Numerical simulation of a full-loop circulating fluidized bed under different operating conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yupeng; Musser, Jordan M.; Li, Tingwen
Both experimental and computational studies of the fluidization of high-density polyethylene (HDPE) particles in a small-scale full-loop circulating fluidized bed are conducted. Experimental measurements of pressure drop are taken at different locations along the bed. The solids circulation rate is measured with an advanced Particle Image Velocimetry (PIV) technique. The bed height of the quasi-static region in the standpipe is also measured. Comparative numerical simulations are performed with a Computational Fluid Dynamics solver utilizing a Discrete Element Method (CFD-DEM). This paper reports a detailed and direct comparison between CFD-DEM results and experimental data for realistic gas-solid fluidization in a full-loopmore » circulating fluidized bed system. The comparison reveals good agreement with respect to system component pressure drop and inventory height in the standpipe. In addition, the effect of different drag laws applied within the CFD simulation is examined and compared with experimental results.« less
Phase shift method to estimate solids circulation rate in circulating fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludlow, James Christopher; Panday, Rupen; Shadle, Lawrence J.
2013-01-01
While solids circulation rate is a critical design and control parameter in circulating fluidized bed (CFB) reactor systems, there are no available techniques to measure it directly at conditions of industrial interest. Cold flow tests have been conducted at NETL in an industrial scale CFB unit where the solids flow has been the topic of research in order to develop an independent method which could be applied to CFBs operating under the erosive and corrosive high temperatures and pressures of a coal fired boiler or gasifier. The dynamic responses of the CFB loop to modest modulated aeration flows in themore » return leg or standpipe were imposed to establish a periodic response in the unit without causing upset in the process performance. The resulting periodic behavior could then be analyzed with a dynamic model and the average solids circulation rate could be established. This method was applied to the CFB unit operated under a wide range of operating conditions including fast fluidization, core annular flow, dilute and dense transport, and dense suspension upflow. In addition, the system was operated in both low and high total solids inventories to explore the influence of inventory limiting cases on the estimated results. The technique was able to estimate the solids circulation rate for all transport circulating fluidized beds when operating above upper transport velocity, U{sub tr2}. For CFB operating in the fast fluidized bed regime (i.e., U{sub g}< U{sub tr2}), the phase shift technique was not successful. The riser pressure drop becomes independent of the solids circulation rate and the mass flow rate out of the riser does not show modulated behavior even when the riser pressure drop does.« less
Model-free adaptive control of supercritical circulating fluidized-bed boilers
Cheng, George Shu-Xing; Mulkey, Steven L
2014-12-16
A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
Experimental Study and CFD Simulation of a 2D Circulating Fluidized Bed
NASA Astrophysics Data System (ADS)
Kallio, S.; Guldén, M.; Hermanson, A.
Computational fluid dynamics (CFD) gains popularity in fluidized bed modeling. For model validation, there is a need of detailed measurements under well-defined conditions. In the present study, experiments were carried out in a 40 em wide and 3 m high 2D circulating fluidized bed. Two experiments were simulated by means of the Eulerian multiphase models of the Fluent CFD software. The vertical pressure and solids volume fraction profiles and the solids circulation rate obtained from the simulation were compared to the experimental results. In addition, lateral volume fraction profiles could be compared. The simulated CFB flow patterns and the profiles obtained from simulations were in general in a good agreement with the experimental results.
Nonspherical particles in a pseudo-2D fluidized bed: Experimental study.
Mahajan, Vinay V; Padding, Johan T; Nijssen, Tim M J; Buist, Kay A; Kuipers, J A M
2018-05-01
Fluidization is widely used in industries and has been extensively studied, both experimentally and theoretically, in the past. However, most of these studies focus on spherical particles while in practice granules are rarely spherical. Particle shape can have a significant effect on fluidization characteristics. It is therefore important to study the effect of particle shape on fluidization behavior in detail. In this study, experiments in pseudo-2D fluidized beds are used to characterize the fluidization of spherocylindrical (rod-like) Geldart D particles of aspect ratio 4. Pressure drop and optical measurement methods (Digital Image Analysis, Particle Image Velocimetry, Particle Tracking Velocimetry) are employed to measure bed height, particle orientation, particle circulation, stacking, and coordination number. The commonly used correlations to determine the pressure drop across a bed of nonspherical particles are compared to experiments. Experimental observations and measurements have shown that rod-like particles are prone to interlocking and channeling behavior. Well above the minimum fluidization velocity, vigorous bubbling fluidization is observed, with groups of interlocked particles moving upwards, breaking up, being thrown high in the freeboard region and slowly raining down as dispersed phase. At high flowrates, a circulation pattern develops with particles moving up through the center and down at the walls. Particles tend to orient themselves along the flow direction. © 2018 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers , 64: 1573-1590, 2018.
Nonspherical particles in a pseudo‐2D fluidized bed: Experimental study
Mahajan, Vinay V.; Nijssen, Tim M. J.; Buist, Kay A.; Kuipers, J. A. M.
2018-01-01
Fluidization is widely used in industries and has been extensively studied, both experimentally and theoretically, in the past. However, most of these studies focus on spherical particles while in practice granules are rarely spherical. Particle shape can have a significant effect on fluidization characteristics. It is therefore important to study the effect of particle shape on fluidization behavior in detail. In this study, experiments in pseudo‐2D fluidized beds are used to characterize the fluidization of spherocylindrical (rod‐like) Geldart D particles of aspect ratio 4. Pressure drop and optical measurement methods (Digital Image Analysis, Particle Image Velocimetry, Particle Tracking Velocimetry) are employed to measure bed height, particle orientation, particle circulation, stacking, and coordination number. The commonly used correlations to determine the pressure drop across a bed of nonspherical particles are compared to experiments. Experimental observations and measurements have shown that rod‐like particles are prone to interlocking and channeling behavior. Well above the minimum fluidization velocity, vigorous bubbling fluidization is observed, with groups of interlocked particles moving upwards, breaking up, being thrown high in the freeboard region and slowly raining down as dispersed phase. At high flowrates, a circulation pattern develops with particles moving up through the center and down at the walls. Particles tend to orient themselves along the flow direction. © 2018 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 64: 1573–1590, 2018 PMID:29706659
Dynamic analysis of a circulating fluidized bed riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panday, Rupen; Shadle, Lawrence J.; Guenther, Chris
2012-01-01
A linear state model is proposed to analyze dynamic behavior of a circulating fluidized bed riser. Different operating regimes were attained with high density polyethylene beads at low and high system inventories. The riser was operated between the classical choking velocity and the upper transport velocity demarcating fast fluidized and transport regimes. At a given riser superficial gas velocity, the aerations fed at the standpipe were modulated resulting in a sinusoidal solids circulation rate that goes into the riser via L-valve. The state model was derived based on the mass balance equation in the riser. It treats the average solidsmore » fraction across the entire riser as a state variable. The total riser pressure drop was modeled using Newton’s second law of motion. The momentum balance equation involves contribution from the weight of solids and the wall friction caused by the solids to the riser pressure drop. The weight of solids utilizes the state variable and hence, the riser inventory could be easily calculated. The modeling problem boils down to estimating two parameters including solids friction coefficient and time constant of the riser. It has been shown that the wall friction force acts in the upward direction in fast fluidized regime which indicates that the solids were moving downwards on the average with respect to the riser wall. In transport regimes, the friction acts in the opposite direction. This behavior was quantified based on a sign of Fanning friction factor in the momentum balance equation. The time constant of the riser appears to be much higher in fast fluidized regime than in transport conditions.« less
Pressurized reactor system and a method of operating the same
Isaksson, J.M.
1996-06-18
A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Super-atmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gasification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor. 2 figs.
Pressurized reactor system and a method of operating the same
Isaksson, Juhani M.
1996-01-01
A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Superatmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gassification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor.
Model-free adaptive control of advanced power plants
Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang
2015-08-18
A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
NASA Astrophysics Data System (ADS)
Ammendola, Paola; Bareschino, Piero; Chirone, Riccardo; Salatino, Piero; Solimene, Roberto
2017-06-01
Fluidization technology displays a long record of success stories, mostly related to applications to thermal and thermochemical processes, which are fostering extension to novel and relatively unexplored fields. Application of fluidized beds to collection and thermal storage of solar radiation in Concentrated Solar Power (CSP) is one of the most promising, a field which poses challenging issues and great opportunities to fluidization scientists and technologists. The potential of this growing field calls for reconsideration of some of the typical design and operation guidelines and criteria, with the goal of exploiting the inherently good thermal performances of gas-fluidized beds at their best. "Creative" and non-conventional design and operation of fluidized beds, like those based on internal and external solids circulation, may be beneficial to the enhancement of thermal diffusivity and surface-to-bed heat transfer, improving the potential for application in the very demanding context of CSP with thermal energy storage. This paper investigated: i) a fluidized bed configuration with an uneven distribution of the fluidizing gas to promote vortices in the scale of bed height (internal solids circulation); ii) a dual fluidized bed configuration characterized by an external solids circulation achieved by the operation of a riser and a bubbling fluidized bed. CFD simulations showed the hydrodynamics conditions under which the internal solids circulation was established. The hydrodynamic characterization of the external solids circulation was achieved by an experimental study carried out with different cold models. The dual fluidized bed system was optimized in terms of operating conditions and geometrical features of the connections between two fluidized beds.
MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed
Li, Tingwen; Dietiker, Jean-François; Shahnam, Mehrdad
2012-12-01
In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numericalmore » results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.« less
Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin
2014-12-01
An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang
2015-02-24
The improvements proposed in this invention provide a reliable apparatus and method to gasify low rank coals in a class of pressurized circulating fluidized bed reactors termed "transport gasifier." The embodiments overcome a number of operability and reliability problems with existing gasifiers. The systems and methods address issues related to distribution of gasification agent without the use of internals, management of heat release to avoid any agglomeration and clinker formation, specific design of bends to withstand the highly erosive environment due to high solid particles circulation rates, design of a standpipe cyclone to withstand high temperature gasification environment, compact design of seal-leg that can handle high mass solids flux, design of nozzles that eliminate plugging, uniform aeration of large diameter Standpipe, oxidant injection at the cyclone exits to effectively modulate gasifier exit temperature and reduction in overall height of the gasifier with a modified non-mechanical valve.
Attrition of lime sorbents during fluidization in a circulating fluidized bed absorber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang Kwun; Keener, T.C.; Jiang, Xiaolin
1993-11-01
The experimental data of lime sorbent attrition obtained from mechanical and thermal attrition tests in a circulating fluidized bed absorber (CFBA) are represented. The results indicate that the predominant attrition mechanism during lime fluidization is surface abrasion due to collisions of the parent solids in a bed. Attrition of lime at higher temperatures decreased due to its hardened properties with rising temperature, while such solids as limestone become more attritable by the crepitation resulting from the increased internal pressure. With an introduction of the minimum weight of parent solids, the attrition rate of lime in a CFBA has a first-ordermore » dependency with respect to time. The attrition rate constant is expressed in an Arrhenius form, using the kinetic model which relates the attrition rate to the gas properties such as temperature and molecular weight and the geometry of the fluidized bed as well as the fluidization velocity. The experimental data obtained from these tests in a CFBA agree well with the attrition model, and the model indicates trends due to increased temperature considering thermal attrition. From the model the attrition activation energy, E[sub a] and k[sub o], can be obtained as E[sub a] = 3.383 [times] 10[sup [minus]3] kJ/kg and k[sub o] = 1.29 [times] 10[sup [minus]4]s[sup [minus]1], Comparisons of the mechanical and thermal attrition data obtained experimentally with the theoretical values computed with the attrition activation energy, E[sub a] and k[sub o], are in good agreement, and thus the results may be applicable to lime attrition in a fluidized bed.« less
Rothenberger, Jens; Krauss, Sabrina; Held, Manuel; Bender, Dominik; Schaller, Hans-Eberhard; Rahmanian-Schwarz, Afshin; Constantinescu, Mihai Adrian; Jaminet, Patrick
2014-11-01
Pressure ulcers are associated with severe impairment for the patients and high economic load. With this study we wanted to gain more insight to the skin perfusion dynamics due to external loading. Furthermore, we evaluated the effect of different types of pressure relief mattresses. A total of 25 healthy volunteers were enrolled in the study. Perfusion dynamics of the sacral and the heel area were assessed using the O2C-device, which combines a laser light, to determine blood flow, and white light to determine the relative amount of hemoglobin. Three mattresses were evaluated compared to a hard surface: a standard hospital foam mattress bed, a visco-elastic foam mattress, and an air-fluidized bed. In the heel area, only the air-fluidized bed was able to maintain the blood circulation (mean blood flow of 13.6 ± 6 versus 3.9 ± 3 AU and mean relative amount of hemoglobin of 44.0 ± 14 versus 32.7 ± 12 AU.) In the sacral area, all used mattresses revealed an improvement of blood circulation compared to the hard surface. The results of this study form a more precise pattern of perfusion changes due to external loading on various pressure relief mattresses. This knowledge may reduce the incidence of pressure ulcers and may be an influencing factor in pressure relief mattress selection. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
A Hydrodynamic Characteristic of a Dual Fluidized Bed Gasification
NASA Astrophysics Data System (ADS)
Sung, Yeon Kyung; Song, Jae Hun; Bang, Byung Ryeul; Yu, Tae U.; Lee, Uen Do
A cold model dual fluidized bed (DFB) reactor, consisting of two parallel interconnected bubbling and fast fluidized beds, was designed for developing an auto-thermal biomass gasifier. The combustor of this system burns the rest char of the gasification process and provides heat to the gasifier by circulating solids inventory. To find an optimal mixing and circulation of heavy solid inventory and light biomass and char materials, we investigate two types of DFB reactors which have different configuration of distributor and way-out location of the solid inventory and char materials in the gasifier. To determine appropriate operating conditions, we measured minimum fluidization velocity, solid circulation rate, axial solid holdup and gas bypassing between the lower loop seal and the gasifier.
You, Changfu; Xu, Xuchang
2008-04-01
Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible.
Methods of forming a fluidized bed of circulating particles
Marshall, Douglas W [Blackfoot, ID
2011-05-24
There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.
Fluidization quality analyzer for fluidized beds
Daw, C. Stuart; Hawk, James A.
1995-01-01
A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.
Fluidization quality analyzer for fluidized beds
Daw, C.S.; Hawk, J.A.
1995-07-25
A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.
A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS
A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...
Characteristics of oily sludge combustion in circulating fluidized beds.
Zhou, Lingsheng; Jiang, Xiumin; Liu, Jianguo
2009-10-15
Incineration of oily sludge in circulating fluidized beds may be an effective way for its management in some cases. The objective of the present paper is to investigate combustion characteristics of oily sludge, which would be helpful and useful for the design and simulation of a circulating fluidized bed. Firstly, the pyrolysis and combustion of oily sludge were studied through some thermal analyses, which included the thermogravimetric (TG) analysis and the differential thermal analytical (DTA) analysis. It was found that the combustion of oily sludge might be the combustion of its pyrolysis products. Secondly, an experiment for measuring of main components of the volatile from oily sludge pyrolysis was carried out. Some mathematic correlations about the compositions of volatile from oily sludge devolatilization were achieved from the experimental results. Finally, the combustion characteristics of oily sludge was studied in a lab-scale circulating fluidized bed, which could obtain some information about the location of release and combustion of the volatiles.
PARTICLE FLOW, MIXING, AND CHEMICAL REACTION IN CIRCULATING FLUIDIZED BED ABSORBERS
A mixing model has been developed to simulate the particle residence time distribution (RTD) in a circulating fluidized bed absorber (CFBA). Also, a gas/solid reaction model for sulfur dioxide (SO2) removal by lime has been developed. For the reaction model that considers RTD dis...
Apparatus and method for determining solids circulation rate
Ludlow, J Christopher [Morgantown, WV; Spenik, James L [Morgantown, WV
2012-02-14
The invention relates to a method of determining bed velocity and solids circulation rate in a standpipe experiencing a moving packed bed flow, such as the in the standpipe section of a circulating bed fluidized reactor The method utilizes in-situ measurement of differential pressure over known axial lengths of the standpipe in conjunction with in-situ gas velocity measurement for a novel application of Ergun equations allowing determination of standpipe void fraction and moving packed bed velocity. The method takes advantage of the moving packed bed property of constant void fraction in order to integrate measured parameters into simultaneous solution of Ergun-based equations and conservation of mass equations across multiple sections of the standpipe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Kwun; Keener, T.C.; Cook, J.L.
1993-12-31
The experimental data of lime sorbent attrition obtained from attriton tests in a circulating fluidized bed absorber (CFBA) are represented. The results are interpreted as both the weight-based attrition rate and size-based attrition rate. The weight-based attrition rate constants are obtained from a modified second-order attrition model, incorporating a minimum fluidization weight, W{sub min}, and excess velocity. Furthermore, this minimum fluidization weight, or W{sub min} was found to be a function of both particle size and velocity. A plot of the natural log of the overall weight-based attrition rate constants (ln K{sub a}) for Lime 1 (903 MMD) at superficialmore » gas velocities of 2 m/s, 2.35 m/s, and 2.69 m/s and for Lime 2 (1764 MMD) at superficial gas velocities of 2 m/s, 3 m/s, 4 m/s and 5 m/s versus the energy term, 1/(U-U{sub mf}){sup 2}, yielded a linear relationship. And, a regression coefficient of 0.9386 for the linear regression confirms that K{sub a} may be expressed in Arrhenius form. In addition, an unsteady state population model is represented to predict the changes in size distribution of bed materials during fluidization. The unsteady state population model was verified experimentally and the solid size distribution predicted by the model agreed well with the corresponding experimental size distributions. The model may be applicable for the batch and continuous operations of fluidized beds in which the solids size reduction is predominantly resulted from attritions and elutriations. Such significance of the mechanical attrition and elutriation is frequently seen in a fast fluidized bed as well as in a circulating fluidized bed.« less
NASA Astrophysics Data System (ADS)
Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang
2016-09-01
The hydrodynamics of gas-solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s-1 to 3.0 m s-1 with a step of 0.2 m s-1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas-solids bubbling flows.
Method and apparatus for incinerating hazardous waste
Korenberg, Jacob
1990-01-01
An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei-Ping Pan; Andy Wu; John T. Riley
This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2004 through December 31, 2004. The following tasks have been completed. First, the renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have proceeded well. Second, the detailed design of supporting and hanging structures for the CFBC was completed. Third, the laboratory-scale simulated fluidized-bed facility was modified after completing a series of pretests. The two problems identified during the pretest were solved.more » Fourth, the carbonization of chicken waste and coal was investigated in a tube furnace and a Thermogravimetric Analyzer (TGA). The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.« less
Fluidized bed regenerators for Brayton cycles
NASA Technical Reports Server (NTRS)
Nichols, L. D.
1975-01-01
A recuperator consisting of two fluidized bed regenerators with circulating solid particles is considered for use in a Brayton cycle. These fluidized beds offer the possibility of high temperature operation if ceramic particles are used. Calculations of the efficiency and size of fluidized bed regenerators for typical values of operating parameters were made and compared to a shell and tube recuperator. The calculations indicate that the fluidized beds will be more compact than the shell and tube as well as offering a high temperature operating capability.
NASA Technical Reports Server (NTRS)
Horio, M.; Wen, C. Y.
1976-01-01
A chemical engineering analysis is made of fluidized-bed combustor (FBC) performance, with FBC models developed to aid estimation of combustion efficiency and axial temperature profiles. The FBC is intended for combustion of pulverized coal and a pressurized FBC version is intended for firing gas turbines by burning coal. Transport phenomena are analyzed at length: circulation, mixing models, drifting, bubble wake lift, heat transfer, division of the FB reactor into idealized mixing cells. Some disadvantages of a coal FBC are pointed out: erosion of immersed heat-transfer tubing, complex feed systems, carryover of unburned coal particles, high particulate emission in off-streams. The low-temperature bed (800-950 C) contains limestone, and flue-gas-entrained SO2 and NOx can be kept within acceptable limits.
Study on the flow in the pipelines of the support system of circulating fluidized bed
NASA Astrophysics Data System (ADS)
Meng, L.; Yang, J.; Zhou, L. J.; Wang, Z. W.; Zhuang, X. H.
2013-12-01
In the support system of Circulating Fluidized Bed (Below referred to as CFB) of thermal power plant, the pipelines of primary wind are used for transporting the cold air to the boiler, which is important in controlling and combustion effect. The pipeline design will greatly affect the energy loss of the system, and accordingly affect the thermal power plant economic benefits and production environment. Three-dimensional numerical simulation is carried out for the pipeline internal flow field of a thermal power plant in this paper. Firstly three turbulence models were compared and the results showed that the SST k-ω model converged better and the energy losses predicted were closer to the experimental results. The influence of the pipeline design form on the flow characteristics are analysed, then the optimization designs of the pipeline are proposed according to the energy loss distribution of the flow field, in order to reduce energy loss and improve the efficiency of tunnel. The optimization plan turned out to be efficacious; about 36% of the pressure loss is reduced.
Characterization of coals for circulating fluidized bed combustion by pilot scale tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, L.A.; Cabanillas, A.C.; Becerra, J.O. de
1995-12-31
The major part of the Spanish coal supply is low range coal with both high ash (20--40%) and sulfur (1--8%) content. The use of this coal, by conventional combustion processes in power and industrial plants, implies a very high environmental impact. The Circulating Fluidized Bed Combustion process enables an efficient use of this coal. The Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas is carrying out a program with the intention of assisting companies in evaluating fuel quality impact, using atmospheric fluidized bed combustion. This paper reviews the major results of the fuel program in order to determine the fluidized bedmore » combustion performance of four fuels. Two lignites, a bituminous coal and an anthracite. The two lignites have very high sulfur content (7% and 8%) but the sulfur is organic in one case and pyritic in the other. The bituminous coal and the anthracite have 1% and 2% sulfur content respectively and the sulfur is pyritic in these cases. In order to reduce the sulfur in the flue gases, a high calcium content limestone has been used as sorbent. The combustion trials have been done in a circulating fluidized bed pilot plant with a 200 mm inside diameter and a height of 6.5 m. The influence of temperature, fluidization velocity, oxygen excess, Ca/S ratio and coal properties have been studied in relation to the combustion efficiency, sulfur retention, CO and NO{sub x} emissions.« less
Heat exchanger support apparatus in a fluidized bed
Lawton, Carl W.
1982-01-01
A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.
Hybrid fluidized bed combuster
Kantesaria, Prabhudas P.; Matthews, Francis T.
1982-01-01
A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.
You, Changfu; Li, Yuan
2013-03-19
Semidry flue gas desulfurization (FGD) experiments were conducted using rapidly hydrated sorbents with four different adhesive carrier particles: circulation ash from a circulating fluidized bed boiler (CFBB circulation ash), fly ash from the first electrical field of the electrostatic precipitator of a circulating fluidized bed boiler (CFBB ESP ash), fly ash from a chain boiler (chain boiler ash), and river sand smaller than 1 mm. The influences of various adhesive carrier particles and operating conditions on the desulfurization characteristics of the sorbents were investigated, including sprayed water, reaction temperature, and the ratio of calcium to sulfur (Ca/S). The experimental results indicated that the rapidly hydrated sorbents had better desulfurization characteristics by using adhesive carrier particles which possessed better pore, adhesion, and fluidization characteristics. The desulfurization efficiency of the system increased as the reaction temperature decreased, it improved from 35% to 90% as the mass flow rate of the sprayed water increased from 0 to 10 kg/h, and it increased from 65.6% to 82.7% as Ca/S increased from 1.0 to 2.0. Based on these findings, a new semidry circulating fluidized bed (CFB)-FGD system using rapidly hydrated sorbent was developed. Using the rapidly hydrated sorbent, this system uses a cyclone separator instead of an ESP or a bag filter to recycle the sorbent particles, thereby decreasing the system flow resistance, saving investment and operating costs of the solids collection equipment.
Modeling of circulating fluised beds for post-combustion carbon capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.; Shadle, L.; Miller, D.
2011-01-01
A compartment based model for a circulating fluidized bed reactor has been developed based on experimental observations of riser hydrodynamics. The model uses a cluster based approach to describe the two-phase behavior of circulating fluidized beds. Fundamental mass balance equations have been derived to describe the movement of both gas and solids though the system. Additional work is being performed to develop the correlations required to describe the hydrodynamics of the system. Initial testing of the model with experimental data shows promising results and highlights the importance of including end effects within the model.
Zukowski, Witold; Berkowicz, Gabriela; Baron, Jerzy; Kandefer, Stanisław; Jamanek, Dariusz; Szarlik, Stefan; Wielgosz, Zbigniew; Zielecka, Maria
2014-01-01
2,6-dimethylphenol (2,6-DMP) is a product of phenol methylation, especially important for the plastics industry. The process of phenol methylation in the gas phase is strongly exothermic. In order to ensure good temperature equalization in the catalyst bed, the process was carried out using a catalyst in the form of a fluidized bed - in particular, the commercial iron-chromium catalyst TZC-3/1. Synthesis of 2,6-dimethylphenol from phenol and methanol in fluidized bed of iron-chromium catalyst was carried out and the fluidization of the catalyst was examined. Stable state of fluidized bed of iron-chromium catalyst was achieved. The measured velocities allowed to determine the minimum flow of reactants, ensuring introduction of the catalyst bed in the reactor into the state of fluidization. Due to a high content of o-cresol in products of 2,6-dimethylphenol synthesis, circulation in the technological node was proposed. A series of syntheses with variable amount of o-cresol in the feedstock allowed to determine the parameters of stationary states. A stable work of technological node with o-cresol circulation is possible in the temperature range of350-380°C, and o-cresolin/phenolin molar ratio of more than 0.48. Synthesis of 2,6-DMP over the iron-chromium catalyst is characterized by more than 90% degree of phenol conversion. Moreover, the O-alkylation did not occur (which was confirmed by GC-MS analysis). By applying o-cresol circulation in the 2,6-DMP process, selectivity of more than 85% degree of 2,6-DMP was achieved. The participation levels of by-products: 2,4-DMP and 2,4,6-TMP were low. In the optimal conditions based on the highest yield of 2,6-DMP achieved in the technological node applying o-cresol circulation, there are 2%mol. of 2,4-DMP and 6%mol. of 2,4,6-TMP in the final mixture, whereas 2,4,6-TMP can be useful as a chain stopper and polymer's molar mass regulator during the polymerization of 2,6-DMP.
Bed inventory overturn in a circulating fluid bed riser with pant-leg structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jinjing Li; Wei Wang; Hairui Yang
2009-05-15
The special phenomenon, nominated as bed inventory overturn, in circulating fluid bed (CFB) riser with pant-leg structure was studied with model calculation and experimental work. A compounded pressure drop mathematic model was developed and validated with the experimental data in a cold experimental test rig. The model calculation results agree well with the measured data. In addition, the intensity of bed inventory overturn is directly proportional to the fluidizing velocity and is inversely proportional to the branch point height. The results in the present study provide significant information for the design and operation of a CFB boiler with pant-leg structure.more » 15 refs., 10 figs., 1 tab.« less
Improvement of CFD Methods for Modeling Full Scale Circulating Fluidized Bed Combustion Systems
NASA Astrophysics Data System (ADS)
Shah, Srujal; Klajny, Marcin; Myöhänen, Kari; Hyppänen, Timo
With the currently available methods of computational fluid dynamics (CFD), the task of simulating full scale circulating fluidized bed combustors is very challenging. In order to simulate the complex fluidization process, the size of calculation cells should be small and the calculation should be transient with small time step size. For full scale systems, these requirements lead to very large meshes and very long calculation times, so that the simulation in practice is difficult. This study investigates the requirements of cell size and the time step size for accurate simulations, and the filtering effects caused by coarser mesh and longer time step. A modeling study of a full scale CFB furnace is presented and the model results are compared with experimental data.
NASA Astrophysics Data System (ADS)
Li, S. Y.; Teng, H. P.; Jiao, W. H.; Shang, L. L.; Lu, Q. G.
Characterizations of combustion and emission of four kinds of herbaceous biomass pellets were investigated in a 0.15 MWt circulating fluidized bed. Corn stalk, wheat stalk, cotton stalk and king grass, which are typical herbaceous biomass in China, were chosen for this study. Temperature profile, emission in flue gas and agglomeration were studied by changing the combustion temperature between 750°C and 880°C. The combustion efficiencies are in the range from 97.4% to 99.4%, which are relatively high due to the homogeneous temperature profiles and good circulating fluidization of bed material. Suitable combustion temperatures for the different herbaceous biomass are mainly depended on the emission and bed agglomeration. SO2 and HCl concentrations in flue gas are in direct proportion to the sulfur and chlorine contents of the herbaceous biomass. Agglomeration at the cyclone leg and the loop seal is the main reason for defluidization in the CFB combustor.
Control of bed height in a fluidized bed gasification system
Mehta, Gautam I.; Rogers, Lynn M.
1983-12-20
In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.
Modeling biomass gasification in circulating fluidized beds
NASA Astrophysics Data System (ADS)
Miao, Qi
In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous reactions occur in gas phase. Each section was divided into a number of small cells, over which mass and energy balances were applied. Due to the high heating rate in circulating fluidized bed, the pyrolysis was considered instantaneous. A number of homogeneous and heterogeneous reactions were considered in the model. Mass transfer resistance was considered negligible since the reactions were under kinetic control due to good gas-solid mixing. The model is capable of predicting the bed temperature distribution along the gasifier, the concentration and distribution of each species in the vertical direction of the bed, the composition and lower heating value (LHV) of produced gas, the gasification efficiency, the overall carbon conversion and the produced gas production rate. A sensitivity analysis was performed to test its response to several gasifier operating conditions. The model sensitivity analysis showed that equivalence ratio (ER), bed temperature, fluidization velocity, biomass feed rate and moisture content had various effects on the gasifier performance. However, the model was more sensitive to variations in ER and bed temperature. The model was validated using the experimental results obtained from the demonstration plant. The reactor was operated on rice husk at various ERs, fluidization velocities and biomass feed rates. The model gave reasonable predictions. The model was also validated by comparing the simulation results with two other different size CFBBGs using different biomass feedstock, and it was concluded that the developed model can be applied to other CFBBGs using various biomass fuels and having comparable reactor geometries. A thermodynamic model was developed under ASPEN PLUS environment. Using the approach of Gibbs free energy minimization, the model was essentially independent of kinetic parameters. A sensitivity analysis was performed on the model to test its response to operating variables, including ER and biomass moisture content. The results showed that the ER has the most effect on the product gas composition and LHV. The simulation results were compared with the experimental data obtained from the demonstration plant. Keywords: Biomass gasification; Mathematical model; Circulating fluidized bed; Hydrodynamics; Kinetics; Sensitivity analysis; Validation; Equivalence ratio; Temperature; Feed rate; Moisture; Syngas composition; Lower heating value; Gasification efficiency; Carbon conversion
Cole, Rossa W.; Zoll, August H.
1982-01-01
In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.
Lagrangian Approach to Study Catalytic Fluidized Bed Reactors
NASA Astrophysics Data System (ADS)
Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration
2013-03-01
Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)
Study of Nox Emission Characteristics of a 1025t/h Coal-Fired Circulating Fluidized Bed Boiler
NASA Astrophysics Data System (ADS)
Li, Q. Y.; Mi, Z. D.; Zhang, Q. F.
Measurements of emission are carried out in a 1025t/h CFB boiler. The effect of some factors including coal properties, bed temperature, unit load, excess air on the emission of NOx are investigated. The measurement results show that the N concentration in the coal is dominant parameter to predict the NOx emission from a large-scale CFB boiler. NOx emission from the 1025t/h CFB boiler increases with cyclone temperature and upper pressure drop due to post combustion and external cycle.
COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Essam A
2013-01-09
Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations tomore » study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.« less
Yan, Linbo; Lim, C Jim; Yue, Guangxi; He, Boshu; Grace, John R
2016-12-01
A user-defined solver integrating the solid-gas surface reactions and the multi-phase particle-in-cell (MP-PIC) approach is built based on the OpenFOAM software. The solver is tested against experiments. Then, biomass-steam gasification in a dual fluidized bed (DFB) gasifier is preliminarily predicted. It is found that the predictions agree well with the experimental results. The bed material circulation loop in the DFB can form automatically and the bed height is about 1m. The voidage gradually increases along the height of the bed zone in the bubbling fluidized bed (BFB) of the DFB. The U-bend and cyclone can separate the syngas in the BFB and the flue gas in the circulating fluidized bed. The concentration of the gasification products is relatively higher in the conical transition section, and the dry and nitrogen-free syngas at the BFB outlet is predicted to be composed of 55% H 2 , 20% CO, 20% CO 2 and 5% CH 4 . Copyright © 2016 Elsevier Ltd. All rights reserved.
A New Dry Flue Gas Desulfurization Process-Underfeed Circulating Spouted Bed
NASA Astrophysics Data System (ADS)
Tao, M.; Jin, B. S.; Yang, Y. P.
