeber, Miro E; Zurbuchen, Yves; Impellizzieri, Daniela; Boyman, Onur

    2018-05-01

    Upon stimulation with their cognate antigen, naive T cells undergo proliferation and differentiation into effector cells, followed by apoptosis or survival as precursors of long-lived memory cells. These phases of a T-cell response and the ensuing maintenance of memory T cells are shaped by cytokines, most notably interleukin-2 (IL-2), IL-7, and IL-15 that share the common γ chain (γ c ) cytokine receptor. Steady-state production of IL-7 and IL-15 is necessary for background proliferation and homeostatic survival of CD4 + and CD8 + memory T cells. During immune responses, augmented levels of IL-2, IL-15, IL-21, IL-12, IL-18, and type-I interferons determine the memory potential of antigen-specific effector CD8 + cells, while increased IL-2 and IL-15 cause bystander proliferation of heterologous CD4 + and CD8 + memory T cells. Limiting availability of γ c cytokines, reduction in regulatory T cells or IL-10, and persistence of inflammation or cognate antigen can result in memory T cells, which fail to become cytokine-dependent long-lived cells. Conversely, increased IL-7 and IL-15 can expand memory T cells, including pathogenic tissue-resident memory T cells, as seen in lymphopenia and certain chronic-inflammatory disorders and malignancies. These abovementioned factors impact immunotherapy and vaccines directed at memory T cells in cancer and chronic infection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Transcriptional Profiling of Antigen-Dependent Murine B Cell Differentiation and Memory Formation1

    PubMed Central

    Bhattacharya, Deepta; Cheah, Ming T.; Franco, Christopher B.; Hosen, Naoki; Pin, Christopher L.; Sha, William C.; Weissman, Irving L.

    2015-01-01

    Humoral immunity is characterized by the generation of Ab-secreting plasma cells and memory B cells that can more rapidly generate specific Abs upon Ag exposure than their naive counterparts. To determine the intrinsic differences that distinguish naive and memory B cells and to identify pathways that allow germinal center B cells to differentiate into memory B cells, we compared the transcriptional profiles of highly purified populations of these three cell types along with plasma cells isolated from mice immunized with a T-dependent Ag. The transcriptional profile of memory B cells is similar to that of naive B cells, yet displays several important differences, including increased expression of activation-induced deaminase and several antiapoptotic genes, chemotactic receptors, and costimulatory molecules. Retroviral expression of either Klf2 or Ski, two transcriptional regulators specifically enriched in memory B cells relative to their germinal center precursors, imparted a competitive advantage to Ag receptor and CD40-engaged B cells in vitro. These data suggest that humoral recall responses are more rapid than primary responses due to the expression of a unique transcriptional program by memory B cells that allows them to both be maintained at high frequencies and to detect and rapidly respond to antigenic re-exposure. PMID:17982071

  10. Naive T-cell receptor transgenic T cells help memory B cells produce antibody

    PubMed Central

    Duffy, Darragh; Yang, Chun-Ping; Heath, Andrew; Garside, Paul; Bell, Eric B

    2006-01-01

    Injection of the same antigen following primary immunization induces a classic secondary response characterized by a large quantity of high-affinity antibody of an immunoglobulin G class produced more rapidly than in the initial response – the products of memory B cells are qualitatively distinct from that of the original naive B lymphocytes. Very little is known of the help provided by the CD4 T cells that stimulate memory B cells. Using antigen-specific T-cell receptor transgenic CD4 T cells (DO11.10) as a source of help, we found that naive transgenic T cells stimulated memory B cells almost as well (in terms of quantity and speed) as transgenic T cells that had been recently primed. There was a direct correlation between serum antibody levels and the number of naive transgenic T cells transferred. Using T cells from transgenic interleukin-2-deficient mice we showed that interleukin-2 was not required for a secondary response, although it was necessary for a primary response. The results suggested that the signals delivered by CD4 T cells and required by memory B cells for their activation were common to both antigen-primed and naive CD4 T cells. PMID:17067314

  11. CD4 and CD8 T-Cell Responses to Mycobacterial Antigens in African Children

    PubMed Central

    Tena-Coki, Nontobeko G.; Scriba, Thomas J.; Peteni, Nomathemba; Eley, Brian; Wilkinson, Robert J.; Andersen, Peter; Hanekom, Willem A.; Kampmann, Beate

    2010-01-01

    Rationale: The current tuberculosis (TB) vaccine, bacille Calmette-Guérin (BCG), does not provide adequate protection against TB disease in children. Furthermore, more efficacious TB vaccines are needed for children with immunodeficiencies such as HIV infection, who are at highest risk of disease. Objectives: To characterize mycobacteria-specific T cells in children who might benefit from vaccination against TB, focusing on responses to antigens contained in novel TB vaccines. Methods: Whole blood was collected from three groups of BCG-vaccinated children: HIV-seronegative children receiving TB treatment (n = 30), HIV-infected children (n = 30), and HIV-unexposed healthy children (n = 30). Blood was stimulated with Ag85B and TB10.4, or purified protein derivative, and T-cell cytokine production by CD4 and CD8 was determined by flow cytometry. The memory phenotype of antigen-specific CD4 and CD8 T cells was also determined. Measurements and Main Results: Mycobacteria-specific CD4 and CD8 T-cell responses were detectable in all three groups of children. Children receiving TB treatment had significantly higher frequencies of antigen-specific CD4 T cells compared with HIV-infected children (P = 0.0176). No significant differences in magnitude, function, or phenotype of specific T cells were observed in HIV-infected children compared with healthy control subjects. CD4 T cells expressing IFN-γ, IL-2, or both expressed a CD45RA−CCR7−CD27+/− effector memory phenotype. Mycobacteria-specific CD8 T cells expressed mostly IFN-γ in all groups of children; these cells expressed CD45RA−CCR7−CD27+/− or CD45RA+CCR7−CD27+/− effector memory phenotypes. Conclusions: Mycobacteria-specific T-cell responses could be demonstrated in all groups of children, suggesting that the responses could be boosted by new TB vaccines currently in clinical trials. PMID:20224065

  12. Felix Hoppe-Seyler Lecture 1997. Protective antibody responses against viruses.

    PubMed

    Zinkernagel, R M

    1997-08-01

    Neutralizing antibody responses against the acute cytopathic vesicular stomatitis virus (VSV) have been studied in mice to evaluate their general characteristics including specificity, self-/non-self discrimination and memory. IgM responses are generated very early, by day 3 to 4, in a T helper cell-independent fashion and without VSV having polyclonal activating capacities. The order of the glycoprotein tips on the virus envelope (multiple, 8-10 nm distance, paracrystalline) exhibiting the neutralizing determinants are key to this prompt response. These paracrystalline identical multimeric antigens are characteristic of infectious agents and are always reacted against by B cells. Self-antigens that are accessible to B cells in the intact host are either monomeric in serum or mobile multimers on cell surfaces; these configurations need contact dependent or contact independent T help, respectively. Because T help is tolerant against self-antigens, no anti-self B cell responses are usually induced against monomeric self-antigens. If collagen or DNA (rigid multimeric self-antigens) become accessible, however, they may become targets of auto-antibody responses. The antibody repertoire against VSV is partially contained in the germline and partially is generated by somatic mutation; they seem not to undergo affinity-maturation. In any case protection against lethal infection is dependent upon strictly T helper cell dependent IgG generated by day 6 to 7 and reaches a protective level of about 1-10 micrograms/ml. Interesting affinity/avidity and onrate above a minimal threshold are of no apparent advantage for protection in vivo. Maintenance of these antibody levels by antigen depots, and not the presence of memory B cells alone, is key to providing protective immunological memory. Collectively these data suggest that studying biologically important protective antibody responses may modify some of the parameters that have been defined by studying hapten specific antibody responses.

  13. IMMUNOLOGIC MEMORY CELLS OF BONE MARROW ORIGIN

    PubMed Central

    Miller, Harold C.; Cudkowicz, Gustavo

    1972-01-01

    Individual immunocompetent precursor cells of (C57BL/10 x C3H)F1 mouse marrow generate, on transplantation, three to five times more antibody-forming cells localized in recipient spleens during secondary than during primary immune responses. The increased burst size is immunologically specific since antigens of horse and chicken erythrocytes and of Salmonella typhimurium do not cause this effect in marrow cells responsive to sheep red blood cells. Both sensitized and nonsensitized precursors require the helper function of thymus-derived cells and antigen for the final steps of differentiation and maturation. The burst size of primed precursor cells is the same after cooperative interactions with virgin or educated helper cells of thymic origin. The greater potential of these marrow precursors may be attributable to self-replication and migration before differentiation into antibody-forming descendants. In fact, the progeny cells of primed precursor units are distributed among a multiplicity of foci, whereas those of nonimmune precursors are clustered into one focus. The described properties of specifically primed marrow precursors are those underlying immunologic memory. It remains to be established whether memory cells are induced or selected by antigens and whether the thymus plays a role in this process. PMID:4553850

  14. Pathogenesis and spectrum of autoimmunity.

    PubMed

    Perl, Andras

    2012-01-01

    The immune system specifically recognizes and eliminates foreign antigens and, thus, protects integrity of the host. During maturation of the immune system, tolerance mechanisms develop that prevent or inhibit potentially harmful reactivities to self-antigens. Autoreactive B and T cells that are generated during immune responses are eliminated by apoptosis in the thymus, lymph nodes, or peripheral circulation or actively suppressed by regulatory T cells. However, autoreactive cells may survive due to failure of apoptosis or molecular mimicry, i.e., presentation and recognition of cryptic epitopes of self-antigens, or aberrant lymphokine production. Preservation of the host requires the development of immune responses to foreign antigen and tolerance to self-antigens. Autoimmunity results from a breakdown of tolerance to self-antigens through an interplay of genetic and environmental factors.One of the basic functions of the immune system is to specifically recognize and eliminate foreign antigens and, thus, protect integrity of the host. Through rearrangements and somatic mutations of various gene segments encoding T and B cell receptors and antibody molecules, the immune system acquires tremendous diversity. During maturation of the immune system, recognition of self-antigens plays an important role in shaping the repertoires of immune receptors. Tolerance mechanisms develop that prevent or inhibit potentially harmful reactivities to self-antigens. These self-defense mechanisms are mediated on the levels of central and peripheral tolerance, i.e., autoreactive T cells are either eliminated by apoptosis in the thymus, lymph nodes, or peripheral circulation or actively suppressed by regulatory T cells. Likewise, autoreactive B cells are eliminated in the bone marrow or peripheral lymphoid organs. However, immune responses triggered by foreign antigens may be sustained by molecular mimicry, i.e., presentation and recognition of cryptic epitopes of self-antigens. Further downstream, execution of immune responses depends on the functioning of intracellular signaling networks and the cooperation of many cell types communicating via surface receptors, cytokines, chemokines, and antibody molecules. Therefore, autoimmunity represents the end result of the breakdown of one or multiple basic mechanisms of immune tolerance (Table 1).

  15. Mumps outbreaks in a highly vaccinated population: Investigation of a neutralization titre against the current circulating wildtype genotype G5 mumps virus.

    PubMed

    Kenny, Lena; O'Kelly, Edwin; Connell, Jeff; De Gascun, Cillian; Hassan, Jaythoon

    2016-01-01

    Mumps outbreaks continue to occur globally, despite high levels of uptake of the mumps vaccine. In order to address immunity to the current circulating wildtype virus, we sought to determine a mumps G5 specific IgG quantitative value which correlates with genotype G5 specific neutralization ability in vitro. Sera from 199 individuals including controls and acute mumps cases were assessed for mumps specific IgG titres using five different enzyme immunoassays coated with antigen from different mumps virus strains. A subset of 66 sera was also assessed for in vitro neutralizing antibody against a contemporary circulating genotype G5 mumps virus. For all the different antigenic targets, mumps specific IgG titres were higher in patients following acute mumps infection compared to controls. In acute mumps infected patients, females showed significantly higher serum titres of anti-G5 IgG compared to males (p<0.05). Furthermore, control males did not show any change in G5 specific IgG with increasing age whereas females show a progressive rise in titre. Linear regression analysis revealed a significant association between the mumps G5 specific IgG levels in the EIA and the in vitro neutralization titres (r(2)=0.59). Specific IgG to the current circulating genotype G5 mumps strain showed significantly lower titres in males which supports our previous observation that there is a male gender bias in cases of acute mumps infection. Furthermore, in this preliminary study, the data indicate that genotype G5 specific IgG levels of >40 RU/ml are required for neutralization capability to be observed in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Dynamics of Dengue Virus (DENV)-Specific B Cells in the Response to DENV Serotype 1 Infections, Using Flow Cytometry With Labeled Virions.

    PubMed

    Woda, Marcia; Friberg, Heather; Currier, Jeffrey R; Srikiatkhachorn, Anon; Macareo, Louis R; Green, Sharone; Jarman, Richard G; Rothman, Alan L; Mathew, Anuja

    2016-10-01

    The development of reagents to identify and characterize antigen-specific B cells has been challenging. We recently developed Alexa Fluor-labeled dengue viruses (AF DENVs) to characterize antigen-specific B cells in the peripheral blood of DENV-immune individuals. In this study, we used AF DENV serotype 1 (AF DENV-1) together with AF DENV-2 on peripheral blood mononuclear cells (PBMCs) from children in Thailand with acute primary or secondary DENV-1 infections to analyze the phenotypes of antigen-specific B cells that reflected their exposure or clinical diagnosis. DENV serotype-specific and cross-reactive B cells were identified in PBMCs from all subjects. Frequencies of AF DENV(+) class-switched memory B cells (IgD(-)CD27(+) CD19(+) cells) reached up to 8% during acute infection and early convalescence. AF DENV-labeled B cells expressed high levels of CD27 and CD38 during acute infection, characteristic of plasmablasts, and transitioned into memory B cells (CD38(-)CD27(+)) at the early convalescent time point. There was higher activation of memory B cells early during acute secondary infection, suggesting reactivation from a previous DENV infection. AF DENVs reveal changes in the phenotype of DENV serotype-specific and cross-reactive B cells during and after natural DENV infection and could be useful in analysis of the response to DENV vaccination. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  17. Identification of Low- and High-Impact Hemagglutinin Amino Acid Substitutions That Drive Antigenic Drift of Influenza A(H1N1) Viruses

    PubMed Central

    Harvey, William T.; Benton, Donald J.; Gregory, Victoria; Hall, James P. J.; Daniels, Rodney S.; Bedford, Trevor; Haydon, Daniel T.; Hay, Alan J.; McCauley, John W.; Reeve, Richard

    2016-01-01

    Determining phenotype from genetic data is a fundamental challenge. Identification of emerging antigenic variants among circulating influenza viruses is critical to the vaccine virus selection process, with vaccine effectiveness maximized when constituents are antigenically similar to circulating viruses. Hemagglutination inhibition (HI) assay data are commonly used to assess influenza antigenicity. Here, sequence and 3-D structural information of hemagglutinin (HA) glycoproteins were analyzed together with corresponding HI assay data for former seasonal influenza A(H1N1) virus isolates (1997–2009) and reference viruses. The models developed identify and quantify the impact of eighteen amino acid substitutions on the antigenicity of HA, two of which were responsible for major transitions in antigenic phenotype. We used reverse genetics to demonstrate the causal effect on antigenicity for a subset of these substitutions. Information on the impact of substitutions allowed us to predict antigenic phenotypes of emerging viruses directly from HA gene sequence data and accuracy was doubled by including all substitutions causing antigenic changes over a model incorporating only the substitutions with the largest impact. The ability to quantify the phenotypic impact of specific amino acid substitutions should help refine emerging techniques that predict the evolution of virus populations from one year to the next, leading to stronger theoretical foundations for selection of candidate vaccine viruses. These techniques have great potential to be extended to other antigenically variable pathogens. PMID:27057693

  18. Adoptive transfer of CD8+ T cells generated from induced pluripotent stem cells triggers regressions of large tumors along with immunological memory

    PubMed Central

    Saito, Hidehito; Okita, Keisuke; Chang, Alfred E.; Ito, Fumito

    2016-01-01

    Current approaches to adoptive T cell therapy are limited by the difficulty of obtaining sufficient numbers of T cells against targeted antigens with useful in vivo characteristics. Theoretically, this limitation could be overcome by using induced pluripotent stem cells (iPSCs) that could provide an unlimited source of autologous T cells. However, the therapeutic efficacy of iPSC-derived regenerated T cells remains to be demonstrated. Here we report the first successful reprogramming of T-cell receptor (TCR) transgenic CD8+ T cells into pluripotency. As part of the work, we established a syngeneic mouse model for evaluating in vitro and in vivo antitumor reactivity of regenerated T cells from iPSCs bearing a rearranged TCR of known antigen specificity. Stably TCR retained T cell-derived iPSCs differentiated into CD4+CD8+ T cells that expressed CD3 and the desired TCR in vitro. Stimulation of iPSC-derived CD4+CD8+ T cells with the cognate antigen in the presence of IL-7 and IL-15 followed by expansion with IL-2, IL-7 and IL-15 generated large numbers of less-differentiated CD8+ T cells with antigen-specific potent cytokine production and cytolytic capacity. Furthermore, adoptively transferred iPSC-derived CD8+ T cells escaped immune rejection, mediated effective regression of large tumors, improved survival, and established antigen-specific immunological memory. Our findings illustrate the translational potential of iPSCs to provide an unlimited number of phenotypically defined, functional, and expandable autologous antigen-specific T cells with the characteristics needed to enable in vivo effectiveness. PMID:27197199

  19. Hybridoma cell agglutination as a novel test to detect circulating antigen of Schistosoma japonicum.

    PubMed

    Li, Yong-Long; Liu, Wenqi; Ruppel, Andreas

    2003-01-01

    We developed a serodiagnostic test which is based on the agglutination of hybridoma cells. In the presence of specific antigen, agglutination of the fixed and stained cells occurs and can be visualized in analogy to traditional erythrocyte agglutination. The procedures were developed with a murine cell line producing a monoclonal antibody against a schistosome gut protein and sera of patients and mice infected with Schistosoma japonicum. This test is capable of detecting circulating antigen during pre-patency in mice infected with 50 cercariae. Its sensitivity was high with acute schistosomiasis japonica (97%, n = 32) and moderate with chronic cases (75%, n = 57). No positive reactions were obtained with healthy persons (n = 78) or patients infected with other parasites (Chlonorchis sinensis, n = 20; Paragonimus westermani, n = 20; Plasmodium vivax, n = 10) or suffering from lupus erythomatodus (n = 5) or mononucleosis (n = 10).

  20. Immunopotentiation by SGP and Quil A. II. Identification of responding cell populations.

    PubMed

    Flebbe, L M; Braley-Mullen, H

    1986-04-15

    The adjuvants SGP (a starch-acrylamide polymer) and Quil A (purified saponin) were shown to markedly augment antibody responses to T-independent (TI) antigens, suggesting that their adjuvant effects may be at least partially mediated through B cells. The ability of both adjuvants to augment primary responses to trinitrophenyl (TNP)-Ficoll (TI-2 antigen) in athymic nude mice further suggested these adjuvants affect B cells. SGP, however, did not induce a response to the T-dependent (TD) antigen dinitrophenyl-keyhole limpet hemocyanin (DNP-KLH) in athymic nude mice, indicating it was unable to replace the requirement for T-helper cells for responses to TD antigens. Responses to TNP-lipopolysaccharide (LPS) were augmented by SGP in CBA/N X Balb/c immune defective (xid) mice. However, SGP was unable to induce a response to TNP-Ficoll in xid mice. The SGP and Quil A augmented responses to TNP-Ficoll were completely inhibited by the mitotic inhibitor, Velban, indicating that SGP and Quil A increased the plaque-forming cell (PFC) response primarily by stimulating cell proliferation, and not by recruitment of antigen-reactive cells. The effects of the adjuvants on secondary responses were investigated using adoptive transfer experiments. SGP and A1(OH)3 both increased the induction of hapten-specific memory B cells in mice primed with DNP-KLH. SGP, Quil A, and A1(OH)3 also increased priming of carrier specific T cells. Priming of memory B cells with DNP-KLH and either A1(OH)3 or SGP was prevented when T cells were depleted with anti-lymphocyte serum (ALS) at the time of antigen priming, indicating that the augmentation of memory B-cell priming by SGP and A1(OH)3 was dependent on the presence of functional T cells. SGP and Quil A were both unable to augment memory cell induction to the TI antigen, TNP-Ficoll, even though both adjuvants markedly augmented primary IgM and IgG responses to this antigen. Based on these results, it is suggested that SGP and Quil A can mediate their adjuvant effects primarily by a direct or indirect effect on B cells although the adjuvants may also affect T cells to some extent.

  1. Therapeutic limitations in tumor-specific CD8+ memory T cell engraftment

    PubMed Central

    Bathe, Oliver F; Dalyot-Herman, Nava; Malek, Thomas R

    2003-01-01

    Background Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an alternative approach to treating solid tumors. Ideally, this would confer long-term protection against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7 thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic failures were not clear. Methods OT-I CTL were adoptively transferred to C57BL/6 mice 21 – 28 days prior to tumor challenge. At this time, the donor cells had the phenotypical and functional characteristics of memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were analyzed to evaluate the reason(s) for therapeutic failure. Results Dose-response studies demonstrated that the degree of tumor protection was directly proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL, therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo, rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of E.G7 that expressed a lower level of tumor antigen. Conclusions Memory engraftment with tumor-specific CTL provides long-term protection against tumor. However, there are several limitations to this immunotherapeutic strategy, especially when targeting a single antigen. This study illustrates the importance of administering large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also demonstrates the importance of targeting several antigens when developing vaccine strategies for cancer. PMID:12882650

  2. African-American Men with Gleason Score 3+3=6 Prostate Cancer Produce Less Prostate Specific Antigen than Caucasian Men: A Potential Impact on Active Surveillance.

    PubMed

    Kryvenko, Oleksandr N; Balise, Raymond; Soodana Prakash, Nachiketh; Epstein, Jonathan I

    2016-02-01

    We assess the difference in prostate specific antigen production between African-American and Caucasian men with Gleason score 3+3=6 prostate cancer. We measured tumor volume in 414 consecutive radical prostatectomies from men with National Comprehensive Cancer Network(®) low risk prostate cancer (348 Caucasian, 66 African-American) who had Gleason score 3+3=6 disease at radical prostatectomy. We then compared clinical presentation, pathological findings, prostate specific antigen, prostate specific antigen density and prostate specific antigen mass (an absolute amount of prostate specific antigen in patient's circulation) between African-American and Caucasian men. The t-test and Wilcoxon rank sum were used for comparison of means. African-American and Caucasian men had similar clinical findings based on age, body mass index and prostate specific antigen. There were no statistically significant differences between the dominant tumor nodule volume and total tumor volume (mean 0.712 vs 0.665 cm(3), p=0.695) between African-American and Caucasian men. Prostates were heavier in African-American men (mean 55.4 vs 46.3 gm, p <0.03). Despite the significantly greater weight of benign prostate tissue contributing to prostate specific antigen in African-American men, prostate specific antigen mass was not different from that of Caucasian men (mean 0.55 vs 0.558 μg, p=0.95). Prostate specific antigen density was significantly less in African-American men due to larger prostates (mean 0.09 vs 0.105, p <0.02). African-American men with Gleason score 3+3=6 prostate cancer produce less prostate specific antigen than Caucasian men. African-American and Caucasian men had equal serum prostate specific antigen and prostate specific antigen mass despite significantly larger prostates in African-American men with all other parameters, particularly total tumor volume, being the same. This finding has practical implications in T1c cases diagnosed with prostate cancer due to prostate specific antigen screening. Lowering the prostate specific antigen density threshold in African-American men may account for this disparity, particularly in selecting patients for active surveillance programs. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Protective CD8 Memory T Cell Responses to Mouse Melanoma Are Generated in the Absence of CD4 T Cell Help

    PubMed Central

    Steinberg, Shannon M.; Zhang, Peisheng; Turk, Mary Jo

    2011-01-01

    Background We have previously demonstrated that temporary depletion of CD4 T cells in mice with progressive B16 melanoma, followed by surgical tumor excision, induces protective memory CD8 T cell responses to melanoma/melanocyte antigens. We also showed that persistence of these CD8 T cells is supported, in an antigen-dependent fashion, by concurrent autoimmune melanocyte destruction. Herein we explore the requirement of CD4 T cell help in priming and maintaining this protective CD8 T cell response to melanoma. Methodology and Principal Findings To induce melanoma/melanocyte antigen-specific CD8 T cells, B16 tumor bearing mice were depleted of regulatory T cells (Treg) by either temporary, or long-term continuous treatment with anti-CD4 (mAb clone GK1.5). Total depletion of CD4 T cells led to significant priming of IFN-γ-producing CD8 T cell responses to TRP-2 and gp100. Surprisingly, treatment with anti-CD25 (mAb clone PC61), to specifically deplete Treg cells while leaving help intact, was ineffective at priming CD8 T cells. Thirty to sixty days after primary tumors were surgically excised, mice completely lacking CD4 T cell help developed autoimmune vitiligo, and maintained antigen-specific memory CD8 T cell responses that were highly effective at producing cytokines (IFN-γ, TNF-α, and IL-2). Mice lacking total CD4 T cell help also mounted protection against re-challenge with B16 melanoma sixty days after primary tumor excision. Conclusions and Significance This work establishes that CD4 T cell help is dispensable for the generation of protective memory T cell responses to melanoma. Our findings support further use of CD4 T cell depletion therapy for inducing long-lived immunity to cancer. PMID:22046294

  4. Nonclassical T Cells and Their Antigens in Tuberculosis

    PubMed Central

    De Libero, Gennaro; Singhal, Amit; Lepore, Marco; Mori, Lucia

    2014-01-01

    T cells that recognize nonpeptidic antigens, and thereby are identified as nonclassical, represent important yet poorly characterized effectors of the immune response. They are present in large numbers in circulating blood and tissues and are as abundant as T cells recognizing peptide antigens. Nonclassical T cells exert multiple functions including immunoregulation, tumor control, and protection against infections. They recognize complexes of nonpeptidic antigens such as lipid and glycolipid molecules, vitamin B2 precursors, and phosphorylated metabolites of the mevalonate pathway. Each of these antigens is presented by antigen-presenting molecules other than major histocompatibility complex (MHC), including CD1, MHC class I–related molecule 1 (MR1), and butyrophilin 3A1 (BTN3A1) molecules. Here, we discuss how nonclassical T cells participate in the recognition of mycobacterial antigens and in the mycobacterial-specific immune response. PMID:25059739

  5. Plasmodium falciparum Malaria in the Peruvian Amazon, a Region of Low Transmission, Is Associated with Immunologic Memory

    PubMed Central

    Clark, Eva H.; Silva, Claudia J.; Weiss, Greta E.; Li, Shanping; Padilla, Carlos; Crompton, Peter D.; Hernandez, Jean N.

    2012-01-01

    The development of clinical immunity to Plasmodium falciparum malaria is thought to require years of parasite exposure, a delay often attributed to difficulties in developing protective antibody levels. In this study, we evaluated several P. falciparum vaccine candidate antigens, including apical membrane antigen 1 (AMA-1), circumsporozoite protein (CSP), erythrocyte binding antigen 175 (EBA-175), and the 19-kDa region of merozoite surface protein 1 (MSP119). After observing a more robust antibody response to MSP119, we evaluated the magnitude and longevity of IgG responses specific to this antigen in Peruvian adults and children before, during, and after P. falciparum infection. In this low-transmission region, even one reported prior infection was sufficient to produce a positive anti-MSP119 IgG response for >5 months in the absence of reinfection. We also observed an expansion of the total plasmablast (CD19+ CD27+ CD38high) population in the majority of individuals shortly after infection and detected MSP1-specific memory B cells in a subset of individuals at various postinfection time points. This evidence supports our hypothesis that effective antimalaria humoral immunity can develop in low-transmission regions. PMID:22252876

  6. Plasmodium falciparum malaria in the Peruvian Amazon, a region of low transmission, is associated with immunologic memory.

    PubMed

    Clark, Eva H; Silva, Claudia J; Weiss, Greta E; Li, Shanping; Padilla, Carlos; Crompton, Peter D; Hernandez, Jean N; Branch, OraLee H

    2012-04-01

    The development of clinical immunity to Plasmodium falciparum malaria is thought to require years of parasite exposure, a delay often attributed to difficulties in developing protective antibody levels. In this study, we evaluated several P. falciparum vaccine candidate antigens, including apical membrane antigen 1 (AMA-1), circumsporozoite protein (CSP), erythrocyte binding antigen 175 (EBA-175), and the 19-kDa region of merozoite surface protein 1 (MSP1(19)). After observing a more robust antibody response to MSP1(19), we evaluated the magnitude and longevity of IgG responses specific to this antigen in Peruvian adults and children before, during, and after P. falciparum infection. In this low-transmission region, even one reported prior infection was sufficient to produce a positive anti-MSP1(19) IgG response for >5 months in the absence of reinfection. We also observed an expansion of the total plasmablast (CD19(+) CD27(+) CD38(high)) population in the majority of individuals shortly after infection and detected MSP1-specific memory B cells in a subset of individuals at various postinfection time points. This evidence supports our hypothesis that effective antimalaria humoral immunity can develop in low-transmission regions.

  7. Dissecting the T Cell Response: Proliferation Assays vs. Cytokine Signatures by ELISPOT

    PubMed Central

    Anthony, Donald D.; Milkovich, Kimberly A.; Zhang, Wenji; Rodriguez, Benigno; Yonkers, Nicole L.; Tary-Lehmann, Magdalena; Lehmann, Paul V.

    2012-01-01

    Chronic allograft rejection is in part mediated by host T cells that recognize allogeneic antigens on transplanted tissue. One factor that determines the outcome of a T cell response is clonal size, while another is the effector quality. Studies of alloimmune predictors of transplant graft survival have most commonly focused on only one measure of the alloimmune response. Because differing qualities and frequencies of the allospecific T cell response may provide distinctly different information we analyzed the relationship between frequency of soluble antigen and allo-antigen specific memory IFN-γ secreting CD4 and CD8 T cells, their ability to secrete IL-2, and their proliferative capacity, while accounting for cognate and bystander proliferation. The results show proliferative responses primarily reflect on IL-2 production by antigen-specific T cells, and that proliferating cells in such assays entail a considerable fraction of bystander cells. On the other hand, proliferation (and IL-2 production) did not reflect on the frequency of IFN-γ producing memory cells, a finding particularly accentuated in the CD8 T cell compartment. These data provide rationale for considering both frequency and effector function of pre-transplant T cell reactivity when analyzing immune predictors of graft rejection. PMID:24710419

  8. Poly-functional and long-lasting anticancer immune response elicited by a safe attenuated Pseudomonas aeruginosa vector for antigens delivery

    PubMed Central

    Chauchet, Xavier; Hannani, Dalil; Djebali, Sophia; Laurin, David; Polack, Benoit; Marvel, Jacqueline; Buffat, Laurent; Toussaint, Bertrand; Le Gouëllec, Audrey

    2016-01-01

    Live-attenuated bacterial vectors for antigens delivery have aroused growing interest in the field of cancer immunotherapy. Their potency to stimulate innate immunity and to promote intracellular antigen delivery into antigen-presenting cells could be exploited to elicit a strong and specific cellular immune response against tumor cells. We previously described genetically-modified and attenuated Pseudomonas aeruginosa vectors able to deliver in vivo protein antigens into antigen-presenting cells, through Type 3 secretion system of the bacteria. Using this approach, we managed to protect immunized mice against aggressive B16 melanoma development in both a prophylactic and therapeutic setting. In this study, we further investigated the antigen-specific CD8+ T cell response, in terms of phenotypic and functional aspects, obtained after immunizations with a killed but metabolically active P. aeruginosa attenuated vector. We demonstrated that P. aeruginosa vaccine induces a highly functional pool of antigen-specific CD8+ T cell able to infiltrate the tumor. Furthermore, multiple immunizations allowed the development of a long-lasting immune response, represented by a pool of predominantly effector memory cells which protected mice against late tumor challenge. Overall, killed but metabolically active P. aeruginosa vector is a safe and promising approach for active and specific antitumor immunotherapy. PMID:28035332

  9. Specific T-cell activation in an unspecific T-cell repertoire.

    PubMed

    Van Den Berg, Hugo A; Molina-París, Carmen; Sewell, Andrew K

    2011-01-01

    T-cells are a vital type of white blood cell that circulate around our bodies, scanning for cellular abnormalities and infections. They recognise disease-associated antigens via a surface receptor called the T-cell antigen receptor (TCR). If there were a specific TCR for every single antigen, no mammal could possibly contain all the T-cells it needs. This is clearly absurd and suggests that T-cell recognition must, to the contrary, be highly degenerate. Yet highly promiscuous TCRs would appear to be equally impossible: they are bound to recognise self as well as non-self antigens. We review how contributions from mathematical analysis have helped to resolve the paradox of the promiscuous TCR. Combined experimental and theoretical work shows that TCR degeneracy is essentially dynamical in nature, and that the T-cell can differentially adjust its functional sensitivity to the salient epitope, "tuning up" sensitivity to the antigen associated with disease and "tuning down" sensitivity to antigens associated with healthy conditions. This paradigm of continual modulation affords the TCR repertoire, despite its limited numerical diversity, the flexibility to respond to almost any antigenic challenge while avoiding autoimmunity.

  10. Memory Th1 Cells Are Protective in Invasive Staphylococcus aureus Infection

    PubMed Central

    Lalor, Stephen J.; Leech, John M.; O’Keeffe, Kate M.; Mac Aogáin, Micheál; O’Halloran, Dara P.; Lacey, Keenan A.; Tavakol, Mehri; Hearnden, Claire H.; Fitzgerald-Hughes, Deirdre; Humphreys, Hilary; Fennell, Jérôme P.; van Wamel, Willem J.; Foster, Timothy J.; Geoghegan, Joan A.; Lavelle, Ed C.; Rogers, Thomas R.; McLoughlin, Rachel M.

    2015-01-01

    Mechanisms of protective immunity to Staphylococcus aureus infection in humans remain elusive. While the importance of cellular immunity has been shown in mice, T cell responses in humans have not been characterised. Using a murine model of recurrent S. aureus peritonitis, we demonstrated that prior exposure to S. aureus enhanced IFNγ responses upon subsequent infection, while adoptive transfer of S. aureus antigen-specific Th1 cells was protective in naïve mice. Translating these findings, we found that S. aureus antigen-specific Th1 cells were also significantly expanded during human S. aureus bloodstream infection (BSI). These Th1 cells were CD45RO+, indicative of a memory phenotype. Thus, exposure to S. aureus induces memory Th1 cells in mice and humans, identifying Th1 cells as potential S. aureus vaccine targets. Consequently, we developed a model vaccine comprising staphylococcal clumping factor A, which we demonstrate to be an effective human T cell antigen, combined with the Th1-driving adjuvant CpG. This novel Th1-inducing vaccine conferred significant protection during S. aureus infection in mice. This study notably advances our understanding of S. aureus cellular immunity, and demonstrates for the first time that a correlate of S. aureus protective immunity identified in mice may be relevant in humans. PMID:26539822

  11. Effect of memory CD4+ T cells' signal transducer and activator of transcription (STATs) functional shift on cytokine-releasing properties in asthma.

    PubMed

    Chen, Zhihong; Pan, Jue; Jia, Yi; Li, Dandan; Min, Zhihui; Su, Xiaoqiong; Yuan, Honglei; Shen, Geng; Cao, Shengxuan; Zhu, Lei; Wang, Xiangdong

    2017-02-01

    Recent data have demonstrated that long-lived memory T cells are present in the human lung and can play significant roles in the pathogenesis of specific allergic and autoimmune diseases. However, most evidence has been obtained from mouse studies, and the potential roles of memory T cells in human allergic diseases, such as asthma, remain largely unknown. Thirty-three asthmatics, 26 chronic obstructive pulmonary disease (COPD) patients, and 22 healthy volunteers were enrolled in this study. Peripheral blood mononuclear cells (PBMCs) were isolated from the peripheral blood, and cell surface staining (CD4, CD45RO, CRTH2, CD62L, and CCR7) was performed for the detection of memory CD4 + T cells in blood. After stimulation with interleukin-27 (IL-27) or IL-4 for 15 min, the STAT1/STAT6 phosphorylation of memory CD4 + T cells was measured separately by flow cytometric techniques. The cytokine-releasing profiles after 6 days of culture under neutralization, T H 2, T H 2 + lipopolysaccharide (LPS), and T H 2 + house dust mite (HDM) conditions were detected by intracellular protein (IL-5, IL-17, and interferon (IFN)-γ) staining. Correlation analyses between the profile of memory CD4 + T cells and clinical characteristics of asthma were performed. The number of circulating memory CD4 + T (CD4 + Tm) cells in asthmatics was increased compared with that in the healthy subjects (48 ± 5.7 % vs. 32 ± 4.1 %, p < 0.05). Compared with COPD and healthy subjects, the phosphorylation of signal transducer and activator of transcription 1 (STAT1-py) was impaired in asthmatics, whereas the phosphorylation of signal transducer and activator of transcription 6 (STAT6-py) was slightly enhanced. This imbalance of STAT1-py/STAT6-py was attributed to T H 2 memory cells but not non-T H 2 memory cells in blood. The cytokine-releasing profiles of asthmatics was unique, specifically IL-5 high , IL-17 high , and IFN-r low , compared with those of COPD patients and healthy subjects. The IL-17 production levels in CD4 + Tm cells are associated with disease severity and positively correlated with medication consumption in asthma. The long-lived, antigen-specific memory CD4 + T cells, rather than PBMCs or peripheral lymphocytes, might be the ideal T cell subset candidates for analyzing the endotype of asthma. Memory CD4 + T cells exhibiting a shift in STAT phosphorylation and specific cytokine-releasing profiles have the potential to facilitate the understanding of disease heterogeneity and severity, allowing the more personalized treatment of patients.

  12. Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells

    PubMed Central

    Shan, Qiang; Xue, Hai-Hui; Harty, John T.

    2017-01-01

    Sepsis is a systemic infection that enhances host vulnerability to secondary infections normally controlled by T cells. Using CLP sepsis model, we observed that sepsis induces apoptosis of circulating memory CD8 T-cells (TCIRCM) and diminishes their effector functions, leading to impaired CD8 T-cell mediated protection to systemic pathogen re-infection. In the context of localized re-infections, tissue resident memory CD8 T-cells (TRM) provide robust protection in a variety of infectious models. TRM rapidly ‘sense’ infection in non-lymphoid tissues and ‘alarm’ the host by enhancing immune cell recruitment to the site of the infection to accelerate pathogen clearance. Here, we show that compared to pathogen-specific TCIRCM, sepsis does not invoke significant numerical decline of Vaccinia virus induced skin-TRM keeping their effector functions (e.g., Ag-dependent IFN-γ production) intact. IFN-γ-mediated recruitment of immune cells to the site of localized infection was, however, reduced in CLP hosts despite TRM maintaining their ‘sensing and alarming’ functions. The capacity of memory CD8 T-cells in the septic environment to respond to inflammatory cues and arrive to the site of secondary infection/antigen exposure remained normal suggesting T-cell-extrinsic factors contributed to the observed lesion. Mechanistically, we showed that IFN-γ produced rapidly during sepsis-induced cytokine storm leads to reduced IFN-γR1 expression on vascular endothelium. As a consequence, decreased expression of adhesion molecules and/or chemokines (VCAM1 and CXCL9) on skin endothelial cells in response to TRM-derived IFN-γ was observed, leading to sub-optimal bystander-recruitment of effector cells and increased susceptibility to pathogen re-encounter. Importantly, as visualized by intravital 2-photon microscopy, exogenous administration of CXCL9/10 was sufficient to correct sepsis-induced impairments in recruitment of effector cells at the localized site of TRM antigen recognition. Thus, sepsis has the capacity to alter skin TRM anamnestic responses without directly impacting TRM number and/or function, an observation that helps to further define the immunoparalysis phase in sepsis survivors. PMID:28910403

  13. Membranous Nephropathy and Anti-Podocytes Antibodies: Implications for the Diagnostic Workup and Disease Management.

    PubMed

    Pozdzik, Agnieszka; Brochériou, Isabelle; David, Cristina; Touzani, Fahd; Goujon, Jean Michel; Wissing, Karl Martin

    2018-01-01

    The discovery of circulating antibodies specific for native podocyte antigens has transformed the diagnostic workup and greatly improved management of idiopathic membranous nephropathy (iMN). In addition, their identification has clearly characterized iMN as a largely autoimmune disorder. Anti-PLA2R1 antibodies are detected in approximately 70% to 80% and anti-THSD7A antibodies in only 2% of adult patients with iMN. The presence of anti-THSD7A antibodies is associated with increased risk of malignancy. The assessment of PLA2R1 and THSD7A antigen expression in glomerular immune deposits has a better sensitivity than measurement of the corresponding autoantibodies. Therefore, in the presence of circulating anti-podocytes autoantibodies and/or enhanced expression of PLA2R1 and THSD7A antigens MN should be considered as primary MN (pMN). Anti-PLA2R1 or anti-THSD7A autoantibodies have been proposed as biomarkers of autoimmune disease activity and their blood levels should be regularly monitored in pMN to evaluate disease activity and predict outcomes. We propose a revised clinical workup flow for patients with MN that recommends assessment of kidney biopsy for PLA2R1 and THSD7A antigen expression, screening for circulating anti-podocytes antibodies, and assessment for secondary causes, especially cancer, in patients with THSD7A antibodies. Persistence of anti-podocyte antibodies for 6 months or their increase in association with nephrotic proteinuria should lead to the introduction of immunosuppressive therapies. Recent data have reported the efficacy and safety of new specific therapies targeting B cells (anti-CD20 antibodies, inhibitors of proteasome) in pMN which should lead to an update of currently outdated treatment guidelines.

  14. Serological diagnosis of Taenia solium in pigs: No measurable circulating antigens and antibody response following exposure to Taenia saginata oncospheres.

    PubMed

    Dorny, P; Dermauw, V; Van Hul, A; Trevisan, C; Gabriël, S

    2017-10-15

    Taenia solium taeniasis/cysticercosis is a zoonosis included in the WHO's list of neglected tropical diseases. Accurate diagnostic tools for humans and pigs are needed to monitor intervention outcomes. Currently used diagnostic tools for porcine cysticercosis all have drawbacks. Serological tests are mainly confronted with problems of specificity. More specifically, circulating antigen detecting tests cross-react with Taenia hydatigena and the possibility of transient antigens as a result of aborted infections is suspected. Furthermore, the hypothesis has been raised that hatched ingested eggs of other Taenia species may lead to a transient antibody response or to the presence of circulating antigen detectable by serological tests used for porcine cysticercosis. Here we describe the results of a study that consisted of oral administration of Taenia saginata eggs to five piglets followed by serological testing during five weeks and necropsy aiming at studying possible cross reactions in serological tests used for porcine cysticercosis. The infectivity of the eggs was verified by in vitro hatching and by experimental infection of a calf. One piglet developed acute respiratory disease and died on day 6 post infection. The remaining four piglets did not show any clinical signs until euthanasia. None of the serum samples from four piglets collected between days 0 and 35 post infection gave a positive reaction in the B158/B60 Ag-ELISA and in a commercial Western blot for antibody detection. In conclusion, this study showed that experimental exposure of four pigs to T. saginata eggs did not result in positive serologies for T. solium. These results may help interpreting serological results in monitoring of T. solium control programmes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Membranous Nephropathy and Anti-Podocytes Antibodies: Implications for the Diagnostic Workup and Disease Management

    PubMed Central

    Brochériou, Isabelle; David, Cristina; Touzani, Fahd; Goujon, Jean Michel; Wissing, Karl Martin

    2018-01-01

    The discovery of circulating antibodies specific for native podocyte antigens has transformed the diagnostic workup and greatly improved management of idiopathic membranous nephropathy (iMN). In addition, their identification has clearly characterized iMN as a largely autoimmune disorder. Anti-PLA2R1 antibodies are detected in approximately 70% to 80% and anti-THSD7A antibodies in only 2% of adult patients with iMN. The presence of anti-THSD7A antibodies is associated with increased risk of malignancy. The assessment of PLA2R1 and THSD7A antigen expression in glomerular immune deposits has a better sensitivity than measurement of the corresponding autoantibodies. Therefore, in the presence of circulating anti-podocytes autoantibodies and/or enhanced expression of PLA2R1 and THSD7A antigens MN should be considered as primary MN (pMN). Anti-PLA2R1 or anti-THSD7A autoantibodies have been proposed as biomarkers of autoimmune disease activity and their blood levels should be regularly monitored in pMN to evaluate disease activity and predict outcomes. We propose a revised clinical workup flow for patients with MN that recommends assessment of kidney biopsy for PLA2R1 and THSD7A antigen expression, screening for circulating anti-podocytes antibodies, and assessment for secondary causes, especially cancer, in patients with THSD7A antibodies. Persistence of anti-podocyte antibodies for 6 months or their increase in association with nephrotic proteinuria should lead to the introduction of immunosuppressive therapies. Recent data have reported the efficacy and safety of new specific therapies targeting B cells (anti-CD20 antibodies, inhibitors of proteasome) in pMN which should lead to an update of currently outdated treatment guidelines. PMID:29511687

  16. T inflammatory memory CD8 T cells participate to antiviral response and generate secondary memory cells with an advantage in XCL1 production.

    PubMed

    Jubin, Virginie; Ventre, Erwan; Leverrier, Yann; Djebali, Sophia; Mayol, Katia; Tomkowiak, Martine; Mafille, Julien; Teixeira, Marie; Teoh, Denise Y-L; Lina, Bruno; Walzer, Thierry; Arpin, Christophe; Marvel, Jacqueline

    2012-06-01

    Besides the classically described subsets of memory CD8 T cells generated under infectious conditions, are T inflammatory memory cells generated under sterile priming conditions, such as sensitization to allergens. Although not fully differentiated as pathogen-induced memory cells, they display memory properties that distinguish them from naive CD8 T cells. Given these memory cells are generated in an antigen-specific context that is devoid of pathogen-derived danger signals and CD4 T cell help, we herein questioned whether they maintained their activation and differentiation potential, could be recruited in an immune response directed against a pathogen expressing their cognate antigen and further differentiate in fully competent secondary memory cells. We show that T inflammatory memory cells can indeed take part to the immune response triggered by a viral infection, differentiate into secondary effectors and further generate typical central memory CD8 T cells and effector memory CD8 T cells. Furthermore, the secondary memory cells they generate display a functional advantage over primary memory cells in their capacity to produce TNF-α and the XCL1 chemokine. These results suggest that cross-reactive stimulations and differentiation of cells directed against allergens or self into fully competent pathogen-induced memory cells might have incidences in inflammatory immuno-pathologies.

  17. Ovarian tumor antigens.

    PubMed

    Bhattacharya, M; Barlow, J J

    1978-09-01

    Evidence has been reported for at least two common tumor-associated antigens, or antigenic determinants, in human cystadenocarcinomas of the ovary that are apparently absent in tissues of normal reproductive organs. These antigenic determinants are immunologically distinct from carcinoembryonic antigen, alpha-fetoprotein, ferritins and histocompatibility antigens. One of these two ovarian cystadenocarcinoma-associated antigens (OCAA) is not detectable in any ovarian carcinomas except serous or mucinous types, other gynecologic or nongynecologic malignancies thus far tested, while the second antigen is present in about 90% of all gynecologic tumors and occasionally in breast and colon tumors. OCAA has been purified and partially characterized. It is a high molecular weight glycoprotein which carries the unique ovarian tumor-specific antigenic determinant along with some normal cross-reacting determinants. High levels of this glycoprotein antigen have been detected in the sera of ovarian cancer patients with advanced disease by the radioimmunoassay inhibition technique. The serial determination of circulating OCAA appeared to correlate with tumor volume as well as the clinical status of the patients.

  18. Selective Memory to Apoptotic Cell-Derived Self-Antigens with Implications for Systemic Lupus Erythematosus Development.

    PubMed

    Duhlin, Amanda; Chen, Yunying; Wermeling, Fredrik; Sedimbi, Saikiran K; Lindh, Emma; Shinde, Rahul; Halaby, Marie Jo; Kaiser, Ylva; Winqvist, Ola; McGaha, Tracy L; Karlsson, Mikael C I

    2016-10-01

    Autoimmune diseases are characterized by pathogenic immune responses to self-antigens. In systemic lupus erythematosus (SLE), many self-antigens are found in apoptotic cells (ACs), and defects in removal of ACs from the body are linked to a risk for developing SLE. This includes pathological memory that gives rise to disease flares. In this study, we investigated how memory to AC-derived self-antigens develops and the contribution of self-memory to the development of lupus-related pathology. Multiple injections of ACs without adjuvant into wild-type mice induce a transient primary autoimmune response without apparent anti-nuclear Ab reactivity or kidney pathology. Interestingly, as the transient Ab response reached baseline, a single boost injection fully recalled the immune response to ACs, and this memory response was furthermore transferable into naive mice. Additionally, the memory response contains elements of pathogenicity, accompanied by selective memory to selective Ags. Thus, we provide evidence for a selective self-memory that underlies progression of the response to self-antigens with implications for SLE development therapy. Copyright © 2016 by The American Association of Immunologists, Inc.

  19. Understanding original antigenic sin in influenza with a dynamical system.

    PubMed

    Pan, Keyao

    2011-01-01

    Original antigenic sin is the phenomenon in which prior exposure to an antigen leads to a subsequent suboptimal immune response to a related antigen. Immune memory normally allows for an improved and rapid response to antigens previously seen and is the mechanism by which vaccination works. I here develop a dynamical system model of the mechanism of original antigenic sin in influenza, clarifying and explaining the detailed spin-glass treatment of original antigenic sin. The dynamical system describes the viral load, the quantities of healthy and infected epithelial cells, the concentrations of naïve and memory antibodies, and the affinities of naïve and memory antibodies. I give explicit correspondences between the microscopic variables of the spin-glass model and those of the present dynamical system model. The dynamical system model reproduces the phenomenon of original antigenic sin and describes how a competition between different types of B cells compromises the overall effect of immune response. I illustrate the competition between the naïve and the memory antibodies as a function of the antigenic distance between the initial and subsequent antigens. The suboptimal immune response caused by original antigenic sin is observed when the host is exposed to an antigen which has intermediate antigenic distance to a second antigen previously recognized by the host's immune system.

  20. Circulating CXCR5+CXCR3+PD-1lo Tfh-like cells in HIV-1 controllers with neutralizing antibody breadth

    PubMed Central

    Martin-Gayo, Enrique; Cronin, Jacqueline; Hickman, Taylor; Ouyang, Zhengyu; Lindqvist, Madelene; Kolb, Kellie E.; Schulze zur Wiesch, Julian; Cubas, Rafael; Porichis, Filippos; Shalek, Alex K.; van Lunzen, Jan; Haddad, Elias K.; Walker, Bruce D.; Kaufmann, Daniel E.; Lichterfeld, Mathias; Yu, Xu G.

    2017-01-01

    HIV-1–specific broadly neutralizing antibodies (bnAbs) typically develop in individuals with continuous high-level viral replication and increased immune activation, conditions that cannot be reproduced during prophylactic immunization. Understanding mechanisms supporting bnAb development in the absence of high-level viremia may be important for designing bnAb-inducing immunogens. Here, we show that the breadth of neutralizing antibody responses in HIV-1 controllers was associated with a relative enrichment of circulating CXCR5+CXCR3+PD-1lo CD4+ T cells. These CXCR3+PD-1lo Tfh-like cells were preferentially induced in vitro by functionally superior dendritic cells from controller neutralizers, and able to secrete IL-21 and support B cells. In addition, these CXCR3+PD-1lo Tfh-like cells contained higher proportions of stem cell–like memory T cells, and upon antigenic stimulation differentiated into PD-1hi Tfh-like cells in a Notch-dependent manner. Together, these data suggest that CXCR5+CXCR3+PD-1lo cells represent a dendritic cell–primed precursor cell population for PD-1hi Tfh-like cells that may contribute to the generation of bnAbs in the absence of high-level viremia. PMID:28138558

  1. PERSISTENCE OF HAPTEN-ANTIBODY COMPLEXES IN THE CIRCULATION OF IMMUNIZED ANIMALS AFTER A SINGLE INTRAVENOUS INJECTION OF HAPTEN

    PubMed Central

    Schmidt, Donald H.; Kaufman, Bette M.; Butler, Vincent P.

    1974-01-01

    To study the fate of a low molecular weight antigen (hapten) in the circulation of animals whose sera contain antibodies specific for that low molecular weight antigen, a single injection of digoxin-3H (0.4 mg/kg) was administered intravenously to 18 rabbits. Thirteen animals (nine nonimmunized and four immunized with bovine serum albumin) served as control animals. In five rabbits which had been immunized with a digoxin-bovine serum albumin conjugate and whose sera contained digoxin-specific antibodies, the mean 12-h serum digoxin concentration was 8,300 ng/ml (control: 92 ng/ml) and the mean serum concentration 12 mo after the single injection of digoxin-3H was 85 ng/ml. In digoxin-immunized rabbits, less than 10% of the digoxin-3H was excreted in the first 10 days (control: 77% recovered in urine and feces) and the mean biological half-life of digoxin, as calculated from serum digoxin-3H disappearance curves, was 72 days (control: 3.4 days). In sera of digoxin-immunized rabbits, more than 90% of the circulating digoxin-3H was immunoglobulin bound, as determined by the double-antibody and dextran-coated charcoal methods. The serum disappearance rate of 125I-antidigoxin antibodies was similar in nonimmunized and in immunized animals and in the presence or absence of digoxin. It is concluded that the biological half-life of a hapten may be markedly prolonged when the hapten is bound to specific antibody. The persistence of antibody-hapten complexes in the circulation suggests that these complexes may not be deposited in tissues and raises the possibility that low molecular weight determinants may be capable of preventing or reversing the deposition of immune complexes, containing macromolecular antigens, in the tissues of experimental animals and man. PMID:4129823

  2. [Production, specificity and structure of immunoglobulins].

    PubMed

    Goujard, C; Delfraissy, J F

    1991-03-21

    Immunoglobulin is a key factor of the immune response resulting from B-cell activation and associated with T-cell stimulation. Because of its structure, this antibody has a dual function: it specifically recognizes the inducer antigen in the variable region and eliminates it by a constant portion which is responsible for effector properties. Surface immunoglobulin, therefore, is the B-cell antigen receptor; it differs from the T-cell receptor in that it recognizes the antigen unbound to the major istocompatibility complex; binding the antigen results in direct signal transduction first in the cytoplasm, then in the nucleus. This receptor can be secreted in the body: it is made up of circulating immunoglobulins. Human immunoglobulins are divided into 5 classes, each of them with its own response kinetics, distribution and functions. The variability of the antibody response accounts for a genetic organization involving numerous genes which may be associated with each other, or mutate, or recombine during maturation of the lymphocytes. Altogether, this system has a theoretical capacity of response to three hundred million different antigens.

  3. Simultaneous coexpression of memory-related and effector-related genes by individual human CD8 T cells depends on antigen specificity and differentiation.

    PubMed

    Gupta, Bhawna; Iancu, Emanuela M; Gannon, Philippe O; Wieckowski, Sébastien; Baitsch, Lukas; Speiser, Daniel E; Rufer, Nathalie

    2012-07-01

    Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.

  4. Neem leaf glycoprotein enhances carcinoembryonic antigen presentation of dendritic cells to T and B cells for induction of anti-tumor immunity by allowing generation of immune effector/memory response.

    PubMed

    Sarkar, Koustav; Goswami, Shyamal; Roy, Soumyabrata; Mallick, Atanu; Chakraborty, Krishnendu; Bose, Anamika; Baral, Rathindranath

    2010-08-01

    Vaccination with neem leaf glycoprotein matured carcinoembryonic antigen (CEA) pulsed dendritic cells (DCs) enhances antigen-specific humoral and cellular immunity against CEA and restricts the growth of CEA(+) murine tumors. NLGP helps better CEA uptake, processing and presentation to T/B cells. This vaccination (DCNLGPCEA) elicits mitogen induced and CEA specific T cell proliferation, IFN gamma secretion and induces specific cytotoxic reactions to CEA(+) colon tumor cells. In addition to T cell response, DCNLGPCEA vaccine generates anti-CEA antibody response, which is principally IgG2a in nature. This antibody participates in cytotoxicity of CEA(+) cells in antibody-dependent manner. This strong anti-CEA cellular and humoral immunity protects mice from tumor development and these mice remained tumor free following second tumor inoculation, indicating generation of effector memory response. Evaluation of underlying mechanism suggests vaccination generates strong CEA specific CTL and antibody response that can completely prevent the tumor growth following adoptive transfer. In support, significant upregulation of CD44 on the surface of lymphocytes from DCNLGPCEA immunized mice was noticed with a substantial reduction in L-selectin (CD62L). (c) 2010 Elsevier B.V. All rights reserved.

  5. Circulating rotavirus-specific T cells have a poor functional profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parra, Miguel; Herrera, Daniel; Jácome, María Fernanda

    Frequencies of circulating T cells producing IFN-γ, TNF-α, and IL-2, and percentages of T cells proliferating after stimulation with rotavirus (RV), tetanus toxoid, and influenza were evaluated in PBMC derived from healthy adults and children. In addition, the potential anergic state of RV-specific T cells was analyzed by stimulation of PBMC with RV antigen in the presence of three anergy inhibitors (rIL-2, rIL-12, or DGKα-i). The quality and magnitude of RV-T cell responses were significantly lower than those of tetanus toxoid and influenza antigens. RV-CD4 T cell response was enriched in monofunctional IFN-γ{sup +} cells, while influenza-CD4 and tetanus toxoid-CD4more » T cell responses were enriched in multifunctional T cells. Moreover, rIL-2 – unlike rIL-12 or DGKα-i – increased the frequencies of RV-CD4 TNF-α{sup +}, CD4 IFN-γ{sup +}, and CD8 IFN-γ{sup +} cells. Thus, circulating RV-T cells seem to have a relatively poor functional profile that may be partially reversed in vitro by the addition of rIL-2. - Highlights: • The quality and magnitude of circulating RV-T cell responses are relatively poor. • Circulating RV-CD4 T cells are enriched in monofunctional IFN-γ+ cells. • Treatment with rIL-2 increased the frequencies of cytokine secreting RV-T cells.« less

  6. Antitoxic Cholera Immunity in Mice: Influence of Antigen Deposition on Antitoxin-Containing Cells and Protective Immunity in Different Parts of the Intestine

    PubMed Central

    Lange, Stefan; Nygren, Håkan; Svennerholm, Ann-Mari; Holmgren, Jan

    1980-01-01

    The importance of the mode of antigen presentation (intravenous, oral, or enteral restricted to the lower ileum) in the development of a local immune response and immunological memory for such a response in different parts of the intestine was studied in mice. Cholera toxin was used as antigen and the immune response was assayed by determining both the number of specific antitoxin-containing cells in the lamina propria and protection against experimental cholera. The results showed that all of these routes of antigen presentation could induce significant memory along the entire small intestine. In contrast, the actual production of antitoxin-containing cells or protective immune response elicited by booster immunization was restricted to those parts of the intestine that were directly exposed to antigen; i.e., lower ileum boosting resulted in immunity in the distal ileum but not in the proximal jejunum, whereas oral or intravenous boosting gave a response in both jejunum and ileum. Protection correlated closely with the number of antitoxin-containing cells in the lamina propria (correlation coefficient, 0.88); ≥4,000 antitoxin-containing cells per mm3 conferred solid immunity to cholera toxin-induced diarrhea. The total number of immunoglobulin-containing cells in intestines was not significantly influenced by the specific immunizations. There were four times as many of these cells in the upper jejunum (167,000 cells per mm3) as in the lower ileum, but the proportions of immunoglobulin A-containing cells (80 to 85%), immunoglobulin M-containing cells (14 to 20%), and immunoglobulin G-containing cells (0.4 to 0.9%) were similar in various parts of the intestine. The results indicate a differential dependence on local tissue antigen for the intestinal antibody-secreting cells and their memory cell precursors. PMID:7189747

  7. Circulating rotavirus-specific T cells have a poor functional profile.

    PubMed

    Parra, Miguel; Herrera, Daniel; Jácome, María Fernanda; Mesa, Martha C; Rodríguez, Luz-Stella; Guzmán, Carolina; Angel, Juana; Franco, Manuel A

    2014-11-01

    Frequencies of circulating T cells producing IFN-γ, TNF-α, and IL-2, and percentages of T cells proliferating after stimulation with rotavirus (RV), tetanus toxoid, and influenza were evaluated in PBMC derived from healthy adults and children. In addition, the potential anergic state of RV-specific T cells was analyzed by stimulation of PBMC with RV antigen in the presence of three anergy inhibitors (rIL-2, rIL-12, or DGKα-i). The quality and magnitude of RV-T cell responses were significantly lower than those of tetanus toxoid and influenza antigens. RV-CD4 T cell response was enriched in monofunctional IFN-γ(+) cells, while influenza-CD4 and tetanus toxoid-CD4 T cell responses were enriched in multifunctional T cells. Moreover, rIL-2--unlike rIL-12 or DGKα-i--increased the frequencies of RV-CD4 TNF-α(+), CD4 IFN-γ(+), and CD8 IFN-γ(+) cells. Thus, circulating RV-T cells seem to have a relatively poor functional profile that may be partially reversed in vitro by the addition of rIL-2. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Lactobacillus plantarum Strains Can Enhance Human Mucosal and Systemic Immunity and Prevent Non-steroidal Anti-inflammatory Drug Induced Reduction in T Regulatory Cells

    PubMed Central

    de Vos, Paul; Mujagic, Zlatan; de Haan, Bart J.; Siezen, Roland J.; Bron, Peter A.; Meijerink, Marjolein; Wells, Jerry M.; Masclee, Ad A. M.; Boekschoten, Mark V.; Faas, Marijke M.; Troost, Freddy J.

    2017-01-01

    Orally ingested bacteria interact with intestinal mucosa and may impact immunity. However, insights in mechanisms involved are limited. In this randomized placebo-controlled cross-over trial, healthy human subjects were given Lactobacillus plantarum supplementation (strain TIFN101, CIP104448, or WCFS1) or placebo for 7 days. To determine whether L. plantarum can enhance immune response, we compared the effects of three stains on systemic and gut mucosal immunity, by among others assessing memory responses against tetanus toxoid (TT)-antigen, and mucosal gene transcription, in human volunteers during induction of mild immune stressor in the intestine, by giving a commonly used enteropathic drug, indomethacin [non-steroidal anti-inflammatory drug (NSAID)]. Systemic effects of the interventions were studies in peripheral blood samples. NSAID was found to induce a reduction in serum CD4+/Foxp3 regulatory cells, which was prevented by L. plantarum TIFN101. T-cell polarization experiments showed L. plantarum TIFN101 to enhance responses against TT-antigen, which indicates stimulation of memory responses by this strain. Cell extracts of the specific L. plantarum strains provoked responses after WCFS1 and TIFN101 consumption, indicating stimulation of immune responses against the specific bacteria. Mucosal immunomodulatory effects were studied in duodenal biopsies. In small intestinal mucosa, TIFN101 upregulated genes associated with maintenance of T- and B-cell function and antigen presentation. Furthermore, L. plantarum TIFN101 and WCFS1 downregulated immunological pathways involved in antigen presentation and shared downregulation of snoRNAs, which may suggest cellular destabilization, but may also be an indicator of tissue repair. Full sequencing of the L. plantarum strains revealed possible gene clusters that might be responsible for the differential biological effects of the bacteria on host immunity. In conclusion, the impact of oral consumption L. plantarum on host immunity is strain dependent and involves responses against bacterial cell components. Some strains may enhance specific responses against pathogens by enhancing antigen presentation and leukocyte maintenance in mucosa. In future studies and clinical settings, caution should be taken in selecting beneficial bacteria as closely related strains can have different effects. Our data show that specific bacterial strains can prevent immune stress induced by commonly consumed painkillers such as NSAID and can have enhancing beneficial effects on immunity of consumers by stimulating antigen presentation and memory responses. PMID:28878772

  9. T Cell Receptor-Major Histocompatibility Complex Interaction Strength Defines Trafficking and CD103+ Memory Status of CD8 T Cells in the Brain.

    PubMed

    Sanecka, Anna; Yoshida, Nagisa; Kolawole, Elizabeth Motunrayo; Patel, Harshil; Evavold, Brian D; Frickel, Eva-Maria

    2018-01-01

    T cell receptor-major histocompatibility complex (TCR-MHC) affinities span a wide range in a polyclonal T cell response, yet it is undefined how affinity shapes long-term properties of CD8 T cells during chronic infection with persistent antigen. Here, we investigate how the affinity of the TCR-MHC interaction shapes the phenotype of memory CD8 T cells in the chronically Toxoplasma gondii- infected brain. We employed CD8 T cells from three lines of transnuclear (TN) mice that harbor in their endogenous loci different T cell receptors specific for the same Toxoplasma antigenic epitope ROP7. The three TN CD8 T cell clones span a wide range of affinities to MHCI-ROP7. These three CD8 T cell clones have a distinct and fixed hierarchy in terms of effector function in response to the antigen measured as proliferation capacity, trafficking, T cell maintenance, and memory formation. In particular, the T cell clone of lowest affinity does not home to the brain. The two higher affinity T cell clones show differences in establishing resident-like memory populations (CD103 + ) in the brain with the higher affinity clone persisting longer in the host during chronic infection. Transcriptional profiling of naïve and activated ROP7-specific CD8 T cells revealed that Klf2 encoding a transcription factor that is known to be a negative marker for T cell trafficking is upregulated in the activated lowest affinity ROP7 clone. Our data thus suggest that TCR-MHC affinity dictates memory CD8 T cell fate at the site of infection.

  10. Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response.

    PubMed

    Tiemessen, Machteld M; Kunzmann, Steffen; Schmidt-Weber, Carsten B; Garssen, Johan; Bruijnzeel-Koomen, Carla A F M; Knol, Edward F; van Hoffen, Els

    2003-12-01

    Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated yet. In this study antigen-specific CD4(+) T cell clones (TCC) were used to determine the effect of TGF-beta on antigen-specific proliferation, the activation status of the T cells and their cytokine production. This study demonstrates that TGF-beta is an adequate suppressor of antigen-specific T cell proliferation, by reducing the cell-cycle rate rather than induction of apoptosis. Addition of TGF-beta resulted in increased CD69 expression and decreased CD25 expression on T cells, indicating that TGF-beta is able to modulate the activation status of in vivo differentiated T cells. On the contrary, the antigen-specific cytokine production was not affected by TGF-beta. Although TGF-beta was suppressive towards the majority of the T cells, insensitivity of a few TCC towards TGF-beta was also observed. This could not be correlated to differential expression of TGF-beta signaling molecules such as Smad3, Smad7, SARA (Smad anchor for receptor activation) and Hgs (hepatocyte growth factor-regulated tyrosine kinase substrate). In summary, TGF-beta has a pronounced inhibitory effect on antigen-specific T cell proliferation without modulating their cytokine production.

  11. Influenza virus infection elicits protective antibodies and T cells specific for host cell antigens also expressed as tumor associated antigens: a new view of cancer immunosurveillance

    PubMed Central

    Iheagwara, Uzoma K.; Beatty, Pamela L.; Van, Phu T.; Ross, Ted M.; Minden, Jonathan S.; Finn, Olivera J.

    2014-01-01

    Most tumor-associated antigens (TAA) are self-molecules that are abnormally expressed in cancer cells and become targets of antitumor immune responses. Antibodies and T cells specific for some TAA have been found in healthy individuals and are associated with lowered lifetime risk for developing cancer. Lower risk for cancer has also been associated with a history of febrile viral diseases. We hypothesized that virus infections could lead to transient expression of abnormal forms of self-molecules, some of which are TAA; facilitated by the adjuvant effects of infection and inflammation, these molecules could elicit specific antibodies, T cells and lasting immune memory simultaneously with immunity against viral antigens. Such infection-induced immune memory for TAA would be expected to provide life-long immune surveillance of cancer. Using influenza virus infection in mice as a model system, we tested this hypothesis and demonstrated that influenza-experienced mice control 3LL mouse lung tumor challenge better than infection-naive control mice. Using 2D-Difference Gel Electrophoresis (2D-DIGE) and mass spectrometry, we identified numerous molecules, some of which are known TAA, on the 3LL tumor cells recognized by antibodies elicited by two successive influenza infections. We studied in detail immune responses against GAPDH, Histone H4, HSP90, Malate Dehydrogenase 2 and Annexin A2, all of which were overexpressed in influenza-infected lungs and in tumor cells. Lastly, we show that immune responses generated through vaccination against peptides derived from these antigens correlated with improved tumor control. PMID:24778322

  12. Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells

    NASA Astrophysics Data System (ADS)

    Yang, Lili; Baltimore, David

    2005-03-01

    A method to genetically program mouse hematopoietic stem cells to develop into functional CD8 or CD4 T cells of defined specificity in vivo is described. For this purpose, a bicistronic retroviral vector was engineered that efficiently delivers genes for both and chains of T cell receptor (TCR) to hematopoietic stem cells. When modified cell populations were used to reconstruct the hematopoietic lineages of recipient mice, significant percentages of antigen-specific CD8 or CD4 T cells were observed. These cells expressed normal surface markers and responded to peptide antigen stimulation by proliferation and cytokine production. Moreover, they could mature into memory cells after peptide stimulation. Using TCRs specific for a model tumor antigen, we found that the recipient mice were able to partially resist a challenge with tumor cells carrying the antigen. By combining cells modified with CD8- and CD4-specific TCRs, and boosting with dendritic cells pulsed with cognate peptides, complete suppression of tumor could be achieved and even tumors that had become established would regress and be eliminated after dendritic cell/peptide immunization. This methodology of "instructive immunotherapy" could be developed for controlling the growth of human tumors and attacking established pathogens.

  13. Antigenic Variation of Clade 2.1 H5N1 Virus Is Determined by a Few Amino Acid Substitutions Immediately Adjacent to the Receptor Binding Site

    PubMed Central

    Koel, Björn F.; van der Vliet, Stefan; Burke, David F.; Bestebroer, Theo M.; Bharoto, Eny E.; Yasa, I. Wayan W.; Herliana, Inna; Laksono, Brigitta M.; Xu, Kemin; Skepner, Eugene; Russell, Colin A.; Rimmelzwaan, Guus F.; Perez, Daniel R.; Osterhaus, Albert D. M. E.; Smith, Derek J.; Prajitno, Teguh Y.

    2014-01-01

    ABSTRACT Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype are genetically highly variable and have diversified into multiple phylogenetic clades over the past decade. Antigenic drift is a well-studied phenomenon for seasonal human influenza viruses, but much less is known about the antigenic evolution of HPAI H5N1 viruses that circulate in poultry. In this study, we focused on HPAI H5N1 viruses that are enzootic to Indonesia. We selected representative viruses from genetically distinct lineages that are currently circulating and determined their antigenic properties by hemagglutination inhibition assays. At least six antigenic variants have circulated between 2003, when H5N1 clade 2.1 viruses were first detected in Indonesia, and 2011. During this period, multiple antigenic variants cocirculated in the same geographic regions. Mutant viruses were constructed by site-directed mutagenesis to represent each of the circulating antigenic variants, revealing that antigenic differences between clade 2.1 viruses were due to only one or very few amino acid substitutions immediately adjacent to the receptor binding site. Antigenic variants of H5N1 virus evaded recognition by both ferret and chicken antibodies. The molecular basis for antigenic change in clade 2.1 viruses closely resembled that of seasonal human influenza viruses, indicating that the hemagglutinin of influenza viruses from different hosts and subtypes may be similarly restricted to evade antibody recognition. PMID:24917596

  14. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis

    PubMed Central

    Moguche, Albanus O.; Shafiani, Shahin; Clemons, Corey; Larson, Ryan P.; Dinh, Crystal; Higdon, Lauren E.; Cambier, C.J.; Sissons, James R.; Gallegos, Alena M.; Fink, Pamela J.

    2015-01-01

    Immune control of persistent infection with Mycobacterium tuberculosis (Mtb) requires a sustained pathogen-specific CD4 T cell response; however, the molecular pathways governing the generation and maintenance of Mtb protective CD4 T cells are poorly understood. Using MHCII tetramers, we show that Mtb-specific CD4 T cells are subject to ongoing antigenic stimulation. Despite this chronic stimulation, a subset of PD-1+ cells is maintained within the lung parenchyma during tuberculosis (TB). When transferred into uninfected animals, these cells persist, mount a robust recall response, and provide superior protection to Mtb rechallenge when compared to terminally differentiated Th1 cells that reside preferentially in the lung-associated vasculature. The PD-1+ cells share features with memory CD4 T cells in that their generation and maintenance requires intrinsic Bcl6 and intrinsic ICOS expression. Thus, the molecular pathways required to maintain Mtb-specific CD4 T cells during ongoing infection are similar to those that maintain memory CD4 T cells in scenarios of antigen deprivation. These results suggest that vaccination strategies targeting the ICOS and Bcl6 pathways in CD4 T cells may provide new avenues to prevent TB. PMID:25918344

  15. Comparative evaluation of the diagnostic potential of recombinant envelope proteins and native cell culture purified viral antigens of Chikungunya virus.

    PubMed

    Khan, Mohsin; Dhanwani, Rekha; Kumar, Jyoti S; Rao, P V Lakshmana; Parida, Manmohan

    2014-07-01

    Despite the fact that Chikungunya resurgence is associated with epidemic of unprecedented magnitude, there are challenges in the field of its clinical diagnosis. However, serological tests in an ELISA format provide a rapid tool for the diagnosis of Chikungunya infection. Indeed, ELISAs based on recombinant proteins hold a great promise as these methods are cost effective and are free from the risk of handling biohazardous material. In this study, the performance of recombinant CHIKV antigens was compared in various ELISA formats for the diagnosis of Chikungunya. Two recombinant antigens derived from the envelope proteins of Chikungunya virus were prepared and evaluated by comparing their competence for detecting circulating antibodies in serum samples of patients infected with CHIKV using MAC-ELISA and indirect IgM-ELISA. The efficacy of the recombinant antigens was also compared with the native antigen. The indirect antibody capture IgM microplate ELISA revealed ≥90% concordance with the native antigen in detecting the CHIKV specific IgM antibodies whereas the recombinant antigen based MAC-ELISA showed 100% specificity. The recombinant antigens used in this study were effective and reliable targets for the diagnosis of CHIKV infection and also provide an alternative for native antigen use which is potentially biohazardous. © 2013 Wiley Periodicals, Inc.

  16. Placental restriction of fetal growth reduces cutaneous responses to antigen after sensitization in sheep.

    PubMed

    Wooldridge, Amy L; Bischof, Robert J; Meeusen, Els N; Liu, Hong; Heinemann, Gary K; Hunter, Damien S; Giles, Lynne C; Kind, Karen L; Owens, Julie A; Clifton, Vicki L; Gatford, Kathryn L

    2014-04-01

    Prenatal and early childhood exposures are implicated as causes of allergy, but the effects of intrauterine growth restriction on immune function and allergy are poorly defined. We therefore evaluated effects of experimental restriction of fetal growth on immune function and allergic sensitization in adolescent sheep. Immune function (circulating total red and white blood cells, neutrophils, lymphocytes, monocytes, eosinophils, and basophils, and the antibody response to Clostridial vaccination) and responses to house dust mite (HDM) allergen and ovalbumin (OVA) antigen sensitization (specific total Ig, IgG1, and IgE antibodies, and cutaneous hypersensitivity) were investigated in adolescent sheep from placentally restricted (PR, n = 23) and control (n = 40) pregnancies. Increases in circulating HDM-specific IgE (P = 0.007) and OVA-specific IgE (P = 0.038) were greater in PR than control progeny. PR did not alter total Ig, IgG1, or IgM responses to either antigen. PR increased OVA-specific but not HDM-specific IgA responses in females only (P = 0.023). Multiple birth increased Ig responses to OVA in a sex-specific manner. PR decreased the proportion of positive cutaneous hypersensitivity responders to OVA at 24 h (P = 0.030) but had no effect on cutaneous responses to HDM. Acute wheal responses to intradermal histamine correlated positively with birth weight in singletons (P = 0.023). Intrauterine growth restriction may suppress inflammatory responses in skin downstream of IgE induction, without impairment in antibody responses to a nonpolysaccharide vaccine. Discord between cutaneous and IgE responses following sensitization suggests new mechanisms for prenatal allergy programming.

  17. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    PubMed Central

    Gunasekaran, Manojkumar; Chatterjee, Prodyot K.; Shih, Andrew; Imperato, Gavin H.; Addorisio, Meghan; Kumar, Gopal; Lee, Annette; Graf, John F.; Meyer, Dan; Marino, Michael; Puleo, Christopher; Ashe, Jeffrey; Cox, Maureen A.; Mak, Tak W.; Bouton, Chad; Sherry, Barbara; Diamond, Betty; Andersson, Ulf; Coleman, Thomas R.; Metz, Christine N.; Tracey, Kevin J.; Chavan, Sangeeta S.

    2018-01-01

    The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses. PMID:29755449

  18. An Investigation of the Memory Response of the Local Immune System to Shigella Antigens.

    DTIC Science & Technology

    1985-12-31

    kAD-A±75 215 AN INVESTIOATION OF THE MEMORY RESPONSE OF THE LOCAL L/1 I IMMUNE SYSTEM TO SHIGELLA ANTIGENS(U) MICHIGAN UNIV ANN I RBOR D F KEREN 31...IMMUNE SYSTEM TO SHIGELLA ANTIGENS ANNUAL REPORT DAVID F. KEREN, M.D. DECEMBER 31, 1985 FOR THE PERIOD DECEMBER 1, 1984 - NOVEMBER 30, 1985 SUPPORTED...Security Classification) An Investigation of the Memory Response of the Local Immune System to Shigella Antigens 12 PERSONAL AUTHOR(S) Keren, David F

  19. Enrichment of herpes simplex virus type 2 (HSV-2) reactive mucosal T cells in the human female genital tract.

    PubMed

    Posavad, C M; Zhao, L; Dong, L; Jin, L; Stevens, C E; Magaret, A S; Johnston, C; Wald, A; Zhu, J; Corey, L; Koelle, D M

    2017-09-01

    Local mucosal cellular immunity is critical in providing protection from HSV-2. To characterize and quantify HSV-2-reactive mucosal T cells, lymphocytes were isolated from endocervical cytobrush and biopsy specimens from 17 HSV-2-infected women and examined ex vivo for the expression of markers associated with maturation and tissue residency and for functional T-cell responses to HSV-2. Compared with their circulating counterparts, cervix-derived CD4+ and CD8+ T cells were predominantly effector memory T cells (CCR7-/CD45RA-) and the majority expressed CD69, a marker of tissue residency. Co-expression of CD103, another marker of tissue residency, was highest on cervix-derived CD8+ T cells. Functional HSV-2 reactive CD4+ and CD8+ T-cell responses were detected in cervical samples and a median of 17% co-expressed CD103. HSV-2-reactive CD4+ T cells co-expressed IL-2 and were significantly enriched in the cervix compared with blood. This first direct ex vivo documentation of local enrichment of HSV-2-reactive T cells in the human female genital mucosa is consistent with the presence of antigen-specific tissue-resident memory T cells. Ex vivo analysis of these T cells may uncover tissue-specific mechanisms of local control of HSV-2 to assist the development of vaccine strategies that target protective T cells to sites of HSV-2 infection.

  20. Concurrent detection of secreted products from human lymphocytes by microengraving: cytokines and antigen-reactive antibodies

    PubMed Central

    Bradshaw, Elizabeth M.; Kent, Sally C.; Tripuraneni, Vinay; Orban, Tihamer; Ploegh, Hidde L.; Hafler, David A.; Love, J. Christopher

    2008-01-01

    Cell surface determinants, cytokines and antibodies secreted by hematopoietic cells are used to classify their lineage and function. Currently available techniques are unable to elucidate multiple secreted proteins while also assigning phenotypic surface-displayed markers to the individual living cells. Here, a soft lithographic method, microengraving, was adapted for the multiplexed interrogation of populations of individual human peripheral blood mononuclear cells for secreted cytokines (IFN-γ and IL-6), antigen-specific antibodies, and lineage-specific surface-expressed markers. Application of the method to a clinical sample from a recent onset Type 1 diabetic subject with a positive titer of anti-insulin antibodies showed that ~0.58% of circulating CD19+ B cells secreted proinsulin-reactive antibodies of the IgG isotype and 2–3% of circulating cells secreted IL-6. These data demonstrate the utility of microengraving for interrogating multiple phenotypes of single human cells concurrently and for detecting rare populations of cells by their secreted products. PMID:18675591

  1. Circulating TFH cells, serological memory, and tissue compartmentalization shape human influenza-specific B cell immunity.

    PubMed

    Koutsakos, Marios; Wheatley, Adam K; Loh, Liyen; Clemens, E Bridie; Sant, Sneha; Nüssing, Simone; Fox, Annette; Chung, Amy W; Laurie, Karen L; Hurt, Aeron C; Rockman, Steve; Lappas, Martha; Loudovaris, Thomas; Mannering, Stuart I; Westall, Glen P; Elliot, Michael; Tangye, Stuart G; Wakim, Linda M; Kent, Stephen J; Nguyen, Thi H O; Kedzierska, Katherine

    2018-02-14

    Immunization with the inactivated influenza vaccine (IIV) remains the most effective strategy to combat seasonal influenza infections. IIV activates B cells and T follicular helper (T FH ) cells and thus engenders antibody-secreting cells and serum antibody titers. However, the cellular events preceding generation of protective immunity in humans are inadequately understood. We undertook an in-depth analysis of B cell and T cell immune responses to IIV in 35 healthy adults. Using recombinant hemagglutinin (rHA) probes to dissect the quantity, phenotype, and isotype of influenza-specific B cells against A/California09-H1N1, A/Switzerland-H3N2, and B/Phuket, we showed that vaccination induced a three-pronged B cell response comprising a transient CXCR5 - CXCR3 + antibody-secreting B cell population, CD21 hi CD27 + memory B cells, and CD21 lo CD27 + B cells. Activation of circulating T FH cells correlated with the development of both CD21 lo and CD21 hi memory B cells. However, preexisting antibodies could limit increases in serum antibody titers. IIV had no marked effect on CD8 + , mucosal-associated invariant T, γδ T, and natural killer cell activation. In addition, vaccine-induced B cells were not maintained in peripheral blood at 1 year after vaccination. We provide a dissection of rHA-specific B cells across seven human tissue compartments, showing that influenza-specific memory (CD21 hi CD27 + ) B cells primarily reside within secondary lymphoid tissues and the lungs. Our study suggests that a rational design of universal vaccines needs to consider circulating T FH cells, preexisting serological memory, and tissue compartmentalization for effective B cell immunity, as well as to improve targeting cellular T cell immunity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. A new model for CD8+ T cell memory inflation based upon a recombinant adenoviral vector1

    PubMed Central

    Bolinger, Beatrice; Sims, Stuart; O’Hara, Geraldine; de Lara, Catherine; Tchilian, Elma; Firner, Sonja; Engeler, Daniel; Ludewig, Burkhard; Klenerman, Paul

    2013-01-01

    CD8+ T cell memory inflation, first described in murine cytomegalovirus (MCMV) infection, is characterized by the accumulation of high-frequency, functional antigen-specific CD8+ T cell pools with an effector-memory phenotype and enrichment in peripheral organs. Although persistence of antigen is considered essential, the rules underpinning memory inflation are still unclear. The MCMV model is, however, complicated by the virus’s low-level persistence, and stochastic reactivation. We developed a new model of memory inflation based upon a βgal-recombinant adenovirus vector (Ad-LacZ). After i.v. administration in C57BL/6 mice we observe marked memory inflation in the βgal96 epitope, while a second epitope, βgal497, undergoes classical memory formation. The inflationary T cell responses show kinetics, distribution, phenotype and functions similar to those seen in MCMV and are reproduced using alternative routes of administration. Memory inflation in this model is dependent on MHC Class II. As in MCMV, only the inflating epitope showed immunoproteasome-independence. These data define a new model for memory inflation, which is fully replication-independent, internally controlled and reproduces the key immunologic features of the CD8+ T cell response. This model provides insight into the mechanisms responsible for memory inflation, and since it is based on a vaccine vector, also is relevant to novel T cell-inducing vaccines in humans. PMID:23509359

  3. Lytic and latent antigens of the human gammaherpesviruses Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus induce T-cell responses with similar functional properties and memory phenotypes.

    PubMed

    Bihl, Florian; Narayan, Murli; Chisholm, John V; Henry, Leah M; Suscovich, Todd J; Brown, Elizabeth E; Welzel, Tania M; Kaufmann, Daniel E; Zaman, Tauheed M; Dollard, Sheila; Martin, Jeff N; Wang, Fred; Scadden, David T; Kaye, Kenneth M; Brander, Christian

    2007-05-01

    The cellular immunity against Kaposi's sarcoma-associated herpesvirus (KSHV) is poorly characterized and has not been compared to T-cell responses against other human herpesviruses. Here, novel and dominant targets of KSHV-specific cellular immunity are identified and compared to T cells specific for lytic and latent antigens in a second human gammaherpesvirus, Epstein-Barr virus. The data identify a novel HLA-B57- and HLA-B58-restricted epitope in the Orf57 protein and show consistently close parallels in immune phenotypes and functional response patterns between cells targeting lytic or latent KSHV- and EBV-encoded antigens, suggesting common mechanisms in the induction of these responses.

  4. Modeling T-cell proliferation: an investigation of the consequences of the Hayflick limit.

    PubMed

    Pilyugin, S; Mittler, J; Antia, R

    1997-05-07

    Somatic cells, including immune cells such as T-cells have a limited capacity for proliferation and can only replicate for a finite number of generations (known as the Hayflick limit) before dying. In this paper we use mathematical models to investigate the consequences of introducing a Hayflick limit on the dynamics of T-cells stimulated with specific antigen. We show that while the Hayflick limit does not alter the dynamics of T-cell response to antigen over the short term, it may have a profound effect on the long-term immune response. In particular we show that over the long term the Hayflick limit may be important in determining whether an immune response can be maintained to a persistent antigen (or parasite). The eventual outcome is determined by the magnitude of the Hayflick limit, the extent to which antigen reduces the input of T-cells from the thymus, and the rate of antigen-induced proliferation of T-cells. Counter to what might be expected we show that the persistence of an immune response (immune memory) requires the density of persistent antigen to be less than a defined threshold value. If the amount of persistent antigen (or parasite) is greater than this threshold value then immune memory will be relatively short lived. The consequences of this threshold for persistent mycobacterial and HIV infections and for the generation of vaccines are discussed.

  5. Altered Memory T-Cell Responses to Bacillus Calmette-Guerin and Tetanus Toxoid Vaccination and Altered Cytokine Responses to Polyclonal Stimulation in HIV-Exposed Uninfected Kenyan Infants.

    PubMed

    Garcia-Knight, Miguel A; Nduati, Eunice; Hassan, Amin S; Gambo, Faith; Odera, Dennis; Etyang, Timothy J; Hajj, Nassim J; Berkley, James Alexander; Urban, Britta C; Rowland-Jones, Sarah L

    2015-01-01

    Implementation of successful prevention of mother-to-child transmission of HIV strategies has resulted in an increased population of HIV-exposed uninfected (HEU) infants. HEU infants have higher rates of morbidity and mortality than HIV-unexposed (HU) infants. Numerous factors may contribute to poor health in HEU infants including immunological alterations. The present study assessed T-cell phenotype and function in HEU infants with a focus on memory Th1 responses to vaccination. We compared cross-sectionally selected parameters at 3 and 12 months of age in HIV-exposed (n = 42) and HU (n = 28) Kenyan infants. We measured ex vivo activated and bulk memory CD4 and CD8 T-cells and regulatory T-cells by flow cytometry. In addition, we measured the magnitude, quality and memory phenotype of antigen-specific T-cell responses to Bacillus Calmette-Guerin and Tetanus Toxoid vaccine antigens, and the magnitude and quality of the T cell response following polyclonal stimulation with staphylococcal enterotoxin B. Finally, the influence of maternal disease markers on the immunological parameters measured was assessed in HEU infants. Few perturbations were detected in ex vivo T-cell subsets, though amongst HEU infants maternal HIV viral load positively correlated with CD8 T cell immune activation at 12 months. Conversely, we observed age-dependent differences in the magnitude and polyfunctionality of IL-2 and TNF-α responses to vaccine antigens particularly in Th1 cells. These changes mirrored those seen following polyclonal stimulation, where at 3 months, cytokine responses were higher in HEU infants compared to HU infants, and at 12 months, HEU infant cytokine responses were consistently lower than those seen in HU infants. Finally, reduced effector memory Th1 responses to vaccine antigens were observed in HEU infants at 3 and 12 months and higher central memory Th1 responses to M. tuberculosis antigens were observed at 3 months only. Long-term monitoring of vaccine efficacy and T-cell immunity in this vulnerable population is warranted.

  6. Effect of cryopreservation of peripheral blood mononuclear cells (PBMCs) on the variability of an antigen-specific memory B cell ELISpot.

    PubMed

    Trück, Johannes; Mitchell, Ruth; Thompson, Amber J; Morales-Aza, Begonia; Clutterbuck, Elizabeth A; Kelly, Dominic F; Finn, Adam; Pollard, Andrew J

    2014-01-01

    The ELISpot assay is used in vaccine studies for the quantification of antigen-specific memory B cells (B(MEM)), and can be performed using cryopreserved samples. The effects of cryopreservation on B(MEM) detection and the consistency of cultured ELISpot assays when performed by different operators or laboratories are unknown. In this study, blood was taken from healthy volunteers, and a cultured ELISpot assay was used to count B(MEM) specific for 2 routine vaccine antigens (diphtheria and tetanus toxoid). Results were assessed for intra- and inter-operator variation, and the effects of cryopreservation. Cryopreserved samples were shipped to a second laboratory in order to assess inter-laboratory variation. B(MEM) frequencies were very strongly correlated when comparing fresh and frozen samples processed by the same operator, and were also very strongly correlated when comparing 2 operators in the same laboratory. Results were slightly less consistent when samples were processed in different laboratories but correlation between the 2 measurements was still very strong. Although cell viability was reduced in some cryopreserved samples due to higher temperatures during transportation, B(MEM) could still be quantified. These results demonstrate the reproducibility of the ELISpot assay across operators and laboratories, and support the use of cryopreserved samples in future B(MEM) studies.

  7. Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen.

    PubMed

    Rollenske, Tim; Szijarto, Valeria; Lukasiewicz, Jolanta; Guachalla, Luis M; Stojkovic, Katarina; Hartl, Katharina; Stulik, Lukas; Kocher, Simone; Lasitschka, Felix; Al-Saeedi, Mohammed; Schröder-Braunstein, Jutta; von Frankenberg, Moritz; Gaebelein, Gereon; Hoffmann, Peter; Klein, Sabrina; Heeg, Klaus; Nagy, Eszter; Nagy, Gabor; Wardemann, Hedda

    2018-06-01

    Humoral immune responses to microbial polysaccharide surface antigens can prevent bacterial infection but are typically strain specific and fail to mediate broad protection against different serotypes. Here we describe a panel of affinity-matured monoclonal human antibodies from peripheral blood immunoglobulin M-positive (IgM + ) and IgA + memory B cells and clonally related intestinal plasmablasts, directed against the lipopolysaccharide (LPS) O-antigen of Klebsiella pneumoniae, an opportunistic pathogen and major cause of antibiotic-resistant nosocomial infections. The antibodies showed distinct patterns of in vivo cross-specificity and protection against different clinically relevant K. pneumoniae serotypes. However, cross-specificity was not limited to K. pneumoniae, as K. pneumoniae-specific antibodies recognized diverse intestinal microbes and neutralized not only K. pneumoniae LPS but also non-K. pneumoniae LPS. Our data suggest that the recognition of minimal glycan epitopes abundantly expressed on microbial surfaces might serve as an efficient humoral immunological mechanism to control invading pathogens and the large diversity of the human microbiota with a limited set of cross-specific antibodies.

  8. Non-replicating adenovirus vectors expressing avian influenza virus hemagglutinin and nucleocapsid proteins induce chicken specific effector, memory and effector memory CD8+ T lymphocytes

    PubMed Central

    Singh, Shailbala; Toro, Haroldo; Tang, De-Chu; Briles, Worthie E.; Yates, Linda M.; Kopulos, Renee T.; Collisson, Ellen W.

    2010-01-01

    Avian influenza virus (AIV) specific CD8+ T lymphocyte responses stimulated by intramuscular administration of an adenovirus (Ad) vector expressing either HA or NP were evaluated in chickens following ex vivo stimulation by non-professional antigen presenting cells. The CD8+ T lymphocyte responses were AIV specific, MHC-I restricted, and cross-reacted with heterologousH7N2 AIV strain. Specific effector responses, at 10 days post-inoculation (p.i.), were undetectable at 2 weeks p.i., and memory responses were detected from 3 to 8 weeks p.i. Effector memory responses, detected 1 week following a booster inoculation, were significantly greater than the primary responses and, within 7 days, declined to undetectable levels. Inoculation of an Ad-vector expressing human NP resulted in significantly greater MHC restricted, activation of CD8+ T cell responses specific for AIV. Decreases in all responses with time were most dramatic with maximum activation of T cells as observed following effector and effector memory responses. PMID:20557918

  9. Antibody response against HERV-W env surface peptides differentiates multiple sclerosis and neuromyelitis optica spectrum disorder.

    PubMed

    Arru, Giannina; Sechi, Elia; Mariotto, Sara; Farinazzo, Alessia; Mancinelli, Chiara; Alberti, Daniela; Ferrari, Sergio; Gajofatto, Alberto; Capra, Ruggero; Monaco, Salvatore; Deiana, Giovanni A; Caggiu, Elisa; Mameli, Giuseppe; Sechi, Leonardo A; Sechi, Gian Pietro

    2017-01-01

    A specific humoral immune response against HERV-W envelope surface (env-su) glycoprotein antigens has been reported in serum of patients with multiple sclerosis (MS). However, it has not been evaluated to date in patients with neuromyelitis optica spectrum disorder (NMOSD). The objective of this paper is to investigate whether antibody (Ab) response against HERV-W env-su antigenic peptides differs between NMOSD and MS. Serum samples were collected from 36 patients with NMOSD, 36 patients with MS and 36 healthy control individuals (HCs). An indirect ELISA was set up to detect specific Abs against HERV-W env-su peptides. Our data showed that two antigenic peptides, particularly HERV-Wenv 93-108 and HERV-Wenv 248-262, were statistically significantly present only in serum of MS compared to NMOSD and HCs. Thus, the specific humoral immune response against HERV-W env-su glycoprotein antigens found in MS is widely missing in NMOSD. Increased circulating serum levels of these HERV-W Abs may be suitable as additional biomarkers to better differentiate MS from NMOSD.

  10. Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine

    PubMed Central

    Woodruff, Matthew C.; Heesters, Balthasar A.; Herndon, Caroline N.; Groom, Joanna R.; Thomas, Paul G.; Luster, Andrew D.; Turley, Shannon J.

    2014-01-01

    Dendritic cells (DCs) are well established as potent antigen-presenting cells critical to adaptive immunity. In vaccination approaches, appropriately stimulating lymph node–resident DCs (LNDCs) is highly relevant to effective immunization. Although LNDCs have been implicated in immune response, their ability to directly drive effective immunity to lymph-borne antigen remains unclear. Using an inactive influenza vaccine model and whole node imaging approaches, we observed surprising responsiveness of LNDC populations to vaccine arrival resulting in a transnodal repositioning into specific antigen collection sites within minutes after immunization. Once there, LNDCs acquired viral antigen and initiated activation of viral specific CD4+ T cells, resulting in germinal center formation and B cell memory in the absence of skin migratory DCs. Together, these results demonstrate an unexpected stimulatory role for LNDCs where they are capable of rapidly locating viral antigen, driving early activation of T cell populations, and independently establishing functional immune response. PMID:25049334

  11. Host Immune Response to Influenza A Virus Infection.

    PubMed

    Chen, Xiaoyong; Liu, Shasha; Goraya, Mohsan Ullah; Maarouf, Mohamed; Huang, Shile; Chen, Ji-Long

    2018-01-01

    Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.

  12. Advancing a multivalent ‘Pan-anthelmintic’ vaccine against soil-transmitted nematode infections

    PubMed Central

    Zhan, Bin; Beaumier, Coreen M; Briggs, Neima; Jones, Kathryn M; Keegan, Brian P; Bottazzi, Maria Elena; Hotez, Peter J

    2014-01-01

    Ascaris lumbricoides The Sabin Vaccine Institute Product Development Partnership is developing a Pan-anthelmintic vaccine that simultaneously targets the major soil-transmitted nematode infections, in other words, ascariasis, trichuriasis and hookworm infection. The approach builds off the current bivalent Human Hookworm Vaccine now in clinical development and would ultimately add both a larval Ascaris lumbricoides antigen and an adult-stage Trichuris trichiura antigen from the parasite stichosome. Each selected antigen would partially reproduce the protective immunity afforded by UV-attenuated Ascaris eggs and Trichuris stichosome extracts, respectively. Final antigen selection will apply a ranking system that includes the evaluation of expression yields and solubility, feasibility of process development and the absence of circulating antigen-specific IgE among populations living in helminth-endemic regions. Here we describe a five year roadmap for the antigen discovery, feasibility and antigen selection, which will ultimately lead to the scale-up expression, process development, manufacture, good laboratory practices toxicology and preclinical evaluation, ultimately leading to Phase 1 clinical testing. PMID:24392641

  13. Persistence of Circulating Hepatitis C Virus Antigens-Specific Immune Complexes in Patients with Resolved HCV Infection.

    PubMed

    Hu, Ke-Qin; Cui, Wei

    2018-05-01

    Our recent study indicated the possible presence of detectable hepatitis C virus antigens (HCV-Ags) after denaturation of sera with resolved HCV (R-HCV) infection. The present study determined and characterized persistent HCV-Ags-specific immune complexes (ICs) in these patients. Sixty-eight sera with R-HCV and 34 with viremic HCV (V-HCV) infection were tested for free and IC-bound HCV-Ags using HCV-Ags enzyme immunoassay (EIA), the presence of HCV-Ags-specific ICs by immunoprecipitation and Western blot (IP-WB), HCV ICs containing HCV virions using IP and HCV RNA RT-PCR, and correlation of HCV ICs with clinical presentation in these patients. Using HCV-Ags EIA, we found 57.4% of sera with R-HCV infection were tested positive for bound, but not free HCV-Ags. Using pooled or individual anti-HCV E1/E2, cAg, NS3, NS4b, and/or NS5a to precipitate HCV-specific-Ags, we confirmed persistent HCV-Ags ICs specific to various HCV structural and non-structural proteins not only in V-HCV infection, but also in R-HCV infection. Using IP and HCV RNA PCR, we then confirmed the presence of HCV virions within circulating ICs in V-HCV, but not in R-HCV sera. Multivariable analysis indicated significant and independent associations of persistent circulating HCV-Ags-specific ICs with both age and the presence of cirrhosis in patients with R-HCV infection. Various HCV-Ag-specific ICs, but not virions, persist in 57.4% of patients who had spontaneous or treatment-induced HCV clearance for 6 months to 20 years. These findings enriched our knowledge on HCV pathogenesis and support further study on its long-term clinical relevance, such as extrahepatic manifestation, transfusion medicine, and hepatocarcinogenesis.

  14. CD4 memory T cells develop and acquire functional competence by sequential cognate interactions and stepwise gene regulation

    PubMed Central

    Kaji, Tomohiro; Hijikata, Atsushi; Ishige, Akiko; Kitami, Toshimori; Watanabe, Takashi; Ohara, Osamu; Yanaka, Noriyuki; Okada, Mariko; Shimoda, Michiko; Taniguchi, Masaru

    2016-01-01

    Memory CD4+ T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4+ T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells. PMID:26714588

  15. Multi-layered epigenetic mechanisms contribute to transcriptional memory in T lymphocytes.

    PubMed

    Dunn, Jennifer; McCuaig, Robert; Tu, Wen Juan; Hardy, Kristine; Rao, Sudha

    2015-05-06

    Immunological memory is the ability of the immune system to respond more rapidly and effectively to previously encountered pathogens, a key feature of adaptive immunity. The capacity of memory T cells to "remember" previous cellular responses to specific antigens ultimately resides in their unique patterns of gene expression. Following re-exposure to an antigen, previously activated genes are transcribed more rapidly and robustly in memory T cells compared to their naïve counterparts. The ability for cells to remember past transcriptional responses is termed "adaptive transcriptional memory". Recent global epigenome studies suggest that epigenetic mechanisms are central to establishing and maintaining transcriptional memory, with elegant studies in model organisms providing tantalizing insights into the epigenetic programs that contribute to adaptive immunity. These epigenetic mechanisms are diverse, and include not only classical acetylation and methylation events, but also exciting and less well-known mechanisms involving histone structure, upstream signalling pathways, and nuclear localisation of genomic regions. Current global health challenges in areas such as tuberculosis and influenza demand not only more effective and safer vaccines, but also vaccines for a wider range of health priorities, including HIV, cancer, and emerging pathogens such as Ebola. Understanding the multi-layered epigenetic mechanisms that underpin the rapid recall responses of memory T cells following reactivation is a critical component of this development pathway.

  16. N-ras couples antigen receptor signaling to Eomesodermin and to functional CD8+ T cell memory but not to effector differentiation

    PubMed Central

    Iborra, Salvador; Ramos, Manuel; Arana, David M.; Lázaro, Silvia; Aguilar, Francisco; Santos, Eugenio; López, Daniel

    2013-01-01

    Signals from the TCR that specifically contribute to effector versus memory CD8+ T cell differentiation are poorly understood. Using mice and adoptively transferred T lymphocytes lacking the small GTPase N-ras, we found that N-ras–deficient CD8+ T cells differentiate efficiently into antiviral primary effectors but have a severe defect in generating protective memory cells. This defect was rescued, although only partly, by rapamycin-mediated inhibition of mammalian target of rapamycin (mTOR) in vivo. The memory defect correlated with a marked impairment in vitro and in vivo of the antigen-mediated early induction of T-box transcription factor Eomesodermin (Eomes), whereas T-bet was unaffected. Besides N-ras, early Eomes induction in vitro required phosphoinositide 3-kinase (PI3K)–AKT but not extracellular signal-regulated kinase (ERK) activation, and it was largely insensitive to rapamycin. Consistent with N-ras coupling Eomes to T cell memory, retrovirally enforced expression of Eomes in N-ras–deficient CD8+ T cells effectively rescued their memory differentiation. Thus, our study identifies a critical role for N-ras as a TCR-proximal regulator of Eomes for early determination of the CD8+ T cell memory fate. PMID:23776078

  17. Interconnected subsets of memory follicular helper T cells have different effector functions.

    PubMed

    Asrir, Assia; Aloulou, Meryem; Gador, Mylène; Pérals, Corine; Fazilleau, Nicolas

    2017-10-10

    Follicular helper T cells regulate high-affinity antibody production. Memory follicular helper T cells can be local in draining lymphoid organs and circulate in the blood, but the underlying mechanisms of this subdivision are unresolved. Here we show that both memory follicular helper T subsets sustain B-cell responses after reactivation. Local cells promote more plasma cell differentiation, whereas circulating cells promote more secondary germinal centers. In parallel, local memory B cells are homogeneous and programmed to become plasma cells, whereas circulating memory B cells are able to rediversify. Local memory follicular helper T cells have higher affinity T-cell receptors, which correlates with expression of peptide MHC-II at the surface of local memory B cells only. Blocking T-cell receptor-peptide MHC-II interactions induces the release of local memory follicular helper T cells in the circulating compartment. Our studies show that memory follicular helper T localization is highly intertwined with memory B cells, a finding that has important implications for vaccine design.Tfh cells can differentiate into memory cells. Here the authors describe distinct functional and phenotypic profiles of these memory Tfh cells dependent on their anatomical localization to the lymphoid organs or to the circulation.

  18. Mass spectrometric characterization of circulating and functional antigens derived from piperacillin in patients with cystic fibrosis1

    PubMed Central

    Whitaker, Paul; Meng, Xiaoli; Lavergne, Sidonie N.; El-Ghaiesh, Sabah; Monshi, Manal; Earnshaw, Caroline; Peckham, Daniel; Gooi, Jimmy; Conway, Steve; Pirmohamed, Munir; Jenkins, Rosalind E.; Naisbitt, Dean J.; Park, B. Kevin

    2011-01-01

    A mechanistic understanding of the relationship between the chemistry of drug antigen formation and immune function is lacking. Thus, mass spectrometric methods were employed to detect and fully characterize circulating antigens derived from piperacillin in patients undergoing therapy and the nature of the drug derived-epitopes on protein which can function as an antigen to stimulate T-cells. Albumin modification with piperacillin in vitro resulted in the formation of two distinct haptens, one formed directly from piperacillin and a second in which the dioxopiperazine ring had undergone hydrolysis. Modification was time- and concentration-dependent, with selective modification of Lys541 observed at low concentrations, whereas at higher concentrations up to 13/59 lysine residues were modified, four of which (Lys190, 195, 432 and 541) were detected in patients’ plasma. Piperacillin-specific T-lymphocyte responses (proliferation, cytokines and granzyme-B release) were detected ex vivo with cells from hypersensitive patients, and analysis of incubation medium showed that modification of the same lysine residues in albumin occurred in situ. The antigenicity of piperacillin-modified albumin was confirmed by stimulation of T-cells with characterized synthetic conjugates. Analysis of minimally-modified T-cell stimulatory albumin conjugates revealed peptide sequences incorporating Lys190, 432 and 541 as principal functional epitopes for T-cells. This study has characterized the multiple haptenic structures on albumin in patients, and showed that they constitute functional antigenic determinants for T-cells. PMID:21606251

  19. Immunodiagnostic monoclonal antibody-based sandwich ELISA of fasciolosis by detection of Fasciola gigantica circulating fatty acid binding protein.

    PubMed

    Anuracpreeda, Panat; Chawengkirttikul, Runglawan; Sobhon, Prasert

    2016-09-01

    Up to now, parasitological diagnosis of fasciolosis is often unreliable and possesses low sensitivity. Hence, the detection of circulating parasite antigens is thought to be a better alternative for diagnosis of fasciolosis, as it reflects the real parasite burden. In the present study, a monoclonal antibody (MoAb) against recombinant Fasciola gigantica fatty acid binding protein (rFgFABP) has been produced. As well, a reliable sandwich enzyme-linked immunosorbent assay (sandwich ELISA) has been developed for the detection of circulating FABP in the sera of mice experimentally and cattle naturally infected with F. gigantica. MoAb 3A3 and biotinylated rabbit anti-recombinant FABP antibody were selected due to their high reactivities and specificities. The lower detection limit of sandwich ELISA was 5 pg mL-1, and no cross-reaction with other parasite antigens was observed. This assay could detect F. gigantica infection from day 1 post infection. In experimental mice, the sensitivity, specificity and accuracy of this assay were 93·3, 100 and 98·2%, while in natural cattle they were 96·7, 100 and 99·1%. Hence, this sandwich ELISA method showed high efficiencies and precisions for diagnosis of fasciolosis by F. gigantica.

  20. Recombinant ESAT-6-CFP10 Fusion Protein Induction of Th1/Th2 Cytokines and FoxP3 Expressing Treg Cells in Pulmonary TB.

    PubMed

    Jackson-Sillah, Dolly; Cliff, Jacqueline M; Mensah, Gloria Ivy; Dickson, Emmanuel; Sowah, Sandra; Tetteh, John K A; Addo, Kwasi K; Ottenhoff, Tom H M; Bothamley, Graham; Dockrell, Hazel M

    2013-01-01

    Early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) are Mycobacterium tuberculosis (Mtb)-specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors. Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC) were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest. The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4(+)FoxP3(+)CD25(hi) cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB. These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes.

  1. Whole-genome sequencing and antigenic analysis of the first equine influenza virus identified in Turkey.

    PubMed

    Gahan, Jacinta; Garvey, Marie; Gildea, Sarah; Gür, Emre; Kagankaya, Anil; Cullinane, Ann

    2018-05-01

    In 2013, there was an outbreak of acute respiratory disease in racehorses in Turkey. The clinical signs were consistent with equine influenza (EI). The aim was to confirm the cause of the outbreak and characterise the causal virus. A pan-reactive influenza type A real-time RT-PCR and a rapid antigen detection kit were used for confirmatory diagnosis of equine influenza virus (EIV). Immunological susceptibility to EIV was examined using single radial haemolysis and ELISA. Antigenic characterisation was completed by haemagglutinin inhibition using a panel of specific ferret antisera. Genetic characterisation was achieved by whole-genome sequencing using segment-specific primers with M13 tags. A H3N8 EIV of the Florida clade 2 sublineage (FC2) was confirmed as the causal agent. The index cases were unvaccinated and immunologically susceptible. Phylogenetic analysis of the HA1 and NA genes demonstrated that A/equine/Ankara/1/2013 clustered with the FC2 strains circulating in Europe. Antigenic characterisation confirmed the FC2 classification and demonstrated the absence of significant drift. Whole-genome sequencing indicated that A/equine/Ankara/1/2013 is most closely related to the viruses described as the 179 group based on the substitution I179V in HA1, for example A/equine/East Renfrewshire/2/2011, A/equine/Cambremer/1/2012 and A/equine/Saone et Loire/1/2015. The greatest diversity was observed in the NS1 segment and the polymerase complex. The first recorded outbreak of EI in Turkey was caused by an FC2 virus closely related to viruses circulating in Europe. Antigenic and genetic characterisation gave no indication that the current OIE recommendations for EI vaccine composition require modification. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  2. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis.

    PubMed

    Moguche, Albanus O; Shafiani, Shahin; Clemons, Corey; Larson, Ryan P; Dinh, Crystal; Higdon, Lauren E; Cambier, C J; Sissons, James R; Gallegos, Alena M; Fink, Pamela J; Urdahl, Kevin B

    2015-05-04

    Immune control of persistent infection with Mycobacterium tuberculosis (Mtb) requires a sustained pathogen-specific CD4 T cell response; however, the molecular pathways governing the generation and maintenance of Mtb protective CD4 T cells are poorly understood. Using MHCII tetramers, we show that Mtb-specific CD4 T cells are subject to ongoing antigenic stimulation. Despite this chronic stimulation, a subset of PD-1(+) cells is maintained within the lung parenchyma during tuberculosis (TB). When transferred into uninfected animals, these cells persist, mount a robust recall response, and provide superior protection to Mtb rechallenge when compared to terminally differentiated Th1 cells that reside preferentially in the lung-associated vasculature. The PD-1(+) cells share features with memory CD4 T cells in that their generation and maintenance requires intrinsic Bcl6 and intrinsic ICOS expression. Thus, the molecular pathways required to maintain Mtb-specific CD4 T cells during ongoing infection are similar to those that maintain memory CD4 T cells in scenarios of antigen deprivation. These results suggest that vaccination strategies targeting the ICOS and Bcl6 pathways in CD4 T cells may provide new avenues to prevent TB. © 2015 Moguche et al.

  3. PATHOGENETIC MECHANISMS IN EXPERIMENTAL IMMUNE FEVER

    PubMed Central

    Root, Richard K.; Wolff, Sheldon M.

    1968-01-01

    When rabbits sensitized to human serum albumin (HSA) are challenged intravenously with specific antigen, fever develops and two transferable pyrogens can be demonstrated in the circulation. The first appears prior to the development of fever and has properties consistent with soluble antigen-antibody complexes. These have been shown to be pyrogenic when prepared in vitro and to produce a state of febrile tolerance when repeatedly administered. The second pyrogen, demonstrable during fever in donor rabbits, appears to be similar to endogenous pyrogen described in other experimental fevers. It is postulated that the formation of antigen-antibody complexes constitutes an important initial phase of the febrile reaction in this type of immune fever. PMID:4873023

  4. New vaccines against influenza virus

    PubMed Central

    Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Yu-Na; Kim, Min-Chul; Kwon, Young-Man; Tang, Yinghua; Cho, Min-Kyoung; Lee, Youn-Jeong

    2014-01-01

    Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs. PMID:24427759

  5. A dual purpose universal influenza vaccine candidate confers protective immunity against anthrax.

    PubMed

    Arévalo, Maria T; Li, Junwei; Diaz-Arévalo, Diana; Chen, Yanping; Navarro, Ashley; Wu, Lihong; Yan, Yongyong; Zeng, Mingtao

    2017-03-01

    Preventive influenza vaccines must be reformulated annually because of antigen shift and drift of circulating influenza viral strains. However, seasonal vaccines do not always match the circulating strains, and there is the ever-present threat that avian influenza viruses may adapt to humans. Hence, a universal influenza vaccine is needed to provide protective immunity against a broad range of influenza viruses. We designed an influenza antigen consisting of three tandem M2e repeats plus HA2, in combination with a detoxified anthrax oedema toxin delivery system (EFn plus PA) to enhance immune responses. The EFn-3×M2e-HA2 plus PA vaccine formulation elicited robust, antigen-specific, IgG responses; and was protective against heterologous influenza viral challenge when intranasally delivered to mice three times. Moreover, use of the detoxified anthrax toxin system as an adjuvant had the additional benefit of generating protective immunity against anthrax. Hence, this novel vaccine strategy could potentially address two major emerging public health and biodefence threats. © 2016 John Wiley & Sons Ltd.

  6. Antigen processing of glycoconjugate vaccines; the polysaccharide portion of the pneumococcal CRM(197) conjugate vaccine co-localizes with MHC II on the antigen processing cell surface.

    PubMed

    Lai, Zengzu; Schreiber, John R

    2009-05-21

    Pneumococcal (Pn) polysaccharides (PS) are T-independent (TI) antigens and do not induce immunological memory or antibodies in infants. Conjugation of PnPS to the carrier protein CRM(197) induces PS-specific antibody in infants, and memory similar to T-dependent (Td) antigens. Conjugates have improved immunogenicity via antigen processing and presentation of carrier protein with MHC II and recruitment of T cell help, but the fate of the PS attached to the carrier is unknown. To determine the location of the PS component of PnPS-CRM(197) in the APC, we separately labeled PS and protein and tracked their location. The PS of types 14-CRM(197) and 19F-CRM(197) was specifically labeled by Alexa Fluor 594 hydrazide (red). The CRM(197) was separately labeled red in a reaction that did not label PS. Labeled antigens were incubated with APC which were fixed, permeabilized and incubated with anti-MHC II antibody labeled green by Alexa Fluor 488, followed by confocal microscopy. Labeled CRM(197) was presented on APC surface and co-localized with MHC II (yellow). Labeled unconjugated 14 or 19F PS did not go to the APC surface, but PS labeled 14-CRM(197) and 19F-CRM(197) was internalized and co-localized with MHC II. Monoclonal antibody to type 14 PS bound to intracellular type 14 PS and PS-CRM(197). Brefeldin A and chloroquine blocked both CRM(197) and PS labeled 14-CRM(197) and 19F-CRM(197) from co-localizing with MHC II. These data suggest that the PS component of the CRM(197) glycoconjugate enters the endosome, travels with CRM(197) peptides to the APC surface and co-localizes with MHC II.

  7. Lytic and Latent Antigens of the Human Gammaherpesviruses Kaposi's Sarcoma-Associated Herpesvirus and Epstein-Barr Virus Induce T-Cell Responses with Similar Functional Properties and Memory Phenotypes▿

    PubMed Central

    Bihl, Florian; Narayan, Murli; Chisholm, John V.; Henry, Leah M.; Suscovich, Todd J.; Brown, Elizabeth E.; Welzel, Tania M.; Kaufmann, Daniel E.; Zaman, Tauheed M.; Dollard, Sheila; Martin, Jeff N.; Wang, Fred; Scadden, David T.; Kaye, Kenneth M.; Brander, Christian

    2007-01-01

    The cellular immunity against Kaposi's sarcoma-associated herpesvirus (KSHV) is poorly characterized and has not been compared to T-cell responses against other human herpesviruses. Here, novel and dominant targets of KSHV-specific cellular immunity are identified and compared to T cells specific for lytic and latent antigens in a second human gammaherpesvirus, Epstein-Barr virus. The data identify a novel HLA-B57- and HLA-B58-restricted epitope in the Orf57 protein and show consistently close parallels in immune phenotypes and functional response patterns between cells targeting lytic or latent KSHV- and EBV-encoded antigens, suggesting common mechanisms in the induction of these responses. PMID:17329344

  8. Generation and application of human induced-stem cell memory T (iTSCM ) cells for adoptive immunotherapy.

    PubMed

    Kondo, Taisuke; Imura, Yuuki; Chikuma, Shunsuke; Hibino, Sana; Omata-Mise, Setsuko; Ando, Makoto; Akanuma, Takashi; Iizuka, Mana; Sakai, Ryota; Morita, Rimpei; Yoshimura, Akihiko

    2018-05-23

    Adoptive T cell therapy is an effective strategy for cancer immunotherapy. However, infused T cells frequently become functionally exhausted, and consequently offer a poor prognosis after transplantation into patients. Adoptive transfer of tumor antigen-specific stem cell memory T (T SCM ) cells is expected to overcome this shortcoming since T SCM cells are close to naïve T cells, but are also highly proliferative, long-lived, and produce a large number of effector T cells in response to antigen stimulation. We previously reported that activated effector T cells can be converted into T SCM -like cells (iT SCM ) by co-culturing with OP9 cells expressing Notch ligand, Delta-like 1 (OP9-hDLL1). Here we show the methodological parameters of human CD8 + iT SCM cell generation and their application to adoptive cancer immunotherapy. Regardless of the stimulation by anti-CD3/CD28 antibodies or by antigen-presenting cells, human iT SCM cells were more efficiently induced from central memory type T cells than from effector memory T cells. During the induction phase by co-culture with OP9-hDLL1 cells, IL-7 and IL-15 (but not IL-2 or IL-21) could efficiently generate iT SCM cells. Epstein Barr (EB) virus-specific iT SCM cells showed much stronger antitumor potentials than conventionally activated T cells did in humanized EB virus transformed-tumor model mice. Thus, adoptive T cell therapy with iT SCM offers a promising therapeutic strategy for cancer immunotherapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Recombinant yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 gag induces SIV-specific CD8+ T-cell responses in rhesus macaques.

    PubMed

    Bonaldo, Myrna C; Martins, Mauricio A; Rudersdorf, Richard; Mudd, Philip A; Sacha, Jonah B; Piaskowski, Shari M; Costa Neves, Patrícia C; Veloso de Santana, Marlon G; Vojnov, Lara; Capuano, Saverio; Rakasz, Eva G; Wilson, Nancy A; Fulkerson, John; Sadoff, Jerald C; Watkins, David I; Galler, Ricardo

    2010-04-01

    Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8(+) T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8(+) T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8(+) T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4(+) T cells.

  10. Immunologic response and memory T cells in subjects cured of tegumentary leishmaniasis.

    PubMed

    Carvalho, Augusto M; Magalhães, Andréa; Carvalho, Lucas P; Bacellar, Olívia; Scott, Phillip; Carvalho, Edgar M

    2013-11-09

    The main clinical forms of tegumentary leishmaniasis are cutaneous leishmaniasis (CL) and mucosal leishmaniasis (ML). L.braziliensis infection is characterized by an exaggerated production of IFN-gamma and TNF-alpha, cytokines involved in parasite destruction, but also in the pathology. Maintenance of an antigen-specific immune response may be important for resistance to re-infection and will contribute for vaccine development. In the present work we investigated the immune response in CL and ML cured individuals. Participants in the present study included 20 CL and 20 ML patients, who were evaluated prior to, as well as 2 to 15 years after therapy. IFN-gamma, IL-2 and TNF-alpha production were determined by ELISA in supernatants of mononuclear cells stimulated with soluble L.braziliensis antigen (SLA). The frequency of memory CD4+ T cell populations was determined by FACS. Here we show that the majority of CL and ML patients did not produce in vitro IFN-gamma in response to SLA after cure. In the cured individuals who responded to SLA, effector memory (CD45RA-CCR7-) CD4+ T cells were the ones producing IFN-gamma. Because a large percent of CL and ML cured patients lost SLA-induced IFN-gamma production in peripheral blood, we performed Leishmania skin test (LST). A positive LST was found in 87.5% and 100% of CL and ML cured individuals, respectively, who did not produce IFN-gamma or IL-2 in vitro. This study shows that in spite of losing in vitro antigen-specific response to Leishmania, cured CL and ML subjects retain the ability to respond to SLA in vivo. These findings indicate that LST, rather than IFN-gamma production, may be a better assessment of lasting immunity to leishmaniasis in human studies, and thus a better tool for assessing immunization after vaccine. Furthermore, in cured individuals which maintains Leishmania-specific IFN-gamma production, effector memory CD4+ T cells were the main source of this cytokine.

  11. Comparison of human and rhesus macaque T-cell responses elicited by boosting with NYVAC encoding human immunodeficiency virus type 1 clade C immunogens.

    PubMed

    Mooij, Petra; Balla-Jhagjhoorsingh, Sunita S; Beenhakker, Niels; van Haaften, Patricia; Baak, Ilona; Nieuwenhuis, Ivonne G; Heidari, Shirin; Wolf, Hans; Frachette, Marie-Joelle; Bieler, Kurt; Sheppard, Neil; Harari, Alexandre; Bart, Pierre-Alexandre; Liljeström, Peter; Wagner, Ralf; Pantaleo, Giuseppe; Heeney, Jonathan L

    2009-06-01

    Rhesus macaques (Macaca mulatta) have played a valuable role in the development of human immunodeficiency virus (HIV) vaccine candidates prior to human clinical trials. However, changes and/or improvements in immunogen quality in the good manufacturing practice (GMP) process or changes in adjuvants, schedule, route, dose, or readouts have compromised the direct comparison of T-cell responses between species. Here we report a comparative study in which T-cell responses from humans and macaques to HIV type 1 antigens (Gag, Pol, Nef, and Env) were induced by the same vaccine batches prepared under GMP and administered according to the same schedules in the absence and presence of priming. Priming with DNA (humans and macaques) or alphavirus (macaques) and boosting with NYVAC induced robust and broad antigen-specific responses, with highly similar Env-specific gamma interferon (IFN-gamma) enzyme-linked immunospot assay responses in rhesus monkeys and human volunteers. Persistent cytokine responses of antigen-specific CD4(+) and CD8(+) T cells of the central memory as well as the effector memory phenotype, capable of simultaneously eliciting multiple cytokines (IFN-gamma, interleukin 2, and tumor necrosis factor alpha), were induced. Responses were highly similar in humans and primates, confirming earlier data indicating that priming is essential for inducing robust NYVAC-boosted IFN-gamma T-cell responses. While significant similarities were observed in Env-specific responses in both species, differences were also observed with respect to responses to other HIV antigens. Future studies with other vaccines using identical lots, immunization schedules, and readouts will establish a broader data set of species similarities and differences with which increased confidence in predicting human responses may be achieved.

  12. Comparison of Human and Rhesus Macaque T-Cell Responses Elicited by Boosting with NYVAC Encoding Human Immunodeficiency Virus Type 1 Clade C Immunogens▿

    PubMed Central

    Mooij, Petra; Balla-Jhagjhoorsingh, Sunita S.; Beenhakker, Niels; van Haaften, Patricia; Baak, Ilona; Nieuwenhuis, Ivonne G.; Heidari, Shirin; Wolf, Hans; Frachette, Marie-Joelle; Bieler, Kurt; Sheppard, Neil; Harari, Alexandre; Bart, Pierre-Alexandre; Liljeström, Peter; Wagner, Ralf; Pantaleo, Giuseppe; Heeney, Jonathan L.

    2009-01-01

    Rhesus macaques (Macaca mulatta) have played a valuable role in the development of human immunodeficiency virus (HIV) vaccine candidates prior to human clinical trials. However, changes and/or improvements in immunogen quality in the good manufacturing practice (GMP) process or changes in adjuvants, schedule, route, dose, or readouts have compromised the direct comparison of T-cell responses between species. Here we report a comparative study in which T-cell responses from humans and macaques to HIV type 1 antigens (Gag, Pol, Nef, and Env) were induced by the same vaccine batches prepared under GMP and administered according to the same schedules in the absence and presence of priming. Priming with DNA (humans and macaques) or alphavirus (macaques) and boosting with NYVAC induced robust and broad antigen-specific responses, with highly similar Env-specific gamma interferon (IFN-γ) enzyme-linked immunospot assay responses in rhesus monkeys and human volunteers. Persistent cytokine responses of antigen-specific CD4+ and CD8+ T cells of the central memory as well as the effector memory phenotype, capable of simultaneously eliciting multiple cytokines (IFN-γ, interleukin 2, and tumor necrosis factor alpha), were induced. Responses were highly similar in humans and primates, confirming earlier data indicating that priming is essential for inducing robust NYVAC-boosted IFN-γ T-cell responses. While significant similarities were observed in Env-specific responses in both species, differences were also observed with respect to responses to other HIV antigens. Future studies with other vaccines using identical lots, immunization schedules, and readouts will establish a broader data set of species similarities and differences with which increased confidence in predicting human responses may be achieved. PMID:19321612

  13. Specificity, Privacy, and Degeneracy in the CD4 T Cell Receptor Repertoire Following Immunization

    PubMed Central

    Sun, Yuxin; Best, Katharine; Cinelli, Mattia; Heather, James M.; Reich-Zeliger, Shlomit; Shifrut, Eric; Friedman, Nir; Shawe-Taylor, John; Chain, Benny

    2017-01-01

    T cells recognize antigen using a large and diverse set of antigen-specific receptors created by a complex process of imprecise somatic cell gene rearrangements. In response to antigen-/receptor-binding-specific T cells then divide to form memory and effector populations. We apply high-throughput sequencing to investigate the global changes in T cell receptor sequences following immunization with ovalbumin (OVA) and adjuvant, to understand how adaptive immunity achieves specificity. Each immunized mouse contained a predominantly private but related set of expanded CDR3β sequences. We used machine learning to identify common patterns which distinguished repertoires from mice immunized with adjuvant with and without OVA. The CDR3β sequences were deconstructed into sets of overlapping contiguous amino acid triplets. The frequencies of these motifs were used to train the linear programming boosting (LPBoost) algorithm LPBoost to classify between TCR repertoires. LPBoost could distinguish between the two classes of repertoire with accuracies above 80%, using a small subset of triplet sequences present at defined positions along the CDR3. The results suggest a model in which such motifs confer degenerate antigen specificity in the context of a highly diverse and largely private set of T cell receptors. PMID:28450864

  14. Site-specific incorporation of three toll-like receptor 2 targeting adjuvants into semisynthetic, molecularly defined nanoparticles: application to group a streptococcal vaccines.

    PubMed

    Moyle, Peter M; Dai, Wei; Zhang, Yingkai; Batzloff, Michael R; Good, Michael F; Toth, Istvan

    2014-05-21

    Subunit vaccines offer a means to produce safer, more defined vaccines compared to traditional whole microorganism approaches. Subunit antigens, however, exhibit weak immunity, which is normally overcome through coadministration with adjuvants. Enhanced vaccine properties (e.g., improved potency) can be obtained by linking antigen and adjuvant, as observed for synthetic peptide antigens and Toll-like receptor 2 (TLR2) ligands. As few protective peptide antigens have been reported, compared to protein antigens, we sought to extend the utility of this approach to recombinant proteins, while ensuring that conjugation reactions yielded a single, molecularly defined product. Herein we describe the development and optimization of techniques that enable the efficient, site-specific attachment of three synthetic TLR2 ligands (lipid core peptide (LCP), Pam2Cys, and Pam3Cys) onto engineered protein antigens, permitting the selection of optimal TLR2 agonists during the vaccine development process. Using this approach, broadly protective (J14) and population targeted (seven M protein N-terminal antigens) multiantigenic vaccines against group A streptococcus (GAS; Streptococcus pyogenes) were produced and observed to self-assemble in PBS to yield nanoparticules (69, 101, and 123 nm, respectively). All nanoparticle formulations exhibited self-adjuvanting properties, with rapid, persistent, antigen-specific IgG antibody responses elicited toward each antigen in subcutaneously immunized C57BL/6J mice. These antibodies were demonstrated to strongly bind to the cell surface of five GAS serotypes that are not represented by vaccine M protein N-terminal antigens, are among the top 20 circulating strains in developed countries, and are associated with clinical disease, suggesting that these vaccines may elicit broadly protective immune responses.

  15. Antigenic and genomic characterization of human influenza A and B viruses circulating in Argentina after the introduction of influenza A(H1N1)pdm09.

    PubMed

    Russo, Mara L; Pontoriero, Andrea V; Benedetti, Estefania; Czech, Andrea; Avaro, Martin; Periolo, Natalia; Campos, Ana M; Savy, Vilma L; Baumeister, Elsa G

    2014-12-01

    This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed during the study period. The virological surveillance showed that the majority of the circulating strains during the study period were antigenically related to the corresponding Southern Hemisphere vaccine strains except for the 2012 A(H3N2) viruses. © 2014 The Authors.

  16. Secondary IgG responses to type III pneumococcal polysaccharide. II. Different cellular requirements for induction and elicitation.

    PubMed

    Braley-Mullen, H

    1976-04-01

    Mice primed with a thymus- (T) dependent form of Type III pneumococcal polysaccharide (S3), i.e., S3 coupled to erythrocytes (S3-RBC) produce S3-specific IgG antibody after secondary challenge with either S3 or S3-RBC. The production of IgG antibody by mice challenged with S3 was shown to be T independent since secondary responses were enhanced when mice were treated with anti-lymphocyte serum (ALS) at the time of secondary challenge with S3 and T-depleted spleen cells responded as well as unfractionated spleen cells to S3 in an adoptive transfer system. Secondary S3-specific IgG responses in mice challenged with S3-RBC were shown to be T dependent by the same criteria. The results obtained by using S3 as the antigen indicate that IgG-producing B cells (B lambda cells) can recognize and respond to antigen in the absence of helper T cells. On the other hand, T cells were required for the induction of S3-specific memory B lambda cells since mice depleted of T cells by treatment with ALS at the time of priming with S3-RBC failed to produce S3-specific IgG antibody after secondary challenge with either S3-specific IgG antibody after secondary chall-nge with either S3 or S3rbc. Since RBC-specific memory cells were induced in T-deprived mice the results suggest that T cell regulation of IgG antibody production may vary for different antigens.

  17. Memory T cells in organ transplantation: progress and challenges

    PubMed Central

    Espinosa, Jaclyn R.; Samy, Kannan P.; Kirk, Allan D.

    2017-01-01

    Antigen-experienced T cells, also known as memory T cells, are functionally and phenotypically distinct from naive T cells. Their enhanced expression of adhesion molecules and reduced requirement for co-stimulation enables them to mount potent and rapid recall responses to subsequent antigen encounters. Memory T cells generated in response to prior antigen exposures can cross-react with other nonidentical, but similar, antigens. This heterologous cross-reactivity not only enhances protective immune responses, but also engenders de novo alloimmunity. This latter characteristic is increasingly recognized as a potential barrier to allograft acceptance that is worthy of immunotherapeutic intervention, and several approaches have been investigated. Calcineurin inhibition effectively controls memory T-cell responses to allografts, but this benefit comes at the expense of increased infectious morbidity. Lymphocyte depletion eliminates allospecific T cells but spares memory T cells to some extent, such that patients do not completely lose protective immunity. Co-stimulation blockade is associated with reduced adverse-effect profiles and improved graft function relative to calcineurin inhibition, but lacks efficacy in controlling memory T-cell responses. Targeting the adhesion molecules that are upregulated on memory T cells might offer additional means to control co-stimulation-blockade-resistant memory T-cell responses. PMID:26923209

  18. Impaired Epstein-Barr Virus-Specific Neutralizing Antibody Response during Acute Infectious Mononucleosis Is Coincident with Global B-Cell Dysfunction

    PubMed Central

    Panikkar, Archana; Hislop, Andrew; Tellam, Nick; Dasari, Vijayendra; Hogquist, Kristin A.; Wykes, Michelle; Moss, Denis J.; Rickinson, Alan; Balfour, Henry H.

    2015-01-01

    Here we present evidence for previously unappreciated B-cell immune dysregulation during acute Epstein-Barr virus (EBV)-associated infectious mononucleosis (IM). Longitudinal analyses revealed that patients with acute IM have undetectable EBV-specific neutralizing antibodies and gp350-specific B-cell responses, which were associated with a significant reduction in memory B cells and no evidence of circulating antibody-secreting cells. These observations correlate with dysregulation of tumor necrosis factor family members BAFF and APRIL and increased expression of FAS on circulating B cells. PMID:26109734

  19. Specific Antibodies Reacting with SV40 Large T Antigen Mimotopes in Serum Samples of Healthy Subjects

    PubMed Central

    Tognon, Mauro; Corallini, Alfredo; Manfrini, Marco; Taronna, Angelo; Butel, Janet S.; Pietrobon, Silvia; Trevisiol, Lorenzo; Bononi, Ilaria; Vaccher, Emanuela; Barbanti-Brodano, Giuseppe; Martini, Fernanda; Mazzoni, Elisa

    2016-01-01

    Simian Virus 40, experimentally assayed in vitro in different animal and human cells and in vivo in rodents, was classified as a small DNA tumor virus. In previous studies, many groups identified Simian Virus 40 sequences in healthy individuals and cancer patients using PCR techniques, whereas others failed to detect the viral sequences in human specimens. These conflicting results prompted us to develop a novel indirect ELISA with synthetic peptides, mimicking Simian Virus 40 capsid viral protein antigens, named mimotopes. This immunologic assay allowed us to investigate the presence of serum antibodies against Simian Virus 40 and to verify whether Simian Virus 40 is circulating in humans. In this investigation two mimotopes from Simian Virus 40 large T antigen, the viral replication protein and oncoprotein, were employed to analyze for specific reactions to human sera antibodies. This indirect ELISA with synthetic peptides from Simian Virus 40 large T antigen was used to assay a new collection of serum samples from healthy subjects. This novel assay revealed that serum antibodies against Simian Virus 40 large T antigen mimotopes are detectable, at low titer, in healthy subjects aged from 18–65 years old. The overall prevalence of reactivity with the two Simian Virus 40 large T antigen peptides was 20%. This new ELISA with two mimotopes of the early viral regions is able to detect in a specific manner Simian Virus 40 large T antigen-antibody responses. PMID:26731525

  20. Transcription Factor IRF4 Promotes CD8+ T Cell Exhaustion and Limits the Development of Memory-like T Cells during Chronic Infection.

    PubMed

    Man, Kevin; Gabriel, Sarah S; Liao, Yang; Gloury, Renee; Preston, Simon; Henstridge, Darren C; Pellegrini, Marc; Zehn, Dietmar; Berberich-Siebelt, Friederike; Febbraio, Mark A; Shi, Wei; Kallies, Axel

    2017-12-19

    During chronic stimulation, CD8 + T cells acquire an exhausted phenotype characterized by expression of inhibitory receptors, down-modulation of effector function, and metabolic impairments. T cell exhaustion protects from excessive immunopathology but limits clearance of virus-infected or tumor cells. We transcriptionally profiled antigen-specific T cells from mice infected with lymphocytic choriomeningitis virus strains that cause acute or chronic disease. T cell exhaustion during chronic infection was driven by high amounts of T cell receptor (TCR)-induced transcription factors IRF4, BATF, and NFATc1. These regulators promoted expression of inhibitory receptors, including PD-1, and mediated impaired cellular metabolism. Furthermore, they repressed the expression of TCF1, a transcription factor required for memory T cell differentiation. Reducing IRF4 expression restored the functional and metabolic properties of antigen-specific T cells and promoted memory-like T cell development. These findings indicate that IRF4 functions as a central node in a TCR-responsive transcriptional circuit that establishes and sustains T cell exhaustion during chronic infection. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  1. Topical CpG Adjuvantation of a Protein-Based Vaccine Induces Protective Immunity to Listeria monocytogenes

    PubMed Central

    Cheng, Wing Ki; Wee, Kathleen; Kollmann, Tobias R.