Applying an underfeed system, the underfeed circulating spouted bed was designed as a desulfurization reactor. The main objective of the technology is to improve the mixing effect and distribution uniformity of solid particles, and therefore to advance the desulfurization efficiency and calcium utility. In this article, a series of experimental studies were conducted to investigate the fluidization behavior of the solid-gas two-phase flow in the riser. The results show that the technology can distinctly improve the distribution of gas velocity and particle flux on sections compared with the facefeed style. Analysis of pressure fluctuation signals indicates that the operation parameters have significant influence on the flow field in the reaction bed. The existence of injecting flow near the underfeed nozzle has an evident effect on strengthening the particle mixing.
Characterization of solid fuels at pressurized fluidized bed gasification conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zevenhoven, R.; Hupa, M.
1998-07-01
The gasification of co-gasification of solid fuel (coal, peat, wood) in air-blown fluidized bed gasifiers is receiving continued attention as an alternative to entrained flow gasifiers which in general are oxygen-blown. Fluidized bed gasification of wood and wood-waste at elevated pressures, and the so-called air-blown gasification cycle are examples of processes which are under development in Europe. based on complete or partial gasification of a solid fuel in a pressurized fluidized bed. At the same time, fuel characterization data for the combination of temperature, pressure and fuel particle heating rate that is encountered in fluidized bed gasification are very scarce.more » In this paper, quantitative data on the characterization of fuels for advanced combustion and gasification technologies based on fluidized beds are given, as a result from the authors participation in the JOULE 2 extension project on clean coal technology of the European community. Eleven solid fuels, ranging from coal via peat to wood, have been studied under typical fluidized bed gasification conditions: 800--1,000 C, 1--25 bar, fuel heating rate in the order of 100--1,000 C/s. Carbon dioxide was used as gasifying agent. A pressurized thermogravimetric reactor was used for the experiments. The results show that the solid residue yield after pyrolysis/devolatilization increases with pressure and decreases with temperature. For coal, the gasification reactivity of the char increases by a factor of 3 to 4 when pressurizing from 1 to 25 bar, for the younger fuels such as peat and wood, this effect is negligible. Several empirical engineering equations are given which relate the fuel performance to the process parameters and the proximate and chemical analyses of the fuel. A pressure maximum was found at which a maximum gasification reactivity occurs, for practically all fuels, and depending on temperature. It is shown that this can be explained and modeled using a Langmuir-Hinshelwood model.« less
Numerical study of rice husk and coal co-combustion characteristics in a circulating fluidized bed
NASA Astrophysics Data System (ADS)
Wang, Zuomin; Li, Jiuru
2018-02-01
This paper discussed the rationality of coal and rice husk co-combustion. Using ICEM software, a two-dimensional model of the riser has been established for circulating fluidized bed experimental table. Using Fluent software, numerical simulation has been made for the combustion reaction of different proportions of rice husk mixed with coal. The results show that, with the increase of rice husk ratio, both the combustion temperature and the amount of nitrogen oxides decrease and the effect is gradually reduced. In this simulation, the rice husks occupying about 30% is a reasonable proportion.
Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler.
Tsai, Meng-Yuan; Wu, Keng-Tung; Huang, Chin-Cheng; Lee, Hom-Ti
2002-01-01
Co-firing of coal and paper mill sludge was conducted in a 103 MWth circulating fluidized bed boiler to investigate the effect of the sludge feeding rate on emissions of SOx, NOx, and CO. The preliminary results show that emissions of SOx and Nx decrease with increasing sludge feeding rate, but CO shows the reverse tendency due to the decrease in combustion temperature caused by a large amount of moisture in the sludge. All emissions met the local environmental requirements. The combustion ashes could be recycled as feed materials in the cement manufacturing process.
Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.
Yu, Yong-Ho; Chung, Jinwook
2015-01-01
This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.
Abatement of N{sub 2}O emissions from circulating fluidized bed combustion through afterburning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsson, L.; Leckner, B.
1995-04-01
A method for the abatement of N{sub 2}O emission from fluidized bed combustion has been investigated. The method consists of burning a secondary fuel after the normal circulating fluidized bed combustor. Liquefied petroleum gas (LPG), fuel oil, pulverized coal, and wood, as well as sawdust, were used as the secondary fuel. Experiments showed that the N{sub 2}O emission can be reduced by 90% or more by this technique. The resulting N{sub 2}O emission was principally a function of the gas temperature achieved in the afterburner and independent of afterburning fuel, but the amount of air in the combustion gases frommore » the primary combustion also influences the results. No negative effects on sulfur capture or on NO or CO emissions were recorded. In the experiments, the primary cyclone of the fluidized bed boiler was used for afterburning. If afterburning is implemented in a plant optimized for this purpose, an amount of secondary fuel corresponding to 10% of the total energy input should remove practically all N{sub 2}O. During the present experiments the secondary fuel consumption was greater than 10% of the total energy input due to various losses.« less
NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.
1991-01-01
This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration planmore » was completed. (VC)« less
Overall Heat Transfer Coefficients for a Horizontal Cylinder in a Fluidized Bed.
1984-04-01
The distribution system is composed of 2 in. PVC pipe and fittings arranged in a convenient air-tight geometry. Pressure regulators, pressure gauges...uniform fluidization. After i£ A_ 4 passing through the beads, the air is exhausted to the outside by means of galvanized duct work. Fluidized Bed...design is the matching with the copper cylinder of outer diameters, the fastening with recessed set screws , their length and the material selection. In
Synchronized oscillations and acoustic fluidization in confined granular materials
NASA Astrophysics Data System (ADS)
Giacco, F.; de Arcangelis, L.; Ciamarra, M. Pica; Lippiello, E.
2018-01-01
According to the acoustic fluidization hypothesis, elastic waves at a characteristic frequency form inside seismic faults even in the absence of an external perturbation. These waves are able to generate a normal stress which contrasts the confining pressure and promotes failure. Here, we study the mechanisms responsible for this wave activation via numerical simulations of a granular fault model. We observe the particles belonging to the percolating backbone, which sustains the stress, to perform synchronized oscillations over ellipticlike trajectories in the fault plane. These oscillations occur at the characteristic frequency of acoustic fluidization. As the applied shear stress increases, these oscillations become perpendicular to the fault plane just before the system fails, opposing the confining pressure, consistently with the acoustic fluidization scenario. The same change of orientation can be induced by external perturbations at the acoustic fluidization frequency.
The Onset of Channelling in a Fluidized Mud Layer
NASA Astrophysics Data System (ADS)
Papanicolaou, T.; Tsakiris, A. G.; Billing, B. M.
2012-12-01
Fluidization of a soil occurs when the drag force exerted on the soil grains by upwelling water equals the submerged weight of the soil grains, hence reducing the effective (or contact) stress between the soil grains to zero. In nature, fluidization is commonly encountered in localized portions of highly saturated mud layers found in tidal flats, estuaries and lakes, where upward flow is initiated by significant pore water pressure gradients triggered by wave or tidal action. The water propagates through the fluidized mud layer by forming channels (or vents), carrying the fluidized mud to the surface and forming mud volcano structures. The presence of these fluidization channels alters the mud layer structure with implications on its hydraulic and geotechnical properties, such as the hydraulic conductivity. Despite the importance of these channels, the conditions that lead to their formation and their effects on the mud layer structure still remain poorly documented. The present study couples experimental and theoretical methods aimed at quantifying the conditions, under which fluidization of a saturated mud layer is accompanied by the formation of channels, and assessing the effects of channeling on the mud layer structure. Fluidization and channel formation in a mud layer were reproduced in the laboratory using a carefully designed fluidization column attached to a pressurized vessel (plenum). To eliminate any effects of the material, the mud was produced from pure kaolin clay and deionized water. Local porosity measurements along the mud layer prior, during and after fluidization were conducted using an Americium-241 gamma source placed on a fully automated carriage. Different water inflow rates, q, were applied to the base of the mud layer and the plenum pressure was monitored throughout the experiment. These experiments revealed that for high q values, a single vertical channel formed and erupted at the center of the fluidization column. Instead for low q values, the experiments suggested that a channel network formed within the mud layer leading to the eruption of multiple channels on the mud layer surface. The gamma source measurements captured quantitatively the porosity increase as the channel formed. The experiments were complemented with a theoretical analysis using the two-phase, flow mass and momentum governing equations. This analysis aims to establish a relation between the applied pressure, the fluid velocity and the local porosity of mud during the formation of the channels.
Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.
Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing
2007-12-01
Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.
NASA Astrophysics Data System (ADS)
Ryabov, G. A.; Folomeev, O. M.; Litun, D. S.; Sankin, D. A.; Dmitryukova, I. G.
2009-01-01
The present state and development of circulating fluidized bed (CFB) technology around the world are briefly reviewed. Questions of increasing the capacity of single boiler units and raising the parameters of steam are discussed. CFB boilers for 225- and 330-MW power units are described and their parameters are estimated as applied to the conditions of firing different Russian fuels. Indicators characterizing CFB boilers and pulverized-coal boilers are given. Capital outlays and operational costs for new coal-fired units are compared, and the results from this comparison are used to show the field of the most promising use of the CFB technology during technical refitting of Russian thermal power stations.
The study of solid circulation rate in a compartmented fluidized bed gasifier (CFBG)
NASA Astrophysics Data System (ADS)
Wee, S. K.; Pok, Y. W.; Law, M. C.; Lee, V. C. C.
2016-06-01
Biomass waste has been abundantly available in Malaysia since the booming of palm oil industry. In order to tackle this issue, gasification is seen a promising technology to convert waste into energy. In view of the heat requirement for endothermic gasification reaction as well as the complex design and operation of multiple fluidized beds, compartmented fluidized bed gasifier (CFBG) with the combustor and the gasifier as separate compartments is proposed. As such, solid circulation rate (SCR) is one of the essential parameters for steady gasification and combustion to be realized in their respective compartments. Experimental and numerical studies (CFD) on the effect of static bed height, main bed aeration, riser aeration and v-valve aeration on SCR have been conducted in a cold- flow CFBG model with only river sand as the fluidizing medium. At lower operating range, the numerical simulations under-predict the SCR as compared to that of the experimental results. Also, it predicts slightly different trends over the range. On the other hand, at higher operating range, the numerical simulations are able to capture those trends as observed in the experimental results at the lower operating range. Overall, the numerical results compare reasonably well with that of the experimental works.
Apple juice clarification by immobilized pectolytic enzymes in packed or fluidized bed reactors.
Diano, Nadia; Grimaldi, Tiziana; Bianco, Mariangela; Rossi, Sergio; Gabrovska, Katya; Yordanova, Galya; Godjevargova, Tzonka; Grano, Valentina; Nicolucci, Carla; Mita, Luigi; Bencivenga, Umberto; Canciglia, Paolo; Mita, Damiano G
2008-12-10
The catalytic behavior of a mixture of pectic enzymes, covalently immobilized on different supports (glass microspheres, nylon 6/6 pellets, and PAN beads), was analyzed with a pectin aqueous solution that simulates apple juice. The following parameters were investigated: the rate constant at which pectin hydrolysis is conducted, the time (tau(50)) in which the reduction of 50% of the initial viscosity is reached, and the time (tau(comp,dep)) required to obtain complete depectinization. The best catalytic system was proven to be PAN beads, and their pH and temperature behavior were determined. The yields of two bed reactors, packed or fluidized, using the catalytic PAN beads, were compared to the circulation flow rate of real apple juice. The experimental conditions were as follows: pH 4.0, T = 50 degrees C, and beads volume = 20 cm(3). The initial pectin concentration was the one that was present in our apple juice sample. No differences were observed at low circulation rates, while at higher recirculation rates, the time required to obtain complete pectin hydrolysis into the fluidized reactor was found to be 0.25 times smaller than in the packed bed reactor: 131 min for the packed reactors and 41 min for the fluidized reactors.
Luan, Jingde; Li, Aimin; Su, Tong; Li, Xuan
2009-07-30
Oil shale and fly ash collected from two thermal power plants located in Huadian, the northeast city of China were subjected to fraction distribution, translocation regularity and toxicity assessment to provide preliminary assessment of suitability for land application. By Tessier sequential extraction, the results showed that Ni, Cr, Pb and Zn were mostly bounded with iron-manganese and organic bound in oil shale, but Cu and Cd were mostly associated with iron-manganese bound and residue fraction. Through circulated fluidized-bed combustion, high concentration of heavy metals (Cu, Cd, Ni, Cr, Pb, and Zn) was found in iron-manganese bound and residue fraction in fly ash. There was accumulation of all studied metals except Ni and Cr in fly ash and translocation mass of metals were as follows: Pb>Zn>Cu>Cd during circulated fluidized-bed combustion. Fly ash was contaminated with Cd higher than the pollution concentration limits listed in GB15168-1995, China. This work demonstrated that it was unadvisable way to carry out landfill without any treatment. By means of STI model, toxicity assessment of heavy metals was carried out to show that there was notable increase in toxicity from oil shale to fly ash.
Ebeling, Jr., Robert W.; Weaver, Robert B.
1979-01-01
The pressure within a pressurized flow reactor operated under harsh environmental conditions is controlled by establishing and maintaining a fluidized bed of uniformly sized granular material of selected density by passing the gas from the reactor upwardly therethrough at a rate sufficient to fluidize the bed and varying the height of the bed by adding granular material thereto or removing granular material therefrom to adjust the backpressure on the flow reactor.
Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes
Talmud, Fred M.; Garcia-Mallol, Juan-Antonio
1980-01-01
A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.
Internal dust recirculation system for a fluidized bed heat exchanger
Gamble, Robert L.; Garcia-Mallol, Juan A.
1981-01-01
A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.
The contribution of air-fluidization to the mobility of rapid flowslides involving fine particles
NASA Astrophysics Data System (ADS)
Stilmant, Frédéric; Dewals, Benjamin; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel
2016-04-01
Air-fluidization can be the origin of the long runout of gravitational flows involving fine particles such as ash. An excessive air pore pressure dramatically reduces the friction angle of the material as long as this pressure has not been dissipated, which occurs during the flow. This phenomenon can be modelled thanks to the 2D depth-averaged equations of mass and momentum conservation and an additional transport equation for basal pore pressure evolution (Iverson and Denlinger, 2001). In this contribution, we discuss the application of this model in relation to recent experimental results on air-fluidized flows by Roche et al. (2008) and Roche (2012). The experimental results were used to set a priori the value of the diffusion coefficient in the model, taking into account the difference of scale between the experiments and real-world applications. We also compare the model predictions against detailed observations of a well-documented historical event, the collapse of a fly-ash heap in Belgium (Stilmant et al., 2015). In particular, we analyse the influence of the different components of the model on the results (pore pressure dissipation vs. pore pressure generation). The diffusion coefficient which characterizes the dissipation of air pore pressure is found sufficiently low for maintaining a fluidized flow over hundreds of meters. The study concludes that an air-fluidization theory is consistent with the field observations. These findings are particularly interesting as they seem not in line with the mainstream acceptation in landslide modelling that air generally plays a secondary role (e.g., Legros, 2002). References Iverson, R.M., Denlinger, R.P., 2001. Flow of variably fluidized granular masses across three-dimensional terrain - 1. Coulomb mixture theory. J. Geophys. Res. 106, 537 552. Legros, F., 2002. The mobility of long-runout landslides. Eng. Geol. 63, 301-331. Roche, O., 2012. Depositional processes and gas pore pressure in pyroclastic flows: an experimental perspective. Bull. Volcanol. 74, 1807-1820. Roche, O., Montserrat, S., Niño, Y., Tamburrino, A., 2008. Experimental observations of water-like behavior of initially fluidized, dam break granular flows and their relevance for the propagation of ash-rich pyroclastic flows. J. Geophys. Res. 113, B12203. Stilmant, F., Pirotton, M., Archambeau, P., Erpicum, S., & Dewals, B. (2015). Can the collapse of a fly ash heap develop into an air-fluidized flow? - Reanalysis of the Jupille accident (1961). Geomorphology, 228, 746-755.
2017-01-01
The hydrodynamics and heat transfer of cylindrical gas–solid fluidized beds for polyolefin production was investigated with the two-fluid model (TFM) based on the kinetic theory of granular flow (KTGF). It was found that the fluidized bed becomes more isothermal with increasing superficial gas velocity. This is mainly due to the increase of solids circulation and improvement in gas solid contact. It was also found that the average Nusselt number weakly depends on the gas velocity. The TFM results were qualitatively compared with simulation results of computational fluid dynamics combined with the discrete element model (CFD-DEM). The TFM results were in very good agreement with the CFD-DEM outcomes, so the TFM can be a reliable source for further investigations of fluidized beds especially large lab-scale reactors PMID:29187774
NASA Astrophysics Data System (ADS)
Stilmant, Frédéric; Pirotton, Michel; Archambeau, Pierre; Erpicum, Sébastien; Dewals, Benjamin
2015-01-01
A fly ash heap collapse occurred in Jupille (Liege, Belgium) in 1961. The subsequent flow of fly ash reached a surprisingly long runout and had catastrophic consequences. Its unprecedented degree of fluidization attracted scientific attention. As drillings and direct observations revealed no water-saturated zone at the base of the deposits, scientists assumed an air-fluidization mechanism, which appeared consistent with the properties of the material. In this paper, the air-fluidization assumption is tested based on two-dimensional numerical simulations. The numerical model has been developed so as to focus on the most prominent processes governing the flow, with parameters constrained by their physical interpretation. Results are compared to accurate field observations and are presented for different stages in the model enhancement, so as to provide a base for a discussion of the relative influence of pore pressure dissipation and pore pressure generation. These results show that the apparently high diffusion coefficient that characterizes the dissipation of air pore pressures is in fact sufficiently low for an important degree of fluidization to be maintained during a flow of hundreds of meters.
Solid fuel combustion system for gas turbine engine
Wilkes, Colin; Mongia, Hukam C.
1993-01-01
A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.
Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.
1981-09-14
Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.
ESTIMATION OF EFFECTIVE SHEAR STRESS WORKING ON FLAT SHEET MEMBRANE USING FLUIDIZED MEDIA IN MBRs
NASA Astrophysics Data System (ADS)
Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi; Mishima, Iori
This study was aimed at estimating effective shear stress working on flat sheet membrane by the addition of fluidized media in MBRs. In both of laboratory-scale aeration tanks with and without fluidized media, shear stress variations on membrane surface and water phase velocity variations were measured and MBR operation was conducted. For the evaluation of the effective shear stress working on membrane surface to mitigate membrane surface, simulation of trans-membrane pressure increase was conducted. It was shown that the time-averaged absolute value of shear stress was smaller in the reactor with fluidized media than without fluidized media. However, due to strong turbulence in the reactor with fluidized media caused by interaction between water-phase and media and also due to the direct interaction between membrane surface and fluidized media, standard deviation of shear stress on membrane surface was larger in the reactor with fluidized media than without media. Histograms of shear stress variation data were fitted well to normal distribution curves and mean plus three times of standard deviation was defined to be a maximum shear stress value. By applying the defined maximum shear stress to a membrane fouling model, trans-membrane pressure curve in the MBR experiment was simulated well by the fouling model indicting that the maximum shear stress, not time-averaged shear stress, can be regarded as an effective shear stress to prevent membrane fouling in submerged flat-sheet MBRs.
Investigation of internal elements impaction on particles circulation in a fluidized bed reactor
NASA Astrophysics Data System (ADS)
Solovev, S. A.; Soloveva, O. V.; Antipin, A. V.; Shamsutdinov, E. V.
2018-01-01
A numerical study of the fluidized bed apparatus in the presence of various internal elements is carried out. A chemical reaction for temperature-dependent processes with heat absorption is considered. The task of incoming heated catalyst granules to the reactor is investigated. The main emphasis is focused on the circulation flows of the catalyst particles, heating of the reactor, and the efficiency of the chemical reaction. The analysis of the impact of various design elements on the efficiency of the reactor is carried out. The influence of feeding heated catalyst device design on the effectiveness of whole reactor heating is educed. The influence of the presence of fine particles on the efficiency of the reaction for different reactor design features is also educed.
NASA Astrophysics Data System (ADS)
Yong, Yumei; Lu, Qinggang
2003-05-01
The combustion performance of the boiler largely depends on the coal type. Lots of experimental research shows that different fuels have different combustion characteristics. It is obvious that fuel will change the whole operating performance of Circulating Fluidized Bed Combustion (CFBC). We know even in a pilot-scale running boiler, the measurement of some parameters is difficult and costly. Therefore, we developed the way of simulation to evaluate the combustion performance of Chinese coals in CFB. The simulation results show that, different coals will result in different coal particle diameter and comminution depending on their mineral component and the change will affect the distribution of ash in CFBC system. In a word, the computational results are in accordance with experimental results qualitatively but there are some differences quantitatively.
Lewis Pressurized, Fluidized-Bed Combustion Program. Data and Calculated Results
NASA Technical Reports Server (NTRS)
Rollbuhler, R. J.
1982-01-01
A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.
Lewis pressurized, fluidized-bed combustion program. Data and calculated results
NASA Astrophysics Data System (ADS)
Rollbuhler, R. J.
1982-03-01
A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.
Combustion and NOx emissions in deep-air-staging combustion of char in a circulating fluidized bed
NASA Astrophysics Data System (ADS)
Gong, Zhiqiang; Wang, Zhentong; Wang, Lei; Du, Aixun
2017-10-01
Combustion and NOx emissions in deep-air-staging (with higher level secondary air (SA) injection) combustion of char have been investigated in a CFB test rig. A good fluidized condition and uniform temperature distribution can be achieved with injection of higher level SA. NOx emission decreases with injection of higher level SA and the reduction effect is more obvious at higher temperature. NOx emission decreases with combustion temperature increasing for char combustion.
The preparation of calcium superoxide in a flowing gas stream and fluidized bed
NASA Technical Reports Server (NTRS)
Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.
1980-01-01
Superoxides can be used as sources of chemically stored oxygen in emergency breathing apparatus. The work reported here describes the use of a low-pressure nitrogen gas sweep through the reactant bed, for temperature control and water vapor removal. For a given set of gas temperature, bed thickness, and reaction time values, the highest purity calcium superoxide, Ca(O2)2, was obtained at the highest space velocity of the nitrogen gas sweep. The purity of the product was further increased by flow conditions that resulted in the fluidization of the reactant bed. However, scale-up of the low-pressure fluidized bed process was limited to the formation of agglomerates of reactant particles, which hindered thermal control by the flowing gas stream. A radiofrequency flow discharge inside the reaction chamber prevented agglomeration, presumably by dissipation of the static charges on the fluidized particles.
Ebadi, Abdol Ghaffar; Hisoriev, Hikmat
2017-11-28
Gasification is one of the most important thermochemical routes to produce both synthesis gas (syngas) and chars. The quality of produced syngas wieldy depends on the operating conditions (temperature, residence time, heating rate, and gasifying agent), hydrodynamic properties of gasifier (particle size, minimum fluidization velocity, and gasifier size), and type of feedstock (coal, biomass, oil, and municipal solid wastes). In the present study, simulation of syngas production via circulating fluidized bed (CFB) gasification of algal biomass (Cladophora glomerata L.) at different gasifying agents and particle sizes was carried out, using Aspen Plus simulator. The model which has been validated by using experimental data of the technical literature was used to evaluate the influence of operating conditions on gas composition and performance parameters. The results show that biomass gasification using pure oxygen as the gasification agent has great potential to improve the caloric value of produced gas and performance indicators. It was also found that the produced gas caloric value, syngas yield, and performance parameters (CCE and CGE) increase with reaction temperature but are inversely proportional to the biomass particle size.
Market assessment of PFBC ash use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bland, A. E.; Brown, T. H., Western Research Institute
1998-01-01
Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBCmore » technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiotsuka, R.N.; Peck, R.W. Jr.; Drew, R.T.
1985-02-01
A fluidizing bed aerosol generator (FBG), designed for inhalation toxicity studies, was constructed and tested. A key design feature contributing to its operational stability was the partial masking of the screen supporting the bronze beads. This caused 20-80% of the bed to fluidize under normal operating conditions. The non-fluidizing areas functioned as reservoirs to feed the fluidizing areas. Using a bed volume of 1000 cc of bronze beads and 20 g of MnO/sub 2/ dust, the mass output rate ranged from 0.1 to 1.0 mg/min when operated at plenum pressures of 1.04 x 10/sup 2/ to 2.42 x 10/sup 2/more » kPa (minimum fluidization pressure was approximately 82.8 kPa). During daily operation at three different output rates, the FBG produced aerosols with little change in particle size distributions or concentration when operated six hours/day for five days. Furthermore, when the FBG was operated at a fixed output rate for 15 days with two recharges of MnO/sub 2/ dust, the particle size distribution did not show any cumulative increase. Thus, long-term operation of this FBG should result in a reproducible range of concentration and particle size distribution.« less
Analysis of pollutant chemistry in combustion by in situ pulsed photoacoustic laser diagnostics
NASA Astrophysics Data System (ADS)
Stenberg, Jari; Hernberg, Rolf; Vattulainen, Juha
1995-12-01
A technique for gas analysis based on pulsed-laser-induced photoacoustic spectroscopy in the UV and the visible is presented. The laser-based technique and the associated analysis probe have been developed for the analysis of pollutant chemistry in fluidized beds and other combustion environments with limited or no optical access. The photoacoustic-absorption spectrum of the analyzed gas is measured in a test cell located at the end of a tubular probe. This test cell is subject to the prevailing temperature and pressure in the combustion process. The instrument response has been calibrated for N2O, NO, NO2, NH3, SO2, and H2 S at atmospheric pressure between 20 and 910 deg C. The response of the probe was found to increase with pressure for N2O, NO, NH 3, and NO2 up to 1.2 MPa pressure. The method and the probe have been used for detection and ranging of gas concentrations in a premixed methane flame. Some preliminary tests in a large 12-MW circulating bed boiler have also been done.
Fluidized bed coal combustion reactor
NASA Technical Reports Server (NTRS)
Moynihan, P. I.; Young, D. L. (Inventor)
1981-01-01
A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.
Flow Regime Study in a High Density Circulating Fluidized Bed Riser with an Abrupt Exit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, J.S.; Shadle, L.J.; Yue, P.C.
2007-01-01
Flow regime study was conducted in a 0.3 m diameter, 15.5 m height circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U.S. Department of Energy. Local particle velocities were measured at various radial positions and riser heights using an optical fiber probe. On-line measurement of solid circulating rate was continuously recorded by the Spiral. Glass beads of mean diameter 61 μm and particle density of 2,500 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 3 to 7.6 m/s and solid massmore » flux from 20 to 550 kg/m2-s. At a constant riser gas velocity, transition from fast fluidization to dense suspension upflow (DSU) regime started at the bottom of the riser with increasing solid flux. Except at comparatively low riser gas velocity and solid flux, the apparent solid holdup at the top exit region was higher than the middle section of the riser. The solid fraction at this top region could be much higher than 7% under high riser gas velocity and solid mass flux. The local particle velocity showed downward flow near the wall at the top of the riser due to its abrupt exit. This abrupt geometry reflected the solids and, therefore, caused solid particles traveling downward along the wall. However, at location below, but near, the top of the riser the local particle velocities were observed flowing upward at the wall. Therefore, DSU was identified in the upper region of the riser with an abrupt exit while the fully developed region, lower in the riser, was still exhibiting core-annular flow structure. Our data were compared with the flow regime boundaries proposed by Kim et al. [1] for distinguishing the dilute pneumatic transport, fast fluidization, and DSU.« less
Commercialization of the Stone and Webster/Conoco SCB technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, R.C.; Johnson, W.B.; Ratliff, B.D.
1982-06-01
Stone and Webster have developed a second generation recirculating fluidized bed boiler system, named Solids Circulation Boiler (SCB). The heart of the system is the recirculating fluidized bed, which is schematized, and explained. In November 1981 Conoco announced plans to construct an SCB at Lake Charles LA. Preliminary plot plan and elevation drawings are provided. The advantages of SCB are its rapid and controlled turn on and turn down capability, high carbon efficiency, simple coal and limestone feed system, high sulphur capture, compact design, and low NOx emission.
Characterization of hydrodynamics and solids mixing in fluidized beds involving biomass
NASA Astrophysics Data System (ADS)
Fotovat, Farzam
This thesis focuses on the characterization of hydrodynamics and mixing phenomena in fluidized beds containing mixtures of sand and irregular biomass particles. The first objective of this study is understanding the effect of the large biomass particles on the bubbling characteristics and gas distribution pattern of sand fluidized beds. The second objective is the characterization of mixing/segregation of biomass and sand particles under fluidization conditions. A variety of experimental techniques are employed to study the behavior of two constituting phases of a fluidized bed, i.e., dilute (bubble) and dense (emulsion) phases. Exploring the characteristic fluidization velocities of sand-biomass mixtures unveils that the onset of bubbling in these systems occurs at a higher gas velocity compared to that of the initial fluidization velocity (Uif). The initial bubbling velocity (Uib), the final fluidization velocity ( Uff), and the transition gas velocity from bubbling to turbulent regime (Uc) rise by increasing the fraction of biomass in the mixture. Statistical analysis of the pressure signal at top of the bed reveals that increasing the biomass load hinders the evolution of bubbles at a low gas velocity (U<0.6 m/s), while at high velocities, the bubbling trend of beds containing different fractions of biomass is comparable. The addition of biomass particles to a bed of sand leads to an increase in the mean voidage of the bed; however, the voidage of each phase remains unaffected. It is observed that large biomass particles trigger a break-up of the bubbles, which results in boosting bubbling frequency. The fraction of bubbles at the center of the bed increases with the load of biomass. At the wall region, however, it starts to decrease by adding 2% wt. biomass to pure sand and then increases with the further addition of biomass. The Radioactive Particle Tracking (RPT) technique is implemented in the second section of this work to study the motion and distribution of biomass particles at U=0.36 m/s and U=0.64 m/s. In this regard, an active biomass particle is tracked for a long period of time and its instantaneous position is recorded. The acquired data is then processed to achieve the time-averaged concentration profile of biomass particles. This profile represents the segregation of biomass particles, which tend to accumulate in the upper levels of the bed. Changes in the fraction of biomass with increasing gas velocity are inferred from the local changes of the time-averaged pressure drop values at the top of the bed. To determine the parameters affecting the movement and segregation of biomass particles, their circulatory motion is also scrutinized using the RPT data. The circulation of biomass is impeded when the load of biomass rises at U=0.36 m/s, resulting in a more pronounced segregation of sand and biomass. The opposite trend is observed at U=0.64 m/s. This prompts a more uniform distribution of particles along the bed and brings about a higher degree of mixing. The average rise velocity of biomass is 0.2 times the bubble velocity, regardless of the biomass load or fluidization velocity. A one-dimensional model is proposed to predict the volume fraction of biomass along the bed. Some of the terms of this model are linked to the fluidizing behavior of biomass particles as deduced from the RPT findings. The fluidization of sand and cylindrical biomass particles is also simulated using the BARRACUDA CPFD software, which is based on the Lagrangian-Eulerian approach. Simulation and experimental results are compared in order to evaluate the capability of the numerical approach to predict the bubbling characteristics of the sand-biomass mixture for systems differing in composition and fluidization velocity. The last part of this thesis is devoted to the separation of the main components of the shredded bulky waste. A step-wise process has been developed based on the elutriation and density segregation techniques. After removal of the light and interwoven species of the shredded waste by elutriation, the nonelutriated materials are further separated into two successive fluidization columns. Polypropylene and glass beads are introduced as the fluidization media in these columns in order to make density segregation of the target and not-target components possible. Hence, undesirable combustible matters and hard plastic are separated as the overflow of the first and second fluidization steps. A second elutriation column is also devised to separate and recover fiber and soft plastic. To determine optimal operating conditions, several influential parameters, such as the elutriation velocity and time, the size and density of the fluidization media, and the initial configuration of the feedstock and bed material, are explored. The kinetics of segregation is also derived for both fluidization steps. (Abstract shortened by UMI.).
Rheological measurements in reduced gravity
NASA Astrophysics Data System (ADS)
Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.
1999-01-01
Rheology of fluidized beds and settling suspensions were studied experimentally in a series of reduced gravity parabolic flights aboard NASA's KC-135 aircraft. Silica sands of two different size distributions were fluidized by air. The slurries were made using silica sand and Glycerol solution. The experimental set up incorporated instrumentation to measure the air flow rate, the pressure drop and the apparent viscosity of the fluidized sand and sand suspensions at a wide range of the shear rates. The fluidization chamber and container had transparent walls to allow visualization of the structure changes involved in fluidization and in Couette flow in reduced gravity. Experiments were performed over a broad range of gravitational accelerations including microgravity and double gravity conditions. The results of the flight and ground experiments reveal significant differences in overall void fraction and hence in the apparent viscosity of fluidized sand and sand suspensions under microgravity as compared to one-g conditions.