    2014-01-01

    Robust CD8+ T cell responses are essential for immune protection against intracellular pathogens. Using parenteral administration of ovalbumin (OVA) protein as a model antigen, the effect of the Toll-like receptor 9 (TLR9) agonist, CpG oligodeoxynucleotide (ODN) 1826, as an adjuvant delivered either topically, subcutaneously, or intramuscularly on antigen-specific CD8+ T cell responses in a mouse model was evaluated. Topical CpG adjuvant increased the frequency of OVA-specific CD8+ T cells in the peripheral blood and in the spleen. The more effective strategy to administer topical CpG adjuvant to enhance CD8+ T cell responses was single-dose administration at the time of antigen injection with a prime-boost regimen. Topical CpG adjuvant conferred both rapid and long-lasting protection against systemic challenge with recombinant Listeria monocytogenes expressing the cytotoxic T lymphocyte (CTL) epitope of OVA257–264 (strain Lm-OVA) in a TLR9-dependent manner. Topical CpG adjuvant induced a higher proportion of CD8+ effector memory T cells than parenteral administration of the adjuvant. Although traditional vaccination strategies involve coformulation of antigen and adjuvant, split administration using topical adjuvant is effective and has advantages of safety and flexibility. Split administration of topical CpG ODN 1826 with parenteral protein antigen is superior to other administration strategies in enhancing both acute and memory protective CD8+ T cell immune responses to subcutaneous protein vaccines. This vaccination strategy induces rapid and persistent protective immune responses against the intracellular organism L. monocytogenes. PMID:24391136

  2. Abacavir-Reactive Memory T Cells Are Present in Drug Naïve Individuals

    PubMed Central

    Lucas, Andrew; Lucas, Michaela; Strhyn, Anette; Keane, Niamh M.; McKinnon, Elizabeth; Pavlos, Rebecca; Moran, Ellen M.; Meyer-Pannwitt, Viola; Gaudieri, Silvana; D’Orsogna, Lloyd; Kalams, Spyros; Ostrov, David A.; Buus, Søren; Peters, Bjoern; Mallal, Simon; Phillips, Elizabeth

    2015-01-01

    Background Fifty-five percent of individuals with HLA-B*57:01 exposed to the antiretroviral drug abacavir develop a hypersensitivity reaction (HSR) that has been attributed to naïve T-cell responses to neo-antigen generated by the drug. Immunologically confirmed abacavir HSR can manifest clinically in less than 48 hours following first exposure suggesting that, at least in some cases, abacavir HSR is due to re-stimulation of a pre-existing memory T-cell population rather than priming of a high frequency naïve T-cell population. Methods To determine whether a pre-existing abacavir reactive memory T-cell population contributes to early abacavir HSR symptoms, we studied the abacavir specific naïve or memory T-cell response using HLA-B*57:01 positive HSR patients or healthy controls using ELISpot assay, intra-cellular cytokine staining and tetramer labelling. Results Abacavir reactive CD8+ T-cell responses were detected in vitro in one hundred percent of abacavir unexposed HLA-B*57:01 positive healthy donors. Abacavir-specific CD8+ T cells from such donors can be expanded from sorted memory, and sorted naïve, CD8+ T cells without need for autologous CD4+ T cells. Conclusions We propose that these pre-existing abacavir-reactive memory CD8+ T-cell responses must have been primed by earlier exposure to another foreign antigen and that these T cells cross-react with an abacavir-HLA-B*57:01-endogenous peptide ligand complex, in keeping with the model of heterologous immunity proposed in transplant rejection. PMID:25674793

  3. Abacavir-reactive memory T cells are present in drug naïve individuals.

    PubMed

    Lucas, Andrew; Lucas, Michaela; Strhyn, Anette; Keane, Niamh M; McKinnon, Elizabeth; Pavlos, Rebecca; Moran, Ellen M; Meyer-Pannwitt, Viola; Gaudieri, Silvana; D'Orsogna, Lloyd; Kalams, Spyros; Ostrov, David A; Buus, Søren; Peters, Bjoern; Mallal, Simon; Phillips, Elizabeth

    2015-01-01

    Fifty-five percent of individuals with HLA-B*57:01 exposed to the antiretroviral drug abacavir develop a hypersensitivity reaction (HSR) that has been attributed to naïve T-cell responses to neo-antigen generated by the drug. Immunologically confirmed abacavir HSR can manifest clinically in less than 48 hours following first exposure suggesting that, at least in some cases, abacavir HSR is due to re-stimulation of a pre-existing memory T-cell population rather than priming of a high frequency naïve T-cell population. To determine whether a pre-existing abacavir reactive memory T-cell population contributes to early abacavir HSR symptoms, we studied the abacavir specific naïve or memory T-cell response using HLA-B*57:01 positive HSR patients or healthy controls using ELISpot assay, intra-cellular cytokine staining and tetramer labelling. Abacavir reactive CD8+ T-cell responses were detected in vitro in one hundred percent of abacavir unexposed HLA-B*57:01 positive healthy donors. Abacavir-specific CD8+ T cells from such donors can be expanded from sorted memory, and sorted naïve, CD8+ T cells without need for autologous CD4+ T cells. We propose that these pre-existing abacavir-reactive memory CD8+ T-cell responses must have been primed by earlier exposure to another foreign antigen and that these T cells cross-react with an abacavir-HLA-B*57:01-endogenous peptide ligand complex, in keeping with the model of heterologous immunity proposed in transplant rejection.

  4. Deficient EBV-specific B- and T-cell response in patients with chronic fatigue syndrome.

    PubMed

    Loebel, Madlen; Strohschein, Kristin; Giannini, Carolin; Koelsch, Uwe; Bauer, Sandra; Doebis, Cornelia; Thomas, Sybill; Unterwalder, Nadine; von Baehr, Volker; Reinke, Petra; Knops, Michael; Hanitsch, Leif G; Meisel, Christian; Volk, Hans-Dieter; Scheibenbogen, Carmen

    2014-01-01

    Epstein-Barr virus (EBV) has long been discussed as a possible cause or trigger of Chronic Fatigue Syndrome (CFS). In a subset of patients the disease starts with infectious mononucleosis and both enhanced and diminished EBV-specific antibody titers have been reported. In this study, we comprehensively analyzed the EBV-specific memory B- and T-cell response in patients with CFS. While we observed no difference in viral capsid antigen (VCA)-IgG antibodies, EBV nuclear antigen (EBNA)-IgG titers were low or absent in 10% of CFS patients. Remarkably, when analyzing the EBV-specific memory B-cell reservoir in vitro a diminished or absent number of EBNA-1- and VCA-antibody secreting cells was found in up to 76% of patients. Moreover, the ex vivo EBV-induced secretion of TNF-α and IFN-γ was significantly lower in patients. Multicolor flow cytometry revealed that the frequencies of EBNA-1-specific triple TNF-α/IFN-γ/IL-2 producing CD4(+) and CD8(+) T-cell subsets were significantly diminished whereas no difference could be detected for HCMV-specific T-cell responses. When comparing EBV load in blood immune cells, we found more frequently EBER-DNA but not BZLF-1 RNA in CFS patients compared to healthy controls suggesting more frequent latent replication. Taken together, our findings give evidence for a deficient EBV-specific B- and T-cell memory response in CFS patients and suggest an impaired ability to control early steps of EBV reactivation. In addition the diminished EBV response might be suitable to develop diagnostic marker in CFS.

  5. RTS,S/AS01E Malaria Vaccine Induces Memory and Polyfunctional T Cell Responses in a Pediatric African Phase III Trial.

    PubMed

    Moncunill, Gemma; De Rosa, Stephen C; Ayestaran, Aintzane; Nhabomba, Augusto J; Mpina, Maximillian; Cohen, Kristen W; Jairoce, Chenjerai; Rutishauser, Tobias; Campo, Joseph J; Harezlak, Jaroslaw; Sanz, Héctor; Díez-Padrisa, Núria; Williams, Nana Aba; Morris, Daryl; Aponte, John J; Valim, Clarissa; Daubenberger, Claudia; Dobaño, Carlota; McElrath, M Juliana

    2017-01-01

    Comprehensive assessment of cellular responses to the RTS,S/AS01E vaccine is needed to understand potential correlates and ultimately mechanisms of protection against malaria disease. Cellular responses recognizing the RTS,S/AS01E-containing circumsporozoite protein (CSP) and Hepatitis B surface antigen (HBsAg) were assessed before and 1 month after primary vaccination by intracellular cytokine staining and 16-color flow cytometry in 105 RTS,S/AS01-vaccinated and 74 rabies-vaccinated participants (controls) in a pediatric phase III trial in Africa. RTS,S/AS01E-vaccinated children had significantly higher frequencies of CSP- and HBsAg-specific CD4 + T cells producing IL-2, TNF-α, and CD40L and HBsAg-specific CD4 + T producing IFN-γ and IL-17 than baseline and the control group. Vaccine-induced responses were identified in both central and effector memory (EM) compartments. EM CD4 + T cells expressing IL-4 and IL-21 were detected recognizing both vaccine antigens. Consistently higher response rates to both antigens in RTS,S/AS01E-vaccinated than comparator-vaccinated children were observed. RTS,S/AS01E induced polyfunctional CSP- and HBsAg-specific CD4 + T cells, with a greater degree of polyfunctionality in HBsAg responses. In conclusion, RTS,S/AS01E vaccine induces T cells of higher functional heterogeneity and polyfunctionality than previously characterized. Responses detected in memory CD4 + T cell compartments may provide correlates of RTS,S/AS01-induced immunity and duration of protection in future correlates of immunity studies.

  6. Trypanosoma cruzi vaccine candidate antigens Tc24 and TSA-1 recall memory immune response associated with HLA-A and -B supertypes in Chagasic chronic patients from Mexico.

    PubMed

    Villanueva-Lizama, Liliana E; Cruz-Chan, Julio V; Aguilar-Cetina, Amarú Del C; Herrera-Sanchez, Luis F; Rodriguez-Perez, Jose M; Rosado-Vallado, Miguel E; Ramirez-Sierra, Maria J; Ortega-Lopez, Jaime; Jones, Kathryn; Hotez, Peter; Bottazzi, Maria Elena; Dumonteil, Eric

    2018-01-01

    Trypanosoma cruzi antigens TSA-1 and Tc24 have shown promise as vaccine candidates in animal studies. We evaluated here the recall immune response these antigens induce in Chagasic patients, as a first step to test their immunogenicity in humans. We evaluated the in vitro cellular immune response after stimulation with recombinant TSA-1 (rTSA-1) or recombinant Tc24 (rTc24) in mononuclear cells of asymptomatic Chagasic chronic patients (n = 20) compared to healthy volunteers (n = 19) from Yucatan, Mexico. Proliferation assays, intracellular cytokine staining, cytometric bead arrays, and memory T cell immunophenotyping were performed by flow cytometry. Peripheral blood mononuclear cells (PBMC) from Chagasic patients showed significant proliferation after stimulation with rTc24 and presented a phenotype of T effector memory cells (CD45RA-CCR7-). These cells also produced IFN-γ and, to a lesser extent IL10, after stimulation with rTSA-1 and rTc24 proteins. Overall, both antigens recalled a broad immune response in some Chagasic patients, confirming that their immune system had been primed against these antigens during natural infection. Analysis of HLA-A and HLA-B allele diversity by PCR-sequencing indicated that HLA-A03 and HLA-B07 were the most frequent supertypes in this Mexican population. Also, there was a significant difference in the frequency of HLA-A01 and HLA-A02 supertypes between Chagasic patients and controls, while the other alleles were evenly distributed. Some aspects of the immune response, such as antigen-induced IFN-γ production by CD4+ and CD8+ T cells and CD8+ proliferation, showed significant association with specific HLA-A supertypes, depending on the antigen considered. In conclusion, our results confirm the ability of both TSA-1 and Tc24 recombinant proteins to recall an immune response induced by the native antigens during natural infection in at least some patients. Our data support the further development of these antigens as therapeutic vaccine against Chagas disease.

  7. Antigen Specific Responses and ANA production in B6.Sle1b mice: A role for SAP

    PubMed Central

    Jennings, Paula; Chan, Alice; Schwartzberg, Pamela; Wakeland, Edward K.; Yuan, Dorothy

    2010-01-01

    B6.Sle1b mice, which contain the Sle1b gene interval derived from lupus prone NZM2410 mice on a C57BL/6 background, present with gender-biased, highly penetrant anti-nuclear antibody (ANA) production. To obtain some insight into the possible induction mechanism of autoantibodies in these mice we compared antigen specific T dependent (TD) and T independent (TI-II) responses between B6.Sle1b and B6 mice before the development of high ANA titers. Our results show that B6.Sle1b mice mount enhanced responses to a TI-II antigen. Additionally, the memory T cell response generated by a TD antigen was also increased. This enhancement correlates with the greater ability of B cells from B6.Sle1b mice to present antigen to T cells. The SLAM Associated Protein (SAP) is critical for signaling of many of the molecules encoded by the SLAM/CD2 gene cluster, candidates for mediating the Sle1b phenotype; therefore, we also investigated the effect of sap deletion in these strains on the TD and TI-II responses as well as on ANA production. The results of these studies of responses to non-self antigens provide further insight for the mechanism by which responses to self-antigens might be initiated in the context of specific genetic alterations. PMID:18845419

  8. Automated Microfluidic Filtration and Immunocytochemistry Detection System for Capture and Enumeration of Circulating Tumor Cells and Other Rare Cell Populations in Blood.

    PubMed

    Pugia, Michael; Magbanua, Mark Jesus M; Park, John W

    2017-01-01

    Isolation by size using a filter membrane offers an antigen-independent method for capturing rare cells present in blood of cancer patients. Multiple cell types, including circulating tumor cells (CTCs), captured on the filter membrane can be simultaneously identified via immunocytochemistry (ICC) analysis of specific cellular biomarkers. Here, we describe an automated microfluidic filtration method combined with a liquid handling system for sequential ICC assays to detect and enumerate non-hematologic rare cells in blood.

  9. LBSapSal-vaccinated dogs exhibit increased circulating T-lymphocyte subsets (CD4+ and CD8+) as well as a reduction of parasitism after challenge with Leishmania infantum plus salivary gland of Lutzomyia longipalpis

    PubMed Central

    2014-01-01

    Background The development of a protective vaccine against canine visceral leishmaniasis (CVL) is an alternative approach for interrupting the domestic cycle of Leishmania infantum. Given the importance of sand fly salivary proteins as potent immunogens obligatorily co-deposited during transmission of Leishmania parasites, their inclusion in an anti-Leishmania vaccine has been investigated in the last few decades. In this context, we previously immunized dogs with a vaccine composed of L. braziliensis antigens plus saponin as the adjuvant and sand fly salivary gland extract (LBSapSal vaccine). This vaccine elicited an increase in both anti-saliva and anti-Leishmania IgG isotypes, higher counts of specific circulating CD8+ T cells, and high NO production. Methods We investigated the immunogenicity and protective effect of LBSapSal vaccination after intradermal challenge with 1 × 107 late-log-phase L. infantum promastigotes in the presence of sand fly saliva of Lutzomyia longipalpis. The dogs were followed for up to 885 days after challenge. Results The LBSapSal vaccine presents extensive antigenic diversity with persistent humoral and cellular immune responses, indicating resistance against CVL is triggered by high levels of total IgG and its subtypes (IgG1 and IgG2); expansion of circulating CD5+, CD4+, and CD8+ T lymphocytes and is Leishmania-specific; and reduction of splenic parasite load. Conclusions These results encourage further study of vaccine strategies addressing Leishmania antigens in combination with proteins present in the saliva of the vector. PMID:24507702

  10. Simultaneous approach using systemic, mucosal and transcutaneous routes of immunization for development of protective HIV-1 vaccines.

    PubMed

    Belyakov, I M; Ahlers, J D

    2011-01-01

    Mucosal tissues are major sites of HIV entry and initial infection. Induction of a local mucosal cytotoxic T lymphocyte response is considered an important goal in developing an effective HIV vaccine. In addition, activation and recruitment of memory CD4(+) and CD8(+) T cells in systemic lymphoid circulation to mucosal effector sites might provide the firewall needed to prevent virus spread. Therefore a vaccine that generates CD4(+) and CD8(+) responses in both mucosal and systemic tissues might be required for protection against HIV. However, optimal routes and number of vaccinations required for the generation of long lasting CD4(+) and CD8(+) CTL effector and memory responses are not well understood especially for mucosal T cells. A number of studies looking at protective immune responses against diverse mucosal pathogens have shown that mucosal vaccination is necessary to induce a compartmentalized immune response including maximum levels of mucosal high-avidity CD8(+) CTL, antigen specific mucosal antibodies titers (especially sIgA), as well as induction of innate anti-viral factors in mucosa tissue. Immune responses are detectable at mucosal sites after systemic delivery of vaccine, and prime boost regimens can amplify the magnitude of immune responses in mucosal sites and in systemic lymphoid tissues. We believe that the most optimal mucosal and systemic HIV/SIV specific protective immune responses and innate factors might best be achieved by simultaneous mucosal and systemic prime and boost vaccinations. Similar principals of vaccination may be applied for vaccine development against cancer and highly invasive pathogens that lead to chronic infection.

  11. Peripheral B cells latently infected with Epstein–Barr virus display molecular hallmarks of classical antigen-selected memory B cells

    PubMed Central

    Souza, Tatyana A.; Stollar, B. David; Sullivan, John L.; Luzuriaga, Katherine; Thorley-Lawson, David A.

    2005-01-01

    Epstein–Barr virus (EBV) establishes a lifelong persistent infection within peripheral blood B cells with the surface phenotype of memory cells. To date there is no proof that these cells have the genotype of true germinal-center-derived memory B cells. It is critical to understand the relative contribution of viral mimicry versus antigen signaling to the production of these cells because EBV encodes proteins that can affect the surface phenotype of infected cells and provide both T cell help and B cell receptor signals in the absence of cognate antigen. To address these questions we have developed a technique to identify single EBV-infected cells in the peripheral blood and examine their expressed Ig genes. The genes were all isotype-switched and somatically mutated. Furthermore, the mutations do not cause stop codons and display the pattern expected for antigen-selected memory cells based on their frequency, type, and location within the Ig gene. We conclude that latently infected peripheral blood B cells display the molecular hallmarks of classical antigen-selected memory B cells. Therefore, EBV does not disrupt the normal processing of latently infected cells into memory, and deviations from normal B cell biology are not tolerated in the infected cells. This article provides definitive evidence that EBV in the peripheral blood persists in true memory B cells. PMID:16330748

  12. Adjuvants in the Driver’s Seat: How Magnitude, Type, Fine Specificity and Longevity of Immune Responses Are Driven by Distinct Classes of Immune Potentiators

    PubMed Central

    Bergmann-Leitner, Elke S.; Leitner, Wolfgang W.

    2014-01-01

    The mechanism by which vaccine adjuvants enhance immune responses has historically been considered to be the creation of an antigen depot. From here, the antigen is slowly released and provided to immune cells over an extended period of time. This “depot” was formed by associating the antigen with substances able to persist at the injection site, such as aluminum salts or emulsions. The identification of Pathogen-Associated Molecular Patterns (PAMPs) has greatly advanced our understanding of how adjuvants work beyond the simple concept of extended antigen release and has accelerated the development of novel adjuvants. This review focuses on the mode of action of different adjuvant classes in regards to the stimulation of specific immune cell subsets, the biasing of immune responses towards cellular or humoral immune response, the ability to mediate epitope spreading and the induction of persistent immunological memory. A better understanding of how particular adjuvants mediate their biological effects will eventually allow them to be selected for specific vaccines in a targeted and rational manner. PMID:26344620

  13. An adjuvant-modulated vaccine response in human whole blood

    PubMed Central

    Hakimi, Jalil; Azizi, Ali; Ausar, Salvador F.; Todryk, Stephen M.; Rahman, Nausheen; Brookes, Roger H.

    2017-01-01

    ABSTRACT The restimulation of an immune memory response by in vitro culture of blood cells with a specific antigen has been used as a way to gauge immunity to vaccines for decades. In this commentary we discuss a less appreciated application to support vaccine process development. We report that human whole blood from pre-primed subjects can generate a profound adjuvant-modulated, antigen-specific response to several different vaccine formulations. The response is able to differentiate subtle changes in the quality of an immune memory response to vaccine formulations and can be used to select optimal conditions relating to a particular manufacture process step. While questions relating to closeness to in vivo vaccination remain, the approach is another big step nearer to the more relevant human response. It has special importance for new adjuvant development, complementing other preclinical in vivo and in vitro approaches to considerably de-risk progression of novel vaccines before and throughout early clinical development. Broader implications of the approach are discussed. PMID:28605295

  14. Cellular basis for neonatally induced T-suppressor activity. Primary B cell maturation is blocked by suppressor-helper interactions restricted by loci on chromosome 12

    PubMed Central

    1985-01-01

    The cellular mechanism and genetic restriction of neonatally induced HA- specific suppressor T (Ts) cells have been examined. The in vivo effect of these Ts cells on antibody production, primary B cell proliferation, B cell surface marker changes, and helper T (Th) cell priming during primary responses to HA have been determined. The results indicate that, although antigen-induced B cell proliferative responses and surface marker changes occur in the presence of Ts cells, differentiation to Ig secretion, and long-lived memory B cell production are prevented. Further, antigen-specific Th cell priming is completely ablated by Ts cells, suggesting that Ts act by preventing the delivery of Th signals required for both the later stages of primary B cell maturation, and the formation of memory B cell populations. Finally, in vivo cell mixing experiments using congenic mice indicate that this Ts-Th interaction is restricted by loci on mouse chromosome 12. PMID:2580040

  15. Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells.

    PubMed

    Frölich, Daniela; Giesecke, Claudia; Mei, Henrik E; Reiter, Karin; Daridon, Capucine; Lipsky, Peter E; Dörner, Thomas

    2010-09-01

    Rechallenge with T cell-dependent Ags induces memory B cells to re-enter germinal centers (GCs) and undergo further expansion and differentiation into plasma cells (PCs) and secondary memory B cells. It is currently not known whether the expanded population of memory B cells and PCs generated in secondary GCs are clonally related, nor has the extent of proliferation and somatic hypermutation of their precursors been delineated. In this study, after secondary tetanus toxoid (TT) immunization, TT-specific PCs increased 17- to 80-fold on days 6-7, whereas TT-specific memory B cells peaked (delayed) on day 14 with a 2- to 22-fold increase. Molecular analyses of V(H)DJ(H) rearrangements of individual cells revealed no major differences of gene usage and CDR3 length between TT-specific PCs and memory B cells, and both contained extensive evidence of somatic hypermutation with a pattern consistent with GC reactions. This analysis identified clonally related TT-specific memory B cells and PCs. Within clusters of clonally related cells, sequences shared a number of mutations but also could contain additional base pair changes. The data indicate that although following secondary immunization PCs can derive from memory B cells without further somatic hypermutation, in some circumstances, likely within GC reactions, asymmetric mutation can occur. These results suggest that after the fate decision to differentiate into secondary memory B cells or PCs, some committed precursors continue to proliferate and mutate their V(H) genes.

  16. Inability to induce consistent T-cell responses recognizing conserved regions within HIIV-1 antigens: a potential mechanism for lack of vaccine efficacy in the step study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korber, Bette; Szinger, James

    2009-01-01

    T cell based vaccines are based upon the induction of CD8+ T cell memory responses that would be effective in inhibiting infection and subsequent replication of an infecting HIV-1 strain, a process that requires a high probability of matching the epitope induced by vaccination with the infecting viral strain. We compared the frequency and specificity of the CTL epitopes elicited by the replication defective AdS gag/pol/nef vaccine used in the STEP trial with the likelihood of encountering those epitopes among recently sequenced Clade B isolates of HIV-1. On average vaccination elicited only one epitope per gene. Importantly, the highly conservedmore » epitopes in gag, pol, and nef (> 80% of strains in the current collection of the Los Alamos database [www.hiv.lanl.gov]) were rarely elicited by vaccination. Moreover there was a statistically significant skewing of the T cell response to relative variable epitopes of each gene; only 20% of persons possessed > 3 T cell responses to epitopes likely to be found in circulating strains in the CladeB populations in which the Step trial was conducted. This inability to elicit T cell responses likely to be found in circulating viral strains is a likely factor in the lack of efficacy of the vaccine utilized in the STEP trial. Modeling of the epitope specific responses elicited by vaccination, we project that a median of 8-10 CD8+ T cell epitopes are required to provide >80% likelihood of eliciting at least 3 CD8+ T cell epitopes that would be found on a circulating population of viruses. Development of vaccine regimens which elicit either a greater breadth of responses or elicit responses to conserved regions of the HIV-1 genome are needed to fully evaluate the concept of whether induction of T cell immunity can alter HIV-1 in vivo.« less

  17. Distinctions Among Circulating Antibody Secreting Cell Populations, Including B-1 Cells, in Human Adult Peripheral Blood1

    PubMed Central

    Quách, Tâm D.; Rodríguez-Zhurbenko, Nely; Hopkins, Thomas J.; Guo, Xiaoti; Vázquez, Ana María Hernández; Li, Wentian; Rothstein, Thomas L.

    2015-01-01

    Human antibody secreting cell (ASC) populations in circulation are not well studied. In addition to B-1 (CD20+CD27+CD38lo/intCD43+) cell and the conventional plasmablast (CD20-CD27hiCD38hi) cell populations, here we identified a novel B cell population termed 20+38hi B cells (CD20+CD27hiCD38hi) that spontaneously secretes antibody. At steady state, 20+38hi B cells are distinct from plasmablasts on the basis of CD20 expression, amount of antibody production, frequency of mutation, and diversity of B cell receptor repertoire. However, cytokine treatment of 20+38hi B cells induces loss of CD20 and acquisition of CD138, suggesting that 20+38hi B cells are precursors to plasmablasts, or pre-plasmablasts. We then evaluated similarities and differences between CD20+CD27+CD38lo/intCD43+ B-1 cells, CD20+CD27hiCD38hi 20+38hi B cells, CD20-CD27hiCD38hi plasmablasts, and CD20+CD27+CD38lo/intCD43- memory B cells. We found that B-1 cells differ from 20+38hi B cells and plasmablasts in numbers of ways, including antigen expression, morphological appearance, transcriptional profiling, antibody skewing, antibody repertoire, and secretory response to stimulation. In terms of gene expression, B-1 cells align more closely with memory B cells than with 20+38hi B cells or plasmablasts, but differ in that memory B cells do not express antibody secretion related genes. We found that, B-1 cell antibodies utilize Vh4-34, which is often associated with autoreactivity, 3 to 6-fold more often than other B cell populations. Along with selective production of IgM anti-PC, this data suggests that human B-1 cells might be preferentially selected for autoreactivity/natural-specificity. In sum, our results indicate that human healthy adult peripheral blood at steady state consists of 3 distinct ASC populations. PMID:26740107

  18. Immune complex orchitis in vasectomized rabbits

    PubMed Central

    1976-01-01

    The results of the present study show that bilaterally vasectomized rabbits with high levels of antibodies to sperm antigens frequently develop an orchitis associated with granular deposits of rabbit IgG and C3 in the basement membranes of seminiferous tubules. The immune deposits correspond in location to electron-opaque deposits seen by electron microscopy. The "membranous orchitis" is characterized by thickening of tubular basement membranes, acc-mulation of macrophages and a few polymorphonuclear leukocytes, and destruction of the basal lamina, of the Sertoli and spermatogenetic cells. The pathogenetic role of the immune deposits and the possibility that they contain antigen- antibody complexes is indicated by: (a) selective accumulation of IgG and C3 granular deposits along the basement membranes of seminiferous tubules in rabbits producing high and persistent levels of antibodies to sperm antigens; (b) the elution of immunoglobulins from tissues with chaotropic ion-containing buffers, acid buffers, or heat; (c) the observation that the immuno-globulins accumulated in the testis contain antibody to sperm antigens; and (d) the demonstration of sperm antigens in a location similar to that of IgG and C3. It is postulated that sperm antigen-antibody complexes are formed in the basement membranes of seminiferous tubules when antigens leaking out of the tubules react with specific antibody coming from the circulation. In two rabbits with higher levels of circulating antisperm antibodies and severe orchitis, granular deposits of IgG and C3 were also present in renal glomeruli. Immunoglobulins eluted from the kidneys contained antibody with antisperm activity. These findings are consistent with the hypothesis that in some vasectomized rabbits extratesticular lesions may develop by a mechanism comparable to that of chronic serum sickness. PMID:129498

  19. Shaping the CD4+ memory immune response against tuberculosis: the role of antigen persistence, location and multi-functionality.

    PubMed

    Ancelet, Lindsay; Kirman, Joanna

    2012-02-01

    Abstract Effective vaccination against intracellular pathogens, such as tuberculosis (TB), relies on the generation and maintenance of CD4 memory T cells. An incomplete understanding of the memory immune response has hindered the rational design of a new, more effective TB vaccine. This review discusses how the persistence of antigen, the location of memory cells, and their multifunctional ability shape the CD4 memory T cell response against TB.

  20. Establishment of anti-tumor memory in humans using in vitro-educated CD8+ T cells

    PubMed Central

    Butler, Marcus O.; Friedlander, Philip; Milstein, Matthew I.; Mooney, Mary M.; Metzler, Genita; Murray, Andrew P.; Tanaka, Makito; Berezovskaya, Alla; Imataki, Osamu; Drury, Linda; Brennan, Lisa; Flavin, Marisa; Neuberg, Donna; Stevenson, Kristen; Lawrence, Donald; Hodi, F. Stephen; Velazquez, Elsa F.; Jaklitsch, Michael T.; Russell, Sara E.; Mihm, Martin; Nadler, Lee M.; Hirano, Naoto

    2013-01-01

    While advanced stage melanoma patients have a median survival of less than a year, adoptive T cell therapy can induce durable clinical responses in some patients. Successful adoptive T cell therapy to treat cancer requires engraftment of anti-tumor T lymphocytes that not only retain specificity and function in vivo but also display an intrinsic capacity to survive. To date, adoptively transferred anti-tumor CD8+ T lymphocytes (CTL) have had limited life spans unless the host has been manipulated. To generate CTL that possess an intrinsic capacity to persist in vivo, we developed a human artificial antigen presenting cell system that can educate anti-tumor CTL to acquire both a central memory and effector memory phenotype as well as the capacity to survive in culture for prolonged periods of time. In the present report, we examined whether anti-tumor CTL generated using this system could function and persist in patients. Here, we showed that MART1-specific CTL, educated and expanded using our artificial antigen presenting cell system, could survive for prolonged periods in advanced stage melanoma patients without previous conditioning or cytokine treatment. Moreover, these CTL trafficked to the tumor, mediated biological and clinical responses, and established anti-tumor immunologic memory. Therefore, this approach may broaden the availability of adoptive cell therapy to patients both alone and in combination with other therapeutic modalities. PMID:21525398

  1. Immunization-induced anaplasma marginale-specific T lymphocyte reponses impaired by A. marginale infection are restored after eliminating the infection with tetracycline

    USDA-ARS?s Scientific Manuscript database

    Infection of cattle with Anaplasma marginale fails to prime sustained effector/memory T-cell responses, and high bacterial load may induce antigen-specific CD4 T exhaustion and deletion. We tested the hypothesis that clearance of persistent infection restores the exhausted T-cell response. We show t...

  2. DELAYED HYPERSENSITIVITY

    PubMed Central

    Uhr, Jonathan W.; Salvin, S. B.; Pappenheimer, A. M.

    1957-01-01

    A general method for induction of the delayed hypersensitive state directed against single protein antigens is described. The method consists of intradermal injection of minute amounts of washed immune precipitates containing the antigen in question. Provided the specific precipitates are formed in the region of antibody excess, maximal sensitivity develops at least 2 to 3 weeks before detectable circulating antibody is formed in guinea pigs against the sensitizing antigen. Neither adjuvant nor killed acid-fast bacteria are required for induction of the delayed hypersensitive state although the degree of sensitization is considerably increased when the sensitizing material is incorporated in Freund's complete adjuvant. Characteristics of the "delayed" as opposed to the "immediate" hypersensitive states in the guinea pig are described and implications of the findings are discussed. PMID:13385403

  3. Through the Immune Looking Glass: A Model for Brain Memory Strategies

    PubMed Central

    Sánchez-Ramón, Silvia; Faure, Florence

    2016-01-01

    The immune system (IS) and the central nervous system (CNS) are complex cognitive networks involved in defining the identity (self) of the individual through recognition and memory processes that enable one to anticipate responses to stimuli. Brain memory has traditionally been classified as either implicit or explicit on psychological and anatomical grounds, with reminiscences of the evolutionarily-based innate-adaptive IS responses. Beyond the multineuronal networks of the CNS, we propose a theoretical model of brain memory integrating the CNS as a whole. This is achieved by analogical reasoning between the operational rules of recognition and memory processes in both systems, coupled to an evolutionary analysis. In this new model, the hippocampus is no longer specifically ascribed to explicit memory but rather it both becomes part of the innate (implicit) memory system and tightly controls the explicit memory system. Alike the antigen presenting cells for the IS, the hippocampus would integrate transient and pseudo-specific (i.e., danger-fear) memories and would drive the formation of long-term and highly specific or explicit memories (i.e., the taste of the Proust’s madeleine cake) by the more complex and recent, evolutionarily speaking, neocortex. Experimental and clinical evidence is provided to support the model. We believe that the singularity of this model’s approximation could help to gain a better understanding of the mechanisms operating in brain memory strategies from a large-scale network perspective. PMID:26869886

  4. CHARACTERISTICS OF IMMUNOLOGICAL MEMORY IN MICE

    PubMed Central

    Black, S. J.; Inchley, C. J.

    1974-01-01

    The kinetics of the generation of primed IgM and IgG antibody-forming cell precursors, and of helper T-cell populations, were analyzed in mice whose primary responses to high and low doses of SRBC were arrested at intervals by the immunosuppressive agents cyclophosphamide monohydrate and specific antibody. The extent to which immunological memory was established in these animals before blockade of the primary response was assessed by the hemolytic plaque assay following challenge 12 wk after priming. The presence of IgG B-memory cells and T-memory cells in suppressed mice was further investigated by the transfer into these animals of syngeneic SRBC-stimulated thymocytes or anti-θ-treated spleen cells. It was found that the progenitors of secondary IgM-synthesizing cells were primed almost immediately after injection of antigen, and that early blockade of the primary response resulted in a raised IgM response after challenge. On the other hand, priming for a secondary IgG response took at least 4 days, and was dose-dependent, although helper T populations for a secondary IgG response appeared 3 days after antigen injection. It appeared that both IgM and IgG memory cells may be considered as Y cells in terms of the X-Y-Z scheme of lymphocyte activation, but that the two populations are generated at different times after exposure to antigen. The size of either Y-cell population at any given time is dependent upon the amount of antigen available to provoke differentiation to antibody-forming Z cells, and the IgM Y-cell population in particular is likely to be depleted during the course of a normal 1° response. When IgM Y cells were maintained for long periods as a result of immunosuppression, their secondary antibody response was independent of the primed T cells necessary for a secondary IgG response. PMID:4602981

  5. [Establishment of A1E3 and B1C4 monoclonal antibody-based ELISA for detecting circulating antigen of Schistosoma japonicum and its preliminary application].

    PubMed

    Cai, Yu-Chun; Chen, Shao-Hong; Tian, Li-Guang; Chu, Yan-Hong; Lu, Yan; Chen, Mu-Xin; Ai, Lin; Zhou, Yang; Chen, Jia-Xu

    2014-02-01

    To establish A1E3 and B1C4 monoclonal antibody-based ELISA for detecting circulating antigen of Schistosoma japonicum and explore its application value in the field. The characteristics of A1E3 and B1C4 monoclonal antibodies were analyzed by SDS-PAGE and Western blotting. The SEA-based ELISA was used to evaluate the titers of A1E3 and B1C4. The orthogonal test was used to determine the best concentration of coating antibody B1C4 and optimal working concentration of A1E3-HRP. Under the optimal conditions, the serum samples of 20 acute schistosomiasis cases, 46 chronic schistosomiasis cases, and 20 control sera were tested to evaluate its detection sensitivity and specificity. Seventy-two antibody positive serum samples from Jiangling County of Hubei Province were detected and compared to a commercially available ELISA kit, to evaluate the detection effects of this method. The results of SDS-PAGE demonstrated that the purified A1E3 and B1C4 contained a clear heavy chain with molecular weight of 88,000 and 52,000 respectively and had the same light chain with molecular weight of 20,000; while Western blotting demonstrated that A1E3 and B1C4 could be recognized by SEA and serum samples of acute schistosomiasis cases. The SEA-based ELISA demonstrated the titers of B1C4 and A1E3 were 1:10(5) and 1:30,000, respectively. The serum samples from all the acute cases and 86.9% of the chronic cases showed a positive reaction. All of the control sera from healthy persons gave a negative response. The positive rates of the double monoclonal antibody ELISA and commercial ELISA for detecting the circulating antigen were 45.8% and 43.1% respectively, and there was no significant difference between the results of the two methods. A1E3 and B1C4 monoclonal antibody-based ELISA is established successfully. It exhibits a high sensitivity and specificity in detecting circulating antigen of Schistosoma japonicum.

  6. Effect of heterogeneity of carcinoembryonic antigen on liver cell membrane binding and its kinetics of removal from circulation.

    PubMed

    Byrn, R A; Medrek, P; Thomas, P; Jeanloz, R W; Zamcheck, N

    1985-07-01

    Carcinoembryonic antigen (CEA) is a glycoprotein metabolized primarily by the liver. Subcellular fractions of rat liver were examined for CEA binding activity. Hepatocyte plasma membrane and microsome fractions bound CEA, and this binding shared the calcium requirement, neuraminidase sensitivity, and carbohydrate specificity of the hepatocyte asialoglycoprotein receptor. CEA had previously been shown to react with this galactose-specific receptor, in vivo, only following neuraminidase treatment. Galactose receptor binding of CEA was measured in three different purified CEA preparations. The fraction of CEA capable of binding to excess levels of galactose receptor on membranes varied (46.5%, 40.2%, and 4.7% for CEA-1, -2, and -3, respectively). These CEAs were shown to be 2.3%, 7.9%, and 0.7% as effective, respectively, as asialo-alpha 1-acid glycoprotein in inhibiting the binding of radiolabeled asialo-alpha 1-acid glycoprotein to liver cell membranes. Each of the three CEA preparations showed different clearance kinetics from the circulation of mice. Coinjection of asialo-alpha 1-acid glycoprotein with the CEAs revealed differing inhibition of the clearances. These results show that differences in the carbohydrate components of purified CEA preparations affect their rate of removal from circulation and thus possibly the relationship between CEA production and observed plasma levels in patients. The possible origin of these CEA differences is discussed with their clinical implications.

  7. Hemagglutinin-specific neutralization of subacute sclerosing panencephalitis viruses

    PubMed Central

    Muller, Claude P.; Russell, Stephen J.

    2018-01-01

    Subacute sclerosing panencephalitis (SSPE) is a progressive, lethal complication of measles caused by particular mutants of measles virus (MeV) that persist in the brain despite high levels of neutralizing antibodies. We addressed the hypothesis that antigenic drift is involved in the pathogenetic mechanism of SSPE by analyzing antigenic alterations in the MeV envelope hemagglutinin protein (MeV-H) found in patients with SSPE in relation to major circulating MeV genotypes. To this aim, we obtained cDNA for the MeV-H gene from tissue taken at brain autopsy from 3 deceased persons with SSPE who had short (3–4 months, SMa79), average (3.5 years, SMa84), and long (18 years, SMa94) disease courses. Recombinant MeVs with a substituted MeV-H gene were generated by a reverse genetic system. Virus neutralization assays with a panel of anti-MeV-H murine monoclonal antibodies (mAbs) or vaccine-immunized mouse anti-MeV-H polyclonal sera were performed to determine the antigenic relatedness. Functional and receptor-binding analysis of the SSPE MeV-H showed activity in a SLAM/nectin-4–dependent manner. Similar to our panel of wild-type viruses, our SSPE viruses showed an altered antigenic profile. Genotypes A, G3, and F (SSPE case SMa79) were the exception, with an intact antigenic structure. Genotypes D7 and F (SSPE SMa79) showed enhanced neutralization by mAbs targeting antigenic site IIa. Genotypes H1 and the recently reported D4.2 were the most antigenically altered genotypes. Epitope mapping of neutralizing mAbs BH015 and BH130 reveal a new antigenic site on MeV-H, which we designated Φ for its intermediate position between previously defined antigenic sites Ia and Ib. We conclude that SSPE-causing viruses show similar antigenic properties to currently circulating MeV genotypes. The absence of a direct correlation between antigenic changes and predisposition of a certain genotype to cause SSPE does not lend support to the proposed antigenic drift as a pathogenetic mechanism in SSPE. PMID:29466428

  8. Hemagglutinin-specific neutralization of subacute sclerosing panencephalitis viruses.

    PubMed

    Muñoz-Alía, Miguel Ángel; Muller, Claude P; Russell, Stephen J

    2018-01-01

    Subacute sclerosing panencephalitis (SSPE) is a progressive, lethal complication of measles caused by particular mutants of measles virus (MeV) that persist in the brain despite high levels of neutralizing antibodies. We addressed the hypothesis that antigenic drift is involved in the pathogenetic mechanism of SSPE by analyzing antigenic alterations in the MeV envelope hemagglutinin protein (MeV-H) found in patients with SSPE in relation to major circulating MeV genotypes. To this aim, we obtained cDNA for the MeV-H gene from tissue taken at brain autopsy from 3 deceased persons with SSPE who had short (3-4 months, SMa79), average (3.5 years, SMa84), and long (18 years, SMa94) disease courses. Recombinant MeVs with a substituted MeV-H gene were generated by a reverse genetic system. Virus neutralization assays with a panel of anti-MeV-H murine monoclonal antibodies (mAbs) or vaccine-immunized mouse anti-MeV-H polyclonal sera were performed to determine the antigenic relatedness. Functional and receptor-binding analysis of the SSPE MeV-H showed activity in a SLAM/nectin-4-dependent manner. Similar to our panel of wild-type viruses, our SSPE viruses showed an altered antigenic profile. Genotypes A, G3, and F (SSPE case SMa79) were the exception, with an intact antigenic structure. Genotypes D7 and F (SSPE SMa79) showed enhanced neutralization by mAbs targeting antigenic site IIa. Genotypes H1 and the recently reported D4.2 were the most antigenically altered genotypes. Epitope mapping of neutralizing mAbs BH015 and BH130 reveal a new antigenic site on MeV-H, which we designated Φ for its intermediate position between previously defined antigenic sites Ia and Ib. We conclude that SSPE-causing viruses show similar antigenic properties to currently circulating MeV genotypes. The absence of a direct correlation between antigenic changes and predisposition of a certain genotype to cause SSPE does not lend support to the proposed antigenic drift as a pathogenetic mechanism in SSPE.

  9. [Mechanisms of immune deposit formation in glomerulonephritis].

    PubMed

    Bussolati, B; Camussi, G

    1996-03-01

    Recent experimental studies allowed the identification of several mechanisms of immune deposit formation, which are able to reproduce the morphological and clinical pattern of human glomerulonephritis. Moreover, it was shown that most of the lesions considered, in the past, as due to circulating immune complexes (IC), are instead caused by the "in situ" formation of IC. As a result of these studies, the following schematic classification was proposed: 1) immune deposits formed by glomerular localization of IC primarily formed in the circulation; 2) immune deposits formed "in situ" by reaction of circulating antibodies with fixed structural antigens; 3) immune deposits formed "in situ" by antibodies reactive with movable structural antigens; 4) immune deposits formed "in situ" by antibodies reactive with sequestered antigens leaking out of tissues; 5) IC formed "in situ" by antibodies reactive with exogenous or non-glomerular endogenous antigens planted in the glomeruli; 6) ANCA-associated glomerular disease.

  10. Heat killed Saccharomyces cerevisiae as an adjuvant for the induction of vaccine-mediated immunity against infection with Mycobacterium tuberculosis.

    PubMed

    Grover, Ajay; McLean, Jennifer L; Troudt, JoLynn M; Foster, Chad; Izzo, Linda; Creissen, Elisabeth; MacDonald, Elisabeth; Troy, Amber; Izzo, Angelo A

    2016-05-27

    The use of novel vaccine delivery systems allows for the manipulation of the adaptive immune systems through the use of molecular adjuvants that target specific innate pathways. Such strategies have been used extensively for vaccines against cancer and multiple pathogens such as Mycobacterium tuberculosis. In the current study we used heat killed non-pathogenic recombinant Saccharomyces cerevisiae expressing M. tuberculosis antigen Rv1886c (fbpB, mpt59, Ag85B) as a delivery system in conjunction with its ability to stimulate innate immunity to determine its ability to induce immunity. We established that the recombinant yeast induced activated antigen specific T cells are capable of reducing the mycobacterial burden. Inoculation of the recombinant yeast after vaccination with BCG resulted in a systemic alteration of the phenotype of the immune response although this was not reflected in an increase in the reduction of the mycobacterial burden. Taken together the data suggest that heat killed yeast can induce multiple cytokines required for induction of protective immunity and can function as a vehicle for delivery of M. tuberculosis antigens in a vaccine formulation. In addition, while it can enhance the effector memory response induced by BCG, it had little effect on central memory responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. T-cell memory responses elicited by yellow fever vaccine are targeted to overlapping epitopes containing multiple HLA-I and -II binding motifs.

    PubMed

    de Melo, Andréa Barbosa; Nascimento, Eduardo J M; Braga-Neto, Ulisses; Dhalia, Rafael; Silva, Ana Maria; Oelke, Mathias; Schneck, Jonathan P; Sidney, John; Sette, Alessandro; Montenegro, Silvia M L; Marques, Ernesto T A

    2013-01-01

    The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4(+) and CD8(+) T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, "promiscuous" T-cell antigens might contribute to the high efficacy of the yellow fever vaccines.

  12. T-Cell Memory Responses Elicited by Yellow Fever Vaccine are Targeted to Overlapping Epitopes Containing Multiple HLA-I and -II Binding Motifs

    PubMed Central

    de Melo, Andréa Barbosa; Nascimento, Eduardo J. M.; Braga-Neto, Ulisses; Dhalia, Rafael; Silva, Ana Maria; Oelke, Mathias; Schneck, Jonathan P.; Sidney, John; Sette, Alessandro; Montenegro, Silvia M. L.; Marques, Ernesto T. A.

    2013-01-01

    The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4+ and CD8+ T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, “promiscuous” T-cell antigens might contribute to the high efficacy of the yellow fever vaccines. PMID:23383350

  13. Limited Model Antigen Expression by Transgenic Fungi Induces Disparate Fates during Differentiation of Adoptively Transferred T Cell Receptor Transgenic CD4+ T Cells: Robust Activation and Proliferation with Weak Effector Function during Recall

    PubMed Central

    Ersland, Karen; Pick-Jacobs, John C.; Gern, Benjamin H.; Frye, Christopher A.; Sullivan, Thomas D.; Brennan, Meghan B.; Filutowicz, Hanna I.; O'Brien, Kevin; Korthauer, Keegan D.; Schultz-Cherry, Stacey; Klein, Bruce S.

    2012-01-01

    CD4+ T cells are the key players of vaccine resistance to fungi. The generation of effective T cell-based vaccines requires an understanding of how to induce and maintain CD4+ T cells and memory. The kinetics of fungal antigen (Ag)-specific CD4+ T cell memory development has not been studied due to the lack of any known protective epitopes and clonally restricted T cell subsets with complementary T cell receptors (TCRs). Here, we investigated the expansion and function of CD4+ T cell memory after vaccination with transgenic (Tg) Blastomyces dermatitidis yeasts that display a model Ag, Eα-mCherry (Eα-mCh). We report that Tg yeast led to Eα display on Ag-presenting cells and induced robust activation, proliferation, and expansion of adoptively transferred TEa cells in an Ag-specific manner. Despite robust priming by Eα-mCh yeast, antifungal TEa cells recruited and produced cytokines weakly during a recall response to the lung. The addition of exogenous Eα-red fluorescent protein (RFP) to the Eα-mCh yeast boosted the number of cytokine-producing TEa cells that migrated to the lung. Thus, model epitope expression on yeast enables the interrogation of Ag presentation to CD4+ T cells and primes Ag-specific T cell activation, proliferation, and expansion. However, the limited availability of model Ag expressed by Tg fungi during T cell priming blunts the downstream generation of effector and memory T cells. PMID:22124658

  14. Impaired Epstein-Barr Virus-Specific Neutralizing Antibody Response during Acute Infectious Mononucleosis Is Coincident with Global B-Cell Dysfunction.

    PubMed

    Panikkar, Archana; Smith, Corey; Hislop, Andrew; Tellam, Nick; Dasari, Vijayendra; Hogquist, Kristin A; Wykes, Michelle; Moss, Denis J; Rickinson, Alan; Balfour, Henry H; Khanna, Rajiv

    2015-09-01

    Here we present evidence for previously unappreciated B-cell immune dysregulation during acute Epstein-Barr virus (EBV)-associated infectious mononucleosis (IM). Longitudinal analyses revealed that patients with acute IM have undetectable EBV-specific neutralizing antibodies and gp350-specific B-cell responses, which were associated with a significant reduction in memory B cells and no evidence of circulating antibody-secreting cells. These observations correlate with dysregulation of tumor necrosis factor family members BAFF and APRIL and increased expression of FAS on circulating B cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Antigens in tea-beverage prime human Vγ2Vδ2 T cells in vitro and in vivo for memory and nonmemory antibacterial cytokine responses

    PubMed Central

    Kamath, Arati B.; Wang, Lisheng; Das, Hiranmoy; Li, Lin; Reinhold, Vernon N.; Bukowski, Jack F.

    2003-01-01

    Human γδ T cells mediate innate immunity to microbes via T cell receptor-dependent recognition of unprocessed antigens with conserved molecular patterns. These nonpeptide alkylamine antigens are shared by tumor cells, bacteria, parasites, and fungi but also by edible plant products such as tea, apples, mushrooms, and wine. Here we show that priming of γδ T cells with alkylamine antigens in vitro results in a memory response to these antigens. Such priming results also in a nonmemory response to whole bacteria and to lipopolysaccharide, characterized by IL-12-dependent secretion of IFN-γ by γδ T cells and by γδ T cell proliferation. Drinking tea, which contains l-theanine, a precursor of the nonpeptide antigen ethylamine, primed peripheral blood γδ T cells to mediate a memory response on reexposure to ethylamine and to secrete IFN-γ in response to bacteria. This unique combination of innate immune response and immunologic memory shows that γδ T cells can function as a bridge between innate and acquired immunity. In addition, these data provide an explanation for the health benefits of tea. PMID:12719524

  16. Central Memory CD4+ T Cells Are Responsible for the Recombinant Bacillus Calmette-Guérin ΔureC::hly Vaccine's Superior Protection Against Tuberculosis

    PubMed Central

    Vogelzang, Alexis; Perdomo, Carolina; Zedler, Ulrike; Kuhlmann, Stefanie; Hurwitz, Robert; Gengenbacher, Martin; Kaufmann, Stefan H. E.

    2014-01-01

    Bacillus Calmette-Guérin (BCG) has been used for vaccination against tuberculosis for nearly a century. Here, we analyze immunity induced by a live tuberculosis vaccine candidate, recombinant BCG ΔureC::hly vaccine (rBCG), with proven preclinical and clinical safety and immunogenicity. We pursue in-depth analysis of the endogenous mycobacteria-specific CD4+ T-cell population, comparing the more efficacious rBCG with canonical BCG to determine which T-cell memory responses are prerequisites for superior protection against tuberculosis. rBCG induced higher numbers and proportions of antigen-specific memory CD4+ T cells than BCG, with a CXCR5+CCR7+ phenotype and low expression of the effector transcription factors T-bet and Bcl-6. We found that the superior protection of rBCG, compared with BCG, correlated with higher proportions and numbers of these central memory T cells and of T follicular helper cells associated with specific antibody responses. Adoptive transfer of mycobacteria-specific central memory T cells validated their critical role in protection against pulmonary tuberculosis. PMID:24943726

  17. Robust Humoral and Cellular Immune Responses to Pertussis in Adults After a First Acellular Booster Vaccination.

    PubMed

    van der Lee, Saskia; van Rooijen, Debbie M; de Zeeuw-Brouwer, Mary-Lène; Bogaard, Marjan J M; van Gageldonk, Pieter G M; Marinovic, Axel Bonacic; Sanders, Elisabeth A M; Berbers, Guy A M; Buisman, Anne-Marie

    2018-01-01

    To reduce the pertussis disease burden, nowadays several countries recommend acellular pertussis (aP) booster vaccinations for adults. We aimed to evaluate the immunogenicity of a first adult aP booster vaccination at childbearing age. In 2014, healthy adults aged 25-29 years ( n  = 105), vaccinated during infancy with four doses of whole-cell pertussis (wP) vaccine, received a Tdap (tetanus, diphtheria, and aP) booster vaccination. Blood samples were collected longitudinally pre-booster, 2 and 4 weeks, and 1 year and 2 years post-booster. Tdap vaccine antigen-specific antibody levels and memory B- and T-cell responses were determined at all time points. Antibody persistence was calculated using a bi-exponential decay model. Upon booster vaccination, the IgG levels specific to all Tdap vaccine antigens were significantly increased. After an initial rapid decline in the first year, PT-IgG antibody decay was limited (15%) in the second year post-booster. The duration of a median level of PT-IgG ≥20 IU/mL was estimated to be approximately 9 years. Vaccine antigen-specific memory B- and T-cell numbers increased and remained at high levels although a significant decline was observed after 4 weeks post-booster. However, Th1, Th2, and Th17 cytokine production remained above pre-booster levels for 2 years. The Tdap booster vaccination in wP-primed Dutch adults induced robust long-term humoral and cellular immune responses to pertussis antigens. Furthermore, PT-IgG levels are predicted to remain above the presumed protective cut-off for at least 9 years which might deserves further attention in evaluating the current recommendation to revaccinate women during every new pregnancy.

  18. Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas.

    PubMed

    Ochodo, Eleanor A; Gopalakrishna, Gowri; Spek, Bea; Reitsma, Johannes B; van Lieshout, Lisette; Polman, Katja; Lamberton, Poppy; Bossuyt, Patrick M M; Leeflang, Mariska M G

    2015-03-11

    Point-of-care (POC) tests for diagnosing schistosomiasis include tests based on circulating antigen detection and urine reagent strip tests. If they had sufficient diagnostic accuracy they could replace conventional microscopy as they provide a quicker answer and are easier to use. To summarise the diagnostic accuracy of: a) urine reagent strip tests in detecting active Schistosoma haematobium infection, with microscopy as the reference standard; and b) circulating antigen tests for detecting active Schistosoma infection in geographical regions endemic for Schistosoma mansoni or S. haematobium or both, with microscopy as the reference standard. We searched the electronic databases MEDLINE, EMBASE, BIOSIS, MEDION, and Health Technology Assessment (HTA) without language restriction up to 30 June 2014. We included studies that used microscopy as the reference standard: for S. haematobium, microscopy of urine prepared by filtration, centrifugation, or sedimentation methods; and for S. mansoni, microscopy of stool by Kato-Katz thick smear. We included studies on participants residing in endemic areas only. Two review authors independently extracted data, assessed quality of the data using QUADAS-2, and performed meta-analysis where appropriate. Using the variability of test thresholds, we used the hierarchical summary receiver operating characteristic (HSROC) model for all eligible tests (except the circulating cathodic antigen (CCA) POC for S. mansoni, where the bivariate random-effects model was more appropriate). We investigated heterogeneity, and carried out indirect comparisons where data were sufficient. Results for sensitivity and specificity are presented as percentages with 95% confidence intervals (CI). We included 90 studies; 88 from field settings in Africa. The median S. haematobium infection prevalence was 41% (range 1% to 89%) and 36% for S. mansoni (range 8% to 95%). Study design and conduct were poorly reported against current standards. Tests for S. haematobium Urine reagent test strips versus microscopyCompared to microscopy, the detection of microhaematuria on test strips had the highest sensitivity and specificity (sensitivity 75%, 95% CI 71% to 79%; specificity 87%, 95% CI 84% to 90%; 74 studies, 102,447 participants). For proteinuria, sensitivity was 61% and specificity was 82% (82,113 participants); and for leukocyturia, sensitivity was 58% and specificity 61% (1532 participants). However, the difference in overall test accuracy between the urine reagent strips for microhaematuria and proteinuria was not found to be different when we compared separate populations (P = 0.25), or when direct comparisons within the same individuals were performed (paired studies; P = 0.21).When tests were evaluated against the higher quality reference standard (when multiple samples were analysed), sensitivity was marginally lower for microhaematuria (71% vs 75%) and for proteinuria (49% vs 61%). The specificity of these tests was comparable. Antigen assayCompared to microscopy, the CCA test showed considerable heterogeneity; meta-analytic sensitivity estimate was 39%, 95% CI 6% to 73%; specificity 78%, 95% CI 55% to 100% (four studies, 901 participants). Tests for S. mansoni Compared to microscopy, the CCA test meta-analytic estimates for detecting S. mansoni at a single threshold of trace positive were: sensitivity 89% (95% CI 86% to 92%); and specificity 55% (95% CI 46% to 65%; 15 studies, 6091 participants) Against a higher quality reference standard, the sensitivity results were comparable (89% vs 88%) but specificity was higher (66% vs 55%). For the CAA test, sensitivity ranged from 47% to 94%, and specificity from 8% to 100% (4 studies, 1583 participants). Among the evaluated tests for S. haematobium infection, microhaematuria correctly detected the largest proportions of infections and non-infections identified by microscopy.The CCA POC test for S. mansoni detects a very large proportion of infections identified by microscopy, but it misclassifies a large proportion of microscopy negatives as positives in endemic areas with a moderate to high prevalence of infection, possibly because the test is potentially more sensitive than microscopy.

  19. Evaluation of profile and functionality of memory T cells in pulmonary tuberculosis.

    PubMed

    Tonaco, Marcela M; Moreira, Jôsimar D; Nunes, Fernanda F C; Loures, Cristina M G; Souza, Larissa R; Martins, Janaina M; Silva, Henrique R; Porto, Arthur Henrique R; Toledo, Vicente Paulo C P; Miranda, Silvana S; Guimarães, Tânia Mara P D

    2017-12-01

    The cells T CD4+ T and CD8+ can be subdivided into phenotypes naïve, T of central memory, T of effector memory and effector, according to the expression of surface molecules CD45RO and CD27. The T lymphocytes are cells of long life with capacity of rapid expansion and function, after a new antigenic exposure. In tuberculosis, it was found that specific memory T cells are present, however, gaps remain about the role of such cells in the disease immunology. In this study, the phenotypic profile was analyzed and characterized the functionality of CD4+ T lymphocytes and CD8+ T cells of memory and effector, in response to specific stimuli in vitro, in patients with active pulmonary TB, compared to individuals with latent infection with Mycobacterium tuberculosis the ones treated with pulmonary TB. It was observed that the group of patients with active pulmonary tuberculosis was the one which presented the highest proportion of cells T CD4+ of central memory IFN-ɣ+ e TNF-α+, suggesting that in TB, these T of central memory cells would have a profile of protective response, being an important target of study for the development of more effective vaccines; this group also developed lower proportion of CD8+ T effector lymphocytes than the others, a probable cause of specific and less effective response against the bacillus in these individuals; the ones treated for pulmonary tuberculosis were those who developed higher proportion of T CD4+ of memory central IL-17+ cells, indicating that the stimulation of long duration, with high antigenic load, followed by elimination of the pathogen, contribute to more significant generation of such cells; individuals with latent infection by M. tuberculosis and treated for pulmonary tuberculosis, showed greater response of CD8+ T effector lymphocytes IFN-ɣ+ than the controls, suggesting that these cells, as well as CD4+ T lymphocytes, have crucial role of protection against M. tuberculosis. These findings have contributed to a better understanding of the immunologic changes in M. tuberculosis infection and the development of new strategies for diagnosis and prevention of tuberculosis. Copyright © 2017. Published by Elsevier B.V.

  20. Genomewide analysis of reassortment and evolution of human influenza A(H3N2) viruses circulating between 1968 and 2011.

    PubMed

    Westgeest, Kim B; Russell, Colin A; Lin, Xudong; Spronken, Monique I J; Bestebroer, Theo M; Bahl, Justin; van Beek, Ruud; Skepner, Eugene; Halpin, Rebecca A; de Jong, Jan C; Rimmelzwaan, Guus F; Osterhaus, Albert D M E; Smith, Derek J; Wentworth, David E; Fouchier, Ron A M; de Graaf, Miranda

    2014-03-01

    Influenza A(H3N2) viruses became widespread in humans during the 1968 H3N2 virus pandemic and have been a major cause of influenza epidemics ever since. These viruses evolve continuously by reassortment and genomic evolution. Antigenic drift is the cause for the need to update influenza vaccines frequently. Using two data sets that span the entire period of circulation of human influenza A(H3N2) viruses, it was shown that influenza A(H3N2) virus evolution can be mapped to 13 antigenic clusters. Here we analyzed the full genomes of 286 influenza A(H3N2) viruses from these two data sets to investigate the genomic evolution and reassortment patterns. Numerous reassortment events were found, scattered over the entire period of virus circulation, but most prominently in viruses circulating between 1991 and 1998. Some of these reassortment events persisted over time, and one of these coincided with an antigenic cluster transition. Furthermore, selection pressures and nucleotide and amino acid substitution rates of all proteins were studied, including those of the recently discovered PB1-N40, PA-X, PA-N155, and PA-N182 proteins. Rates of nucleotide and amino acid substitutions were most pronounced for the hemagglutinin, neuraminidase, and PB1-F2 proteins. Selection pressures were highest in hemagglutinin, neuraminidase, matrix 1, and nonstructural protein 1. This study of genotype in relation to antigenic phenotype throughout the period of circulation of human influenza A(H3N2) viruses leads to a better understanding of the evolution of these viruses. Each winter, influenza virus infects approximately 5 to 15% of the world's population, resulting in significant morbidity and mortality. Influenza A(H3N2) viruses evolve continuously by reassortment and genomic evolution. This leads to changes in antigenic recognition (antigenic drift) which make it necessary to update vaccines against influenza A(H3N2) viruses frequently. In this study, the relationship of genetic evolution to antigenic change spanning the entire period of A(H3N2) virus circulation was studied for the first time. The results presented in this study contribute to a better understanding of genetic evolution in correlation with antigenic evolution of influenza A(H3N2) viruses.

  1. HCG-. beta. -subunit radioimmunoassay: potential error in HCG measurement related to choice of labeled antigen. [/sup 125/I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyrey, L.; Hammond, C.B.

    1976-05-15

    Antiserum generated against the hormone-specific ..beta..-subunit of hCG was used with different labeled antigens to measure circulating hCG in patients having trophoblastic disease. When /sup 125/I-hCG..beta.. served as the labeled antigen, a small number of patient sera failed to show parallelism with the second IS-hCG reference and erroneous estimates of hormone concentrations were obtained. Replacement of the /sup 125/I-hCG..beta.. with labeled hCG corrected the nonparallelism exhibited by these samples. Inhibition curves obtained with purified hCG and hCG..beta.. suggested that both the nonparallelism and its correction with the change in labeled antigen would be consistent with the possibility that this assaymore » aberration may result from the presence of free hCG..beta.. in these sera. (auth)« less

  2. Antibody localization in the glomerular basement membrane may precede in situ immune deposit formation in rat glomeruli.

    PubMed

    Agodoa, L Y; Gauthier, V J; Mannik, M

    1985-02-01

    The administration of cationized antibodies, specific to human serum albumin, into the renal artery of rats caused transient presence of IgG in glomeruli by immunofluorescence microscopy. Intravenous infusion of appropriate doses of antigen after the injection of cationized antibodies resulted in immune deposit formation in glomeruli that persisted through 96 hr. By electron microscopy, these deposits were located in the subepithelial area. The injection of large doses of antigen produced immune deposits which were present in glomeruli for only a few hours, presumably due to formation of only small-latticed immune complexes. The presented data indicate that cationic antibodies bound to the fixed negative charges of the glomerular basement membrane can interact with circulating antigen to form immune deposits in glomeruli. This mechanism may be important because anionic antigens have been shown to induce the synthesis of cationic antibodies.

  3. Detection of Circulating Paracoccidioides brasiliensis Antigen in Urine of Paracoccidioidomycosis Patients before and during Treatment

    PubMed Central

    Salina, Margarete Aparecida; Shikanai-Yasuda, Maria Aparecida; Mendes, Rinaldo Poncio; Barraviera, Benedito; Mendes Giannini, Maria José Soares

    1998-01-01

    For the diagnosis and follow-up of paracoccidioidomycosis patients undergoing therapy, we evaluated two methods (immunoblotting and competition enzyme immunoassay) for the detection of circulating antigen in urine samples. A complex pattern of reactivity was observed in the immunoblot test. Bands of 70 and 43 kDa were detected more often in urine samples from patients before treatment. The immunoblot method detected gp43 and gp70 separately or concurrently in 11 (91.7%) of 12 patients, whereas the competition enzyme immunoassay detected antigenuria in 9 (75%) of 12 patients. Both tests appeared to be highly specific (100%), considering that neither fraction detectable by immunoblotting was present in urine samples from the control group. gp43 remained present in the urine samples collected during the treatment period, with a significant decrease in reactivity in samples collected during clinical recovery and increased reactivity in samples collected during relapses. Reactivity of some bands was also detected in urine specimens from patients with “apparent cure.” The detection of Paracoccidioides brasiliensis antigens in urine appears to be a promising method for diagnosing infection, for evaluating the efficacy of treatment, and for detecting relapse. PMID:9620407

  4. Hepatitis C virus Broadly Neutralizing Monoclonal Antibodies Isolated 25 Years after Spontaneous Clearance.

    PubMed

    Merat, Sabrina J; Molenkamp, Richard; Wagner, Koen; Koekkoek, Sylvie M; van de Berg, Dorien; Yasuda, Etsuko; Böhne, Martino; Claassen, Yvonne B; Grady, Bart P; Prins, Maria; Bakker, Arjen Q; de Jong, Menno D; Spits, Hergen; Schinkel, Janke; Beaumont, Tim

    2016-01-01

    Hepatitis C virus (HCV) is world-wide a major cause of liver related morbidity and mortality. No vaccine is available to prevent HCV infection. To design an effective vaccine, understanding immunity against HCV is necessary. The memory B cell repertoire was characterized from an intravenous drug user who spontaneously cleared HCV infection 25 years ago. CD27+IgG+ memory B cells were immortalized using BCL6 and Bcl-xL. These immortalized B cells were used to study antibody-mediated immunity against the HCV E1E2 glycoproteins. Five E1E2 broadly reactive antibodies were isolated: 3 antibodies showed potent neutralization of genotype 1 to 4 using HCV pseudotyped particles, whereas the other 2 antibodies neutralized genotype 1, 2 and 3 or 1 and 2 only. All antibodies recognized non-linear epitopes on E2. Finally, except for antibody AT12-011, which recognized an epitope consisting of antigenic domain C /AR2 and AR5, all other four antibodies recognized epitope II and domain B. These data show that a subject, who spontaneously cleared HCV infection 25 years ago, still has circulating memory B cells that are able to secrete broadly neutralizing antibodies. Presence of such memory B cells strengthens the argument for undertaking the development of an HCV vaccine.

  5. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations.

    PubMed

    Maruyama, Sandra R; Garcia, Gustavo R; Teixeira, Felipe R; Brandão, Lucinda G; Anderson, Jennifer M; Ribeiro, José M C; Valenzuela, Jesus G; Horackova, Jana; Veríssimo, Cecília J; Katiki, Luciana M; Banin, Tamy M; Zangirolamo, Amanda F; Gardinassi, Luiz G; Ferreira, Beatriz R; de Miranda-Santos, Isabel K F

    2017-04-26

    Ticks cause massive damage to livestock and vaccines are one sustainable substitute for the acaricides currently heavily used to control infestations. To guide antigen discovery for a vaccine that targets the gamut of parasitic strategies mediated by tick saliva and enables immunological memory, we exploited a transcriptome constructed from salivary glands from all stages of Rhipicephalus microplus ticks feeding on genetically tick-resistant and susceptible bovines. Different levels of host anti-tick immunity affected gene expression in tick salivary glands; we thus selected four proteins encoded by genes weakly expressed in ticks attempting to feed on resistant hosts or otherwise abundantly expressed in ticks fed on susceptible hosts; these sialoproteins mediate four functions of parasitism deployed by male ticks and that do not induce antibodies in naturally infected, susceptible bovines. We then evaluated in tick-susceptible heifers an alum-adjuvanted vaccine formulated with recombinant proteins. Parasite performance (i.e. weight and numbers of females finishing their parasitic cycle) and titres of antigen-specific antibodies were significantly reduced or increased, respectively, in vaccinated versus control heifers, conferring an efficacy of 73.2%; two of the antigens were strong immunogens, rich in predicted T-cell epitopes and challenge infestations boosted antibody responses against them. Mining sialotranscriptomes guided by the immunity of tick-resistant hosts selected important targets and infestations boosted immune memory against salivary antigens.