NASA Astrophysics Data System (ADS)
Wang, Xue-Yao; Jiang, Fan; Xu, Xiang; Wang, Sheng-Dian; Fan, Bao-Guo; Xiao, Yun-Han
2009-06-01
Gas-solid flow in dense CFB (circulating fluidized bed)) riser under the operating condition, superficial gas 15.5 m/s and solid flux 140 kg/m2s using Geldart B particles (sand) was investigated by experiments and CFD (computational fluid dynamics) simulation. The overall and local flow characteristics are determined using the axial pressure profiles and solid concentration profiles. The cold experimental results indicate that the axial solid concentration distribution contains a dilute region towards the up-middle zone and a dense region near the bottom and the top exit zones. The typical core-annulus structure and the back-mixing phenomenon near the wall of the riser can be observed. In addition, owing to the key role of the drag force of gas-solid phase, a revised drag force coefficient, based on the EMMS (energy-minimization multi-scale) model which can depict the heterogeneous character of gas-solid two phase flow, was proposed and coupled into the CFD control equations. In order to find an appropriate drag force model for the simulation of dense CFB riser, not only the revised drag force model but some other kinds of drag force model were used in the CFD. The flow structure, solid concentration, clusters phenomenon, fluctuation of two phases and axial pressure drop were analyzed. By comparing the experiment with the simulation, the results predicted by the EMMS drag model showed a better agreement with the experimental axial average pressure drop and apparent solid volume fraction, which proves that the revised drag force based on the EMMS model is an appropriate model for the dense CFB simulation.
EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR
The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...
Patil, M P; Sonolikar, R L
2008-10-01
This paper presents a detailed computational fluid dynamics (CFD) based approach for modeling thermal destruction of hazardous wastes in a circulating fluidized bed (CFB) incinerator. The model is based on Eular - Lagrangian approach in which gas phase (continuous phase) is treated in a Eularian reference frame, whereas the waste particulate (dispersed phase) is treated in a Lagrangian reference frame. The reaction chemistry hasbeen modeled through a mixture fraction/ PDF approach. The conservation equations for mass, momentum, energy, mixture fraction and other closure equations have been solved using a general purpose CFD code FLUENT4.5. Afinite volume method on a structured grid has been used for solution of governing equations. The model provides detailed information on the hydrodynamics (gas velocity, particulate trajectories), gas composition (CO, CO2, O2) and temperature inside the riser. The model also allows different operating scenarios to be examined in an efficient manner.
Application of CFB technology for large power generating units and CO{sub 2} capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryabov, G. A., E-mail: georgy.ryabov@gmail.com; Folomeev, O. M.; Sankin, D. A.
2010-07-15
Data on the development of the circulating fluidized bed (CFB) technology for combustion of fuels in large power generating units are examined. The problems with raising the steam parameters and unit power of boilers with a circulating fluidized bed are examined. With the boiler system at the 460 MW unit at Lagisza (Poland) as an example, the feasibility of raising the efficiency of units with CFB boilers through deep recovery of the heat of the effluent gases and reducing expenditure for in-house needs is demonstrated. Comparative estimates of the capital and operating costs of 225 and 330 MW units aremore » used to determine the conditions for optimum use of CFB boilers in the engineering renovation of thermal power plants in Russia. New areas for the application of CFB technology in CO{sub 2} capture are analyzed in connection with the problem of reducing greenhouse gas emissions.« less
Design assessment of a 150 kWt CFBC Test Unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batu, A.; Selcuk, N.; Kulah, G.
2010-04-15
For clean and efficient energy generation from coal, the most suitable technology known to date is 'Fluidized Bed Combustion' technology. Applications of circulating fluidized bed (CFB) combustion technology have been steadily increasing in both capacity and number over the past decade. Designs of these units have been based on the combustion tests carried out in pilot scale facilities to determine the combustion and desulfurization characteristics of coal and limestone reserves in CFB conditions. Similarly, utilization of Turkish lignites in CFB boilers necessitates adaptation of CFB combustion technology to these resources. However, the design of these test units are not basedmore » on firing coals with high ash, volatile matter and sulfur contents like Turkish lignites. For this purpose, a 150 kWt CFB combustor test unit is designed and constructed in Chemical Engineering Department of Middle East Technical University, based on the extensive experience acquired at the existing 0.3 MWt Bubbling Atmospheric Fluidized Bed Combustor (AFBC) Test Rig. Following the commissioning tests, a combustion test is carried out for investigation of combustion characteristics of Can lignite in CFB conditions and for assessment of the design of test unit. Comparison of the design outputs with experimental results reveals that most of the predictions and assumptions have acceptable agreement with the operating conditions. In conclusion, the performance of 150 kWt CFBC Test Unit is found to be satisfactory to be utilized for the long term research studies on combustion and desulfurization characteristics of indigenous lignite reserves in circulating fluidized bed combustors. (author)« less
Alamin, Ahmed Hassan; Kaewsichan, Lupong
2016-06-30
Sorption studies were carried out to investigate removal of 2.4-dichlorophenol (2.4-DCP) from aqueous solution in a fluidized bed by two types of adsorbent mixtures: BC (Bamboo char plus Calcium sulphate), and HBC (Hydroxyapatite plus Bamboo char plus Calcium sulphate); both manufactured in ball shape. The main material bamboo char was characterized by FTIR, DTA and SEM. The adsorption experiments were conducted in a fluidized bed circulation column. Adsorption, isotherms and kinetic studies were established under 180 min operating process time, at different initial 2.4-DCP solution concentrations ranging from 5–10 mg/L, and at different flow rates ranging from 0.25–0.75 L/min. Themore » data obtained fitted well for both the Langmuir and Freundlich isotherm models; indicating favorable condition of monolayer adsorption. The kinetics of both adsorbents complies with the pseudo second-order kinetic model. BC was proven a new effective composite and low cost adsorbent which can be applied in the field of wastewater treatment, and it can also play an important role in industry water treatment« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alamin, Ahmed Hassan; Kaewsichan, Lupong
Sorption studies were carried out to investigate removal of 2.4-dichlorophenol (2.4-DCP) from aqueous solution in a fluidized bed by two types of adsorbent mixtures: BC (Bamboo char plus Calcium sulphate), and HBC (Hydroxyapatite plus Bamboo char plus Calcium sulphate); both manufactured in ball shape. The main material bamboo char was characterized by FTIR, DTA and SEM. The adsorption experiments were conducted in a fluidized bed circulation column. Adsorption, isotherms and kinetic studies were established under 180 min operating process time, at different initial 2.4-DCP solution concentrations ranging from 5–10 mg/L, and at different flow rates ranging from 0.25–0.75 L/min. Themore » data obtained fitted well for both the Langmuir and Freundlich isotherm models; indicating favorable condition of monolayer adsorption. The kinetics of both adsorbents complies with the pseudo second-order kinetic model. BC was proven a new effective composite and low cost adsorbent which can be applied in the field of wastewater treatment, and it can also play an important role in industry water treatment« less
Xu, Yupeng; Li, Tingwen; Musser, Jordan; ...
2017-06-07
The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yupeng; Li, Tingwen; Musser, Jordan
The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8 mm, 12 mm, 16 mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitudemore » with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. Finally, these two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8 mm by varying the wall friction from 0 to 0.4.« less
Fluctuations of wormlike micelle fluids in capillary flow
NASA Astrophysics Data System (ADS)
Salipante, Paul; Meek, Stephen; Hudson, Steven; Polymers; Complex Fluids Group Team
2017-11-01
We investigate the effect of entrance geometry on the flow stability of wormlike micelles solutions in capillary flow. These solutions exhibit strong shear thinning behavior resulting from micelle breakage and have been observed to undergo large flow rate fluctuations. We investigate these fluctuations using simultaneous measurements of flow rate and pressure drop across a capillary, and we adjust entrance geometry. With a tapered constriction, we observe large persistent fluctuations above a critical flow rate, characterized by rapid decreases in the pressure drop with corresponding increase in flow rate followed by a period of recovery where pressure increases and flow rate decreases. Flow field observations in the tapered entrance show large flow circulations. An abrupt contraction produces smaller transient fluidized jets forming upstream of the constriction and the magnitude of the fluctuations are significantly diminished. The effect of fluid properties is studied by comparing the magnitude and timescales of the fluctuations for surfactant systems with different relaxation times. The onset of fluctuations is compared to a criterion for the onset of elastic instabilities and the magnitude is compared to estimates for changes in channel resistance. NIST on a Chip.
Thermal exploitation of wastes with lignite for energy production.
Grammelis, Panagiotis; Kakaras, Emmanuel; Skodras, George
2003-11-01
The thermal exploitation of wastewood with Greek lignite was investigated by performing tests in a laboratory-scale fluidized bed reactor, a 1-MW(th) semi-industrial circulating fluidized bed combustor, and an industrial boiler. Blends of natural wood, demolition wood, railroad sleepers, medium-density fiberboard residues, and power poles with lignite were used, and the co-combustion efficiency and the effect of wastewood addition on the emitted pollutants were investigated. Carbon monoxide, sulfur dioxide, and oxides of nitrogen emissions were continuously monitored, and, during the industrial-scale tests, the toxic emissions (polychlorinated dibenzodioxins and dibenzofurans and heavy metals) were determined. Ash samples were analyzed for heavy metals in an inductively coupled plasma-atomic emission spectroscopy spectrophotometer. Problems were observed during the preparation of wastewood, because species embedded with different compounds, such as railway sleepers and demolition wood, were not easily treated. All wastewood blends were proven good fuels; co-combustion proceeded smoothly and homogeneous temperature and pressure profiles were obtained. Although some fluctuations were observed, low emissions of gaseous pollutants were obtained for all fuel blends. The metal element emissions (in the flue gases and the solid residues) were lower than the legislative limits. Therefore, wastewood co-combustion with lignite can be realized, provided that the fuel handling and preparation can be practically performed in large-scale installations.
Use of a fluidized bed for the thermal and chemicothermal treatment of metals
NASA Astrophysics Data System (ADS)
Varygin, N. N.; Ol'shanov, E. Ya.
1971-06-01
An investigation of the heat processes in a fluidized bed shows that this unit has a high heating rate and cooling rate, and allows direct control in the process of heat treatment; chemicothermal processing is speeded up 3-5 times. Examples of experimental-industrial and industrial use show the advantages of using the fluidized bed for rapid nonoxidative heating for thermal processing and pressure processing, and also for replacing expensive salt and metal baths. The use of the fluidized bed is promising for heating temperature-sensitive aluminum and other nonferrous alloys, and for heat processing refractory metals, and alloys [45], etc. It is desirable to use the fluidized bed as the cooling medium to achieve optimum cooling with reduced stresses in components of especially complex configuration. It would be promising to use the fluidized bed for carrying out chemicothermal processing and for creating new processes (including surface saturation with rare metals), especially with the application of electrical, and possibly strong magnetic, fields.
Study of Gas Solid Flow Characteristics in Cyclone Inlet Ducts of A300Mwe CFB Boiler
NASA Astrophysics Data System (ADS)
Tang, J. Y.; Lu, X. F.; Lai, J.; Liu, H. Z.
Gas solid flow characteristics in cyclone's inlet duct of a 300MW CFB boiler were studied in a cold circulating fluidized bed (CFB) experimental setup according to a 410t/h CFB boiler with a scale of 10∶1. Tracer particles were adopted in the experiment and their motion trajectories in the two kinds of cyclone's inlet ducts were photographed by a high-speed camera. By analyzing the motion trajectories of tracer particles, acceleration performance of particle phases in the two inlet ducts was obtained. Results indicate that the acceleration performance of particles in the long inlet duct is better than that in the short inlet duct, but the pressure drop of the long inlet duct is higher. Meanwhile, under the same operating conditions, both the separation efficiency and the pressure drop of the cyclone are higher when the cyclone is connected with the long inlet duct. Figs 11, Tabs 4 and refs 10.
Transient Characterization of Type B Particles in a Transport Riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadle, L.J.; Monazam, E.R.; Mei, J.S.
2007-01-01
Simple and rapid dynamic tests were used to evaluate fluid dynamic behavior of granular materials in the transport regime. Particles with densities ranging from 189 to 2,500 kg/m3 and Sauter mean size from 61 to 812 μm were tested in a 0.305 m diameter, 15.5 m height circulating fluidized bed (CFB) riser. The transient tests involved the abrupt stoppage of solids flow for each granular material over a wide range gas flow rates. The riser emptying time was linearly related to the Froude number in each of three different operating regimes. The flow structure along the height of the risermore » followed a distinct pattern as tracked through incremental pressures. These results are discussed to better understand the transformations that take place when operating over various regimes. During the transients the particle size distribution was measured. The effects of pressure, particle size, and density on test performance are also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangwal, S.K.; Gupta, R.P.; Khare, G.P.
The objectives of this project are to determine the long-term chemical reactivity and mechanical durability of a fluidized version of Phillips Petroleum Company`s proprietary Z-SORB sorbent for the desulfurization of coal-derived gases in a high-pressure (20 atm) fluidized-bed reactor under simulated U-Gas conditions and at a moderate operating temperature of 538 degrees C.
Regenerable cement sorbent for recycle fluidized-bed combustion systems. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, H.J.; Steinberg, M.
1985-04-01
Agglomerated cement sorbent pellets (ACS) were investigated as a regenerable sorbent for the purpose of removing SO/sub 2/ in a circulating fluidized-bed combustion (CFBC) system. The systems concept is to use an intermediate size sorbent pellet so that fine flyash can be separated from the sorbent at the top end of the CFBC and the coarse gangue can be separated from the sorbent remaining in the bottom end. In this study, basic experimental data were obtained on the sulfur capture capacity and regenerability of the ACS pellets as a function of the concentration of flyash mixed with the pellets andmore » as a function of temperature. Thermogravimetric Analysis (TGA) was used for this purpose. A 40 mm bench-scale fluidized-bed unit operated with a simulated combustion gas mixture was used to determine the attrition resistance of the pellets. The results indicate that 30-100 mesh ACS pellets at 958/sup 0/C (1756/sup 0/F) maintain a 55-60% sulfation capacity mixed with coal flyash concentration up to 75% by weight. The sorbent pellets were 100% regenerable and did not lose reactivity in repeated cyclical sulfation and regeneration tests. At higher temperatures up to 1158/sup 0/C (2116/sup 0/F) reactivity towards SO/sub 2/ declines due to sintering of the flyash on the surface of the ACS pellets. Tests showed good attrition resistance with only 1% loss per cycle in cyclical operation. These initial basic results indicate that ACS pellets are potentially useful as a recoverable and regenerable high capacity SO/sub 2/ sorbent in a circulating fluidized-bed combustion system. 5 refs., 7 figs., 8 tabs.« less
Heat transfer and hydrodynamic analysis in an industrial circulating fluidized bed boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Maggio, T.; Piedfer, O.; Jestin, L.
In order to scale-up Circulating Fluidized Bed boilers (up to 600 MWe), Electricite de France has initiated a Research and Development program including: laboratory work on mock-up, numerical modeling and on-site tests in the 125 MWe CFB Emile Huchet plant. This paper is devoted to on-site measurements analysis in two main components of this industrial unit: the external fluidized bed heat exchangers and the backpass. This study particularly concerns hydrodynamics and heat transfer with the final target of developing a physical model of a CFB unit. The first part of this paper describes the specific instrumentation set up on externalmore » fluidized bed heat exchangers. The comparison between experimental data collected on these heat exchangers and the theoretical heat transfer models mainly used, shows a great difference about the value of the overall heat transfer coefficient. To explain this discrepancy, the particle flow pattern initially used in the thermal balance calculation is modified and a solid bypass is introduced. The analysis of the by-pass behavior, connected to the geometrical and operating parameters of each exchanger, confirms the particle flow pattern suggested. The second part of this paper shows an analysis of the specific measurements set up on the backpass to study heat transfer. The physical model of heat transfer used to assess the importance of each convection, radiation and conduction components is presented. This model allows one to assess the influence of heat exchangers design on heat transfer. Moreover, the analysis of heat transfer variations during sweeping cycles gives the amount of dust that is removed from the heat exchanger tubes. These results are used to evaluate the amount of power that can be recovered by optimizing both design and sweeping of the backpass.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monazam, E.R.; Shadle, L.J.
2008-11-05
In commercial circulating fluidized bed (CFB) processes the acceleration zone greatly contributes to solids mixing, gas and solids dispersion, and particle residence times. A new analysis was developed to describe the relative gas-solids concentration in the acceleration region of a transport system with air as the fluidizing agent for Geldart-type B particles. A theoretical expression was derived from a drag relationship and momentum and continuity equations to describe the evolution of the gas-solids profile along the axial direction. The acceleration zone was characterized using nondimensional analysis of the continuum equations (balances of masses and momenta) that described multiphase flows. Inmore » addition to acceleration length, the boundary condition for the solids fraction at the bottom of the riser and the fully developed regions were measured using an industrial scale CFB of 0.3 m diameter and 15 m tall. The operating factors affecting the flow development in the acceleration region were determined for three materials of various sizes and densities in core annular and dilute regimes of the riser. Performance data were taken from statistically designed experiments over a wide range of Fr (0.5-39), Re (8-600), Ar (29-3600), load ratio (0.2-28), riser to particle diameter ratio (375-5000), and gas to solids density ratio (138-1381). In this one-dimensional system of equations, velocities and solid fractions were assumed to be constant over any cross section. The model and engineering correlations were compared with literature expressions to assess their validity and range of applicability. These expressions can be used as tools for simulation and design of a CFB riser and can also be easily coupled to a kinetics model for process simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, P.A.; Patel, N.M.; Painter, A.
Energy recovery from municipal solid waste (MSW) is an important component of an integrated waste management strategy. Waste management programs which remove or recover materials for recycling are particularly suited for considering the option of energy recovery via fluidized bed combustion (FBC). The last few years have seen growing interest in the application of FBC technology to the MSW treatment/disposal problem. This paper reviews and reports on the world-wide experience in fluidized bed combustion of MSW focusing particularly on the types and scales of the systems in operation in Japan and Scandinavia. In addition the paper also reports on themore » development of an energy from waste project employing circulating fluidized bed technology that is proposed for a local municipality in the UK. Japan currently has over 100 bubbling bed units in operation firing on 100% MSW; the technology is firmly established at scales of operation up to 160,000t/y (the largest single unit operates at 6.25t/h). The bubbling bed units accept MSW which has undergone only minimal pre-processing -- the waste is shredded to a nominal 300mm size fraction before being introduced to the furnace. There are distinct (combustion control) advantages to further processing of the waste stream prior to combustion. The Scandinavian countries in particular have been the prime movers in pioneering this technology to work in combination with circulating fluidized bed systems. Currently 2 units are in operation cofiring pre-processed MSW with a range of other biofuels. A number of FBC units firing 100% MSW are currently in the planning or construction stage around the world; they seem set to secure an increased market share particularly at the smaller scale of operation (up to about 200,000t/y).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gittinger, J.
1996-12-31
Circulating fluidized bed CFB repowering options are summarized. The following topics are discussed: why repower with CFB technology; advantages of repowering; two forms of of repowering; B and N`s internal recirculation CFB; space-saving design features; cost-saving design features; Ukrainian repowering project; and candidates for repowering.
Phase holdups in three-phase fluidized beds in the presence of disc promoter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murty, M.S.N.; Ramesh, K.V.; Venkateswarlu, P.
2011-02-15
Three-phase fluidized beds are found to have wide applications in process industries. The present investigation essentially comprises of the studies on gas holdup, liquid holdup and bed porosity in three-phase fluidized beds with coaxially placed disc promoter. Holdup data were obtained from bed expansion and pressure drop measurements. Analysis of the data was done to elucidate the effects of dynamic and geometric parameters on gas holdup, liquid holdup and bed porosity. Data were correlated and useful equations were obtained from empirical modeling. (author)
Design and Application of Novel Horizontal Circulating Fluidized Bed Boiler
NASA Astrophysics Data System (ADS)
Lit, Q. H.; Zhang, Y. G.; Meng, A. H.
The vertical circulating fluidized bed (CFB) boiler has been found wide application in power generation and tends to be enlarged in capacity. Because CFB is one of environment friendly and high efficiency combustion technologies, the CFB boiler has also been expected to be used in the industrial area, such as textile mill, region heating, brewery, seed drying and so on. However, the necessary height of furnace is hard to be implemented for CFB with especially small capacity. Thereby, a novel horizontal circulating fluidized bed boiler has been proposed and developed. The horizontal CFB is composed of primary combustion chamber, secondary combustion chamber, burnout chamber, cyclone, loop seal, heat recovery area. The primary combustion chamber is a riser like as that in vertical CFB, and the secondary combustion chamber is a downward passage that is a natural extension of the primary riser, which can reduce the overall height of the boiler. In some extent, the burnout chamber is also the extension of primary riser. The capacity of horizontal CFB is about 4.2-24.5MWth (6-35t/h) steam output or equivalent hot water supply. The hot water boiler of 7MWth and steam boilers of 4.2MWth (6t/h) and 10.5MWth (15t/h) are all designed and working well now. The three units of hot water horizontal CFB boiler were erected in the Neimenggu Autonomous Region, Huhehaote city for region heating. The three units of steam horizontal CFB has been installed in Yunnan, Jiang Xi and Guangdong provinces, respectively. The basic principle for horizontal CFB and experiences for designing and operating are presented in this paper. Some discussions are also given to demonstrate the promising future of horizontal CFB.
Standby cooling system for a fluidized bed boiler
Crispin, Larry G.; Weitzel, Paul S.
1990-01-01
A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.
Pressurized fluidized bed offers promising route to cogeneration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-03-01
STAL-LAVAL has been monitoring the development of pressurized fluidized-bed combustion (PFBC) technology and has decided to apply it as a way to burn coal and satisfy the important criteria of efficiency, low cost, environmental acceptability, low investment cost, and the capacity to use a wide range of coal qualities. The present status of PFBC and co-generation technology is reviewed and examples of industrial as well as utiltiy applications are cited. A successful commercialization of PFBC could contribute to the success of coal-utilization policies. (DCK)
Comparion of Mercury Emissions Between Circulating Fluidized Bed Boiler and Pulverized Coal Boiler
NASA Astrophysics Data System (ADS)
Wang, Y. J.; Duan, Y. F.; Zhao, C. S.
Mercury emissions between a circulating fluidized bed (CFB) utility boiler and two pulverized coal (PC) boilers equipped with electrostatic precipitators (ESP) were in situ measured and compared. The standard Ontario Hydro Method (OHM) was used to sample the flue gas before and after the ESP. Various mercury speciations such as Hg0, Hg2+ and Hgp in flue gas and total mercury in fly ashes were analyzed. The results showed that the mercury removal rate of the CFB boiler is nearly 100%; the mercury emission in stack is only 0.028 g/h. However, the mercury removal rates of the two PC boilers are 27.56% and 33.59% respectively, the mercury emissions in stack are 0.80 and 51.78 g/h respectively. It concluded that components of the ESP fly ashes especially their unburnt carbons have remarkable influence on mercury capture. Pore configurations of fine fly ash particles have non-ignored impacts on mercury emissions.
Tu, Yizhou; Liu, Xing-Peng; Li, Hui-Qiang; Yang, Ping
2017-12-01
Fracturing waste liquid (FWL) is generated during shale gas extraction and contains high concentrations of suspended solid, salinity and organic compounds, which needs proper management to prevent excessive environmental disruption. Biological treatment of the FWL was attempted in this study using a membrane-coupled internal circulation aerobic biological fluidized bed (MC-ICABFB) after being treated by coagulation. The results showed that poly aluminum chloride (PAC) of 30 g/L, polyacrylamide (PAM) of 20 mg/L and pH of 7.0 were suitable choices for coagulation. The pretreated FWL mixed with synthetic wastewater at different ratios were used as the influent wastewater for the reactor. The MC-ICABFB had relatively good performance on COD and NH 4 + -N removal and the main residual organic compound in the effluent was phthalates according to the analysis of GC-MC profiles. In addition, a suitable pretreatment process for the FWL to facilitate biological treatment of the wastewater needs further research.
NASA Astrophysics Data System (ADS)
Suojanen, Suvi; Hakkarainen, Elina; Kettunen, Ari; Kapela, Jukka; Paldanius, Juha; Tuononen, Minttu; Selek, Istvan; Kovács, Jenö; Tähtinen, Matti
2017-06-01
Hybridization of solar energy together with another energy source is an option to provide heat and power reliably on demand. Hybridization allows decreasing combustion related fuel consumption and emissions, assuring stable grid connection and cutting costs of concentrated solar power technology due to shared power production equipment. The research project "Integration of Concentrated Solar Power (CSP) and Circulating Fluidized Bed (CFB) Power Plants" (COMBO-CFB) has been carried out to investigate the technical possibilities and limitations of the concept. The main focus was on the effect of CSP integration on combustion dynamics and on the joint power cycle, and on the interactions of subsystems. The research provides new valuable experimental data and knowhow about dynamic behaviour of CFB combustion under boundary conditions of the hybrid system. Limiting factors for maximum solar share in different hybridization schemes and suggestions for enhancing the performance of the hybrid system are derived.
Evaluation of AFBC co-firing of coal and hospital wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purposemore » of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.« less
Fluidized bed heat exchanger with water cooled air distributor and dust hopper
Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.
1981-11-24
A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.
Process for generating electricity in a pressurized fluidized-bed combustor system
Kasper, Stanley
1991-01-01
A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.
Convection and fluidization in oscillatory granular flows: The role of acoustic streaming.
Valverde, Jose Manuel
2015-06-01
Convection and fluidization phenomena in vibrated granular beds have attracted a strong interest from the physics community since the last decade of the past century. As early reported by Faraday, the convective flow of large inertia particles in vibrated beds exhibits enigmatic features such as frictional weakening and the unexpected influence of the interstitial gas. At sufficiently intense vibration intensities surface patterns appear bearing a stunning resemblance with the surface ripples (Faraday waves) observed for low-viscosity liquids, which suggests that the granular bed transits into a liquid-like fluidization regime despite the large inertia of the particles. In his 1831 seminal paper, Faraday described also the development of circulation air currents in the vicinity of vibrating plates. This phenomenon (acoustic streaming) is well known in acoustics and hydrodynamics and occurs whenever energy is dissipated by viscous losses at any oscillating boundary. The main argument of the present paper is that acoustic streaming might develop on the surface of the large inertia particles in the vibrated granular bed. As a consequence, the drag force on the particles subjected to an oscillatory viscous flow is notably enhanced. Thus, acoustic streaming could play an important role in enhancing convection and fluidization of vibrated granular beds, which has been overlooked in previous studies. The same mechanism might be relevant to geological events such as fluidization of landslides and soil liquefaction by earthquakes and sound waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilpinen, P.; Kallio, S.; Hupa, M.
1999-07-01
This paper describes work-in-progress aimed at developing an emission model for circulating fluidized bed combustors using detailed homogeneous and heterogeneous chemical kinetics. The main emphasis is on nitrogen oxides (NO{sub x}, N{sub 2}O) but also unburned gases (CO, C{sub x}H{sub y}) and sulfur dioxide (SO{sub 2}) will be investigated in the long run. The hydrodynamics is described by a 1.5-dimensional model where the riser is divided into three regions: a dense bubbling bed at the bottom, a vigorously mixed splash zone, and a transport zone. The two latter zones are horizontally split into a core region and an annular region.more » The solids circulation rate is calculated from the known solids inventory and the pressure and mass balances over the entire circulation loop. The solids are divided into classes according to size and type or particle. The model assumes instantaneous fuel devolatilization at the bottom and an even distribution of volatiles in the suspension phase of the dense bed. For addition of secondary air, a complete penetration and an instantaneous mixing with the combustor gases in the core region is assumed. The temperature distribution is assumed to be known, and no energy balance is solved. A comprehensive kinetic scheme of about 300 elementary gas-phase reactions is used to describe the homogeneous oxidation of the volatiles including both hydrocarbon and volatile-nitrogen components (NH{sub 3}, HCN). Heterogeneous char combustion to CO and CO{sub 2}, and char-nitrogen conversion to NO, N{sub 2}O, and N{sub 2} are described by a single particle model that includes 15 reaction steps given in the form of 6 net reaction paths. In the paper, the model is briefly described. A special emphasis is put on the evaluation of chemistry submodels. Modeling results on nitrogen oxides' formation are compared with measured concentration profiles in a 12 MW CFBC riser from literature. The importance of accurate chemistry description on predictions is illustrated by comparing modeling results using detailed kinetics to those obtained when hydrocarbon and volatile-nitrogen oxidation are described with empirical, global kinetic rate expressions from literature. Submodels that need further improvements are discussed.« less
Particle circulation and solids transport in large bubbling fluidized beds. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homsy, G.M.
1982-04-01
We have undertaken a theoretical study of the possibility of the formation of plumes or channeling when coal particles volatilize upon introduction to a fluidized bed, Fitzgerald (1980). We have completed the analysis of the basic state of uniform flow and are currently completing a stability analysis. We have modified the continuum equations of fluidization, Homsy et al. (1980), to include the source of gas due to volatilization, which we assume to be uniformly distributed spatially. Simplifying these equations and solving leads to the prediction of a basic state analogous to the state of uniform fluidization found when no sourcemore » is present within the medium. We are currently completing a stability analysis of this basic state which will give the critical volatilization rate above which the above simple basic state is unstable. Because of the experimental evidence of Jewett and Lawless (1981), who observed regularly spaced plume-like instabilities upon drying a bed of saturated silica gel, we are considering two-dimensional periodic disturbances. The analysis is similar to that given by Homsy, et al. (1980) and Medlin et al. (1974). We hope to determine the stability limits for this system shortly.« less
Novel designs of fluidized bed combustors for low pollutant emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W.; Bleek, C.M. van den; Dam-Johansen, K.
1995-12-31
It is known that NH{sub 3}, released during the devolatilization of fuel, is an important precursor for NO formation in fluidized bed combustors. On the other hand, NH{sub 3} may be used as a reducing agent in the thermal DeNO{sub x} process to reduce NO{sub x} emission levels. In this paper, a new concept of fluidized bed combustors is proposed based on the idea of in situ reduction of NO{sub x} by self-produced NH{sub 3} from fuel without lowering the sulfur capture level. This design is intended to separate the NH{sub 3} release process under reducing conditions from the charmore » combustion process under oxidizing conditions; this self-released NH{sub 3}, together with some combustibles, is mixed with gaseous combustion products in the upper part of the combustor for a further reduction of the NO{sub x} formed during combustion. Furthermore, the combustion of the combustibles may cause the temperature to rise in this upper zone and thereby reduce the emission of N{sub 2}O. The applications of this design to bubbling and circulating fluidized bed combustors are described and the mechanisms of the main reactions involved discussed.« less
Fluidized combustion of coal. [to limit SO2 and NOx emissions
NASA Technical Reports Server (NTRS)
Pope, M.
1978-01-01
A combustion technology that permits the burning of low quality coal, and other fuels, while maintaining stack emissions within State and Federal EPA limits is discussed. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements. Tests on beds operating at pressures of one to ten atmospheres, at temperatures as high as 1600 F, and with gas velocities in the vicinity of four to twelve feet per second, have proven the concept. The progress that has been made in the development of fluidized bed combustion technology and work currently underway are discussed.
Treating exhaust gas from a pressurized fluidized bed reaction system
Isaksson, J.; Koskinen, J.
1995-08-22
Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.
Treating exhaust gas from a pressurized fluidized bed reaction system
Isaksson, Juhani; Koskinen, Jari
1995-01-01
Hot gases from a pressurized fluidized bed reactor system are purified. Under superatmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a flitrate cake on the surface of the separator, and a reducing agent--such as an NO.sub.x reducing agent (like ammonia), is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1-20 cm/s) during passage of the gas through the filtrate cake while at superatmospheric pressure. Separation takes place within a distinct pressure vessel the interior of which is at a pressure of about 2-100 bar, and-introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine).
NASA Astrophysics Data System (ADS)
Abbasi Baharanchi, Ahmadreza
This dissertation focused on development and utilization of numerical and experimental approaches to improve the CFD modeling of fluidization flow of cohesive micron size particles. The specific objectives of this research were: (1) Developing a cluster prediction mechanism applicable to Two-Fluid Modeling (TFM) of gas-solid systems (2) Developing more accurate drag models for Two-Fluid Modeling (TFM) of gas-solid fluidization flow with the presence of cohesive interparticle forces (3) using the developed model to explore the improvement of accuracy of TFM in simulation of fluidization flow of cohesive powders (4) Understanding the causes and influential factor which led to improvements and quantification of improvements (5) Gathering data from a fast fluidization flow and use these data for benchmark validations. Simulation results with two developed cluster-aware drag models showed that cluster prediction could effectively influence the results in both the first and second cluster-aware models. It was proven that improvement of accuracy of TFM modeling using three versions of the first hybrid model was significant and the best improvements were obtained by using the smallest values of the switch parameter which led to capturing the smallest chances of cluster prediction. In the case of the second hybrid model, dependence of critical model parameter on only Reynolds number led to the fact that improvement of accuracy was significant only in dense section of the fluidized bed. This finding may suggest that a more sophisticated particle resolved DNS model, which can span wide range of solid volume fraction, can be used in the formulation of the cluster-aware drag model. The results of experiment suing high speed imaging indicated the presence of particle clusters in the fluidization flow of FCC inside the riser of FIU-CFB facility. In addition, pressure data was successfully captured along the fluidization column of the facility and used as benchmark validation data for the second hybrid model developed in the present dissertation. It was shown the second hybrid model could predict the pressure data in the dense section of the fluidization column with better accuracy.
Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping
NASA Astrophysics Data System (ADS)
Wang, Baoqun; Dong, Li; Wang, Yin; Matsuzawa, Y.; Xu, Guangwen
We developed a comprehensive process model in ASPEN Plus to simulate the energy and mass balances of a lignite-fueled atmospheric circulating fluidized bed (CFB) boiler integrated with coal predrying and pyrolysis topping. In this model, it is assumed that the heat from exhausted flue gas was employed for coal predrying, and the sensible heat derived from circulated bed material was used for the pyrolysis topping (endothermic process). The simulation was conducted with respectto the Yunnan Kaiyuan CFB boiler, and two representative lignite coals from Xiao Long Tan (XLT) and Xin Shao (XS) were considered. The result shows that the predrying of coal with the sensible heat of above 363 K from flue gas, the amount of coal consumed in the boiler can be reduced by 3.5% and 5.3% for XLT lignite and XS lignite, respectively. It was also found that integration of pyrolysis topping with the boiler increased the coal consumption of the boiler, and the extent of consumption-increase varies with the yields of tar and gas in the pyrolysis topping process. For agas yield of 5.2% and a tar yield of 5-6%, the consumption of XS lignite increased by about 20% comparing to that in the case without topping.
NASA Astrophysics Data System (ADS)
Blaszczuk, Artur; Nowak, Wojciech
2016-10-01
In the present work, the heat transfer study focuses on assessment of the impact of bed temperature on the local heat transfer characteristic between a fluidized bed and vertical rifled tubes (38mm-O.D.) in a commercial circulating fluidized bed (CFB) boiler. Heat transfer behavior in a 1296t/h supercritical CFB furnace has been analyzed for Geldart B particle with Sauter mean diameter of 0.219 and 0.246mm. The heat transfer experiments were conducted for the active heat transfer surface in the form of membrane tube with a longitudinal fin at the tube crest under the normal operating conditions of CFB boiler. A heat transfer analysis of CFB boiler with detailed consideration of the bed-to-wall heat transfer coefficient and the contribution of heat transfer mechanisms inside furnace chamber were investigated using mechanistic heat transfer model based on cluster renewal approach. The predicted values of heat transfer coefficient are compared with empirical correlation for CFB units in large-scale.
Zhang, Wei; Feng, Yangyang; Chen, Yingwen; Li, Peiwen; Zhu, Shemin; Shen, Shubao
2018-02-05
In this paper, a new type of biogas jet assisted anaerobic fluidized bed reactor loaded with a polypropylene carrier has been proposed. There was a clear improvement in the fluidized state due to the biogas assisted input when the gas/water ratio was set at 1:3 with a suitable carrier loading of 60%. When the circulating water flow is 30 L/min assisted with biogas 10 L/min, the mixing time shortens from 26 to 18 s. The performance of anaerobic biodegradation on wastewater treatment was improved largely. The chemical oxygen demand (COD) and terepthallic acid removal efficiencies were at 85.4% and 84%, respectively, at hydraulic retention time of 20 h, even when the influent COD concentration was as high as 4224 mg/L. In addition, plenty of microorganisms, attached to the carriers and assumed to be the reason behind the organic biodegradation efficiency of the proposed system, were observed using scanning electron microscopy.
Wu, Chun-Sheng; Huang, Ju-Sheng; Chou, Hsin-Hsien
2006-01-01
Predictive models for describing the hydrodynamic behavior (bed-expansion and bed-pressure gradient) of a three-phase anaerobic fluidized bed reactor (AFBR) was developed according to wake theory together with more realistic dynamic bed-expansion experiments (with and without internal biogas production). A reliable correlation equation for the parameter k (mean volume ratio of wakes to bubbles) was also established, which is of help in estimating liquid hold up of fluidized beds. The experimental expansion ratio of three-phase fluidized beds (E(GLS)) was approximately 18% higher than that of two-phase fluidized beds (E(LS)); whereas the experimental bed-pressure gradient of the former [(-DeltaP/H)(GLS)] was approximately 9.3% lower than that of the latter [(-DeltaP/H)(LS)]. Both the experimental and modeling results indicated that a higher superficial gas velocity (u(g)) gave a higher E(GLS) and a higher E(GLS) to E(LS) ratio as well as a lower (-DeltaP/H)(GLS) and a lower (-DeltaP/H)(GLS) to (-DeltaP/H)(LS) ratio. As for the operation stability of the AFBR, the sensitivity of u(g) to expansion height (H(GLS)) and (-DeltaP/H)(GLS) is between the sensitivity of superficial liquid velocity and biofilm thickness. The model predictions of E(GLS), (-DeltaP)(GLS), and (-DeltaP/H)(GLS) agreed well the experimental measurements. Accordingly, the predictive models accounting for internal biogas production described fairly well the hydrodynamic behavior of the AFBR.
Effect of sorbent attrition on utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keener, T.C.; Khang, S.J.; Lee, S.K.
1992-10-01
During this period, the project has focused on two aspects of attrition; (1) mechanical attrition which is responsible for particle fracture whenever particles are moving with respect to a fixed reference frame, and (2) chemical attrition which can be responsible for particle fracture whenever particles undergo reactions. The experiments were conducted with calcium based sorbent materials. Two specific project objectives were identified and studied. The first of these was to determine the effect of temperature, particle velocity, and particle surface area on the extent of attrition in a circulating fluidized reactor. The second was to investigate if attrition could improvemore » sorbent utilization of typical calcium based sorbents of small size (<20 [mu]m). A sample of sulfated calcium hydroxide sorbent was obtained for attrition tests in a circulating fluidized bed reactor. Attempts at attriting this material in the fluidized bed were not successful, and no improvements in sorbent utilization were measured in subsequent TGA tests with the solids. However, an analysis of the other constituents in the particles revealed that a major portion of the hydroxide had been converted to calcium carbonate. This gave rise to the possibility that dolomitic hydroxide may have characteristics which may be beneficial and that improvements in utilization could be realized by means of chemical attrition. This is due to the thermal instability of magnesium carbonate at temperatures above 650[degree]F which means that magnesium oxide will be the major unreacted magnesium species in spent sorbent.« less
Effect of sorbent attrition on utilization. Final report, August 1, 1991--August 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keener, T.C.; Khang, S.J.; Lee, S.K.
1992-10-01
During this period, the project has focused on two aspects of attrition; (1) mechanical attrition which is responsible for particle fracture whenever particles are moving with respect to a fixed reference frame, and (2) chemical attrition which can be responsible for particle fracture whenever particles undergo reactions. The experiments were conducted with calcium based sorbent materials. Two specific project objectives were identified and studied. The first of these was to determine the effect of temperature, particle velocity, and particle surface area on the extent of attrition in a circulating fluidized reactor. The second was to investigate if attrition could improvemore » sorbent utilization of typical calcium based sorbents of small size (<20 {mu}m). A sample of sulfated calcium hydroxide sorbent was obtained for attrition tests in a circulating fluidized bed reactor. Attempts at attriting this material in the fluidized bed were not successful, and no improvements in sorbent utilization were measured in subsequent TGA tests with the solids. However, an analysis of the other constituents in the particles revealed that a major portion of the hydroxide had been converted to calcium carbonate. This gave rise to the possibility that dolomitic hydroxide may have characteristics which may be beneficial and that improvements in utilization could be realized by means of chemical attrition. This is due to the thermal instability of magnesium carbonate at temperatures above 650{degree}F which means that magnesium oxide will be the major unreacted magnesium species in spent sorbent.« less
Pressurized fluidized bed reactor
Isaksson, J.
1996-03-19
A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.
Pressurized fluidized bed reactor
Isaksson, Juhani
1996-01-01
A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.
Heat Transfer Coefficient Distribution in the Furnace of a 300MWe CFB Boiler
NASA Astrophysics Data System (ADS)
Zhang, P.; Lu, J. F.; Yang, H. R.; Zhang, J. S.; Zhang, H.; Yue, G. X.
Properly understanding and calculating the distributions of heat flux and heat transfer coefficient (α) in the furnace is important in designing a circulating fluidized bed (CFB) boiler, especially with supercritical parameters. Experimental study on the heat transfer in a commercial 300MWe CFB boiler was conducted. The α from the bed to the water wall was measured by the finite element method (FEM), at five different heights. The influence of suspension density and bed temperature on α was analyzed. It was found that the pressure difference between the inlet and exit of the three cyclones, and the chamber pressure of the corresponding loop seal were not equal. The results indicated the suspension solid density was non-uniform in the cross section at a certain height. Consequently, the distributions of heat flux and α in the horizontal plane in the furnace was non-uniform. The furnace can divided into three sections according to the arrangement of the platen superheaters hanging in the upper CFB furnace. In each section, the heat flux near the center showed increasing trend.
40 CFR 60.53b - Standards for municipal waste combustor operating practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150 4 Spreader stoker coal/refuse-derived fuel mixed fuel-fired combustor 150 24 a Measured at the combustor... activated carbon injection rate during dioxin/furan or mercury testing. [60 FR 65419, Dec. 19, 1995, as...
Layered growth with bottom-spray granulation for spray deposition of drug.
Er, Dawn Z L; Liew, Celine V; Heng, Paul W S
2009-07-30
The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Hui; Li Qin; Shen Lifeng
2010-01-15
In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solutionmore » as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purposemore » of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.« less
Weng, Tsai-Lung; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi
2018-01-01
This study aims to investigate the effect of adding circulating fluidized bed combustion (CFBC) ash, desulfurization slag, air-cooled blast-furnace slag and coal bottom ash to the controlled low-strength material (CLSM). Test methods include slump flow test, ball drop test, water soluble chloride ion content measurement, compressive strength and length change measurement. The results show that (1) the use of CFBC hydration ash with desulfurization slag of slump flow is the best, and the use of CFBC hydration ash with coal bottom ash and slump flow is the worst; (2) CFBC hydration ash with desulfurization slag and chloride ion content is the highest; (3) 24 h ball drop test (diameter ≤ 76 mm), and test results are 70 mm to 76 mm; (4) CFBC hydration ash with desulfurization slag and compression strength is the highest, with the coal bottom ash being the lowest; increase of CFBC hydration ash can reduce compressive strength; and (5) the water-quenched blast furnace slag and CFBC hydration ash would expand, which results in length changes of CLSM specimens. PMID:29724055
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiaolin Wei; Yang Wang; Dianfu Liu
2009-03-15
An internally circulating fluidized bed (ICFB) was applied to investigate the behavior of chlorine and sulfur during cofiring RDF and coal. The pollutant emissions in the flue gas were measured by Fourier transform infrared (FTIR) spectrometry (Gasmet DX-3000). In the tests, the concentrations of the species CO, CO{sub 2}, HCl, and SO{sub 2} were measured online. Results indicated when cofiring RDF and char, due to the higher content of chlorine in RDF, the formation of HCl significantly increases. The concentration of SO{sub 2} is relatively low because alkaline metal in the fuel ash can absorb SO{sub 2}. The concentration ofmore » CO emission during firing pure RDF is relatively higher and fluctuates sharply. With the CaO addition, the sulfur absorption by calcium quickly increases, and the desulfurization ratio is bigger than the dechlorination ratio. The chemical equilibrium method is applied to predict the behavior of chlorine. Results show that gaseous HCl emission increases with increasing RDF fraction, and gaseous KCl and NaCl formation might occur. 35 refs., 18 figs., 2 tabs.« less
Pressure ulcer prevention in high-risk postoperative cardiovascular patients.
Jackson, Melissa; McKenney, Teresa; Drumm, Jennifer; Merrick, Brian; LeMaster, Tamara; VanGilder, Catherine
2011-08-01
Little has been published about how to prevent pressure ulcers in severely debilitated, immobile patients in intensive care units. To present a possible prevention strategy for postoperative cardiovascular surgery patients at high risk for development of pressure ulcers. Staff chose to implement air fluidized therapy beds, which provide maximal immersion and envelopment as a measure for preventing pressure ulcers in patients who (1) required vasopressors for at least 24 hours and (2) required mechanical ventilation for at least 24 hours postoperatively. Only 1 of 27 patients had a pressure ulcer develop while on the air fluidized therapy bed (February 2008 through August 2008), and that ulcer was only a stage I ulcer, compared with 40 ulcers in 25 patients before the intervention. Patients spent a mean of 7.9 days on the mattress, and the cost of bed rental was approximately $18000, which was similar to the cost of treatment of 1 pressure ulcer in stage III or IV (about $40000) and was considered cost-effective.
Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition
NASA Astrophysics Data System (ADS)
Duan, Chen-Long; Liu, Xiao; Shan, Bin; Chen, Rong
2015-07-01
A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas-solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al2O3 films on spherical SiO2 NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.
2018-01-01
Currently there are significant amounts of natural gas that cannot be produced and treated to meet pipeline specifications, because that would not be economically viable. This work investigates a bench scale multistage fluidized bed (MSFB) with shallow beds for sour gas removal from natural gas using a commercially available supported amine sorbent. A MSFB is regarded as a promising adsorber type for deep sour gas removal to parts per million concentrations. A series of experiments was conducted using carbon dioxide as sour gas and nitrogen to mimic natural gas. Removal below 3 mol ppm was successfully demonstrated. This indicates that gas bypassing is minor (that is, good gas–solid contacting) and that apparent adsorption kinetics are fast for the amine sorbent applied. Tray efficiencies for a chemisorption/adsorption system were reported for one of the first times. Current experiments performed at atmospheric pressure strongly indicate that deep removal is possible at higher pressures in a multistage fluidized bed. PMID:29606794
Driessen, Rick T; Bos, Martin J; Brilman, Derk W F
2018-03-21
Currently there are significant amounts of natural gas that cannot be produced and treated to meet pipeline specifications, because that would not be economically viable. This work investigates a bench scale multistage fluidized bed (MSFB) with shallow beds for sour gas removal from natural gas using a commercially available supported amine sorbent. A MSFB is regarded as a promising adsorber type for deep sour gas removal to parts per million concentrations. A series of experiments was conducted using carbon dioxide as sour gas and nitrogen to mimic natural gas. Removal below 3 mol ppm was successfully demonstrated. This indicates that gas bypassing is minor (that is, good gas-solid contacting) and that apparent adsorption kinetics are fast for the amine sorbent applied. Tray efficiencies for a chemisorption/adsorption system were reported for one of the first times. Current experiments performed at atmospheric pressure strongly indicate that deep removal is possible at higher pressures in a multistage fluidized bed.
Water softening by induced crystallization in fluidized bed.
Chen, Yuefang; Fan, Rong; An, Danfeng; Cheng, Yujie; Tan, Hazel
2016-12-01
Fluidized bed and induced crystallization technology were combined to design a new type of induced crystallization fluidized bed reactor. The added particulate matter served as crystal nucleus to induce crystallization so that the insoluble material, which was in a saturated state, could precipitate on its surface. In this study, by filling the fluidized bed with quartz sand and by adjusting water pH, precipitation of calcium carbonate was induced on the surface of quartz sand, and the removal of water hardness was achieved. With a reactor influent flow of 60L/hr, a fixed-bed height of 0.5m, pH value of 9.5, quartz sand nuclear diameter of 0.2-0.4mm, and a reflux ratio of 60%, the effluent concentration of calcium hardness was reduced to 60mg/L and 86.6% removal efficiency was achieved. The resulting effluent reached the quality standard set for circulating cooling water. Majority of the material on the surface of quartz sand was calculated to be calcium carbonate based on energy spectrum analysis and moisture content was around 15.994%. With the low moisture content, dewatering treatment is no longer required and this results to cost savings on total water treatment process. Copyright © 2016. Published by Elsevier B.V.
Metal wastage design guidelines for bubbling fluidized-bed combustors. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyczkowski, R.W.; Podolski, W.F.; Bouillard, J.X.
These metal wastage design guidelines identify relationships between metal wastage and (1) design parameters (such as tube size, tube spacing and pitch, tube bundle and fluidized-bed height to distributor, and heat exchanger tube material properties) and (2) operating parameters (such as fluidizing velocity, particle size, particle hardness, and angularity). The guidelines are of both a quantitative and qualitative nature. Simplified mechanistic models are described, which account for the essential hydrodynamics and metal wastage processes occurring in bubbling fluidized beds. The empirical correlational approach complements the use of these models in the development of these design guidelines. Data used for modelmore » and guideline validation are summarized and referenced. Sample calculations and recommended design procedures are included. The influences of dependent variables on metal wastage, such as solids velocity, bubble size, and in-bed pressure fluctuations, are discussed.« less
A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment.
Li, Jian; Ge, Zheng; He, Zhen
2014-09-01
A fluidized bed membrane bioelectrochemical reactor (MBER) was investigated using fluidized granular activated carbon (GAC) as a mean of membrane fouling control. During the 150-day operation, the MBER generated electricity with contaminant removal from either synthetic solution or actual wastewater, as a standalone or a coupled system. It was found that fluidized GAC could significantly reduce transmembrane pressure (TMP), although its function as a part of the anode electrode was minor. When the MBER was linked to a regular microbial fuel cell (MFC) for treating a wastewater from a cheese factory, the MFC acted as a major process for energy recovery and contaminant removal, and the coupled system removed more than 90% of chemical oxygen demand and >80% of suspended solids. The analysis showed that the ratio of energy recovery and consumption was slightly larger than one, indicating that the coupled system could be theoretically energy neutral. Copyright © 2014 Elsevier Ltd. All rights reserved.
An innovative example of herb residues recycling by gasification in a fluidized bed.
Guo, Feiqiang; Dong, Yuping; Dong, Lei; Jing, Yuanzhuo
2013-04-01
A utilization way of herb residues is designed to convert herb residues to gas fuel in industrial-scale by a circulating fluidized bed gasifier in this paper. The product gas is used in the production of Chinese medicine, and the heat of the flue gas from the boiler can be used in herb residues drying to realize the energy recycling and no herb residues discharge. The gasification characteristics of herb residues in the circulating fluidized bed of 300 kg/h were investigated for about 200 h. The results indicated that the gas composition and tar yield were affected by biomass flow rate, equivalence ratio (ER), moisture content and char circulating. The lower heating value of product gas was 4-5 MJ/m(3) using herb residues as feedstock. When mean biomass flow rate was at 5.5 kg m(-2)s(-1) and ER at 0.35, the product gas reached a good condition with lower heating value of 4.89 MJ/m(3) and cold gas efficiency of 62.36%. When the moisture content changed from 12.5% to 18.7%, the concentrations of H2, CO and CO2 changed from 4.66% to 6.92%, 11.23% to 10.15%, and 16.55% to 17.82% respectively, and the tar content in gas decreased from 15.1g/m(3) to 14.4 g/m(3) when the moisture content increased from 12.5% to 15.4%. There are metal oxides in the ash of herb residues, especially CaO, MgO, K2O, Al2O3, and Fe2O3 which have obvious function on tar catalytic decomposition. The ash that attaches to the char particles can decrease the tar yield and improve the quality of gas after returning to the gasifier. Copyright © 2012 Elsevier Ltd. All rights reserved.
Petropower energia project under way in Chile promises refiner better economics at lower cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
Construction of the Republic of Chile`s first public/private industrial partnership project is well under way. Ground was broken for the $232-million Petropower Energia Limitada project early this year, shortly after the final contract between the parties - Foster Wheeler Power Systems, Inc. (FWPS); Petrox S.A. Refineria de Petroleo and Empresa Nacional del Petroleo (ENAP) - was signed. The Petropower project, located adjacent to Petrox`s 84,000-b/d refinery in Talcahuano, represents the first project ever to combine petroleum coking technology with cogeneration technology in a single project financing. Petropower is 85% owned by FWPS, 7.5% by ENAP, the Chilean national oil companymore » and parent of Petrox S.A. When completed in mid-1998, the Petropower project will enable Petrox to refine heavier crudes and enhance the refinery`s flexibility and economics. The project will consist of a delayed coking facility (a 12,000-b/d delayed coking unit and a 7,000-b/d hydrotreating plant) and a 67-MW (59 MW net) cogeneration plant. The coke produced will fuel a Foster Wheeler proprietary-design circulating fluidized-bed (CFB) boiler which will generate all the high-pressure steam and electric power needs of the Petrox refinery. This unit will be the first circulating fluidized-bed boiler to be built in Latin America. The cogeneration facility, using limestone as a reagent and equipped with a baghouse, will control SO{sub x} emissions from combustion of the green coke fuel and easily meet all Chilean environmental standards. Moreover, by constructing the cogeneration facility, Petrox will not have to proceed with capital improvements to existing facilities to ensure a reliable source of steam and electricity, resulting in substantial savings for Petrox. The cogeneration plant provides a permanent {open_quotes}disposal{close_quotes} for all coke produced by the delayed coker, thereby solving any future problems of unwanted or excess coke.« less
NASA Astrophysics Data System (ADS)
Pollock, N. M.; Brand, B. D.; Roche, O.
2017-12-01
The macroscopic processes that control the behavior of pyroclastic density currents (PDCs) include the transportation and deposition of flow particles, entrainment of air, and interaction with topography. However, recent field studies demonstrate that substrate erosion by PDCs is also pervasive. Furthermore, analogue experiments suggest that erosion can increase flow runout distance up to 50%. We present the results from a series of analogue flume experiments on both non-fluidized and initially gas fluidized (i.e. high pore fluid pressure) granular flows. The experiments are designed to explore the controls on erosion initiation and intensity, and how erosion affects flow dynamics. A range of initial conditions allow us to explore how the angle of the bed (0°-20°) and diameter of substrate particles (40 to 700 μm) affect the onset of erosion. The experiments also explore how erosion, once initiated, affects the behavior of the flow in terms of velocity and runout distance. We observe that fluidized flows have increased runout distances of 50-300% relative to non-fluidized flows with the same initial conditions. Fluidized flows that travel over substrates composed of 40 μm particles consistently experience the largest increase in runout distance relative to non-fluidized flows, while flows over substrates of 80 μm particles experience the lowest increase. Erosion occurs for all experimental configurations in both non-fluidized and fluidized flows; however, the intensity of erosion varies widely, from small, millimeter-scale erosional features to decimeter sized wave-like features. Fluidized flows consistently show more intense erosion than non-fluidized flows, suggesting that the fluid-like behavior of these flows allows for efficient mixing between flow and substrate particles. These experiments demonstrate that erosion is a pervasive process for fluidized granular flows and that intense erosion is associated with increased flow runout distances. These results improve our understanding of the role of fluidization in erosion processes, what controls when PDCs become erosional, and how that erosion can alter flow behavior. To accurately model and predict hazards associated with PDCs, we must better understand erosional processes as they relate to these dangerous volcanic phenomena.
Fluidized bed gasification of extracted coal
Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter
1986-01-01
Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.
Denlinger, R.P.; Iverson, R.M.
2001-01-01
Numerical solutions of the equations describing flow of variably fluidized Coulomb mixtures predict key features of dry granular avalanches and water-saturated debris flows measured in physical experiments. These features include time-dependent speeds, depths, and widths of flows as well as the geometry of resulting deposits. Threedimensional (3-D) boundary surfaces strongly influence flow dynamics because transverse shearing and cross-stream momentum transport occur where topography obstructs or redirects motion. Consequent energy dissipation can cause local deceleration and deposition, even on steep slopes. Velocities of surge fronts and other discontinuities that develop as flows cross 3-D terrain are predicted accurately by using a Riemann solution algorithm. The algorithm employs a gravity wave speed that accounts for different intensities of lateral stress transfer in regions of extending and compressing flow and in regions with different degrees of fluidization. Field observations and experiments indicate that flows in which fluid plays a significant role typically have high-friction margins with weaker interiors partly fluidized by pore pressure. Interaction of the strong perimeter and weak interior produces relatively steep-sided, flat-topped deposits. To simulate these effects, we compute pore pressure distributions using an advection-diffusion model with enhanced diffusivity near flow margins. Although challenges remain in evaluating pore pressure distributions in diverse geophysical flows, Riemann solutions of the depthaveraged 3-D Coulomb mixture equations provide a powerful tool for interpreting and predicting flow behavior. They provide a means of modeling debris flows, rock avalanches, pyroclastic flows, and related phenomena without invoking and calibrating Theological parameters that have questionable physical significance.
Modeling of chemical reactions in afterburning for the reduction of N{sub 2}O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsson, L.; Glarborg, P.; Leckner, B.
1996-08-01
Afterburning involves burning a secondary fuel in the flue gases from a fluidized bed combustor to raise the temperature, and thereby decrease the emission of N{sub 2}O. Tests in a 12-MW circulating fluidized bed boiler used the cyclone as an afterburning combustor. The results from these tests are analyzed by chemical kinetic calculations with homogeneous hydrocarbon and nitrogen chemistry. Furthermore, a study is made of the influence on the calculation of particles in the flue gases. The deviation between calculated and measured data is small at high temperatures, but increases at the lower temperatures investigated. The influence of particles ismore » predicted to be small under conditions prevailing in the cyclone.« less
Air-fluidized grains as a model system: Self-propelling and jamming
NASA Astrophysics Data System (ADS)
Daniels, Lynn J.
This thesis examines two concepts -- self-propelling and jamming -- that have been employed to unify disparate non-equilibrium systems, in the context of a monolayer of grains fluidized by a temporally and spatially homogeneous upflow of air. The first experiment examines the single particle dynamics of air-fluidized rods. For Brownian rods, equipartition of energy holds and rotational motion sets a timescale after which directional memory is lost. Air-fluidized rods no longer obey equipartion; they self-propel, moving preferentially along their long axis. We show that self-propelling can be treated phenomenologically as an enhanced memory effect causing directional memory to persist for times longer than expected for thermal systems. The second experiment studies dense collections of self-propelling air-fluidized rods. We observe collective propagating modes that give rise to anomalously large fluctuations in the local number density. We quantify these compression waves by calculating the dynamic structure factor and show that the wavespeed is weakly linear with increasing density. It has been suggested that the observed behavior might be explained using the framework put forth by Baskaran et al. [12]. The third experiment seeks to determine whether a force analogous to the critical Casimir force in fluids exists for a large sphere fluidized in the presence of a background of smaller spheres. The behavior of such a large sphere is fully characterized showing that, rather than behaving like a sphere driven by turbulence, the large ball self-propels. We also show that the background is responsible for the purely attractive, intermediate-ranged interaction force between two simultaneously-fluidized large balls. The final experiment seeks to determine what parameters control the diverging relaxation timescale associated with the jamming transition. By tilting our apparatus, we quantify pressure, packing fraction, and temperature simultaneously with dynamics as we approach jamming. We obtain an equation of state that agrees well with simulation and free volume theory. We collapse the relaxation time by defining a time- and energy-scale using pressure, consistent with recent simulation [82]. These experiments are further confirmation of the universality of the concepts of self-propelling and jamming.
Pressurized fluidized bed reactor and a method of operating the same
Isaksson, J.
1996-02-20
A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.
Pressurized fluidized bed reactor and a method of operating the same
Isaksson, Juhani
1996-01-01
A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... combustion by-products (CCB); two (2) landfills for the on-site disposal of CCB; an emergency drought water... Bed Electric Generating Unit by East Kentucky Power Cooperative, Inc., in Clark County, KY AGENCY: U.S... circulating fluidized bed electric generating unit by East Kentucky Power Cooperative, Inc. (EKPC), in Clark...
Carbon attrition during the circulating fluidized bed combustion of a packaging-derived fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mastellone, M.L.; Arena, U.
1999-05-01
Cylindrical pellets of a market-available packaging-derived fuel, obtained from a mono-material collection of polyethylene terephthalate (PET) bottles, were batchwise fed to a laboratory scale circulating fluidized bed (CFB) combustor. The apparatus, whose riser was 41 mm ID and 4 m high, was operated under both inert and oxidizing conditions to establish the relative importance of purely mechanical attrition and combustion-assisted attrition in generating carbon fines. Silica sand particles of two size distributions were used as inert materials. For each run, carbon load and carbon particle size distribution in the riser and rates of attrited carbon fines escaping the combustor weremore » determined as a function of time. A parallel investigation was carried out with a bubbling fluidized bed (BFB) combustor to point out peculiarities of attrition in CFB combustors. After devolatilization, PET pellets generated fragile aggregates of char and sand, which easily crumbled, leading to single particles, partially covered by a carbon-rich layer. The injected fixed carbon was therefore present in the bed in three phases: an A-phase, made of aggregates of sand and char, an S-phase, made of individual carbon-covered sand particles and an F-phase, made of carbon fines, abraded by the surfaces of the A- and S-phases. The effects of the size of inert material on the different forms under which fixed carbon was present in the bed and on the rate of escape of attrited carbon fines from the combustor were investigated. Features of carbon attrition in CFB and BFB combustors are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dong; Pan, Jie; Zhu, Xiaojing
2011-02-15
Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure dropmore » in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)« less
Fluidized bed gasification of extracted coal
Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.
1984-07-06
Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.
Fluidization of spherocylindrical particles
NASA Astrophysics Data System (ADS)
Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.
2017-06-01
Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.
Multi-stage circulating fluidized bed syngas cooling
Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang
2016-10-11
A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.
Cao, Jing-Pei; Xiao, Xian-Bin; Zhang, Shou-Yu; Zhao, Xiao-Yan; Sato, Kazuyoshi; Ogawa, Yukiko; Wei, Xian-Yong; Takarada, Takayuki
2011-01-01
Fast pyrolyses of sewage sludge (SS), pig compost (PC), and wood chip (WC) were investigated in an internally circulating fluidized-bed to evaluate bio-oil production. The pyrolyses were performed at 500 °C and the bio-oil yields from SS, PC, and WC were 45.2%, 44.4%, and 39.7% (dried and ash-free basis), respectively. The bio-oils were analyzed with an elemental analyzer, Karl-Fischer moisture titrator, bomb calorimeter, Fourier transformation infrared spectrometer, gel permeation chromatograph, and gas chromatography/mass spectrometry. The results show that the bio-oil from SS is rich in aliphatic and organonitrogen species, while the bio-oil from PC exhibits higher caloric value due to its higher carbon content and lower oxygen content in comparison with that from SS. The bio-oils from SS and PC have similar chemical composition of organonitrogen species. Most of the compounds detected in the bio-oil from WC are organooxygen species. Because of its high oxygen content, low H/C ratio, and caloric value, the bio-oil from WC is unfeasible for use as fuel feedstock, but possible for use as chemical feedstock. Copyright © 2010 Elsevier Ltd. All rights reserved.
Li, Zhipeng; Liu, Feng; You, Hong; Ding, Yi; Yao, Jie; Jin, Chao
2018-04-01
This paper investigated the performance of the combined system of catalytic ozonation and the gas-liquid-solid internal circulating fluidized bed reactor for the advanced treatment of biologically pretreated coal chemical industry wastewater (CCIW). The results indicated that with ozonation alone for 60min, the removal efficiency of chemical oxygen demand (COD) could reach 34%. The introduction of activated carbon, pumice, γ-Al 2 O 3 carriers improved the removal performance of COD, and the removal efficiency was increased by 8.6%, 4.2%, 2%, respectively. Supported with Mn, the catalytic performance of activated carbon and γ-Al 2 O 3 were improved significantly with COD removal efficiencies of 46.5% and 41.3%, respectively; however, the promotion effect of pumice supported with Mn was insignificant. Activated carbon supported with Mn had the best catalytic performance. The catalytic ozonation combined system of MnO X /activated carbon could keep ozone concentration at a lower level in the liquid phase, and promote the transfer of ozone from the gas phase to the liquid phase to improve ozonation efficiency.
Gasification of high ash, high ash fusion temperature bituminous coals
Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang
2015-11-13
This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.
Statistics of velocity fluctuations of Geldart A particles in a circulating fluidized bed riser
Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji
2017-11-21
Here, the statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from themore » Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.« less
Simulation of granular and gas-solid flows using discrete element method
NASA Astrophysics Data System (ADS)
Boyalakuntla, Dhanunjay S.