  6. Heterologous prime-boost regimens with a recombinant chimpanzee adenoviral vector and adjuvanted F4 protein elicit polyfunctional HIV-1-specific T-Cell responses in macaques.

    PubMed

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides, adenoviral vector priming modulated the cytokine-expression profile of the protein-induced CD4+ T cells. Each regimen induced HIV-1-specific T-cell responses in systemic/local tissues in mice. This suggests that prime-boost regimens combining adjuvanted protein and low-seroprevalent chimpanzee adenoviral vectors represent an attractive vaccination strategy for clinical evaluation.

  7. Heterologous Prime-Boost Regimens with a Recombinant Chimpanzee Adenoviral Vector and Adjuvanted F4 Protein Elicit Polyfunctional HIV-1-Specific T-Cell Responses in Macaques

    PubMed Central

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN (‘A’), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 (‘P’), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides, adenoviral vector priming modulated the cytokine-expression profile of the protein-induced CD4+ T cells. Each regimen induced HIV-1-specific T-cell responses in systemic/local tissues in mice. This suggests that prime-boost regimens combining adjuvanted protein and low-seroprevalent chimpanzee adenoviral vectors represent an attractive vaccination strategy for clinical evaluation. PMID:25856308

  8. Anti-N-methyl-D-aspartate receptor and anti-ribosomal-P autoantibodies contribute to cognitive dysfunction in systemic lupus erythematosus.

    PubMed

    Massardo, L; Bravo-Zehnder, M; Calderón, J; Flores, P; Padilla, O; Aguirre, J M; Scoriels, L; González, A

    2015-05-01

    Autoantibodies against N-methyl-D-aspartate receptor (anti-NMDAR) and ribosomal-P (anti-P) antigens are potential pathogenic factors in the frequently observed diffuse brain dysfunctions in patients with systemic lupus erythematosus (SLE). Although studies have been conducted in this area, the role of anti-NMDAR antibodies in SLE cognitive dysfunction remains elusive. Moreover, the specific contribution of anti-P antibodies has not been reported yet. The present study attempts to clarify the contribution of anti-NMDAR and anti-P antibodies to cognitive dysfunction in SLE. The Cambridge Neuropsychological Test Automated Battery (CANTAB) was used to assess a wide range of cognitive function areas in 133 Chilean women with SLE. ANCOVA models included autoantibodies, patient and disease features. Cognitive deficit was found in 20%. Higher SLEDAI-2K scores were associated with impairment in spatial memory and learning abilities, whereas both anti-NMDAR and anti-P antibodies contributed to deficits in attention and spatial planning abilities, which reflect fronto-parietal cortex dysfunctions. These results reveal an association of active disease together with specific circulating autoantibodies, such as anti-NMDAR and anti-P, with cognitive dysfunction in SLE patients. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Immune Tolerance in Multiple Sclerosis

    PubMed Central

    Goverman, Joan M.

    2011-01-01

    Summary Multiple sclerosis is believed to be mediated by T cells specific for myelin antigens that circulate harmlessly in the periphery of healthy individuals until they are erroneously by an environmental stimulus. Upon activation, the T cells enter the central nervous system and orchestrate an immune response against myelin. To understand the initial steps in the pathogenesis of multiple sclerosis, it is important to identify the mechanisms that maintain T-cell tolerance to myelin antigens and to understand how some myelin-specific T cells escape tolerance and what conditions lead to their activation. Central tolerance strongly shapes the peripheral repertoire of myelin-specific T cells, as most myelin-specific T cells are eliminated by clonal deletion in the thymus. Self-reactive T cells that escape central tolerance are generally capable only of low-avidity interactions with antigen-presenting cells. Despite the low avidity of these interactions, peripheral tolerance mechanisms are required to prevent spontaneous autoimmunity. Multiple peripheral tolerance mechanisms for myelin-specific T cells have been indentified, the most important of which appears to be regulatory T cells. While most studies have focused on CD4+ myelin-specific T cells, interesting differences in tolerance mechanisms and the conditions that abrogate these mechanisms have recently been described for CD8+ myelin-specific T cells. PMID:21488900

  10. Transfer of allogeneic CD4+ T cells rescues CD8+ T cells in anti-PD-L1–resistant tumors leading to tumor eradication

    PubMed Central

    Arina, Ainhoa; Karrison, Theodore; Galka, Eva; Schreiber, Karin; Weichselbaum, Ralph R.; Schreiber, Hans

    2017-01-01

    Adoptively transferred CD8+ T cells can stabilize the size of solid tumors over long periods of time by exclusively recognizing antigen cross-presented on tumor stroma. However, these tumors eventually escape T cell–mediated growth control. The aim of this study was to eradicate such persistent cancers. In our model, the SIYRYYGL antigen is expressed by cancer cells that lack the MHC-I molecule Kb needed for direct presentation, but the antigen is picked up and cross-presented by tumor stroma. A single injection of antigen-specific 2C CD8+ T cells caused long-term inhibition of tumor growth, but without further intervention, tumors started to progress after approximately 3 months. Escape was associated with reduced numbers of circulating 2C cells. Tumor-infiltrating 2C cells produced significantly less TNFα and expressed more of the “exhaustion” markers PD-1 and Tim-3 than T cells from lymphoid organs. High-dose local ionizing radiation, depletion of myeloid-derived suppressor cells, infusions of additional 2C cells, and antibodies blocking PD-L1 did not prevent tumor escape. In contrast, adoptive transfer of allogeneic CD4+ T cells restored the numbers of circulating Ag-specific CD8+ T cells and their intratumoral function, resulting in tumor eradication. These CD4+ T cells had no antitumor effects in the absence of CD8+ T cells and recognized the alloantigen cross-presented on tumor stroma. CD4+ T cells might also be effective in cancer patients when PD1/PD-L1 blockade does not rescue intratumoral CD8+ T-cell function and tumors persist. PMID:28077434

  11. Epitope-Specific Suppression of IgG Responses by Passively Administered Specific IgG: Evidence of Epitope Masking.

    PubMed

    Bergström, Joakim J E; Xu, Hui; Heyman, Birgitta

    2017-01-01

    Specific IgG, passively administered together with particulate antigen, can completely prevent induction of antibody responses to this antigen. The ability of IgG to suppress antibody responses to sheep red blood cells (SRBCs) is intact in mice lacking FcγRs, complement factor 1q, C3, or complement receptors 1 and 2, suggesting that Fc-dependent effector functions are not involved. Two of the most widely discussed explanations for the suppressive effect are increased clearance of IgG-antigen complexes and/or that IgG "hides" the antigen from recognition by specific B cells, so-called epitope masking. The majority of data on how IgG induces suppression was obtained through studies of the effects on IgM-secreting single spleen cells during the first week after immunization. Here, we show that IgG also suppresses antigen-specific extrafollicular antibody-secreting cells, germinal center B-cells, long-lived plasma cells, long-term IgG responses, and induction of memory antibody responses. IgG anti-SRBC reduced the amount of SRBC in the spleens of wild-type, but not of FcγR-deficient mice. However, no correlation between suppression and the amount of SRBC in the spleen was observed, suggesting that increased clearance does not explain IgG-mediated suppression. Instead, we found compelling evidence for epitope masking because IgG anti-NP administered with NP-SRBC suppressed the IgG anti-NP, but not the IgG anti-SRBC response. Vice versa, IgG anti-SRBC administered with NP-SRBC, suppressed only the IgG anti-SRBC response. In conclusion, passively transferred IgG suppressed all measured parameters of an antigen-specific antibody/B cell response and an important mechanism of action is likely to be epitope masking.

  12. Using the AD12-ICT rapid-format test to detect Wuchereria bancrofti circulating antigens in comparison to Og4C3-ELISA and nucleopore membrane filtration and microscopy techniques.

    PubMed

    El-Moamly, Amal Abdul-Rasheed; El-Sweify, Mohamed Aly; Hafez, Mohamad Abdul

    2012-09-01

    Lymphatic filariasis (LF) continues to be a major source of permanent disability and an impediment to socio-economic development in 73 countries where more than 1 billion people are at risk and over 120 millions are infected. The global drive to eliminate LF necessitates an increasing demand for valid, reliable and rapid diagnostic tests. This study aimed to assess the performance of the AD12 rapid format immunochromatographic test (ICT) to detect Wuchereria bancrofti circulating antigens, against the combined gold standard: TropBio Og4C3-ELISA (enzyme-linked immunosorbent assay) which detects circulating filarial antigen (CFA) and the nucleopore membrane filtration and microscopic examination. This prospective case-control study involved 647 asymptomatic migrant workers from filariasis-endemic countries. Of these specimens, 32 were positive for microfilaremia using the membrane filtration and microscopy, 142 positive by ELISA (of which 32 had microfilaremia), and 128 positive by the ICT (of which 31 had microfilaremia). The performance of the ICT was calculated against 32 true-positive and 90 true-negative cases. For the detection of CFA, the ICT had a sensitivity of 97% (95% confidence interval [CI] 91-103), specificity 100% (95% CI 100-100), Positive Predictive Value (PPV) 100% (95% CI 100-100), Negative Predictive Value (NPV) 99% (95% CI 97-101); and the total accuracy of the test was 99% (95% CI 98-101). The agreement between ICT and ELISA in detecting W. bancrofti antigens was excellent (kappa = 0.934; p = 0.000). In conclusion, the AD12-ICT test for the detection of W. bancrofti-CFA was sensitive and specific and comparable to the performance of ELISA. The ICT would be a useful additional test to facilitate the proposed strategies for control and elimination of LF. Because it is rapid, simple to perform, and does not require the use of special equipment, the ICT may be most appropriate in screening programs and in monitoring the possible risk of introducing the disease to the non-endemic countries.

  13. Assembly and Immunological Processing of Polyelectrolyte Multilayers Composed of Antigens and Adjuvants.

    PubMed

    Chiu, Yu-Chieh; Gammon, Joshua M; Andorko, James I; Tostanoski, Lisa H; Jewell, Christopher M

    2016-07-27

    While biomaterials provide a platform to control the delivery of vaccines, the recently discovered intrinsic inflammatory characteristics of many polymeric carriers can also complicate rational design because the carrier itself can alter the response to other vaccine components. To address this challenge, we recently developed immune-polyelectrolyte multilayer (iPEMs) capsules electrostatically assembled entirely from peptide antigen and molecular adjuvants. Here, we use iPEMs built from SIINFEKL model antigen and polyIC, a stimulatory toll-like receptor agonist, to investigate the impact of pH on iPEM assembly, the processing and interactions of each iPEM component with primary immune cells, and the role of these interactions during antigen-specific T cell responses in coculture and mice. We discovered that iPEM assembly is pH dependent with respect to both the antigen and adjuvant component. Controlling the pH also allows tuning of the relative loading of SIINFEKL and polyIC in iPEM capsules. During in vitro studies with primary dendritic cells (DCs), iPEM capsules ensure that greater than 95% of cells containing at least one signal (i.e., antigen, adjuvant) also contained the other signal. This codelivery leads to DC maturation and SIINFEKL presentation via the MHC-I antigen presentation pathway, resulting in antigen-specific T cell proliferation and pro-inflammatory cytokine secretion. In mice, iPEM capsules potently expand antigen-specific T cells compared with equivalent admixed formulations. Of note, these enhancements become more pronounced with successive booster injections, suggesting that iPEMs functionally improve memory recall response. Together our results reveal some of the features that can be tuned to modulate the properties of iPEM capsules, and how these modular vaccine structures can be used to enhance interactions with immune cells in vitro and in mice.

  14. Recombinant ESAT-6-CFP10 Fusion Protein Induction of Th1/Th2 Cytokines and FoxP3 Expressing Treg Cells in Pulmonary TB

    PubMed Central

    Jackson-Sillah, Dolly; Cliff, Jacqueline M.; Mensah, Gloria Ivy; Dickson, Emmanuel; Sowah, Sandra; Tetteh, John K A.; Addo, Kwasi K.; Ottenhoff, Tom H. M.; Bothamley, Graham; Dockrell, Hazel M.

    2013-01-01

    Background Early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) are Mycobacterium tuberculosis (Mtb)–specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors. Methods Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC) were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest. Results The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4+FoxP3+CD25hi cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB. Conclusions These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes. PMID:23826366

  15. Progressive antigenic drift and phylogeny of human influenza A(H3N2) virus over five consecutive seasons (2009-2013) in Hangzhou, China.

    PubMed

    Shao, Tie-Juan; Li, Jun; Yu, Xin-Fen; Kou, Yu; Zhou, Yin-Yan; Qian, Xin

    2014-12-01

    Vaccine efficacy (VE) can be affected by progressive antigenic drift or any new reassortment of influenza viruses. To effectively track the evolution of human influenza A(H3N2) virus circulating in Hangzhou, China, a total of 65 clinical specimens were selected randomly from outpatients infected by A(H3N2) viruses during the study period from November 2009 to December 2013. The results of reduced VE and antigenic drift of the correspondent epitopes (C-D-E to A-B) suggest that the current vaccine provides suboptimal protection against the A(H3N2) strains circulating recently. Phylogenetic analysis of the entire HA and NA sequences demonstrated that these two genes underwent independent evolutionary pathways during recent seasons. The H3-based phylogenetic tree showed that a special strain A/Hangzhou/A289/2012 fell in a cluster among viruses with reduced VE predominantly circulating in 2013. Our findings underscore a possible early warning for the circulation of A(H3N2) variants with antigenic drift during the previous seasons. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory.

    PubMed

    Wang, Ce; Liu, Peng; Zhuang, Yan; Li, Ping; Jiang, Boling; Pan, Hong; Liu, Lanlan; Cai, Lintao; Ma, Yifan

    2014-09-22

    Although retaining antigens at the injection site (the so-called "depot effect") is an important strategy for vaccine development, increasing evidence showed that lymphatic-targeted vaccine delivery with liposomes could be a promising approach for improving vaccine efficacy. However, it remains unclear whether antigen depot or lymphatic targeting would benefit long-term immunological memory, a major determinant of vaccine efficacy. In the present study, OVA antigen was encapsulated with DOTAP cationic liposomes (LP) or DOTAP-PEG-mannose liposomes (LP-Man) to generate depot or lymphatic-targeted liposome vaccines, respectively. The result of in vivo imaging showed that LP mostly accumulated near the injection site, whereas LP-Man not only effectively accumulated in draining lymph nodes (LNs) and the spleen, but also enhanced the uptake by resident antigen-presenting cells. Although LP vaccines with depot effect induced anti-OVA IgG more potently than LP-Man vaccines did on day 40 after priming, they failed to mount an effective B-cell memory response upon OVA re-challenge after three months. In contrast, lymphatic-targeted LP-Man vaccines elicited sustained antibody production and robust recall responses three months after priming, suggesting lymphatic targeting rather than antigen depot promoted the establishment of long-term memory responses. The enhanced long-term immunological memory by LP-Man was attributed to vigorous germinal center responses as well as increased Tfh cells and central memory CD4(+) T cells in the secondary lymphoid organs. Hence, lymphatic-targeted vaccine delivery with LP-Man could be an effective strategy to promote long-lasting immunological memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Impaired Antibody-mediated Protection and Defective IgA B-Cell Memory in Experimental Infection of Adults with Respiratory Syncytial Virus.

    PubMed

    Habibi, Maximillian S; Jozwik, Agnieszka; Makris, Spyridon; Dunning, Jake; Paras, Allan; DeVincenzo, John P; de Haan, Cornelis A M; Wrammert, Jens; Openshaw, Peter J M; Chiu, Christopher

    2015-05-01

    Despite relative antigenic stability, respiratory syncytial virus (RSV) reinfects throughout life. After more than 40 years of research, no effective human vaccine exists and correlates of protection remain poorly defined. Most current vaccine candidates seek to induce high levels of RSV-specific serum neutralizing antibodies, which are associated with reduced RSV-related hospitalization rates in observational studies but may not actually prevent infection. To characterize correlates of protection from infection and the generation of RSV-specific humoral memory to promote effective vaccine development. We inoculated 61 healthy adults with live RSV and studied protection from infection by serum and mucosal antibody. We analyzed RSV-specific peripheral blood plasmablast and memory B-cell frequencies and antibody longevity. Despite moderately high levels of preexisting serum antibody, 34 (56%) became infected, of whom 23 (68%) developed symptomatic colds. Prior RSV-specific nasal IgA correlated significantly more strongly with protection from polymerase chain reaction-confirmed infection than serum neutralizing antibody. Increases in virus-specific antibody titers were variable and transient in infected subjects but correlated with plasmablasts that peaked around Day 10. During convalescence, only IgG (and no IgA) RSV-specific memory B cells were detectable in peripheral blood. This contrasted with natural influenza infection, in which virus-specific IgA memory B cells were readily recovered. This observed specific defect in IgA memory may partly explain the ability of RSV to cause recurrent symptomatic infections. If so, vaccines able to induce durable RSV-specific IgA responses may be more protective than those generating systemic antibody alone.

  18. Spontaneous CD4+ and CD8+ T‐cell responses directed against cancer testis antigens are present in the peripheral blood of testicular cancer patients

    PubMed Central

    Pearce, Hayden; Hutton, Paul; Chaudhri, Shalini; Porfiri, Emilio; Patel, Prashant; Viney, Richard

    2017-01-01

    Cancer/testis antigen (CTAg) expression is restricted to spermatogenic cells in an immune‐privileged site within the testis. However, these proteins are expressed aberrantly by malignant cells and T‐cell responses against CTAgs develop in many cancer patients. We investigated the prevalence, magnitude and phenotype of CTAg‐specific T cells in the blood of patients with testicular germ cell tumors (TGCTs). CD8+ and CD4+ T‐cell responses against MAGE‐A family antigens were present in 44% (20/45) of patients’ samples assayed by ex vivo IFN‐γ ELISPOT. The presence of MAGE‐specific CD8+ T cells was further determined following short‐term in vitro expansion through the use of pMHC‐I multimers containing known immunogenic peptides. Longitudinal analysis revealed that the frequency of MAGE‐specific T cells decreased by 89% following orchidectomy suggesting that persistence of tumor antigen is required to sustain CTAg‐specific T‐cell immunity. Notably, this decrease correlated with a decline in the global effector/memory T‐cell pool following treatment. Spontaneous T‐cell immunity against CTAg proteins therefore develops in many patients with testicular cancer and may play an important role in the excellent clinical outcome of patients with this tumor subtype. PMID:28555838

  19. An Enhanced ELISPOT Assay for Sensitive Detection of Antigen-Specific T Cell Responses to Borrelia burgdorferi

    PubMed Central

    Jin, Chenggang; Roen, Diana R.; Lehmann, Paul V.; Kellermann, Gottfried H.

    2013-01-01

    Lyme Borreliosis is an infectious disease caused by the spirochete Borrelia burgdorferi that is transmitted through the bite of infected ticks. Both B cell-mediated humoral immunity and T cell immunity develop during natural Borrelia infection. However, compared with humoral immunity, the T cell response to Borrelia infection has not been well elucidated. In this study, a novel T cell-based assay was developed and validated for the sensitive detection of antigen-specific T cell response to B. burgdorferi. Using interferon-γ as a biomarker, we developed a new enzyme-linked immunospot method (iSpot LymeTM) to detect Borrelia antigen-specific effector/memory T cells that were activated in vivo by exposing them to recombinant Borrelia antigens ex vivo. To test this new method as a potential laboratory diagnostic tool, we performed a clinical study with a cohort of Borrelia positive patients and healthy controls. We demonstrated that the iSpot Lyme assay has a significantly higher specificity and sensitivity compared with the Western Blot assay that is currently used as a diagnostic measure. A comprehensive evaluation of the T cell response to Borrelia infection should, therefore, provide new insights into the pathogenesis, diagnosis, treatment and monitoring of Lyme disease. PMID:24709800

  20. Immunodiagnosis of Human Fascioliasis: An Update of Concepts and Performances of the Serological Assays

    PubMed Central

    Khabisi, Samaneh Abdolahi

    2017-01-01

    Human Fascioliasis (HF) is a foodborne neglected parasitic disease caused by Fasciola hepatica and Fasciola gigantica. New epidemiological data suggest that the endemic areas of the disease are expanding and HF is being reported from areas where it was previously not observed. Diagnosis of HF is challenging. Performances of parasitological approaches, based on the detection of parasite’s egg in the stool, are not satisfactory. Currently serological methods for the diagnosis of HF are mainly based on detection of anti-Fasciola antibodies in serum. Although, there have been some improvement in the development of immunological diagnostic tests for the diagnosis of HF, yet these tests suffer from insufficiency in sensitivity or/and specificity. Detection of antigens, rather than antibodies, seems to be a suitable approach in the diagnosis of HF. Antigen can be detected in sera or stool of the fascioliasis patients. Circulating antigen in serum disappears within a short time and most of the circulating antigens are in immune complex forms which are not freely available to be detected. Therefore, antigenemia might not be an appropriate method for the diagnosis of HF. Detection of antigen in stool (coproantigens) seems to be a suitable alternative method for the diagnosis of HF. Recent data provided convincing evidence that detection of coproantigen improved and simplified the diagnosis of HF. The present review highlights the new achievements in designing and improvement of diagnostic approaches for the immunodiagnosis of HF. Moreover, current status of the available immunodiagnostic techniques for the diagnosis of HF, their strengths and weaknesses has been discussed. PMID:28764235

  1. Hyaluronic Acid-Modified Cationic Lipid-PLGA Hybrid Nanoparticles as a Nanovaccine Induce Robust Humoral and Cellular Immune Responses.

    PubMed

    Liu, Lanxia; Cao, Fengqiang; Liu, Xiaoxuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Leng, Xigang; Song, Cunxian; Kong, Deling; Ma, Guilei

    2016-05-18

    Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines. In vivo experiments further revealed that more powerful immune responses were induced from mice immunized with HA-DOTAP-PLGA NPs when compared with cationic lipid-PLGA nanoparticles and free ovalbumin (OVA); the responses included antigen-specific CD4(+) and CD8(+) T-cell responses, the production of antigen-specific IgG antibodies and the generation of memory CD4(+) and CD8(+) T cells. Overall, these data demonstrate the high potential of HA-DOTAP-PLGA NPs for use as vaccine delivery vehicles to elevate cellular and humoral immune responses.

  2. Posttherapy suppression of genital herpes simplex virus (HSV) recurrences and enhancement of HSV-specific T-cell memory by imiquimod in guinea pigs.

    PubMed Central

    Harrison, C J; Miller, R L; Bernstein, D I

    1994-01-01

    Imiquimod, an immunomodulator with no direct in vitro antiviral activity, has in vivo anti-herpesvirus activity by inducing interferon and enhancing other only partially defined immune responses. Imiquimod treatment of primary genital herpes simplex virus (HSV) infection in guinea pigs reduces the level of genital disease by 90%. We further investigated its utility as suppressive therapy of recurrent disease in animals that had recently recovered from primary genital HSV-2 disease. Imiquimod administered intravaginally once per day for 5 days reduced the number of recurrences only during treatment, while a 21-day regimen reduced the number of recurrences for 8 weeks. For the entire 10 weeks of observation, overall numbers of recurrences were reduced 67% by the 21-day imiquimod treatment (P < 0.0001). Latent HSV in ganglia was not affected by either regimen. Increased circulating alpha interferon activity was observed during therapy with both regimens. Interferon levels rapidly returned to baseline with cessation of treatment. Posttreatment, 5-day imiquimod treatment did not provide clinical benefit or enhancement of cell-mediated or cytokine responses. Twenty-one-day imiquimod treatment reduced both the number of clinical recurrences and levels of HSV antibody for 5 to 6 weeks posttreatment compared with the placebo. Additionally, 21-day imiquimod treatment enhanced HSV antigen-specific interleukin 2 production and proliferative responses by mononuclear cells (P < 0.001) for 4 weeks after treatment. Twenty-one-day imiquimod therapy suppressed recurrent HSV genital disease during and for weeks after therapy, enhanced memory-dependent cytokine and T-cell responses, and reduced the level of antibody responses. PMID:7811019

  3. A review of the value of quadrivalent influenza vaccines and their potential contribution to influenza control

    PubMed Central

    Ray, Riju; Dos Santos, Gaël; Buck, Philip O.; Claeys, Carine; Matias, Gonçalo; Innis, Bruce L.; Bekkat-Berkani, Rafik

    2017-01-01

    ABSTRACT The contribution of influenza B to the seasonal influenza burden varies from year-to-year. Although 2 antigenically distinct influenza B virus lineages have co-circulated since 2001, trivalent influenza vaccines (TIVs) contain antigens from only one influenza B virus. B-mismatch or co-circulation of both B lineages results in increased morbidity and mortality attributable to the B lineage absent from the vaccine. Quadrivalent vaccines (QIVs) contain both influenza B lineages. We reviewed currently licensed QIVs and their value by focusing on the preventable disease burden. Modeling studies support that QIVs are expected to prevent more influenza cases, hospitalisations and deaths than TIVs, although estimates of the case numbers prevented vary according to local specificities. The value of QIVs is demonstrated by their capacity to broaden the immune response and reduce the likelihood of a B-mismatched season. Some health authorities have preferentially recommended QIVs over TIVs in their influenza prevention programmes. PMID:28532276

  4. Abundant cytomegalovirus (CMV) reactive clonotypes in the CD8(+) T cell receptor alpha repertoire following allogeneic transplantation.

    PubMed

    Link, C S; Eugster, A; Heidenreich, F; Rücker-Braun, E; Schmiedgen, M; Oelschlägel, U; Kühn, D; Dietz, S; Fuchs, Y; Dahl, A; Domingues, A M J; Klesse, C; Schmitz, M; Ehninger, G; Bornhäuser, M; Schetelig, J; Bonifacio, E

    2016-06-01

    Allogeneic stem cell transplantation is potentially curative, but associated with post-transplantation complications, including cytomegalovirus (CMV) infections. An effective immune response requires T cells recognizing CMV epitopes via their T cell receptors (TCRs). Little is known about the TCR repertoire, in particular the TCR-α repertoire and its clinical relevance in patients following stem cell transplantation. Using next-generation sequencing we examined the TCR-α repertoire of CD8(+) T cells and CMV-specific CD8(+) T cells in four patients. Additionally, we performed single-cell TCR-αβ sequencing of CMV-specific CD8(+) T cells. The TCR-α composition of human leucocyte antigen (HLA)-A*0201 CMVpp65- and CMVIE -specific T cells was oligoclonal and defined by few dominant clonotypes. Frequencies of single clonotypes reached up to 11% of all CD8(+) T cells and half of the total CD8(+) T cell repertoire was dominated by few CMV-reactive clonotypes. Some TCR-α clonotypes were shared between patients. Gene expression of the circulating CMV-specific CD8(+) T cells was consistent with chronically activated effector memory T cells. The CD8(+) T cell response to CMV reactivation resulted in an expansion of a few TCR-α clonotypes to dominate the CD8(+) repertoires. These results warrant further larger studies to define the ability of oligoclonally expanded T cell clones to achieve an effective anti-viral T cell response in this setting. © 2016 British Society for Immunology.

  5. Description of human AAA by cytokine and immune cell aberrations compared to risk-factor matched controls.

    PubMed

    Wang, S Keisin; Green, Linden A; Gutwein, Ashley R; Drucker, Natalie A; Motaganahalli, Raghu L; Gupta, Alok K; Fajardo, Andres; Murphy, Michael P

    2018-04-28

    The pathogenesis driving the formation of abdominal aortic aneurysms continues to be poorly understood. Therefore, we systemically define the cytokine and circulating immune cell environment observed in human abdominal aortic aneurysm compared with risk-factor matched controls. From 2015 to 2017, a total of 274 patients donated blood to the Indiana University Center for Aortic Disease. Absolute concentrations of circulating cytokines were determined, using enzyme-linked immunosorbent assays while the expression of circulating immune cell phenotypes were assayed via flow cytometric analysis. Human abdominal aortic aneurysm is characterized by a significant depletion of the antigen-specific, CD4 + Tr1 regulatory lymphocyte that corresponds to an upregulation of the antigen-specific, inflammatory Th17 cell. We found no differences in the incidence of Treg, B10, and myeloid-derived suppressor regulatory cells. Similarly, no disparities were noted in the following inflammatory cytokines: IL-1β, C-reactive protein, tumor necrosis factor α, interferon γ, and IL-23. However, significant upregulation of the inflammatory cytokines osteopontin, IL-6, and IL-17 were noted. Additionally, no changes were observed in the regulatory cytokines IL-2, IL-4, IL-13, TNF-stimulated gene 6 protein, and prostaglandin E2, but we did observe a significant decrease in the essential regulatory cytokine IL-10. In this investigation, we systematically characterize the abdominal aortic aneurysm-immune environment and present preliminary evidence that faulty immune regulation may also contribute to aneurysm formation and growth. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Human Infant Memory B Cell and CD4+ T Cell Responses to HibMenCY-TT Glyco-Conjugate Vaccine

    PubMed Central

    Fuery, Angela; Richmond, Peter C.; Currie, Andrew J.

    2015-01-01

    Carrier-specific T cell and polysaccharide-specific B cell memory responses are not well characterised in infants following glyco-conjugate vaccination. We aimed to determine if the number of Meningococcal (Men) C- and Y- specific memory B cells and; number and quality of Tetanus Toxoid (TT) carrier-specific memory CD4+ T cells are associated with polysaccharide-specific IgG post HibMenCY-TT vaccination. Healthy infants received HibMenCY-TT vaccine at 2, 4 and 6 months with a booster at 12 months. Peripheral blood mononuclear cells were isolated and polysaccharide-specific memory B cells enumerated using ELISpot. TT-specific memory CD4+ T cells were detected and phenotyped based on CD154 expression and intracellular TNF-α, IL-2 and IFN-γ expression following stimulation. Functional polysaccharide-specific IgG titres were measured using the serum bactericidal activity (SBA) assay. Polysaccharide-specific Men C- but not Men Y- specific memory B cell frequencies pre-boost (12 months) were significantly associated with post-boost (13 months) SBA titres. Regression analysis showed no association between memory B cell frequencies post-priming (at 6 or 7 months) and SBA at 12 months or 13 months. TT-specific CD4+ T cells were detected at frequencies between 0.001 and 0.112 as a percentage of CD3+ T cells, but their numbers were not associated with SBA titres. There were significant negative associations between SBA titres at M13 and cytokine expression at M7 and M12. Conclusion: Induction of persistent polysaccharide-specific memory B cells prior to boosting is an important determinant of secondary IgG responses in infants. However, polysaccharide-specific functional IgG responses appear to be independent of the number and quality of circulating carrier-specific CD4+ T cells after priming. PMID:26191794

  7. Application of the pMHC Array to Characterise Tumour Antigen Specific T Cell Populations in Leukaemia Patients at Disease Diagnosis.

    PubMed

    Brooks, Suzanne E; Bonney, Stephanie A; Lee, Cindy; Publicover, Amy; Khan, Ghazala; Smits, Evelien L; Sigurdardottir, Dagmar; Arno, Matthew; Li, Demin; Mills, Ken I; Pulford, Karen; Banham, Alison H; van Tendeloo, Viggo; Mufti, Ghulam J; Rammensee, Hans-Georg; Elliott, Tim J; Orchard, Kim H; Guinn, Barbara-ann

    2015-01-01

    Immunotherapy treatments for cancer are becoming increasingly successful, however to further improve our understanding of the T-cell recognition involved in effective responses and to encourage moves towards the development of personalised treatments for leukaemia immunotherapy, precise antigenic targets in individual patients have been identified. Cellular arrays using peptide-MHC (pMHC) tetramers allow the simultaneous detection of different antigen specific T-cell populations naturally circulating in patients and normal donors. We have developed the pMHC array to detect CD8+ T-cell populations in leukaemia patients that recognise epitopes within viral antigens (cytomegalovirus (CMV) and influenza (Flu)) and leukaemia antigens (including Per Arnt Sim domain 1 (PASD1), MelanA, Wilms' Tumour (WT1) and tyrosinase). We show that the pMHC array is at least as sensitive as flow cytometry and has the potential to rapidly identify more than 40 specific T-cell populations in a small sample of T-cells (0.8-1.4 x 10(6)). Fourteen of the twenty-six acute myeloid leukaemia (AML) patients analysed had T cells that recognised tumour antigen epitopes, and eight of these recognised PASD1 epitopes. Other tumour epitopes recognised were MelanA (n = 3), tyrosinase (n = 3) and WT1(126-134) (n = 1). One of the seven acute lymphocytic leukaemia (ALL) patients analysed had T cells that recognised the MUC1(950-958) epitope. In the future the pMHC array may be used provide point of care T-cell analyses, predict patient response to conventional therapy and direct personalised immunotherapy for patients.

  8. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses.

    PubMed

    Pardi, Norbert; Hogan, Michael J; Naradikian, Martin S; Parkhouse, Kaela; Cain, Derek W; Jones, Letitia; Moody, M Anthony; Verkerke, Hans P; Myles, Arpita; Willis, Elinor; LaBranche, Celia C; Montefiori, David C; Lobby, Jenna L; Saunders, Kevin O; Liao, Hua-Xin; Korber, Bette T; Sutherland, Laura L; Scearce, Richard M; Hraber, Peter T; Tombácz, István; Muramatsu, Hiromi; Ni, Houping; Balikov, Daniel A; Li, Charles; Mui, Barbara L; Tam, Ying K; Krammer, Florian; Karikó, Katalin; Polacino, Patricia; Eisenlohr, Laurence C; Madden, Thomas D; Hope, Michael J; Lewis, Mark G; Lee, Kelly K; Hu, Shiu-Lok; Hensley, Scott E; Cancro, Michael P; Haynes, Barton F; Weissman, Drew

    2018-06-04

    T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4 + T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses. © 2018 Pardi et al.

  9. Memory-like Responses of Natural Killer Cells

    PubMed Central

    Cooper, Megan A.; Yokoyama, Wayne M.

    2010-01-01

    Summary Natural killer (NK) cells are lymphocytes with the capacity to produce cytokines and kill target cells upon activation. NK cells have long been categorized as members of the innate immune system and as such have been thought to follow the ‘rules’ of innate immunity, including the principle that they have no immunologic memory, a property thought to be strictly limited to adaptive immunity. However, recent studies have suggested that NK cells have the capacity to alter their behavior based on prior activation. This property is analogous to adaptive immune memory; however, some NK cell memory-like functions are not strictly antigen-dependent and can be demonstrated following cytokine stimulation. Here we discuss the recent evidence that NK cells can exhibit properties of immunologic memory, focusing on the ability of cytokines to non-specifically induce memory-like NK cells with enhanced responses to restimulation. PMID:20536571

  10. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells

    PubMed Central

    Enamorado, Michel; Iborra, Salvador; Priego, Elena; Cueto, Francisco J.; Quintana, Juan A.; Martínez-Cano, Sarai; Mejías-Pérez, Ernesto; Esteban, Mariano; Melero, Ignacio; Hidalgo, Andrés; Sancho, David

    2017-01-01

    The goal of successful anti-tumoural immunity is the development of long-term protective immunity to prevent relapse. Infiltration of tumours with CD8+ T cells with a resident memory (Trm) phenotype correlates with improved survival. However, the interplay of circulating CD8+ T cells and Trm cells remains poorly explored in tumour immunity. Using different vaccination strategies that fine-tune the generation of Trm cells or circulating memory T cells, here we show that, while both subsets are sufficient for anti-tumour immunity, the presence of Trm cells improves anti-tumour efficacy. Transferred central memory T cells (Tcm) generate Trm cells following viral infection or tumour challenge. Anti-PD-1 treatment promotes infiltration of transferred Tcm cells within tumours, improving anti-tumour immunity. Moreover, Batf3-dependent dendritic cells are essential for reactivation of circulating memory anti-tumour response. Our findings show the plasticity, collaboration and requirements for reactivation of memory CD8+ T cells subsets needed for optimal tumour vaccination and immunotherapy. PMID:28714465

  11. Correlates of protection, antigen delivery and molecular epidemiology: basics for designing an HIV vaccine.

    PubMed

    Wagner, R; Shao, Y; Wolf, H

    1999-03-26

    Major obstacles in the development of HIV vaccines are the high variability of the virus and its complex interaction with the immune system. Recent studies demonstrated, that CTLs recognizing highly conserved epitopes in the group-specific antigen are capable of controlling HIV-replication in long-term nonprogressors. Necessary consequences for novel vaccine concepts are the presentation of a large repertoire of antigenic sites as well as the stimulation of different effectors of the immune system. Accordingly, different types of recombinant HIV-1 virus-like particles (VLPs) have been constructed stimulating the induction of neutralizing antibodies and HIV-specific CD8-positive CTL responses in preclinical studies. With respect to future vaccine trials, HIV vaccine formulations may need to be tailored to the local strains circulating within a geographical region. The expert group of the joint United Nations Programme on AIDS recently identified Yunnan, a southwestern province of China, as a region, in which the HIV epidemic is starting to gain speed, resembling to the situation in Thailand 10 years ago. A molecular clone of a representative virus strain is now available for the development of innovative antigen delivery systems aiming to be evaluated in future clinical vaccine trials throughout this area.

  12. Application of Protein Microarrays for Multiplexed Detection of Antibodies to Tumor Antigens in Breast Cancer

    PubMed Central

    Anderson, Karen S.; Ramachandran, Niroshan; Wong, Jessica; Raphael, Jacob V.; Hainsworth, Eugenie; Demirkan, Gokhan; Cramer, Daniel; Aronzon, Diana; Hodi, F. Stephen; Harris, Lyndsay; Logvinenko, Tanya; LaBaer, Joshua

    2012-01-01

    There is strong preclinical evidence that cancer, including breast cancer, undergoes immune surveillance. This continual monitoring, by both the innate and the adaptive immune systems, recognizes changes in protein expression, mutation, folding, glycosylation, and degradation. Local immune responses to tumor antigens are amplified in draining lymph nodes, and then enter the systemic circulation. The antibody response to tumor antigens, such as p53 protein, are robust, stable, and easily detected in serum, may exist in greater concentrations than their cognate antigens, and are potential highly specific biomarkers for cancer. However, antibodies have limited sensitivities as single analytes, and differences in protein purification and assay characteristics have limited their clinical application. For example, p53 autoantibodies in the sera are highly specific for cancer patients, but are only detected in the sera of 10-20% of patients with breast cancer. Detection of p53 autoantibodies is dependent on tumor burden, p53 mutation, rapidly decreases with effective therapy, but is relatively independent of breast cancer subtype. Although antibodies to hundreds of other tumor antigens have been identified in the sera of breast cancer patients, very little is known about the specificity and clinical impact of the antibody immune repertoire to breast cancer. Recent advances in proteomic technologies have the potential for rapid identification of immune response signatures for breast cancer diagnosis and monitoring. We have adapted programmable protein microarrays for the specific detection of autoantibodies in breast cancer. Here, we present the first demonstration of the application of programmable protein microarray ELISAs for the rapid identification of breast cancer autoantibodies. PMID:18311903

  13. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  14. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  15. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  16. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  17. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  18. Preserved antibody levels and loss of memory B cells against pneumococcus and tetanus after splenectomy: tailoring better vaccination strategies.

    PubMed

    Rosado, M Manuela; Gesualdo, Francesco; Marcellini, Valentina; Di Sabatino, Antonio; Corazza, Gino Roberto; Smacchia, Maria Paola; Nobili, Bruno; Baronci, Carlo; Russo, Lidia; Rossi, Francesca; Vito, Rita De; Nicolosi, Luciana; Inserra, Alessandro; Locatelli, Franco; Tozzi, Alberto E; Carsetti, Rita

    2013-10-01

    Splenectomized patients are exposed to an increased risk of septicemia caused by encapsulated bacteria. Defense against infection is ensured by preformed serum antibodies produced by long-lived plasma cells and by memory B cells that secrete immunoglobulin in response to specific antigenic stimuli. Studying a group of asplenic individuals (57 adults and 21 children) without additional immunologic defects, we found that spleen removal does not alter serum anti-pneumococcal polysaccharide (PnPS) IgG concentration, but reduces the number of PnPS-specific memory B cells, of both IgM and IgG isotypes. The number of specific memory B cells was low in splenectomized adults and children that had received the PnPS vaccine either before or after splenectomy. Seven children were given the 13-valent pneumococcal conjugated vaccine after splenectomy. In this group, the number of PnPS-specific IgG memory B cells was similar to that of eusplenic children, suggesting that pneumococcal conjugated vaccine administered after splenectomy is able to restore the pool of anti-PnPS IgG memory B cells. Our data further elucidate the crucial role of the spleen in the immunological response to infections caused by encapsulated bacteria and suggest that glycoconjugated vaccines may be the most suitable choice to generate IgG-mediated protection in these patients. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Programmed death-1 expression on HIV-1-specific CD8+ T cells is shaped by epitope specificity, T-cell receptor clonotype usage and antigen load

    PubMed Central

    Kløverpris, Henrik N.; McGregor, Reuben; McLaren, James E.; Ladell, Kristin; Stryhn, Anette; Koofhethile, Catherine; Brener, Jacqui; Chen, Fabian; Riddell, Lynn; Graziano, Luzzi; Klenerman, Paul; Leslie, Alasdair; Buus, Søren; Price, David A.; Goulder, Philip

    2014-01-01

    Objectives: Although CD8+ T cells play a critical role in the control of HIV-1 infection, their antiviral efficacy can be limited by antigenic variation and immune exhaustion. The latter phenomenon is characterized by the upregulation of multiple inhibitory receptors, such as programmed death-1 (PD-1), CD244 and lymphocyte activation gene-3 (LAG-3), which modulate the functional capabilities of CD8+ T cells. Design and methods: Here, we used an array of different human leukocyte antigen (HLA)-B∗15 : 03 and HLA-B∗42 : 01 tetramers to characterize inhibitory receptor expression as a function of differentiation on HIV-1-specific CD8+ T-cell populations (n = 128) spanning 11 different epitope targets. Results: Expression levels of PD-1, but not CD244 or LAG-3, varied substantially across epitope specificities both within and between individuals. Differential expression of PD-1 on T-cell receptor (TCR) clonotypes within individual HIV-1-specific CD8+ T-cell populations was also apparent, independent of clonal dominance hierarchies. Positive correlations were detected between PD-1 expression and plasma viral load, which were reinforced by stratification for epitope sequence stability and dictated by effector memory CD8+ T cells. Conclusion: Collectively, these data suggest that PD-1 expression on HIV-1-specific CD8+ T cells tracks antigen load at the level of epitope specificity and TCR clonotype usage. These findings are important because they provide evidence that PD-1 expression levels are influenced by peptide/HLA class I antigen exposure. PMID:24906112

  20. Streptococcal Immunity Is Constrained by Lack of Immunological Memory following a Single Episode of Pyoderma

    PubMed Central

    Pandey, Manisha; Ozberk, Victoria; Calcutt, Ainslie; Langshaw, Emma; Powell, Jessica; Rivera-Hernandez, Tania; Philips, Zachary; Batzloff, Michael R.; Good, Michael F.

    2016-01-01

    The immunobiology underlying the slow acquisition of skin immunity to group A streptococci (GAS), is not understood, but attributed to specific virulence factors impeding innate immunity and significant antigenic diversity of the type-specific M-protein, hindering acquired immunity. We used a number of epidemiologically distinct GAS strains to model the development of acquired immunity. We show that infection leads to antibody responses to the serotype-specific determinants on the M-protein and profound protective immunity; however, memory B cells do not develop and immunity is rapidly lost. Furthermore, antibodies do not develop to a conserved M-protein epitope that is able to induce immunity following vaccination. However, if re-infected with the same strain within three weeks, enduring immunity and memory B-cells (MBCs) to type-specific epitopes do develop. Such MBCs can adoptively transfer protection to naïve recipients. Thus, highly protective M-protein-specific MBCs may never develop following a single episode of pyoderma, contributing to the slow acquisition of immunity and to streptococcal endemicity in at-risk populations. PMID:28027314

  1. The Molecular Determinants of Antibody Recognition and Antigenic Drift in the H3 Hemagglutinin of Swine Influenza A Virus

    PubMed Central

    Abente, Eugenio J.; Santos, Jefferson; Lewis, Nicola S.; Gauger, Phillip C.; Stratton, Jered; Skepner, Eugene; Rajao, Daniela S.

    2016-01-01

    ABSTRACT Influenza A virus (IAV) of the H3 subtype is an important respiratory pathogen that affects both humans and swine. Vaccination to induce neutralizing antibodies against the surface glycoprotein hemagglutinin (HA) is the primary method used to control disease. However, due to antigenic drift, vaccine strains must be periodically updated. Six of the 7 positions previously identified in human seasonal H3 (positions 145, 155, 156, 158, 159, 189, and 193) were also indicated in swine H3 antigenic evolution. To experimentally test the effect on virus antigenicity of these 7 positions, substitutions were introduced into the HA of an isogenic swine lineage virus. We tested the antigenic effect of these introduced substitutions by using hemagglutination inhibition (HI) data with monovalent swine antisera and antigenic cartography to evaluate the antigenic phenotype of the mutant viruses. Combinations of substitutions within the antigenic motif caused significant changes in antigenicity. One virus mutant that varied at only two positions relative to the wild type had a >4-fold reduction in HI titers compared to homologous antisera. Potential changes in pathogenesis and transmission of the double mutant were evaluated in pigs. Although the double mutant had virus shedding titers and transmissibility comparable to those of the wild type, it caused a significantly lower percentage of lung lesions. Elucidating the antigenic effects of specific amino acid substitutions at these sites in swine H3 IAV has important implications for understanding IAV evolution within pigs as well as for improved vaccine development and control strategies in swine. IMPORTANCE A key component of influenza virus evolution is antigenic drift mediated by the accumulation of amino acid substitutions in the hemagglutinin (HA) protein, resulting in escape from prior immunity generated by natural infection or vaccination. Understanding which amino acid positions of the HA contribute to the ability of the virus to avoid prior immunity is important for understanding antigenic evolution and informs vaccine efficacy predictions based on the genetic sequence data from currently circulating strains. Following our previous work characterizing antigenic phenotypes of contemporary wild-type swine H3 influenza viruses, we experimentally validated that substitutions at 6 amino acid positions in the HA protein have major effects on antigenicity. An improved understanding of the antigenic diversity of swine influenza will facilitate a rational approach for selecting more effective vaccine components to control the circulation of influenza in pigs and reduce the potential for zoonotic viruses to emerge. PMID:27384658

  2. Tolerogenic dendritic cells inhibit antiphospholipid syndrome derived effector/memory CD4⁺ T cell response to β2GPI.

    PubMed

    Torres-Aguilar, Honorio; Blank, Miri; Kivity, Shaye; Misgav, Mudi; Luboshitz, Jacob; Pierangeli, Silvia S; Shoenfeld, Yehuda

    2012-01-01

    The importance of β(2)-glycoprotein I (β(2)GPI)-specific CD4(+) T cells in the development of pathogenic processes in patients with antiphospholipid syndrome (APS) and APS mouse models is well established. Therefore, our objective is to manipulate the β2GPI specific CD4(+) T cells using tolerogenic dendritic cells (tDCs) to induce tolerance. We aim to evaluate the capability of tDCs to induce antigen-specific tolerance in effector/memory T cells from patients with APS and to elucidate the involved mechanism. DCs and tDCs were produced from patients with APS peripheral-blood-monocytes, using specific cytokines. β(2)GPI-specific tolerance induction was investigated by coculturing control DC (cDC) or tDC, β(2)GPI-loaded, with autologous effector/memory T cells, evaluating the proliferative response, phenotype, cytokines secretion, viability and regulatory T cells. Human monocyte-derived DCs treated with interleukin (IL)-10 and transforming growth factor β-1 (10/TGF-DC) induced β(2)GPI-specific-unresponsiveness in effector/memory CD4(+) T cells (46.5% ± 26.0 less proliferation) in 16 of 20 analysed patients with APS, without affecting the proliferative response to an unrelated candidin. In five analysed patients, 10/TGF-DC-stimulated T cells acquired an IL-2(low)interferon γ(low)IL-10(high) cytokine profile, with just a propensity to express higher numbers of Foxp3(+)CTLA-4(+) cells, but with an evident suppressive ability. In four of 10 analysed patients, 10/TGF-DC-stimulated T cell hyporesponsiveness could not be reverted and showed higher percentages of late apoptosis, p<0.02. The inherent tolerance induction resistance of activated T cells present during the development of autoimmune diseases has delayed the application of tDC as an alternative therapy. This study highlights the 10/TGF-DC feasibility to induce antigen-specific unresponsiveness in autoreactive T cells generated in patients with APS by inducing apoptosis or T cells with regulatory abilities.

  3. Prolonged evolution of virus-specific memory T cell immunity post severe avian influenza A (H7N9) virus infection.

    PubMed

    Zhao, Min; Chen, Junbo; Tan, Shuguang; Dong, Tao; Jiang, Hui; Zheng, Jiandong; Quan, Chuansong; Liao, Qiaohong; Zhang, Hangjie; Wang, Xiling; Wang, Qianli; Bi, Yuhai; Liu, Fengfeng; Feng, Luzhao; Horby, Peter W; Klenerman, Paul; Gao, George F; Liu, William J; Yu, Hongjie

    2018-06-20

    Since 2013, influenza A/H7N9 has emerged as the commonest avian influenza subtype causing human infection, and is associated with a high fatality risk. However, the characteristics of immune memory in patients who have recovered from H7N9 infection are not well understood. We assembled a cohort of forty-five H7N9 survivors followed for up to 15 months after infection. Humoral and cellular immune responses were analyzed in sequential samples obtained at 1.5-4 months, 6-8 months and 12-15 months post-infection. H7N9-specific antibody concentrations declined over time, and protective antibodies persisted longer in severely ill patients admitted to ICU and patients presenting with ARDS than that in patients with mild disease. Frequencies of virus-specific IFN-γ secreting T cells were lower in critically ill patients requiring ventilation than those in patients without ventilation within four months after infection. The percentages of H7N9-specific IFN-γ secreting T cells tended to increase over time in patients ≥60 years or critically ill patients requiring ventilation. Elevated levels of antigen-specific CD8 + T cells expressing lung-homing marker CD49a were observed at 6-8 months after H7N9 infection compared to samples obtained at 1.5-4 months. Our findings indicate the prolonged reconstruction and evolution of virus-specific T cell immunity in older or critically ill patients, and provide implications for T-cell directed immunization strategies. IMPORTANCE Avian influenza A H7N9 remains a major threat to public health. However, no previous studies have determined the characteristics and dynamics of virus specific T cell immune memory in patients who have recovered from H7N9 infection. Our findings showed that establishment of H7N9-specific T cell memory after H7N9 infection was prolonged in older and severely affected patients. Severely ill patients mounted lower T cell responses in the first 4 months after infection, while T cell responses tended to increase over time in older and severely ill patients. Higher levels of antigen-specific CD8 + T cells expressing the lung-homing marker CD49a were detected at 6-8 months after infection. Our results indicated a long term impact of H7N9 infection on virus-specific memory T cells. These findings advance our understanding of the dynamics of virus-specific memory T cell immunity after H7N9 infection, relevant to the development of T cell based universal influenza vaccines. Copyright © 2018 American Society for Microbiology.

  4. Impairment of pneumococcal antigen specific isotype-switched Igg memory B-cell immunity in HIV infected Malawian adults.

    PubMed

    Iwajomo, Oluwadamilola H; Finn, Adam; Ogunniyi, Abiodun D; Williams, Neil A; Heyderman, Robert S

    2013-01-01

    Pneumococcal disease is associated with a particularly high morbidity and mortality amongst adults in HIV endemic countries. Our previous findings implicating a B-cell defect in HIV-infected children from the same population led us to comprehensively characterize B-cell subsets in minimally symptomatic HIV-infected Malawian adults and investigate the isotype-switched IgG memory B-cell immune response to the pneumococcus. We show that similar to vertically acquired HIV-infected Malawian children, horizontally acquired HIV infection in these adults is associated with IgM memory B-cell (CD19(+) CD27(+) IgM(+) IgD(+)) depletion, B-cell activation and impairment of specific IgG B-cell memory to a range of pneumococcal proteins. Our data suggest that HIV infection affects both T-cell independent and T-cell dependent B-cell maturation, potentially leading to impairment of humoral responses to extracellular pathogens such as the pneumococcus, and thus leaving this population susceptible to invasive disease.

  5. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines.

    PubMed

    Laws, Thomas R; Kuchuloria, Tinatin; Chitadze, Nazibriola; Little, Stephen F; Webster, Wendy M; Debes, Amanda K; Saginadze, Salome; Tsertsvadze, Nikoloz; Chubinidze, Mariam; Rivard, Robert G; Tsanava, Shota; Dyson, Edward H; Simpson, Andrew J H; Hepburn, Matthew J; Trapaidze, Nino

    2016-01-01

    Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees) or anti-LF (in AVP vaccinees) antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens.

  6. Ex vivo screening for immunodominant viral epitopes by quantitative real time polymerase chain reaction (qRT-PCR)

    PubMed Central

    Provenzano, Maurizio; Mocellin, Simone; Bonginelli, Paola; Nagorsen, Dirk; Kwon, Seog-Woon; Stroncek, David

    2003-01-01

    The identification and characterization of viral epitopes across the Human Leukocyte Antigen (HLA) polymorphism is critical for the development of actives-specific or adoptive immunotherapy of virally-mediated diseases. This work investigates whether cytokine mRNA transcripts could be used to identify epitope-specific HLA-restricted memory T lymphocytes reactivity directly in fresh peripheral blood mononuclear cells (PBMCs) from viral-seropositive individuals in response to ex vivo antigen recall. PBMCs from HLA-A*0201 healthy donors, seropositive for Cytomegalovirus (CMV) and Influenza (Flu), were exposed for different periods and at different cell concentrations to the HLA-A*0201-restricted viral FluM158–66 and CMVpp65495–503 peptides. Quantitative real time PCR (qRT-PCR) was employed to evaluate memory T lymphocyte immune reactivation by measuring the production of mRNA encoding four cytokines: Interferon-γ (IFN-γ), Interleukin-2 (IL-2), Interleukin-4 (IL-4), and Interleukin-10 (IL-10). We could characterize cytokine expression kinetics that illustrated how cytokine mRNA levels could be used as ex vivo indicators of T cell reactivity. Particularly, IFN-γ mRNA transcripts could be consistently detected within 3 to 12 hours of short-term stimulation in levels sufficient to screen for HLA-restricted viral immune responses in seropositive subjects. This strategy will enhance the efficiency of the identification of viral epitopes independently of the individual HLA phenotype and could be used to follow the intensity of immune responses during disease progression or in response to in vivo antigen-specific immunization. PMID:14675481

  7. Patients with cystic fibrosis have inducible IL-17+IL-22+ memory cells in lung draining lymph nodes.

    PubMed

    Chan, Yvonne R; Chen, Kong; Duncan, Steven R; Lathrop, Kira L; Latoche, Joseph D; Logar, Alison J; Pociask, Derek A; Wahlberg, Brendon J; Ray, Prabir; Ray, Anuradha; Pilewski, Joseph M; Kolls, Jay K

    2013-04-01

    IL-17 is an important cytokine signature of the TH differentiation pathway TH17. This T-cell subset is crucial in mediating autoimmune disease or antimicrobial immunity in animal models, but its presence and role in human disease remain to be completely characterized. We set out to determine the frequency of TH17 cells in patients with cystic fibrosis (CF), a disease in which there is recurrent infection with known pathogens. Explanted lungs from patients undergoing transplantation or organ donors (CF samples=18; non-CF, nonbronchiectatic samples=10) were collected. Hilar nodes and parenchymal lung tissue were processed and examined for TH17 signature by using immunofluorescence and quantitative real-time PCR. T cells were isolated and stimulated with antigens from Pseudomonas aeruginosa and Aspergillus species. Cytokine profiles and staining with flow cytometry were used to assess the reactivity of these cells to antigen stimulation. We found a strong IL-17 phenotype in patients with CF compared with that seen in control subjects without CF. Within this tissue, we found pathogenic antigen-responsive CD4+IL-17+ cells. There were double-positive IL-17+IL-22+ cells [TH17(22)], and the IL-22+ population had a higher proportion of memory characteristics. Antigen-specific TH17 responses were stronger in the draining lymph nodes compared with those seen in matched parenchymal lungs. Inducible proliferation of TH17(22) with memory cell characteristics is seen in the lungs of patients with CF. The function of these individual subpopulations will require further study regarding their development. T cells are likely not the exclusive producers of IL-17 and IL-22, and this will require further characterization. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  8. The global antigenic diversity of swine influenza A viruses

    PubMed Central

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky; Anderson, Tavis K; Berger, Kathryn; Bielejec, Filip; Burke, David F; Dudas, Gytis; Fonville, Judith M; Fouchier, Ron AM; Kellam, Paul; Koel, Bjorn F; Lemey, Philippe; Nguyen, Tung; Nuansrichy, Bundit; Peiris, JS Malik; Saito, Takehiko; Simon, Gaelle; Skepner, Eugene; Takemae, Nobuhiro; Webby, Richard J; Van Reeth, Kristien; Brookes, Sharon M; Larsen, Lars; Watson, Simon J; Brown, Ian H; Vincent, Amy L

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential. Here, using the most comprehensive set of swine influenza virus antigenic data compiled to date, we quantify the antigenic diversity of swine influenza viruses on a multi-continental scale. The substantial antigenic diversity of recently circulating viruses in different parts of the world adds complexity to the risk profiles for the movement of swine and the potential for swine-derived infections in humans. DOI: http://dx.doi.org/10.7554/eLife.12217.001 PMID:27113719

  9. Reducing persistent polyomavirus infection increases functionality of virus-specific memory CD8 T cells.

    PubMed

    Qin, Qingsong; Lauver, Matthew; Maru, Saumya; Lin, Eugene; Lukacher, Aron E

    2017-02-01

    Mouse polyomavirus (MuPyV) causes a smoldering persistent infection in immunocompetent mice. To lower MuPyV infection in acutely and persistently infected mice, and study the impact of a temporal reduction in viral loads on the memory CD8 T cell response, we created a recombinant MuPyV in which a loxP sequence was inserted into the A2 strain genome upstream of the early promoter and another loxP sequence was inserted in cis into the intron shared by all three T antigens. Using mice transgenic for tamoxifen-inducible Cre recombinase, we demonstrated that reduction in MuPyV load during persistent infection was associated with differentiation of virus-specific CD8 T cells having a superior recall response. Evidence presented here supports the concept that reduction in viral load during persistent infection can promote differentiation of protective virus-specific memory CD8 T cells in patients at risk for diseases caused by human polyomaviruses. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors.

    PubMed

    Dekhtiarenko, Iryna; Ratts, Robert B; Blatnik, Renata; Lee, Lian N; Fischer, Sonja; Borkner, Lisa; Oduro, Jennifer D; Marandu, Thomas F; Hoppe, Stephanie; Ruzsics, Zsolt; Sonnemann, Julia K; Mansouri, Mandana; Meyer, Christine; Lemmermann, Niels A W; Holtappels, Rafaela; Arens, Ramon; Klenerman, Paul; Früh, Klaus; Reddehase, Matthias J; Riemer, Angelika B; Cicin-Sain, Luka

    2016-12-01

    Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy.

  11. Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors

    PubMed Central

    Blatnik, Renata; Lee, Lian N.; Fischer, Sonja; Borkner, Lisa; Oduro, Jennifer D.; Marandu, Thomas F.; Hoppe, Stephanie; Ruzsics, Zsolt; Sonnemann, Julia K.; Meyer, Christine; Holtappels, Rafaela; Arens, Ramon; Früh, Klaus; Reddehase, Matthias J.; Riemer, Angelika B.; Cicin-Sain, Luka

    2016-01-01

    Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy. PMID:27977791

  12. Immunotherapy Plus Cryotherapy: Potential Augmented Abscopal Effect for Advanced Cancers

    PubMed Central

    Abdo, Joe; Cornell, David L.; Mittal, Sumeet K.; Agrawal, Devendra K.

    2018-01-01

    Since the 1920s the gold standard for treating cancer has been surgery, which is typically preceded or followed with chemotherapy and/or radiation, a process that perhaps contributes to the destruction of a patient’s immune defense system. Cryosurgery ablation of a solid tumor is mechanistically similar to a vaccination where hundreds of unique antigens from a heterogeneous population of tumor cells derived from the invading cancer are released. However, releasing tumor-derived self-antigens into circulation may not be sufficient enough to overcome the checkpoint escape mechanisms some cancers have evolved to avoid immune responses. The potentiated immune response caused by blocking tumor checkpoints designed to prevent programmed cell death may be the optimal treatment method for the immune system to recognize these new circulating cryoablated self-antigens. Preclinical and clinical evidence exists for the complementary roles for Cytotoxic T-lymphocyte-associated protein (CTLA-4) and PD-1 antagonists in regulating adaptive immunity, demonstrating that combination immunotherapy followed by cryosurgery provides a more targeted immune response to distant lesions, a phenomenon known as the abscopal effect. We propose that when the host’s immune system has been “primed” with combined anti-CTLA-4 and anti-PD-1 adjuvants prior to cryosurgery, the preserved cryoablated tumor antigens will be presented and processed by the host’s immune system resulting in a robust cytotoxic CD8+ T-cell response. Based on recent investigations and well-described biochemical mechanisms presented herein, a polyvalent autoinoculation of many tumor-specific antigens, derived from a heterogeneous population of tumor cancer cells, would present to an unhindered yet pre-sensitized immune system yielding a superior advantage in locating, recognizing, and destroying tumor cells throughout the body. PMID:29644213

  13. Immune memory in invertebrates.

    PubMed

    Milutinović, Barbara; Kurtz, Joachim

    2016-08-01

    Evidence for innate immune memory (or 'priming') in invertebrates has been accumulating over the last years. We here provide an in-depth review of the current state of evidence for immune memory in invertebrates, and in particular take a phylogenetic viewpoint. Invertebrates are a very heterogeneous group of animals and accordingly, evidence for the phenomenon of immune memory as well as the hypothesized molecular underpinnings differ largely for the diverse invertebrate taxa. The majority of research currently focuses on Arthropods, while evidence from many other groups of invertebrates is fragmentary or even lacking. We here concentrate on immune memory that is induced by pathogenic challenges, but also extent our view to a non-pathogenic context, i.e. allograft rejection, which can also show forms of memory and can inform us about general principles of specific self-nonself recognition. We discuss definitions of immune memory and a number of relevant aspects such as the type of antigens used, the route of exposure, and the kinetics of reactions following priming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. DNA vaccines targeting the encoded antigens to dendritic cells induce potent antitumor immunity in mice.

    PubMed

    Cao, Jun; Jin, Yiqi; Li, Wei; Zhang, Bin; He, Yang; Liu, Hongqiang; Xia, Ning; Wei, Huafeng; Yan, Jian

    2013-08-14

    Although DNA vaccine holds a great potential for cancer immunotherapy, effective long-lasting antitumoral immunity sufficient to induce durable responses in cancer patients remains to be achieved. Considering the pivotal role of dendritic cells (DC) in the antigen processing and presentation, we prepared DC-targeting DNA vaccines by fusing tumor-associated antigen HER2/neu ectodomain to single chain antibody fragment (scFv) from NLDC-145 antibody specific for DC-restricted surface molecule DEC-205 (scFvNLDC-145), and explored its antitumoral efficacy and underlying mechanisms in mouse breast cancer models. In vivo targeting assay demonstrated that scFvNLDC-145 specifically delivered DNA vaccine-encoded antigen to DC. Compared with untargeted HER2/neu DNA vaccines, vaccination with scFvNLDC-145-HER2/neu markedly promoted the HER2/neu-specific cellular and humoral immune responses with long-lasting immune memory, resulting in effective protection against challenge of HER2/neu-positive D2F2/E2 breast tumor while ineffective in parental HER2/neu-negative D2F2 breast tumor. More importantly, in combination with temporary depletion of regulatory T cells (Treg) by low-dose cyclophosphamide, vaccination with scFvNLDC-145-HER2/neu induced the regression of established D2F2/E2 breast tumor and significantly retarded the development of spontaneous mammary carcinomas in transgenic BALB-neuT mice. Our findings demonstrate that DC-targeted DNA vaccines for in vivo direct delivery of tumor antigens to DC could induce potent antigen-specific cellular and humoral immune responses and, if additional combination with systemic Treg depletion, was able to elicit an impressively therapeutic antitumoral activity, providing a rationale for further development of this approach for cancer treatment.

  15. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells.

    PubMed

    Phetsouphanh, Chansavath; Zaunders, John James; Kelleher, Anthony Dominic

    2015-08-12

    A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.

  16. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells

    PubMed Central

    Phetsouphanh, Chansavath; Zaunders, John James; Kelleher, Anthony Dominic

    2015-01-01

    A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated. PMID:26274954

  17. Interleukin-1 and cutaneous inflammation: a crucial link between innate and acquired immunity.

    PubMed

    Murphy, J E; Robert, C; Kupper, T S

    2000-03-01

    As our primary interface with the environment, the skin is constantly subjected to injury and invasion by pathogens. The fundamental force driving the evolution of the immune system has been the need to protect the host against overwhelming infection. The ability of T and B cells to recombine antigen receptor genes during development provides an efficient, flexible, and powerful immune system with nearly unlimited specificity for antigen. The capacity to expand subsets of antigen-specific lymphocytes that become activated by environmental antigens (memory response) is termed "acquired" immunity. Immunologic memory, although a fundamental aspect of mammalian biology, is a relatively recent evolutionary event that permits organisms to live for years to decades. "Innate" immunity, mediated by genes that remain in germ line conformation and encode for proteins that recognize conserved structural patterns on microorganisms, is a much more ancient system of host defense. Defensins and other antimicrobial peptides, complement and opsonins, and endocytic receptors are all considered components of the innate immune system. None of these, however, are signal-transducing receptors. Most recently, a large family of cell surface receptors that mediate signaling through the NF-kappaB transcription factor has been identified. This family of proteins shares striking homology with plant and Drosophila genes that mediate innate immunity. In mammals, this family includes the type I interleukin-1 receptor, the interleukin-18 receptor, and a growing family of Toll-like receptors, two of which were recently identified as signal-transducing receptors for bacterial endotoxin. In this review, we discuss how interleukin-1 links the innate and acquired immune systems to provide synergistic host defense activities in skin.

  18. Spontaneous CD4+ and CD8+ T-cell responses directed against cancer testis antigens are present in the peripheral blood of testicular cancer patients.

    PubMed

    Pearce, Hayden; Hutton, Paul; Chaudhri, Shalini; Porfiri, Emilio; Patel, Prashant; Viney, Richard; Moss, Paul

    2017-07-01

    Cancer/testis antigen (CTAg) expression is restricted to spermatogenic cells in an immune-privileged site within the testis. However, these proteins are expressed aberrantly by malignant cells and T-cell responses against CTAgs develop in many cancer patients. We investigated the prevalence, magnitude and phenotype of CTAg-specific T cells in the blood of patients with testicular germ cell tumors (TGCTs). CD8 + and CD4 + T-cell responses against MAGE-A family antigens were present in 44% (20/45) of patients' samples assayed by ex vivo IFN-γ ELISPOT. The presence of MAGE-specific CD8 + T cells was further determined following short-term in vitro expansion through the use of pMHC-I multimers containing known immunogenic peptides. Longitudinal analysis revealed that the frequency of MAGE-specific T cells decreased by 89% following orchidectomy suggesting that persistence of tumor antigen is required to sustain CTAg-specific T-cell immunity. Notably, this decrease correlated with a decline in the global effector/memory T-cell pool following treatment. Spontaneous T-cell immunity against CTAg proteins therefore develops in many patients with testicular cancer and may play an important role in the excellent clinical outcome of patients with this tumor subtype. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Antigen based detection of cystic echinococcosis in buffaloes using ELISA and Dot-EIA.

    PubMed

    Sangaran, A; Bino Sundar, S T; Latha, Bhaskaran Ravi

    2017-03-01

    Cystic echinococcosis is caused by the larval stage of the dog tapeworm, Echinococcus granulosus . The disease is recognized as one of the world's major zoonoses affecting human beings and domestic animals apart from its economic and public health importance. Development of the cysts in the intermediate host such as buffaloes occurs in the lungs, liver and other organs. In this study, detection of circulating antigen in the diagnosis of cystic echinococcosis in buffaloes was done using enzyme linked immunosorbent assay and Dot-Enzyme immunoassay (Dot-EIA). The sensitivity and specificity were determined as 89 and 92 % respectively, whereas those of Dot-EIA were determined as 94 and 96 %.

  20. Persistence of transgene expression influences CD8+ T-cell expansion and maintenance following immunization with recombinant adenovirus.

    PubMed

    Finn, Jonathan D; Bassett, Jennifer; Millar, James B; Grinshtein, Natalie; Yang, Teng Chih; Parsons, Robin; Evelegh, Carole; Wan, Yonghong; Parks, Robin J; Bramson, Jonathan L

    2009-12-01

    Previous studies determined that the CD8(+) T-cell response elicited by recombinant adenovirus exhibited a protracted contraction phase that was associated with long-term presentation of antigen. To gain further insight into this process, a doxycycline-regulated adenovirus was constructed to enable controlled extinction of transgene expression in vivo. We investigated the impact of premature termination of transgene expression at various time points (day 3 to day 60) following immunization. When transgene expression was terminated before the maximum response had been attained, overall expansion was attenuated, yielding a small memory population. When transgene expression was terminated between day 13 and day 30, the memory population was not sustained, demonstrating that the early memory population was antigen dependent. Extinction of transgene expression at day 60 had no obvious impact on memory maintenance, indicating that maintenance of the memory population may ultimately become independent of transgene expression. Premature termination of antigen expression had significant but modest effects on the phenotype and cytokine profile of the memory population. These results offer new insights into the mechanisms of memory CD8(+) T-cell maintenance following immunization with a recombinant adenovirus.

  1. Antibody and Cytokine Responses of Koalas (Phascolarctos cinereus) Vaccinated with Recombinant Chlamydial Major Outer Membrane Protein (MOMP) with Two Different Adjuvants

    PubMed Central

    Khan, Shahneaz Ali; Desclozeaux, Marion; Waugh, Courtney; Hanger, Jon; Loader, Jo; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2016-01-01

    Developing a vaccine against Chlamydia is key to combating widespread mortalities and morbidities associated with this infection in koalas (Phascolarctos cinereus). In previous studies, we have shown that two or three doses of a Recombinant Major Outer Membrane Protein (rMOMP) antigen-based vaccine, combined with immune stimulating complex (ISC) adjuvant, results in strong cellular and humoral immune responses in koalas. We have also separately evaluated a single dose vaccine, utilising a tri-adjuvant formula that comprises polyphosphazine based poly I: C and host defense peptides, with the same antigen. This formulation also produced strong cellular and humoral immune responses in captive koalas. In this current study, we directly compared the host immune responses of two sub-groups of wild Chlamydia negative koalas in one population vaccinated with the rMOMP protein antigen and adjuvanted with either the ISC or tri-adjuvant formula. Overall, both adjuvants produced strong Chlamydia-specific cellular (IFN-γ and IL-17A) responses in circulating PBMCs as well as MOMP-specific and functional, in vitro neutralising antibodies. While the immune responses were similar, there were adjuvant-specific immune differences between the two adjuvants, particularly in relation to the specificity of the MOMP epitope antibody responses. PMID:27219467

  2. Microbially synthesized modular virus-like particles and capsomeres displaying group A streptococcus hypervariable antigenic determinants.

    PubMed

    Chuan, Yap P; Wibowo, Nani; Connors, Natalie K; Wu, Yang; Hughes, Fiona K; Batzloff, Michael R; Lua, Linda H L; Middelberg, Anton P J

    2014-06-01

    Effective and low-cost vaccines are essential to control severe group A streptococcus (GAS) infections prevalent in low-income nations and the Australian aboriginal communities. Highly diverse and endemic circulating GAS strains mandate broad-coverage and customized vaccines. This study describes an approach to deliver cross-reactive antigens from endemic GAS strains using modular virus-like particle (VLP) and capsomere systems. The antigens studied were three heterologous N-terminal peptides (GAS1, GAS2, and GAS3) from the GAS surface M-protein that are specific to endemic strains in Australia Northern Territory Aboriginal communities. In vivo data presented here demonstrated salient characteristics of the modular delivery systems in the context of GAS vaccine design. First, the antigenic peptides, when delivered by unadjuvanted modular VLPs or adjuvanted capsomeres, induced high titers of peptide-specific IgG antibodies (over 1 × 10(4) ). Second, delivery by capsomere was superior to VLP for one of the peptides investigated (GAS3), demonstrating that the delivery system relative effectiveness was antigen-dependant. Third, significant cross-reactivity of GAS2-induced IgG with GAS1 was observed using either VLP or capsomere, showing the possibility of broad-coverage vaccine design using these delivery systems and cross-reactive antigens. Fourth, a formulation containing three pre-mixed modular VLPs, each at a low dose of 5 μg (corresponding to <600 ng of each GAS peptide), induced significant titers of IgGs specific to each peptide, demonstrating that a multivalent, broad-coverage VLP vaccine formulation was possible. In summary, the modular VLPs and capsomeres reported here demonstrate, with promising preliminary data, innovative ways to design GAS vaccines using VLP and capsomere delivery systems amenable to microbial synthesis, potentially adoptable by developing countries. © 2013 Wiley Periodicals, Inc.

  3. Antigenic Drift in H5N1 Avian Influenza Virus in Poultry Is Driven by Mutations in Major Antigenic Sites of the Hemagglutinin Molecule Analogous to Those for Human Influenza Virus▿†

    PubMed Central

    Cattoli, Giovanni; Milani, Adelaide; Temperton, Nigel; Zecchin, Bianca; Buratin, Alessandra; Molesti, Eleonora; Aly, Mona Meherez; Arafa, Abdel; Capua, Ilaria

    2011-01-01

    H5N1 highly pathogenic avian influenza virus has been endemic in poultry in Egypt since 2008, notwithstanding the implementation of mass vaccination and culling of infected birds. Extensive circulation of the virus has resulted in a progressive genetic evolution and an antigenic drift. In poultry, the occurrence of antigenic drift in avian influenza viruses is less well documented and the mechanisms remain to be clarified. To test the hypothesis that H5N1 antigenic drift is driven by mechanisms similar to type A influenza viruses in humans, we generated reassortant viruses, by reverse genetics, that harbored molecular changes identified in genetically divergent viruses circulating in the vaccinated population. Parental and reassortant phenotype viruses were antigenically analyzed by hemagglutination inhibition (HI) test and microneutralization (MN) assay. The results of the study indicate that the antigenic drift of H5N1 in poultry is driven by multiple mutations primarily occurring in major antigenic sites at the receptor binding subdomain, similarly to what has been described for human influenza H1 and H3 subtype viruses. PMID:21734057

  4. Switched memory B cells maintain specific memory independently of serum antibodies: the hepatitis B example.

    PubMed

    Rosado, M Manuela; Scarsella, Marco; Pandolfi, Elisabetta; Cascioli, Simona; Giorda, Ezio; Chionne, Paola; Madonne, Elisabetta; Gesualdo, Francesco; Romano, Mariateresa; Ausiello, Clara M; Rapicetta, Maria; Zanetti, Alessandro R; Tozzi, Alberto; Carsetti, Rita

    2011-06-01

    The immunogenicity of a vaccine is conventionally measured through the level of serum Abs early after immunization, but to ensure protection specific Abs should be maintained long after primary vaccination. For hepatitis B, protective levels often decline over time, but breakthrough infections do not seem to occur. The aim of this study was to demonstrate whether, after hepatitis B vaccination, B-cell memory persists even when serum Abs decline. We compared the frequency of anti-hepatitis-specific memory B cells that remain in the blood of 99 children five years after priming with Infanrix -hexa (GlaxoSmithKline) (n=34) or with Hexavac (Sanofi Pasteur MSD) (n=65). These two vaccines differ in their ability to generate protective levels of IgG. Children with serum Abs under the protective level, <10 mIU/mL, received a booster dose of hepatitis B vaccine, and memory B cells and serum Abs were measured 2 wk later. We found that specific memory B cells had a similar frequency in all children independently of primary vaccine. Booster injection resulted in the increase of memory B cell frequencies (from 11.3 in 10(6) cells to 28.2 in 10(6) cells, p<0.01) and serum Abs (geometric mean concentration, GMC from 2.9 to 284 mIU/mL), demonstrating that circulating memory B cells effectively respond to Ag challenge even when specific Abs fall under the protective threshold. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Vaccines

    MedlinePlus Videos and Cool Tools

    Vaccinations are injections of antigens into the body. Once the antigens enter the blood, they circulate along with other ... B and T cells. B and T cells are white blood cells that help the body defend ...

  6. Pertussis Circulation Has Increased T-Cell Immunity during Childhood More than a Second Acellular Booster Vaccination in Dutch Children 9 Years of Age

    PubMed Central

    Schure, Rose-Minke; de Rond, Lia; Öztürk, Kemal; Hendrikx, Lotte; Sanders, Elisabeth; Berbers, Guy; Buisman, Anne-Marie

    2012-01-01

    Here we report the first evaluation of T-cell responses upon a second acellular pertussis booster vaccination in Dutch children at 9 years of age, 5 years after a preschool booster vaccination. Blood samples of children 9 years of age were studied longitudinally until 1 year after the second aP booster and compared with those after the first aP booster in children 4 and 6 years of age from a cross-sectional study. After stimulation with pertussis-vaccine antigens, Th1, Th2 and Th17 cytokine responses were measured and effector memory cells (CCR7-CD45RA-) were characterized by 8-colour FACS analysis. The second aP booster vaccination at pre-adolescent age in wP primed individuals did increase pertussis-specific Th1 and Th2 cytokine responses. Noticeably, almost all T-cell responses had increased with age and were already high before the booster vaccination at 9 years of age. The enhancement of T-cell immunity during the 5 year following the booster at 4 years of age is probably caused by natural boosting due to the a high circulation of pertussis. However, the incidence of pertussis is high in adolescents and adults who have only received the Dutch wP vaccine during infancy and no booster at 4 years of age. Therefore, an aP booster vaccination at adolescence or later in these populations might improve long-term immunity against pertussis and reduce the transmission to the vulnerable newborns. Trial Registration Controlled-Trials.com ISRCTN64117538 PMID:22860033

  7. Diagnostic potential of Fasciola gigantica-derived 14.5 kDa fatty acid binding protein in the immunodiagnosis of bubaline fascioliasis.

    PubMed

    Allam, G; Bauomy, I R; Hemyeda, Z M; Diab, T M; Sakran, T F

    2013-06-01

    The 14.5 kDa fatty acid binding protein (FABP) was isolated from the crude extract of adult Fasciola gigantica worms. Polyclonal anti-FABP IgG was generated in rabbits immunized with prepared FABP antigen. Sandwich enzyme-linked immunosorbent assay (ELISA) was applied to detect coproantigen in stools and circulating Fasciola antigen (CA) in sera of 126 water buffaloes by using purified and horseradish peroxidase (HRP)-conjugated anti-FABP IgG. Sandwich ELISA sensitivity was 96.97% and 94.95%; while specificity was 94.12% and 82.35% for coproantigen and CA detection, respectively. However, sensitivity and specificity of the Kato-Katz technique was 73.74% and 100%, respectively. The diagnostic efficacy of sandwich ELISA was 96.55% and 93.1% for coproantigen and CA detection, respectively. In contrast, the diagnostic efficacy of the Kato-Katz technique was 77.59%. In conclusion, these results demonstrate that the purified 14.5 kDa FABP provides a more suitable antigen for immunodiagnosis of early and current bubaline fascioliasis by using sandwich ELISA.

  8. Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients

    PubMed Central

    Fucikova, Jitka; Truxova, Iva; Hensler, Michal; Becht, Etienne; Kasikova, Lenka; Moserova, Irena; Vosahlikova, Sarka; Klouckova, Jana; Church, Sarah E.; Cremer, Isabelle; Kepp, Oliver; Kroemer, Guido; Galluzzi, Lorenzo; Salek, Cyril

    2016-01-01

    Cancer cell death can be perceived as immunogenic by the host only when malignant cells emit immunostimulatory signals (so-called “damage-associated molecular patterns,” DAMPs), as they die in the context of failing adaptive responses to stress. Accumulating preclinical and clinical evidence indicates that the capacity of immunogenic cell death to (re-)activate an anticancer immune response is key to the success of various chemo- and radiotherapeutic regimens. Malignant blasts from patients with acute myeloid leukemia (AML) exposed multiple DAMPs, including calreticulin (CRT), heat-shock protein 70 (HSP70), and HSP90 on their plasma membrane irrespective of treatment. In these patients, high levels of surface-exposed CRT correlated with an increased proportion of natural killer cells and effector memory CD4+ and CD8+ T cells in the periphery. Moreover, CRT exposure on the plasma membrane of malignant blasts positively correlated with the frequency of circulating T cells specific for leukemia-associated antigens, indicating that ecto-CRT favors the initiation of anticancer immunity in patients with AML. Finally, although the levels of ecto-HSP70, ecto-HSP90, and ecto-CRT were all associated with improved relapse-free survival, only CRT exposure significantly correlated with superior overall survival. Thus, CRT exposure represents a novel powerful prognostic biomarker for patients with AML, reflecting the activation of a clinically relevant AML-specific immune response. PMID:27802968

  9. Drug delivery systems--2. Site-specific drug delivery utilizing monoclonal antibodies.

    PubMed

    Ranade, V V

    1989-10-01

    Monoclonal antibodies (MAbs) are purified antibodies produced by a single clone of cells. They are engineered to recognize and bind to a single specific antigen. Accordingly, when administered, MAbs home in on a particular circulating protein or on cells that bear the correct antigenic signature on their surfaces. It is the specificity of MAbs that has made them valuable tools for health professions. Following the discovery of Kohler and Milstein regarding the method of somatic cell hybridization, a number of investigators have successfully adopted this technique to obtain T-lymphocyte hybrid cell lines by fusion of activated T (thymus derived) lymphocytes with a T lymphoma cell line leading to an immortalization of a specific differentiated function. The hybrids thus obtained were subsequently shown to produce homogeneous effector molecules with a wide variety of immune functions such as enhancement or suppression of antibody responses, generation of helper T cells, suppressor T cells and cytotoxic T cells. Study of these regulatory molecules has been further shown to provide a greater insight into the genetic, biochemical and molecular mechanisms responsible for cellular development, and the interaction and triggering of various cell types. The successful application of hybridoma technology has now resulted into several advances in the understanding the mechanism and treatment of diseases, especially cancer and development of vaccines, promotion of organ transplantation and therapy against parasites as well. Since monoclonal antibodies could be made in unlimited supply, they have been used in genetic studies such as mRNA and gene isolation, chromosomal isolation of specific genes, immunoglobulin structure, detection of new or rare immunoglobulin gene products, structural studies of enzymes and other proteins and structural and population studies of protein polymorphisms. In some instances, the monoclonal antibodies have been found to replace conventional antisera for studies of chromosome structure and function, gene mapping, embryogenesis, characterization and biosynthesis of developmental and differentiation antigens. These antigens are those that are specific for various cell types and tissues, species specific antigen, antigens involved in chemotaxis, immunogenetics and clinical genetics including genetically inherited disorders, chromosome aberrations and transplantation antigens. Besides these monoclonal antibodies, their complexes have recently been investigated as exquisitely sensitive probes to be guided to target cells or organs. They have been used to deliver cytotoxic drugs to malignant cells or enzymes to specific cell types.(ABSTRACT TRUNCATED AT 400 WORDS)

  10. STUDIES ON TUBERCULIN FEVER. 3. MECHANISMS INVOLVED IN THE RELEASE OF ENDOGENOUS PYROGEN IN VITRO.

    PubMed

    ATKINS, E; HEIJN, C

    1965-08-01

    In a search for the source of the circulating endogenous pyrogen (EP) that mediates tuberculin-induced fever, tuberculin was incubated in vitro with various tissues of rabbits sensitized by intravenous infection with BCG. Evidence was obtained that tuberculin specifically stimulates cells in the blood of sensitized rabbits to generate pyrogen in vitro, whereas both lymph node and spleen cells from the same donors were inactive. Since normal blood cells, incubated in plasma of sensitized donors, were similarly activated, it is postulated that circulating antibodies play a role in sensitizing cells (presumably granulocytes) to release pyrogen on contact with tuberculin) both in vitro and in vivo. Release of endogenous pyrogen in vitro may be a sensitive means of detecting immunologic reactions between antigen and specifically sensitized blood cells-in other allergic states accompanied by fever.

  11. Antigenic Characterization of H3N2 Influenza A Viruses from Ohio Agricultural Fairs

    PubMed Central

    Feng, Zhixin; Gomez, Janet; Bowman, Andrew S.; Ye, Jianqiang; Long, Li-Ping; Nelson, Sarah W.; Yang, Jialiang; Martin, Brigitte; Jia, Kun; Nolting, Jacqueline M.; Cunningham, Fred; Cardona, Carol; Zhang, Jianqiang; Yoon, Kyoung-Jin; Slemons, Richard D.

    2013-01-01

    The demonstrated link between the emergence of H3N2 variant (H3N2v) influenza A viruses (IAVs) and swine exposure at agricultural fairs has raised concerns about the human health risk posed by IAV-infected swine. Understanding the antigenic profiles of IAVs circulating in pigs at agricultural fairs is critical to developing effective prevention and control strategies. Here, 68 H3N2 IAV isolates recovered from pigs at Ohio fairs (2009 to 2011) were antigenically characterized. These isolates were compared with other H3 IAVs recovered from commercial swine, wild birds, and canines, along with human seasonal and variant H3N2 IAVs. Antigenic cartography demonstrated that H3N2 IAV isolates from Ohio fairs could be divided into two antigenic groups: (i) the 2009 fair isolates and (ii) the 2010 and 2011 fair isolates. These same two antigenic clusters have also been observed in commercial swine populations in recent years. Human H3N2v isolates from 2010 and 2011 are antigenically clustered with swine-origin IAVs from the same time period. The isolates recovered from pigs at fairs did not cross-react with ferret antisera produced against the human seasonal H3N2 IAVs circulating during the past decade, raising the question of the degree of immunity that the human population has to swine-origin H3N2 IAVs. Our results demonstrate that H3N2 IAVs infecting pigs at fairs and H3N2v isolates were antigenically similar to the IAVs circulating in commercial swine, demonstrating that exhibition swine can function as a bridge between commercial swine and the human population. PMID:23637412

  12. Maintenance of memory-type pathogenic Th2 cells in the pathophysiology of chronic airway inflammation.

    PubMed

    Hirahara, Kiyoshi; Shinoda, Kenta; Endo, Yusuke; Ichikawa, Tomomi; Nakayama, Toshinori

    2018-01-01

    Immunological memory is critical for long-standing protection against microorganisms; however, certain antigen-specific memory CD4 + T helper (Th) cells drive immune-related pathology, including chronic allergic inflammation such as asthma. The IL-5-producing memory-type Tpath2 subset is important for the pathogenesis of chronic allergic inflammation. This memory-type pathogenic Th2 cell population (Tpath2) can be detected in various allergic inflammatory lesions. However, how these pathogenic populations are maintained at the local inflammatory site has remained unclear. We performed a series of experiments using mice model for chronic airway inflammation. We also investigated the human samples from patients with eosinophilic chronic rhinosinusitis. We recently reported that inducible bronchus-associated lymphoid tissue (iBALT) was shaped during chronic inflammation in the lung. We also found that memory-type Tpath2 cells are maintained within iBALT. The maintenance of the Tpath2 cells within iBALT is supported by specific cell subpopulations within the lung. Furthermore, ectopic lymphoid structures consisting of memory CD4 + T cells were found in nasal polyps of eosinophilic chronic rhinosinusitis patients, indicating that the persistence of inflammation is controlled by these structures. Thus, the cell components that organize iBALT formation may be therapeutic targets for chronic allergic airway inflammation.

  13. Maternal cell traffic bounds for immune modulation: tracking maternal H-2 alleles in spleens of baby mice by DNA fingerprinting.

    PubMed

    Wan, Wenhan; Shimizu, Shoji; Ikawa, Hiromichi; Sugiyama, Kiyosh; Yamaguchi, Nobuo

    2002-10-01

    We have previously reported that the immunization of pregnant mice with T-dependent antigens successfully induced suppression of the antigen-specific plaque-forming cell (PFC) response to the relevant antigens in the offspring. This suppression was not caused by the administered antigens, the antibodies produced by the pregnant mother, or lactational transfer, but was dependent on the presence of the intact maternal T cells. It was major histocompatibility complex (MHC)-restricted manner tolerance, which continued for at least one-sixth of the murine life. Traditionally, the placenta acts as a natural barrier, not allowing the cells to pass through. However, the results presented strongly suggested that maternal T cells pass through the placenta and subsequently induce tolerance. In this present study, we attempted to substantiate the presence of maternal cells in the fetal circulation through the use of molecular techniques. We found that a highly polymorphic microsatellite sequence within the class II Eb gene of the H-2 complex is useful for the molecular detection of various H-2 alleles. DNA polymorphic analysis was used for tracking maternal H-2 alleles in the spleens of baby mice. The main procedure involved polymerase chain reaction amplification and restriction fragment length polymorphism analysis of the DNA sequence encompassing the H-2-specific microsatellite from the genomic DNA of baby mice. The results indicated that maternal T cells of immunized pregnant mice cross the placenta into the fetus, eventually inducing antigen-specific immunological tolerance in the offspring.

  14. Multiplex Amplification Refractory Mutation System PCR (ARMS-PCR) provides sequencing independent typing of canine parvovirus.

    PubMed

    Chander, Vishal; Chakravarti, Soumendu; Gupta, Vikas; Nandi, Sukdeb; Singh, Mithilesh; Badasara, Surendra Kumar; Sharma, Chhavi; Mittal, Mitesh; Dandapat, S; Gupta, V K

    2016-12-01

    Canine parvovirus-2 antigenic variants (CPV-2a, CPV-2b and CPV-2c) ubiquitously distributed worldwide in canine population causes severe fatal gastroenteritis. Antigenic typing of CPV-2 remains a prime focus of research groups worldwide in understanding the disease epidemiology and virus evolution. The present study was thus envisioned to provide a simple sequencing independent, rapid, robust, specific, user-friendly technique for detecting and typing of presently circulating CPV-2 antigenic variants. ARMS-PCR strategy was employed using specific primers for CPV-2a, CPV-2b and CPV-2c to differentiate these antigenic types. ARMS-PCR was initially optimized with reference positive controls in two steps; where first reaction was used to differentiate CPV-2a from CPV-2b/CPV-2c. The second reaction was carried out with CPV-2c specific primers to confirm the presence of CPV-2c. Initial validation of the ARMS-PCR was carried out with 24 sequenced samples and the results were matched with the sequencing results. ARMS-PCR technique was further used to screen and type 90 suspected clinical samples. Randomly selected 15 suspected clinical samples that were typed with this technique were sequenced. The results of ARMS-PCR and the sequencing matched exactly with each other. The developed technique has a potential to become a sequencing independent method for simultaneous detection and typing of CPV-2 antigenic variants in veterinary disease diagnostic laboratories globally. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Dihydrolipoamide dehydrogenase-Lpd (Rv0462)-specific T cell recall responses are higher in healthy household contacts of TB: a novel immunodominant antigen from M. tuberculosis.

    PubMed

    Devasundaram, Santhi; Raja, Alamelu

    2017-07-01

    The partial effectiveness against pulmonary tuberculosis (PTB), displayed by the existing tuberculosis (TB) vaccine, bacillus Calmette-Guérin (BCG), highlights the need for novel vaccines to replace or improve BCG. In TB immunology, antigen-specific cellular immune response is frequently considered indispensable. Latency-associated antigens are intriguing as targets for TB vaccine development. The mycobacterial protein, dihydrolipoamide dehydrogenase (Lpd; Rv0462), the third enzyme of the pyruvate dehydrogenase (PDH) complex, facilitates Mycobacterium tuberculosis to resist host reactive nitrogen intermediates. Multicolor flow cytometry analysis of whole-blood cultures showed higher Lpd-specific Th1 recall response (IFN-γ, TNF-α, and IL-2; P = 0.0006) and memory CD4 + and CD8 + T cells (CCR7 + CD45RA - and CCR7 - CD45RA - ) in healthy household contacts (HHC) of TB ( P < 0.0001), which is comparable with or higher than the standard antigens, ESAT-6 and CFP-10. The frequency of Lpd-specific multifunctional T cells was higher in HHC compared with PTB patients. However, there is no significant statistical correlation. Regulatory T cell (T reg ) analysis of HHCs and active TB patients demonstrated very low Lpd-specific CD4 + T regs relative to ESAT-6 and CFP-10. Our study demonstrates that the Lpd antigen induces a strong cellular immune response in healthy mycobacteria-infected individuals. In consideration of this population having demonstrated immunologic protection against active TB disease development, our data are encouraging about the possible use of Lpd as a target for further TB subunit vaccine development. © Society for Leukocyte Biology.

  16. Protecting and rescuing the effectors: roles of differentiation and survival in the control of memory T cell development

    PubMed Central

    Kurtulus, Sema; Tripathi, Pulak; Hildeman, David A.

    2013-01-01

    Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8+ T cells. For example, the effector CD8+ T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8+ T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8+ T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8+ T cell memory. Effector to memory transition of CD4+ T cells is less well characterized than CD8+ T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of effector T cells. PMID:23346085

  17. First detection of canine parvovirus type 2b from diarrheic dogs in Himachal Pradesh.

    PubMed

    Sharma, Shalini; Dhar, Prasenjit; Thakur, Aneesh; Sharma, Vivek; Sharma, Mandeep

    2016-09-01

    The present study was conducted to detect the presence of canine parvovirus (CPV) among diarrheic dogs in Himachal Pradesh and to identify the most prevalent antigenic variant of CPV based on molecular typing and sequence analysis of VP2 gene. A total of 102 fecal samples were collected from clinical cases of diarrhea or hemorrhagic gastroenteritis from CPV vaccinated or non-vaccinated dogs. Samples were tested using CPV-specific polymerase chain reaction (PCR) targeting VP2 gene, multiplex PCR for detection of CPV-2a and CPV-2b antigenic variants, and a PCR for the detection of CPV-2c. CPV-2b isolate was cultured on Madin-Darby canine kidney (MDCK) cell lines and sequenced using VP2 structural protein gene. Multiple alignment and phylogenetic analysis was done using ClustalW and MEGA6 and inferred using the Neighbor-Joining method. No sample was found positive for the original CPV strain usually present in the vaccine. However, about 50% (52 out of 102) of the samples were found to be positive with CPV-2ab PCR assay that detects newer variants of CPV circulating in the field. In addition, multiplex PCR assay that identifies both CPV-2ab and CPV-2b revealed that CPV-2b was the major antigenic variant present in the affected dogs. A PCR positive isolate of CPV-2b was adapted to grow in MDCK cells and produced characteristic cytopathic effect after 5 th passage. Multiple sequence alignment of VP2 structural gene of CPV-2b isolate (Accession number HG004610) used in the study was found to be similar to other sequenced isolates in NCBI sequence database and showed 98-99% homology. This study reports the first detection of CPV-2b in dogs with hemorrhagic gastroenteritis in Himachal Pradesh and absence of other antigenic types of CPV. Further, CPV-specific PCR assay can be used for rapid confirmation of circulating virus strains under field conditions.

  18. Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Rui; McBride, Ryan; Paulson, James C.

    2010-03-04

    The hemagglutinin (HA) envelope protein of influenza viruses mediates essential viral functions, including receptor binding and membrane fusion, and is the major viral antigen for antibody neutralization. The 1957 H2N2 subtype (Asian flu) was one of the three great influenza pandemics of the last century and caused 1 million deaths globally from 1957 to 1968. Three crystal structures of 1957 H2 HAs have been determined at 1.60 to 1.75 {angstrom} resolutions to investigate the structural basis for their antigenicity and evolution from avian to human binding specificity that contributed to its introduction into the human population. These structures, which representmore » the highest resolutions yet recorded for a complete ectodomain of a glycosylated viral surface antigen, along with the results of glycan microarray binding analysis, suggest that a hydrophobicity switch at residue 226 and elongation of receptor-binding sites were both critical for avian H2 HA to acquire human receptor specificity. H2 influenza viruses continue to circulate in birds and pigs and, therefore, remain a substantial threat for transmission to humans. The H2 HA structure also reveals a highly conserved epitope that could be harnessed in the design of a broader and more universal influenza A virus vaccine.« less

  19. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of /sup 125/I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of /sup 125/I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes.more » By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen.« less

  20. T cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation.

    PubMed

    Blachère, Nathalie E; Orange, Dana E; Santomasso, Bianca D; Doerner, Jessica; Foo, Patricia K; Herre, Margaret; Fak, John; Monette, Sébastien; Gantman, Emily C; Frank, Mayu O; Darnell, Robert B

    2014-11-01

    Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Loss of sensitivity of immunochromatographic test (ICT) for lymphatic filariasis diagnosis in low prevalence settings: consequence in the monitoring and evaluation procedures.

    PubMed

    Gounoue-Kamkumo, Raceline; Nana-Djeunga, Hugues C; Bopda, Jean; Akame, Julie; Tarini, Ann; Kamgno, Joseph

    2015-12-23

    Diagnostic tools for lymphatic filariasis (LF) elimination programs are useful in mapping the distribution of the disease, delineating areas where mass drug administrations (MDA) are required, and determining when to stop MDA. The prevalence and burden of LF have been drastically reduced following mass treatments, and the evaluation of the performance of circulating filarial antigen (CFA)-based assays was acknowledged to be of high interest in areas with low residual LF endemicity rates after multiple rounds of MDA. The objective of this study was therefore to evaluate the immunochromatographic test (ICT) sensitivity in low endemicity settings and, specifically, in individuals with low intensity of lymphatic filariasis infection. To perform this study, calibrated thick blood smears, ICT and Og4C3 enzyme-linked immunosorbent assay (ELISA) were carried out by night to identify Wuchereria bancrofti microfilarial and circulating filarial antigen carriers. A threshold determination assay regarding ICT and ELISA was performed using serial plasma dilutions from individuals with positive microfilarial counts. All individuals harbouring microfilariae (positive blood films) were detected by ICT and ELISA, but among individuals positive for ELISA, only 35.7 % of them were detected using ICT (Chi square: 4.57; p-value = 0.03), indicating a moderate agreement between both tests (kappa statistics = 0.49). Threshold determination analyses showed that ELISA was still positive at the last plasma dilution with negative ICT result. These findings suggest a loss of sensitivity for ICT in low endemicity settings, especially in people exhibiting low levels of circulating filarial antigen, raising serious concern regarding the monitoring and evaluation procedures in the framework of LF elimination program.

  2. The tyrosine phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR signals.

    PubMed

    Salmond, Robert J; Brownlie, Rebecca J; Morrison, Vicky L; Zamoyska, Rose

    2014-09-01

    T cells must be tolerant of self antigens to avoid autoimmunity but responsive to foreign antigens to provide protection against infection. We found that in both naive T cells and effector T cells, the tyrosine phosphatase PTPN22 limited signaling via the T cell antigen receptor (TCR) by weak agonists and self antigens while not impeding responses to strong agonist antigens. T cells lacking PTPN22 showed enhanced formation of conjugates with antigen-presenting cells pulsed with weak peptides, which led to activation of the T cells and their production of inflammatory cytokines. This effect was exacerbated under conditions of lymphopenia, with the formation of potent memory T cells in the absence of PTPN22. Our data address how loss-of-function PTPN22 alleles can lead to the population expansion of effector and/or memory T cells and a predisposition to human autoimmunity.

  3. [The antibacterial immunity of people under dynamic observation in an altered radiation situation].

    PubMed

    Bidnenko, S I; Nazarchuk, L V; Fedorovskaia, E A; Liutko, O B; Open'ko, L B

    1992-01-01

    The comparative study of the isolation rate, level, antigenic and class specificity of serum antibodies to the causative agents of purulent septic infections (Staphylococcus aureus, Pseudomonas aeruginosa, Proteus mirabilis) and acute enteric infections in healthy adults with different ABO blood groups before (836 persons) and after (1,429 persons) the catastrophe at the Chernobyl nuclear power station was made. The study revealed the fact that the genesis of antibodies directed against different microorganisms can be stimulated without additional antigenic challenge in the form of disease or immunization, which was definitely indicative of the influence of small radiation doses in Kiev on the humoral immunity of the population. The multifactor character of the dependence of antibacterial antibody formation under altered radiation conditions on the specific features of the infective agent and the intensity of its circulation among the population, individual immune responsiveness of the body and concrete radiation conditions was established.

  4. High frequencies of circulating IFN-gamma-secreting CD8 cytotoxic T cells specific for a novel MHC class I-restricted Mycobacterium tuberculosis epitope in M. tuberculosis-infected subjects without disease.

    PubMed

    Pathan, A A; Wilkinson, K A; Wilkinson, R J; Latif, M; McShane, H; Pasvol, G; Hill, A V; Lalvani, A

    2000-09-01

    MHC class I-restricted CD8 cytotoxic T lymphocytes (CTL) are essential for protective immunity to Mycobacterium tuberculosis in animal models but their role in humans remains unclear. We therefore studied subjects who had successfully contained M. tuberculosis infection in vivo, i.e. exposed healthy household contacts and individuals with inactive self-healed pulmonary tuberculosis. Using the ELISPOT assay for IFN-gamma, we screened peptides from ESAT-6, a secreted antigen that is highly specific for M. tuberculosis. We identified a novel nonamer epitope: unstimulated peripheral blood-derived CD8 T cells displayed peptide-specific IFN-gamma release ex vivo while CD8 T cell lines and clones exhibited HLA-A68.02-restricted cytolytic activity and recognized endogenously processed antigen. The frequency of CD8 CTL specific for this single M. tuberculosis epitope, 1/2500 peripheral blood lymphocytes, was equivalent to the combined frequency of all IFN-gamma-secreting purified protein derivative-reactive T cells ex vivo. This highly focused CTL response was maintained in an asymptomatic contact over 2 years and is the most potent antigen-specific antimycobacterial CD8 CTL response hitherto described. Thus, human M. tuberculosis-specific CD8 CTL are not necessarily associated with active disease per se. Rather, our results are consistent with a protective role for these ESAT-6-specific CD8 T cells in the long-term control of M. tuberculosis in vivo in humans.

  5. MVA vaccine encoding CMV antigens safely induces durable expansion of CMV-specific T cells in healthy adults

    PubMed Central

    La Rosa, Corinna; Longmate, Jeff; Martinez, Joy; Zhou, Qiao; Kaltcheva, Teodora I.; Tsai, Weimin; Drake, Jennifer; Carroll, Mary; Wussow, Felix; Chiuppesi, Flavia; Hardwick, Nicola; Dadwal, Sanjeet; Aldoss, Ibrahim; Nakamura, Ryotaro; Zaia, John A.

    2017-01-01

    Attenuated poxvirus modified vaccinia Ankara (MVA) is a useful viral-based vaccine for clinical investigation, because of its excellent safety profile and property of inducing potent immune responses against recombinant (r) antigens. We developed Triplex by constructing an rMVA encoding 3 immunodominant cytomegalovirus (CMV) antigens, which stimulates a host antiviral response: UL83 (pp65), UL123 (IE1-exon4), and UL122 (IE2-exon5). We completed the first clinical evaluation of the Triplex vaccine in 24 healthy adults, with or without immunity to CMV and vaccinia virus (previous DryVax smallpox vaccination). Three escalating dose levels (DL) were administered IM in 8 subjects/DL, with an identical booster injection 28 days later and 1-year follow-up. Vaccinations at all DL were safe with no dose-limiting toxicities. No vaccine-related serious adverse events were documented. Local and systemic reactogenicity was transient and self-limiting. Robust, functional, and durable Triplex-driven expansions of CMV-specific T cells were detected by measuring T-cell surface levels of 4-1BB (CD137), binding to CMV-specific HLA multimers, and interferon-γ production. Marked and durable CMV-specific T-cell responses were also detected in Triplex-vaccinated CMV-seronegatives, and in DryVax-vaccinated subjects. Long-lived memory effector phenotype, associated with viral control during CMV primary infection, was predominantly found on the membrane of CMV-specific and functional T cells, whereas off-target vaccine responses activating memory T cells from the related herpesvirus Epstein-Barr virus remained undetectable. Combined safety and immunogenicity results of MVA in allogeneic hematopoietic stem cell transplant (HCT) recipients and Triplex in healthy adults motivated the initiation of a placebo-controlled multicenter trial of Triplex in HCT patients. This trial was registered at www.clinicaltrials.gov as #NCT02506933. PMID:27760761

  6. Ten Year Study of the Stringently Defined Otitis Prone Child in Rochester, NY

    PubMed Central

    Pichichero, Michael E.

    2016-01-01

    This review summarizes a prospective, longitudinal 10-year study in Rochester NY with virtually every clinically diagnosed acute otitis media (AOM) confirmed by bacterial culture of middle ear fluid. Children experiencing 3 episodes within 6 months or 4 episodes in 12 months were considered stringently-defined otitis prone (sOP). We found stringent diagnosis compared with clinical diagnosis reduced the frequency of children meeting the OP definition from 27% to 6% resulting in 14.8% and 2.4% receiving tympanostomy tubes, respectively. Significantly more often RSV infection led to AOM in sOP than non-otitis prone (NOP) children that correlated with diminished total RSV-specific serum IgG. sOP children produced low levels of antibody to Streptococcus pneumoniae and Haemophilus influenzae candidate vaccine protein antigens and to routine pediatric vaccines. sOP children generated significantly fewer memory B cells, functional and memory T cells to otopathogens following NP colonization and AOM than NOP children and they had defects in antigen presenting cells. PMID:27273691

  7. Early transduction produces highly functional chimeric antigen receptor-modified virus-specific T-cells with central memory markers: a Production Assistant for Cell Therapy (PACT) translational application.

    PubMed

    Sun, Jiali; Huye, Leslie E; Lapteva, Natalia; Mamonkin, Maksim; Hiregange, Manasa; Ballard, Brandon; Dakhova, Olga; Raghavan, Darshana; Durett, April G; Perna, Serena K; Omer, Bilal; Rollins, Lisa A; Leen, Ann M; Vera, Juan F; Dotti, Gianpietro; Gee, Adrian P; Brenner, Malcolm K; Myers, Douglas G; Rooney, Cliona M

    2015-01-01

    Virus-specific T-cells (VSTs) proliferate exponentially after adoptive transfer into hematopoietic stem cell transplant (HSCT) recipients, eliminate virus infections, then persist and provide long-term protection from viral disease. If VSTs behaved similarly when modified with tumor-specific chimeric antigen receptors (CARs), they should have potent anti-tumor activity. This theory was evaluated by Cruz et al. in a previous clinical trial with CD19.CAR-modified VSTs, but there was little apparent expansion of these cells in patients. In that study, VSTs were gene-modified on day 19 of culture and we hypothesized that by this time, sufficient T-cell differentiation may have occurred to limit the subsequent proliferative capacity of the transduced T-cells. To facilitate the clinical testing of this hypothesis in a project supported by the NHLBI-PACT mechanism, we developed and optimized a good manufacturing practices (GMP) compliant method for the early transduction of VSTs directed to Epstein-Barr virus (EBV), Adenovirus (AdV) and cytomegalovirus (CMV) using a CAR directed to the tumor-associated antigen disialoganglioside (GD2). Ad-CMVpp65-transduced EBV-LCLs effectively stimulated VSTs directed to all three viruses (triVSTs). Transduction efficiency on day three was increased in the presence of cytokines and high-speed centrifugation of retroviral supernatant onto retronectin-coated plates, so that under optimal conditions up to 88% of tetramer-positive VSTs expressed the GD2.CAR. The average transduction efficiency of early-and late transduced VSTs was 55 ± 4% and 22 ± 5% respectively, and early-transduced VSTs maintained higher frequencies of T cells with central memory or intermediate memory phenotypes. Early-transduced VSTs also had higher proliferative capacity and produced higher levels of TH1 cytokines IL-2, TNF-α, IFN-γ, MIP-1α, MIP-1β and other cytokines in vitro. We developed a rapid and GMP compliant method for the early transduction of multivirus-specific T-cells that allowed stable expression of high levels of a tumor directed CAR. Since a proportion of early-transduced CAR-VSTs had a central memory phenotype, they should expand and persist in vivo, simultaneously protecting against infection and targeting residual malignancy. This manufacturing strategy is currently under clinical investigation in patients receiving allogeneic HSCT for relapsed neuroblastoma and B-cell malignancies (NCT01460901 using a GD2.CAR and NCT00840853 using a CD19.CAR).

  8. Immunology and immunity against infection: General rules

    NASA Astrophysics Data System (ADS)

    Zinkernagel, Rolf M.

    2005-12-01

    Simplified and generalizable rules of immune responses against infections or vaccines have been summarized into 20 statements previously (Scand. J. Immunol. 60 (2004) 9-13) and are restated in a slightly different form here. The key terms of immunology (e.g. specificity, tolerance and memory) are explained in terms of their co-evolutionary importance in the equilibrium between infectious agents and diseases with higher vertebrate hosts. Specificity is best defined by protective antibodies or protective activated T cells; e.g. serotype specific neutralizing antibodies against polio viruses represent the discriminatory power of an immune response very well indeed. Tolerance is reviewed in terms of reactivity rather than self-nonself discrimination. Immune respones are deleted against antigens expressed at sufficient levels within the lymphoheamopoetic system, but may well exist at both, the T and the B cell level against antigens strictly outside of secondary lymphatic organs. In this respect the immune system behaves identically against virus infections and against self antigens. Persistent virus infections delete responsive T cells, once eliminated immune T cell responses wane, if a virus keeps outside of secondary lymphatic tissues no immune response is induced. Immunological memory is usually defined as earlier and greater responses but this does not correlate with protective immunity stringently. It is summarized here that pre-existing titers of protective neutralizing antibodies or pre-existence of activated T cells are the correlates of protection acute cytopathic lethal infections and toxins or against intracellular parasites. It is concluded that many discrepancies and uncertainties in immunological research derive from model situations and experimental results that are correctly measured but cannot be related to co-evolutionary contexts, i.e. survival.

  9. Antigenic variation of the human influenza A (H3N2) virus during the 2014-2015 winter season.

    PubMed

    Hua, Sha; Li, XiYan; Liu, Mi; Cheng, YanHui; Peng, YouSong; Huang, WeiJuan; Tan, MinJu; Wei, HeJiang; Guo, JunFeng; Wang, DaYan; Wu, AiPing; Shu, YueLong; Jiang, TaiJiao

    2015-09-01

    The human influenza A (H3N2) virus dominated the 2014-2015 winter season in many countries and caused massive morbidity and mortality because of its antigenic variation. So far, very little is known about the antigenic patterns of the recent H3N2 virus. By systematically mapping the antigenic relationships of H3N2 strains isolated since 2010, we discovered that two groups with obvious antigenic divergence, named SW13 (A/Switzerland/9715293/2013-like strains) and HK14 (A/Hong Kong/5738/2014-like strains), co-circulated during the 2014-2015 winter season. HK14 group co-circulated with SW13 in Europe and the United States during this season, while there were few strains of HK14 in mainland China, where SW13 has dominated since 2012. Furthermore, we found that substitutions near the receptor-binding site on hemagglutinin played an important role in the antigenic variation of both the groups. These findings provide a comprehensive understanding of the recent antigenic evolution of H3N2 virus and will aid in the selection of vaccine strains.

  10. Conserved region C functions to regulate PD-1 expression and subsequent CD8 T cell memory1

    PubMed Central

    Bally, Alexander P. R.; Tang, Yan; Lee, Joshua T.; Barwick, Benjamin G.; Martinez, Ryan; Evavold, Brian D.; Boss, Jeremy M.

    2016-01-01

    Expression of programmed death 1 (PD-1) on CD8 T cells promotes T cell exhaustion during chronic antigen exposure. During acute infections, PD-1 is transiently expressed and has the potential to modulate CD8 T cell memory formation. Conserved Region C (CR-C), a promoter proximal cis-regulatory element that is critical to PD-1 expression in vitro, responds to NFATc1, FoxO1, and/or NF-κB signaling pathways. Here, a CR-C knockout mouse (CRC−) was established to determine its role on PD-1 expression and corresponding effects on T cell function in vivo. Deletion of CR-C decreased PD-1 expression on CD4 T cells and antigen-specific CD8 T cells during acute and chronic lymphocytic choriomeningitis virus (LCMV) challenges, but did not affect the ability to clear an infection. Following acute LCMV infection, memory CD8 T cells in the CRC− mouse were formed in greater numbers, were more functional, and were more effective at responding to a melanoma tumor than wild-type memory cells. These data implicate a critical role for CR-C in governing PD-1 expression, and a subsequent role in guiding CD8 T cell differentiation. The data suggest the possibility that titrating PD-1 expression during CD8 T cell activation could have important ramifications in vaccine development and clinical care. PMID:27895178

  11. Long-lived tissue resident HIV-1 specific memory CD8+ T cells are generated by skin immunization with live virus vectored microneedle arrays.

    PubMed

    Zaric, Marija; Becker, Pablo Daniel; Hervouet, Catherine; Kalcheva, Petya; Ibarzo Yus, Barbara; Cocita, Clement; O'Neill, Lauren Alexandra; Kwon, Sung-Yun; Klavinskis, Linda Sylvia

    2017-12-28

    The generation of tissue resident memory (T RM ) cells at the body surfaces to provide a front line defence against invading pathogens represents an important goal in vaccine development for a wide variety of pathogens. It has been widely assumed that local vaccine delivery to the mucosae is necessary to achieve that aim. Here we characterise a novel micro-needle array (MA) delivery system fabricated to deliver a live recombinant human adenovirus type 5 vaccine vector (AdHu5) encoding HIV-1 gag. We demonstrate rapid dissolution kinetics of the microneedles in skin. Moreover, a consequence of MA vaccine cargo release was the generation of long-lived antigen-specific CD8 + T cells that accumulate in mucosal tissues, including the female genital and respiratory tract. The memory CD8 + T cell population maintained in the peripheral mucosal tissues was attributable to a MA delivered AdHu5 vaccine instructing CD8 + T cell expression of CXCR3 + , CD103 +, CD49a + , CD69 + , CD127 + homing, retention and survival markers. Furthermore, memory CD8 + T cells generated by MA immunization significantly expanded upon locally administered antigenic challenge and showed a predominant poly-functional profile producing high levels of IFNγ and Granzyme B. These data demonstrate that skin vaccine delivery using microneedle technology induces mobilization of long lived, poly-functional CD8 + T cells to peripheral tissues, phenotypically displaying hallmarks of residency and yields new insights into how to design and deliver effective vaccine candidates with properties to exert local immunosurveillance at the mucosal surfaces. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines

    PubMed Central

    Laws, Thomas R.; Kuchuloria, Tinatin; Chitadze, Nazibriola; Little, Stephen F.; Webster, Wendy M.; Debes, Amanda K.; Saginadze, Salome; Tsertsvadze, Nikoloz; Chubinidze, Mariam; Rivard, Robert G.; Tsanava, Shota; Dyson, Edward H.; Simpson, Andrew J. H.; Hepburn, Matthew J.; Trapaidze, Nino

    2016-01-01

    Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees) or anti-LF (in AVP vaccinees) antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens. PMID:27007118

  13. Gateway Arch Circulator Conceptual Feasibility Study : Jefferson National Expansion Memorial

    DOT National Transportation Integrated Search

    2015-03-01

    The Jefferson National Expansion Memorial (JEFF) is undergoing major design changes as part of the City Arch River 2015 project (CAR) that will impact access for park visitors. The park and stakeholders are considering a circulator system to facilita...

  14. Virus mutations and their impact on vaccination against infectious bursal disease (Gumboro disease).

    PubMed

    Boudaoud, A; Mamache, B; Tombari, W; Ghram, A

    2016-12-01

    Infectious bursal disease (also known as Gumboro disease) is an immunosuppressive viral disease specific to chickens. In spite of all the information amassed on the antigenic and immunological characteristics of the virus, the disease has not yet been brought fully under control. It is still prevalent in properly vaccinated flocks carrying specific antibodies at levels normally high enough to prevent the disease. Common causes apart, failure of vaccination against infectious bursal disease is associated mainly with early vaccination in flocks of unknown immune status and with the evolution of viruses circulating in the field, leading to antigenic drift and a sharp rise in pathogenicity. Various highly sensitive molecular techniques have clarified the viral determinants of antigenicity and pathogenicity of the infectious bursal disease virus. However, these markers are not universally recognised and tend to be considered as evolutionary markers. Antigenic variants of the infectious bursal disease virus possess modified neutralising epitopes that allow them to evade the action of maternally-derived or vaccine-induced antibodies. Autogenous or multivalent vaccines are required to control antigenic variants in areas where classical and variant virus strains coexist. Pathotypic variants (very virulent viruses) remain antigenically related to classical viruses. The difficulty in controlling pathotypic variants is linked to the difficulty of eliciting an early immune response, because of the risk of the vaccine virus being neutralised by maternal antibodies. Mathematical calculation of the optimal vaccination time and the use of vaccines resistant to maternally-derived antibodies have improved the control of very virulent viruses. © OIE (World Organisation for Animal Health), 2016.

  15. Genome-wide RNA profiling of long-lasting stem cell-like memory CD8 T cells induced by Yellow Fever vaccination in humans.

    PubMed

    Fuertes Marraco, Silvia A; Soneson, Charlotte; Delorenzi, Mauro; Speiser, Daniel E

    2015-09-01

    The live-attenuated Yellow Fever (YF) vaccine YF-17D induces a broad and polyfunctional CD8 T cell response in humans. Recently, we identified a population of stem cell-like memory CD8 T cells induced by YF-17D that persists at stable frequency for at least 25 years after vaccination. The YF-17D is thus a model system of human CD8 T cell biology that furthermore allows to track and study long-lasting and antigen-specific human memory CD8 T cells. Here, we describe in detail the sample characteristics and preparation of a microarray dataset acquired for genome-wide gene expression profiling of long-lasting YF-specific stem cell-like memory CD8 T cells, compared to the reference CD8 T cell differentiation subsets from total CD8 T cells. We also describe the quality controls, annotations and exploratory analyses of the dataset. The microarray data is available from the Gene Expression Omnibus (GEO) public repository with accession number GSE65804.

  16. 'Educated' dendritic cells act as messengers from memory to naive T helper cells.

    PubMed

    Alpan, Oral; Bachelder, Eric; Isil, Eda; Arnheiter, Heinz; Matzinger, Polly

    2004-06-01

    Ingested antigens lead to the generation of effector T cells that secrete interleukin 4 (IL-4) rather than interferon-gamma (IFN-gamma) and are capable of influencing naive T cells in their immediate environment to do the same. Using chimeric mice generated by aggregation of two genotypically different embryos, we found that the conversion of a naive T cell occurs only if it can interact with the same antigen-presenting cell, although not necessarily the same antigen, as the effector T cell. Using a two-step culture system in vitro, we found that antigen-presenting dendritic cells can act as 'temporal bridges' to relay information from orally immunized memory CD4 T cells to naive CD4 T cells. The orally immunized T cells use IL-4 and IL-10 (but not CD40 ligand) to 'educate' dendritic cells, which in turn induce naive T cells to produce the same cytokines as those produced by the orally immunized memory T cells.

  17. Purification of the Membrane Compartment for Endoplasmic Reticulum-associated Degradation of Exogenous Antigens in Cross-presentation.

    PubMed

    Imai, Jun; Otani, Mayu; Sakai, Takahiro; Hatta, Shinichi

    2017-08-21

    Dendritic cells (DCs) are highly capable of processing and presenting internalized exogenous antigens upon major histocompatibility class (MHC) I molecules also known as cross-presentation (CP). CP plays an important role not only in the stimulation of naïve CD8 + T cells and memory CD8 + T cells for infectious and tumor immunity but also in the inactivation of self-acting naïve T cells by T cell anergy or T cell deletion. Although the critical molecular mechanism of CP remains to be elucidated, accumulating evidence indicates that exogenous antigens are processed through endoplasmic reticulum-associated degradation (ERAD) after export from non-classical endocytic compartments. Until recently, characterizations of these endocytic compartments were limited because there were no specific molecular markers other than exogenous antigens. The method described here is a new vesicle isolation protocol, which allows for the purification of these endocytic compartments. Using this purified microsome, we reconstituted the ERAD-like transport, ubiquitination, and processing of the exogenous antigen in vitro, suggesting that the ubiquitin-proteasome system processed the exogenous antigen after export from this cellular compartment. This protocol can be further applied to other cell types to clarify the molecular mechanism of CP.

  18. Conventional CD4+ T cells present bacterial antigens to induce cytotoxic and memory CD8+ T cell responses.

    PubMed

    Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Osuna-Pérez, Jesús; Torres-Torresano, Mónica; Zorita, Virgina; Martínez-Riaño, Ana; Boccasavia, Viola; Borroto, Aldo; Martínez Del Hoyo, Gloria; González-Granado, José María; Alarcón, Balbino; Sánchez-Madrid, Francisco; Veiga, Esteban

    2017-11-17

    Bacterial phagocytosis and antigen cross-presentation to activate CD8 + T cells are principal functions of professional antigen presenting cells. However, conventional CD4 + T cells also capture and kill bacteria from infected dendritic cells in a process termed transphagocytosis (also known as transinfection). Here, we show that transphagocytic T cells present bacterial antigens to naive CD8 + T cells, which proliferate and become cytotoxic in response. CD4 + T-cell-mediated antigen presentation also occurs in vivo in the course of infection, and induces the generation of central memory CD8 + T cells with low PD-1 expression. Moreover, transphagocytic CD4 + T cells induce protective anti-tumour immune responses by priming CD8 + T cells, highlighting the potential of CD4 + T cells as a tool for cancer immunotherapy.

  19. Monitoring of circulating antibodies in a renal transplantation population: preliminary results.

    PubMed

    Rodríguez Ferrero, M L; Arroyo, D; Panizo, N; Vicario, J L; Balas, A; Anaya, F

    2012-11-01

    The presence of circulating antibodies (CA) against human leukocyte antigen (HLA) and major-histocompatibility-complex class I-related chain A (MICA) antigens has been associated with worse renal function and reduced kidney allograft survival. We sought to describe the presence of donor-specific anti-HLA antibodies, non-donor specific antibodies, and antibodies against MICA antigens among a cohort of renal transplant recipients with respect to their evolution effects on renal function and occurrence of an acute rejection episode (AR) after transplantation. This prospective study of 22 renal transplant recipients of deceased donor kidneys underwent studies of antibodies before and 3 months after grafting using Luminex technology. Ten patients (five men and five women) showed preexistent CA. Comparing patients with versus without preformed CA, we did not observe a significant difference in donor and recipient age or gender. Eight patients (80%) with CA had undergone induction treatment with anti-human-activated T-lymphocyte rabbit immunoglobulin and 2 (20%) with basiliximab. There were no differences between groups regarding the incidence of acute rejection episodes (ARE n = 3 each). There was one case of Banff grade IIB ARE in a patient without preexisting CA; the other episodes were low-grade cellular responses. There were no differences in other variables including cold ischemia time, HLA mismatches, panel-reactive antibody levels, number of transfusions, cytomegalovirus infection or renal function at discharge and 3 months later. Retransplantation was the only factor associated with preformed CA. Retransplantation and preformed CA were associated with CA at 3 months after transplantation. CA monitoring is important for highly sensitized renal transplants, although our experience failed to show a difference in graft survival or renal function in the first 3 months' follow-up. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Intranasal Introduction of Fc-Fused Interleukin-7 Provides Long-Lasting Prophylaxis against Lethal Influenza Virus Infection.

    PubMed

    Kang, Moon Cheol; Choi, Dong-Hoon; Choi, Young Woo; Park, Seong Jeong; Namkoong, Hong; Park, Ki Seok; Ahn, So-Shin; Surh, Charles D; Yoon, Sun-Woo; Kim, Doo-Jin; Choi, Jung-ah; Park, Yunji; Sung, Young Chul; Lee, Seung-Woo

    2015-12-09

    Influenza A virus (IAV) infection frequently causes hospitalization and mortality due to severe immunopathology. Annual vaccination and antiviral drugs are the current countermeasures against IAV infection, but they have a limited efficacy against new IAV variants. Here, we show that intranasal pretreatment with Fc-fused interleukin-7 (IL-7-mFc) protects mice from lethal IAV infections. The protective activity of IL-7-mFc relies on transcytosis via neonatal Fc receptor (FcRn) in the lung and lasts for several weeks. Introduction of IL-7-mFc alters pulmonary immune environments, leading to recruitment of T cells from circulation and their subsequent residency as tissue-resident memory-like T (TRM-like) cells. IL-7-mFc-primed pulmonary TRM-like cells contribute to protection upon IAV infection by dual modes. First, TRM-like cells, although not antigen specific but polyclonal, attenuate viral replication at the early phase of IAV infection. Second, TRM-like cells augment expansion of IAV-specific cytotoxic T lymphocytes (CTLs), in particular at the late phase of infection, which directly control viruses. Thus, accelerated viral clearance facilitated by pulmonary T cells, which are either antigen specific or not, alleviates immunopathology in the lung and mortality from IAV infection. Depleting a subset of pulmonary T cells indicates that both CD4 and CD8 T cells contribute to protection from IAV, although IL-7-primed CD4 T cells have a more prominent role. Collectively, we propose intranasal IL-7-mFc pretreatment as an effective means for generating protective immunity against IAV infections, which could be applied to a potential prophylaxis for influenza pandemics in the future. The major consequence of a highly pathogenic IAV infection is severe pulmonary inflammation, which can result in organ failure and death at worst. Although vaccines for seasonal IAVs are effective, frequent variation of surface viral proteins hampers development of protective immunity. In this study, we demonstrated that intranasal IL-7-mFc pretreatment protected immunologically naive mice from lethal IAV infections. Intranasal pretreatment with IL-7-mFc induced an infiltration of T cells in the lung, which reside as effector/memory T cells with lung-retentive markers. Those IL-7-primed pulmonary T cells contributed to development of protective immunity upon IAV infection, reducing pulmonary immunopathology while increasing IAV-specific cytotoxic T lymphocytes. Since a single treatment with IL-7-mFc was effective in the protection against multiple strains of IAV for an extended period of time, our findings suggest a possibility that IL-7-mFc treatment, as a potential prophylaxis, can be developed for controlling highly pathogenic IAV infections. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Monitoring of antigen-specific CD8 T cells in patients with type 1 diabetes treated with antiCD3 monoclonal antibodies.

    PubMed

    Cernea, Simona; Herold, Kevan C

    2010-02-01

    The way in which anti-CD3 monoclonal antibodies (mAbs) modify human immune responses in type 1 diabetes (T1DM) is not known. We prepared a panel of Class I HLA-A2.1 tetramers with peptides from diabetes-associated antigens and studied the frequency and phenotype of the cells in patients with T1DM and blood donors and in patients treated with anti-CD3 mAb (Teplizumab). More patients with T1DM showed positive staining for at least 1 tetramer using frozen and fresh samples (p<0.05). Three months following treatment with anti-CD3 mAb, the proportion of GAD65- and InsB-peptide reactive CD8+ T cells increased (p<0.05). The phenotype of these cells was modulated from naïve to effector memoryRA+. We concludethat Class I MHC tetramers can identify antigen specific CD8+ T cells in patients with T1DM. The frequency of certain specificities increases after treatment with anti-CD3 mAb. Their modulated phenotype may have functional consequences for their pathogenicity. Copyright 2009 Elsevier Inc. All rights reserved.

  2. Oligoclonal CD8+ T-cell expansion in patients with chronic hepatitis C is associated with liver pathology and poor response to interferon-alpha therapy.

    PubMed

    Manfras, Burkhard J; Weidenbach, Hans; Beckh, Karl-Heinz; Kern, Peter; Möller, Peter; Adler, Guido; Mertens, Thomas; Boehm, Bernhard O

    2004-05-01

    The role of CD8(+) T lymphocytes in chronic hepatitis C virus (HCV) infection and in liver injury with subsequent development of fibrosis and cirrhosis is poorly understood. To address this question, we performed a follow-up study including 27 chronically HCV-infected individuals. We determined clonality and phenotypes of circulating CD8(+) T cells employing TCRBV spectratyping. Antigen specificity was tested by rMHC-peptide tetramer staining and stimulation with recombinant HCV antigens. In addition, T-cell clonality and phenotypes were followed during the variable clinical response of interferon- (IFN) alpha treatment. We could demonstrate that CD8(+) T-cell expansions were significantly associated with liver fibrosis and cirrhosis. Likewise, increased oligoclonality of circulating CD8(+) T cells in chronic HCV infection was identified as an indicator for poor clinical response to IFN-alpha therapy. Moreover, we also found that IFN-alpha therapy enhanced the differentiation of CD8(+) T cells towards a late differentiation phenotype (CD28(-) CD57(+)). In cases of virus elimination the disappearance of expanded terminally differentiated CD8(+) cells was observed. Thus, this study identifies an association of clonal expansions of circulating CD8(+) T cells with liver pathology and provides a possible explanation for the fact that response to IFN-alpha therapy diminishes with the duration of infection.

  3. Low-dose controlled release of mTOR inhibitors maintains T cell plasticity and promotes central memory T cells.

    PubMed

    Gammon, Joshua M; Gosselin, Emily A; Tostanoski, Lisa H; Chiu, Yu-Chieh; Zeng, Xiangbin; Zeng, Qin; Jewell, Christopher M

    2017-10-10

    An important goal for improving vaccine and immunotherapy technologies is the ability to provide further control over the specific phenotypes of T cells arising from these agents. Along these lines, frequent administration of rapamycin (Rapa), a small molecule inhibitor of the mammalian target of rapamycin (mTOR), exhibits a striking ability to polarize T cells toward central memory phenotypes (T CM ), or to suppress immune function, depending on the concentrations and other signals present during administration. T CM exhibit greater plasticity and proliferative capacity than effector memory T cells (T EFF ) and, therefore, polarizing vaccine-induced T cells toward T CM is an intriguing strategy to enhance T cell expansion and function against pathogens or tumors. Here we combined biodegradable microparticles encapsulating Rapa (Rapa MPs) with vaccines composed of soluble peptide antigens and molecular adjuvants to test if this approach allows polarization of differentiating T cells toward T CM . We show Rapa MPs modulate DC function, enhancing secretion of inflammatory cytokines at very low doses, and suppressing function at high doses. While Rapa MP treatment reduced - but did not stop - T cell proliferation in both CD4 + and CD8 + transgenic T cell co-cultures, the expanding CD8 + T cells differentiated to higher frequencies of T CM at low doses of MP Rapa MPs. Lastly, we show in mice that local delivery of Rapa MPs to lymph nodes during vaccination either suppresses or enhances T cell function in response to melanoma antigens, depending on the dose of drug in the depots. In particular, at low Rapa MP doses, vaccines increased antigen-specific T CM , resulting in enhanced T cell expansion measured during subsequent booster injections over at least 100days. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers.

    PubMed

    Shamji, Mohamed H; Durham, Stephen R

    2017-12-01

    Allergen immunotherapy is effective in patients with IgE-dependent allergic rhinitis and asthma. When immunotherapy is given continuously for 3 years, there is persistent clinical benefit for several years after its discontinuation. This disease-modifying effect is both antigen-specific and antigen-driven. Clinical improvement is accompanied by decreases in numbers of effector cells in target organs, including mast cells, basophils, eosinophils, and type 2 innate lymphoid cells. Immunotherapy results in the production of blocking IgG/IgG 4 antibodies that can inhibit IgE-dependent activation mediated through both high-affinity IgE receptors (FcεRI) on mast cells and basophils and low-affinity IgE receptors (FcεRII) on B cells. Suppression of T H 2 immunity can occur as a consequence of either deletion or anergy of antigen-specific T cells; induction of antigen-specific regulatory T cells; or immune deviation in favor of T H 1 responses. It is not clear whether the altered long-term memory resides within the T-cell or the B-cell compartment. Recent data highlight the role of IL-10-producing regulatory B cells and "protective" antibodies that likely contribute to long-term tolerance. Understanding mechanisms underlying induction and persistence of tolerance should identify predictive biomarkers of clinical response and discover novel and more effective strategies for immunotherapy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors

    PubMed Central

    Heiser, Axel; Coleman, Doris; Dannull, Jens; Yancey, Donna; Maurice, Margaret A.; Lallas, Costas D.; Dahm, Philipp; Niedzwiecki, Donna; Gilboa, Eli; Vieweg, Johannes

    2002-01-01

    Autologous dendritic cells (DCs) transfected with mRNA encoding prostate-specific antigen (PSA) are able to stimulate potent, T cell–mediated antitumor immune responses in vitro. A phase I trial was performed to evaluate this strategy for safety, feasibility, and efficacy to induce T cell responses against the self-protein PSA in patients with metastatic prostate cancer. In 13 study subjects, escalating doses of PSA mRNA–transfected DCs were administered with no evidence of dose-limiting toxicity or adverse effects, including autoimmunity. Induction of PSA-specific T cell responses was consistently detected in all patients, suggesting in vivo bioactivity of the vaccine. Vaccination was further associated with a significant decrease in the log slope PSA in six of seven subjects; three patients that could be analyzed exhibited a transient molecular clearance of circulating tumor cells. The demonstration of vaccine safety, successful in vivo induction of PSA-specific immunity, and impact on surrogate clinical endpoints provides a scientific rationale for further clinical investigation of RNA-transfected DCs in the treatment of human cancer. PMID:11828001

  6. Preformed Frequencies of Cytomegalovirus (CMV)–Specific Memory T and B Cells Identify Protected CMV-Sensitized Individuals Among Seronegative Kidney Transplant Recipients

    PubMed Central

    Lúcia, Marc; Crespo, Elena; Melilli, Edoardo; Cruzado, Josep M.; Luque, Sergi; Llaudó, Inés; Niubó, Jordi; Torras, Joan; Fernandez, Núria; Grinyó, Josep M.; Bestard, Oriol

    2014-01-01

    Background. Cytomegalovirus (CMV) infection remains a major complication after kidney transplantation. Baseline CMV risk is typically determined by the serological presence of preformed CMV-specific immunoglobulin (Ig) G antibodies, even though T-cell responses to major viral antigens are crucial when controlling viral replication. Some IgG-seronegative patients who receive an IgG-seropositive allograft do not develop CMV infection despite not receiving prophylaxis. We hypothesized that a more precise evaluation of pretransplant CMV-specific immune-sensitization using the B and T-cell enzyme-linked immunospot assays may identify CMV-sensitized individuals more accurately, regardless of serological evidence of CMV-specific IgG titers. Methods. We compared the presence of preformed CMV-specific memory B and T cells in kidney transplant recipients between 43 CMV IgG–seronegative (sR−) and 86 CMV IgG–seropositive (sR+) patients. Clinical outcome was evaluated in both groups. Results. All sR+ patients showed a wide range of CMV-specific memory T- and B-cell responses. High memory T- and B-cell frequencies were also clearly detected in 30% of sR− patients, and those with high CMV-specific T-cell frequencies had a significantly lower incidence of late CMV infection after prophylactic therapy. Receiver operating characteristic curve analysis for predicting CMV viremia and disease showed a high area under the receiver operating characteristic curve (>0.8), which translated into a high sensitivity and negative predictive value of the test. Conclusions. Assessment of CMV-specific memory T- and B-cell responses before kidney transplantation among sR− recipients may help identify immunized individuals more precisely, being ultimately at lower risk for CMV infection. PMID:25048845

  7. Trypanosoma congolense: tissue distribution of long-term T- and B-cell responses in cattle.

    PubMed

    Lutje, V; Taylor, K A; Boulangé, A; Authié, E

    1995-11-01

    Memory T- and B-cell responses to trypanosome antigens were measured in peripheral blood mononuclear cells, spleen and lymph node cells obtained from four trypanotolerant N'Dama cattle which had been exposed to six experimental infections with Trypanosoma congolense. These cattle were treated with trypanocidal drugs following each infection and had remained aparasitemic for 3 years prior to this study. The antigens used were whole trypanosome lysate, variable surface glycoprotein, a 33-kDa cysteine protease (congopain) and a 70-kDa heat-shock protein. As parameters of T-cell-mediated immunity, we measured T-cell proliferation and IFN-gamma production. Lymph node cells, spleen cells and peripheral blood mononuclear cells all proliferated to a mitogenic stimulus (concanavalin A) but only lymph node cells responded to trypanosome antigens. Similarly, IFN-gamma was produced by both lymph node and spleen cells stimulated with concanavalin A but only by lymph node cells stimulated with variable surface glycoprotein and whole trypanosome lysate. T. congolense-specific antibodies were detected in sera and in supernatants of cultured lymph node and spleen cells after in vitro stimulation with lipopolysaccharide and recombinant bovine interleukin-2. In conclusion, we have demonstrated that memory T- and B-cell responses are detectable in various lymphoid organs in cattle 3 years following infection and treatment with T. congolense.