2003-10-01
In recent years there has been increased research activity in the experimental and numerical study of gas-solid flows. Flows of this type have numerous applications in the energy, pharmaceuticals, and chemicals process industries. Typical applications include pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and pellets, and many more. The present work addresses the study of gas-solid flows using computational fluid dynamics (CFD) techniques and discrete element simulation methods (DES) combined. Many previous studies of coupled gas-solid flows have been performed assuming the solid phase as a continuum with averaged properties and treating the gas-solid flow as constituting of interpenetrating continua. Instead, in the present work, the gas phase flow is simulated using continuum theory and the solid phase flow is simulated using DES. DES treats each solid particle individually, thus accounting for its dynamics due to particle-particle interactions, particle-wall interactions as well as fluid drag and buoyancy. The present work involves developing efficient DES methods for dense granular flow and coupling this simulation to continuum simulations of the gas phase flow. Simulations have been performed to observe pure granular behavior in vibrating beds. Benchmark cases have been simulated and the results obtained match the published literature. The dimensionless acceleration amplitude and the bed height are the parameters governing bed behavior. Various interesting behaviors such as heaping, round and cusp surface standing waves, as well as kinks, have been observed for different values of the acceleration amplitude for a given bed height. Furthermore, binary granular mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been studied. Gas-solid flow simulations have been performed to study fluidized beds. Benchmark 2D fluidized bed simulations have been performed and the results have been shown to satisfactorily compare with those published in the literature. A comprehensive study of the effect of drag correlations on the simulation of fluidized beds has been performed. It has been found that nearly all the drag correlations studied make similar predictions of global quantities such as the time-dependent pressure drop, bubbling frequency and growth. In conclusion, discrete element simulation has been successfully coupled to continuum gas-phase. Though all the results presented in the thesis are two-dimensional, the present implementation is completely three dimensional and can be used to study 3D fluidized beds to aid in better design and understanding. Other industrially important phenomena like particle coating, coal gasification etc., and applications in emerging areas such as nano-particle/fluid mixtures can also be studied through this type of simulation. (Abstract shortened by UMI.)
Cost and performance of coal-based energy in Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temchin, J.; DeLallo, M.R.
1998-07-01
As part of the US Department of Energy's (DOE) efforts to establish the strategic benefits of Clean Coal Technologies (CCT), there is a need to evaluate the specific market potential where coal is a viable option. One such market is Brazil, where significant growth in economic development requires innovative and reliable technologies to support the use of domestic coal. While coal is Brazil's most abundant and economic fossil energy resource, it is presently under utilized in the production of electrical power. This report presents conceptual design for pulverized coal (PC) and circulating fluidized-bed combustion (CFBC) options with resulting capital, operatingmore » and financial parameters based on Brazil application conditions. Recent PC and CFBC plant capital costs have dropped with competition in the generation market and have established a competitive position in power generation. Key issues addressed in this study include: Application of market based design approach for FBC and PC, which is competitive within the current domestic, and international power generation markets. Design, fabrication, purchase, and construction methods which reduce capital investment while maintaining equipment quality and plant availability. Impact on coast and performance from application of Brazilian coals, foreign trade and tax policies, construction logistics, and labor requirements. Nominal production values of 200 MWe and 400 MWe were selected for the CFBC power plant and 400 MWe for the PC. The 400 MWe size was chosen to be consistent with the two largest Brazilian PC units. Fluidized bed technology, with limited experience in single units over 200 MW, would consist of two 200 MWe circulating fluidized bed boilers supplying steam to one steam turbine for the 400 MWe capacity. A 200 MWe capacity unit was also developed for CFBC option to support opportunities in re-powering and where specific site or other infrastructure constraints limit production.« less
NASA Astrophysics Data System (ADS)
Hofmeister, M.; Franke, M. M.; Koerner, C.; Singer, R. F.
2017-12-01
Superalloy gas turbine blades are being produced by investment casting and directional solidification. A new process, Fluidized Carbon Bed Cooling (FCBC), has been developed and is now being optimized in a prototype casting unit with 10 kg pouring weight. In early test runs with still rather simple mold cluster geometries, a reduction of the primary dendrite arm spacing of around 40 pct compared to the standard radiation cooling process (HRS) could be demonstrated. The improvement is mainly attributed to higher temperature gradients driving solidification, made possible by a functioning Dynamic Baffle. Compared to earlier development efforts in the literature, contamination of the melt and damage to the equipment are avoided using carbon-based fluidized bed materials and the so-called "counter pressure concept."
NASA Astrophysics Data System (ADS)
Rae, A. S. P.; Collins, G. S.; Grieve, R. A. F.; Osinski, G. R.; Morgan, J. V.
2017-07-01
Large impact structures have complex morphologies, with zones of structural uplift that can be expressed topographically as central peaks and/or peak rings internal to the crater rim. The formation of these structures requires transient strength reduction in the target material and one of the proposed mechanisms to explain this behavior is acoustic fluidization. Here, samples of shock-metamorphosed quartz-bearing lithologies at the West Clearwater Lake impact structure, Canada, are used to estimate the maximum recorded shock pressures in three dimensions across the crater. These measurements demonstrate that the currently observed distribution of shock metamorphism is strongly controlled by the formation of the structural uplift. The distribution of peak shock pressures, together with apparent crater morphology and geological observations, is compared with numerical impact simulations to constrain parameters used in the block-model implementation of acoustic fluidization. The numerical simulations produce craters that are consistent with morphological and geological observations. The results show that the regeneration of acoustic energy must be an important feature of acoustic fluidization in crater collapse, and should be included in future implementations. Based on the comparison between observational data and impact simulations, we conclude that the West Clearwater Lake structure had an original rim (final crater) diameter of 35-40 km and has since experienced up to 2 km of differential erosion.
Helmi, Arash; Fernandez, Ekain; Melendez, Jon; Pacheco Tanaka, David Alfredo; Gallucci, Fausto; van Sint Annaland, Martin
2016-03-19
In this research the performance of a fluidized bed membrane reactor for high temperature water gas shift and its long term stability was investigated to provide a proof-of-concept of the new system at lab scale. A demonstration unit with a capacity of 1 Nm³/h of ultra-pure H₂ was designed, built and operated over 900 h of continuous work. Firstly, the performance of the membranes were investigated at different inlet gas compositions and at different temperatures and H₂ partial pressure differences. The membranes showed very high H₂ fluxes (3.89 × 10(-6) mol·m(-2)·Pa(-1)·s(-1) at 400 °C and 1 atm pressure difference) with a H₂/N₂ ideal perm-selectivity (up to 21,000 when integrating five membranes in the module) beyond the DOE 2015 targets. Monitoring the performance of the membranes and the reactor confirmed a very stable performance of the unit for continuous high temperature water gas shift under bubbling fluidization conditions. Several experiments were carried out at different temperatures, pressures and various inlet compositions to determine the optimum operating window for the reactor. The obtained results showed high hydrogen recovery factors, and very low CO concentrations at the permeate side (in average <10 ppm), so that the produced hydrogen can be directly fed to a low temperature PEM fuel cell.
NASA Astrophysics Data System (ADS)
Murakami, Takahiro; Suzuki, Yoshizo; Nagasawa, Hidekazu; Yamamoto, Takafumi; Koseki, Takami; Hirose, Hitoshi; Ochi, Shuichi
An epoch-making incineration plant, which is equipped with a pressurized fluidized-bed combustor coupled to a turbocharger, for the recovery of the energy contained in sewage sludge is proposed. This plant has three main advantages. (1) A pressure vessel is unnecessary because the maximum operating pressure is 0.3 MPa (absolute pressure). The material cost for plant construction can be reduced. (2) CO2 emissions originating from power generation can be decreased because the FDF (Forced Draft Fan) and the IDF (Induced Draft Fan) are omitted. (3) Steam in the flue gas becomes a working fluid of the turbocharger, so that in addition to the combustion air, the surplus air is also generable. Therefore, this proposed plant will not only save energy but also the generate energy. The objective of this study is to elucidate the fundamental combustion characteristics of the sewage sludge using a lab-scale pressurized fluidized bed combustor (PFBC). The tested fuels are de-watered sludge and sawdust. The temperature distribution in the furnace and N2O emissions in the flue gas are experimentally clarified. As the results, for sludge only combustion, the temperature in the sand bed decreases by drying and pyrolysis, and the pyrolysis gas burns in the freeboard so that the temperature rises. On the other hand, the residual char of sawdust after pyrolysis burns stably in the sand bed for the co-firing of sludge and sawdust. Thus the temperature of the co-firing is considerably higher than that of the sludge only combustion. N2O emissions decreases with increasing freeboard temperature, and are controlled by the temperature for all experimental conditions. These data can be utilize to operation the demonstration plant.
NASA Astrophysics Data System (ADS)
Kijo-Kleczkowska, Agnieszka
2012-10-01
In the paper the problem of heavily-watered fuel combustion has been undertaken as the requirements of qualitative coals combusted in power stations have been growing. Coal mines that want to fulfill expectations of power engineers have been forced to extend and modernize the coal enrichment plants. This causes growing quantity of waste materials that arise during the process of wet coal enrichment containing smaller and smaller under-grains. In this situation the idea of combustion of transported waste materials, for example in a hydraulic way to the nearby power stations appears attractive because of a possible elimination of the necessary deep dehydration and drying as well as because of elimination of the finest coal fraction loss arising during discharging of silted water from coal wet cleaning plants. The paper presents experimental research results, analyzing the process of combustion of coal-water suspension depending on the process conditions. Combustion of coal-water suspensions in fluidized beds meets very well the difficult conditions, which should be obtained to use the examined fuel efficiently and ecologically. The suitable construction of the research stand enables recognition of the mechanism of coal-water suspension contact with the inert material, that affects the fluidized bed. The form of this contact determines conditions of heat and mass exchange, which influence the course of a combustion process. The specificity of coal-water fuel combustion in a fluidized bed changes mechanism and kinetics of the process.
Energy Conversion Alternatives Study (ECAS)
NASA Technical Reports Server (NTRS)
1977-01-01
ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.
Coal-Gen attendees hear there's no magic bullet
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2007-09-15
Those attending COAL-GEN 2007 in August heard that there is no magic bullet for meeting the energy and infrastructure needs facing the USA. The article reports on the conference which addressed topics including development of supercritical circulating fluidized bed coal unit; IGCC projects, the importance of including carbon capture and sequestration, and the need to attract and train personnel to work in the power industry. 3 photos.
JPRS Report, Science & Technology. China: Energy.
1992-12-24
desulfurization tech- nology at the present time. The wet method technology accounts for 86 percent of all of the world’s flue gas desulfurization facilities...Limestone-gypsum wet method desulfurization tech- nology Huaneng’s Luohuang Power Plant has already imported two sets of 360MW generator boiler flue gas ...Circulating Fluidized-Bed Technology Development [LinZhaokui, Wang Dun’en, et al; DONGLIGONGCHENG, 15 Oct 92] 27 Selection of Flue
NASA Astrophysics Data System (ADS)
Zhou, W.; Zhao, C. S.; Duan, L. B.; Qu, C. R.; Lu, J. Y.; Chen, X. P.
Oxy-fuel circulating fluidized bed (CFB) combustion technology is in the stage of initial development for carbon capture and storage (CCS). Numerical simulation is helpful to better understanding the combustion process and will be significant for CFB scale-up. In this paper, a computational fluid dynamics (CFD) model was employed to simulate the hydrodynamics of gas-solid flow in a CFB riser based on the Eulerian-Granular multiphase model. The cold model predicted the main features of the complex gas-solid flow, including the cluster formation of the solid phase along the walls, the flow structure of up-flow in the core and downward flow in the annular region. Furthermore, coal devolatilization, char combustion and heat transfer were considered by coupling semi-empirical sub-models with CFD model to establish a comprehensive model. The gas compositions and temperature profiles were predicted and the outflow gas fractions are validated with the experimental data in air combustion. With the experimentally validated model being applied, the concentration and temperature distributions in O2/CO2 combustion were predicted. The model is useful for the further development of a comprehensive model including more sub-models, such as pollutant emissions, and better understanding the combustion process in furnace.
CFD Modelling Applied to the Co-Combustion of Paper Sludge and Coal in a 130 t/h CFB Boiler
NASA Astrophysics Data System (ADS)
Yu, Z. S.; Ma, X. Q.; Lai, Z. Y.; Xiao, H. M.
Three-dimensional mathematical model has been developed as a tool for co-combustion of paper sludge and coal in a 130 tJh Circulating Fluidized Bed (CFB) boiler. Mathematical methods had been used based on a commercial software FLUENT for combustion. The predicted results of CFB furnace show that the co-combustion of paper sludge/coal is initially intensively at the bottom of bed; the temperature reaches its maximum in the dense-phase zone, around l400K. It indicates that paper sludge spout into furnace from the recycle inlet can increase the furnace maximum temperature (l396.3K), area-weighted average temperature (l109.6K) and the furnace gas outlet area-weighted average temperature(996.8K).The mathematical modeling also predicts that 15 mass% paper sludge co-combustion is the highest temperature at the flue gas outlet, it is 1000.8K. Moreover, it is proved that mathematical models can serve as a tool for detailed analysis of co-combustion of paper sludge and coal processes in a circulating fluidized bed furnace when in view of its convenience. The results gained from numerical simulation show that paper sludge enter into furnace from the recycle inlet excelled than mixing with coal and at the underside of phase interface.
Cho, Chang-Sang; Sa, Jae-Hwan; Lim, Ki-Kyo; Youk, Tae-Mi; Kim, Seung-Jin; Lee, Seul-Ki; Jeon, Eui-Chan
2012-01-01
This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB) boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH(4)), Nitrous oxide (N(2)O). The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF), RDF and Refused Plastic Fuel (RPF) of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH(4) and N(2)O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH(4) and N(2)O exhausted from the CFB boiler. As a result, the emission factors of CH(4) and N(2)O are 1.4 kg/TJ (0.9-1.9 kg/TJ) and 4.0 kg/TJ (2.9-5.3 kg/TJ) within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N(2)O emission, compared to the emission factor of the CFB boiler using fossil fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zevenhoven, C.A.P.; Yrjas, K.P.; Hupa, M.M.
1996-03-01
The physical structure of a limestone or dolomite to be used in in-bed sulfur capture in fluidized bed gasifiers has a great impact on the efficiency of sulfur capture and sorbent use. In this study an unreacted shrinking core model with variable effective diffusivity is applied to sulfidation test data from a pressurized thermogravimetric apparatus (P-TGA) for a set of physically and chemically different limestone and dolomite samples. The particle size was 250--300 {micro}m for all sorbents, which were characterized by chemical composition analysis, particle density measurement, mercury porosimetry, and BET internal surface measurement. Tests were done under typical conditionsmore » for a pressurized fluidized-bed gasifier, i.e., 20% CO{sub 2}, 950 C, 20 bar. At these conditions the limestone remains uncalcined, while the dolomite is half-calcined. Additional tests were done at low CO{sub 2} partial pressures, yielding calcined limestone and fully calcined dolomite. The generalized model allows for determination of values for the initial reaction rate and product layer diffusivity.« less
Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility
NASA Astrophysics Data System (ADS)
Kobak, J. A.; Rollbuhler, R. J.
1981-10-01
A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.
Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility
NASA Technical Reports Server (NTRS)
Kobak, J. A.; Rollbuhler, R. J.
1981-01-01
A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.
Hydrogen sulfide capture by limestone and dolomite at elevated pressure. 1: Sorbent performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yrjas, K.P.; Zevenhoven, C.A.P.; Hupa, M.M.
1996-01-01
Sulfur emission control in fossil fuel gasification plants implies the removal of H{sub 2}S from the product gas either inside the furnace or in the gas clean-up system. In a fluidized-bed gasifier, in-bed sulfur capture can be accomplished by adding a calcium-based sorbent such as limestone or dolomite to the bend and removing the sulfur from the system with the bottom ash in the form of CaS. This work describes the H{sub 2}S uptake by a set of physically and chemically different limestones and dolomites under pressurized conditions, typically for those in a pressurized fluidized-bed gasifier (2 MPa, 950 C).more » The tests were done with a pressurized thermobalance at two p{sub CO{sub 2}} levels. Thus, the sulfidation of both calcined and uncalcined sorbents could be analyzed. The effect of p{sub H{sub 2}S} was also investigated for uncalcined limestones and half-calcined dolomites. The results are presented as conversion of CaCO{sub 3} or CaO to CaS vs time plots. The results are also compared with the sulfur capture performance of the same sorbents under pressurized combustion conditions.« less
Design and operation experience of 230 MWe CFB boilers at Turow power plant in Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowak, W.; Bis, Z.; Laskawiec, J.
The Power Station Turow is located in Bogatynia, Poland, and has operated 10 pulverized coal units each of 200 MW. The plant provided 2000 MW at the lowest cost per kWh in Poland. The Turow units have approached and in some cases already gone beyond their 25--30 year's design life. To meet Poland's new environmental standards, which are now compatible with the EU, Turow decided to replace and upgrade six units (No. 1 to 6) from 200 MW to 230 MW units and remove one unit No. 7. Units No. 8, 9 and 10 were equipped with dry sorbent desulfurizationmore » technology. Units No. 1 and 2 have been replaced with new clean coal circulating fluidized bed technology. The Power Station Turow with six CFB units is to be the largest in the world power station based on fluidized bed technology.« less
NASA Technical Reports Server (NTRS)
Zellars, G. R.; Rowe, A. P.; Lowell, C. E.
1978-01-01
Four candidate turbine airfoil superalloys were exposed to the effluent of a pressurized fluidized bed with a solids loading of 2 to 4 g/scm for up to 100 hours at two gas velocities, 150 and 270 m/sec, and two temperatures, 730 deg and 795 C. Under these conditions, both erosion and corrosion occurred. The damaged specimens were examined by cross-section measurements, scanning electron and light microscopy, and X-ray analysis to evaluate the effects of temperature, velocity, particle loading, and alloy material. Results indicate that for a given solids loading the extent of erosion is primarily dependent on gas velocity. Corrosion occurred only at the higher temperature. There was little difference in the erosion/corrosion damage to the four alloys tested under these severe conditions.
Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor
NASA Technical Reports Server (NTRS)
Rollbuhler, R. J.; Kobak, J. A.
1980-01-01
The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.
On the Superficial Gas Velocity in Deep Gas-Solid Fluidized Beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Grace, John; Shadle, Lawrence
2011-11-15
The superficial gas velocity is one of the key parameters used to determine the flow hydrodynamics in gas–solids fluidized beds. However, the superficial velocity varies with height in practice, and there is no consistent basis for its specification. Different approaches to determine the superficial gas velocity in a deep gas–solids system are shown to cause difficulties in developing models and in comparing predictions with experimental results. In addition, the reference conditions for superficial gas velocity are important in modeling of deep gas–solids systems where there is a considerable pressure drop.
EXPERIMENTAL STUDY OF HIGH LEVELS OF SO2 REMOVAL IN ATMOSPHERIC-PRESSURE FUIDIZED-BED COMBUSTORS
The report describes tests conducted in an atmospheric-pressure-fluidized-bed combustor (FBC) with a cross-section of 1 x 1.6 m) to demonstrate high levels of S02 removal when burning a high-sulfur coal and feeding limestone sorbent for S02 removal. The goal was to achieve 90-plu...
Optimizing the Costs of Solid Sorbent-Based CO 2 Capture Process Through Heat Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjostrom, Sharon
2016-03-18
The focus of this project was the ADAsorb™ CO 2 Capture Process, a temperature-swing adsorption process that incorporates a three-stage fluidized bed as the adsorber and a single-stage fluidized bed as the regenerator. ADAsorb™ system was designed, fabricated, and tested under DOE award DEFE0004343. Two amine-based sorbents were evaluated in conjunction with the ADAsorb™ process: “BN”, an ion-exchange resin; and “OJ”, a metal organic framework (MOF) sorbent. Two cross heat exchanger designs were evaluated for use between the adsorber and regenerator: moving bed and fluidized bed. The fluidized bed approach was rejected fairly early in the project because the additionalmore » electrical load to power blowers or fans to overcome the pressure drop required for fluidization was estimated to be nominally three times the electrical power that could be generated from the steam saved through the use of the cross heat exchanger. The Energy Research Center at Lehigh University built and utilized a process model of the ADAsorb™ capture process and integrated this model into an existing model of a supercritical PC power plant. The Lehigh models verified that, for the ADAsorb™ system, the largest contributor to parasitic power was lost electrical generation, which was primarily electric power which the host plant could not generate due to the extraction of low pressure (LP) steam for sorbent heating, followed by power for the CO 2 compressor and the blower or fan power required to fluidize the adsorber and regenerator. Sorbent characteristics such as the impacts of moisture uptake, optimized adsorption and regeneration temperature, and sensitivity to changes in pressure were also included in the modeling study. Results indicate that sorbents which adsorb more than 1-2% moisture by weight are unlikely to be cost competitive unless they have an extremely high CO 2 working capacity that well exceeds 15% by weight. Modeling also revealed that reductions in adsorber pressure drop could negatively affect the CO 2 adsorption characteristics for sorbents with certain isobar adsorption characteristics like sorbent BN. Thus, reductions in pressure drop do not provide the efficiency benefits expected. A techno-economic assessment conducted during the project revealed that without heat integration, the a metal organic framework (MOF) sorbent used in conjunction with the ADAsorb™ process provided the opportunity for improved performance over the benchmark MEA process. While the addition of a cross heat exchanger and heat integration was found to significantly improve net unit heat rate, the additional equipment costs required to realize these improvements almost always outweighed the improvement in performance. The exception to this was for a supported amine sorbent and the addition of a moving bed cross heat exchanger alone or in conjunction with waste heat from the compressor used for supplemental regenerator heating. Perhaps one of the most important points to be drawn from the work conducted during this project is the significant influence of sorbent characteristics alone on the projected COE and LCOE associated with the ADAsorb™ process, and the implications associated with future improvements to solid sorbent CO 2 capture. The results from this project suggest that solid sorbent CO 2 capture will continue to see performance gains and lower system costs as further sorbent improvements are realized.« less
Reduction of particulate carryover from a pressurized fluidized bed
NASA Technical Reports Server (NTRS)
Patch, R. W.
1979-01-01
A bench scale fluidized bed combustor was constructed with a conical shape so that the enlarged upper part of the combustor would also serve as a granular bed filter. The combustor was fed coal and limestone. Ninety-nine tests of about four hours each were conducted over a range of conditions. Coal-to-air ratio varied from 0.033 to 0.098 (all lean). Limestone-to-coal ratio varied from 0.06 to 0.36. Bed depth varied from 3.66 to 8.07 feet. Temperature varied from 1447 to 1905 F. Pressure varied from 40 to 82 psia. Heat transfer area had the range zero to 2.72 ft squared. Two cone angles were used. The average particulate carry over of 2.5 grains/SCF was appreciably less than cylindrical fluidized bed combustors. The carry over was correlated by multiple regression analysis to yield the dependence on bed depth and hence the collection efficiency, which was 20%. A comparison with a model indicated that the exhaust port may be below the transport disengaging height for most of the tests, indicating that further reduction in carry over and increase in collection efficiency could be affected by increasing the freeboard and height of the exhaust port above the bed.
Experimental studies on combustion of composite biomass pellets in fluidized bed.
Guo, Feihong; Zhong, Zhaoping
2017-12-01
This work presents studies on the combustion of Composite Biomass Pellets (CBP S ) in fluidized bed using bauxite particles as the bed material. Prior to the combustion experiment, cold-flow characterization and thermogravimetric analysis are performed to investigate the effect of air velocity and combustion mechanism of CBP S . The cold-state test shows that CBPs and bauxite particles fluidize well in the fluidized bed. However, because of the presence of large CBPs, optimization of the fluidization velocity is rather challenging. CBPs can gather at the bottom of the fluidized bed at lower gas velocities. On the contrary, when the velocity is too high, they accumulate in the upper section of the fluidized bed. The suitable fluidization velocity for the system in this study was found to be between 1.5-2.0m/s. At the same time, it is found that the critical fluidization velocity and the pressure fluctuation of the two-component system increase with the increase of CBPs mass concentration. The thermogravimetric experiment verifies that the combustion of CBPs is a first-order reaction, and it is divided into three stages: (i) dehydration, (ii) release and combustion of the volatile and (iii) the coke combustion. The combustion of CBPs is mainly based on the stage of volatile combustion, and its activation energy is greater than that of char combustion. During the combustion test, CBP S are burned at a 10kg/h feed rate, while the excess air is varied from 25% to 100%. Temperatures of the bed and flue gas concentrations (O 2 , CO, SO 2 and NO) are recorded. CBPs can be burnt stably, and the temperature of dense phase is maintained at 765-780°C. With the increase of the air velocity, the main combustion region has a tendency to move up. While the combustion is stable, O 2 and CO 2 concentrations are maintained at about 7%, and 12%, respectively. The concentration of SO 2 in the flue gas after the initial stage of combustion is nearly zero. Furthermore, NO concentration is found to be closely related to O 2 : the NO reaches its peak value after initial stage and later decreases with the continued depletion of O 2 . Towards the end of combustion, NO increases with the increase of O 2 . Copyright © 2017 Elsevier B.V. All rights reserved.
Alternating Field Electronanofluidization
NASA Astrophysics Data System (ADS)
Espin, M. J.; Valverde, J. M.; Quintanilla, M. A. S.; Castellanos, A.
2009-06-01
The use of fluidized beds to remove submicron particles from gases has been investigated since 1949. High efficiency removal was achieved in the 1970's by imposing an electric field on a fluidized bed of semi-insulating granules that were able to collect the charged pollutant entrained in the fluidizing gas. In spite of their extended use nowadays, the collection efficiency of electrofluidized beds (EFB) is still hindered by gas bypassing associated to gas bubbling and the consequent requirement of too high gas flow and pressure drop. In this paper we report on the electromechanical behavior of an EFB of insulating nanoparticles. When fluidized by gas, these nanoparticles form extremely porous light agglomerates of size of the order of hundreds of microns that allow for a highly expanded nonbubbling fluidized state at reduced gas flow. It is found that fluidization uniformity and bed expansion are additionally enhanced by an imposed AC electric field for field oscillation frequencies of several tens of hertzs and field strengths of the order of 1 kV/cm. For oscillation frequencies of the order of hertzs, or smaller, bed expansion is hindered due to electrophoretic deposition of the agglomerates onto the vessel walls, whereas for oscillation frequencies of the order of kilohertzs, or larger, electrophoresis is nullified and bed expansion is not affected. According to a proposed model, the size of nanoparticle agglomerates stems from the balance between shear, which depends on field strength, and van der Waals forces. The optimum field strength for enhancing bed expansion produces an electric force on the agglomerates similar to their weight force, while the oscillation velocity of the agglomerates is similar to the gas velocity.
State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems
NASA Astrophysics Data System (ADS)
Lyczkowski, R. W.; Bouillard, J. X.; Ding, J.; Chang, S. L.; Burge, S. W.
1994-05-01
As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBR's) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBR's and pneumatic and slurry components are computed by ANL's EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale, and biomass as energy sources; to retain energy security; and to remediate waste and ecological problems.
Uncertainty quantification tools for multiphase gas-solid flow simulations using MFIX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Rodney O.; Passalacqua, Alberto
2016-02-01
Computational fluid dynamics (CFD) has been widely studied and used in the scientific community and in the industry. Various models were proposed to solve problems in different areas. However, all models deviate from reality. Uncertainty quantification (UQ) process evaluates the overall uncertainties associated with the prediction of quantities of interest. In particular it studies the propagation of input uncertainties to the outputs of the models so that confidence intervals can be provided for the simulation results. In the present work, a non-intrusive quadrature-based uncertainty quantification (QBUQ) approach is proposed. The probability distribution function (PDF) of the system response can bemore » then reconstructed using extended quadrature method of moments (EQMOM) and extended conditional quadrature method of moments (ECQMOM). The report first explains the theory of QBUQ approach, including methods to generate samples for problems with single or multiple uncertain input parameters, low order statistics, and required number of samples. Then methods for univariate PDF reconstruction (EQMOM) and multivariate PDF reconstruction (ECQMOM) are explained. The implementation of QBUQ approach into the open-source CFD code MFIX is discussed next. At last, QBUQ approach is demonstrated in several applications. The method is first applied to two examples: a developing flow in a channel with uncertain viscosity, and an oblique shock problem with uncertain upstream Mach number. The error in the prediction of the moment response is studied as a function of the number of samples, and the accuracy of the moments required to reconstruct the PDF of the system response is discussed. The QBUQ approach is then demonstrated by considering a bubbling fluidized bed as example application. The mean particle size is assumed to be the uncertain input parameter. The system is simulated with a standard two-fluid model with kinetic theory closures for the particulate phase implemented into MFIX. The effect of uncertainty on the disperse-phase volume fraction, on the phase velocities and on the pressure drop inside the fluidized bed are examined, and the reconstructed PDFs are provided for the three quantities studied. Then the approach is applied to a bubbling fluidized bed with two uncertain parameters, particle-particle and particle-wall restitution coefficients. Contour plots of the mean and standard deviation of solid volume fraction, solid phase velocities and gas pressure are provided. The PDFs of the response are reconstructed using EQMOM with appropriate kernel density functions. The simulation results are compared to experimental data provided by the 2013 NETL small-scale challenge problem. Lastly, the proposed procedure is demonstrated by considering a riser of a circulating fluidized bed as an example application. The mean particle size is considered to be the uncertain input parameter. Contour plots of the mean and standard deviation of solid volume fraction, solid phase velocities, and granular temperature are provided. Mean values and confidence intervals of the quantities of interest are compared to the experiment results. The univariate and bivariate PDF reconstructions of the system response are performed using EQMOM and ECQMOM.« less
Mathematical Modelling of Drying Kinetics of Wheat in Electron Fired Fluidized Bed Drying System
NASA Astrophysics Data System (ADS)
Deomore, Dayanand N.; Yarasu, Ravindra B.
2018-02-01
The conventional method of electrical heating is replaced by electron firing system. The drying kinetics of wheat is studied using electron fired fluidized bed dryer. The results are simulated by using ANSYS. It was observed that the graphs are in agreement with each other. Therefore, the new proposed electronic firing system can be employed instead of electrical firing. It was observed that the drop in Relative Humidity in case of Electrical heating is 68.75% for temp reaching up to 70° C in 67 sec for pressure drop of 13 psi while for the electronic Firing system it is 67.6 % temp reaches to 70° C in 70 sec for pressure drop of 12.67 psi. As the results are in agreement with each other it was concluded that for the grains like wheat which has low initial moisture content both systems can be used.
Effluent characterization from a conical pressurized fluid bed
NASA Technical Reports Server (NTRS)
Priem, R. J.; Rollbuhler, R. J.; Patch, R. W.
1977-01-01
To obtain useable corrosion and erosion results it was necessary to have data with several levels of particulate matter in the hot gases. One level of particulate loading was as low as possible so that ideally no erosion and only corrosion occurred. A conical fluidized bed was used to obtain some degree of filtration through the top of the bed which would not be highly fluidized. This would minimize the filtration required for the hot gases or conversely the amount of particulate matter in the hot gases after a given level of filtration by cyclones and/or filters. The data obtained during testing characterized the effluent from the bed at different test conditions. A range of bed heights, coal flows, air flows, limestone flows, and pressure are represented. These tests were made to determine the best operating conditions prior to using the bed to determine erosion and corrosion rates of typical turbine blade materials.
Joint Long-Range Energy Study for Greater Fairbanks Military Complex
2005-02-01
be viewed as a two - stage processor of a fuel or feedstock. The feedstock is first gasified using high-temperature plasma heating sys- tems at...Coal-Fired Boilers with New Circulating Fluidized- Bed Boilers (CFBs). EAFB anticipates replacing two current boilers with two new boilers. This...definition to support DD Form 1391 budget level cost estimates for new coal-fired CHPPs at FWA and EAFB and for two new coal-fired CFBs at EAFB • update
Eldyasti, Ahmed; Andalib, Mehran; Hafez, Hisham; Nakhla, George; Zhu, Jesse
2011-03-15
Steady state operational data from a pilot scale circulating fluidized bed bioreactor (CFBBR) during biological treatment of landfill leachate, at empty bed contact times (EBCTs) of 0.49, and 0.41 d and volumetric nutrients loading rates of 2.2-2.6 kg COD/(m(3)d), 0.7-0.8 kg N/(m(3)d), and 0.014-0.016 kg P/(m(3)d), was used to calibrate and compare developed process models in BioWin(®) and AQUIFAS(®). BioWin(®) and AQUIFAS(®) were both capable of predicting most of the performance parameters such as effluent TKN, NH(4)-N, NO(3)-N, TP, PO(4)-P, TSS, and VSS with an average percentage error (APE) of 0-20%. BioWin(®) underpredicted the effluent BOD and SBOD values for various runs by 80% while AQUIFAS(®) predicted effluent BOD and SBOD with an APE of 50%. Although both calibrated models, confirmed the advantages of the CFBBR technology in treating the leachate of high volumetric loading and low biomass yields due to the long solid retention time (SRT), both BioWin(®) and AQUIFAS(®) predicted the total biomass and SRT of CFBBR based on active biomass only, whereas in the CFBBR runs both active as well as inactive biomass accumulated. Copyright © 2011 Elsevier B.V. All rights reserved.
Thomsen, Tobias Pape; Sárossy, Zsuzsa; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Frandsen, Flemming Jappe; Henriksen, Ulrik Birk
2017-08-01
Results from five experimental campaigns with Low Temperature Circulating Fluidized Bed (LT-CFB) gasification of straw and/or municipal sewage sludge (MSS) from three different Danish municipal waste water treatment plants in pilot and demonstration scale are analyzed and compared. The gasification process is characterized with respect to process stability, process performance and gas product characteristics. All experimental campaigns were conducted at maximum temperatures below 750°C, with air equivalence ratios around 0.12 and with pure silica sand as start-up bed material. A total of 8600kg of MSS dry matter was gasified during 133h of operation. The average thermal loads during the five experiments were 62-100% of nominal capacity. The short term stability of all campaigns was excellent, but gasification of dry MSS lead to substantial accumulation of coarse and rigid, but un-sintered, ash particles in the system. Co-gasification of MSS with sufficient amounts of cereal straw was found to be an effective way to mitigate these issues as well as eliminate thermal MSS drying requirements. Characterization of gas products and process performance showed that even though gas composition varied substantially, hot gas efficiencies of around 90% could be achieved for all MSS fuel types. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cho, Chang-Sang; Sa, Jae-Hwan; Lim, Ki-Kyo; Youk, Tae-Mi; Kim, Seung-Jin; Lee, Seul-Ki; Jeon, Eui-Chan
2012-01-01
This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB) boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH4), Nitrous oxide (N2O). The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF), RDF and Refused Plastic Fuel (RPF) of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH4 and N2O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH4 and N2O exhausted from the CFB boiler. As a result, the emission factors of CH4 and N2O are 1.4 kg/TJ (0.9–1.9 kg/TJ) and 4.0 kg/TJ (2.9–5.3 kg/TJ) within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N2O emission, compared to the emission factor of the CFB boiler using fossil fuel. PMID:23365540
Novel dry-desulfurization process using Ca(OH)2/fly ash sorbent in a circulating fluidized bed.
Matsushima, Norihiko; Li, Yan; Nishioka, Masateru; Sadakata, Masayoshi; Qi, Haiying; Xu, Xuchang
2004-12-15
A dry-desulfurization process using Ca(OH)2/fly ash sorbent and a circulating fluidized bed (CFB) was developed. Its aim was to achieve high SO2 removal efficiency without humidification and production of CaSO4 as the main byproduct. The CaSO4 produced could be used to treat alkalized soil. An 83% SO2 removal rate was demonstrated, and a byproduct with a high CaSO4 content was produced through baghouse ash. These results indicated that this process could remove SO2 in flue gas with a high efficiency under dry conditions and simultaneously produce soil amendment. It was shown that NO and NO2 enhanced the SO2 removal rate markedly and that NO2 increased the amount of CaSO4 in the final product more than NO. These results confirmed that the significant effects of NO and NO2 on the SO2 removal rate were due to chain reactions that occurred under favorable conditions. The amount of baghouse ash produced increased as the reaction progressed, indicating that discharge of unreacted Ca(OH)2 from the reactor was suppressed. Hence, unreacted Ca(OH)2 had a long residence time in the CFB, resulting in a high SO2 removal rate. It was also found that 350 degrees C is the optimum reaction temperature for dry desulfurization in the range tested (320-380 degrees C).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, J.S.; Lee, G.T.; Seachman, S.M.
2008-05-13
Flow regime study was conducted in a 0.3 m diameter, 15.5 m tall circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U. S. Department of Energy. A statistical designed test series was conducted including four (4) operating set points and a duplicated center point (therefore a total of 6 operating set points). Glass beads of mean diameter 200 μm and particle density of 2,430 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 5.6 to 7.6 m/s and solid mass flux frommore » a low of 86 to a high of 303 kg/m2-s. Results of the apparent solids fraction profile as well as the radial particle velocity profile were analyzed in order to identify the presence of Dense Suspension Upflow (DSU) conditions. DSU regime was found to exist at the bottom of the riser, while the middle section of the riser was still exhibiting core-annular flow structure. Due to the abrupt geometry of the exit, the DSU regime was also found at the top of the riser. In addition the effects of the azimuthal angle, riser gas velocity, and mass solids flux on the particle velocity were investigated and are discussed in this paper.« less
Oil shale combustor model developed by Greek researchers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-09-01
Work carried out in the Department of Chemical Engineering at the University of Thessaloniki, Thessaloniki, Greece has resulted in a model for the combustion of retorted oil shale in a fluidized bed combustor. The model is generally applicable to any hot-solids retorting process, whereby raw oil shale is retorted by mixing with a hot solids stream (usually combusted spent shale), and then the residual carbon is burned off the spent shale in a fluidized bed. Based on their modelling work, the following conclusions were drawn by the researchers. (1) For the retorted particle size distribution selected (average particle diameter 1600more » microns) complete carbon conversion is feasible at high pressures (2.7 atmosphere) and over the entire temperature range studied (894 to 978 K). (2) Bubble size was found to have an important effect, especially at conditions where reaction rates are high (high temperature and pressure). (3) Carbonate decomposition increases with combustor temperature and residence time. Complete carbon conversion is feasible at high pressures (2.7 atmosphere) with less than 20 percent carbonate decomposition. (4) At the preferred combustor operating conditions (high pressure, low temperature) the main reaction is dolomite decomposition while calcite decomposition is negligible. (5) Recombination of CO/sub 2/ with MgO occurs at low temperatures, high pressures, and long particle residence times.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... the purpose of providing steam to a steam-electric generator that would produce electrical energy for... divided solid or liquid material, other than uncombined water, as measured by the reference methods...: atmospheric or pressurized fluidized bed combustion, integrated gasification combined cycle...
McIntosh Unit 4 PCFB demonstration project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodd, A.M.; Dryden, R.J.; Morehead, H.T.
1997-12-31
The City of Lakeland, Foster Wheeler Corporation and Westinghouse Electric Corporation have embarked on a utility scale demonstration of Pressurized Circulating Fluidized Bed (PCFB) technology at Lakeland`s McIntosh Power Station in Lakeland, Florida. The US Department of Energy will be providing approximately $195 million of funding for the project through two Cooperative Agreements under the auspices of the Clean Coal Technology Program. The project will involve the commercial demonstration of Foster Wheeler Pyroflow PCFB technology integrated with Westinghouse`s Hot Gas Filter (HGF) and power generation technologies. The total project duration will be approximately eight years and will be structured intomore » three separate phases; two years of design and permitting, followed by an initial period of two years of fabrication and construction and concluding with a four year demonstration (commercial operation) period. It is expected that the project will show that Foster Wheeler`s Pyroflow PCFB technology coupled with Westinghouse`s HGF and power generation technologies represents a cost effective, high efficiency, low emissions means of adding greenfield generation capacity and that this same technology is also well suited for repowering applications.« less
High-Resolution Simulations of Gas-Solids Jet Penetration Into a High Density Riser Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen
2011-05-01
High-resolution simulations of a gas-solids jet in a 0.3 m diameter and 15.9 m tall circulating fluidized bed (CFB) riser were conducted with the open source software-MFIX. In the numerical simulations, both gas and solids injected through a 1.6 cm diameter radial-directed tube 4.3 m above the bottom distributor were tracked as tracers, which enable the analysis of the characteristics of a two-phase jet. Two jetting gas velocities of 16.6 and 37.2 m/s were studied with the other operating conditions fixed. Reasonable flow hydrodynamics with respect to overall pressure drop, voidage, and solids velocity distributions were predicted. Due to themore » different dynamic responses of gas and particles to the crossflow, a significant separation of gas and solids within the jet region was predicted for both cases. In addition, the jet characteristics based on tracer concentration and tracer mass fraction profiles at different downstream levels are discussed. Overall, the numerical predictions compare favorably to the experimental measurements made at NETL.« less
Monitoring fluidized bed drying of pharmaceutical granules.
Briens, Lauren; Bojarra, Megan
2010-12-01
Placebo granules consisting of lactose monohydrate, corn starch, and polyvinylpyrrolidone were prepared using de-ionized water in a high-shear mixer and dried in a conical fluidized bed dryer at various superficial gas velocities. Acoustic, vibration, and pressure data obtained over the course of drying was analyzed using various statistical, frequency, fractal, and chaos techniques. Traditional monitoring methods were also used for reference. Analysis of the vibration data showed that the acceleration levels decreased during drying and reached a plateau once the granules had reached a final moisture content of 1–2 wt.%; this plateau did not differ significantly between superficial gas velocities, indicating a potential criterion to support drying endpoint identification. Acoustic emissions could not reliably identify the drying endpoint. However, high kurtosis values of acoustic emissions measured in the filtered air exhaust corresponded to high entrainment rates. This could be used for process control to adjust the fluidization gas velocity to allow drying to continue rapidly while minimizing entrainment and possible product losses.
Biomass drying in a pulsed fluidized bed without inert bed particles
Jia, Dening; Bi, Xiaotao; Lim, C. Jim; ...
2016-08-29
Batch drying was performed in the pulsed fluidized bed with various species of biomass particles as an indicator of gas–solid contact efficiency and mass transfer rate under different operating conditions including pulsation duty cycle and particle size distribution. The fluidization of cohesive biomass particles benefited from the shorter opening time of pulsed gas flow and increased peak pressure drop. The presence of fines enhanced gas–solid contact of large and irregular biomass particles, as well as the mass transfer efficiency. A drying model based on two-phase theory was proposed, from which effective diffusivity was calculated for various gas flow rates, temperaturemore » and pulsation frequency. Intricate relationship was discovered between pulsation frequency and effective diffusivity, as mass transfer was deeply connected with the hydrodynamics. Effective diffusivity was also found to be proportional to gas flow rate and drying temperature. In conclusion, operating near the natural frequency of the system also favored drying and mass transfer.« less
Khan, Mohammad Jakir Hossain; Hussain, Mohd Azlan; Mujtaba, Iqbal Mohammed
2014-01-01
Propylene is one type of plastic that is widely used in our everyday life. This study focuses on the identification and justification of the optimum process parameters for polypropylene production in a novel pilot plant based fluidized bed reactor. This first-of-its-kind statistical modeling with experimental validation for the process parameters of polypropylene production was conducted by applying ANNOVA (Analysis of variance) method to Response Surface Methodology (RSM). Three important process variables i.e., reaction temperature, system pressure and hydrogen percentage were considered as the important input factors for the polypropylene production in the analysis performed. In order to examine the effect of process parameters and their interactions, the ANOVA method was utilized among a range of other statistical diagnostic tools such as the correlation between actual and predicted values, the residuals and predicted response, outlier t plot, 3D response surface and contour analysis plots. The statistical analysis showed that the proposed quadratic model had a good fit with the experimental results. At optimum conditions with temperature of 75°C, system pressure of 25 bar and hydrogen percentage of 2%, the highest polypropylene production obtained is 5.82% per pass. Hence it is concluded that the developed experimental design and proposed model can be successfully employed with over a 95% confidence level for optimum polypropylene production in a fluidized bed catalytic reactor (FBCR). PMID:28788576
Process of producing liquid hydrocarbon fuels from biomass
Kuester, James L.
1987-07-07
A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.
ELECTROSTATIC AIR CLEANING DEVICE AND METHOD
Silverman, L.; Anderson, D.M.
1961-07-18
A method and apparatus for utilizing friction-charged particulate material from an aerosol are described. A bed of the plastic spheres is prepared, and the aerosol is passed upwardly through the bed at a rate just large enough to maintain the bed in a fluidized state wim over-all circulation of the balls. Wire members criss-crossing through the bed rub against the balls and maintain their surfaces with electrostatic charges. The particulate material in the aerosol adheres to the surfaces of the balls.
A study on the Jordanian oil shale resources and utilization
NASA Astrophysics Data System (ADS)
Sakhrieh, Ahmad; Hamdan, Mohammed
2012-11-01
Jordan has significant oil shale deposits occurring in 26 known localities. Geological surveys indicate that the existing deposits underlie more than 60% of Jordan's territory. The resource consists of 40 to 70 billion tones of oil shale, which may be equivalent to more than 5 million tones of shale oil. Since the 1960s, Jordan has been investigating economical and environmental methods for utilizing oil shale. Due to its high organic content, is considered a suitable source of energy. This paper introduces a circulating fluidized bed combustor that simulates the behavior of full scale municipal oil shale combustors. The inside diameter of the combustor is 500 mm, the height is 3000 mm. The design of the CFB is presented. The main parameters which affect the combustion process are elucidated in the paper. The size of the laboratory scale fluidized bed reactor is 3 kW, which corresponds to a fuel-feeding rate of approximately 1.5 kg/h.
Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin
2009-08-15
Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming.
Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, C.K.; Lee, J.B.; Ahn, D.H.
2002-09-19
Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermicmore » nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.« less
Solids feed nozzle for fluidized bed
Zielinski, Edward A.
1982-01-01
The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.
NASA Astrophysics Data System (ADS)
Rokhman, B. B.
2015-03-01
The problem on the evolution of the state of an ensemble of reacting coke-ash particles in a fluidized-bed gas generator is considered. A kinetic equation for the distribution function of particles within small ranges of carbon concentration variation for the stages of surface and bulk reaction has been constructed and integrated. Boundary conditions ("matching" conditions) at the boundaries between these ranges are formulated. The influence of the granulometric composition of the starting coal, height, porosity, and of the bed temperature on the process of steam-oxygen gasification of coke-ash particles of individual sorts of fuel and of a binary coal mixture has been investigated.
Air-fluidized therapy: physical properties and clinical uses.
VanGilder, Catherine; Lachenbruch, Charlie A
2010-09-01
Since the late 1960s, air-fluidized therapy (AFT) has been effectively used to treat patients with pressure ulcers, burns, and many other clinical problems. Much of the demonstrated efficacy is believed to be associated with the unique fluid environment provided by AFT that is fundamentally different from the support provided by surfaces made up of conventional solid materials. Fluid support maximizes the envelopment of the body while significantly reducing shear, friction, and pressure, and mechanical stress applied to the skin and subcutaneous tissue. Additionally, the variable temperature airflow allows the microclimate to be controlled according to needs for both therapy and patient comfort. Clinical benefits of AFT include faster and more cost-effective healing of pressure ulcers, a decreased rate of hospitalizations and emergency room visits for long-term care pressure ulcer patients, decreased mortality of patients with extensive burns and inhalation injury and rapid healing and increased comfort in burn patients. The fluid support also results in a substantial decrease in the amount of caregiver effort required for repositioning patients and increased patient comfort in patients with multiple trauma and external fixation devices or deformities that require a conforming bed, and patients with cancer and bony metastasis. This article seeks to evaluate the physical differences in AFT over other mattress types and to review the published literature for this therapy modality.
Tricomi, Leonardo; Melchiori, Tommaso; Chiaramonti, David; Boulet, Micaël; Lavoie, Jean Michel
2017-01-01
Based upon the two fluid model (TFM) theory, a CFD model was implemented to investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to characterize the fluid dynamic of the experimental system, and compare it to model predictions, was the time-pressure drop induced by the bubble motion across the bed. This time signal was then processed to obtain the power spectral density (PSD) distribution of pressure fluctuations. As an important aspect of this work, the effect of the sampling time scale on the empirical power spectral density (PSD) was investigated. A time scale of 40 s was found to be a good compromise ensuring both simulation performance and numerical validation consistency. The CFD model was first numerically verified by mesh refinement process, after what it was used to investigate the sensitivity with regards to minimum fluidization velocity (as a calibration point for drag law), restitution coefficient, and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D model provided a fair match with the empirical time-averaged pressure drop, the relating fluctuations amplitude, and the signal’s energy computed as integral of the PSD. A 3D version of the TFM was also used and it improved the match with the empirical PSD in the very first part of the frequency spectrum. PMID:28695119
Tricomi, Leonardo; Melchiori, Tommaso; Chiaramonti, David; Boulet, Micaël; Lavoie, Jean Michel
2017-01-01
Based upon the two fluid model (TFM) theory, a CFD model was implemented to investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to characterize the fluid dynamic of the experimental system, and compare it to model predictions, was the time-pressure drop induced by the bubble motion across the bed. This time signal was then processed to obtain the power spectral density (PSD) distribution of pressure fluctuations. As an important aspect of this work, the effect of the sampling time scale on the empirical power spectral density (PSD) was investigated. A time scale of 40 s was found to be a good compromise ensuring both simulation performance and numerical validation consistency. The CFD model was first numerically verified by mesh refinement process, after what it was used to investigate the sensitivity with regards to minimum fluidization velocity (as a calibration point for drag law), restitution coefficient, and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D model provided a fair match with the empirical time-averaged pressure drop, the relating fluctuations amplitude, and the signal's energy computed as integral of the PSD. A 3D version of the TFM was also used and it improved the match with the empirical PSD in the very first part of the frequency spectrum.
Process for gasifying carbonaceous material from a recycled condensate slurry
Forney, Albert J.; Haynes, William P.
1981-01-01
Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.
Clastic Pipes on Mars: Evidence for a Near Surface Groundwater System
NASA Astrophysics Data System (ADS)
Wheatley, D. F.; Chan, M. A.; Okubo, C. H.
2017-12-01
Clastic pipes, a type of vertical, columnar injectite, occur throughout the terrestrial stratigraphic record and are identified across many Martian terrains. Terrestrial pipe analogs can aid in identifying clastic pipes on Mars to understand their formation processes and their implications for a past near-surface groundwater system. On Earth, clastic pipes form through fluidization of overpressurized sediment. Fluidization occurs when the upward frictional (i.e., drag) forces of escaping fluids overpower the downward acting gravitational force. To create the forces necessary for pipe formation requires overpressurization of a body of water-saturated porous media overlain by a low permeability confining layer. As the pressure builds, the confining layer eventually fractures and the escaping fluids fluidize the porous sediment causing the sediment to behave like a fluid. These specific formation conditions record evidence of a violent release of fluid-suspended sediment including brecciation of the host and sealing material, internal outward grading/sorting that results in a coarser-grained commonly better cemented outer rind, traction structures, and a cylindrical geometry. Pipes form self-organized, dispersed spatial relationships due to the efficient diffusion of overpressured zones in the subsurface and the expulsion of sediment under pressure. Martian pipes occur across the northern lowlands, dichotomy boundary, and southern highlands in various forms of erosional relief ranging from newer eruption structures to eroded cylindrical/conical mounds with raised rims to highly eroded mounds/hills. Similar to terrestrial examples, Martian pipes form in evenly-spaced, self-organized arrangements. The pipes are typically internally massive with a raised outer rim (interpreted as a sorted, coarser-grained, better-cemented rim). This evidence indicates that Martian pipes formed through fluidization, which requires a near-surface groundwater system. Pipes create a window into the subsurface by excavating subsurface sediment and waters. After emplacement, pipes can also act as fluid conduits, channeling post-depositional fluid flow. The preferential porosity and flow paths may make the pipes an ideal exploration target for microbial life.
A fluidized bed desorption system for recycling mercury from contaminated soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harriss, C.; Baum, D.L. Jr.; Read, W.L.
1995-12-31
The land disposal restrictions effective for wastes containing mercury have created a need for technologies that can meet the best demonstrated available technologies (BDAT) treatment standards. In the past, technologies for mercury were in short supply. In addition to the already existing short supply, the natural gas industry has begun to remediate the numerous metering sites that have been contaminated with mercury from manometers installed along their pipelines. To meet the need for a mercury technology, Philip Environmental Services Corporation (Philip) evaluated and tested two different technologies capable of recovering mercury from contaminated soil. Philip initially performed some tests usingmore » gravitational methods followed by pilot-scale testing using a fluidized bed desorber. As a result of the testing, Philip constructed a full-scale fluidized bed system which can recover mercury from contaminated soil and debris. The name of Philip`s technology is the Solvating Vapor Pressure Process (SVPP). The main purpose of this paper is to discuss the results of the SVPP pilot testing and describe the process.« less
Compact CFB: The next generation CFB boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utt, J.
1996-12-31
The next generation of compact circulating fluidized bed (CFB) boilers is described in outline form. The following topics are discussed: compact CFB = pyroflow + compact separator; compact CFB; compact separator is a breakthrough design; advantages of CFB; new design with substantial development history; KUHMO: successful demo unit; KUHMO: good performance over load range with low emissions; KOKKOLA: first commercial unit and emissions; KOKKOLA: first commercial unit and emissions; compact CFB installations; next generation CFB boiler; grid nozzle upgrades; cast segmented vortex finders; vortex finder installation; ceramic anchors; pre-cast vertical bullnose; refractory upgrades; and wet gunning.
Thermomechanical CSM analysis of a superheater tube in transient state
NASA Astrophysics Data System (ADS)
Taler, Dawid; Madejski, Paweł
2011-12-01
The paper presents a thermomechanical computational solid mechanics analysis (CSM) of a pipe "double omega", used in the steam superheaters in circulating fluidized bed (CFB) boilers. The complex cross-section shape of the "double omega" tubes requires more precise analysis in order to prevent from failure as a result of the excessive temperature and thermal stresses. The results have been obtained using the finite volume method for transient state of superheater. The calculation was carried out for the section of pipe made of low-alloy steel.
Process of producing liquid hydrocarbon fuels from biomass
Kuester, J.L.
1987-07-07
A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.
Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua
2015-12-01
Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pressure ulcer treatment strategies: a systematic comparative effectiveness review.
Smith, M E Beth; Totten, Annette; Hickam, David H; Fu, Rongwei; Wasson, Ngoc; Rahman, Basmah; Motu'apuaka, Makalapua; Saha, Somnath
2013-07-02
Pressure ulcers affect as many as 3 million Americans and are major sources of morbidity, mortality, and health care costs. To summarize evidence comparing the effectiveness and safety of treatment strategies for adults with pressure ulcers. MEDLINE, EMBASE, CINAHL, Evidence-Based Medicine Reviews, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, and Health Technology Assessment Database for English- or foreign-language studies; reference lists; gray literature; and individual product packets from manufacturers (January 1985 to October 2012). Randomized trials and comparative observational studies of treatments for pressure ulcers in adults and noncomparative intervention series (n > 50) for surgical interventions and evaluation of harms. Data were extracted and evaluated for accuracy of the extraction, quality of included studies, and strength of evidence. 174 studies met inclusion criteria and 92 evaluated complete wound healing. In comparison with standard care, placebo, or sham interventions, moderate-strength evidence showed that air-fluidized beds (5 studies [n = 908]; high consistency), protein-containing nutritional supplements (12 studies [n = 562]; high consistency), radiant heat dressings (4 studies [n = 160]; moderate consistency), and electrical stimulation (9 studies [n = 397]; moderate consistency) improved healing of pressure ulcers. Low-strength evidence showed that alternating-pressure surfaces, hydrocolloid dressings, platelet-derived growth factor, and light therapy improved healing of pressure ulcers. The evidence about harms was limited. Applicability of results is limited by study quality, heterogeneity in methods and outcomes, and inadequate duration to assess complete wound healing. Moderate-strength evidence shows that healing of pressure ulcers in adults is improved with the use of air-fluidized beds, protein supplementation, radiant heat dressings, and electrical stimulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauglitz, Phillip A.; Rassat, Scot D.; Linn, Diana
The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. When loaded with radioactive Cs, radiolysis of water in the LAW liquid will generate hydrogen gas. In normal operations, the generated hydrogen is expected to remainmore » dissolved in the liquid and be continuously removed by liquid flow. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogen gas is being generated by radiolysis. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin bed and below the bottom screen that supports the resin within the column, which creates a hydrogen flammability hazard. Because there is a potential for a large fraction of the retained hydrogen to be released over a short duration as a gas release event, there is a need to quantify the size and rate of potential gas release events. Due to the potential for a large, rapid gas release event, an evaluation of mitigation methods to eliminate the hydrogen hazard is also needed. One method being considered for mitigating the hydrogen hazard during a loss of flow accident is to have a secondary flow system, with two redundant pumps operating in series, that re-circulates liquid upwards through the bed and into a vented break tank where hydrogen gas is released from the liquid and removed by venting the headspace of the break tank. The mechanism for inducing release of gas from the sRF bed is to fluidize the bed, which should allow retained bubbles to rise and be carried to the break tank. The overall conclusion of the testing is that fluidization is an effective method to remove hydrogen gas from a bed of sRF resin, but that a single fluidization velocity that is adequate to release gas in 55 ºC water will over-fluidize sRF resin in most LAW liquids, including both nominal and high-limit LAW simulants used in testing. An upper packed bed can retain hydrogen gas and pose a flammability hazard. Using periodic on:off fluidization, such as 5:55 min. on:off cycles, is effective at releasing gas while not creating an upper packed bed. Note that lengthening the fluidization duration in a one-hour cycle did result in a stable upper packed bed in one case with the nominal LAW simulant, so testing focused on shorter “on” periods which are needed for effective hydrogen release with periodic on:off fluidization« less
The Capacity for Compaction Weakening in Fault Gouge in Nature and Experiment
NASA Astrophysics Data System (ADS)
Faulkner, D.; Boulton, C. J.; Sanchez Roa, C.; Den Hartog, S. A. M.; Bedford, J. D.
2017-12-01
As faults form in low permeability rocks, the compaction of fault gouge can lead to significant pore-fluid pressure increases. The pore pressure increase results from the collapse of the porosity through shear-enhanced compaction and the low hydraulic diffusivity of the gouge that inhibits fluid flow. In experiments, the frictional properties of clay-bearing fault gouges are significantly affected by the development of locally high pore-fluid pressures when compaction rates are high due to fast displacement rates or slip in underconsolidated materials. We show how the coefficient of friction of fault gouges sheared at different slip velocities can be explained with a numerical model that is constrained by laboratory measurements of contemporaneous changes in permeability and porosity. In nature, for compaction weakening to play an important role in earthquake nucleation (and rupture propagation), a mechanism is required to reset the porosity, i.e., maintain underconsolidated gouge along the fault plane. We use the observations of structures within the principal slip zone of the Alpine Fault in New Zealand to suggest that cyclic fluidization of the gouge occurs during coseismic slip, thereby resetting the gouge porosity prior to the next seismic event. Results from confined laboratory rotary shear measurements at elevated slip rates appear to support the hypothesis that fluidization leads to underconsolidation and, thus, to potential weakening by shear-enhanced compaction-induced pore-fluid pressurization.
Eldyasti, Ahmed; Nakhla, George; Zhu, Jesse
2012-05-01
Biofilm models are valuable tools for process engineers to simulate biological wastewater treatment. In order to enhance the use of biofilm models implemented in contemporary simulation software, model calibration is both necessary and helpful. The aim of this work was to develop a calibration protocol of the particulate biofilm model with a help of the sensitivity analysis of the most important parameters in the biofilm model implemented in BioWin® and verify the predictability of the calibration protocol. A case study of a circulating fluidized bed bioreactor (CFBBR) system used for biological nutrient removal (BNR) with a fluidized bed respirometric study of the biofilm stoichiometry and kinetics was used to verify and validate the proposed calibration protocol. Applying the five stages of the biofilm calibration procedures enhanced the applicability of BioWin®, which was capable of predicting most of the performance parameters with an average percentage error (APE) of 0-20%. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chemical Looping Autothermal Reforming at a 120 kW Pilot Rig
NASA Astrophysics Data System (ADS)
Bofhàr-Nordenkampf, Johannes; Pröll, Tobias; Kolbitsch, Philipp; Hofbauer, Hermann
Chemical looping with selective oxygen transport allows two step combustion or autothermal reforming without mixing of fuel and air. The reactor system consists of two reactors, an air reactor and a fuel reactor with a suitable oxygen carrier that transports the necessary oxygen for operation. In the present study, a highly active nickel based oxygen carrier is tested in a novel dual circulating fluidized bed (DCFB) system at a scale of 120 kW fuel power. The mean particle size of the oxygen carrier is 120 μm and the pilot rig is fueled with natural gas. For the investigated oxygen carrier high CH4 conversion is achieved. Air/fuel ratio is varied at three different fuel reactor temperatures. For chemical looping reforming one can observe synthesis gas composition close to thermodynamic equilibrium. In spite of the fact that no additional steam has been added to the fuel besides the one present through steam fluidization of the loop seals, coke formation does not occur at global stoichiometric air/fuel ratios above 0.46.
Effect of particle size distribution on the hydrodynamics of dense CFB risers
NASA Astrophysics Data System (ADS)
Bakshi, Akhilesh; Khanna, Samir; Venuturumilli, Raj; Altantzis, Christos; Ghoniem, Ahmed
2015-11-01
Circulating Fluidized Beds (CFB) are favorable in the energy and chemical industries, due to their high efficiency. While accurate hydrodynamic modeling is essential for optimizing performance, most CFB riser simulations are performed assuming equally-sized solid particles, owing to limited computational resources. Even though this approach yields reasonable predictions, it neglects commonly observed experimental findings suggesting the strong effect of particle size distribution (psd) on the hydrodynamics and chemical conversion. Thus, this study is focused on the inclusion of discrete particle sizes to represent the psd and its effect on fluidization via 2D numerical simulations. The particle sizes and corresponding mass fluxes are obtained using experimental data in dense CFB riser while the modeling framework is described in Bakshi et al 2015. Simulations are conducted at two scales: (a) fine grid to resolve heterogeneous structures and (b) coarse grid using EMMS sub-grid modifications. Using suitable metrics which capture bed dynamics, this study provides insights into segregation and mixing of particles as well as highlights need for improved sub-grid models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Aubrey L.
2005-07-01
This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFBmore » riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.« less
Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Müller-Stöver, Dorette Sophie
2017-08-01
The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer. Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100kW and 6MW, respectively. The assessment included: (i) Elemental composition and recovery of key elements and heavy metals; (ii) content of total carbon (C) and total nitrogen (N); (iii) pH; (iv) water extractability of phosphorus after incubation in soil; and (v) plant phosphorus response measured in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottom ashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded that LT-CFB gasification and co-gasification is a highly effective way to purify and sanitize sewage sludge for subsequent use in agricultural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Use of circulating-fluidized-bed combustors in compressed-air energy storage systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhamkin, M.; Patel, M.
1990-07-01
This report presents the result of a study conducted by Energy Storage and Power Consultants (ESPC), with the objective to develop and analyze compressed air energy storage (CAES) power plant concepts which utilize coal-fired circulating fluidized bed combustors (CFBC) for heating air during generating periods. The use of a coal-fired CFBC unit for indirect heating of the compressed air, in lieu of the current turbomachinery combustors, would eliminate the need for expensive premium fuels by a CAES facility. The CAES plant generation heat rate is approximately one-half of that for a conventional steam condensing power plant. Therefore, the required CFBCmore » heat generation capacity and capital costs would be lower per kW of power generation capacity. Three CAES/CFBC concepts were identified as the most promising, and were optimized using specifically developed computerized procedures. These concepts utilize various configurations of reheat turbomachinery trains specifically developed for CAES application as parts of the integrated CAES/CFBC plant concepts. The project team concluded that the optimized CAES/CFBC integrated plant concepts present a potentially attractive alternative to conventional steam generation power plants using CFBC or pulverized coal-fired boilers. A comparison of the results from the economic analysis performed on three concepts suggests that one of them (Concept 3) is the preferred concept. This concept has a two shaft turbomachinery train arrangement, and provides for load management functions by the compressor-electric motor train, and continuous base load operation of the turboexpander-electric generator train and the CFBC unit. 6 refs., 30 figs., 14 tabs.« less
Inversion of Crater Morphometric Data to Gain Insight on the Cratering Process
NASA Technical Reports Server (NTRS)
Herrick, Robert R.; Lyons, Suzane N.
1998-01-01
In recent years, morphometric data for Venus and several outer planet satellites have been collected, so we now have observational data of complex Craters formed in a large range of target properties. We present general inversion techniques that can utilize the morphometric data to quantitatively test various models of complex crater formation. The morphometric data we use in this paper are depth of a complex crater, the diameter at which the depth-diameter ratio changes, and onset diameters for central peaks, terraces, and peak rings. We tested the roles of impactor velocities and hydrostatic pressure vs. crustal strength, and we tested the specific models of acoustic fluidization (Melosh, 1982) and nonproportional growth (Schultz, 1988). Neither the acoustic fluidization model nor the nonproportional growth in their published formulations are able to successfully reproduce the data. No dependence on impactor velocity is evident from our inversions. Most of the morphometric data is consistent with a linear dependence on the ratio of crustal strength to hydrostatic pressure on a planet, or the factor c/pg.
Co-combustion of coal and biomass in a pressurized bubbling fluidized bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andries, J.; Verloop, M.; Hein, K.