  8. Characterization of the Antigenic Heterogeneity of Lipoarabinomannan, the Major Surface Glycolipid of Mycobacterium tuberculosis, and Complexity of Antibody Specificities toward This Antigen

    PubMed Central

    Choudhary, Alok; Honnen, William; Lai, Zhong; Gennaro, Maria Laura; Garcia-Viveros, Moncerrato; Sahloul, Kamar; Spencer, John S.; Chatterjee, Delphi

    2018-01-01

    Lipoarabinomannan (LAM), the major antigenic glycolipid of Mycobacterium tuberculosis, is an important immunodiagnostic target for detecting tuberculosis (TB) infection in HIV-1–coinfected patients, and is believed to mediate a number of functions that promote infection and disease development. To probe the human humoral response against LAM during TB infection, several novel LAM-specific human mAbs were molecularly cloned from memory B cells isolated from infected patients and grown in vitro. The fine epitope specificities of these Abs, along with those of a panel of previously described murine and phage-derived LAM-specific mAbs, were mapped using binding assays against LAM Ags from several mycobacterial species and a panel of synthetic glycans and glycoconjugates that represented diverse carbohydrate structures present in LAM. Multiple reactivity patterns were seen that differed in their specificity for LAM from different species, as well as in their dependence on arabinofuranoside branching and nature of capping at the nonreducing termini. Competition studies with mAbs and soluble glycans further defined these epitope specificities and guided the design of highly sensitive immunodetection assays capable of detecting LAM in urine of TB patients, even in the absence of HIV-1 coinfection. These results highlighted the complexity of the antigenic structure of LAM and the diversity of the natural Ab response against this target. The information and novel reagents described in this study will allow further optimization of diagnostic assays for LAM and may facilitate the development of potential immunotherapeutic approaches to inhibit the functional activities of specific structural motifs in LAM. PMID:29610143

  9. Analysis of B Cell Repertoire Dynamics Following Hepatitis B Vaccination in Humans, and Enrichment of Vaccine-specific Antibody Sequences.

    PubMed

    Galson, Jacob D; Trück, Johannes; Fowler, Anna; Clutterbuck, Elizabeth A; Münz, Márton; Cerundolo, Vincenzo; Reinhard, Claudia; van der Most, Robbert; Pollard, Andrew J; Lunter, Gerton; Kelly, Dominic F

    2015-12-01

    Generating a diverse B cell immunoglobulin repertoire is essential for protection against infection. The repertoire in humans can now be comprehensively measured by high-throughput sequencing. Using hepatitis B vaccination as a model, we determined how the total immunoglobulin sequence repertoire changes following antigen exposure in humans, and compared this to sequences from vaccine-specific sorted cells. Clonal sequence expansions were seen 7 days after vaccination, which correlated with vaccine-specific plasma cell numbers. These expansions caused an increase in mutation, and a decrease in diversity and complementarity-determining region 3 sequence length in the repertoire. We also saw an increase in sequence convergence between participants 14 and 21 days after vaccination, coinciding with an increase of vaccine-specific memory cells. These features allowed development of a model for in silico enrichment of vaccine-specific sequences from the total repertoire. Identifying antigen-specific sequences from total repertoire data could aid our understanding B cell driven immunity, and be used for disease diagnostics and vaccine evaluation.

  10. Is There Natural Killer Cell Memory and Can It Be Harnessed by Vaccination? Natural Killer Cells in Vaccination.

    PubMed

    Neely, Harold R; Mazo, Irina B; Gerlach, Carmen; von Andrian, Ulrich H

    2017-12-18

    Natural killer (NK) cells have historically been considered to be a part of the innate immune system, exerting a rapid response against pathogens and tumors in an antigen (Ag)-independent manner. However, over the past decade, evidence has accumulated suggesting that at least some NK cells display certain characteristics of adaptive immune cells. Indeed, NK cells can learn and remember encounters with a variety of Ags, including chemical haptens and viruses. Upon rechallenge, memory NK cells mount potent recall responses selectively to those Ags. This phenomenon, traditionally termed "immunological memory," has been reported in mice, nonhuman primates, and even humans and appears to be concentrated in discrete NK cell subsets. Because immunological memory protects against recurrent infections and is the central goal of active vaccination, it is crucial to define the mechanisms and consequences of NK cell memory. Here, we summarize the different kinds of memory responses that have been attributed to specific NK cell subsets and discuss the possibility to harness NK cell memory for vaccination purposes. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. RAPID CLONING OF HIGH AFFINITY HUMAN MONOCLONAL ANTIBODIES AGAINST INFLUENZA VIRUS

    PubMed Central

    Wrammert, Jens; Smith, Kenneth; Miller, Joe; Langley, Trey; Kokko, Kenneth; Larsen, Christian; Zheng, Nai-Ying; Mays, Israel; Garman, Lori; Helms, Christina; James, Judith; Air, Gillian M.; Capra, J. Donald; Ahmed, Rafi; Wilson, Patrick C.

    2008-01-01

    Pre-existing neutralizing antibody provides the first line of defense against pathogens in general. For influenza virus, annual vaccinations are given to maintain protective levels of antibody against the currently circulating strains. Here we report that after booster vaccination there was a rapid and robust influenza-specific IgG+ antibody-secreting plasma cell (ASC) response that peaked at approximately day 7 and accounted for up to 6% of peripheral blood B cells. These ASCs could be distinguished from influenza-specific IgG+ memory B cells that peaked 14 to 21 days after vaccination and averaged 1% of all B cells. Importantly, as much as 80% of ASCs purified at the peak of the response were influenza specific. This ASC response was characterized by a highly restricted B cell receptor (BCR) repertoire that in some donors were dominated by only a few B cell clones. This pauci-clonal response, however, showed extensive intraclonal diversification from accumulated somatic mutations. We used the immunoglobulin variable regions isolated from sorted single ASCs to produce over fifty human monoclonal antibodies (mAbs) that bound to the three influenza vaccine strains with high affinity. This strategy demonstrates that we can generate multiple high affinity mAbs from humans within a month after vaccination. The panel of influenza virus specific human mAbs allowed us to address the issue of original antigenic sin (OAS) - the phenomenon where the induced antibody shows higher affinity to a previously encountered influenza virus strain compared to the virus strain present in the vaccine1. However, we found that the vast majority of the influenza virus specific mAbs showed the highest affinity for the current vaccine strain. Thus, OAS does not seem to be a common occurrence in normal healthy adults receiving influenza vaccination. PMID:18449194

  12. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus.

    PubMed

    Wrammert, Jens; Smith, Kenneth; Miller, Joe; Langley, William A; Kokko, Kenneth; Larsen, Christian; Zheng, Nai-Ying; Mays, Israel; Garman, Lori; Helms, Christina; James, Judith; Air, Gillian M; Capra, J Donald; Ahmed, Rafi; Wilson, Patrick C

    2008-05-29

    Pre-existing neutralizing antibody provides the first line of defence against pathogens in general. For influenza virus, annual vaccinations are given to maintain protective levels of antibody against the currently circulating strains. Here we report that after booster vaccination there was a rapid and robust influenza-specific IgG+ antibody-secreting plasma cell (ASC) response that peaked at approximately day 7 and accounted for up to 6% of peripheral blood B cells. These ASCs could be distinguished from influenza-specific IgG+ memory B cells that peaked 14-21 days after vaccination and averaged 1% of all B cells. Importantly, as much as 80% of ASCs purified at the peak of the response were influenza specific. This ASC response was characterized by a highly restricted B-cell receptor (BCR) repertoire that in some donors was dominated by only a few B-cell clones. This pauci-clonal response, however, showed extensive intraclonal diversification from accumulated somatic mutations. We used the immunoglobulin variable regions isolated from sorted single ASCs to produce over 50 human monoclonal antibodies (mAbs) that bound to the three influenza vaccine strains with high affinity. This strategy demonstrates that we can generate multiple high-affinity mAbs from humans within a month after vaccination. The panel of influenza-virus-specific human mAbs allowed us to address the issue of original antigenic sin (OAS): the phenomenon where the induced antibody shows higher affinity to a previously encountered influenza virus strain compared with the virus strain present in the vaccine. However, we found that most of the influenza-virus-specific mAbs showed the highest affinity for the current vaccine strain. Thus, OAS does not seem to be a common occurrence in normal, healthy adults receiving influenza vaccination.

  13. Antibodies and the brain: antiribosomal P protein antibody and the clinical effects in patients with systemic lupus erythematosus.

    PubMed

    González, Alfonso; Massardo, Loreto

    2018-06-01

    Analysis of antiribosomal P protein autoantibodies (anti-P) pathogenicity in diffuse brain manifestations of neuropsychiatric lupus, emphasizing cognitive dysfunction and the recently emerged role of cross-reacting neuronal surface P antigen (NSPA) in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-Methyl-D-Aspartate receptor glutamatergic transmission. Circulating anti-P antibodies associate with executive planning dysfunction and attention impairments in lupus patients and perturb glutamatergic transmission through NSPA in mice hippocampus, translating into impaired synaptic plasticity and spatial memory. Planning impairment impacts quality of life. In addition to the known association with lupus psychosis, new clinical and experimental evidence reveal a pathogenic role of anti-P antibodies in cognitive dysfunction, mechanistically explained by the anti-P interaction with NSPA as a target involved in glutamatergic synaptic plasticity.

  14. Accuracy estimation of an indirect ELISA for the detection of West Nile Virus antibodies in wild birds using a latent class model.

    PubMed

    Tamba, Marco; Caminiti, Antonino; Prosperi, Alice; Desprès, Philippe; Lelli, Davide; Galletti, Giorgio; Moreno, Ana; Paternoster, Giulia; Santi, Annalisa; Licata, Elio; Lecollinet, Sylvie; Gelmini, Luca; Rugna, Gianluca; Procopio, Anna; Lavazza, Antonio

    2017-10-01

    West Nile virus (WNV) and Usutu virus (USUV), genus Flavivirus, are members of the Japanese encephalitis virus antigenic complex, and are maintained primarily in an enzootic cycle between mosquitoes and birds. WNV is zoonotic, and poses a threat to public health, especially in relation to blood transfusion. Serosurveillance of wild birds is suitable for early detection of WNV circulation, although concerns remain to be addressed as regards i) the type of test used, whether ELISA, virus neutralization test (VNT), plaque reduction neutralization test (PRNT), ii) the reagents (antigens, revealing antibodies), iii) the different bird species involved, and iv) potential cross-reactions with other Flaviviruses, such as USUV. The authors developed an indirect IgG ELISA with pan-avian specificity using EDIII protein as antigen and a monoclonal antibody (mAb 1A3) with broad reactivity for avian IgG. A total of 140 serum samples were collected from juvenile European magpies (Pica pica) in areas where both WNV and USUV were co-circulating. The samples were then tested using this in-house ELISA and VNT in parallel. Estimation of test accuracy was performed using different Bayesian two latent class models. At a cut-off set at an optical density percentage (OD%) of 15, the ELISA showed a posterior median of diagnostic sensitivity (DSe) of 88% (95%PCI: 73-99%) and a diagnostic specificity (DSp) of 86% (95%PCI: 68-99%). At this cut-off, ELISA and VNT (cut-off 1/10) performances were comparable: DSe=91% (95%PCI: 79-99%), and DSp=77% (95%PCI: 59-98%). With the cut-off increased to 30 OD%, the ELISA DSe dropped to 78% (95%PCI: 52-99%), and the DSp rose to 94% (95%PCI: 83-100%). In field conditions, the cut-off that yields the best accuracy for the ELISA appears to correspond to 15 OD%. In areas where other Flaviviruses are circulating, however, it might be appropriate to raise the cut-off to 30 OD% in order to achieve higher specificity and reduce the detection of seropositive birds infected by other Flaviviruses, such as USUV. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Determination of influenza B identity and potency in quadrivalent inactivated influenza vaccines using lineage-specific monoclonal antibodies

    PubMed Central

    Verma, Swati; Soto, Jackeline; Vasudevan, Anupama; Schmeisser, Falko; Alvarado-Facundo, Esmeralda; Wang, Wei; Weiss, Carol D.

    2017-01-01

    Co-circulation of two antigenically and genetically distinct lineages of influenza B virus, represented by prototype viruses B/Victoria/2/1987 and B/Yamagata/16/1988, has led to the development of quadrivalent influenza vaccines that contain two influenza B antigens. The inclusion of two influenza B antigens presents challenges for the production and regulation of inactivated quadrivalent vaccines, including the potential for cross-reactivity of the reagents used in identity and potency assays because of the relative close relatedness of the hemagglutinin (HA) from the two virus lineages. Monoclonal antibodies (mAbs) specific for the two lineages of influenza B HA were generated and characterized and used to set-up simple identity tests that distinguish the influenza B antigens in inactivated trivalent and quadrivalent vaccines. The lineage-specific mAbs bound well to the HA of influenza B strains included in influenza vaccines over a period of more than 10 years, suggesting that identity tests using such lineage-specific mAbs would not necessarily have to be updated with every influenza B vaccine strain change. These lineage-specific mAbs were also used in an antibody capture ELISA format to quantify HA in vaccine samples, including monovalent, trivalent, and quadrivalent vaccine samples from various manufacturers. The results demonstrated correlation with HA values determined by the traditional single radial immunodiffusion (SRID) assay. Further, the antibody-capture ELISA was able to distinguish heat-stressed vaccine from unstressed vaccine, and was similar to the SRID in quantifying the resultant loss of potency. These mAb reagents should be useful for further development of antibody-based alternative influenza B identity and potency assays. PMID:28423025

  16. Determination of influenza B identity and potency in quadrivalent inactivated influenza vaccines using lineage-specific monoclonal antibodies.

    PubMed

    Verma, Swati; Soto, Jackeline; Vasudevan, Anupama; Schmeisser, Falko; Alvarado-Facundo, Esmeralda; Wang, Wei; Weiss, Carol D; Weir, Jerry P

    2017-01-01

    Co-circulation of two antigenically and genetically distinct lineages of influenza B virus, represented by prototype viruses B/Victoria/2/1987 and B/Yamagata/16/1988, has led to the development of quadrivalent influenza vaccines that contain two influenza B antigens. The inclusion of two influenza B antigens presents challenges for the production and regulation of inactivated quadrivalent vaccines, including the potential for cross-reactivity of the reagents used in identity and potency assays because of the relative close relatedness of the hemagglutinin (HA) from the two virus lineages. Monoclonal antibodies (mAbs) specific for the two lineages of influenza B HA were generated and characterized and used to set-up simple identity tests that distinguish the influenza B antigens in inactivated trivalent and quadrivalent vaccines. The lineage-specific mAbs bound well to the HA of influenza B strains included in influenza vaccines over a period of more than 10 years, suggesting that identity tests using such lineage-specific mAbs would not necessarily have to be updated with every influenza B vaccine strain change. These lineage-specific mAbs were also used in an antibody capture ELISA format to quantify HA in vaccine samples, including monovalent, trivalent, and quadrivalent vaccine samples from various manufacturers. The results demonstrated correlation with HA values determined by the traditional single radial immunodiffusion (SRID) assay. Further, the antibody-capture ELISA was able to distinguish heat-stressed vaccine from unstressed vaccine, and was similar to the SRID in quantifying the resultant loss of potency. These mAb reagents should be useful for further development of antibody-based alternative influenza B identity and potency assays.

  17. Sensitivity and specificity of the circulating cathodic antigen rapid urine test in the diagnosis of Schistosomiasis mansoni infection and evaluation of morbidity in a low- endemic area in Brazil.

    PubMed

    Ferreira, Fernanda Teixeira; Fidelis, Thiago André; Pereira, Thiago Almeida; Otoni, Alba; Queiroz, Leonardo Campos; Amâncio, Frederico Figueiredo; Antunes, Carlos Maurício; Lambertucci, José Roberto

    2017-01-01

    The Kato-Katz technique is the standard diagnostic test for Schistosoma mansoni infection in rural areas. However, the utility of this method is severely limited by the day-to-day variability in host egg excretion in the stool. In high-transmission areas, the point-of-care circulating cathodic antigen (POC-CCA) urine assay has proven to be a reliable test. However, investigations of the reliability of the POC-CCA assay in low-transmission regions are under way. This study aimed to evaluate the sensitivity and specificity of the POC-CCA assay and the morbidity of schistosomiasis in a low-endemic area in Brazil. Pains City is a low-transmission zone for schistosomiasis. A total of 300 subjects aged 7-76 years were randomly selected for the POC-CCA cassette test. For S. mansoni diagnosis, three stool samples on six slides were compared with one urine sample for each subject. The sensitivity and specificity in the absence of a gold standard were calculated using latent class analysis. Clinical examinations and abdominal ultrasounds were performed in 181 volunteers to evaluate morbidity associated with schistosomiasis. The sensitivity and specificity of the Kato-Katz technique were 25.6% and 94.6%, respectively. By contrast, the sensitivity and specificity of the POC-CCA assay were 68.1% and 72.8%, respectively. Hepatosplenic schistosomiasis was diagnosed in two patients (1.1%). Overall, the POC-CCA urine assay proved to be a useful test for diagnosing S. mansoni in a low-endemic area in Brazil. Severe clinical forms of schistosomiasis can be present even in such low-endemic areas.

  18. Human Epidermal Langerhans Cells Maintain Immune Homeostasis in Skin by Activating Skin Resident Regulatory T Cells

    PubMed Central

    Seneschal, Julien; Clark, Rachael A.; Gehad, Ahmed; Baecher-Allan, Clare M.; Kupper, Thomas S.

    2013-01-01

    Recent discoveries indicate that the skin of a normal individual contains 10-20 billion resident memory T cells ( which include various T helper, T cytotoxic, and T regulatory subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LC) selectively and specifically induced the activation and proliferation of skin resident regulatory T cells (Treg), a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LC activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells activation. These underappreciated properties of LC: namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LC in skin. PMID:22560445

  19. Depletion of Regulatory T Cells Augments a Vaccine-Induced T Effector Cell Response against the Liver-Stage of Malaria but Fails to Increase Memory

    PubMed Central

    Espinoza Mora, Maria del Rosario; Steeg, Christiane; Tartz, Susanne; Heussler, Volker; Sparwasser, Tim; Link, Andreas; Fleischer, Bernhard; Jacobs, Thomas

    2014-01-01

    Regulatory T cells (Treg) have been shown to restrict vaccine-induced T cell responses in different experimental models. In these studies CD4+CD25+ Treg were depleted using monoclonal antibodies against CD25, which might also interfere with CD25 on non-regulatory T cell populations and would have no effect on Foxp3+CD25− Treg. To obtain more insights in the specific function of Treg during vaccination we used mice that are transgenic for a bacterial artificial chromosome expressing a diphtheria toxin (DT) receptor-eGFP fusion protein under the control of the foxp3 gene locus (depletion of regulatory T cell mice; DEREG). As an experimental vaccine-carrier recombinant Bordetella adenylate cyclase toxoid fused with a MHC-class I-restricted epitope of the circumsporozoite protein (ACT-CSP) of Plasmodium berghei (Pb) was used. ACT-CSP was shown by us previously to introduce the CD8+ epitope of Pb-CSP into the MHC class I presentation pathway of professional antigen-presenting cells (APC). Using this system we demonstrate here that the number of CSP-specific T cells increases when Treg are depleted during prime but also during boost immunization. Importantly, despite this increase of T effector cells no difference in the number of antigen-specific memory cells was observed. PMID:25115805

  20. Immunization of neonatal mice with LAMP/p55 HIV gag DNA elicits robust immune responses that last to adulthood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordonhez Rigato, Paula; Maciel, Milton; Goldoni, Adriana Leticia

    2010-10-10

    Successful T cell priming in early postnatal life that can generate effective long-lasting responses until adulthood is critical in HIV vaccination strategies because it prevents early sexual initiation and breastfeeding transmission of HIV. A chimeric DNA vaccine encoding p55 HIV gag associated with lysosome-associated membrane protein 1 (LAMP-1; which drives the antigen to the MIIC compartment), has been used to enhance cellular and humoral antigen-specific responses in adult mice and macaques. Herein, we investigated LAMP-1/gag vaccine immunogenicity in the neonatal period in mice and its ability to generate long-lasting effects. Neonatal vaccination with chimeric LAMP/gag generated stronger Gag-specific immune responses,more » as measured by the breadth of the Gag peptide-specific IFN-{gamma}, proliferative responsiveness, cytokine production and antibody production, all of which revealed activation of CD4+ T cells as well as the generation of a more robust CTL response compared to gag vaccine alone. To induce long-lived T and B cell memory responses, it was necessary to immunize neonates with the chimeric LAMP/gag DNA vaccine. The LAMP/gag DNA vaccine strategy could be particularly useful for generating an anti-HIV immune response in the early postnatal period capable of inducing long-term immunological memory.« less

  1. Humoral and B-cell memory responses in children five years after pertussis acellular vaccine priming.

    PubMed

    Carollo, Maria; Pandolfi, Elisabetta; Tozzi, Alberto Eugenio; Buisman, Anne-Marie; Mascart, Françoise; Ausiello, Clara Maria

    2014-04-11

    The resurgence of pertussis suggests the need for greater efforts in understanding the long-lasting protective responses induced by vaccination. In this paper we dissect the persistence of humoral and B-cell memory responses induced by primary vaccination with two different acellular pertussis (aP) vaccines, hexavalent Hexavac(®) vaccine (Hexavac) (Sanofi Pasteur MSD) and Infanrix hexa(®) (Infanrix) (GlaxoSmithKline Biologicals). We evaluated the specific immune responses in the two groups of children, 5 years after primary vaccination by measuring the persistence of IgG and antibody secreting cells (ASC) specific for vaccine antigens. Part of the enrolled children received only primary vaccination, while others had the pre-school boost dose. A similar level of antigen-specific IgG and ASC was found in Infanrix and Hexavac vaccinated children. The mean IgG levels were significantly higher in children that received the pre-school boost as compared with children that did not receive the boost dose. A longer persistence after the pre-school boost of IgG-Pertussis Toxin (PT) and IgG-pertactin levels was observed in Infanrix primed children, but it was not statistically significant. More than 80% of children presented a positive ASC B memory response. Around 50% of children still presented protective IgG-PT levels which are reduced to 36% in no-boosted children. The pre-school booster dose restores the percentage of protected children above 50%. In conclusion our data underline the importance of giving a booster dose 5 years after primary vaccination and suggest the need for a new vaccine able to induce a long lasting protective response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting.

    PubMed

    Slaney, Clare Y; von Scheidt, Bianca; Davenport, Alexander J; Beavis, Paul A; Westwood, Jennifer A; Mardiana, Sherly; Tscharke, David C; Ellis, Sarah; Prince, H Miles; Trapani, Joseph A; Johnstone, Ricky W; Smyth, Mark J; Teng, Michele W; Ali, Aesha; Yu, Zhiya; Rosenberg, Steven A; Restifo, Nicholas P; Neeson, Paul; Darcy, Phillip K; Kershaw, Michael H

    2017-05-15

    Purpose: While adoptive transfer of T cells bearing a chimeric antigen receptor (CAR) can eliminate substantial burdens of some leukemias, the ultimate challenge remains the eradication of large solid tumors for most cancers. We aimed to develop an immunotherapy approach effective against large tumors in an immunocompetent, self-antigen preclinical mouse model. Experimental Design: In this study, we generated dual-specific T cells expressing both a CAR specific for Her2 and a TCR specific for the melanocyte protein (gp100). We used a regimen of adoptive cell transfer incorporating vaccination (ACTIV), with recombinant vaccinia virus expressing gp100, to treat a range of tumors including orthotopic breast tumors and large liver tumors. Results: ACTIV therapy induced durable complete remission of a variety of Her2 + tumors, some in excess of 150 mm 2 , in immunocompetent mice expressing Her2 in normal tissues, including the breast and brain. Vaccinia virus induced extensive proliferation of T cells, leading to massive infiltration of T cells into tumors. Durable tumor responses required the chemokine receptor CXCR3 and exogenous IL2, but were independent of IFNγ. Mice were resistant to tumor rechallenge, indicating immune memory involving epitope spreading. Evidence of limited neurologic toxicity was observed, associated with infiltration of cerebellum by T cells, but was only transient. Conclusions: This study supports a view that it is possible to design a highly effective combination immunotherapy for solid cancers, with acceptable transient toxicity, even when the target antigen is also expressed in vital tissues. Clin Cancer Res; 23(10); 2478-90. ©2016 AACR . ©2016 American Association for Cancer Research.

  3. Prior Dengue virus exposure shapes T cell immunity to Zika virus in humans.

    PubMed

    Grifoni, Alba; Pham, John; Sidney, John; O'Rourke, Patrick H; Paul, Sinu; Peters, Bjoern; Martini, Sheridan R; de Silva, Aruna D; Ricciardi, Michael J; Magnani, Diogo M; Silveira, Cassia G T; Maestri, Alvino; Costa, Priscilla R; de-Oliveira-Pinto, Luzia Maria; de Azeredo, Elzinandes Leal; Damasco, Paulo Vieira; Phillips, Elizabeth; Mallal, Simon; de Silva, Aravinda M; Collins, Matthew; Durbin, Anna; Diehl, Sean A; Cerpas, Cristhiam; Balmaseda, Angel; Kuan, Guillermina; Coloma, Josefina; Harris, Eva; Crowe, James E; Stone, Mars; Norris, Phillip J; Busch, Michael; Vivanco-Cid, Hector; Cox, Josephine; Graham, Barney S; Ledgerwood, Julie E; Turtle, Lance; Solomon, Tom; Kallas, Esper G; Watkins, David I; Weiskopf, Daniela; Sette, Alessandro

    2017-10-04

    While progress has been made in characterizing humoral immunity to Zika virus (ZIKV) in humans, little is known regarding the corresponding T cell responses to ZIKV. Here we investigate the kinetics and viral epitopes targeted by T cells responding to ZIKV and address the critical question of whether pre-existing dengue virus (DENV) T cell immunity modulates these responses. We find that memory T cell responses elicited by prior infection with DENV or vaccination with Tetravalent Dengue Attenuated Vaccines (TDLAV) recognize ZIKV-derived peptides. This cross-reactivity is explained by the sequence similarity of the two viruses, as the ZIKV peptides recognized by DENV-elicited memory T cells are identical or highly conserved in DENV and ZIKV. DENV exposure prior to ZIKV infection also influences the timing and magnitude of the T cell response. ZIKV-reactive T cells in the acute phase of infection are detected earlier and in greater magnitude in DENV-immune patients. Conversely, the frequency of ZIKV-reactive T cells continues to rise in the convalescent phase in DENV-naive donors, but declines in DENV pre-exposed donors, compatible with more efficient control of ZIKV replication and/or clearance of ZIKV antigen. The quality of responses is also influenced by previous DENV exposure, and ZIKV-specific CD8 T cells form DENV pre-exposed donors selectively up-regulated granzyme B and PD1, as compared to DENV-naïve donors. Finally, we discovered that ZIKV structural proteins (E, prM and C) are major targets of both the CD4 and CD8 T cell responses, whereas DENV T cell epitopes are found primarily in nonstructural proteins. IMPORTANCE The issue of potential ZIKV and DENV cross-reactivity and how pre-existing DENV T cell immunity modulates ZIKA T cell responses is of great relevance as the two viruses often co-circulate and ZIKA virus has been spreading in geographical regions where DENV is endemic or hyper-endemic. Our data show that memory T cell responses elicited by prior infection with DENV recognize ZIKV-derived peptides and that DENV exposure prior to ZIKV infection influences the timing, magnitude and quality of the T cell response. Additionally we show that ZIKV-specific responses target different proteins than DENV-specific responses, pointing towards important implications for vaccine design against this global threat. Copyright © 2017 American Society for Microbiology.

  4. Autoantibodies associated with RNA are more enriched than anti-dsDNA antibodies in circulating immune complexes in SLE.

    PubMed

    Ahlin, E; Mathsson, L; Eloranta, M-L; Jonsdottir, T; Gunnarsson, I; Rönnblom, L; Rönnelid, J

    2012-05-01

    To what extent different autoantibodies accumulate in systemic lupus erythematosus (SLE) immune complexes (ICs), and whether such accumulation is associated with disease activity has been investigated. ICs were isolated from SLE sera by both polyethylene glycol (PEG) precipitation and C1q-binding. Autoantibody specificities were determined using a lineblot assay quantified by densitometry. To compare the relative levels of autoantibodies, levels were normalized to the total levels of IgG measured by ELISA in sera and parallel ICs. Samples were investigated both in a cross-sectional design as well as in a paired design with samples obtained during both active and inactive SLE. All investigated autoantibody specificities except anti-dsDNA were enriched in circulating ICs as compared with parallel sera. The group of antibodies against RNA-associated antigens (anti-RNP/Sm, anti-Sm, anti-SSA/Ro60, anti-SSA/Ro52, anti-SSB/La) all exhibited higher median enrichment than the DNA-associated (anti-dsDNA, anti-histones, anti-nucleosomes) or cytoplasmic (anti-ribosomal P) antigens. In particular autoantibodies against RNP/Sm and SSA/Ro52 had the highest degree of enrichment in SLE PEG precipitates. These findings were corroborated by analysis of autoantibody content in C1q-bound ICs. There was no difference in degree of IC accumulation of the investigated autoantibodies during active and inactive SLE. Our findings demonstrate a difference in enrichment between autoantibodies against RNA- and DNA-associated autoantigens in isolated SLE IC, suggesting that the RNA-associated autoantibodies are more prone to form circulating ICs in SLE, in contrast to antibodies against DNA-associated autoantigens such as dsDNA. These finding have implications in understanding mechanisms of differential autoantibody accumulation in target organs in SLE.

  5. Molecular basis for universal HLA-A*0201-restricted CD8+ T-cell immunity against influenza viruses.

    PubMed

    Valkenburg, Sophie A; Josephs, Tracy M; Clemens, E Bridie; Grant, Emma J; Nguyen, Thi H O; Wang, George C; Price, David A; Miller, Adrian; Tong, Steven Y C; Thomas, Paul G; Doherty, Peter C; Rossjohn, Jamie; Gras, Stephanie; Kedzierska, Katherine

    2016-04-19

    Memory CD8(+)T lymphocytes (CTLs) specific for antigenic peptides derived from internal viral proteins confer broad protection against distinct strains of influenza A virus (IAV). However, immune efficacy can be undermined by the emergence of escape mutants. To determine how T-cell receptor (TCR) composition relates to IAV epitope variability, we used ex vivo peptide-HLA tetramer enrichment and single-cell multiplex analysis to compare TCRs targeted to the largely conserved HLA-A*0201-M158and the hypervariable HLA-B*3501-NP418antigens. The TCRαβs for HLA-B*3501-NP418 (+)CTLs varied among individuals and across IAV strains, indicating that a range of mutated peptides will prime different NP418-specific CTL sets. Conversely, a dominant public TRAV27/TRBV19(+)TCRαβ was selected in HLA-A*0201(+)donors responding to M158 This public TCR cross-recognized naturally occurring M158variants complexed with HLA-A*0201. Ternary structures showed that induced-fit molecular mimicry underpins TRAV27/TRBV19(+)TCR specificity for the WT and mutant M158peptides, suggesting the possibility of universal CTL immunity in HLA-A*0201(+)individuals. Combined with the high population frequency of HLA-A*0201, these data potentially explain the relative conservation of M158 Moreover, our results suggest that vaccination strategies aimed at generating broad protection should incorporate variant peptides to elicit cross-reactive responses against other specificities, especially those that may be relatively infrequent among IAV-primed memory CTLs.

  6. Basophil degranulation induced by oral poison ivy antigen.

    PubMed

    Shelley, W B; Resnik, S S

    1965-08-01

    Seven subjects shown by patch test to be sensitive to poison ivy oleoresin were challenged with graded oral doses of ivy extract. In each instance the circulating basophil leukocytes showed significant degranulation within one hour of challenge. This finding was interpreted as evidence of the presence of immediate-type circulating antibody to ivy antigen in these subjects. No drop in the absolute basophil count was noted, but with higher oral doses the degranulation persisted for several days. Thirteen control subjects showed no change in the basophil morphology or count, indicating that the resin at these levels was not toxic to this cell. All but one of the sensitive subjects showed objective patch test evidence of hyposensitization following the intensive three-week course of oral poison ivy antigen.

  7. Characteristics of memory B cells elicited by a highly efficacious HPV vaccine in subjects with no pre-existing immunity.

    PubMed

    Scherer, Erin M; Smith, Robin A; Simonich, Cassandra A; Niyonzima, Nixon; Carter, Joseph J; Galloway, Denise A

    2014-10-01

    Licensed human papillomavirus (HPV) vaccines provide near complete protection against the types of HPV that most commonly cause anogenital and oropharyngeal cancers (HPV 16 and 18) when administered to individuals naive to these types. These vaccines, like most other prophylactic vaccines, appear to protect by generating antibodies. However, almost nothing is known about the immunological memory that forms following HPV vaccination, which is required for long-term immunity. Here, we have identified and isolated HPV 16-specific memory B cells from female adolescents and young women who received the quadrivalent HPV vaccine in the absence of pre-existing immunity, using fluorescently conjugated HPV 16 pseudoviruses to label antigen receptors on the surface of memory B cells. Antibodies cloned and expressed from these singly sorted HPV 16-pseudovirus labeled memory B cells were predominantly IgG (>IgA>IgM), utilized diverse variable genes, and potently neutralized HPV 16 pseudoviruses in vitro despite possessing only average levels of somatic mutation. These findings suggest that the quadrivalent HPV vaccine provides an excellent model for studying the development of B cell memory; and, in the context of what is known about memory B cells elicited by influenza vaccination/infection, HIV-1 infection, or tetanus toxoid vaccination, indicates that extensive somatic hypermutation is not required to achieve potent vaccine-specific neutralizing antibody responses.

  8. Brucella β 1,2 Cyclic Glucan Is an Activator of Human and Mouse Dendritic Cells

    PubMed Central

    Martirosyan, Anna; Pérez-Gutierrez, Camino; Banchereau, Romain; Dutartre, Hélène; Lecine, Patrick; Dullaers, Melissa; Mello, Marielle; Pinto Salcedo, Suzana; Muller, Alexandre; Leserman, Lee; Levy, Yves; Zurawski, Gerard; Zurawski, Sandy; Moreno, Edgardo; Moriyón, Ignacio; Klechevsky, Eynav; Banchereau, Jacques; Oh, SangKon; Gorvel, Jean-Pierre

    2012-01-01

    Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella β 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella β 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8+ T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4+ and CD8+ T cell responses including cross-presentation by different human DC subsets. Brucella β 1,2 cyclic glucans increased the memory CD4+ T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies. PMID:23166489

  9. Measles Virus Hemagglutinin epitopes immunogenic in natural infection and vaccination are targeted by broad or genotype-specific neutralizing monoclonal antibodies.

    PubMed

    Muñoz-Alía, Miguel Angel; Casasnovas, José M; Celma, María Luisa; Carabaña, Juan; Liton, Paloma B; Fernandez-Muñoz, Rafael

    2017-05-15

    Measles virus (MV) remains a leading cause of vaccine-preventable deaths in children. Protection against MV is associated with neutralizing antibodies that preferentially recognize the viral hemagglutinin (MV-H), and to a lesser extent, the fusion protein (MV-F). Although MV is serologically monotypic, 24 genotypes have been identified. Here we report three neutralization epitopes conserved in the more prevalent circulating MV genotypes, two located in the MV-H receptor binding site (RBS) (antigenic site III) and a third in MV-H/MV-F interphase (antigenic site Ia) which are essential for MV multiplication. In contrast, two MV-H neutralization epitopes, showed a genotype-specific neutralization escape due to a single amino acid change, that we mapped in the "noose" antigenic site, or an enhanced neutralization epitope (antigenic site IIa). The monoclonal antibody (mAb) neutralization potency correlated with its binding affinity and was mainly driven by kinetic dissociation rate (k off ). We developed an immunoassay for mAb binding to MV-H in its native hetero-oligomeric structure with MV-F on the surface of a MV productive steady-state persistently infected (p.i.) human cell lines, and a competitive-binding assay with serum from individuals with past infection by different MV genotypes. Binding assays revealed that a broad neutralization epitope, in RBS antigenic site, a genotype specific neutralization epitopes, in noose and IIa sites, were immunogenic in natural infection and vaccination and may elicit long-lasting humoral immunity that might contribute to explain MV immunogenic stability. These results support the design of improved measles vaccines, broad-spectrum prophylactic or therapeutic antibodies and MV-used in oncolytic therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Regulation of Polysaccharide- and Protein- Specific Antibody Responses to Intact Extracellular Bacteria

    DTIC Science & Technology

    2016-03-11

    50, Immunology. 26 | P a g e blood-borne antigens. The white pulp consists of the periarteriolar lymphoid sheath (PALS) which contain T cells ...and CD8α+ dendritic (DC), and adjacent lymphoid follicles containing mainly circulating B cells , known as follicular B cells (FB). The outer boundary...complexes, for initial priming within the T cell zones of secondary lymphoid organs followed by migration of T cells to the T cell -B cell border. B

  11. Membranous glomerulonephritis associated with enterococcal endocarditis.

    PubMed

    Iida, H; Mizumura, Y; Uraoka, T; Takata, M; Sugimoto, T; Miwa, A; Yamagishi, T

    1985-01-01

    An autopsy case of membranous glomerulonephritis associated with enterococcal endocarditis was reported. Although enterococcal antigen was not identified in glomerular deposits, the eluate from the patient's renal tissue was shown to specifically recombine with cells of the enterococcus isolated from his own ante mortem blood. Hypocomplementemia, circulating immune complexes and antienterococcal antibodies were also observed. These findings suggest that enterococcus-related immune complexes played a role in the pathogenesis of glomerulonephritis associated with enterococcal endocarditis in this patient.

  12. Detection of Memory B Activity Against a Therapeutic Protein in Treatment-Naïve Subjects.

    PubMed

    Liao, Karen; Derbyshire, Stacy; Wang, Kai-Fen; Caucci, Cherilyn; Tang, Shuo; Holland, Claire; Loercher, Amy; Gunn, George R

    2018-03-16

    Bridging immunoassays commonly used to detect and characterize immunogenicity during biologic development do not provide direct information on the presence or development of a memory anti-drug antibody (ADA) response. In this study, a B cell ELISPOT assay method was used to evaluate pre-existing ADA for anti-TNFR1 domain antibody, GSK1995057, an experimental biologic in treatment naive subjects. This assay utilized a 7-day activation of PBMCs by a combination of GSK1995057 (antigen) and polyclonal stimulator followed by GSK1995057-specific ELISPOT for the enumeration of memory B cells that have differentiated into antibody secreting cells (ASC) in vitro. We demonstrated that GSK1995057-specific ASC were detectable in treatment-naïve subjects with pre-existing ADA; the frequency of drug-specific ASC was low and ranged from 1 to 10 spot forming units (SFU) per million cells. Interestingly, the frequency of drug-specific ASC correlated with the ADA level measured using an in vitro ADA assay. We further confirmed that the ASC originated from CD27 + memory B cells, not from CD27 - -naïve B cells. Our data demonstrated the utility of the B cell ELISPOT method in therapeutic protein immunogenicity evaluation, providing a novel way to confirm and characterize the cell population producing pre-existing ADA. This novel application of a B cell ELISPOT assay informs and characterizes immune memory activity regarding incidence and magnitude associated with a pre-existing ADA response.

  13. Cremophor EL as an adjuvant affecting immunoglobulin class switch in the immune response to the thymus-independent antigen alpha(1- greater than 3) dextran B 1355 S.

    PubMed Central

    Austrup, F; Kucharzik, T; Kölsch, E

    1991-01-01

    The humoral immune response to the so-called thymus independent antigen dextran B 1355 S in conventionally raised BALB/c mice consists solely of IgM antibodies. Expression of IgG anti-Dex antibodies in these mice is prevented by pre- or perinatally activated idiotype-specific T-suppressor lymphocytes. IgG B-memory cells nevertheless develop during the course of immunization, but are arrested in an anergic state. In the presence of Cremophor EL the induction of this anergic state is inhibited and the immune response shifts fully to an IgG anti-Dex response. Images Figure 1 PMID:1717371

  14. Adoptive immunotherapy for acute leukemia: New insights in chimeric antigen receptors

    PubMed Central

    Heiblig, Maël; Elhamri, Mohamed; Michallet, Mauricette; Thomas, Xavier

    2015-01-01

    Relapses remain a major concern in acute leukemia. It is well known that leukemia stem cells (LSCs) hide in hematopoietic niches and escape to the immune system surveillance through the outgrowth of poorly immunogenic tumor-cell variants and the suppression of the active immune response. Despite the introduction of new reagents and new therapeutic approaches, no treatment strategies have been able to definitively eradicate LSCs. However, recent adoptive immunotherapy in cancer is expected to revolutionize our way to fight against this disease, by redirecting the immune system in order to eliminate relapse issues. Initially described at the onset of the 90’s, chimeric antigen receptors (CARs) are recombinant receptors transferred in various T cell subsets, providing specific antigens binding in a non-major histocompatibility complex restricted manner, and effective on a large variety of human leukocyte antigen-divers cell populations. Once transferred, engineered T cells act like an expanding “living drug” specifically targeting the tumor-associated antigen, and ensure long-term anti-tumor memory. Over the last decades, substantial improvements have been made in CARs design. CAR T cells have finally reached the clinical practice and first clinical trials have shown promising results. In acute lymphoblastic leukemia, high rate of complete and prolonged clinical responses have been observed after anti-CD19 CAR T cell therapy, with specific but manageable adverse events. In this review, our goal was to describe CAR structures and functions, and to summarize recent data regarding pre-clinical studies and clinical trials in acute leukemia. PMID:26328018

  15. Protection by universal influenza vaccine is mediated by memory CD4 T cells.

    PubMed

    Valkenburg, Sophie A; Li, Olive T W; Li, Athena; Bull, Maireid; Waldmann, Thomas A; Perera, Liyanage P; Peiris, Malik; Poon, Leo L M

    2018-07-05

    There is a diverse array of influenza viruses which circulate between different species, reassort and drift over time. Current seasonal influenza vaccines are ineffective in controlling these viruses. We have developed a novel universal vaccine which elicits robust T cell responses and protection against diverse influenza viruses in mouse and human models. Vaccine mediated protection was dependent on influenza-specific CD4 + T cells, whereby depletion of CD4 + T cells at either vaccination or challenge time points significantly reduced survival in mice. Vaccine memory CD4 + T cells were needed for early antibody production and CD8 + T cell recall responses. Furthermore, influenza-specific CD4 + T cells from vaccination manifested primarily Tfh and Th1 profiles with anti-viral cytokine production. The vaccine boosted H5-specific T cells from human PBMCs, specifically CD4 + and CD8 + T effector memory type, ensuring the vaccine was truly universal for its future application. These findings have implications for the development and optimization of T cell activating vaccines for universal immunity against influenza. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Development and evaluation of tailored specific real-time RT-PCR assays for detection of foot-and-mouth disease virus serotypes circulating in East Africa.

    PubMed

    Bachanek-Bankowska, Katarzyna; Mero, Herieth R; Wadsworth, Jemma; Mioulet, Valerie; Sallu, Raphael; Belsham, Graham J; Kasanga, Christopher J; Knowles, Nick J; King, Donald P

    2016-11-01

    Rapid, reliable and accurate diagnostic methods provide essential support to programmes that monitor and control foot-and-mouth disease (FMD). While pan-specific molecular tests for FMD virus (FMDV) detection are well established and widely used in endemic and FMD-free countries, current serotyping methods mainly rely either on antigen detection ELISAs or nucleotide sequencing approaches. This report describes the development of a panel of serotype-specific real-time RT-PCR assays (rRT-PCR) tailored to detect FMDV lineages currently circulating in East Africa. These assays target sequences within the VP1-coding region that share high intra-lineage identity, but do not cross-react with FMD viruses from other serotypes that circulate in the region. These serotype-specific assays operate with the same thermal profile as the pan-diagnostic tests making it possible to run them in parallel to produce C T values comparable to the pan-diagnostic test detecting the 3D-coding region. These assays were evaluated alongside the established pan-specific molecular test using field samples and virus isolates collected from Tanzania, Kenya and Ethiopia that had been previously characterised by nucleotide sequencing. Samples (n=71) representing serotype A (topotype AFRICA, lineage G-I), serotype O (topotypes EA-2 and EA-4), serotype SAT 1 (topotype I (NWZ)) and serotype SAT2 (topotype IV) were correctly identified with these rRT-PCR assays. Furthermore, FMDV RNA from samples that did not contain infectious virus could still be serotyped using these assays. These serotype-specific real-time RT-PCR assays can detect and characterise FMDVs currently circulating in East Africa and hence improve disease control in this region. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Dynamics of the Murine Humoral Immune Response to Neisseria meningitidis Group B Capsular Polysaccharide

    PubMed Central

    Colino, Jesús; Outschoorn, Ingrid

    1998-01-01

    Immunization with Neisseria meningitidis group B capsular polysaccharide (CpsB) elicited responses in adult mice that showed the typical dynamic characteristics of the response to a thymus-independent antigen, in contrast to the thymus-dependent behavior of antibody responses to CpsC. The former had a short latent period and showed a rapid increase in serum antibodies that peaked at day 5, and immunoglobulin M (IgM) was the major isotype even though IgG (mainly IgG2a and IgG2b) was also detectable. This response was of short duration, and the specific antibodies were rapidly cleared from the circulation. The secondary responses were similar in magnitude, kinetics, IgM predominance, and IgG distribution. Nevertheless, a threefold IgG increase, a correlation between IgM and IgG levels, and dose-dependent secondary responses were observed. Hyperimmunization considerably reinforced these responses: 10-fold for IgM and 300-fold for IgG. This favored isotype switch was accompanied by a progressive change in the subclass distribution to IgG3 (62%) and IgG1 (28%), along with the possible generation of B-cell memory. The results indicate that CpsB is being strictly thymus independent and suggest that unresponsiveness to purified CpsB is due to tolerance. PMID:9453603

  18. Dynamics of the murine humoral immune response to Neisseria meningitis group B capsular polysaccharide.

    PubMed

    Colino, J; Outschoorn, I

    1998-02-01

    Immunization with Neisseria meningitidis group B capsular polysaccharide (CpsB) elicited responses in adult mice that showed the typical dynamic characteristics of the response to a thymus-independent antigen, in contrast to the thymus-dependent behavior of antibody responses to CpsC. The former had a short latent period and showed a rapid increase in serum antibodies that peaked at day 5, and immunoglobulin M (IgM) was the major isotype even though IgG (mainly IgG2a and IgG2b) was also detectable. This response was of short duration, and the specific antibodies were rapidly cleared from the circulation. The secondary responses were similar in magnitude, kinetics, IgM predominance, and IgG distribution. Nevertheless, a threefold IgG increase, a correlation between IgM and IgG levels, and dose-dependent secondary responses were observed. Hyperimmunization considerably reinforced these responses: 10-fold for IgM and 300-fold for IgG. This favored isotype switch was accompanied by a progressive change in the subclass distribution to IgG3 (62%) and IgG1 (28%), along with the possible generation of B-cell memory. The results indicate that CpsB is being strictly thymus independent and suggest that unresponsiveness to purified CpsB is due to tolerance.

  19. Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine.

    PubMed

    Hansen, Scott G; Zak, Daniel E; Xu, Guangwu; Ford, Julia C; Marshall, Emily E; Malouli, Daniel; Gilbride, Roxanne M; Hughes, Colette M; Ventura, Abigail B; Ainslie, Emily; Randall, Kurt T; Selseth, Andrea N; Rundstrom, Parker; Herlache, Lauren; Lewis, Matthew S; Park, Haesun; Planer, Shannon L; Turner, John M; Fischer, Miranda; Armstrong, Christina; Zweig, Robert C; Valvo, Joseph; Braun, Jackie M; Shankar, Smitha; Lu, Lenette; Sylwester, Andrew W; Legasse, Alfred W; Messerle, Martin; Jarvis, Michael A; Amon, Lynn M; Aderem, Alan; Alter, Galit; Laddy, Dominick J; Stone, Michele; Bonavia, Aurelio; Evans, Thomas G; Axthelm, Michael K; Früh, Klaus; Edlefsen, Paul T; Picker, Louis J

    2018-02-01

    Despite widespread use of the bacille Calmette-Guérin (BCG) vaccine, tuberculosis (TB) remains a leading cause of global mortality from a single infectious agent (Mycobacterium tuberculosis or Mtb). Here, over two independent Mtb challenge studies, we demonstrate that subcutaneous vaccination of rhesus macaques (RMs) with rhesus cytomegalovirus vectors encoding Mtb antigen inserts (hereafter referred to as RhCMV/TB)-which elicit and maintain highly effector-differentiated, circulating and tissue-resident Mtb-specific CD4 + and CD8 + memory T cell responses-can reduce the overall (pulmonary and extrapulmonary) extent of Mtb infection and disease by 68%, as compared to that in unvaccinated controls, after intrabronchial challenge with the Erdman strain of Mtb at ∼1 year after the first vaccination. Fourteen of 34 RhCMV/TB-vaccinated RMs (41%) across both studies showed no TB disease by computed tomography scans or at necropsy after challenge (as compared to 0 of 17 unvaccinated controls), and ten of these RMs were Mtb-culture-negative for all tissues, an exceptional long-term vaccine effect in the RM challenge model with the Erdman strain of Mtb. These results suggest that complete vaccine-mediated immune control of highly pathogenic Mtb is possible if immune effector responses can intercept Mtb infection at its earliest stages.

  20. ELISA for detection of variant rabbit haemorrhagic disease virus RHDV2 antigen in liver extracts.

    PubMed

    Dalton, K P; Podadera, A; Granda, V; Nicieza, I; Del Llano, D; González, R; de Los Toyos, J R; García Ocaña, M; Vázquez, F; Martín Alonso, J M; Prieto, J M; Parra, F; Casais, R

    2018-01-01

    The emergence and rapid spread of variant of the rabbit hemorrhagic disease virus (RHDV2) require new diagnostic tools to ensure that efficient control measures are adopted. In the present study, a specific sandwich enzyme-linked immunosorbent assay (ELISA) for detection of RHDV2 antigens in rabbit liver homogenates, based on the use of an RHDV2-specific monoclonal antibody (Mab) 2D9 for antigen capture and an anti-RHDV2 goat polyclonal antibody (Pab), was developed. This ELISA was able to successfully detect RHDV2 and RHDV2 recombinant virions with high sensitivity (100%) and specificity (97.22%). No cross-reactions were detected with RHDV G1 viruses while low cross-reactivity was detected with one of the RHDVa samples analyzed. The ELISA afforded good repeatability and had high analytical sensitivity as it was able to detect a dilution 1:163,640 (6.10ng/mL) of purified RHDV-N11 VLPs, which contained approximately 3.4×10 8 molecules/mL particles. The reliable discrimination between closely related viruses is crucial to understand the epidemiology and the interaction of co-existing pathogens. In the work described here we design and validate an ELISA for laboratory based, specific, sensitive and reliable detection of RHDVb/RHDV2. This ELISA is a valuable, specific virological tool for monitoring virus circulation, which will permit a better control of this disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. In vitro generation of Epstein-Barr virus-specific cytotoxic T cells in patients receiving haplo-identical allogeneic stem cell transplantation.

    PubMed

    Musk, P; Szmania, S; Galloway, A T; Johnson, K; Scott, A; Guttman, S; Bridges, K; Bruorton, M; Gatlin, J; Garcia, J V; Lamb, L; Chiang, K Y; Spencer, T; Henslee-Downey, J; van Rhee, F

    2001-01-01

    Use of a partially mismatched related donor (PMRD) is an option for patients who require allogeneic transplantation but do not have a matched sibling or unrelated donor. Epstein-Barr virus (EBV)-induced lymphoma is a major cause of mortality after PMRD transplantation. In this study, we present a clinical grade culture system for donor-derived EBV-specific cytotoxic T cells (CTLs) that do not recognize haplo-identical recipient cells. The EBV-specific CTLs were tested for cytolytic specificity and other functional properties, including ability to transgress into tissues, propensity for apoptosis, degree of clonality, stability of dominant T-cell clones, and Tc and Th phenotypes. The EBV-specific CTLs were routinely expanded to greater than 80 x 10(6) over a period of 5 weeks, which is sufficient for clinical application. A CD8+ phenotype predominated, and the CTLs were highly specific for donor lymphoblastoid cell lines (LCLs) without killing of recipient targets or K562. Vbeta spectratyping showed an oligoclonal population that was stable on prolonged culture. The EBV-specific CTLs were activated (D-related human leukocyte antigen [HLA-DR+], L-selectin+/-) and of memory phenotype (CD45RO+). Expression of the integrin VLA-4 suggested that these CTLs could adhere to endothelium and migrate into tissues. The Bcl-2 message was upregulated, which may protect the CTLs from the apoptosis. The first demonstration of overexpression of bcl-2 in human memory CTLs. In addition, we show that lymphoblastoid cell lines used to generate CTLs are readily genetically modified with recombinant lentivirus, indicating that genetically engineered antigen presentation is feasible.

  2. The effect of inhibitory signals on the priming of drug-hapten-specific T-cells that express distinct Vβ receptors

    PubMed Central

    Gibson, Andrew; Faulkner, Lee; Lichtenfels, Maike; Ogese, Monday; Al-Attar, Zaid; Alfirevic, Ana; Esser, Philipp R.; Martin, Stefan F.; Pirmohamed, Munir; Park, B. Kevin; Naisbitt, Dean J.

    2017-01-01

    Drug hypersensitivity involves the activation of T-cells in an HLA allele-restricted manner. Since the majority of individuals who carry HLA risk alleles do not develop hypersensitivity, other parameters must control development of the drug-specific T-cell response. Thus, we have utilized a T-cell priming assay and nitroso sulfamethoxazole (SMX-NO) as a model antigen to investigate (1) the activation of specific T-cell receptor (TCR)Vβ subtypes, (2) the impact of PD-1, CTLA4 and TIM-3 co-inhibitory signalling on activation of naïve and memory T-cells and (3) the ability of Tregs to prevent responses. An expansion of the TCR repertoire was observed for nine different Vβ subtypes, while spectratyping revealed that SMX-NO-specific T-cell responses are controlled by public TCRs present in all individuals alongside private TCR repertoires specific to each individual. We proceeded to evaluate the extent to which the activation of these TCR Vβ-restricted antigen-specific T-cell responses is governed by regulatory signals. Blockade of PDL-1/CTLA4 signalling dampened activation of SMX-NO-specific naïve and memory T-cells, while blockade of TIM-3 produced no effect. PD-1, CTLA4, and TIM-3 displayed discrete expression profiles during drug-induced T-cell activation and expression of each receptor was enhanced on dividing T-cells. As these receptors are also expressed on Tregs, Treg-mediated suppression of SMX-NO-induced T-cell activation was investigated. Tregs significantly dampened the priming of T-cells. In conclusion, our findings demonstrate that distinct TCR Vβ subtypes, dysregulation of co-inhibitory signalling pathways and dysfunctional Tregs may influence predisposition to hypersensitivity. PMID:28687658

  3. Methodological approach to the ex vivo expansion and detection of T. cruzi-specific T cells from chronic Chagas disease patients

    PubMed Central

    Acevedo, Gonzalo R.; Longhi, Silvia A.; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P.; Santos, Radleigh

    2017-01-01

    The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host’s immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient’s memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells. PMID:28552984

  4. Methodological approach to the ex vivo expansion and detection of T. cruzi-specific T cells from chronic Chagas disease patients.

    PubMed

    Acevedo, Gonzalo R; Longhi, Silvia A; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P; Santos, Radleigh; Judkowski, Valeria A; Pinilla, Clemencia; Gómez, Karina A

    2017-01-01

    The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host's immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient's memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells.

  5. Identification, characterization, and quantitation of soluble HLA antigens in the circulation and peritoneal dialysate of renal patients.

    PubMed Central

    Gelder, F B; McDonald, J C; Landreneau, M D; McMillan, R M; Aultman, D F

    1991-01-01

    Human lymphocyte antigen (HLA) class I and class II antigens and beta 2 microglobulin (B2M) were identified in peritoneal dialysate (PD) and serum from patients with end-stage renal disease (ESRD) using monoclonal antibodies in an enzyme-linked immunoassay. The HLA class I and class II antigens each exhibited approximate molecular weights of 50,000 to 60,000 daltons by chromatography on Sepharose CL 6B. Class I antigens in serum and PD fluid were associated with B2M. Free B2M (Mr 11,500) also was detected in both sera and PD fluids. Unlike class I antigens, class II antigens were not found to have attached B2M. Class I and class II antigens eluted from 2-diethylaminoethanol ion exchange gradient columns at 0.07 mol/L (molar) phosphate buffer pH 7.2 and migrated with alpha 2-beta 1 mobility in agarose electrophoresis. Class I antigens were purified from ESRD patients' PD fluid by solid-phase immunoaffinity chromatography. Enzyme-linked immunoassay demonstrated that this purified protein was composed of a class I heavy chain and B2M. Class I allospecificity was confirmed by neutralization on known HLA typing antisera in a microcytotoxicity assay. Soluble HLA class I antigen preparations specifically inhibited blast transformation of responder lymphocytes in mixed lymphocyte culture reactions. Inhibition was dose dependent and ranged from 0% to 95%. The presence of soluble HLA antigens in body fluids may play an important part in the immunologic tolerance to self. This study demonstrates a ready source of large quantities of soluble HLA for detailed analysis. Images Fig. 1. PMID:2039290

  6. Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity

    PubMed Central

    Franceschi, Claudio; Salvioli, Stefano; Garagnani, Paolo; de Eguileor, Magda; Monti, Daniela; Capri, Miriam

    2017-01-01

    Owing to its memory and plasticity, the immune system (IS) is capable of recording all the immunological experiences and stimuli it was exposed to. The combination of type, dose, intensity, and temporal sequence of antigenic stimuli that each individual is exposed to has been named “immunobiography.” This immunological history induces a lifelong continuous adaptation of the IS, which is responsible for the capability to mount strong, weak or no response to specific antigens, thus determining the large heterogeneity of immunological responses. In the last years, it is becoming clear that memory is not solely a feature of adaptive immunity, as it has been observed that also innate immune cells are provided with a sort of memory, dubbed “trained immunity.” In this review, we discuss the main characteristics of trained immunity as a possible contributor to inflammaging within the perspective of immunobiography, with particular attention to the phenotypic changes of the cell populations known to be involved in trained immunity. In conclusion, immunobiography emerges as a pervasive and comprehensive concept that could help in understanding and interpret the individual heterogeneity of immune responses (to infections and vaccinations) that becomes particularly evident at old age and could affect immunosenescence and inflammaging. PMID:28861086

  7. Improving influenza virological surveillance in Europe: strain-based reporting of antigenic and genetic characterisation data, 11 European countries, influenza season 2013/14

    PubMed Central

    Broberg, Eeva; Hungnes, Olav; Schweiger, Brunhilde; Prosenc, Katarina; Daniels, Rod; Guiomar, Raquel; Ikonen, Niina; Kossyvakis, Athanasios; Pozo, Francisco; Puzelli, Simona; Thomas, Isabelle; Waters, Allison; Wiman, Åsa; Meijer, Adam

    2016-01-01

    Influenza antigenic and genetic characterisation data are crucial for influenza vaccine composition decision making. Previously, aggregate data were reported to the European Centre for Disease Prevention and Control by European Union/European Economic Area (EU/EEA) countries. A system for collecting case-specific influenza antigenic and genetic characterisation data was established for the 2013/14 influenza season. In a pilot study, 11 EU/EEA countries reported through the new mechanism. We demonstrated feasibility of reporting strain-based antigenic and genetic data and ca 10% of influenza virus-positive specimens were selected for further characterisation. Proportions of characterised virus (sub)types were similar to influenza virus circulation levels. The main genetic clades were represented by A/StPetersburg/27/2011(H1N1)pdm09 and A/Texas/50/2012(H3N2). A(H1N1)pdm09 viruses were more prevalent in age groups (by years) < 1 (65%; p = 0.0111), 20–39 (50%; p = 0.0046) and 40–64 (55%; p = 0.00001) while A(H3N2) viruses were most prevalent in those ≥ 65 years (62%*; p = 0.0012). Hospitalised patients in the age groups 6–19 years (67%; p = 0.0494) and ≥ 65 years (52%; p = 0.0005) were more frequently infected by A/Texas/50/2012 A(H3N2)-like viruses compared with hospitalised cases in other age groups. Strain-based reporting enabled deeper understanding of influenza virus circulation among hospitalised patients and substantially improved the reporting of virus characterisation data. Therefore, strain-based reporting of readily available data is recommended to all reporting countries within the EU/EEA. PMID:27762211

  8. Circulating Gut-Homing (α4β7+) Plasmablast Responses against Shigella Surface Protein Antigens among Hospitalized Patients with Diarrhea

    PubMed Central

    Sinha, Anuradha; Dey, Ayan; Saletti, Giulietta; Samanta, Pradip; Chakraborty, Partha Sarathi; Bhattacharya, M. K.; Ghosh, Santanu; Ramamurthy, T.; Kim, Jae-Ouk; Yang, Jae Seung; Kim, Dong Wook

    2016-01-01

    Developing countries are burdened with Shigella diarrhea. Understanding mucosal immune responses associated with natural Shigella infection is important to identify potential correlates of protection and, as such, to design effective vaccines. We performed a comparative analysis of circulating mucosal plasmablasts producing specific antibodies against highly conserved invasive plasmid antigens (IpaC, IpaD20, and IpaD120) and two recently identified surface protein antigens, pan-Shigella surface protein antigen 1 (PSSP1) and PSSP2, common to all virulent Shigella strains. We examined blood and stool specimens from 37 diarrheal patients admitted to the Infectious Diseases & Beliaghata General Hospital, Kolkata, India. The etiological agent of diarrhea was investigated in stool specimens by microbiological methods and real-time PCR. Gut-homing (α4β7+) antibody-secreting cells (ASCs) were isolated from patient blood by means of combined magnetic cell sorting and two-color enzyme-linked immunosorbent spot (ELISPOT) assay. Overall, 57% (21 of 37) and 65% (24 of 37) of the patients were positive for Shigella infection by microbiological and real-time PCR assays, respectively. The frequency of α4β7+ IgG ASC responders against Ipas was higher than that observed against PSSP1 or PSSP2, regardless of the Shigella serotype isolated from these patients. Thus, α4β7+ ASC responses to Ipas may be considered an indirect marker of Shigella infection. The apparent weakness of ASC responses to PSSP1 is consistent with the lack of cross-protection induced by natural Shigella infection. The finding that ASC responses to IpaD develop in patients with recent-onset shigellosis indicates that such responses may not be protective or may wane too rapidly and/or be of insufficient magnitude. PMID:27193041

  9. Long lived haptenspecific memory in the newt, Notophthalmus viridescens

    PubMed Central

    Ruben, L. N.

    1983-01-01

    While enhanced long lived secondary humoral immune responses to thymus-dependent (TD) immunogens are known to occur in mammals, they have yet to be characterized in extant ectothermic vertebrates which do not normally generate immunoglobulin isotype diversity. Moreover, examination of memory in such a vertebrate may provide insights into the controversial issue of IgM memory in mammalia. Trinitrophenyl (TNP) conjugated to horse erythrocytes (HRBC) and to lipopolysaccharide (LPS) have been used to study primitive long lived (5 months) memory in the newt, Notophthalmus viridescens. The ability to recall TNP response memory was tested by secondary immunization with hapten conjugates of the same or a different carrier from the one used to initiate the primary response. All responses were monitored by immunocyto-adherence of pooled sensitized spleen cells. While carrier-specific priming was necessary to initiate primary anti-TNP responses when TD carriers (RBC) were used, it was not required when the more rapid secondary responses were tested. No enhanced anti-carrier responses were found. However, carrier-specific suppression of the secondary anti-hapten response was observed. Anamnesis which was both more rapid and intense developed only when TNP-LPS was used as the primary immunogen and anti-hapten memory was recalled with TNP-sheep erythrocytes (SRBC). Daily injections of Cyclosporin A from 1 day before reimmunization, affected the resultant primary (anti-SRBC) and secondary (anti-TNP) responses differentially. Colloidal carbon injection reduced the memory response by one-half. These results suggest that cellular regulatory controls may be involved in newt memory. However, no increase in TNP-specific antigen-binding cell affinity was found in comparisons of primary and secondary responses. Since reimmunization with TNP-LPS failed to produce enhanced responses following TNP-LPS priming, one can conclude that a thymus-independent (TI) carrier of the hapten will stimulate the generation of hapten-specific memory cells in the newt; however, their functional differentiation depends on collaborative events initiated by a TD carrier used to present the hapten. PMID:6822407

  10. Increased long-term immunity to Bacillus anthracis protective antigen in mice immunized with a CIA06B-adjuvanted anthrax vaccine.

    PubMed

    Wui, Seo Ri; Han, Ji Eun; Kim, Yeon Hee; Rhie, Gi-eun; Lee, Na Gyong

    2013-04-01

    Anthrax is an acute infectious disease caused by Bacillus anthracis. We previously reported that the adjuvant CIA06B, which consists of TLR4 agonist CIA05 and aluminum hydroxide (alum), enhanced the immune response to anthrax protective antigen (PA) in mice. This study was carried out to determine whether CIA06B can enhance long-term immune responses to PA in mice. BALB/c mice were immunized intramuscularly three times at 2-week intervals with recombinant PA alone or PA combined with alum or CIA06B. At 8 and 24 weeks post-immunization, the immunological responses including serum anti-PA IgG antibody titer, toxin-neutralizing antibody titer, splenic cytokine secretion and the frequency of PA-specific memory B cells were assessed. Compared with mice injected with PA alone or PA plus alum, mice injected with PA plus CIA06B had higher titers of serum anti-PA IgG antibodies, and higher frequencies of PA-specific memory B cells and interferon-γ secreting cells. Furthermore, anti-PA antibodies induced by CIA06B were more effective in neutralizing anthrax toxin. These results demonstrated that CIA06B is capable of providing long-term immunity when used as an adjuvant in a PA-based anthrax vaccine.

  11. Evolution of the hemagglutinin gene of H3N8 canine influenza virus in dogs.

    PubMed

    Pecoraro, Heidi L; Bennett, Susi; Spindel, Miranda E; Landolt, Gabriele A

    2014-12-01

    With the widespread use of a recently developed canine influenza virus (CIV) H3N8 vaccine, continual molecular evaluation of circulating CIVs is necessary for monitoring antigenic drift. The aim of this project was to further describe the genetic evolution of CIV, as well as determine any genetic variation within potential antigenic regions that might result in antigenic drift. To this end, the hemagglutinin gene of 19 CIV isolates from dogs residing in Colorado, New York, and South Carolina humane shelters was sequenced and compared to CIV strains isolated during 2003-2012. Phylogenetic analysis suggests that CIV might be diverging into two geographically distinct lineages. Using a mixed-effects model for evolution and single likelihood ancestor counting methods, several amino acid sites were found to be undergoing selection pressure. Additionally, a total of six amino acid changes were observed in two possible antigenic sites for CIVs isolated from Colorado and New York humane shelters between 2009 and 2011. As CIV isolates might be diverging into geographically distinct lineages, further experiments are warranted to determine the extent of antigenic drift occurring within circulating CIV.

  12. Enhancement of Human Antigen-Specific Memory T-Cell Responses by Interleukin-7 May Improve Accuracy in Diagnosing Tuberculosis▿ †

    PubMed Central

    Feske, Marsha; Nudelman, Rodolfo J.; Medina, Miguel; Lew, Justin; Singh, Manisha; Couturier, Jacob; Graviss, Edward A.; Lewis, Dorothy E.