1997-12-31
The use of biomass as an energy source in power plants has advantages compared to fossil fuel firing. Co-firing of biomass and coal offers additional advantages compared to exclusive biomass firing. The objective of the research described in this paper is to assess the effect of co-combustion of biomass (straw or Miscanthus Sinensis) and coal on the behavior of a pressurized fluidized bed combustor with regard to fuel feeding, fluidization, sintering, burnout, temperature distribution and the emission of harmful gaseous and solid components. Temperature and gas concentration profiles have been determined in the freeboard of the Delft 1.6 MW{sub th}more » PFBC test rig. The addition of up to 20% of biomass (based on heat input) has no adverse effect on the PFBC process. The feeding of the biomass is more critical than the feeding of coal, due to the more fibrous structure and the larger volumes of the biomass fuel. Dependent on the process conditions the biomass addition results locally in an increase or decrease of the temperatures. Biomass addition causes a small increase of the CO and NO and a small decrease of N{sub 2}O emissions. The influence of the biomass addition on the HCl emissions is not clear. The lower sulfur content and a larger sulfur capture efficiency result in lower SO{sub 2} emissions. The addition of biomass has a negligible influence on the combustion efficiency. A 15--30% higher cyclone catch was found for the coal/Miscanthus mixture when compared to the other fuels.« less
Attrition-enhanced sulfur capture by limestone particles in fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saastamoinen, J.J.; Shimizu, T.
2007-02-14
Sulfur capture by limestone particles in fluidized beds is a well-established technology. The underlying chemical and physical phenomena of the process have been extensively studied and modeled. However, most of the studies have been focused on the relatively brief initial stage of the process, which extends from a few minutes to hours, yet the residence time of the particles in the boiler is much longer. Following the initial stage, a dense product layer will be formed on the particle surface, which decreases the rate of sulfur capture and the degree of utilization of the sorbent. Attrition can enhance sulfur capturemore » by removing this layer. A particle model for sulfur capture has been incorporated with an attrition model. After the initial stage, the rate of sulfur capture stabilizes, so that attrition removes the surface at the same rate as diffusion and chemical reaction produces new product in a thin surface layer of a particle. An analytical solution for the conversion of particles for this regime is presented. The solution includes the effects of the attrition rate, diffusion, chemical kinetics, pressure, and SO{sub 2} concentration, relative to conversion-dependent diffusivity and the rate of chemical reaction. The particle model results in models that describe the conversion of limestone in both fly ash and bottom ash. These are incorporated with the residence time (or reactor) models to calculate the average conversion of the limestone in fly ash and bottom ash, as well as the efficiency of sulfur capture. Data from a large-scale pressurized fluidized bed are compared with the model results.« less
Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow.
Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi
2013-01-01
We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system.
Diatremes and craters attributed to natural explosions
Shoemaker, Eugene Merle
1956-01-01
Diatremes - volcanic pipes attributed to explosion - and craters have been studied to infer the ultimate causes and physical conditions attending natural explosive processes. Initial piercement of diatremes on the Navajo reservation, Arizona was probably along a fracture propagated by a high-pressure aqueous fluid. Gas rising at high velocity along the fracture would become converted to a gas-solid fluidized system by entrainment of wall- rock fragments. The first stages of widening of the vent are probably accomplished mainly by simple abrasion of the high-velocity fluidized system on the walls of the fracture. As the vent widens, its enlargement may be accelerated by inward spalling of the walls. The inferred mechanics of the Navajo-Hopi diatremes is used to illustrate the possibility of diatreme formation over a molten salt mass.
NASA Astrophysics Data System (ADS)
Roche, O.; Chedevile, C.
2012-12-01
We carried out scaled experiments on gas-particles flows propagating on a rough substrate in order to investigate the emplacement of pyroclastic flows. The flows were generated from the release of non-fluidized or gas-fluidized columns of fine (80 μm) glass beads of height of 30 cm into a 3 m-long horizontal channel. The base of the channel was either smooth or was made rough by gluing a monodisperse layer of spherical particles of diameter of 80 μm to 3 mm. We defined the substrate roughness as the size of the glued particles, which corresponded to up to several tens of centimeters when scaled to the natural system. The flow front kinematics and the detailed interactions between the base of the flow and the rough substrate were investigated from high speed videos. We measured systematically the run out distance of the flows, and experiments were repeated 8-10 times for each configuration to obtain a mean value. The run out distance increased with the substrate roughness for both initially non-fluidized and fluidized flows. The run out had a minimum value for a smooth base and was about twice that value for the highest roughness of 3 mm. Analysis of the flow kinematics revealed that the increase in run out was caused by higher front velocities essentially at late stages of emplacement, during which the head of the flows stretched considerably. High speed videos made at the base of the flows showed that their head first slid over the substrate before aggregates of particles fell into the interstices between the particles forming the rough substrate, at a mean speed of several centimeters per second. In contrast, complementary experiments on flows of coarse beads of 350 μm showed that the substrate roughness did not influence their run out, and at the flow base their particles bumped into those of the substrate before falling individually into the interstices. These observations suggest that the positive correlation between the flow run out and the substrate roughness for flows of fine particles could result from two mechanisms. The first was the reduction of the contact area between the flow base and the substrate as the roughness increased because of the reduced number of particles per unit length. The second, main mechanism was auto-fluidization generated as the fine particles falling into the interstices expulsed the air upward at a velocity much larger than the minimum fluidization velocity. This promoted at least partial fluidization or additional pore pressure in case of initially non-fluidized or fluidized flows, respectively. This experimental investigation provides some counterintuitive results and has implication for hazards assessment. Other things being equal, the run out distance of fines-rich pyroclastic flows is expected to increase with the roughness of the terrain on which they propagate.
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Berger, Gordon M.; Sacksteder, Kurt R.; Paz, Aaron
2012-01-01
Extraction of mission consumable resources such as water and oxygen from the planetary environment provides valuable reduction in launch-mass and potentially extends the mission duration. Processing of lunar regolith for resource extraction necessarily involves heating and chemical reaction of solid material with processing gases. Vibrofluidization is known to produce effective mixing and control of flow within granular media. In this study we present experimental results for vibrofluidized heat transfer in lunar regolith simulants (JSC-1 and JSC-1A) heated up to 900 C. The results show that the simulant bed height has a significant influence on the vibration induced flow field and heat transfer rates. A taller bed height leads to a two-cell circulation pattern whereas a single-cell circulation was observed for a shorter height. Lessons learned from these test results should provide insight into efficient design of future robotic missions involving In-Situ Resource Utilization.
Mass transfer effects in a gasification riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breault, Ronald W.; Li, Tingwen; Nicoletti, Phillip
2013-07-01
In the development of multiphase reacting computational fluid dynamics (CFD) codes, a number of simplifications were incorporated into the codes and models. One of these simplifications was the use of a simplistic mass transfer correlation for the faster reactions and omission of mass transfer effects completely on the moderate speed and slow speed reactions such as those in a fluidized bed gasifier. Another problem that has propagated is that the mass transfer correlation used in the codes is not universal and is being used far from its developed bubbling fluidized bed regime when applied to circulating fluidized bed (CFB) risermore » reactors. These problems are true for the major CFD codes. To alleviate this problem, a mechanistic based mass transfer coefficient algorithm has been developed based upon an earlier work by Breault et al. This fundamental approach uses the local hydrodynamics to predict a local, time varying mass transfer coefficient. The predicted mass transfer coefficients and the corresponding Sherwood numbers agree well with literature data and are typically about an order of magnitude lower than the correlation noted above. The incorporation of the new mass transfer model gives the expected behavior for all the gasification reactions evaluated in the paper. At the expected and typical design values for the solid flow rate in a CFB riser gasifier an ANOVA analysis has shown the predictions from the new code to be significantly different from the original code predictions. The new algorithm should be used such that the conversions are not over predicted. Additionally, its behaviors with changes in solid flow rate are consistent with the changes in the hydrodynamics.« less
NASA Astrophysics Data System (ADS)
Juhui, Chen; Yanjia, Tang; Dan, Li; Pengfei, Xu; Huilin, Lu
2013-07-01
Flow behavior of gas and particles is predicted by the large eddy simulation of gas-second order moment of solid model (LES-SOM model) in the simulation of flow behavior in CFB. This study shows that the simulated solid volume fractions along height using a two-dimensional model are in agreement with experiments. The velocity, volume fraction and second-order moments of particles are computed. The second-order moments of clusters are calculated. The solid volume fraction, velocity and second order moments are compared at the three different model constants.
Vimalchand, Pannalal; Liu, Guohai; Peng, WanWang
2010-08-10
The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.
The paper reports the latest efforts to complete development of Phase 2 of a three-phase effort to develop a family of small-scale (1 to 20 MWe) biomass-fueled power plants. The concept envisioned is an air-blown pressurized fluidized-bed gasifier followed by a dry hot gas clean...
Apparatus and process for controlling fluidized beds
Rehmat, Amirali G.; Patel, Jitendra G.
1985-10-01
An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.
Apparatus for controlling fluidized beds
Rehmat, Amirali G.; Patel, Jitendra G.
1987-05-12
An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.
Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow
Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi
2013-01-01
We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system. PMID:23378921
Novel CFB Boiler Technology with Reconstruction of its Fluidization State
NASA Astrophysics Data System (ADS)
Yang, H. R.; Zhang, H.; Lu, J. F.; Lfu, Q.; Wu, Y. X.; Yuet, G. X.; Su, J.; Fu, Z. P.
Compared with a conventional pulverized coal fired boiler, the combustion efficiency of a CFB boiler is lower while the self-consumed service power is 1-2% higher. The solution of these problems is the key research topic for researchers and manufacturers of CFB boilers. Based on the State Specification Design Theory of CFB boilers, Tsinghua University proposed a novel CFB technology by reconstruction of the fluidization state in the furnace by adjusting the bed inventory and bed quality. Theoretical analyses show that there is an optimal bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan power consumption. The proposed novel process was implemented in a 75t/h CFB boiler. The results of field tests on this boiler validated the theoretical analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pflughoeft-Hassett, D.F.
1997-08-01
Information from DOE projects and commercial endeavors in fluidized-bed combustion and coal gasification is the focus of this task by the Energy and Environmental Research Center. The primary goal of this task is to provide an easily accessible compilation of characterization information on CCT (Clean Coal Technology) by-products to government agencies and industry to facilitate sound regulatory and management decisions. Supporting objectives are (1) to fully utilize information from previous DOE projects, (2) to coordinate with industry and other research groups, (3) to focus on by-products from pressurized fluidized-bed combustion (PFBC) and gasification, and (4) to provide information relevant tomore » the EPA evaluation criteria for the Phase 2 decision.« less
Asphalt Roofing Shingles Into Energy Project Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jameson, Rex, PE
2008-04-28
Based on a widely cited September, 1999 report by the Vermont Agency of Natural Resources, nearly 11 million tons of asphalt roofing shingle wastes are produced in the United States each year. Recent data suggests that the total is made up of about 9.4 million tons from roofing tear-offs and about 1.6 million tons from manufacturing scrap. Developing beneficial uses for these materials would conserve natural resources, promote protection of the environment and strengthen the economy. This project explored the feasibility of using chipped asphalt shingle materials in cement manufacturing kilns and circulating fluidized bed (CFB) boilers. A method ofmore » enhancing the value of chipped shingle materials for use as fuel by removing certain fractions for use as substitute raw materials for the manufacture of new shingles was also explored. Procedures were developed to prevent asbestos containing materials from being processed at the chipping facilities, and the frequency of the occurrence of asbestos in residential roofing tear-off materials was evaluated. The economic feasibility of each potential use was evaluated based on experience gained during the project and on a review of the well established use of shingle materials in hot mix asphalt. This project demonstrated that chipped asphalt shingle materials can be suitable for use as fuel in circulating fluidized boilers and cement kilns. More experience would be necessary to determine the full benefits that could be derived and to discover long term effects, but no technical barriers to full scale commercial use of chipped asphalt shingle materials in these applications were discovered. While the technical feasibility of various options was demonstrated, only the use of asphalt shingle materials in hot mix asphalt applications is currently viable economically.« less
Dynamical tests on fiber optic data taken from the riser section of a circulating fluidized bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, E.M.; Guenther, C.P.; Breault, R.W.
2007-11-01
Dynamical tests have been applied to fiber optic data taken from a cold-flow circulating fluidized bed to characterize flow conditions, identify three time and/or length scales (macro, meso, and micro), and understand the contribution these scales have on the raw data. The characteristic variable analyzed is the raw voltage signal obtained from a fiber-optic probe taken at various axial and radial positions under different loading conditions so that different flow regimes could be attained. These experiments were carried out with the bed material of 812 μm cork particles. The characterization was accomplished through analysis of the distribution of the signalmore » through the third and fourth moments of skewness and excess kurtosis. A generalization of the autocorrelation function known as the average mutual information function was analyzed by examining the function’s first minimum, identifying the point at which successive elements are no longer correlated. Further characterization was accomplished through the correlation dimension, a measure of the complexity of the attractor. Lastly, the amount of disorder of the system is described by a Kolmogorov-type entropy estimate. All six aforementioned tests were also implemented on ten levels of detail coefficients resulting from a discrete wavelet transformation of the same signal as used above. Through this analysis it is possible to identify and describe micro (particle level), meso (clustering or turbulence level), and macro (physical or dimensional level) length scales even though some literature considers these scales inseparable [6]. This investigation also used detail wavelet coefficients in conjunction with ANOVA analysis to show which scales have the most impact on the raw signal resulting from local hydrodynamic conditions.« less
Fluidized bed silicon deposition from silane
NASA Technical Reports Server (NTRS)
Hsu, George C. (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)
1982-01-01
A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fluidized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.
Analysis of the high-temperature particulate collection problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razgaitis, R.
1977-10-01
Particulate agglomeration and separation at high temperatures and pressures are examined, with particular emphasis on the unique features of the direct-cycle application of fluidized-bed combustion. The basic long-range mechanisms of aerosol separation are examined, and the effects of high temperature and high pressure on usable collection techniques are assessed. Primary emphasis is placed on those avenues that are not currently attracting widespread research. The high-temperature, particulate-collection problem is surveyed, together with the peculiar requirements associated with operation of turbines with particulate-bearing gas streams. 238 references.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zevenhoven, C.A.P.; Yrjas, K.P.; Hupa, M.M.
1998-07-01
Fluidized bed combustion or gasification allows for in-bed sulfur capture with a calcium-based sorbent such as limestone or dolomite. Sorbent particle size, porosity, internal surface, and their variation during conversion have great influence on the conversion of the sorbent. The uptake of SO{sub 2} and H{sub 2}S by five physically different limestones is discussed, for typical pressurized fluidized bed combustor or gasifier conditions: 850/950 C, 15/20 bar. Tests were done in a pressurized thermogravimetric apparatus (P-TGA), the size of the limestone particles was 250--300 {micro}m. It is stressed that the limestones remain uncalcined. A changing internal structure (CIS) model ismore » presented in which reaction kinetics and product layer diffusion are related to the intraparticle surface of reaction, instead of the outer particle surface as in unreacted shrinking core (USC)-type models. The random pore model was used for describing the changing internal pore and reaction surfaces. Rate parameters were extracted for all five limestones using the CIS model and a USC model with variable effective diffusivity. Differences in the sulfur capture performance of the limestones were evaluated. Plots of the CaSO{sub 4} or CaS product layer thickness as a function of conversion are given, and the relative importance of limestone porosity and internal surface is discussed.« less
Apparatus for controlling fluidized beds
Rehmat, A.G.; Patel, J.G.
1987-05-12
An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.
The use of PFBC ashes to ameliorate acid conditions: An equilibrium and greenhouse study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, T.H.; Bland, A.E.
1999-07-01
Pilot-scale development at the Foster Wheeler Energia Oy 10 MW{sub th} circulating PFBC at Karhula, Finland, has demonstrated the advantages of pressurized fluidized bed combustion (PFBC) technology. Commercial scale deployment of the technology at the Lakeland Utilities MacIntosh Unit No. 4 has been proposed. Development of uses for the ashes from PFBC systems is being actively pursued as part of commercial demonstration of PFBC technologies. Western Research Institute (WRI), in conjunction with the US Department of Energy (DOE), Federal Energy Technology Center (FETC), Foster Wheeler Energy International, Inc., and the Electric Power Research Institute (EPRI), conducted a laboratory scale investigationmore » of the technical feasibility of PFBC ash as an amendment for acidic soils and spoils encountered in agricultural and reclamation applications. Ashes were collected from the Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low-sulfur subbituminous and (2) high-sulfur bituminous coals. The results of the technical feasibility testing indicated the following: (1) PFBC fly ash (Karhula-low S fly ash) and ag-lime (CaCO{sub 3}) were used as amendments attempting to ameliorate acid spoil conditions. These materials were found to be effective acid mine spoil amendments. (2) The greenhouse study demonstrated that PFBC ash and/or bed ash amended spoils resulted in similar seed germination numbers as compared to the ag-lime amended spoils. (3) The greenhouse study also demonstrated that PFBC fly ash and/or bed ash amended spoils resulted in comparable plant productivity to the ag-lime amended spoils. In fact, all amendments resulted in statistically the same levels of plant production for each plant species.« less
Pressurized fluidized bed combustion of coal for electric power generation the AEP approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markowsky J.J.; Wickstrom, B.
1982-08-01
American Electric Power (AEP), STAL-LAVAL Turbine A.B. (SL), and Deutsche Babcock Anlagen AG (DBA) are working on a program estimated to cost $250 million that will lead toward the construction of a large (170,000 KW) commercial demonstration of an advanced electric power plant incorporating Pressurized Fluidized Bed Combustion (PFBC) of coal. A pilot plant test program carried out during 1977-1980 verified combustor performance and demonstrated long gas turbine blade life. Parallel efforts during this period involved the design of the 170,000 kW Commercial Demonstration Plant (CDP) and a 500,000 kW Commercial Plant which essentially consists of two CDP combustors-gas turbinemore » modules and a larger capacity steam cycle. These efforts showed considerable economic advantages of PFBC-combined cycle power generation over other alternative technologies. A 15,000 KW (thermal) component test facility (CTF) is presently under construction in Sweden. Extensive testing is scheduled to begin in early 1982. Upon successful completion of these tests, AEP intends to start construction of the CDP in 1983; the plant is expected to supply power to the AEP network by 1986.« less
Pulse enhanced fluidized bed combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, B.
1996-12-31
Information is outlined on pulse enhanced fluidized bed combustion. The following topics are discussed: what is pulse enhanced fluidized bed combustion?; pulse combustors; pulsed atmospheric fluidized bed combustor (PAFBC); advantages of PAFBC; performance advantages; PAFBC facts; and PAFBC contact points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Froehlich, R.; Robertson, A.; Vanhook, J.
1994-11-01
During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection).more » A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume one. This Volume 2 provides details of the carbonizer data reconciliation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Y.D.; Lee, K.B.; Islam, S.Z.
2008-07-01
In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulatemore » and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.« less
Effects of sorbent attrition on utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keener, T.C.; Khang, Soon-Jai; Lee, S.K.
1992-03-01
Attrition of surface product levers of sulfite/sulfate may be the key to substantially increasing sorbent utilization in new dry scrubbing processes. This conclusion has been reached from research results obtained from new gas/solid contacting methods such as the Circulating Fluidized Bed Absorber and the Limestone Emission Control method. An additional savings may be reduced by the use of large initial sorbent, particle sizes which greatly reduces the cost of grinding and sorbent preparation. The objectives of project 1.7 were then to study attrition of sorbent particles in a systematic fashion in order to determine how to use attrition to increasemore » sorbent utilization. This was to be carried out by the construction of a bench scale fluidized bed where a series of experiments were to be conducted to measure attrition of lime and limestone samples. This has been accomplished and the project proceeded as anticipated. The results indicate that attrition differs for wet and dry conditions for certain sorbents and that these differences are substantial. Under dry conditions, the results of attrition tests on carefully characterized lime samples indicate that mechanical abrasion is the primary attrition mechanism. The rate of attrition is seen to be similar to a first order chemical reaction where the bed mass (or total surface area) is analagous to reactant concentration. A model for mechanical attrition is presented which expresses the rate constant in an Arrhenius type form proportional to a pseudo attrition activation energy and excess gas energy above a minimum level. The value of this pseudo attrition activation energy for lime has been found to be 106 KJ/KG. For the attrition of wetted lime particles in a fluidized bed. the attrition rate has been found to be directly related to the volumetric flow rate of injected water.« less
Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konan, N. A.; Huckaby, E. D.
We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less
Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed
Konan, N. A.; Huckaby, E. D.
2017-06-21
We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mutanen, K.I.
Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the USmore » the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.« less
Fluidized bed combustor and tube construction therefor
De Feo, Angelo; Hosek, William
1981-01-01
A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.
Tube construction for fluidized bed combustor
De Feo, Angelo; Hosek, William
1984-01-01
A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.
Evaluation of Selected Chemical Processes for Production of Low-cost Silicon, Phase 3
NASA Technical Reports Server (NTRS)
Blocher, J. M.; Browning, M. F.
1979-01-01
Refinements of the design of the 50 MT/year Experimental Process System Development Unit were made and competitive bids were received from mechanical, electrical, and structural contractors. Bids on most of the equipment were received and cataloged. Emergency procedures were defined to counter a variety of contingencies disclosed in operations and safety reviews. Experimental work with an electrolytic cell for zinc chloride disclosed no significant increase in power efficiency by steps taken to increase electrolyte circulation. On the basis of materials compatibility and permeability tests, 310 stainless steel was chosen for the shell of the fluidized-bed reactor and SiC-coated graphite for the liner.
Neutron activation analysis system
Taylor, M.C.; Rhodes, J.R.
1973-12-25
A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)
Fluidized bed operations survey summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardi, C.
1996-12-31
A fluidized bed operations survey summary is presented. The survey contains information on: forced outage causes; forced outage concerns ranked numerically; 1996 boiler operation and maintenance (O&M) concerns; 1997 boiler O&M concerns; fluidized bed capacity factor results; and fluidized bed total outage time.
Yuasa, H; Nakano, T; Kanaya, Y
1999-02-01
It has been reported that the degree of particle agglomeration in fluidized bed coating is greatly affected by the spray mist size of coating solution. However, the mist size has generally been measured in open air, and few reports have described the measurement of the mist size in a chamber of the fluidized bed, in which actual coating is carried out. Therefore, using hydroxypropylmethyl cellulose (HPMC) aqueous solution as a coating solution, the spray mist size of the coating solution in a chamber of the fluidized bed was measured under various coating conditions, such as the distance from the spray nozzle, fluidization air volume, inlet air temperature and addition of sodium chloride (NaCl) into the coating solution. The mist size in the fluidized bed was compared with that in open air at various distances from the spray nozzle. Further, the relationship between the spray mist size and the degree of suppression of agglomeration at various NaCl concentrations during fluidized bed coating was studied. The mist size distribution showed a logarithmic normal distribution in both cases of the fluidized bed and open air. The number-basis median diameter of spray mist (D50) in the fluidized bed was smaller compared with that in open air. D50 increased with the increasing distance from the spray nozzle in both cases. In the fluidized bed, D50 decreased with the increasing fluidization air volume and inlet air temperature. The effect of NaCl concentration on the mist size was hardly observed, but the degree of suppression of agglomeration during coating increased with the increasing NaCl concentration in the coating solution.
Heat transfer in freeboard region of fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biyikli, S.; Tuzla, K.; Chen, J.C.
1983-10-01
This research involved the study of heat transfer and fluid mechanic characteristics around a horizontal tube in the freeboard region of fluidized beds. Heat transfer coefficients were experimetnally measured for different bed temperatures, particle sizes, gas flow rates, and tube elevations in the freeboard region of air fluidized beds at atmospheric pressure. Local heat transfer coefficients were found to vary significantly with angular position around the tube. Average heat transfer coefficients were found to decrease with increasing freeboard tube elevation and approach the values for gas convection plus radiation for any given gas velocity. For a fixed tube elevation, heatmore » transfer coefficients generally increased with increasing gas velocity and with high particle entrainment they can approach the magnitudes found for immersed tubes. Heat transfer coefficients were also found to increase with increasing bed temperature. It was concluded that this increase is partly due to increase of radiative heat transfer and partly due to change of thermal properties of the fluidizing gas and particles. To investigate the fluid mechanic behavior of gas and particles around a freeboard tube, transient particle tube contacts were measured with a special capacitance probe in room temperature experiments. The results indicated that the tube surface experiences alternating dense and lean phase contacts. Quantitative information for local characteristics was obtained from the capacitance signals and used to develop a phenomenological model for prediction of the heat transfer coefficients around freeboard tubes. The packet renewal theory was modified to account for the dense phase heat transfer and a new model was suggested for the lean phase heat transfer. Finally, an empirical freeboard heat transfer correlation was developed from functional analysis of the freeboard heat transfer data using nondimensional groups representing gas velocity and tube elevation.« less
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
2018-06-06
A general and efficient method for shaping MOFs into fluidized forms has been developed via direct conversion of metal oxides supported on fluidized mesoporous silica. The resulting fluidized MOF hybrid materials containing diamines coordinated at the open metal sites have been studied as CO2 solid sorbents from post-combustion flue gas showing similar performance than their bulk counterparts. These novel fluidized MOF hybrid materials can be used for other applications involving fluidized bed reactor configurations, in which MOFs have never been considered. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Regenerable activated bauxite adsorbent alkali monitor probe
Lee, S.H.D.
1992-12-22
A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.
Collisional processes involving icy bodies in the solar system
NASA Astrophysics Data System (ADS)
Stewart-Mukhopadhyay, Sarah Toby
1. The shock Hugoniot of solid ice. We present a complete description of the solid ice Hugoniot based on new shock wave experiments conducted at an initial temperature of 100 K and previously published data obtained at 263 K. We identify five regions on the solid ice Hugoniot: (1)elastic shock waves, (2)ice Ih deformation shocks, transformation shocks to (3)ice VI, (4)ice VII, and (5)liquid water. In each region, data obtained at different initial temperatures are described by a single US - Δup shock equation of state. The dynamic strength of ice Ih is strongly dependent on temperature. The Hugoniot Elastic Limit varies from 0.05 to 0.62 GPa, as a function of temperature and peak shock stress. We estimate the entropy and temperature along the 100 and 263 K Hugoniots and derive the critical pressures for shock-induced incipient (IM) and complete (CM) melting upon release. On the 100 K Hugoniot, the critical pressures are about 4.5 and between 5 6 GPa for IM and CM, respectively. On the 263 K Hugoniot, the critical pressures are 0.6 and 3.7 GPa for IM and CM, lower than previously suggested. Shock-induced melting of ice will be widespread in impact events. 2. Rampart crater formation on Mars. A complete description for formation of lobate ejecta blankets around Martian craters by fluidization with liquid water is presented based on impact cratering simulations and shock wave data on H2O ice. Shock wave experiments show that ice at Martian temperatures, 150 to 275 K, will begin to melt when shocked above 2.2 to 0.6 GPa, respectively, lower than previously expected. We find that more than half the excavated ice is melted by the impact shock; therefore, debris flow modeling of fluidized ejecta morphologies may directly quantify the amount of ground ice. The estimated quantity of water required to form the observed fluidized ejecta blankets is equivalent to a global layer about 0.6 m thick and the implied global regolith ice content, within the upper ˜2 km sampled by rampart craters, is equivalent to a 120 m layer.
Jet penetration into a riser operated in dense suspension upflow: experimental and model comparisons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadle, L.J.; Ludlow, C.J.; Spenik, J.L.
2008-05-13
Solids tracers were used to characterize the penetration of a gas-solids jet directed toward the center of the 0.3-m diameter, circulating fluidized bed (CFB) riser. The penetration was measured by tracking phosphorescent particles illuminated immediately prior to injection into the riser. Photosensors and piezoelectric detectors were traversed across the radius of the riser at various axial positions to detect the phosphorescent jet material and particles traveling in the radial direction. Local particle velocities were measured at various radial positions, riser heights, and azimuthal angles using an optical fiber probe. Four (4) variables were tested including the jet velocity, solids feedmore » rate into the jet, the riser velocity, and overall CFB circulation rate over 8 distinct test cases with the central, or base case, repeated each time the test series was conducted. In addition to the experimental measurements made, the entire riser with a side feed jet of solids was simulated using the Eulerian-Eulerian computer model MFIX.« less
Fluidized bed silicon deposition from silane
NASA Technical Reports Server (NTRS)
Hsu, George (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)
1984-01-01
A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fludized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.
Rapid ignition of fluidized bed boiler
Osborn, Liman D.
1976-12-14
A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.
Retrieval System for Calcined Waste for the Idaho Cleanup Project - 12104
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastman, Randy L.; Johnston, Beau A.; Lower, Danielle E.
This paper describes the conceptual approach to retrieve radioactive calcine waste, hereafter called calcine, from stainless steel storage bins contained within concrete vaults. The retrieval system will allow evacuation of the granular solids (calcine) from the storage bins through the use of stationary vacuum nozzles. The nozzles will use air jets for calcine fluidization and will be able to rotate and direct the fluidization or displacement of the calcine within the bin. Each bin will have a single retrieval system installed prior to operation to prevent worker exposure to the high radiation fields. The addition of an articulated camera armmore » will allow for operations monitoring and will be equipped with contingency tools to aid in calcine removal. Possible challenges (calcine bridging and rat-holing) associated with calcine retrieval and transport, including potential solutions for bin pressurization, calcine fluidization and waste confinement, are also addressed. The Calcine Disposition Project has the responsibility to retrieve, treat, and package HLW calcine. The calcine retrieval system has been designed to incorporate the functions and technical characteristics as established by the retrieval system functional analysis. By adequately implementing the highest ranking technical characteristics into the design of the retrieval system, the system will be able to satisfy the functional requirements. The retrieval system conceptual design provides the means for removing bulk calcine from the bins of the CSSF vaults. Top-down vacuum retrieval coupled with an articulating camera arm will allow for a robust, contained process capable of evacuating bulk calcine from bins and transporting it to the processing facility. The system is designed to fluidize, vacuum, transport and direct the calcine from its current location to the CSSF roof-top transport lines. An articulating camera arm, deployed through an adjacent access riser, will work in conjunction with the retrieval nozzle to aid in calcine fluidization, remote viewing, clumped calcine breaking and recovery from off-normal conditions. As the design of the retrieval system progresses from conceptual to preliminary, increasing attention will be directed toward detailed design and proof-of- concept testing. (authors)« less
Acoustic Fluidization and the Extraordinary Mobility of Sturzstroms
NASA Astrophysics Data System (ADS)
Collins, G. S.; Melosh, H. J.
2002-12-01
Sturzstroms are a rare category of rock avalanche that travel vast horizontal distances with only a comparatively small vertical drop in height. Their extraordinary mobility appears to be a consequence of sustained fluid-like behavior during motion that persists even for driving stresses well below those normally associated with large rock avalanches. One mechanism with the potential for explaining this temporary increase in the mobility of rock debris is acoustic fluidization; where transient, high-frequency pressure fluctuations, generated during the initial collapse and subsequent flow of a mass of rock debris, may locally relieve overburden stresses in the rock mass and thus reduce the frictional resistance to slip between fragments. Here we will present the acoustic fluidization model for the mechanics of sturzstroms, and discuss the conditions under which this process may sustain fluid-like flow of large rock avalanches at low driving stresses. Our work has focused on developing equations for describing the temporal and spatial evolution of acoustic energy within a mass of dry rock debris. We apply this model to the specific process of large, dry rock avalanches. To solve the complex system of equations we have: (1) sought steady state solutions to investigate the circumstances under which acoustic fluidization might facilitate fluid-like motion of the debris at low driving stresses; and (2) simulated the flow of dry rock debris in the presence of acoustic vibrations using a hydrocode, to test the stability of the steady state solutions, investigate the effect of initial conditions and study the avalanche termination process. Results from our modeling work are consistent with the characteristic observations of sturzstroms on Earth. They predict that, under realistic conditions, the flow of a mass of dry rock debris can retain and regenerate enough acoustic energy to perpetuate its own motion, even at very low slope angles; thereby explaining the peculiar long-runout of large rock avalanches. Observations of fluid-like behavior of sturzstroms are supported by our modeling work. The predicted velocity profile through the acoustically fluidized rock avalanche is parabolic; the sturzstrom flows with an effective viscosity that is almost independent of depth within the rock avalanche.
Optimal control of CPR procedure using hemodynamic circulation model
Lenhart, Suzanne M.; Protopopescu, Vladimir A.; Jung, Eunok
2007-12-25
A method for determining a chest pressure profile for cardiopulmonary resuscitation (CPR) includes the steps of representing a hemodynamic circulation model based on a plurality of difference equations for a patient, applying an optimal control (OC) algorithm to the circulation model, and determining a chest pressure profile. The chest pressure profile defines a timing pattern of externally applied pressure to a chest of the patient to maximize blood flow through the patient. A CPR device includes a chest compressor, a controller communicably connected to the chest compressor, and a computer communicably connected to the controller. The computer determines the chest pressure profile by applying an OC algorithm to a hemodynamic circulation model based on the plurality of difference equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yrjas, P.; Hupa, M.