    2008-01-01

    Children and immunocompromised adults are at an increased risk of tuberculosis (TB), but diagnosis is more challenging. Recently developed gamma interferon (IFN-γ) release assays provide increased sensitivity and specificity for diagnosis of latent TB, but their use is not FDA approved in immunocompromised or pediatric populations. Both populations have reduced numbers of T cells, which are major producers of IFN-γ. Interleukin 7 (IL-7), a survival cytokine, stabilizes IFN-γ message and increases protein production. IL-7 was added to antigen-stimulated lymphocytes to improve IFN-γ responses as measured by enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunospot (ELISPOT) assay. Antigens used were tetanus toxoid (n = 10), p24 (from human immunodeficiency virus [HIV], n = 9), and TB peptides (n = 15). Keyhole limpet hemocyanin was used as a negative control, and phytohemagglutinin was the positive control. IL-7 improved antigen-specific responses to all antigens tested including tetanus toxoid, HIV type 1 p24, and TB peptides (ESAT-6 and CFP-10) with up to a 14-fold increase (mean = 3.8), as measured by ELISA. Increased IFN-γ responses from controls, HIV-positive patients, and TB patients were statistically significant, with P values of <0.05, 0.01, and 0.05, respectively. ELISPOT assay results confirmed ELISA findings (P values of <0.01, 0.02, and 0.03, respectively), with a strong correlation between the two tests (R2 = 0.82 to 0.99). Based on average background levels, IL-7 increased detection of IFN-γ by 39% compared to the level with antigen alone. Increased production of IFN-γ induced by IL-7 improves sensitivity of ELISA and ELISPOT assays for all antigens tested. Further enhancement of IFN-γ-based assays might improve TB diagnosis in those populations at highest risk for TB. PMID:18753334

  13. The effect of the parenteral administration of a rabbit anti-(mouse)-IgD serum on the immune response of mice to sheep erythrocytes.

    PubMed Central

    Dresser, D W; Parkhouse, R M

    1978-01-01

    Experiments have been carried out to find out if the administration of an anti-IgD serum to mice interferes in anyway with their immune response to sheep red blood cells. This was done to test a hypothesis that a biological role for IgD might be as a critical cellular receptor for antigen. Our results show that the injection of anti-IgD two days before antigen results in suppression of primary responses and priming (the antigen dependent generation of memory cells) but has no suppressive effect on a secondary response. On this indirect evidence we conclude that it is likely that IgD is present on antigen-sensitive percursor cells but not on memory cells. PMID:367957

  14. CLONAL MEMORY

    PubMed Central

    McMichael, A. J.; Williamson, A. R.

    1974-01-01

    A single clone of B cells producing anti-DNP antibody recognizable by the isoelectric-focusing spectrum has been used, in a double transfer system, to study clonal memory. Trasnsferable B memory develops between 4 and 7 days after the first transfer with antigen. B-memory cells thus proliferate before or concomitantly with antibody-forming cells. PMID:4545165

  15. A subset of virus-specific CD161+ T cells selectively express the multidrug transporter MDR1 and are resistant to chemotherapy in AML

    PubMed Central

    Alsuliman, Abdullah; Muftuoglu, Muharrem; Khoder, Ahmad; Ahn, Yong-Oon; Basar, Rafet; Verneris, Michael R.; Muranski, Pawel; Barrett, A. John; Liu, Enli; Li, Li; Stringaris, Kate; Armstrong-James, Darius; Shaim, Hila; Kondo, Kayo; Imahashi, Nobuhiko; Andersson, Borje; Marin, David; Champlin, Richard E.; Shpall, Elizabeth J.

    2017-01-01

    The establishment of long-lived pathogen-specific T cells is a fundamental property of the adaptive immune response. However, the mechanisms underlying long-term persistence of antigen-specific CD4+ T cells are not well-defined. Here we identify a subset of memory CD4+ T cells capable of effluxing cellular toxins, including rhodamine (Rho), through the multidrug efflux protein MDR1 (also known as P-glycoprotein and ABCB1). Drug-effluxing CD4+ T cells were characterized as CD161+CD95+CD45RA−CD127hiCD28+CD25int cells with a distinct chemokine profile and a Th1-polarized pro-inflammatory phenotype. CD4+CD161+Rho-effluxing T cells proliferated vigorously in response to stimulation with anti-CD3/CD28 beads and gave rise to CD161− progeny in vitro. These cells were also capable of self-renewal and maintained their phenotypic and functional characteristics when cultured with homeostatic cytokines. Multidrug-effluxing CD4+CD161+ T cells were enriched within the viral-specific Th1 repertoire of healthy donors and patients with acute myeloid leukemia (AML) and survived exposure to daunorubicin chemotherapy in vitro. Multidrug-effluxing CD4+CD161+ T cells also resisted chemotherapy-induced cytotoxicity in vivo and underwent significant expansion in AML patients rendered lymphopenic after chemotherapy, contributing to the repopulation of anti-CMV immunity. Finally, after influenza vaccination, the proportion of influenza-specific CD4+ T cells coexpressing CD161 was significantly higher after 2 years compared with 4 weeks after immunization, suggesting CD161 is a marker for long-lived antigen-specific memory T cells. These findings suggest that CD4+CD161+ T cells with rapid efflux capacity contribute to the maintenance of viral-specific memory T cells. These data provide novel insights into mechanisms that preserve antiviral immunity in patients undergoing chemotherapy and have implications for the development of novel immunotherapeutic approaches. PMID:27821506

  16. Anti-Taenia solium monoclonal antibodies for the detection of parasite antigens in body fluids from patients with neurocysticercosis.

    PubMed

    Paredes, Adriana; Sáenz, Patricia; Marzal, Miguel W; Orrego, Miguel A; Castillo, Yesenia; Rivera, Andrea; Mahanty, Siddhartha; Guerra-Giraldez, Cristina; García, Hector H; Nash, Theodore E

    2016-07-01

    Neurocysticercosis (NCC), an infection of the brain by Taenia solium (Ts) cysts, is the most common cause of adult-onset epilepsy in developing countries. Serological testing consists primarily of varying methods to detect antibodies in body fluids and more recently antigen (Ag) detection assays to identify individuals or animals with viable parasites. Antigen assays currently in use employ monoclonal antibodies (mAbs) raised against T. saginata, which have known cross reactivity to animal cestodes but are highly specific in human samples. We produced, characterized and tested 21 mAbs raised against T. solium whole cyst antigens, vesicular fluid or excretory secretory products. Reactivity of the TsmAbs against specific cyst structures was determined using immunofluorescence and immunohistochemistry on histological sections of Ts muscle cysts. Four TsmAbs reacted to vesicular space alone, 9 to the neck and cyst wall, one to the neck and vesicular space and 7 to the neck, cyst wall and vesicular space. An in-house ELISA assay to detect circulating Ts antigen, using the TsmAbs as capture antibodies and a rabbit polyclonal anti-Ts whole cyst antibody as a detector antibody demonstrated that eight of the 21 TsmAbs detected antigens in known NCC-positive human sera and three of these also in urine samples. Reactivity was expressed as normalized ratios of optical densities (OD positive control/OD negative control). Three TsmAbs had ratios >10 and five between 2 and 10. The TsmAbs have potential utility for the diagnosis and post-treatment monitoring of patients with viable NCC infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures.

    PubMed

    Junker, Niels; Kvistborg, Pia; Køllgaard, Tania; Straten, Per thor; Andersen, Mads Hald; Svane, Inge Marie

    2012-01-01

    Ex vivo expanded tumor infiltrating lymphocytes (TILs) from malignant melanoma (MM) and head & neck squamous cell carcinoma (HNSCC) share a similar oligoclonal composition of T effector memory cells, with HLA class I restricted lysis of tumor cell lines. In this study we show that ex vivo expanded TILs from MM and HNSCC demonstrate a heterogeneous composition in frequency and magnitude of tumor associated antigen specific populations by Elispot IFNγ quantitation. TILs from MM and HNSCC shared reactivity towards NY ESO-1, cyclin B1 and Bcl-x derived peptides. Additionally we show that dominating T-cell clones and functionality persists through out expansion among an oligoclonal composition of T-cells. Our findings mirror prior results on the oligoclonal composition of TIL cultures, further indicating a potential for a broader repertoire of specific effector cells recognizing the heterogeneous tumors upon adoptive transfer; increasing the probability of tumor control by minimizing immune evasion by tumor cell escape variants. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Immunological cross-reactivity of cultured rat hippocampal neurons with goldfish brain proteins synthesized during memory consolidation.

    PubMed

    Schmidt, R; Löffler, F; Müller, H W; Seifert, W

    1986-10-29

    Ependymins are goldfish brain glycoproteins exhibiting a specifically enhanced rate of synthesis when the animals adopt a new pattern of swimming behavior. With specific antisera against ependymins it has become possible to look for ependymin-like immunoreactivity in other animal species, both qualitatively by immunofluorescence staining and quantitatively by radioimmunoassay. Ependymin-like immunoreactivity was detected not only in other fish but also in rat brain. In the rat radioimmunoassay measurements were highest for the hippocampal formation and for cultured neurons derived from the embryonic hippocampus. Immunofluorescence staining was performed on various cell culture systems derived from rat brain, in order to establish which cell type contains the antigen. Only neuronal cell populations reacted with the anti-ependymin antisera. Cells derived from embryonic rat brain hippocampus which resembled pyramidal neurons stained particularly bright for ependymin-like immunoreactivity. The antigenic material was distributed throughout the cytoplasm including the neuronal extensions. Various neuron-specific antisera have been used to counterstain the cells containing ependymin-like immunoreactivity.

  19. Antigen-specific immature dendritic cell vaccine ameliorates anti-dsDNA antibody-induced renal damage in a mouse model.

    PubMed

    Xia, Yumin; Jiang, Shan; Weng, Shenhong; Lv, Xiaochun; Cheng, Hong; Fang, Chunhong

    2011-12-01

    Dendritic cells (DCs) can inhibit immune response by clonal anergy when immature. Recent studies have shown that immature DCs (iDCs) may serve as a live cell vaccine after specific antigen pulse based on its potential of blocking antibody production. In this study, we aimed to investigate the effects of nuclear antigen-pulsed iDCs in the treatment of lupus-like renal damages induced by anti-dsDNA antibodies. iDCs were generated from haemopoietic stem cells in bone marrow and then pulsed in vitro with nuclear antigen. The iDC vaccine and corresponding controls were injected into mice with lupus-like renal damages. The evaluation of disease was monitored by biochemical parameters and histological scores. Anti-dsDNA antibody isotypes and T-lymphocyte-produced cytokines were analysed for elucidating therapeutic mechanisms. RESULTS; The mice treated with antigen-pulsed iDCs had a sustained remission of renal damage compared with those injected with non-pulsed iDCs or other controls, including decreased anti-dsDNA antibody level, less proteinuria, lower blood urea nitrogen and serum creatinine values, and improved histological evaluation. Analysis on isotypes of anti-dsDNA antibody showed that iDC vaccine preferentially inhibited the production of IgG3, IgG2b and IgG2a. Furthermore, administration of antigen-treated iDCs to mice resulted in significantly reduced IL-2, IL-4 and IL-12 and IFN-γ produced by T-memory cells. Conversely, the vaccination of antigen-pulsed mature DCs led to increased anti-dsDNA antibody production and an aggravation of lupus-like disease in the model. CONCLUSIONS; These results suggested the high potency of iDC vaccine in preventing lupus-like renal injuries induced by pathogenic autoantibodies.

  20. IL-2high tissue-resident T cells in the human liver: Sentinels for hepatotropic infection

    PubMed Central

    Davies, Jessica; Hansi, Navjyot; Easom, Nicholas J.W.; Burton, Alice R.; Stegmann, Kerstin A.; Schurich, Anna; Swadling, Leo; Male, Victoria; Luong, TuVinh; Davidson, Brian R.; Kennedy, Patrick T.F.

    2017-01-01

    The liver provides a tolerogenic immune niche exploited by several highly prevalent pathogens as well as by primary and metastatic tumors. We have sampled healthy and hepatitis B virus (HBV)–infected human livers to probe for a subset of T cells specialized to overcome local constraints and mediate immunity. We characterize a population of T-betloEomesloBlimp-1hiHobitlo T cells found within the intrahepatic but not the circulating memory CD8 T cell pool expressing liver-homing/retention markers (CD69+CD103+ CXCR6+CXCR3+). These tissue-resident memory T cells (TRM) are preferentially expanded in patients with partial immune control of HBV infection and can remain in the liver after the resolution of infection, including compartmentalized responses against epitopes within all major HBV proteins. Sequential IL-15 or antigen exposure followed by TGFβ induces liver-adapted TRM, including their signature high expression of exhaustion markers PD-1 and CD39. We suggest that these inhibitory molecules, together with paradoxically robust, rapid, cell-autonomous IL-2 and IFNγ production, equip liver CD8 TRM to survive while exerting local noncytolytic hepatic immunosurveillance. PMID:28526759

  1. Elevated and cross‐responsive CD1a‐reactive T cells in bee and wasp venom allergic individuals

    PubMed Central

    Subramaniam, Sumithra; Aslam, Aamir; Misbah, Siraj A.; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch

    2015-01-01

    The role of CD1a‐reactive T cells in human allergic disease is unknown. We have previously shown that circulating CD1a‐reactive T cells recognize neolipid antigens generated by bee and wasp venom phospholipase, and here tested the hypothesis that venom‐responsive CD1a‐reactive T cells associate with venom allergy. Circulating T cells from bee and wasp venom allergic individuals, before and during immunotherapy, were exposed to CD1a‐transfected K562 cells in the presence of wasp or bee venom. T‐cell response was evaluated based on IFNγ, GM‐CSF, and IL‐13 cytokine production. Venom allergic individuals showed significantly higher frequencies of IFN‐γ, GM‐CSF, and IL‐13 producing CD1a‐reactive T cells responsive to venom and venom‐derived phospholipase than healthy individuals. Venom‐responsive CD1a‐reactive T cells were cross‐responsive between wasp and bee suggesting shared pathways of allergenicity. Frequencies of CD1a‐reactive T cells were initially induced during subcutaneous immunotherapy, peaking by weeks 5, but then reduced despite escalation of antigen dose. Our current understanding of venom allergy and immunotherapy is largely based on peptide and protein‐specific T cell and antibody responses. Here, we show that lipid antigens and CD1a‐reactive T cells associate with the allergic response. These data have implications for mechanisms of allergy and approaches to immunotherapy. PMID:26518614

  2. [Detection of antibodies against enterovirus 71 in the sera of Moscow residents].

    PubMed

    Kravchenko, A T; Omel'chenko, T N

    1984-03-01

    Twenty three out of 55 serum samples obtained from subjects aged 20-55 years have proved to be seropositive, 15 of the positive serum samples (i.e. more than 50%) possessing the titer greater than or equal to 1:16. The presence of specific antibodies in the sera of the inhabitants of Moscow suggests that either enterovirus 71 or some other virus whose antigens are partly identical to those of enterovirus 71 apparently circulates among the population of Moscow.

  3. Traffic of antibody-secreting cells after immunization with a liposome-associated, CpG-ODN-adjuvanted oral cholera vaccine.

    PubMed

    Somroop, Srinuan; Tongtawe, Pongsri; Chaisri, Urai; Tapchaisri, Pramuan; Chongsa-nguan, Manas; Srimanote, Potjanee; Chaicumpa, Wanpen

    2006-12-01

    An oral cholera vaccine made up of heat-treated recombinant cholera toxin (rCT), V. cholerae lipopolysaccharide (LPS), and recombinant toxin-co-regulated pili subunit A (rTcpA), entrapped in liposomes in the presence of unmethylated bacterial CpG-DNA (ODN#1826) was used to orally immunize a group of eight week old rats. A booster dose was given 14 days later. Control rats received placebo (vaccine diluent). The kinetics of the immune response were investigated by enumerating the antigen specific-antibody secreting cells (ASC) in the blood circulation and intestinal lamina propria using the ELISPOT assay and a histo-immunofluorescence assay (IFA), respectively. ASC of all antigenic specificities were detected in the blood of the vaccinated rats as early as two days after the booster dose. The numbers of LPS-ASC and TcpA-ASC in the blood were at their peak at day 3 post booster while the number of CT-ASC was highest at day 4 after the booster immunization. At day 13 post immunization, no ASC were detected in the blood. A several fold increase in the number of ASC of all antigenic specificities in the lamina propria above the background numbers of the control animals were found in all vaccinated rats at days 6 and 13 post booster (earlier and later time points were not studied). Vibriocidal antibody and specific antibodies to CT, LPS and TcpA were detected in 57.1% and 52.4%, 14.3%, and 19.0% of the orally vaccinated rats, respectively. The data indicated that rats orally primed with the vaccine could produce a rapid anamnestic response after re-exposure to the V. cholerae antigens. Thus, a single dose of the vaccine is expected to elicit a similar anamnestic immune response in people from cholera endemic areas who have been naturally primed to V. cholerae antigens, while two doses at a 14 day interval should be adequate for a traveler to a disease endemicarea.

  4. Circulating auto-antibodies against nuclear and non-nuclear antigens in primary Sjögren's syndrome: prevalence and clinical significance in 335 patients.

    PubMed

    Nardi, Norma; Brito-Zerón, Pilar; Ramos-Casals, Manuel; Aguiló, Sira; Cervera, Ricard; Ingelmo, Miguel; Font, Josep

    2006-05-01

    The aim of this study was to analyze the prevalence and clinical significance of circulating auto-antibodies against nuclear and non-nuclear antigens in a large cohort of Spanish patients with primary Sjögren's syndrome (SS). We studied 335 patients diagnosed with primary SS seen consecutively in our department since 1994 and tested for anti-nuclear antibodies (ANA), anti-Ro/SS-A, anti-La/SS-B, anti-Sm, anti-ribonucleoprotein (anti-RNP), anti-smooth muscle antibodies (anti-SMA), anti-parietal cell antibodies (anti-PCA), anti-liver-kidney microsome type-1 (anti-LKM-1) antibodies and anti-mitochondrial antibodies (AMA). ANA were detected in 278 (83%) patients. The association of positive ANA with the presence of anti-Ro/SS-A and anti-La/SS-B antibodies reached statistical significance at a titre of ANA >1/80 (p<0.001), while the presence of anti-Sm and anti-RNP was associated with positive ANA at a titre > or =1/320 (p=0.037 for Sm and p=0.016 for RNP). ANA titres correlated with the number of positive antibodies against specific nuclear antigens (p<0.001) but not with the number of positive antibodies against non-nuclear antigens. We found positive anti-Ro/SS-A antibodies in 111 (33%) patients, anti-La/SS-B in 78 (23%), anti-RNP in 8 (2%) and anti-Sm in 4 (1%). Anti-SMA antibodies were detected in 208 (62%) patients, with no significant associations with clinical or analytical SS features, while anti-PCA antibodies were found in 90 (27%) patients and were associated with a higher prevalence of thyroiditis and liver involvement. AMA were detected in 28 (8%) patients, although only 14 presented clinical and/or analytical evidence of liver involvement. No patient presented anti-LKM antibodies. ANA play a central role in the immunological expression of primary SS, due to their frequency and close association with the underlying presence of one or more anti-ENA antibodies. Positivity for antibodies against non-nuclear antigens such as anti-PCA and AMA suggests an association with some organ-specific autoimmune diseases (thyroiditis and primary biliary cirrhosis), while the presence of anti-SMA, in spite of their high prevalence, has no clinical significance in primary SS.

  5. The basics and advances of immunomodulators and antigen presentation: a key to development of potent memory response against pathogens.

    PubMed

    Garai, Preeti; Gogoi, Mayuri; Gopal, Ganesh; Radhakrishnan, Yashwanth; Nandakumar, Krishnadas Subhadramma; Chakravortty, Dipshikha

    2014-10-01

    Immunomodulators are agents, which can modulate the immune response to specific antigens, while causing least toxicity to the host system. Being part of the modern vaccine formulations, these compounds have contributed remarkably to the field of therapeutics. Despite the successful record maintained by these agents, the requirement of novel immunomodulators keeps increasing due to the increasing severity of diseases. Hence, research regarding the same holds great importance. In this review, we discuss the role of immunomodulators in improving performance of various vaccines used for counteracting most threatening infectious diseases, mechanisms behind their action and criteria for development of novel immunomodulators. Understanding the molecular mechanisms underlying immune response is a prerequisite for development of effective therapeutics as these are often exploited by pathogens for their own propagation. Keeping this in mind, the present research in the field of immunotherapy focuses on developing immunomodulators that would not only enhance the protection against pathogen, but also generate a long-term memory response. With the introduction of advanced formulations including combination of different kinds of immunomodulators, one can expect tremendous success in near future.

  6. Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses.

    PubMed

    Zhao, Jincun; Zhao, Jingxian; Mangalam, Ashutosh K; Channappanavar, Rudragouda; Fett, Craig; Meyerholz, David K; Agnihothram, Sudhakar; Baric, Ralph S; David, Chella S; Perlman, Stanley

    2016-06-21

    Two zoonotic coronaviruses (CoVs)-SARS-CoV and MERS-CoV-have crossed species to cause severe human respiratory disease. Here, we showed that induction of airway memory CD4(+) T cells specific for a conserved epitope shared by SARS-CoV and MERS-CoV is a potential strategy for developing pan-coronavirus vaccines. Airway memory CD4(+) T cells differed phenotypically and functionally from lung-derived cells and were crucial for protection against both CoVs in mice. Protection was dependent on interferon-γ and required early induction of robust innate and virus-specific CD8(+) T cell responses. The conserved epitope was also recognized in SARS-CoV- and MERS-CoV-infected human leukocyte antigen DR2 and DR3 transgenic mice, indicating potential relevance in human populations. Additionally, this epitope was cross-protective between human and bat CoVs, the progenitors for many human CoVs. Vaccine strategies that induce airway memory CD4(+) T cells targeting conserved epitopes might have broad applicability in the context of new CoVs and other respiratory virus outbreaks. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Changes in T Cell and Dendritic Cell Phenotype from Mid to Late Pregnancy Are Indicative of a Shift from Immune Tolerance to Immune Activation

    PubMed Central

    Shah, Nishel Mohan; Herasimtschuk, Anna A.; Boasso, Adriano; Benlahrech, Adel; Fuchs, Dietmar; Imami, Nesrina; Johnson, Mark R.

    2017-01-01

    During pregnancy, the mother allows the immunologically distinct fetoplacental unit to develop and grow. Opinions are divided as to whether this represents a state of fetal-specific tolerance or of a generalized suppression of the maternal immune system. We hypothesized that antigen-specific T cell responses are modulated by an inhibitory T cell phenotype and modified dendritic cell (DC) phenotype in a gestation-dependent manner. We analyzed changes in surface markers of peripheral blood T cells, ex vivo antigen-specific T cell responses, indoleamine 2,3-dioxygenase (IDO) activity (kynurenine/tryptophan ratio, KTR), plasma neopterin concentration, and the in vitro expression of progesterone-induced blocking factor (PIBF) in response to peripheral blood mononuclear cell culture with progesterone. We found that mid gestation is characterized by reduced antigen-specific T cell responses associated with (1) predominance of effector memory over other T cell subsets; (2) upregulation of inhibitory markers (programmed death ligand 1); (3) heightened response to progesterone (PIBF); and (4) reduced proportions of myeloid DC and concurrent IDO activity (KTR). Conversely, antigen-specific T cell responses normalized in late pregnancy and were associated with increased markers of T cell activation (CD38, neopterin). However, these changes occur with a simultaneous upregulation of immune suppressive mechanisms including apoptosis (CD95), coinhibition (TIM-3), and immune regulation (IL-10) through the course of pregnancy. Together, our data suggest that immune tolerance dominates in the second trimester and that it is gradually reversed in the third trimester in association with immune activation as the end of pregnancy approaches. PMID:28966619

  8. Emergence of antigenic variants within serotype A FMDV in the Middle East with antigenically critical amino acid substitutions.

    PubMed

    Mahapatra, Mana; Statham, Bob; Li, Yanmin; Hammond, Jef; Paton, David; Parida, Satya

    2016-06-08

    A new immunologically distinct strain (A-Iran-05) of foot-and-mouth disease virus serotype A emerged in the Middle East in 2003 that replaced the previously circulating strains (A-Iran-96 and A-Iran-99) in the region. This resulted in introduction of a new vaccine of this strain (A/TUR/2006) in 2006. Though this vaccine strain has been predominantly used to control FMD in the region, recent viruses isolated in 2012 and 2013 have shown antigenic drift and a poor match with it. In this study, we report the antigenic matching results and capsid sequence data of currently circulating viruses belonging to the SIS-10 and SIS-12 sub-lineages of A-Iran-05 (isolated in 2012 and 2013), highlighting the inadequacy of the currently used serotype A vaccines. Implications of these results in the context of FMD control in the Middle East are discussed. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Cross–dressers turn on T cells

    PubMed Central

    YEWDELL, JONATHAN W.; DOLAN, BRIAN P.

    2012-01-01

    Memory T cells remember viruses from previous infections, providing immunity by facilitating the killing of infected cells. For this, they exploit cross-dressing, the transfer of antigens between antigen-presenting cells. PMID:21455165

  10. Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas

    PubMed Central

    Ochodo, Eleanor A; Gopalakrishna, Gowri; Spek, Bea; Reitsma, Johannes B; van Lieshout, Lisette; Polman, Katja; Lamberton, Poppy; Bossuyt, Patrick Mm; Leeflang, Mariska Mg

    2015-01-01

    Background Point-of-care (POC) tests for diagnosing schistosomiasis include tests based on circulating antigen detection and urine reagent strip tests. If they had sufficient diagnostic accuracy they could replace conventional microscopy as they provide a quicker answer and are easier to use. Objectives To summarise the diagnostic accuracy of: a) urine reagent strip tests in detecting active Schistosoma haematobium infection, with microscopy as the reference standard; and b) circulating antigen tests for detecting active Schistosoma infection in geographical regions endemic for Schistosoma mansoni or S. haematobium or both, with microscopy as the reference standard. Search methods We searched the electronic databases MEDLINE, EMBASE, BIOSIS, MEDION, and Health Technology Assessment (HTA) without language restriction up to 30 June 2014. Selection criteria We included studies that used microscopy as the reference standard: for S. haematobium, microscopy of urine prepared by filtration, centrifugation, or sedimentation methods; and for S. mansoni, microscopy of stool by Kato-Katz thick smear. We included studies on participants residing in endemic areas only. Data collection and analysis Two review authors independently extracted data, assessed quality of the data using QUADAS-2, and performed meta-analysis where appropriate. Using the variability of test thresholds, we used the hierarchical summary receiver operating characteristic (HSROC) model for all eligible tests (except the circulating cathodic antigen (CCA) POC for S. mansoni, where the bivariate random-effects model was more appropriate). We investigated heterogeneity, and carried out indirect comparisons where data were sufficient. Results for sensitivity and specificity are presented as percentages with 95% confidence intervals (CI). Main results We included 90 studies; 88 from field settings in Africa. The median S. haematobium infection prevalence was 41% (range 1% to 89%) and 36% for S. mansoni (range 8% to 95%). Study design and conduct were poorly reported against current standards. Tests for S. haematobium Urine reagent test strips versus microscopy Compared to microscopy, the detection of microhaematuria on test strips had the highest sensitivity and specificity (sensitivity 75%, 95% CI 71% to 79%; specificity 87%, 95% CI 84% to 90%; 74 studies, 102,447 participants). For proteinuria, sensitivity was 61% and specificity was 82% (82,113 participants); and for leukocyturia, sensitivity was 58% and specificity 61% (1532 participants). However, the difference in overall test accuracy between the urine reagent strips for microhaematuria and proteinuria was not found to be different when we compared separate populations (P = 0.25), or when direct comparisons within the same individuals were performed (paired studies; P = 0.21). When tests were evaluated against the higher quality reference standard (when multiple samples were analysed), sensitivity was marginally lower for microhaematuria (71% vs 75%) and for proteinuria (49% vs 61%). The specificity of these tests was comparable. Antigen assay Compared to microscopy, the CCA test showed considerable heterogeneity; meta-analytic sensitivity estimate was 39%, 95% CI 6% to 73%; specificity 78%, 95% CI 55% to 100% (four studies, 901 participants). Tests for S. mansoni Compared to microscopy, the CCA test meta-analytic estimates for detecting S. mansoni at a single threshold of trace positive were: sensitivity 89% (95% CI 86% to 92%); and specificity 55% (95% CI 46% to 65%; 15 studies, 6091 participants) Against a higher quality reference standard, the sensitivity results were comparable (89% vs 88%) but specificity was higher (66% vs 55%). For the CAA test, sensitivity ranged from 47% to 94%, and specificity from 8% to 100% (4 studies, 1583 participants). Authors' conclusions Among the evaluated tests for S. haematobium infection, microhaematuria correctly detected the largest proportions of infections and non-infections identified by microscopy. The CCA POC test for S. mansoni detects a very large proportion of infections identified by microscopy, but it misclassifies a large proportion of microscopy negatives as positives in endemic areas with a moderate to high prevalence of infection, possibly because the test is potentially more sensitive than microscopy. Plain Language Summary How well do point-of-care tests detect Schistosoma infections in people living inendemic areas? Schistosomiasis, also known as bilharzia, is a parasitic disease common in the tropical and subtropics. Point-of-care tests and urine reagent strip tests are quicker and easier to use than microscopy. We estimate how well these point-of-care tests are able to detect schistosomiasis infections compared with microscopy. We searched for studies published in any language up to 30 June 2014, and we considered the study’s risk of providing biased results. What do the results say? We included 90 studies involving almost 200,000 people, with 88 of these studies carried out in Africa in field settings. Study design and conduct were poorly reported against current expectations. Based on our statistical model, we found: • Among the urine strips for detecting urinary schistosomiasis, the strips for detecting blood were better than those detecting protein or white cells (sensitivity and specificity for blood 75% and 87%; for protein 61% and 82%; and for white cells 58% and 61%, respectively). • For urinary schistosomiasis, the parasite antigen test performance was worse (sensitivity, 39% and specificity, 78%) than urine strips for detecting blood. • For intestinal schistosomiasis, the parasite antigen urine test, detected many infections identified by microscopy but wrongly labelled many uninfected people as sick (sensitivity, 89% and specificity, 55%). What are the consequences of using these tests? If we take 1000 people, of which 410 have urinary schistosomiasis on microscopy testing, then using the strip detecting blood in the urine would misclassify 77 uninfected people as infected, and thus may receive unnecessary treatment; and it would wrongly classify 102 infected people as uninfected, who thus may not receive treatment. If we take 1000 people, of which 360 have intestinal schistosomiasis on microscopy testing, then the antigen test would misclassify 288 uninfected people as infected. These people may be given unnecessary treatment. This test also would wrongly classify 40 infected people as uninfected who thus may not receive treatment. Conclusion of review For urinary schistosomiasis, the urine strip for detecting blood leads to some infected people being missed and some non-infected people being diagnosed with the condition, but is better than the protein or white cell tests. The parasite antigen test is not accurate. For intestinal schistosomiasis, the parasite antigen urine test can wrongly classify many uninfected people as infected. PMID:25758180

  11. Developing recombinant HPA-1a-specific antibodies with abrogated Fcgamma receptor binding for the treatment of fetomaternal alloimmune thrombocytopenia.

    PubMed

    Ghevaert, Cedric; Wilcox, David A; Fang, Juan; Armour, Kathryn L; Clark, Mike R; Ouwehand, Willem H; Williamson, Lorna M

    2008-08-01

    Fetomaternal alloimmune thrombocytopenia (FMAIT) is caused by maternal generation of antibodies specific for paternal platelet antigens and can lead to fetal intracranial hemorrhage. A SNP in the gene encoding integrin beta3 causes a clinically important maternal-paternal antigenic difference; Leu33 generates the human platelet antigen 1a (HPA-1a), whereas Pro33 generates HPA-1b. As a potential treatment to prevent fetal intracranial hemorrhage in HPA-1a alloimmunized pregnancies, we generated an antibody that blocks the binding of maternal HPA-1a-specific antibodies to fetal HPA-1a1b platelets by combining a high-affinity human HPA-1a-specific scFv (B2) with an IgG1 constant region modified to minimize Fcgamma receptor-dependent platelet destruction (G1Deltanab). B2G1Deltanab saturated HPA-1a+ platelets and substantially inhibited binding of clinical HPA-1a-specific sera to HPA-1a+ platelets. The response of monocytes to B2G1Deltanab-sensitized platelets was substantially less than their response to unmodified B2G1, as measured by chemiluminescence. In addition, B2G1Deltanab inhibited chemiluminescence induced by B2G1 and HPA-1a-specific sera. In a chimeric mouse model, B2G1 and polyclonal Ig preparations from clinical HPA-1a-specific sera reduced circulating HPA-1a+ platelets, concomitant with transient thrombocytopenia. As the Deltanab constant region is uninformative in mice, F(ab')2 B2G1 was used as a proof of principle blocking antibody and prevented the in vivo platelet destruction seen with B2G1 and polyclonal HPA-1a-specific antibodies. These results provide rationale for human clinical studies.

  12. Evaluation of accessory cell heterogeneity. III. Role of dendritic cells in the in vitro activation of the antibody response to soluble antigens.

    PubMed

    Erb, P; Ramila, G; Sklenar, I; Kennedy, M; Sunshine, G H

    1985-05-01

    Dendritic cells and macrophages obtained from spleen and peritoneal exudate were tested as accessory cells for the activation of lymphokine production by T cells, for supporting T-B cooperation and for the induction of antigen-specific T helper cells. Dendritic cells as well as macrophages were able to activate T cells for interleukin-2 secretion and functioned as accessory cells in T-B cooperation, but only macrophages induced T helper cells, which cooperate with B cells by a linked recognition interaction, to soluble antigens. Dendritic cell- and antigen-activated T cells also did not help B cells in the presence of Con A supernatants which contained various T cell- and B cell-stimulatory factors. The failure of dendritic cells to differentiate memory into functional T helper cells, but their efficient accessory cell function in T-B cooperation, where functional T helper cells are already present, can be best explained by a differential accessory cell requirement for T helper cell activation dependent on the differentiation stage of the T helper cell.

  13. Multiplexed detection of serological cancer markers with plasmon-enhanced Raman spectro-immunoassay.

    PubMed

    Li, Ming; Kang, Jeon Woong; Sukumar, Saraswati; Dasari, Ramachandra Rao; Barman, Ishan

    2015-07-01

    Circulating biomarkers have emerged as promising non-invasive, real-time surrogates for cancer diagnosis, prognostication and monitoring of therapeutic response. Emerging data, however, suggest that single markers are inadequate in describing complex pathologic transformations. Architecting assays capable of parallel measurements of multiple biomarkers can help achieve the desired clinical sensitivity and specificity while conserving patient specimen and reducing turn-around time. Here we describe a plasmon-enhanced Raman spectroscopic assay featuring nanostructured biomolecular probes and spectroscopic imaging for multiplexed detection of disseminated breast cancer markers cancer antigen (CA) 15-3, CA 27-29 and cancer embryonic antigen (CEA). In the developed SERS assay, both the assay chip and surface-enhanced Raman spectroscopy (SERS) tags are functionalized with monoclonal antibodies against CA15-3, CA27-29 and CEA, respectively. Sequential addition of biomarkers and functionalized SERS tags onto the functionalized assay chip enable the specific recognition of these biomarkers through the antibody-antigen interactions, leading to a sandwich spectro-immunoassay. In addition to offering extensive multiplexing capability, our method provides higher sensitivity than conventional immunoassays and demonstrates exquisite specificity owing to selective formation of conjugated complexes and fingerprint spectra of the Raman reporter. We envision that clinical translation of this assay may further enable asymptomatic surveillance of cancer survivors and speedy assessment of treatment benefit through a simple blood test.

  14. Detection of Antigenic Variants of Subtype H3 Swine Influenza A Viruses from Clinical Samples

    PubMed Central

    Martin, Brigitte E.; Li, Lei; Nolting, Jacqueline M.; Smith, David R.; Hanson, Larry A.

    2017-01-01

    ABSTRACT A large population of genetically and antigenically diverse influenza A viruses (IAVs) are circulating among the swine population, playing an important role in influenza ecology. Swine IAVs not only cause outbreaks among swine but also can be transmitted to humans, causing sporadic infections and even pandemic outbreaks. Antigenic characterizations of swine IAVs are key to understanding the natural history of these viruses in swine and to selecting strains for effective vaccines. However, influenza outbreaks generally spread rapidly among swine, and the conventional methods for antigenic characterization require virus propagation, a time-consuming process that can significantly reduce the effectiveness of vaccination programs. We developed and validated a rapid, sensitive, and robust method, the polyclonal serum-based proximity ligation assay (polyPLA), to identify antigenic variants of subtype H3N2 swine IAVs. This method utilizes oligonucleotide-conjugated polyclonal antibodies and quantifies antibody-antigen binding affinities by quantitative reverse transcription-PCR (RT-PCR). Results showed the assay can rapidly detect H3N2 IAVs directly from nasal wash or nasal swab samples collected from laboratory-challenged animals or during influenza surveillance at county fairs. In addition, polyPLA can accurately separate the viruses at two contemporary swine IAV antigenic clusters (H3N2 swine IAV-α and H3N2 swine IAV-ß) with a sensitivity of 84.9% and a specificity of 100.0%. The polyPLA can be routinely used in surveillance programs to detect antigenic variants of influenza viruses and to select vaccine strains for use in controlling and preventing disease in swine. PMID:28077698

  15. Multi-scale modeling of the CD8 immune response

    NASA Astrophysics Data System (ADS)

    Barbarroux, Loic; Michel, Philippe; Adimy, Mostafa; Crauste, Fabien

    2016-06-01

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  16. Multi-scale modeling of the CD8 immune response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbarroux, Loic, E-mail: loic.barbarroux@doctorant.ec-lyon.fr; Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully; Michel, Philippe, E-mail: philippe.michel@ec-lyon.fr

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself inmore » case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.« less

  17. Equine infectious anemia virus-infected dendritic cells retain antigen presentation capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera, Julie A.; McGuire, Travis C.

    2005-05-10

    To determine if equine monocyte-derived dendritic cells (DC) were susceptible to equine infectious anemia virus (EIAV) infection, ex vivo-generated DC were infected with virus in vitro. EIAV antigen was detected by immunofluorescence 3 days post-infection with maximum antigen being detected on day 4, whereas there was no antigen detected in DC incubated with the same amount of heat-inactivated EIAV. No cytolytic activity was observed after EIAV{sub WSU5} infection of DC. These monocyte-derived DC were more effective than macrophages and B cells in stimulating allogenic T lymphocytes. Both infected macrophages and DC stimulated similar levels of memory CTL responses in mixturesmore » of CD8+ and CD4+ cells as detected with {sup 51}Cr-release assays indicating that EIAV infection of DC did not alter antigen presentation. However, EIAV-infected DC were more effective than infected macrophages when used to stimulate memory CTL in isolated CD8+ cells. The maintenance of antigen processing and presenting function by EIAV-infected DC in vitro suggests that this function is maintained during in vivo infection.« less

  18. Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory

    PubMed Central

    Kaji, Tomohiro; Ishige, Akiko; Hikida, Masaki; Taka, Junko; Hijikata, Atsushi; Kubo, Masato; Nagashima, Takeshi; Takahashi, Yoshimasa; Kurosaki, Tomohiro; Okada, Mariko; Ohara, Osamu

    2012-01-01

    One component of memory in the antibody system is long-lived memory B cells selected for the expression of somatically mutated, high-affinity antibodies in the T cell–dependent germinal center (GC) reaction. A puzzling observation has been that the memory B cell compartment also contains cells expressing unmutated, low-affinity antibodies. Using conditional Bcl6 ablation, we demonstrate that these cells are generated through proliferative expansion early after immunization in a T cell–dependent but GC-independent manner. They soon become resting and long-lived and display a novel distinct gene expression signature which distinguishes memory B cells from other classes of B cells. GC-independent memory B cells are later joined by somatically mutated GC descendants at roughly equal proportions and these two types of memory cells efficiently generate adoptive secondary antibody responses. Deletion of T follicular helper (Tfh) cells significantly reduces the generation of mutated, but not unmutated, memory cells early on in the response. Thus, B cell memory is generated along two fundamentally distinct cellular differentiation pathways. One pathway is dedicated to the generation of high-affinity somatic antibody mutants, whereas the other preserves germ line antibody specificities and may prepare the organism for rapid responses to antigenic variants of the invading pathogen. PMID:23027924

  19. Strategies to alleviate original antigenic sin responses to influenza viruses.

    PubMed

    Kim, Jin Hyang; Davis, William G; Sambhara, Suryaprakash; Jacob, Joshy

    2012-08-21

    Original antigenic sin is a phenomenon wherein sequential exposure to closely related influenza virus variants reduces antibody (Ab) response to novel antigenic determinants in the second strain and, consequently, impairs the development of immune memory. This could pose a risk to the development of immune memory in persons previously infected with or vaccinated against influenza. Here, we explored strategies to overcome original antigenic sin responses in mice sequentially exposed to two closely related hemagglutinin 1 neuraminidase 1 (H1N1) influenza strains A/PR/8/34 and A/FM/1/47. We found that dendritic cell-activating adjuvants [Bordetella pertussis toxin (PT) or CpG ODN or a squalene-based oil-in-water nanoemulsion (NE)], upon administration during the second viral exposure, completely protected mice from a lethal challenge and enhanced neutralizing-Ab titers against the second virus. Interestingly, PT and NE adjuvants when administered during the first immunization even prevented original antigenic sin in subsequent immunization without any adjuvants. As an alternative to using adjuvants, we also found that repeated immunization with the second viral strain relieved the effects of original antigenic sin. Taken together, our studies provide at least three ways of overcoming original antigenic sin.

  20. Identification of Pertussis-Specific Effector Memory T Cells in Preschool Children

    PubMed Central

    Schure, Rose-Minke; Öztürk, Kemal; Berbers, Guy; Sanders, Elisabeth; van Twillert, Inonge; Carollo, Maria; Mascart, Françoise; Ausiello, Clara M.; van Els, Cecile A. C. M.; Smits, Kaat; Buisman, Anne-Marie

    2015-01-01

    Whooping cough remains a problem despite vaccination, and worldwide resurgence of pertussis is evident. Since cellular immunity plays a role in long-term protection against pertussis, we studied pertussis-specific T-cell responses. Around the time of the preschool acellular pertussis (aP) booster dose at 4 years of age, T-cell memory responses were compared in children who were primed during infancy with either a whole-cell pertussis (wP) or an aP vaccine. Peripheral blood mononuclear cells (PBMCs) were isolated and stimulated with pertussis vaccine antigens for 5 days. T cells were characterized by flow-based analysis of carboxyfluorescein succinimidyl ester (CFSE) dilution and CD4, CD3, CD45RA, CCR7, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) expression. Before the aP preschool booster vaccination, both the proliferated pertussis toxin (PT)-specific CD4+ and CD8+ T-cell fractions (CFSEdim) were higher in aP- than in wP-primed children. Post-booster vaccination, more pertussis-specific CD4+ effector memory cells (CD45RA− CCR7−) were induced in aP-primed children than in those primed with wP. The booster vaccination did not appear to significantly affect the T-cell memory subsets and functionality in aP-primed or wP-primed children. Although the percentages of Th1 cytokine-producing cells were alike in aP- and wP-primed children pre-booster vaccination, aP-primed children produced more Th1 cytokines due to higher numbers of proliferated pertussis-specific effector memory cells. At present, infant vaccinations with four aP vaccines in the first year of life result in pertussis-specific CD4+ and CD8+ effector memory T-cell responses that persist in children until 4 years of age and are higher than those in wP-primed children. The booster at 4 years of age is therefore questionable; this may be postponed to 6 years of age. PMID:25787136

  1. The immunogenicity of phagocytosed T4 bacteriophage: cell replacement studies with splenectomized and irradiated mice

    PubMed Central

    Inchley, C. J.; Howard, J. G.

    1969-01-01

    The role of phagocytosed antigen in the production of antibody to bacteriophage T4 has been studied. The ability of mice to give an antibody response to this antigen was first impaired either by splenectomy or by X-irradiation, and then restored by injection of syngeneic lymphoid cells given at various times relative to the injection of T4. In splenectomized animals administration of lymphoid cells had only a marginal effect on the severely depressed response to T4. It was concluded that the presence of an intact spleen is essential to the development of the normal immune response, and that circulating immunocompetent cells are unable to respond to circulating antigen or to antigen sequestered within the liver. On the other hand, in irradiated mice, there was a faster and more complete restoration of the anti-T4 response, confirming the ability of antigen localized within the spleen to stimulate competent cells. It was also found that the immunogenicity of T4 within this organ was not lost at a rate which corresponded to its gross breakdown but persisted without decrease for at least 48 hr. A similar observation was made for sheep red blood cells when this antigen was used in conjunction with T4. PMID:5370054

  2. Deletion of the Vaccinia Virus Gene A46R, Encoding for an Inhibitor of TLR Signalling, Is an Effective Approach to Enhance the Immunogenicity in Mice of the HIV/AIDS Vaccine Candidate NYVAC-C

    PubMed Central

    Perdiguero, Beatriz; Gómez, Carmen Elena; Di Pilato, Mauro; Sorzano, Carlos Oscar S.; Delaloye, Julie; Roger, Thierry; Calandra, Thierry; Pantaleo, Giuseppe; Esteban, Mariano

    2013-01-01

    Viruses have developed strategies to counteract signalling through Toll-like receptors (TLRs) that are involved in the detection of viruses and induction of proinflammatory cytokines and IFNs. Vaccinia virus (VACV) encodes A46 protein which disrupts TLR signalling by interfering with TLR: adaptor interactions. Since the innate immune response to viruses is critical to induce protective immunity, we studied whether deletion of A46R gene in a NYVAC vector expressing HIV-1 Env, Gag, Pol and Nef antigens (NYVAC-C) improves immune responses against HIV-1 antigens. This question was examined in human macrophages and in mice infected with a single A46R deletion mutant of the vaccine candidate NYVAC-C (NYVAC-C-ΔA46R). The viral gene A46R is not required for virus replication in primary chicken embryo fibroblast (CEF) cells and its deletion in NYVAC-C markedly increases TNF, IL-6 and IL-8 secretion by human macrophages. Analysis of the immune responses elicited in BALB/c mice after DNA prime/NYVAC boost immunization shows that deletion of A46R improves the magnitude of the HIV-1-specific CD4 and CD8 T cell immune responses during adaptive and memory phases, maintains the functional profile observed with the parental NYVAC-C and enhances anti-gp120 humoral response during the memory phase. These findings establish the immunological role of VACV A46R on innate immune responses of macrophages in vitro and antigen-specific T and B cell immune responses in vivo and suggest that deletion of viral inhibitors of TLR signalling is a useful approach for the improvement of poxvirus-based vaccine candidates. PMID:24069354

  3. Amino Acids in Hemagglutinin Antigenic Site B Determine Antigenic and Receptor Binding Differences between A(H3N2)v and Ancestral Seasonal H3N2 Influenza Viruses

    PubMed Central

    Wang, Xiaoquan; Ilyushina, Natalia A.; Lugovtsev, Vladimir Y.; Bovin, Nicolai V.; Couzens, Laura K.; Gao, Jin

    2016-01-01

    ABSTRACT Influenza A H3N2 variant [A(H3N2)v] viruses, which have caused human infections in the United States in recent years, originated from human seasonal H3N2 viruses that were introduced into North American swine in the mid-1990s, but they are antigenically distinct from both the ancestral and current circulating H3N2 strains. A reference A(H3N2)v virus, A/Minnesota/11/2010 (MN/10), and a seasonal H3N2 strain, A/Beijing/32/1992 (BJ/92), were chosen to determine the molecular basis for the antigenic difference between A(H3N2)v and the ancestral viruses. Viruses containing wild-type and mutant MN/10 or BJ/92 hemagglutinins (HAs) were constructed and probed for reactivity with ferret antisera against MN/10 and BJ/92 in hemagglutination inhibition assays. Among the amino acids that differ between the MN/10 and BJ/92 HAs, those in antigenic site A had little impact on the antigenic phenotype. Within antigenic site B, mutations at residues 156, 158, 189, and 193 of MN/10 HA to those in BJ/92 switched the MN/10 antigenic phenotype to that of BJ/92. Mutations at residues 156, 157, 158, 189, and 193 of BJ/92 HA to amino acids present in MN/10 were necessary for BJ/92 to become antigenically similar to MN/10. The HA amino acid substitutions responsible for switching the antigenic phenotype also impacted HA binding to sialyl receptors that are usually present in the human respiratory tract. Our study demonstrates that antigenic site B residues play a critical role in determining both the unique antigenic phenotype and receptor specificity of A(H3N2)v viruses, a finding that may facilitate future surveillance and risk assessment of novel influenza viruses. IMPORTANCE Influenza A H3N2 variant [A(H3N2)v] viruses have caused hundreds of human infections in multiple states in the United States since 2009. Most cases have been children who had contact with swine in agricultural fairs. These viruses originated from human seasonal H3N2 viruses that were introduced into the U.S. swine population in the mid-1990s, but they are different from both these ancestral viruses and current circulating human seasonal H3N2 strains in terms of their antigenic characteristics as measured by hemagglutination inhibition (HI) assay. In this study, we identified amino acids in antigenic site B of the surface glycoprotein hemagglutinin (HA) that explain the antigenic difference between A(H3N2)v and the ancestral H3N2 strains. These amino acid mutations also alter binding to minor human-type glycans, suggesting that host adaptation may contribute to the selection of antigenically distinct H3N2 variants which pose a threat to public health. PMID:27807224

  4. Detection of Clonorchis sinensis circulating antigen in sera from Chinese patients by immunomagnetic bead ELISA based on IgY.

    PubMed

    Nie, Ge; Wang, Ting; Lu, Shengjun; Liu, Wenqi; Li, Yonglong; Lei, Jiahui

    2014-01-01

    Clonorchiasis, caused by Clonorchis sinensis, is widely distributed in Southeast Asia including China. Clonorchiasis is included in control programs of neglected tropical diseases by World Health Organization (WHO) because it is one of the major health problems in most endemic areas. Diagnosis of clonorchiasis plays a key role in the control programs. However, so far, there is no satisfactory method for clonorchiasis because of low sensitivity, poor practicality and high false positivity of available diagnostic tools. We developed an immunomagnetic bead enzyme-linked immunosorbent assay (ELISA) based on IgY (egg yolk immunoglobulin) against cysteine proteinase of C. sinensis for detection of circulating antigen in serum samples of patients infected with C. sinensis. The polyclonal IgY, coated with magnetic beads, was used as a capture antibody and a monoclonal IgG labeled with horseradish peroxidase as a detection antibody in the IgY-based immunomagnetic bead ELISA system (IgY-IMB-ELISA). The results showed that the sensitivity of IgY-IMB-ELISA was 93.3% (14 of 15) in cases of heavy infection (5000 to 9999 eggs per gram feces, i.e, EPG 5000-9999), 86.7% (13 of 15) in cases of moderate infection (EPG 1000-4999) and 75.0% (9 of 12) in cases of light infection (EPG <1000) of clonorchiasis. Together 36 of total 42 (85.7%) serum samples of human clonorchiasis gave a positive reaction. There was a significant correlation between ELISA optical density and egg counts (EPG) with a correlation coefficient of 0.83 in total 42 patients. There were no positive results in patients with trichinosis (n = 10) or cysticercosis (n = 10). Cross-reactivity was 6.7% (2 of 30) with schistosomiasis japonica and 10.0% (3 of 30) with paragonimiasis, respectively. No positive reaction was found in 20 healthy persons. Our findings suggest that IgY-IMB-ELISA appears to be a sensitive and specific assay for detection of circulating antigen in human clonorchiasis.

  5. Cytomegalovirus (CMV) Epitope-Specific CD4+ T Cells Are Inflated in HIV+ CMV+ Subjects.

    PubMed

    Abana, Chike O; Pilkinton, Mark A; Gaudieri, Silvana; Chopra, Abha; McDonnell, Wyatt J; Wanjalla, Celestine; Barnett, Louise; Gangula, Rama; Hager, Cindy; Jung, Dae K; Engelhardt, Brian G; Jagasia, Madan H; Klenerman, Paul; Phillips, Elizabeth J; Koelle, David M; Kalams, Spyros A; Mallal, Simon A

    2017-11-01

    Select CMV epitopes drive life-long CD8 + T cell memory inflation, but the extent of CD4 memory inflation is poorly studied. CD4 + T cells specific for human CMV (HCMV) are elevated in HIV + HCMV + subjects. To determine whether HCMV epitope-specific CD4 + T cell memory inflation occurs during HIV infection, we used HLA-DR7 (DRB1*07:01) tetramers loaded with the glycoprotein B DYSNTHSTRYV (DYS) epitope to characterize circulating CD4 + T cells in coinfected HLA-DR7 + long-term nonprogressor HIV subjects with undetectable HCMV plasma viremia. DYS-specific CD4 + T cells were inflated among these HIV + subjects compared with those from an HIV - HCMV + HLA-DR7 + cohort or with HLA-DR7-restricted CD4 + T cells from the HIV-coinfected cohort that were specific for epitopes of HCMV phosphoprotein-65, tetanus toxoid precursor, EBV nuclear Ag 2, or HIV gag protein. Inflated DYS-specific CD4 + T cells consisted of effector memory or effector memory-RA + subsets with restricted TCRβ usage and nearly monoclonal CDR3 containing novel conserved amino acids. Expression of this near-monoclonal TCR in a Jurkat cell-transfection system validated fine DYS specificity. Inflated cells were polyfunctional, not senescent, and displayed high ex vivo levels of granzyme B, CX 3 CR1, CD38, or HLA-DR but less often coexpressed CD38 + and HLA-DR + The inflation mechanism did not involve apoptosis suppression, increased proliferation, or HIV gag cross-reactivity. Instead, the findings suggest that intermittent or chronic expression of epitopes, such as DYS, drive inflation of activated CD4 + T cells that home to endothelial cells and have the potential to mediate cytotoxicity and vascular disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. Lack of Original Antigenic Sin in Recall CD8+ T Cell Responses

    PubMed Central

    Zehn, Dietmar; Turner, Michael J.; Lefrançois, Leo; Bevan, Michael J.

    2010-01-01

    In the real world, mice and men are not immunologically naive, having been exposed to numerous antigenic challenges. Prior infections sometimes negatively impact the response to a subsequent infection. This can occur in serial infections with pathogens sharing cross-reactive Ags. At the T cell level it has been proposed that preformed memory T cells, which cross-react with low avidity to epitopes presented in subsequent infections, dampen the response of high-avidity T cells. We investigated this with a series of related MHC class-I restricted Ags expressed by bacterial and viral pathogens. In all cases, we find that high-avidity CD8+ T cell precursors, either naive or memory, massively expand in secondary cross-reactive infections to dominate the response over low-avidity memory T cells. This holds true even when >10% of the CD8+ T cell compartment consists of memory T cells that cross-react weakly with the rechallenge ligand. Occasionally, memory cells generated by low-avidity stimulation in a primary infection recognize a cross-reactive epitope with high avidity and contribute positively to the response to a second infection. Taken together, our data show that the phenomenon of original antigenic sin does not occur in all heterologous infections. PMID:20439913

  7. Nuclear-specific AR-V7 Protein Localization is Necessary to Guide Treatment Selection in Metastatic Castration-resistant Prostate Cancer.

    PubMed

    Scher, Howard I; Graf, Ryon P; Schreiber, Nicole A; McLaughlin, Brigit; Lu, David; Louw, Jessica; Danila, Daniel C; Dugan, Lyndsey; Johnson, Ann; Heller, Glenn; Fleisher, Martin; Dittamore, Ryan

    2017-06-01

    Circulating tumor cells (CTCs) expressing AR-V7 protein localized to the nucleus (nuclear-specific) identify metastatic castration-resistant prostate cancer (mCRPC) patients with improved overall survival (OS) on taxane therapy relative to the androgen receptor signaling inhibitors (ARSi) abiraterone acetate, enzalutamide, and apalutamide. To evaluate if expanding the positivity criteria to include both nuclear and cytoplasmic AR-V7 localization ("nuclear-agnostic") identifies more patients who would benefit from a taxane over an ARSi. The study used a cross-sectional cohort. Between December 2012 and March 2015, 193 pretherapy blood samples, 191 of which were evaluable, were collected and processed from 161 unique mCRPC patients before starting a new line of systemic therapy for disease progression at the Memorial Sloan Kettering Cancer Center. The association between two AR-V7 scoring criteria, post-therapy prostate-specific antigen (PSA) change (PTPC) and OS following ARSi or taxane treatment, was explored. One criterion required nuclear-specific AR-V7 localization, and the other required an AR-V7 signal but was agnostic to protein localization in CTCs. Correlation of AR-V7 status to PTPC and OS was investigated. Relationships with survival were analyzed using multivariable Cox regression and log-rank analyses. A total of 34 (18%) samples were AR-V7-positive using nuclear-specific criteria, and 56 (29%) were AR-V7-positive using nuclear-agnostic criteria. Following ARSi treatment, none of the 16 nuclear-specific AR-V7-positive samples and six of the 32 (19%) nuclear-agnostic AR-V7-positive samples had ≥50% PTPC at 12 weeks. The strongest baseline factor influencing OS was the interaction between the presence of nuclear-specific AR-V7-positive CTCs and treatment with a taxane (hazard ratio 0.24, 95% confidence interval 0.078-0.79; p=0.019). This interaction was not significant when nuclear-agnostic criteria were used. To reliably inform treatment selection using an AR-V7 protein biomarker in CTCs, nuclear-specific localization is required. We analyzed outcomes for patients with metastatic castration-resistant prostate cancer on androgen receptor signaling inhibitors and standard chemotherapy. Patients with circulating tumor cells that had AR-V7 protein in the cellular nuclei were very likely to survive longer on taxane-based chemotherapy, and tests unable to distinguish where the protein is located in the cell are not as predictive of benefit. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  8. Molecular epidemiology and genetic diversity of Orientia tsutsugamushi from patients with scrub typhus in 3 regions of India.

    PubMed

    Varghese, George M; Janardhanan, Jeshina; Mahajan, Sanjay K; Tariang, David; Trowbridge, Paul; Prakash, John A J; David, Thambu; Sathendra, Sowmya; Abraham, O C

    2015-01-01

    Scrub typhus, an acute febrile illness that is widespread in the Asia-Pacific region, is caused by the bacterium Orientia tsutsugamushi, which displays high levels of antigenic variation. We conducted an investigation to identify the circulating genotypes of O. tsutsugamushi in 3 scrub typhus-endemic geographic regions of India: South India, Northern India, and Northeast India. Eschar samples collected during September 2010-August 2012 from patients with scrub typhus were subjected to 56-kDa type-specific PCR and sequencing to identify their genotypes. Kato-like strains predominated (61.5%), especially in the South and Northeast, followed by Karp-like strains (27.7%) and Gilliam and Ikeda strains (2.3% each). Neimeng-65 genotype strains were also observed in the Northeast. Clarifying the genotypic diversity of O. tsutsugamushi in India enhances knowledge of the regional diversity among circulating strains and provides potential resources for future region-specific diagnostic studies and vaccine development.

  9. Long-term antibody memory induced by synthetic peptide vaccination is protective against Streptococcus pyogenes infection and is independent of memory T-cell help

    PubMed Central

    Pandey, Manisha; Wykes, Michelle N; Hartas, Jon; Good, Michael F; Batzloff, Michael R

    2013-01-01

    Streptococcus pyogenes (group A streptococcus; GAS) is a leading human pathogen associated with a diverse array of mucosal and systemic infections. Vaccination with J8, a conserved region synthetic peptide derived from the M-protein of GAS and containing only 12 amino acids from GAS, when conjugated to DT, has been shown to protect mice against a lethal GAS challenge. Protection has been previously shown to be antibody-mediated. J8 does not contain a dominant GAS-specific T-cell epitope. The current study examined long-term antibody memory and dissected the role of B and T-cells. Our results demonstrated that vaccination generates specific memory B-cells and long-lasting antibody responses. The memory B-cell response can be activated following boost with antigen or limiting numbers of whole bacteria. We further show that these memory responses protect against systemic infection with GAS. T-cell help is required for activation of memory B-cells but can be provided by naïve T-cells responding directly to GAS at the time of infection. Thus, individuals whose T-cells do not recognize the short synthetic peptide in the vaccine will be able to generate a protective and rapid memory antibody response at the time of infection. These studies significantly strengthen previous findings, which showed that protection by the J8-DT vaccine is antibody-mediated and suggest that in vaccine design for other organisms the source of T-cell help for antibody responses need not be limited to sequences from the organism itself. PMID:23401589

  10. The generation of CD8+ T-cell population specific for vaccinia virus epitope involved in the antiviral protection against ectromelia virus challenge.

    PubMed

    Gierynska, Malgorzata; Szulc-Dabrowska, Lidia; Dzieciatkowski, Tomasz; Golke, Anna; Schollenberger, Ada

    2015-12-01

    Eradication of smallpox has led to cessation of vaccination programs. This has rendered the human population increasingly susceptible not only to variola virus infection but also to infections with other representatives of Poxviridae family that cause zoonotic variola-like diseases. Thus, new approaches for designing improved vaccine against smallpox are required. Discovering that orthopoxviruses, e.g. variola virus, vaccinia virus, ectromelia virus, share common immunodominant antigen, may result in the development of such a vaccine. In our study, the generation of antigen-specific CD8(+) T cells in mice during the acute and memory phase of the immune response was induced using the vaccinia virus immunodominant TSYKFESV epitope and CpG oligodeoxynucleotides as adjuvants. The role of the generated TSYKFESV-specific CD8(+) T cells was evaluated in mice during ectromelia virus infection using systemic and mucosal model. Moreover, the involvement of dendritic cells subsets in the adaptive immune response stimulation was assessed. Our results indicate that the TSYKFESV epitope/TLR9 agonist approach, delivered systemically or mucosally, generated strong CD8(+) T-cell response when measured 10 days after immunization. Furthermore, the TSYKFESV-specific cell population remained functionally active 2 months post-immunization, and gave cross-protection in virally challenged mice, even though the numbers of detectable antigen-specific T cells decreased. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. A tuberculosis vaccine based on phosphoantigens and fusion proteins induces distinct gammadelta and alphabeta T cell responses in primates.

    PubMed

    Cendron, Delphine; Ingoure, Sophie; Martino, Angelo; Casetti, Rita; Horand, Françoise; Romagné, François; Sicard, Hélène; Fournié, Jean-Jacques; Poccia, Fabrizio

    2007-02-01

    Phosphoantigens are mycobacterial non-peptide antigens that might enhance the immunogenicity of current subunit candidate vaccines for tuberculosis. However, their testing requires monkeys, the only animal models suitable for gammadelta T cell responses to mycobacteria. Thus here, the immunogenicity of 6-kDa early secretory antigenic target-mycolyl transferase complex antigen 85B (ESAT-6-Ag85B) (H-1 hybrid) fusion protein associated or not to a synthetic phosphoantigen was compared by a prime-boost regimen of two groups of eight cynomolgus. Although phosphoantigen activated immediately a strong release of systemic Th1 cytokines (IL-2, IL-6, IFN-gamma, TNF-alpha), it further anergized blood gammadelta T lymphocytes selectively. By contrast, the hybrid H-1 induced only memory alphabeta T cell responses, regardless of phosphoantigen. These latter essentially comprised cytotoxic T lymphocytes specific for Ag85B (on average + 430 cells/million PBMC) and few IFN-gamma-secreting cells (+ 40 cells/million PBMC, equally specific for ESAT-6 and for Ag85B). Hence, in macaques, a prime-boost with the H-1/phosphoantigen subunit combination induces two waves of immune responses, successively by gammadelta T and alphabeta T lymphocytes.

  12. Cancer immunotherapy and immunological memory.

    PubMed

    Murata, Kenji; Tsukahara, Tomohide; Torigoe, Toshihiko

    2016-01-01

    Human immunological memory is the key distinguishing hallmark of the adaptive immune system and plays an important role in the prevention of morbidity and the severity of infection. The differentiation system of T cell memory has been clarified using mouse models. However, the human T cell memory system has great diversity induced by natural antigens derived from many pathogens and tumor cells throughout life, and profoundly differs from the mouse memory system constructed using artificial antigens and transgenic T cells. We believe that only human studies can elucidate the human immune system. The importance of immunological memory in cancer immunotherapy has been pointed out, and the trafficking properties and long-lasting anti-tumor capacity of memory T cells play a crucial role in the control of malignant tumors. Adoptive cell transfer of less differentiated T cells has consistently demonstrated superior anti-tumor capacity relative to more differentiated T cells. Therefore, a human T cell population with the characteristics of stem cell memory is thought to be attractive for peptide vaccination and adoptive cell transfer. A novel human memory T cell population that we have identified is closer to the naive state than previous memory T cells in the T cell differentiation lineage, and has the characteristics of stem-like chemoresistance. Here we introduce this novel population and describe the fundamentals of immunological memory in cancer immunotherapy.

  13. Original antigenic sin: A comprehensive review.

    PubMed

    Vatti, Anup; Monsalve, Diana M; Pacheco, Yovana; Chang, Christopher; Anaya, Juan-Manuel; Gershwin, M Eric

    2017-09-01

    The concept of "original antigenic sin" was first proposed by Thomas Francis, Jr. in 1960. This phenomenon has the potential to rewrite what we understand about how the immune system responds to infections and its mechanistic implications on how vaccines should be designed. Antigenic sin has been demonstrated to occur in several infectious diseases in both animals and humans, including human influenza infection and dengue fever. The basis of "original antigenic sin" requires immunological memory, and our immune system ability to autocorrect. In the context of viral infections, it is expected that if we are exposed to a native strain of a pathogen, we should be able to mount a secondary immune response on subsequent exposure to the same pathogen. "Original antigenic sin" will not contradict this well-established immunological process, as long as the subsequent infectious antigen is identical to the original one. But "original antigenic sin" implies that when the epitope varies slightly, then the immune system relies on memory of the earlier infection, rather than mount another primary or secondary response to the new epitope which would allow faster and stronger responses. The result is that the immunological response may be inadequate against the new strain, because the immune system does not adapt and instead relies on its memory to mount a response. In the case of vaccines, if we only immunize to a single strain or epitope, and if that strain/epitope changes over time, then the immune system is unable to mount an accurate secondary response. In addition, depending of the first viral exposure the secondary immune response can result in an antibody-dependent enhancement of the disease or at the opposite, it could induce anergy. Both of them triggering loss of pathogen control and inducing aberrant clinical consequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Human Stem Cell-like Memory T Cells Are Maintained in a State of Dynamic Flux.

    PubMed

    Ahmed, Raya; Roger, Laureline; Costa Del Amo, Pedro; Miners, Kelly L; Jones, Rhiannon E; Boelen, Lies; Fali, Tinhinane; Elemans, Marjet; Zhang, Yan; Appay, Victor; Baird, Duncan M; Asquith, Becca; Price, David A; Macallan, Derek C; Ladell, Kristin

    2016-12-13

    Adaptive immunity requires the generation of memory T cells from naive precursors selected in the thymus. The key intermediaries in this process are stem cell-like memory T (T SCM ) cells, multipotent progenitors that can both self-renew and replenish more differentiated subsets of memory T cells. In theory, antigen specificity within the T SCM pool may be imprinted statically as a function of largely dormant cells and/or retained dynamically by more transitory subpopulations. To explore the origins of immunological memory, we measured the turnover of T SCM cells in vivo using stable isotope labeling with heavy water. The data indicate that T SCM cells in both young and elderly subjects are maintained by ongoing proliferation. In line with this finding, T SCM cells displayed limited telomere length erosion coupled with high expression levels of active telomerase and Ki67. Collectively, these observations show that T SCM cells exist in a state of perpetual flux throughout the human lifespan. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Enhanced Requirement for TNFR2 in Graft Rejection Mediated by Low Affinity Memory CD8+ T Cells During Heterologous Immunity

    PubMed Central

    Krummey, Scott M.; Chen, Ching-Wen; Guasch, Sara A.; Liu, Danya; Wagener, Maylene; Larsen, Christian P; Ford, Mandy L.

    2016-01-01

    The affinity of a T cell receptor (TCR) binding to peptide:MHC profoundly impacts the phenotype and function of effector and memory cell differentiation. Little is known about the effect of low affinity priming on memory cell generation and function, which is particularly important in heterologous immunity, when microbe-specific T cells cross-react with allogeneic antigen and mediate graft rejection. We found that low affinity primed memory CD8+ T cells produced high levels of TNF ex vivo in response to heterologous rechallenge compared to high affinity primed memory T cells. Low affinity secondary effectors significantly upregulated TNFR2 on the cell surface and contained a higher frequency of TNFR2hi proliferating cells. Low affinity primed secondary effectors concurrently downregulated TNF production. Importantly, blockade of TNFR2 attenuated graft rejection in low but not high affinity primed animals. These data establish a functional connection between TNF signaling and TCR priming affinity and have implications for the immunomodulation of pathogenic T cell responses during transplantation. PMID:27481849

  16. Innate Immunity to Respiratory Infection in Early Life

    PubMed Central

    Lambert, Laura; Culley, Fiona J.

    2017-01-01

    Early life is a period of particular susceptibility to respiratory infections and symptoms are frequently more severe in infants than in adults. The neonatal immune system is generally held to be deficient in most compartments; responses to innate stimuli are weak, antigen-presenting cells have poor immunostimulatory activity and adaptive lymphocyte responses are limited, leading to poor immune memory and ineffective vaccine responses. For mucosal surfaces such as the lung, which is continuously exposed to airborne antigen and to potential pathogenic invasion, the ability to discriminate between harmless and potentially dangerous antigens is essential, to prevent inflammation that could lead to loss of gaseous exchange and damage to the developing lung tissue. We have only recently begun to define the differences in respiratory immunity in early life and its environmental and developmental influences. The innate immune system may be of relatively greater importance than the adaptive immune system in the neonatal and infant period than later in life, as it does not require specific antigenic experience. A better understanding of what constitutes protective innate immunity in the respiratory tract in this age group and the factors that influence its development should allow us to predict why certain infants are vulnerable to severe respiratory infections, design treatments to accelerate the development of protective immunity, and design age specific adjuvants to better boost immunity to infection in the lung. PMID:29184555

  17. Two-way shape memory behavior of semi-crystalline elastomer under stress-free condition

    NASA Astrophysics Data System (ADS)

    Qian, Chen; Dong, Yubing; Zhu, Yaofeng; Fu, Yaqin

    2016-08-01

    Semi-crystalline shape memory polymers exhibit two-way shape memory effect (2W-SME) under constant stresses through crystallization-induced elongation upon cooling and melting-induced constriction upon heating. The applied constant stress influenced the prediction and usability of 2W-SME in practical applications without any external force. Here the reversible shape transition in EVA-shaped memory polymer was quantitative analyzed under a suitable temperature range and external stress-free condition. The fraction of reversible strain increased with increasing upper temperature (T high) within the temperature range and reached the maximum value of 13.62% at 70 °C. However, reversible strain transition was almost lost when T high exceeded 80 °C because of complete melting of crystalline scaffold, known as the latent recrystallization template. The non-isothermal annealing of EVA 2W-SMP under changing circulating temperatures was confirmed. Moreover, the orientation of crystallization was retained at high temperatures. These findings may contribute to design an appropriate shape memory protocol based on application-specific requirements.

  18. Phenotypic and functional characterization of circulating polyomavirus BK VP1-specific CD8+ T cells in healthy adults.

    PubMed

    van Aalderen, Michiel C; Remmerswaal, Ester B M; Heutinck, Kirstin M; ten Brinke, Anja; Pircher, Hanspeter; van Lier, René A W; ten Berge, Ineke J M

    2013-09-01

    The human polyomavirus BK virus (BKV) establishes a latent and asymptomatic infection in the majority of the population. In immunocompromised individuals, the virus frequently (re)activates and may cause severe disease such as interstitial nephritis and hemorrhagic cystitis. Currently, the therapeutic options are limited to reconstitution of the antiviral immune response. T cells are particularly important for controlling this virus, and T cell therapies may provide a highly specific and effective mode of treatment. However, little is known about the phenotype and function of BKV-specific T cells in healthy individuals. Using tetrameric BKV peptide-HLA-A02 complexes, we determined the presence, phenotype, and functional characteristics of circulating BKV VP1-specific CD8(+) T cells in 5 healthy individuals. We show that these cells are present in low frequencies in the circulation and that they have a resting CD45RA(-) CD27(+) memory and predominantly CCR7(-) CD127(+) KLRG1(+) CD49d(hi) CXCR3(hi) T-bet(int) Eomesodermin(lo) phenotype. Furthermore, their direct cytotoxic capacity seems to be limited, since they do not readily express granzyme B and express only little granzyme K. We compared these cells to circulating CD8(+) T cells specific for cytomegalovirus (CMV), Epstein-Barr virus (EBV), and influenza virus (Flu) in the same donors and show that BKV-specific T cells have a phenotype that is distinct from that of CMV- and EBV-specific T cells. Lastly, we show that BKV-specific T cells are polyfunctional since they are able to rapidly express interleukin-2 (IL-2), gamma interferon (IFN-γ), tumor necrosis factor α, and also, to a much lower extent, MIP-1β and CD107a.

  19. Phenotypic and Functional Characterization of Circulating Polyomavirus BK VP1-Specific CD8+ T Cells in Healthy Adults

    PubMed Central

    Remmerswaal, Ester B. M.; Heutinck, Kirstin M.; ten Brinke, Anja; Pircher, Hanspeter; van Lier, René A. W.; ten Berge, Ineke J. M.

    2013-01-01

    The human polyomavirus BK virus (BKV) establishes a latent and asymptomatic infection in the majority of the population. In immunocompromised individuals, the virus frequently (re)activates and may cause severe disease such as interstitial nephritis and hemorrhagic cystitis. Currently, the therapeutic options are limited to reconstitution of the antiviral immune response. T cells are particularly important for controlling this virus, and T cell therapies may provide a highly specific and effective mode of treatment. However, little is known about the phenotype and function of BKV-specific T cells in healthy individuals. Using tetrameric BKV peptide-HLA-A02 complexes, we determined the presence, phenotype, and functional characteristics of circulating BKV VP1-specific CD8+ T cells in 5 healthy individuals. We show that these cells are present in low frequencies in the circulation and that they have a resting CD45RA− CD27+ memory and predominantly CCR7− CD127+ KLRG1+ CD49dhi CXCR3hi T-betint Eomesoderminlo phenotype. Furthermore, their direct cytotoxic capacity seems to be limited, since they do not readily express granzyme B and express only little granzyme K. We compared these cells to circulating CD8+ T cells specific for cytomegalovirus (CMV), Epstein-Barr virus (EBV), and influenza virus (Flu) in the same donors and show that BKV-specific T cells have a phenotype that is distinct from that of CMV- and EBV-specific T cells. Lastly, we show that BKV-specific T cells are polyfunctional since they are able to rapidly express interleukin-2 (IL-2), gamma interferon (IFN-γ), tumor necrosis factor α, and also, to a much lower extent, MIP-1β and CD107a. PMID:23864628

  20. Immunodiagnosis of Paracoccidioidomycosis due to Paracoccidioides brasiliensis Using a Latex Test: Detection of Specific Antibody Anti-gp43 and Specific Antigen gp43

    PubMed Central

    dos Santos, Priscila Oliveira; Rodrigues, Anderson Messias; Fernandes, Geisa Ferreira; da Silva, Silvia Helena Marques; Burger, Eva; de Camargo, Zoilo Pires

    2015-01-01

    Background Paracoccidioidomycosis (PCM) is a life-threatening systemic disease and is a neglected public health problem in many endemic regions of Latin America. Though several diagnostic methods are available, almost all of them present with some limitations. Method/Principle Findings A latex immunoassay using sensitized latex particles (SLPs) with gp43 antigen, the immunodominant antigen of Paracoccidioides brasiliensis, or the monoclonal antibody mAb17c (anti-gp43) was evaluated for antibody or antigen detection in sera, cerebrospinal fluid (CSF), and bronchoalveolar lavage (BAL) from patients with PCM due to P. brasiliensis. The gp43-SLPs performed optimally to detect specific antibodies with high levels of sensitivity (98.46%, 95% CI 91.7–100.0), specificity (93.94%, 95% CI 87.3–97.7), and positive (91.4%) and negative (98.9%) predictive values. In addition, we propose the use of mAb17c-SLPs to detect circulating gp43, which would be particularly important in patients with immune deficiencies who fail to produce normal levels of immunoglobulins, achieving good levels of sensitivity (96.92%, 95% CI 89.3–99.6), specificity (88.89%, 95% CI 81.0–94.3), and positive (85.1%) and negative (97.8%) predictive values. Very good agreement between latex tests and double immune diffusion was observed for gp43-SLPs (k = 0.924) and mAb17c-SLPs (k = 0.850), which reinforces the usefulness of our tests for the rapid diagnosis of PCM in less than 10 minutes. Minor cross-reactivity occurred with sera from patients with other fungal infections. We successfully detected antigens and antibodies from CSF and BAL samples. In addition, the latex test was useful for monitoring PCM patients receiving therapy. Conclusions/Significance The high diagnostic accuracy, low cost, reduced assay time, and simplicity of this new latex test offer the potential to be commercialized and makes it an attractive diagnostic assay for use not only in clinics and medical mycology laboratories, but mainly in remote locations with limited laboratory infrastructure and/or minimally trained community health workers. PMID:25679976

  1. T-Cell Therapy Using Interleukin-21–Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression

    PubMed Central

    Chapuis, Aude G.; Roberts, Ilana M.; Thompson, John A.; Margolin, Kim A.; Bhatia, Shailender; Lee, Sylvia M.; Sloan, Heather L.; Lai, Ivy P.; Farrar, Erik A.; Wagener, Felecia; Shibuya, Kendall C.; Cao, Jianhong; Wolchok, Jedd D.; Greenberg, Philip D.

    2016-01-01

    Purpose Peripheral blood–derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti–CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8+ T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses, highlighting the promise of this strategy. PMID:27269940

  2. T-Cell Therapy Using Interleukin-21-Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression.

    PubMed

    Chapuis, Aude G; Roberts, Ilana M; Thompson, John A; Margolin, Kim A; Bhatia, Shailender; Lee, Sylvia M; Sloan, Heather L; Lai, Ivy P; Farrar, Erik A; Wagener, Felecia; Shibuya, Kendall C; Cao, Jianhong; Wolchok, Jedd D; Greenberg, Philip D; Yee, Cassian

    2016-11-01

    Purpose Peripheral blood-derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti-CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8 + T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses, highlighting the promise of this strategy.

  3. Helminth Infections Coincident with Active Pulmonary Tuberculosis Inhibit Mono- and Multifunctional CD4+ and CD8+ T Cell Responses in a Process Dependent on IL-10

    PubMed Central

    George, Parakkal Jovvian; Anuradha, Rajamanickam; Kumar, Nathella Pavan; Sridhar, Rathinam; Banurekha, Vaithilingam V.; Nutman, Thomas B.; Babu, Subash

    2014-01-01

    Tissue invasive helminth infections and tuberculosis (TB) are co-endemic in many parts of the world and can trigger immune responses that might antagonize each other. We have previously shown that helminth infections modulate the Th1 and Th17 responses to mycobacterial-antigens in latent TB. To determine whether helminth infections modulate antigen-specific and non-specific immune responses in active pulmonary TB, we examined CD4+ and CD8+ T cell responses as well as the systemic (plasma) cytokine levels in individuals with pulmonary TB with or without two distinct helminth infections—Wuchereria bancrofti and Strongyloides stercoralis infection. By analyzing the frequencies of Th1 and Th17 CD4+ and CD8+ T cells and their component subsets (including multifunctional cells), we report a significant diminution in the mycobacterial–specific frequencies of mono- and multi–functional CD4+ Th1 and (to a lesser extent) Th17 cells when concomitant filarial or Strongyloides infection occurs. The impairment in CD4+ and CD8+ T cell cytokine responses was antigen-specific as polyclonal activated T cell frequencies were equivalent irrespective of helminth infection status. This diminution in T cell responses was also reflected in diminished circulating levels of Th1 (IFN-γ, TNF-α and IL-2)- and Th17 (IL-17A and IL-17F)-associated cytokines. Finally, we demonstrate that for the filarial co-infections at least, this diminished frequency of multifunctional CD4+ T cell responses was partially dependent on IL-10 as IL-10 blockade significantly increased the frequencies of CD4+ Th1 cells. Thus, co-existent helminth infection is associated with an IL-10 mediated (for filarial infection) profound inhibition of antigen-specific CD4+ T cell responses as well as protective systemic cytokine responses in active pulmonary TB. PMID:25211342

  4. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells.

    PubMed

    Drobek, Ales; Moudra, Alena; Mueller, Daniel; Huranova, Martina; Horkova, Veronika; Pribikova, Michaela; Ivanek, Robert; Oberle, Susanne; Zehn, Dietmar; McCoy, Kathy D; Draber, Peter; Stepanek, Ondrej

    2018-05-11

    Virtual memory T cells are foreign antigen-inexperienced T cells that have acquired memory-like phenotype and constitute 10-20% of all peripheral CD8 + T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen-experienced memory T cells are incompletely understood. By analyzing T-cell receptor repertoires and using retrogenic monoclonal T-cell populations, we demonstrate that the virtual memory T-cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self-reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T-cell compartment via modulating the self-reactivity of individual T cells. Although virtual memory T cells descend from the highly self-reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self-reactivity in polyclonal T cells for the generation of functional T-cell diversity. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  5. T-Cell Surface Antigens and sCD30 as Biomarkers of the Risk of Rejection in Solid Organ Transplantation.

    PubMed

    Wieland, Eberhard; Shipkova, Maria

    2016-04-01

    T-cell activation is a characteristic of organ rejection. T cells, located in the draining lymph nodes of the transplant recipient, are faced with non-self-molecules presented by antigen presenting cells and become activated. Activated T cells are characterized by up-regulated surface antigens, such as costimulatory molecules, adhesion molecules, chemokine receptors, and major histocompatibility complex class II molecules. Surface antigen expression can be followed by flow cytometry using monoclonal antibodies in either cell function assays using donor-specific or nonspecific stimulation of isolated cells or whole blood and without stimulation on circulating lymphocytes. Molecules such as CD30 can be proteolytically cleaved off the surface of activated cells in vivo, and the determination of the soluble protein (sCD30) in serum or plasma is performed by immunoassays. As promising biomarkers for rejection and long-term transplant outcome, CD28 (costimulatory receptor for CD80 and CD86), CD154 (CD40 ligand), and sCD30 (tumor necrosis factor receptor superfamily, member 8) have been identified. Whereas cell function assays are time-consuming laboratory-developed tests which are difficult to standardize, commercial assays are frequently available for soluble proteins. Therefore, more data from clinical trials have been published for sCD30 compared with the surface antigens on activated T cells. This short review summarizes the association between selected surface antigens and immunosuppression, and rejection in solid organ transplantation.

  6. Chemical Basis for Qualitative and Quantitative Differences Between ABO Blood Groups and Subgroups: Implications for Organ Transplantation.

    PubMed

    Jeyakanthan, M; Tao, K; Zou, L; Meloncelli, P J; Lowary, T L; Suzuki, K; Boland, D; Larsen, I; Burch, M; Shaw, N; Beddows, K; Addonizio, L; Zuckerman, W; Afzali, B; Kim, D H; Mengel, M; Shapiro, A M J; West, L J

    2015-10-01

    Blood group ABH(O) carbohydrate antigens are carried by precursor structures denoted type I-IV chains, creating unique antigen epitopes that may differ in expression between circulating erythrocytes and vascular endothelial cells. Characterization of such differences is invaluable in many clinical settings including transplantation. Monoclonal antibodies were generated and epitope specificities were characterized against chemically synthesized type I-IV ABH and related glycans. Antigen expression was detected on endomyocardial biopsies (n = 50) and spleen (n = 11) by immunohistochemical staining and on erythrocytes by flow cytometry. On vascular endothelial cells of heart and spleen, only type II-based ABH antigens were expressed; type III/IV structures were not detected. Type II-based ABH were expressed on erythrocytes of all blood groups. Group A1 and A2 erythrocytes additionally expressed type III/IV precursors, whereas group B and O erythrocytes did not. Intensity of A/B antigen expression differed among group A1 , A2 , A1 B, A2 B and B erythrocytes. On group A2 erythrocytes, type III H structures were largely un-glycosylated with the terminal "A" sugar α-GalNAc. Together, these studies define qualitative and quantitative differences in ABH antigen expression between erythrocytes and vascular tissues. These expression profiles have important implications that must be considered in clinical settings of ABO-incompatible transplantation when interpreting anti-ABO antibodies measured by hemagglutination assays with reagent erythrocytes. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  7. Early programming and late-acting checkpoints governing the development of CD4 T cell memory.

    PubMed

    Dhume, Kunal; McKinstry, K Kai

    2018-04-27

    CD4 T cells contribute to protection against pathogens through numerous mechanisms. Incorporating the goal of memory CD4 T cell generation into vaccine strategies thus offers a powerful approach to improve their efficacy, especially in situations where humoral responses alone cannot confer long-term immunity. These threats include viruses such as influenza that mutate coat proteins to avoid neutralizing antibodies, but that are targeted by T cells that recognize more conserved protein epitopes shared by different strains. A major barrier in the design of such vaccines is that the mechanisms controlling the efficiency with which memory cells form remain incompletely understood. Here, we discuss recent insights into fate decisions controlling memory generation. We focus on the importance of three general cues: interleukin-2, antigen, and costimulatory interactions. It is increasingly clear that these signals have a powerful influence on the capacity of CD4 T cells to form memory during two distinct phases of the immune response. First, through 'programming' that occurs during initial priming, and second, through 'checkpoints' that operate later during the effector stage. These findings indicate that novel vaccine strategies must seek to optimize cognate interactions, during which interleukin-2-, antigen, and costimulation-dependent signals are tightly linked, well beyond initial antigen encounter to induce robust memory CD4 T cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. CD4+ CD25high Foxp3+ regulatory T cells downregulate human Vδ2+ T-lymphocyte function triggered by anti-CD3 or phosphoantigen

    PubMed Central

    Mahan, C Scott; Thomas, Jeremy J; Boom, W Henry; Rojas, Roxana E

    2009-01-01

    Vδ2+ T cells, the major circulating T-cell receptor-γδ-positive (TCR-γδ+) T-cell subset in healthy adults, are involved in immunity against many microbial pathogens including Mycobacterium tuberculosis. Vδ2+ T cells recognize small phosphorylated metabolites (phosphoantigens), expand in response to whole M. tuberculosis bacilli, and complement the protective functions of CD4+ T cells. CD4+ CD25high Foxp3+ T cells (Tregs) comprise 5–10% of circulating T cells and are increased in patients with active tuberculosis (TB). We investigated whether, in addition to their known role in suppressing TCR-αβ+ lymphocytes, Tregs suppress Vδ2+ T-cell function. We found that depletion of Tregs from peripheral blood mononuclear cells increased Vδ2+ T-cell expansion in response to M. tuberculosis (H37Ra) in tuberculin-skin-test-positive donors. We developed a suppression assay with fluorescence-activated cell sorting-purified Tregs and Vδ2+ T cells by coincubating the two cell types at a 1 : 1 ratio. The Tregs partially suppressed interferon-γ secretion by Vδ2+ T cells in response to anti-CD3 monoclonal antibody plus interleukin-2 (IL-2). In addition, Tregs downregulated the Vδ2+ T-cell interferon-γ responses induced by phosphoantigen (BrHPP) and IL-2. Under the latter conditions there was no TCR stimulus for Tregs and therefore IL-2 probably triggered suppressor activity. Addition of purified protein derivative (PPD) increased the suppression of Vδ2+ T cells, suggesting that PPD activated antigen-specific Tregs. Our study provides evidence that Tregs suppress both anti-CD3 and antigen-driven Vδ2+ T-cell activation. Antigen-specific Tregs may therefore contribute to the Vδ2+ T-cell functional deficiencies observed in TB. PMID:19019089

  9. Schistosomiasis is more prevalent than previously thought: what does it mean for public health goals, policies, strategies, guidelines and intervention programs?

    PubMed

    Colley, Daniel G; Andros, Tamara S; Campbell, Carl H

    2017-03-22

    Mapping and diagnosis of infections by the three major schistosome species (Schistosoma haematobium, S. mansoni and S. japonicum) has been done with assays that are known to be specific but increasingly insensitive as prevalence declines or in areas with already low prevalence of infection. This becomes a true challenge to achieving the goal of elimination of schistosomiasis because the multiplicative portion of the life-cycle of schistosomes, in the snail vector, favors continued transmission as long as even a few people maintain low numbers of worms that pass eggs in their excreta. New mapping tools based on detection of worm antigens (circulating cathodic antigen - CCA; circulating anodic antigen - CAA) in urine of those infected are highly sensitive and the CAA assay is reported to be highly specific. Using these tools in areas of low prevalence of all three of these species of schistosomes has demonstrated that more people harbor adult worms than are regularly excreting eggs at a level detectable by the usual stool assay (Kato-Katz) or by urine filtration. In very low prevalence areas this is sometimes 6- to10-fold more. Faced with what appears to be a sizable population of "egg-negative/worm-positive schistosomiasis" especially in areas of very low prevalence, national NTD programs are confounded about what guidelines and strategies they should enact if they are to proceed toward a goal of elimination. There is a critical need for continued evaluation of the assays involved and to understand the contribution of this "egg-negative/worm-positive schistosomiasis" condition to both individual morbidity and community transmission. There is also a critical need for new guidelines based on the use of these more sensitive assays for those national NTD programs that wish to move forward to strategies designed for elimination.

  10. Human intraepithelial lymphocytes.

    PubMed

    Mayassi, Toufic; Jabri, Bana

    2018-04-20

    The location of intraepithelial lymphocytes (IEL) between epithelial cells, their effector memory, cytolytic and inflammatory phenotype positions them to kill infected epithelial cells and protect the intestine against pathogens. Human TCRαβ + CD8αβ + IEL have the dual capacity to recognize modified self via natural killer (NK) receptors (autoreactivity) as well as foreign antigen via the T cell receptor (TCR), which is accomplished in mouse by two cell subsets, the naturally occurring TCRαβ + CD8αα + and adaptively induced TCRαβ + CD8αβ + IEL subsets, respectively. The private/oligoclonal nature of the TCR repertoire of both human and mouse IEL suggests local environmental factors dictate the specificity of IEL responses. The line between sensing of foreign antigens and autoreactivity is blurred for IEL in celiac disease, where recognition of stress ligands by induced activating NK receptors in conjunction with inflammatory signals such as IL-15 can result in low-affinity TCR/non-cognate antigen and NK receptor/stress ligand interactions triggering destruction of intestinal epithelial cells.

  11. Kinetics and clonality of immunological memory in humans.

    PubMed

    Beverley, Peter C L

    2004-10-01

    T-cell immunological memory consists largely of clones of proliferating lymphocytes maintained by antigenic stimulation and the survival and proliferative effects of cytokines. The duration of survival of memory clones in humans is determine by the Hayflick limit on the number of cell divisions, the rate of cycling of memory cells and factors that control erosion of telomeres, including mechanisms that control telomerase.

  12. A filamentous bacteriophage targeted to carcinoembryonic antigen induces tumor regression in mouse models of colorectal cancer.

    PubMed

    Murgas, Paola; Bustamante, Nicolás; Araya, Nicole; Cruz-Gómez, Sebastián; Durán, Eduardo; Gaete, Diana; Oyarce, César; López, Ernesto; Herrada, Andrés Alonso; Ferreira, Nicolás; Pieringer, Hans; Lladser, Alvaro

    2018-02-01

    Colorectal cancer is a deadly disease, which is frequently diagnosed at advanced stages, where conventional treatments are no longer effective. Cancer immunotherapy has emerged as a new form to treat different malignancies by turning-on the immune system against tumors. However, tumors are able to evade antitumor immune responses by promoting an immunosuppressive microenvironment. Single-stranded DNA containing M13 bacteriophages are highly immunogenic and can be specifically targeted to the surface of tumor cells to trigger inflammation and infiltration of activated innate immune cells, overcoming tumor-associated immunosuppression and promoting antitumor immunity. Carcinoembryonic antigen (CEA) is highly expressed in colorectal cancers and has been shown to promote several malignant features of colorectal cancer cells. In this work, we targeted M13 bacteriophage to CEA, a tumor-associated antigen over-expressed in a high proportion of colorectal cancers but largely absent in normal cells. The CEA-targeted M13 bacteriophage was shown to specifically bind to purified CEA and CEA-expressing tumor cells in vitro. Both intratumoral and systemic administration of CEA-specific bacteriophages significantly reduced tumor growth of mouse models of colorectal cancer, as compared to PBS and control bacteriophage administration. CEA-specific bacteriophages promoted tumor infiltration of neutrophils and macrophages, as well as maturation dendritic cells in tumor-draining lymph nodes, suggesting that antitumor T-cell responses were elicited. Finally, we demonstrated that tumor protection provided by CEA-specific bacteriophage particles is mediated by CD8 + T cells, as depletion of circulating CD8 + T cells completely abrogated antitumor protection. In summary, we demonstrated that CEA-specific M13 bacteriophages represent a potential immunotherapy against colorectal cancer.

  13. Detection of Galactomannan Antigenemia in Patients Receiving Piperacillin-Tazobactam and Correlations between In Vitro, In Vivo, and Clinical Properties of the Drug-Antigen Interaction

    PubMed Central

    Walsh, Thomas J.; Shoham, Shmuel; Petraitiene, Ruta; Sein, Tin; Schaufele, Robert; Kelaher, Amy; Murray, Heidi; Mya-San, Christine; Bacher, John; Petraitis, Vidmantas

    2004-01-01

    Recent case reports describe patients receiving piperacillin-tazobactam who were found to have circulating galactomannan detected by the double sandwich enzyme-linked immunosorbent assay (ELISA) system, leading to the false presumption of invasive aspergillosis. Since this property of piperacillin-tazobactam and galactomannan ELISA is not well understood, we investigated the in vitro, in vivo, and clinical properties of this interaction. Among the 12 reconstituted antibiotics representing four classes of antibacterial compounds that are commonly used in immunocompromised patients, piperacillin-tazobactam expressed a distinctively high level of galactomannan antigen in vitro (P = 0.001). After intravenous infusion of piperacillin-tazobactam into rabbits, the serum galactomannan index (GMI) in vivo changed significantly (P = 0.0007) from a preinfusion mean baseline value of 0.27 to a mean GMI of 0.83 by 30 min to slowly decline to a mean GMI of 0.44 24 h later. Repeated administration of piperacillin-tazobactam over 7 days resulted in accumulation of circulating galactomannan to a mean peak GMI of 1.31 and a nadir of 0.53. Further studies revealed that the antigen reached a steady state by the third day of administration of piperacillin-tazobactam. Twenty-six hospitalized patients with no evidence of invasive aspergillosis who were receiving antibiotics and ten healthy blood bank donors were studied for expression of circulating galactomannan. Patients (n = 13) receiving piperacillin-tazobactam had significantly greater mean serum GMI values (0.74 ± 0.14) compared to patients (n = 13) receiving other antibiotics (0.14 ± 0.08) and compared to healthy blood bank donors (0.14 ± 0.06) (P < 0.001). Five (38.5%) of thirteen patients receiving piperacillin-tazobactam had serum GMI values > 0.5 compared to none of thirteen subjects receiving other antibiotics (P = 0.039) and to none of ten healthy blood bank donors (P = 0.046). These data demonstrate that among antibiotics that are commonly used in immunocompromised patients, only piperacillin-tazobactam contains significant amounts of galactomannan antigen in vitro, that in animals receiving piperacillin-tazobactam circulating galactomannan antigen accumulates in vivo to significantly increased and sustained levels, and that some but not all patients receiving this antibiotic will demonstrate circulating galactomannan above the threshold considered positive for invasive aspergillosis by the recently licensed double sandwich ELISA. PMID:15472335

  14. Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery

    PubMed Central

    Best, Simon R.; Peng, Shiwen; Juang, Chi-Mou; Hung, Chien-Fu; Hannaman, Drew; Saunders, John R.; Wu, T.-C.; Pai, Sara I.

    2009-01-01

    DNA vaccines are an attractive approach to eliciting antigen-specific immunity. Intracellular targeting of tumor antigens through its linkage to immunostimulatory molecules such as calreticulin (CRT) can improve antigen processing and presentation through the MHC Class I pathway and increase cytotoxic CD8+ T cell production. However, even with these enhancements, the efficacy of such immunotherapeutic strategies is dependent on the identification of an effective route and method of DNA administration. Electroporation and gene gun-mediated particle delivery are leading methods of DNA vaccine delivery that can generate protective and therapeutic levels of immune responses in experimental models. In this study, we perform a head-to-head comparison of three methods of vaccination – conventional intramuscular injection, electroporation mediated intramuscular delivery, and epidermal gene gun-mediated particle delivery - in the ability to generate antigen specific cytotoxic CD8+ T cell responses as well as anti-tumor immune responses against an HPV-16 E7 expressing tumor cell line using the pNGVL4a-CRT/E7(detox) DNA vaccine. Vaccination via electroporation generated the highest number of E7-specific cytotoxic CD8+ T cells, which correlated to improved outcomes in the treatment of growing tumors. In addition, we demonstrate that electroporation results in significantly higher levels of circulating protein compared to gene gun or intramuscular vaccination, which likely enhances calreticulin’s role as a local tumor anti-angiogenesis agent. We conclude that electroporation is a promising method for delivery of HPV DNA vaccines and should be considered for DNA vaccine delivery in human clinical trials. PMID:19622402

  15. Microfluidic-integrated patterned ITO immunosensor for rapid detection of prostate-specific membrane antigen biomarker in prostate cancer.

    PubMed

    Seenivasan, Rajesh; Singh, Chandra K; Warrick, Jay W; Ahmad, Nihal; Gunasekaran, Sundaram

    2017-09-15

    An optically transparent patterned indium tin oxide (ITO) three-electrode sensor integrated with a microfluidic channel was designed for label-free immunosensing of prostate-specific membrane antigen (PSMA), a prostate cancer (PCa) biomarker, expressed on prostate tissue and circulating tumor cells but also found in serum. The sensor relies on cysteamine capped gold nanoparticles (N-AuNPs) covalently linked with anti-PSMA antibody (Ab) for target specificity. A polydimethylsiloxane (PDMS) microfluidic channel is used to efficiently and reproducibly introduce sample containing soluble proteins/cells to the sensor. The PSMA is detected and quantified by measuring the change in differential pulse voltammetry signal of a redox probe ([Fe(CN) 6 ] 3- /[Fe(CN) 6 ] 4- ) that is altered upon binding of PSMA with PSMA-Ab immobilized on N-AuNPs/ITO. Detection of PSMA expressing cells and soluble PSMA was tested. The limit of detection (LOD) of the sensor for PSMA-based PCa cells is 6/40µL (i.e., 150 cells/mL) (n=3) with a linear range of 15-400 cells/40µL (i.e., 375-10,000 cells/mL), and for the soluble PSMA is 0.499ng/40µL (i.e., 12.5ng/mL) (n=3) with the linear range of 0.75-250ng/40µL (i.e., 19-6250ng/mL), both with an incubation time of 10min. The results indicate that the sensor has a suitable sensitivity and dynamic range for routine detection of PCa circulating tumor cells and can be adapted to detect other biomarkers/cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Validation of a urine circulating cathodic antigen cassette test for detection of Schistosoma haematobiumin uMkhanyakude district of South Africa.

    PubMed

    Rubaba, O; Chimbari, M J; Soko, W; Manyangadze, T; Mukaratirwa, S

    2018-06-01

    Circulating cathodic antigen (CCA) tests for schistosomiasis are fast and less complicated allowing making them good candidates for routine qualitative screening for schistosomiasis at point of care. The urine-CCA has been evaluated for detection of S. mansoni with promising results. Its specificity and consistency in detecting S. haematobium infection in different endemic regions has been variable. This study validated a rapid urine-CCA cassette test for qualitative detection of S. haematobium infection in an S. haematobium endemic area with low S. mansoni prevalence. Microscopic examination for the standard urine filtration technique was used to validate the commercially available urine-CCA cassette test (rapid medical diagnostics ® ). The validation was done in a sample of primary school pupils (n = 420) aged 10-15 years in schools in the Jozini Municipality, KZN. There was a relationship between infection intensity and a positive urine-CCA test. Using the urine filtration method as the gold standard, the prevalence for S. haematobium was 40%, the accuracy of the CCA kit was 54.8%, sensitivity was 68.1% while the specificity was 45.8%. The positive predictive value was 45.82% while the negative predictive value was 68.05%. Both the urine filtration and the urine-CCA methods detected heavy (≥50 eggs/10 mL urine) and light infections at statistically significant levels. The overall accuracy, sensitivity and specificity of the urine-CCA cassette test were low. The urine-CCA cassette test performed much better for heavy infections than low infections (p < 0.05) implying that the kit may not be suitable for low endemic areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Dynamically correlated mutations drive human Influenza A evolution.

    PubMed

    Tria, F; Pompei, S; Loreto, V

    2013-01-01

    Human Influenza A virus undergoes recurrent changes in the hemagglutinin (HA) surface protein, primarily involved in the human antibody recognition. Relevant antigenic changes, enabling the virus to evade host immune response, have been recognized to occur in parallel to multiple mutations at antigenic sites in HA. Yet, the role of correlated mutations (epistasis) in driving the molecular evolution of the virus still represents a challenging puzzle. Further, though circulation at a global geographic level is key for the survival of Influenza A, its role in shaping the viral phylodynamics remains largely unexplored. Here we show, through a sequence based epidemiological model, that epistatic effects between amino acids substitutions, coupled with a reservoir that mimics worldwide circulating viruses, are key determinants that drive human Influenza A evolution. Our approach explains all the up-to-date observations characterizing the evolution of H3N2 subtype, including phylogenetic properties, nucleotide fixation patterns, and composition of antigenic clusters.

  18. Development and Regulation of Novel Influenza Virus Vaccines: A United States Young Scientist Perspective.

    PubMed

    Khurana, Surender

    2018-04-27

    Vaccination against influenza is the most effective approach for reducing influenza morbidity and mortality. However, influenza vaccines are unique among all licensed vaccines as they are updated and administered annually to antigenically match the vaccine strains and currently circulating influenza strains. Vaccine efficacy of each selected influenza virus vaccine varies depending on the antigenic match between circulating strains and vaccine strains, as well as the age and health status of the vaccine recipient. Low vaccine effectiveness of seasonal influenza vaccines in recent years provides an impetus to improve current seasonal influenza vaccines, and for development of next-generation influenza vaccines that can provide broader, long-lasting protection against both matching and antigenically diverse influenza strains. This review discusses a perspective on some of the issues and formidable challenges facing the development and regulation of the next-generation influenza vaccines.

  19. Quantitative and qualitative features of heterologous virus-vector-induced antigen-specific CD8+ T cells against Trypanosoma cruzi infection.

    PubMed

    Takayama, Eiji; Ono, Takeshi; Carnero, Elena; Umemoto, Saori; Yamaguchi, Yoko; Kanayama, Atsuhiro; Oguma, Takemi; Takashima, Yasuhiro; Tadakuma, Takushi; García-Sastre, Adolfo; Miyahira, Yasushi

    2010-11-01

    We studied some aspects of the quantitative and qualitative features of heterologous recombinant (re) virus-vector-induced, antigen-specific CD8(+) T cells against Trypanosoma cruzi. We used three different, highly attenuated re-viruses, i.e., influenza virus, adenovirus and vaccinia virus, which all expressed a single, T. cruzi antigen-derived CD8(+) T-cell epitope. The use of two out of three vectors or the triple virus-vector vaccination regimen not only confirmed that the re-vaccinia virus, which was placed last in order for sequential immunisation, was an effective booster for the CD8(+) T-cell immunity in terms of the number of antigen-specific CD8(+) T cells, but also demonstrated that (i) the majority of cells exhibit the effector memory (T(EM)) phenotype, (ii) robustly secrete IFN-γ, (iii) express higher intensity of the CD122 molecule and (iv) present protective activity against T. cruzi infection. In contrast, placing the re-influenza virus last in sequential immunisation had a detrimental effect on the quantitative and qualitative features of CD8(+) T cells. The triple virus-vector vaccination was more effective at inducing a stronger CD8(+) T-cell immunity than using two re-viruses. The different quantitative and qualitative features of CD8(+) T cells induced by different immunisation regimens support the notion that the refinement of the best choice of multiple virus-vector combinations is indispensable for the induction of a maximum number of CD8(+) T cells of high quality. Copyright © 2010 Australian Society for Parasitology Inc. All rights reserved.

  20. Redirecting T-Cell Specificity to EGFR Using mRNA to Self-limit Expression of Chimeric Antigen Receptor.

    PubMed

    Caruso, Hillary G; Torikai, Hiroki; Zhang, Ling; Maiti, Sourindra; Dai, Jianliang; Do, Kim-Anh; Singh, Harjeet; Huls, Helen; Lee, Dean A; Champlin, Richard E; Heimberger, Amy B; Cooper, Laurence J N

    2016-06-01

    Potential for on-target, but off-tissue toxicity limits therapeutic application of genetically modified T cells constitutively expressing chimeric antigen receptors (CARs) from tumor-associated antigens expressed in normal tissue, such as epidermal growth factor receptor (EGFR). Curtailing expression of CAR through modification of T cells by in vitro-transcribed mRNA species is one strategy to mitigate such toxicity. We evaluated expression of an EGFR-specific CAR coded from introduced mRNA in human T cells numerically expanded ex vivo to clinically significant numbers through coculture with activating and propagating cells (AaPC) derived from K562 preloaded with anti-CD3 antibody. The density of AaPC could be adjusted to affect phenotype of T cells such that reduced ratio of AaPC resulted in higher proportion of CD8 and central memory T cells that were more conducive to electrotransfer of mRNA than T cells expanded with high ratios of AaPC. RNA-modified CAR T cells produced less cytokine, but demonstrated similar cytolytic capacity as DNA-modified CAR T cells in response to EGFR-expressing glioblastoma cells. Expression of CAR by mRNA transfer was transient and accelerated by stimulation with cytokine and antigen. Loss of CAR abrogated T-cell function in response to tumor and normal cells expressing EGFR. We describe a clinically applicable method to propagate and modify T cells to transiently express EGFR-specific CAR to target EGFR-expressing tumor cells that may be used to limit on-target, off-tissue toxicity to normal tissue.

  1. Vaccine-associated enhanced respiratory disease is influenced by hemagglutinin and neuraminidase in whole inactivated influenza virus vaccines

    USDA-ARS?s Scientific Manuscript database

    Multiple subtypes and many antigenic variants of influenza A virus (IAV) co-circulate in swine in the USA, complicating effective use of commercial vaccines to control disease and transmission. Whole inactivated virus (WIV) vaccines may provide partial protection against IAV with substantial antigen...

  2. Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States

    USDA-ARS?s Scientific Manuscript database

    Several lineages of influenza A viruses (IAV) currently circulate in North American pigs. Genetic diversity is further increased by the bidirectional transmission of IAV between swine and humans and the subsequent processes of antigenic shift and drift. Such evolution can be the basis for changes in...

  3. Detection of Antigenic Variants of Subtype H3 Swine Influenza A Viruses from Clinical Samples.

    PubMed

    Martin, Brigitte E; Bowman, Andrew S; Li, Lei; Nolting, Jacqueline M; Smith, David R; Hanson, Larry A; Wan, Xiu-Feng

    2017-04-01

    A large population of genetically and antigenically diverse influenza A viruses (IAVs) are circulating among the swine population, playing an important role in influenza ecology. Swine IAVs not only cause outbreaks among swine but also can be transmitted to humans, causing sporadic infections and even pandemic outbreaks. Antigenic characterizations of swine IAVs are key to understanding the natural history of these viruses in swine and to selecting strains for effective vaccines. However, influenza outbreaks generally spread rapidly among swine, and the conventional methods for antigenic characterization require virus propagation, a time-consuming process that can significantly reduce the effectiveness of vaccination programs. We developed and validated a rapid, sensitive, and robust method, the polyclonal serum-based proximity ligation assay (polyPLA), to identify antigenic variants of subtype H3N2 swine IAVs. This method utilizes oligonucleotide-conjugated polyclonal antibodies and quantifies antibody-antigen binding affinities by quantitative reverse transcription-PCR (RT-PCR). Results showed the assay can rapidly detect H3N2 IAVs directly from nasal wash or nasal swab samples collected from laboratory-challenged animals or during influenza surveillance at county fairs. In addition, polyPLA can accurately separate the viruses at two contemporary swine IAV antigenic clusters (H3N2 swine IAV-α and H3N2 swine IAV-ß) with a sensitivity of 84.9% and a specificity of 100.0%. The polyPLA can be routinely used in surveillance programs to detect antigenic variants of influenza viruses and to select vaccine strains for use in controlling and preventing disease in swine. Copyright © 2017 American Society for Microbiology.

  4. Essential Role of Lymph Nodes in Contact Hypersensitivity Revealed in Lymphotoxin-α–Deficient Mice

    PubMed Central

    Rennert, Paul D.; Hochman, Paula S.; Flavell, Richard A.; Chaplin, David D.; Jayaraman, Sundararajan; Browning, Jeffrey L.; Fu, Yang-Xin

    2001-01-01

    Lymph nodes (LNs) are important sentinal organs, populated by circulating lymphocytes and antigen-bearing cells exiting the tissue beds. Although cellular and humoral immune responses are induced in LNs by antigenic challenge, it is not known if LNs are essential for acquired immunity. We examined immune responses in mice that lack LNs due to genetic deletion of lymphotoxin ligands or in utero blockade of membrane lymphotoxin. We report that LNs are absolutely required for generating contact hypersensitivity, a T cell–dependent cellular immune response induced by epicutaneous hapten. We show that the homing of epidermal Langerhans cells in response to hapten application is specifically directed to LNs, providing a cellular basis for this unique LN function. In contrast, the spleen cannot mediate contact hypersensitivity because antigen-bearing epidermal Langerhans cells do not access splenic white pulp. Finally, we formally demonstrate that LNs provide a unique environment essential for generating this acquired immune response by reversing the LN defect in lymphotoxin-α−/− mice, thereby restoring the capacity for contact hypersensitivity. PMID:11390430

  5. Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma.

    PubMed

    Heimberger, Amy B; Archer, Gary E; Crotty, Laura E; McLendon, Roger E; Friedman, Allan H; Friedman, Henry S; Bigner, Darell D; Sampson, John H

    2002-01-01

    Dendritic cells (DCs) are specialized cells of the immune system that are capable of generating potent immune responses that are active even within the "immunologically privileged" central nervous system. However, immune responses generated by DCs have also been demonstrated to produce clinically significant autoimmunity. Targeting the epidermal growth factor receptor variant III (EGFRvIII), which is a mutation specific to tumor tissue, could eliminate this risk. The purpose of this study was to demonstrate that DC-based immunizations directed solely against this tumor-specific antigen, which is commonly found on tumors that originate within or metastasize to the brain, could be efficacious. C3H mice were vaccinated with DCs mixed with a keyhole limpet hemocyanin conjugate of the tumor-specific peptide, PEP-3, which spans the EGFRvIII mutation, or the random-sequence peptide, PEP-1, and were intracerebrally challenged with a syngeneic melanoma expressing a murine homologue of EGFRvIII. Systemic immunization with DCs mixed with PEP-3-keyhole limpet hemocyanin generated antigen-specific immunity. Among mice challenged with intracerebral tumors, this resulted in an approximately 600% increase in the median survival time (>300 d, P < 0.0016), relative to control values. Sixty-three percent of mice treated with DCs mixed with the tumor-specific peptide survived in the long term and 100% survived rechallenge with tumor, indicating that antitumor immunological memory was also induced. In a murine melanoma model, immunization with DCs mixed with tumor-specific peptide results in an antigen-specific immunological response that recognizes the EGFRvIII mutation, has potent antitumor efficacy against intracerebral tumors that express EGFRvIII, and results in long-lasting antitumor immunity.

  6. First detection of co-circulation of West Nile and Usutu viruses in equids in the south-west of Tunisia.

    PubMed

    Ben Hassine, T; De Massis, F; Calistri, P; Savini, G; BelHaj Mohamed, B; Ranen, A; Di Gennaro, A; Sghaier, S; Hammami, S

    2014-10-01

    In the last fifteen years, West Nile Virus (WNV) has dramatically expanded its geographic range and is now considered the most widespread arbovirus in the world. In Tunisia, West Nile Fever (WNF) outbreaks were reported in humans in 1997, 2003 and 2012. Usutu Virus (USUV), which is a 'new' emerging Flavivirus antigenically close to WNV, has never been reported in Tunisia. A serological investigation in 284 equids was conducted in 2012 in the southern west region of the country to assess the presence and prevalence of the WNV and USUV infection. Of the 284 samples tested by competitive enzyme-linked immunoassay, 129 were positive. Of these, 120 (42.3%) had WNV-specific neutralizing antibodies. The prevalence was significantly higher in areas closer to the oasis compared with that of the surrounding arid areas. Antibody titres against USUV were also reported in 10 equids. This was the first evidence of USUV circulation in Tunisia. Data recorded by this study indicate that WNV and USUV have circulated/are circulating in the region and that there is an urgent need to adapt the current surveillance programmes to this new scenario. © 2014 Blackwell Verlag GmbH.

  7. The antigenic complex in HIT binds to B cells via complement and complement receptor 2 (CD21)

    PubMed Central

    Khandelwal, Sanjay; Lee, Grace M.; Hester, C. Garren; Poncz, Mortimer; McKenzie, Steven E.; Sachais, Bruce S.; Rauova, Lubica; Kelsoe, Garnett; Cines, Douglas B.; Frank, Michael

    2016-01-01

    Heparin-induced thrombocytopenia is a prothrombotic disorder caused by antibodies to platelet factor 4 (PF4)/heparin complexes. The mechanism that incites such prevalent anti-PF4/heparin antibody production in more than 50% of patients exposed to heparin in some clinical settings is poorly understood. To investigate early events associated with antigen exposure, we first examined the interaction of PF4/heparin complexes with cells circulating in whole blood. In healthy donors, PF4/heparin complexes bind preferentially to B cells (>90% of B cells bind to PF4/heparin in vitro) relative to neutrophils, monocytes, or T cells. Binding of PF4 to B cells is heparin dependent, and PF4/heparin complexes are found on circulating B cells from some, but not all, patients receiving heparin. Given the high proportion of B cells that bind PF4/heparin, we investigated complement as a mechanism for noncognate antigen recognition. Complement is activated by PF4/heparin complexes, co-localizes with antigen on B cells from healthy donors, and is present on antigen-positive B cells in patients receiving heparin. Binding of PF4/heparin complexes to B cells is mediated through the interaction between complement and complement receptor 2 (CR2 [CD21]). To the best of our knowledge, these are the first studies to demonstrate complement activation by PF4/heparin complexes, opsonization of PF4/heparin to B cells via CD21, and the presence of complement activation fragments on circulating B cells in some patients receiving heparin. Given the critical contribution of complement to humoral immunity, our observations provide new mechanistic insights into the immunogenicity of PF4/heparin complexes. PMID:27412887

  8. Detection and clearance of prostate cells subsequent to ultrasound-guided needle biopsy as determined by multiplex nested reverse transcription polymerase chain reaction assay.

    PubMed

    Price, D K; Clontz, D R; Woodard, W L; Kaufman, J S; Daniels, J M; Stolzenberg, S J; Teigland, C M

    1998-08-01

    To determine if circulating prostate cells are detectable subsequent to transrectal ultrasound (TRUS)-guided biopsy, and if so, whether cells remain in circulation for up to 4 weeks. Blood samples were drawn from 90 patients with elevated serum prostate-specific antigen (PSA) levels and/or abnormal digital rectal examination. Two samples were drawn from all patients immediately prior to TRUS and 30 minutes postbiopsy. Blood samples were also obtained 1 week postbiopsy from 83 patients, and 1 month postbiopsy from 61 patients. Multiplex nested reverse transcription polymerase chain reaction assay (RT-PCR) for PSA and prostate-specific membrane antigen (PSM) was performed on total ribonucleic acid (RNA) from each sample. Results were reported as positive if at least one of the targets was detected. Of 45 patients with biopsy-proven adenocarcinoma, 22 were RT-PCR positive prebiopsy and all remained positive 30 minutes postbiopsy. Of 23 patients with adenocarcinoma who were RT-PCR negative prebiopsy, 5 (22%) converted to positive 30 minutes postbiopsy (P < 0.001). Four of these 5 patients returned to negative after 1 week or 1 month. Of 45 patients without cancer at biopsy, 32 were RT-PCR negative prebiopsy and 6 (19%) converted to positive 30 minutes postbiopsy (P < 0.001). Although four of six available samples were still positive at 1 week, all four samples available 1 month postbiopsy were negative. Detection of circulating prostate cells subsequent to biopsy occurred in 11 of 55 (20%) previously RT-PCR negative patients, a proportion twice that reported in the literature. We attribute this higher proportion to the simultaneous detection of PSA and PSM mRNA in our multiplex assay. Conversion rates were similar in patients regardless of biopsy result. Testing of serial postbiopsy blood demonstrates clearing of these cells by 4 weeks in most patients.

  9. Predominance of influenza A(H3N2) viruses during the 2016/2017 season in Bulgaria.

    PubMed

    Korsun, Neli; Angelova, Svetla; Trifonova, Ivelina; Tzotcheva, Iren; Mileva, Sirma; Voleva, Silvia; Georgieva, Irina; Perenovska, Penka

    2018-02-01

    Influenza viruses are characterised by high variability, which makes them able to cause annual epidemics. The aim of this study is to determine the antigenic and genetic characteristics of influenza viruses circulating in Bulgaria during the 2016/2017 season. The detection and typing/subtyping of influenza viruses were performed using real time RT-PCR. Results of antigenic characterisation, phylogenetic and amino acid sequence analyses of representative influenza strains are presented herein. The 2016/2017 season was characterised by an early start, an exclusive dominance of A(H3N2) viruses accounting for 93 % of total influenza virus detections, and a low circulation of A(H1N1)pdm09 (4.2 %) and type B (2.5 %) viruses. The analysed A(H3N2) viruses belonged to subclades 3C.2a (52 %) and 3C.2a1 (48 %); all studied A(H1N1)pdm09 and B/Victoria-lineage viruses belonged to subclades 6B.1 and 1A, respectively. The amino acid sequence analysis of 56 A(H3N2) isolates revealed the presence of substitutions in 18 positions in haemagglutinin (HA) as compared to the A/Hong Kong/4801/2014 vaccine virus, seven of which occurred in four antigenic sites, together with changes in 23 positions in neuraminidase (NA), and a number of substitutions in internal proteins PB2, PB1, PB1-F2, PA, NP and NS1. Despite the many amino acid substitutions, A(H3N2) viruses remained antigenically similar to the vaccine strain. Substitutions in HA and NA sequences of A(H1N1)pdm09 and B/Victoria-lineage strains were also identified, including in antigenic sites. The results of this study confirm the genetic variability of circulating influenza viruses, particularly A(H3N2), and the need for continued antigenic and molecular surveillance.

  10. Multiplexed screening of natural humoral immunity identifies antibodies at fine specificity for complex and dynamic viral targets.

    PubMed

    McCutcheon, Krista M; Gray, Julia; Chen, Natalie Y; Liu, Keyi; Park, Minha; Ellsworth, Stote; Tripp, Ralph A; Tompkins, S Mark; Johnson, Scott K; Samet, Shelly; Pereira, Lenore; Kauvar, Lawrence M

    2014-01-01

    Viral entry targets with therapeutic neutralizing potential are subject to multiple escape mechanisms, including antigenic drift, immune dominance of functionally irrelevant epitopes, and subtle variations in host cell mechanisms. A surprising finding of recent years is that potent neutralizing antibodies to viral epitopes independent of strain exist, but are poorly represented across the diverse human population. Identifying these antibodies and understanding the biology mediating the specific immune response is thus difficult. An effective strategy for meeting this challenge is to incorporate multiplexed antigen screening into a high throughput survey of the memory B cell repertoire from immune individuals. We used this approach to discover suites of cross-clade antibodies directed to conformational epitopes in the stalk region of the influenza A hemagglutinin (HA) protein and to select high-affinity anti-peptide antibodies to the glycoprotein B (gB) of human cytomegalovirus. In each case, our screens revealed a restricted VH and VL germline usage, including published and previously unidentified gene families. The in vivo evolution of paratope specificity with optimal neutralizing activity was understandable after correlating biological activities with kinetic binding and epitope recognition. Iterative feedback between antigen probe design based on structure and function information with high throughput multiplexed screening demonstrated a generally applicable strategy for efficient identification of safe, native, finely tuned antibodies with the potential for high genetic barriers to viral escape.

  11. Liver-primed memory T cells generated under noninflammatory conditions provide anti-infectious immunity.

    PubMed

    Böttcher, Jan P; Schanz, Oliver; Wohlleber, Dirk; Abdullah, Zeinab; Debey-Pascher, Svenja; Staratschek-Jox, Andrea; Höchst, Bastian; Hegenbarth, Silke; Grell, Jessica; Limmer, Andreas; Atreya, Imke; Neurath, Markus F; Busch, Dirk H; Schmitt, Edgar; van Endert, Peter; Kolanus, Waldemar; Kurts, Christian; Schultze, Joachim L; Diehl, Linda; Knolle, Percy A

    2013-03-28

    Development of CD8(+) T cell (CTL) immunity or tolerance is linked to the conditions during T cell priming. Dendritic cells (DCs) matured during inflammation generate effector/memory T cells, whereas immature DCs cause T cell deletion/anergy. We identify a third outcome of T cell priming in absence of inflammation enabled by cross-presenting liver sinusoidal endothelial cells. Such priming generated memory T cells that were spared from deletion by immature DCs. Similar to central memory T cells, liver-primed T cells differentiated into effector CTLs upon antigen re-encounter on matured DCs even after prolonged absence of antigen. Their reactivation required combinatorial signaling through the TCR, CD28, and IL-12R and controlled bacterial and viral infections. Gene expression profiling identified liver-primed T cells as a distinct Neuropilin-1(+) memory population. Generation of liver-primed memory T cells may prevent pathogens that avoid DC maturation by innate immune escape from also escaping adaptive immunity through attrition of the T cell repertoire. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Isolation and preliminary characterization of circulating immune complexes from rabbits with experimental syphilis.

    PubMed Central

    Baughn, R E; Musher, D M

    1983-01-01

    Immune complexes isolated from sera of rabbits with experimental, disseminated syphilis were found to have sedimentation coefficients greater than 19s. By radioimmunoblot assays, materials precipitated with 2.5% polyethylene glycol or chromatographed on DEAE-Affi-Gel Blue were found to contain albumin, C3, immunoglobulin M (IgM), IgG, and treponemal antigen(s), whereas control materials contained only albumin and IgG. When polyethylene glycol precipitation of immune complexes from syphilitic rabbits was followed by immobilization on protein A and acid elution, radioimmunoblots detected only IgG and treponemal antigen(s). Images PMID:6358025

  13. Identification of Barramundi (Lates calcarifer) DC-SCRIPT, a Specific Molecular Marker for Dendritic Cells in Fish

    PubMed Central

    Zoccola, Emmanuelle; Delamare-Deboutteville, Jérôme; Barnes, Andrew C.

    2015-01-01

    Antigen presentation is a critical step bridging innate immune recognition and specific immune memory. In mammals, the process is orchestrated by dendritic cells (DCs) in the lymphatic system, which initiate clonal proliferation of antigen-specific lymphocytes. However, fish lack a classical lymphatic system and there are currently no cellular markers for DCs in fish, thus antigen-presentation in fish is poorly understood. Recently, antigen-presenting cells similar in structure and function to mammalian DCs were identified in various fish, including rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). The present study aimed to identify a potential molecular marker for DCs in fish and therefore targeted DC-SCRIPT, a well-conserved zinc finger protein that is preferentially expressed in all sub-types of human DCs. Putative dendritic cells were obtained in culture by maturation of spleen and pronephros-derived monocytes. DC-SCRIPT was identified in barramundi by homology using RACE PCR and genome walking. Specific expression of DC-SCRIPT was detected in barramundi cells by Stellaris mRNA FISH, in combination with MHCII expression when exposed to bacterial derived peptidoglycan, suggesting the presence of DCs in L. calcarifer. Moreover, morphological identification was achieved by light microscopy of cytospins prepared from these cultures. The cultured cells were morphologically similar to mammalian and trout DCs. Migration assays determined that these cells have the ability to move towards pathogens and pathogen associated molecular patterns, with a preference for peptidoglycans over lipopolysaccharides. The cells were also strongly phagocytic, engulfing bacteria and rapidly breaking them down. Barramundi DCs induced significant proliferation of responder populations of T-lymphocytes, supporting their role as antigen presenting cells. DC-SCRIPT expression in head kidney was higher 6 and 24 h following intraperitoneal challenge with peptidoglycan and lipopolysaccharide and declined after 3 days relative to PBS-injected controls. Relative expression was also lower in the spleen at 3 days post challenge but increased again at 7 days. As DC-SCRIPT is a constitutively expressed nuclear receptor, independent of immune activation, this may indicate initial migration of immature DCs from head kidney and spleen to the injection site, followed by return to the spleen for maturation and antigen presentation. DC-SCRIPT may be a valuable tool in the investigation of antigen presentation in fish and facilitate optimisation of vaccines and adjuvants for aquaculture. PMID:26173015

  14. Random mutagenesis of two complementarity determining region amino acids yields an unexpectedly high frequency of antibodies with increased affinity for both cognate antigen and autoantigen

    PubMed Central

    1995-01-01

    To gain insight into the mechanism and limitations of antibody affinity maturation leading to memory B cell formation, we generated a phage display library of random mutants at heavy chain variable (V) complementarity determining region 2 positions 58 and 59 of an anti-p- azophenylarsonate (Ars) Fab. Single amino acid substitutions at these positions resulting from somatic hypermutation are recurrent products of affinity maturation in vivo. Most of the ex vivo mutants retained specificity for Ars. Among the many mutants displaying high Ars-binding activity, only one contained a position 58 and 59 amino acid combination that has been previously observed among the monoclonal antibodies (mAbs) derived from Ars-immunized mice. Affinity measurements on 14 of the ex vivo mutants with high Ars-binding activity showed that 11 had higher intrinsic affinities for Ars that the wild-type V region. However, nine of these Fabs also bound strongly to denatured DNA, a property neither displayed by the wild-type V region nor observed among the mutants characteristic of in vivo affinity maturation. These data suggest that ex vivo enhancement of mAb affinity via site-directed and random mutagenesis approaches may often lead to a reduction in antibody specificity that could complicate the use of the resulting mAbs for diagnostic and therapeutic applications. Moreover, the data are compatible with a hypothesis proposing that increased specificity for antigen, rather than affinity per se, is the driving force for formation of the memory B cell compartment. PMID:7650481

  15. Air Pollution Exposure with Fine Dust. Responses in the Pulmonary Vasculature and the Right Heart.

    PubMed

    Durmus, Nedim; Grunig, Gabriele

    2018-04-01

    Detrimental effects of air pollution with fine dust (particulate matter ≤2.5 μm in aerodynamic diameter, or PM 2.5 ) on the systemic circulation and the left heart have been studied intensely during the past decade. In comparison, knowledge regarding the effects of exposure to air pollution with PM 2.5 on the pulmonary vasculature and the right heart lags far behind. A report on severe lung disease and right heart failure in coal miners was published nearly 170 years ago. However, today, we still do not have a clear picture of how the effect of air pollution on the pulmonary circulation or the right heart should be viewed from a clinical, mechanistic biological, therapeutic, or economic angle. In the laboratory, we have established a model of immune response-induced vascular remodeling that is significantly worsened by adding PM 2.5 to the intranasal antigen challenge solution. Importantly, the PM 2.5 is given at a concentration that by itself does not induce significant inflammation or pulmonary vascular remodeling. However, when added to antigen, this low-dose PM 2.5 exposure induces severe pulmonary vascular remodeling, significantly increased right ventricular pressures, and significant molecular changes in the right heart. Our data also show that these PM 2.5 -exaggerated responses are dependent on interleukin-13, interleukin-17A, and antigen-specific antibody. The experimental model is being used to address a few questions: 1. Which mechanism protects the animals from severe right ventricular failure despite the severity of the pulmonary artery remodeling? 2. What is the mechanism by which PM 2.5 worsens the response to antigen? 3. How does PM 2.5 exert its effects across the small airways to the small blood vessels? In conclusion, further investigation is urgently needed to understand the effects of exposure to ambient or occupational air pollution on the pulmonary vasculature, because better knowledge could lead to immediate beneficial actions for patients with pulmonary hypertension and persons at risk.

  16. Circulating Gut-Homing (α4β7+) Plasmablast Responses against Shigella Surface Protein Antigens among Hospitalized Patients with Diarrhea.

    PubMed

    Sinha, Anuradha; Dey, Ayan; Saletti, Giulietta; Samanta, Pradip; Chakraborty, Partha Sarathi; Bhattacharya, M K; Ghosh, Santanu; Ramamurthy, T; Kim, Jae-Ouk; Yang, Jae Seung; Kim, Dong Wook; Czerkinsky, Cecil; Nandy, Ranjan K

    2016-07-01

    Developing countries are burdened with Shigella diarrhea. Understanding mucosal immune responses associated with natural Shigella infection is important to identify potential correlates of protection and, as such, to design effective vaccines. We performed a comparative analysis of circulating mucosal plasmablasts producing specific antibodies against highly conserved invasive plasmid antigens (IpaC, IpaD20, and IpaD120) and two recently identified surface protein antigens, pan-Shigella surface protein antigen 1 (PSSP1) and PSSP2, common to all virulent Shigella strains. We examined blood and stool specimens from 37 diarrheal patients admitted to the Infectious Diseases & Beliaghata General Hospital, Kolkata, India. The etiological agent of diarrhea was investigated in stool specimens by microbiological methods and real-time PCR. Gut-homing (α4β7 (+)) antibody-secreting cells (ASCs) were isolated from patient blood by means of combined magnetic cell sorting and two-color enzyme-linked immunosorbent spot (ELISPOT) assay. Overall, 57% (21 of 37) and 65% (24 of 37) of the patients were positive for Shigella infection by microbiological and real-time PCR assays, respectively. The frequency of α4β7 (+) IgG ASC responders against Ipas was higher than that observed against PSSP1 or PSSP2, regardless of the Shigella serotype isolated from these patients. Thus, α4β7 (+) ASC responses to Ipas may be considered an indirect marker of Shigella infection. The apparent weakness of ASC responses to PSSP1 is consistent with the lack of cross-protection induced by natural Shigella infection. The finding that ASC responses to IpaD develop in patients with recent-onset shigellosis indicates that such responses may not be protective or may wane too rapidly and/or be of insufficient magnitude. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Study of Cognitive Impairments Following Clipping of Ruptured Anterior Circulation Aneurysms.

    PubMed

    Mohanty, Manju; Dhandapani, Sivashanmugam; Gupta, Sunil Kumar; Shahid, Adnan Hussain; Patra, Debi Prasad; Sharma, Anchal; Mathuriya, Suresh Narayan

    2018-06-16

    The cognitive impairments following treatment of ruptured aneurysms have often been underestimated. This study was to assess their prevalence and analyze various associated factors. Patients who were operated for ruptured anterior circulation aneurysms and discharged in Glasgow outcome scale 4-5 were studied at 3 months for various cognitive impairments. Continuous scales of memory (recent, remote, verbal, visual and overall memory), verbal fluency (phonemic and category fluency) and others were studied in relation to various factors. Univariate and multivariate analyses were performed using SPSS21. There were a total of 87 patients included in our study. Phonemic fluency was the most affected noted in 66% of patients. While 56% had some memory related impairments, 13 (15%) and 6 (7%) had moderate and severe deficits in recent memory, and 19 (22%) and 12 (14%) had moderate and severe deficits in remote memory respectively. Patients operated for anterior cerebral artery (ACA) aneurysms have significantly greater impairments in recent (34% vs 8%) and remote memory (43% vs 28%) compared to the rest, both in univariate (P values 0.01 & 0.002 respectively) and multivariate analyses (P values 0.01 & 0.03 respectively). ACA related aneurysms also had significantly greater independent impairments in phonemic fluency (P-value 0.04), compared to others. The clinical grade had a significant independent impact only on remote memory (P-value 0.01). Cognitive impairments are frequent following treatment of ruptured anterior circulation aneurysms. Impairments in recent memory, remote memory, and phonemic fluency are significantly greater following treatment of ACA related aneurysms, compared to others, independent of other factors. Copyright © 2018. Published by Elsevier Inc.

  18. Estradiol concentrations and working memory performance in women of reproductive age.

    PubMed

    Hampson, Elizabeth; Morley, Erin E

    2013-12-01

    Estrogen has been proposed to exert a regulatory influence on the working memory system via actions in the female prefrontal cortex. Tests of this hypothesis have been limited almost exclusively to postmenopausal women and pharmacological interventions. We explored whether estradiol discernibly influences working memory within the natural range of variation in concentrations characteristic of the menstrual cycle. The performance of healthy women (n=39) not using hormonal contraceptives, and a control group of age- and education-matched men (n=31), was compared on a spatial working memory task. Cognitive testing was done blind to ovarian status. Women were retrospectively classified into low- or high-estradiol groups based on the results of radioimmunoassays of saliva collected immediately before and after the cognitive testing. Women with higher levels of circulating estradiol made significantly fewer errors on the working memory task than women tested under low estradiol. Pearson's correlations showed that the level of salivary estradiol but not progesterone was correlated inversely with the number of working memory errors produced. Women tested at high levels of circulating estradiol tended to be more accurate than men. Superior performance by the high estradiol group was seen on the working memory task but not on two control tasks, indicating selectivity of the effects. Consistent with previous studies of postmenopausal women, higher levels of circulating estradiol were associated with better working memory performance. These results add further support to the hypothesis that the working memory system is modulated by estradiol in women, and show that the effects can be observed under non-pharmacological conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Impairments of Antigen-Presenting Cells in Pulmonary Tuberculosis

    PubMed Central

    Sakhno, Ludmila V.; Shevela, Ekaterina Ya.; Tikhonova, Marina A.; Nikonov, Sergey D.; Ostanin, Alexandr A.; Chernykh, Elena R.

    2015-01-01

    The phenotype and functional properties of antigen-presenting cells (APC), that is, circulating monocytes and generated in vitro macrophages and dendritic cells, were investigated in the patients with pulmonary tuberculosis (TB) differing in lymphocyte reactivity to M. tuberculosis antigens (PPD-reactive versus PPD-anergic patients). We revealed the distinct impairments in patient APC functions. For example, the monocyte dysfunctions were displayed by low CD86 and HLA-DR expression, 2-fold increase in CD14+CD16+ expression, the high numbers of IL-10-producing cells, and enhanced IL-10 and IL-6 production upon LPS-stimulation. The macrophages which were in vitro generated from peripheral blood monocytes under GM-CSF were characterized by Th1/Th2-balance shifting (downproduction of IFN-γ coupled with upproduction of IL-10) and by reducing of allostimulatory activity in mixed lymphocyte culture. The dendritic cells (generated in vitro from peripheral blood monocytes upon GM-CSF + IFN-α) were characterized by impaired maturation/activation, a lower level of IFN-γ production in conjunction with an enhanced capacity to produce IL-10 and IL-6, and a profound reduction of allostimulatory activity. The APC dysfunctions were found to be most prominent in PPD-anergic patients. The possible role of APC impairments in reducing the antigen-specific T-cell response to M. tuberculosis was discussed. PMID:26339660

  20. Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma.

    PubMed

    Krishnamurthy, Janani; Rabinovich, Brian A; Mi, Tiejuan; Switzer, Kirsten C; Olivares, Simon; Maiti, Sourindra N; Plummer, Joshua B; Singh, Harjeet; Kumaresan, Pappanaicken R; Huls, Helen M; Wang-Johanning, Feng; Cooper, Laurence J N

    2015-07-15

    The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma. Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR(+) T cells were expanded ex vivo on activating and propagating cells (AaPC) and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR(+) T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. We detected HERV-K env protein on melanoma but not in normal tissues. After electroporation of T cells and selection on HERV-K(+) AaPC, more than 95% of genetically modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env(+) tumor targets in an antigen-specific manner. Even though there is apparent shedding of this TAA from tumor cells that can be recognized by HERV-K env-specific CAR(+) T cells, we observed a significant antitumor effect. Adoptive cellular immunotherapy with HERV-K env-specific CAR(+) T cells represents a clinically appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors. ©2015 American Association for Cancer Research.

Top