1997-12-31
In the literature it has been reported that sulfur capture with limestone (CaCO{sub 3}) under atmospheric fluidized bed combustion conditions reaches a maximum at about 850 C. Previously, the maximum has been attributed to the sintering of the sorbent particles which decreases the reactive surface area. Lately, also another explanation has been reported. In this case the sulfur capture decrease at higher temperatures was concluded to be due to fluctuating oxidizing/reducing conditions in the atmospheric combustor. In this paper the influence of alternating oxidizing/reducing conditions on SO{sub 2} capture at atmospheric and elevated pressure (15 bar) is reported. In themore » pressurized case, the CO{sub 2} partial pressure was kept high enough to prevent CaCO{sub 3} from calcining and therefore the CaSO{sub 4} would not form CaO but CaCO{sub 3} from calcining and therefore the CaSO{sub 4} would not form CaO but CaCO{sub 3} under reducing conditions. The experiments were done with a pressurized TGA by periodically changing the gas environment between oxidizing (O{sub 2}, SO{sub 2}, CO{sub 2} and N{sub 2}) and slightly reducing (CO, SO{sub 2}, CO{sub 2} and N{sub 2}) gas mixtures at different temperatures. The results showed that under normal pressure and slightly reducing conditions CaO formation from CaSO{sub 4} increased with temperature as expected. However, no significant amounts of CaCO{sub 3} were formed from CaSO{sub 4} at elevated pressure. It was also concluded that since the formation of CaO from CaSO{sub 4} was relatively slow it could not explain the sharp sulfur capture maximum at about 850 C. Therefore, it was assumed that the strongly reducing zones, where CaS thermodynamically is the stable compound, may play a more important role than the slightly reducing zones, concerning the sulfur capture in fluidized bed combustors.« less
Gas fluidized-bed stirred media mill
Sadler, III, Leon Y.
1997-01-01
A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.
Mallon, R.G.
1983-05-13
The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.
Reactions homogenes en phase gazeuse dans les lits fluidises
NASA Astrophysics Data System (ADS)
Laviolette, Jean-Philippe
This thesis presents a study on homogeneous gas-phase reactions in fluidized beds. The main objective is to develop new tools to model and characterize homogeneous gas-phase reactions in this type of reactor. In the first part of this work, the non-premixed combustion of C 1 to C4 n-alkanes with air was investigated inside a bubbling fluidized bed of inert sand particles at intermediate temperatures: 923 K ≤ TB ≤ 1123 K. For ethane, propane and n-butane, combustion occurred mainly in the freeboard region at bed temperatures below T1 = 923 K. On the other hand, complete conversion occurred within 0.2 m of the injector at: T2 = 1073 K. For methane, the measured values of T1 and T2 were significantly higher at 1023 K and above 1123 K, respectively. The fluidized bed combustion was accurately modeled with first-order global kinetics and two one-phase PFR models in series: one PFR to model the region close to the injector and another to represent the main fluidized bed body. The measured global reaction rates for C2 to C4 n-alkanes were characterized by a uniform Arrhenius expression, while the global reaction rate for methane was significantly slower. Reactions in the injector region either led to significant conversion in that zone or an autoignition delay inside the main fluidized bed body. The conversion in the injector region increased with rising fluidized bed temperature and decreased with increasing jet velocity. To account for the promoting and inhibiting effects, an analogy was made with the concept of induction time: the PFR length (bi) of the injector region was correlated to the fluidized bed temperature and jet velocity using an Arrhenius expression. In the second part of this work, propane combustion experiments were conducted in the freeboard of a fluidized bed of sand particles at temperatures between 818 K and 923 K and at superficial gas velocity twice the minimum fluidization velocity. The freeboard region was characterized by simultaneous measurements of solids flux, chemical composition, temperature and pressure. Autoignition was only recorded within 0.06 m of the bed surface at temperatures greater than 833 K. Propane conversion predicted by six different microkinetic mechanistic models were compared to the experimental measurements: all six models underestimated the reaction rate above the bed surface. However, accounting for the production of H2O2 during in-bed combustion significantly increased the calculated reaction rates and resulted in a better agreement between predicted and measured propane conversion. In the third part of this work, a novel spectroscopic method was developed to measure quantitatively and simultaneously solids volume fraction (1-epsilon) and gaseous species composition (Yi) in a gas/solid system. The method was comprised of an FT-IR coupled to a fibre-optic probe that could perform real-time and in-situ measurements of absorbance. The effect of (1-epsilon) and Yi on the absorbance spectra were additive and could be independently calibrated. Experiments were conducted with alkane/nitrogen mixtures and two types of particles: sand and FCC. Fuel mole fractions and (1-epsilon) were varied between 1.8 - 10.1 mol% and 0 - 0.45, respectively. The relative errors for Yi time-averaged measurements were below 6% and the error increased significantly with decreasing beam intensity. A proof of concept for a novel application in fluidized beds was also completed: the fibre-optic probe was used to measure the molar fraction of a tracer gas inside the emulsion and bubble phases during gas tracer experiments. (Abstract shortened by UMI.)
Heat transfer to small horizontal cylinders immersed in a fluidized bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, J.; Koundakjian, P.; Naylor, D.
2006-10-15
Heat transfer to horizontal cylinders immersed in fluidized beds has been extensively studied, but mainly in the context of heat transfer to boiler tubes in coal-fired beds. As a result, most correlations in the literature have been derived for cylinders of 25-50 mm diameter in vigorously fluidizing beds. In recent years, fluidized bed heat treating furnaces fired by natural gas have become increasingly popular, particularly in the steel wire manufacturing industry. These fluidized beds typically operate at relatively low fluidizing rates and with small diameter wires (1-6 mm). Nusselt number correlations developed based on boiler tube studies do not extrapolatemore » down to these small size ranges and low fluidizing rates. In order to obtain reliable Nusselt number data for these size ranges, an experimental investigation has been undertaken using two heat treating fluidized beds; one a pilot-scale industrial unit and the other a lab-scale (300 mm diameter) unit. Heat transfer measurements were obtained using resistively heated cylindrical samples ranging from 1.3 to 9.5 mm in diameter at fluidizing rates ranging from approximately 0.5 x G{sub mf} (packed bed condition) to over 10 x G{sub mf} using aluminum oxide sand particles ranging from d{sub p}=145-330 {mu}m (50-90 grit). It has been found that for all cylinder sizes tested, the Nusselt number reaches a maximum near 2 x G{sub mf}, then remains relatively steady ({+-}5-10%) to the maximum fluidizing rate tested, typically 8-12xG{sub mf}. A correlation for maximum Nusselt number is developed.« less
Fluidized bed calciner apparatus
Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.
1988-01-01
An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.
Fluidized bed boiler feed system
Jones, Brian C.
1981-01-01
A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Use of fluidized bed combustion not feasible-general... FUELS NEW FACILITIES General Requirements for Exemptions § 503.10 Use of fluidized bed combustion not... finds on a site-specific or generic basis that use of a method of fluidized bed combustion of an...
Pluto: Fluidized Transport of Tholins by Heating of the Subsurface
NASA Technical Reports Server (NTRS)
Cruikshank, Dale P.; Spohrer, Steven; Grundy, William M.; Moore, Jeffrey M.; Umurhan, Orkan M.; White, Oliver L.; Beyer, Ross A.; Dalle Ore, Cristina M.; Stern, S. A.; Young, Leslie;
2017-01-01
New Horizons images of Pluto show evidence of the transport of the colored non-ice component across the surface, with substantial accumulations in some areas of low elevation. The non-ice component is presumed to be tholin produced in the atmosphere as a precipitating aerosol, in the surface ices by photolysis or radiolysis, or both. We model the surface layer of N2 ice with varying amounts of incorporated tholin particles to explore the heating within the ice that occurs by the solid-state greenhouse effect. We find that in plausible models of the contaminated N2 surface ice the triple point temperature (63.15K) is reached at a depth of approximately less than 1m. At that depth the confining pressure of the ice column is much less than the triple point pressure (12.52 kPa), so N2 should convert to the gas phase, exerting pressure on the overburden. When the gas pressure exceeds the strength of the confining ice, a breakout on the surface will occur, fluidizing fragments of ice and its contaminants that are then free to flow downhill, rafted on entrained gas, similar in some ways to the pyroclastic volcanic phenomenon known as nuée ardente. The digital elevation map of Pluto made from stereo images shows some surface regions that may have been stripped of the N2 layer, exposing H2O ice (presumed to be bedrock) below, with a corresponding accumulation of dark material that was that was the previously entrained particulate tholin. Accumulations of tholin are found associated with some of the fossae, and some cover preexisting topography to depths of up to a few hundred meters.
Static and transient performance prediction for CFB boilers using a Bayesian-Gaussian Neural Network
NASA Astrophysics Data System (ADS)
Ye, Haiwen; Ni, Weidou
1997-06-01
A Bayesian-Gaussian Neural Network (BGNN) is put forward in this paper to predict the static and transient performance of Circulating Fluidized Bed (CFB) boilers. The advantages of this network over Back-Propagation Neural Networks (BPNNs), easier determination of topology, simpler and time saving in training process as well as self-organizing ability, make this network more practical in on-line performance prediction for complicated processes. Simulation shows that this network is comparable to the BPNNs in predicting the performance of CFB boilers. Good and practical on-line performance predictions are essential for operation guide and model predictive control of CFB boilers, which are under research by the authors.
Pneumatic transportation of dispersed medium through a vertical tube immersed into a fluidized bed
NASA Astrophysics Data System (ADS)
Krasnykh, V. Yu.; Korolev, V. N.; Ostrovskaya, A. V.; Nagornov, S. A.
2013-11-01
We discuss the technical problem of how to transport granular material in a vertical direction from the underlying section of a multistage apparatus containing a fluidized bed to an upper section through tubes immersed into the fluidized bed without additional expenditures of energy. The intensity with which the dispersed medium (a mixture of gas and fuel particles) moves through the tube and the mass flowrate of particles are determined by the ratio between the hydraulic resistances of dispersed medium inside the tube and of the fluidized bed outside of it. In turn, this ratio depends on the fluidization number W (W = w s/ w 0, where w s is the seepage velocity and w 0 is the fluidization commencement velocity) and on the tube immersing depth into the bed.
Fast fluidized bed steam generator
Bryers, Richard W.; Taylor, Thomas E.
1980-01-01
A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.
A continuum model for pressure-flow relationship in human pulmonary circulation.
Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T
2011-06-01
A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.
Dynamics of Unjammed Emulsions
NASA Astrophysics Data System (ADS)
Guerra, Rodrigo; Kodger, Thomas; Weitz, David
2014-03-01
Light scattering and NMR densitometry measurements of quiescent emulsions have shown that amorphous packings of soft, repulsive droplets unjam at osmotic pressures 105 times larger than the typical droplet thermal energy density: 3kB/T 4 πR3. This transition corresponds to the pressure at which the thermal fluctuations of individual droplet positions match the yield strain of the packing and drive the fluidization of the material. We use confocal microscopy to investigate the microscopic dynamics of this fluid-like phase and find them to be fundamentally different from those of conventional glass-forming liquids; cage-breaking dynamics are not evident from droplet mean squared displacements and the effective viscosity of the emulsion, though 105 larger than the background fluid, appears largely insensitive to the confining pressure.
Hodges, James L.; Cerkanowicz, Anthony E.
1983-01-01
In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.
Hodges, James L.; Cerkanowicz, Anthony E.
1982-01-01
In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.
Researching of the reduction of shock waves intensivity in the “pseudo boiling” layer
NASA Astrophysics Data System (ADS)
Pavlov, G. I.; Telyashov, D. A.; Kochergin, A. V.; Nakoryakov, P. V.; Sukhovaya, E. A.
2017-09-01
This article applies to the field of acoustics and deals with noise reduction of pulsating combustion chambers, in particular the reduction of the shock waves’ intensity with the help of pseudo boiling layer. In the course of work on a test stand that included a pulsator, a compressor with the receiver and a high pressure fan was simulated gas jet flowing from the chamber pulsating combustion and studied the effect of different types of fluidization on effect of reducing the sound pressure levels. Were obtained the experimental dependence of the sound pressure levels from parameters such as: height of the layer of granules; diameter of the used granules; amplitude of the pressure pulsations in the gas stream at the entrance to the camera; frequency of pressure pulsations. Based on the results of the study, it was concluded that the using of a pseudo boiling layer is promising for reducing shock wave noise.
NASA Astrophysics Data System (ADS)
Woo, Kyoungsuk
Two-phase natural circulation loops are unstable at low pressure operating conditions. New reactor design relying on natural circulation for both normal and abnormal core cooling is susceptible to different types of flow instabilities. In contrast to forced circulation boiling water reactor (BWR), natural circulation BWR is started up without recirculation pumps. The tall chimney placed on the top of the core makes the system susceptible to flashing during low pressure start-up. In addition, the considerable saturation temperature variation may induce complicated dynamic behavior driven by thermal non-equilibrium between the liquid and steam. The thermal-hydraulic problems in two-phase natural circulation systems at low pressure and low power conditions are investigated through experimental methods. Fuel heat conduction, neutron kinetics, flow kinematics, energetics and dynamics that govern the flow behavior at low pressure, are formulated. A dimensionless analysis is introduced to obtain governing dimensionless groups which are groundwork of the system scaling. Based on the robust scaling method and start-up procedures of a typical natural circulation BWR, the simulation strategies for the transient with and without void reactivity feedback is developed. Three different heat-up rates are applied to the transient simulations to study characteristics of the stability during the start-up. Reducing heat-up rate leads to increase in the period of flashing-induced density wave oscillation and decrease in the system pressurization rate. However, reducing the heat-up rate is unable to completely prevent flashing-induced oscillations. Five characteristic regions of stability are discovered at low pressure conditions. They are stable single-phase, flashing near the separator, intermittent oscillation, sinusoidal oscillation and low subcooling stable regions. Stability maps were acquired for system pressures ranging 100 kPa to 400 kPa. According to experimental investigation, the flow becomes stable below a certain heat flux regardless of the inlet subcooling at the core and system pressure. At higher heat flux, unstable phenomena were indentified within a certain range of inlet subcooling. The unstable region diminishes as the system pressure increases. In natural circulation BWRs, the significant gravitational pressure drop over the tall chimney section induces a Type-I instability. The Type-I instability becomes especially important during low power and pressure conditions during reactor start-up. Under these circumstances the effect of pressure variations on the saturation enthalpy becomes significant. An experimental study shows that the flashing phenomenon in the adiabatic chimney section is dominant during the start-up of a natural circulation BWR. Since flashing occurs outside the core, nuclear feedback effects on the stability are small. Furthermore, the thermal-hydraulic oscillation period is much longer than power fluctuation period caused by void reactivity feedback. In the natural circulation system increasing the inlet restriction reduces the natural circulation flow rate, shifting the unstable region to higher inlet subcooling.
Microstructure and Mechanical Properties of Heat-Treated B319 Alloy Diesel Cylinder Heads
NASA Astrophysics Data System (ADS)
Chaudhury, S. K.; Apelian, D.; Meyer, P.; Massinon, D.; Morichon, J.
2015-07-01
Microstructure and mechanical properties of B319 alloy diesel cylinder heads were investigated in this study. Cylinder heads were heat treated to T5, T6, and T7 tempers using fluidized bed technology. Three different fluidized beds were used, each to solutionize, quench, and age the castings. For comparative purposes, castings were also aged using conventional forced-air circulation electric-resistance furnace. Effects of processing parameters such as temperature, time, and heating rate on microstructural evolution and mechanical properties namely tensile properties and hardness of B319 alloy castings were studied. The number density and size range of precipitates were measured. Results show that the T5 temper has no effect on eutectic phases such as Si- and Fe-rich intermetallic, and Al2Cu. On contrary, both T6 and T7 tempers result in spherodization of the eutectic Si and partial dissolution of the Al2Cu phase. Prolonged solution heat treatment for 8 hours in fluidized bed results in limited dissolution of the secondary eutectic Al2Cu phase. Aging (T6, T7, and T5) results in precipitation of Al5Cu2Mg8Si6 and Al2Cu phases in B319 alloy. The number density of precipitates in T6 temper is greater than in T7 and T5 tempers. The number density of precipitates is also affected by the duration of solution heat treatment. In general, long solution heat treatment (8 hours) results in greater precipitate density than short solution treatment (2 hours). The distribution of precipitates is inhomogeneous and varied across the dendritic structure. In general, precipitation rate of Al5Cu2Mg8Si6 phase is greater near the periphery of the dendrite as compared to the center. This is because Al5Cu2Mg8Si6 nucleates on Si particle, grain boundaries, and triple junction between recrystallized Al grains and Si particles. Similarly, heterogeneous sites such as grain boundaries and Al/Si interface also act as nucleating sites for the precipitation of Al2Cu phase. In general, the coarsening rate of precipitates near to the periphery of the dendrite is greater than in the center. This is because the Al matrix region close to the eutectic Si particles is subjected to in situ thermal stresses, which is generated due to the thermal mismatch between Al and Si particles. Thermal stress is highest at the Si/Al interface and decreases significantly away from the Al/Si interface. The precipitation and growth rate of the alloy aged in fluidized bed is greater than in conventional furnace. This is because heating rates of casting in fluidized bed (FB) are greater than conventional furnace, which result in greater precipitation rate. This study establishes a correlation between structure, thermal processing, and property of B319 alloy treated to various heat treatments. Reasonably good mechanical properties were obtained in less time using fluidized bed furnace. This work clearly demonstrates the significant potential of FB to save time and energy.
Fluidized-bed bioreactor system for the microbial solubilization of coal
Scott, C.D.; Strandberg, G.W.
1987-09-14
A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.
Mallon, Richard G.
1984-01-01
Method and apparatus for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.
Fluidized-bed bioreactor process for the microbial solubiliztion of coal
Scott, Charles D.; Strandberg, Gerald W.
1989-01-01
A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.
NASA Astrophysics Data System (ADS)
Yohana, Eflita; Nugraha, Afif Prasetya; Diana, Ade Eva; Mahawan, Ilham; Nugroho, Sri
2018-02-01
Tea processing is basically distinguished into three types which black tea, green tea, and oolong tea. Green tea is processed by heating and drying the leaves. Green tea factories in Indonesia are generally using the process of drying by panning the leaves. It is more recommended to use the fluidization process to speed up the drying process as the quality of the tea can be maintained. Bubbling fluidization is expected to occur in this research. It is a process of bubbles are formed in the fluidization. The effectiveness of the drying process in a fluidized bed dryer machine needs to be improved by using a CFD simulation method to proof that umf < u < ut, where the average velocity value is limited by the minimum and the maximum velocity of the calculation the experimental data. The minimum and the maximum velocity value of the fluidization is 0.96 m/s and 8.2 m/s. The result of the simulation obtained that the average velocity of the upper bed part is 1.81 m/s. From the results obtained, it can be concluded that the calculation and the simulation data is in accordance with the condition of bubbling fluidization in fluidized bed dryer.
Bohachevsky, I.O.; Torrey, M.D.
1986-06-10
An underwater pulsed hydrojet propulsion system is provided for accelerating and propelling a projectile or other vessel. A reactant, such as lithium, is fluidized and injected into a water volume. The resulting reaction produces an energy density in a time effective to form a steam pocket. Thrust flaps or baffles direct the pressure from the steam pocket toward an exit nozzle for accelerating a water volume to create thrust. A control system regulates the dispersion of reactant to control thrust characteristics.
Bulicz, Tytus R.
1990-01-01
An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.
Numerical Study of Pyrolysis of Biomass in Fluidized Beds
NASA Technical Reports Server (NTRS)
Bellan, Josette; Lathouwers, Danny
2003-01-01
A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.
LIEKKI -- Combustion and gasification research in Finland 1988--1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hupa, M.; Matinlinna, J.
1996-12-31
The objective of the Combustion and Gasification Research Program LIEKKI is to develop environmentally sound energy production techniques that are based on combustion and/or gasification. The research supports equipment manufacturers in Finland as they develop and improve their top export products, such as the fluidized bed boilers, black liquor recovery boilers, and heavy diesel power plants. The research is also heavily focused on new techniques not yet on the market, ones with higher efficiency of electricity production and, simultaneously, significantly simpler emission control systems. The most important concepts here include combustors or gasifiers based on fluidized bed technology at elevatedmore » pressures. At present the LIEKKI program includes 49 research projects and it connects some 150 scientists and research engineers in the universities and research centers of Finland. The overall annual budget of the program has been around 10 Mill. USD, co-funded by the industry and the government agency TEKES (Technology Development Centre) in Finland. The program is coordinated by Aabo Akademi University in Turku, Finland.« less
Kim, Kyoung-Yeol; Yang, Wulin; Ye, Yaoli; LaBarge, Nicole; Logan, Bruce E
2016-05-01
Anaerobic fluidized membrane bioreactors (AFMBRs) have been mainly developed as a post-treatment process to produce high quality effluent with very low energy consumption. The performance of an AFMBR was examined using the effluent from a microbial fuel cell (MFC) treating domestic wastewater, as a function of AFMBR hydraulic retention times (HRTs) and organic matter loading rates. The MFC-AFMBR achieved 89 ± 3% removal of the chemical oxygen demand (COD), with an effluent of 36 ± 6 mg-COD/L over 112 days operation. The AFMBR had very stable operation, with no significant changes in COD removal efficiencies, for HRTs ranging from 1.2 to 3.8h, although the effluent COD concentration increased with organic loading. Transmembrane pressure (TMP) was low, and could be maintained below 0.12 bar through solids removal. This study proved that the AFMBR could be operated with a short HRT but a low COD loading rate was required to achieve low effluent COD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors
NASA Astrophysics Data System (ADS)
Ates, Cihan; Ozen, Guzide; Selçuk, Nevin; Kulah, Gorkem
2016-10-01
Investigation of the effect of particle scattering on radiative incident heat fluxes and source terms is carried out in the dilute zone of the lignite-fired 150 kWt Middle East Technical University Circulating Fluidized Bed Combustor (METU CFBC) test rig. The dilute zone is treated as an axisymmetric cylindrical enclosure containing grey/non-grey, absorbing, emitting gas with absorbing, emitting non/isotropically/anisotropically scattering particles surrounded by grey diffuse walls. A two-dimensional axisymmetric radiation model based on Method of Lines (MOL) solution of Discrete Ordinates Method (DOM) coupled with Grey Gas (GG)/Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) and Mie theory/geometric optics approximation (GOA) is extended for incorporation of anisotropic scattering by using normalized Henyey-Greenstein (HG)/transport approximation for the phase function. Input data for the radiation model is obtained from predictions of a comprehensive model previously developed and benchmarked against measurements on the same CFBC burning low calorific value indigenous lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Predictive accuracy and computational efficiency of nonscattering, isotropic scattering and forward scattering with transport approximation are tested by comparing their predictions with those of forward scattering with HG. GG and GOA based on reflectivity with angular dependency are found to be accurate and CPU efficient. Comparisons reveal that isotropic assumption leads to under-prediction of both incident heat fluxes and source terms for which discrepancy is much larger. On the other hand, predictions obtained by neglecting scattering were found to be in favorable agreement with those of forward scattering at significantly less CPU time. Transport approximation is as accurate and CPU efficient as HG. These findings indicate that negligence of scattering is a more practical choice in solution of the radiative transfer equation (RTE) in conjunction with conservation equations for the system under consideration.
Tang, Zhi; Chen, Xiaoping; Liu, Daoyin; Zhuang, Yaming; Ye, Minghua; Sheng, Hongchan; Xu, Shaojuan
2016-10-01
Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction, as well as a source of renewable energy. During MSW combustion, increased formation of deposits on convection heating exchanger surfaces can pose severe operational problems, such as fouling, slagging and corrosion. These problems can cause lower heat transfer efficiency from the hot flue gas to the working fluid inside the tubes. A study was performed where experiments were carried out to examine the ash deposition characteristics in a full-scale MSW circulating fluidized bed (CFB) incinerator, using a newly designed deposit probe that was fitted with six thermocouples and four removable half rings. The influence of probe exposure time and probe surface temperature (500, 560, and 700°C) on ash deposit formation rate was investigated. The results indicate that the deposition mass and collection efficiency achieve a minimum at the probe surface temperature of 560°C. Ash particles are deposited on both the windward and leeward sides of the probe by impacting and thermophoretic/condensation behavior. The major inorganic elements present in the ash deposits are Ca, Al and Si. Compared to ash deposits formed on the leeward side of the probe, windward-side ash deposits contain relatively higher Ca and S concentrations, but lower levels of Al and Si. Among all cases at different surface temperatures, the differences in elemental composition of the ash deposits from the leeward side are insignificant. However, as the surface temperature increases, the concentrations of Al, Si, K and Na in the windward-side ash deposits increase, but the Ca concentration is reduced. Finally, governing mechanisms are proposed on the basis of the experimental data, such as deposit morphology, elemental composition and thermodynamic calculations. Copyright © 2016. Published by Elsevier B.V.
An experimental study of the transient regime to fluidized chimney in a granular medium
NASA Astrophysics Data System (ADS)
Philippe, Pierre; Mena, Sarah; Brunier-Coulin, Florian; Curtis, Jennifer
2017-06-01
Localized fluidization within a granular packing along an almost cylindrical chimney is observed when an upward fluid-flow, injected through a small port diameter, exceeds a critical flow-rate. Once this threshold reached, a fluidized area is first initiated in the close vicinity of the injection hole before gradually growing upward to the top surface of the granular layer. In this work, we present an experimental investigation specifically dedicated to the kinetics of chimney fluidization in an immersed granular bed. Two different transient regimes are identified depending on wether the expansion of the fluidized area is rather fast and regular, reaching the final chimney state typically in less than 10 seconds, or, on the contrary, slow and very progressively accelerated, giving rise to transient duration up to 1 hour or even more. Some systematic investigations allow to propose several empirical scaling relations for the kinetics of chimney fluidization in the fast regular regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, O.L.
A first-principles model of a nominal 20-MW atmospheric-pressure fluidized-bed coal combustion (AFBC) power plant was developed to provide insight into fundamental dynamic behavior of fluidized-bed systems. The control system included major loops for firing rate, steam pressure and temperature, forced and induced draft air flow, SO/sub 2/ emission, drum water level, evaporator recirculation, and bed level. The model was used to investigate system sensitivity to design features such as the distribution of heat transfer surface among the bed boiler and superheater and the out-of-bed superheater. Also calculated were the sensitivities of temperatures, pressures, and flow rates to changes in throttle,more » attemperator, and feedwater valve settings and forced and induced draft damper settings. The large bed mass, accounting for approx.40% of the active heat capacity, may vary under load change and could impact controller tuning. Model analysis indicated, however, that for the design studied, the change in bed mass does not appear to significantly affect controller tuning even if the bed mass varies appreciably under load-following conditions. Several bed designs are being considered for AFBC plants, some with partitions between bed sections and some without, and these differences may significantly affect the load-following capability of the plant. The results indicated that the slumping mode of operation can cause distortion of the heat source/sink distribution in the bed such that the load-following capability (rate of load change) of the plant may be reduced by as much as a factor of 5 compared with the mode in which tube surface is exposed. 9 refs., 13 figs., 6 tabs.« less
Li, Jingji; Yang, Hairui; Wu, Yuxin; Lv, Junfu; Yue, Guangxi
2013-06-18
The advantage of circulating fluidized bed (CFB) boilers in China is their ability to utilize low rank coal with low cost emission control. However, the new National Emission Regulation (NER) issued in early 2012 brings much more stringent challenges on the CFB industries, which also causes much attention from other countries. Based on the principle of a CFB boiler and previous operating experience, it is possible for the CFB boilers to meet the new NER and maintain the advantage of low cost emission control, while, more influences should be considered in their design and operation. To meet the requirement of the new NER, the fly ash collector should adopt a bag house or combination of electrostatic precipitator and bag filter to ensure dust emissions of less than 30 mg · Nm(-3). For SO2 emission control, the bed temperature should be strictly lower than 900 °C to maintain high reactivity and pores. The limestone particle size distribution should be ranged within a special scope to optimize the residence time and gas-solid reaction. At the same time, the injecting point should be optimized to ensure fast contact of lime with oxygen. In such conditions, the desulfurization efficiency could be increased more than 90%. For lower sulfur content fuels (<1.5%, referred value based on the heating value of standard coal of China), increasing Ca/S enough could decrease SO2 emissions lower than that of the new NER, 100 mg · Nm(-3). For fuels with sulfur content higher than 1.5%, some simplified systems for flue gas desulfurization, such as flash dryer absorber (FDA), are needed. And the NOx emissions of a CFB can be controlled to less than 100 mg · Nm(-3) without any equipment at a bed temperature lower than 900 °C for fuels with low volatiles content (<12%), while for fuels with high volatiles, selective non-catalytic reduction (SNCR) should be considered. Due to the unique temperature in CFB as well as the circulating ash, the efficiency of SNCR could reach as high as 70%. The Hg emission of CFB is very low for the new NER due to its innate property.
Method for retorting oil shale
Shang, Jer-Yu; Lui, A.P.
1985-08-16
The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.
Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization
NASA Astrophysics Data System (ADS)
Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng
2018-01-01
As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.
Bulicz, T.R.
1990-04-17
An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.
Fluidized bed heating process and apparatus
NASA Technical Reports Server (NTRS)
McHale, Edward J. (Inventor)
1981-01-01
Capacitive electrical heating of a fluidized bed enables the individual solid particles within the bed to constitute the hottest portion thereof. This effect is achieved by applying an A. C. voltage potential between dielectric coated electrodes, one of which is advantageously the wall of the fluidized bed rejection zone, sufficient to create electrical currents in said particles so as to dissipate heat therein. In the decomposition of silane or halosilanes in a fluidized bed reaction zone, such heating enhances the desired deposition of silicon product on the surface of the seed particles within the fluidized bed and minimizes undesired coating of silicon on the wall of the reaction zone and the homogeneous formation of fine silicon powder within said zone.
Volatile organic compound adsorption in a gas-solid fluidized bed.
Ng, Y L; Yan, R; Tsen, L T S; Yong, L C; Liu, M; Liang, D T
2004-01-01
Fluidization finds many process applications in the areas of catalytic reactions, drying, coating, combustion, gasification and microbial culturing. This work aims to compare the dynamic adsorption characteristics and adsorption rates in a bubbling fluidized bed and a fixed bed at the same gas flow-rate, gas residence time and bed height. Adsorption with 520 ppm methanol and 489 ppm isobutane by the ZSM-5 zeolite of different particle size in the two beds enabled the differentiation of the adsorption characteristics and rates due to bed type, intraparticle mass transfer and adsorbate-adsorbent interaction. Adsorption of isobutane by the more commonly used activated carbon provided the comparison of adsorption between the two adsorbent types. With the same gas residence time of 0.79 seconds in both the bubbling bed and fixed bed of the same bed size of 40 mm diameter and 48 mm height, the experimental results showed a higher rate of adsorption in the bubbling bed as compared to the fixed bed. Intraparticle mass transfer and adsorbent-adsorbate interaction played significant roles in affecting the rate of adsorption, with intraparticle mass transfer being more dominant. The bubbling bed was observed to have a steeper decline in adsorption rate with respect to increasing outlet concentration compared to the fixed bed. The adsorption capacities of zeolite for the adsorbates studied were comparatively similar in both beds; fluidizing, and using smaller particles in the bubbling bed did not increase the adsorption capacity of the ZSM-5 zeolite. The adsorption capacity of activated carbon for isobutane was much higher than the ZSM-5 zeolite for isobutane, although at a lower adsorption rate. Fourier transform infra-red (FTIR) spectroscopy was used as an analytical tool for the quantification of gas concentration. Calibration was done using a series of standards prepared by in situ dilution with nitrogen gas, based on the ideal gas law and relating partial pressure to gas concentration. Concentrations up to 220 ppm for methanol and 75 ppm for isobutane were prepared using this method.
Effects of sorbent attrition on utilization. Final report, June 1, 1990--June 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keener, T.C.; Khang, Soon-Jai; Lee, S.K.
1992-03-01
Attrition of surface product levers of sulfite/sulfate may be the key to substantially increasing sorbent utilization in new dry scrubbing processes. This conclusion has been reached from research results obtained from new gas/solid contacting methods such as the Circulating Fluidized Bed Absorber and the Limestone Emission Control method. An additional savings may be reduced by the use of large initial sorbent, particle sizes which greatly reduces the cost of grinding and sorbent preparation. The objectives of project 1.7 were then to study attrition of sorbent particles in a systematic fashion in order to determine how to use attrition to increasemore » sorbent utilization. This was to be carried out by the construction of a bench scale fluidized bed where a series of experiments were to be conducted to measure attrition of lime and limestone samples. This has been accomplished and the project proceeded as anticipated. The results indicate that attrition differs for wet and dry conditions for certain sorbents and that these differences are substantial. Under dry conditions, the results of attrition tests on carefully characterized lime samples indicate that mechanical abrasion is the primary attrition mechanism. The rate of attrition is seen to be similar to a first order chemical reaction where the bed mass (or total surface area) is analagous to reactant concentration. A model for mechanical attrition is presented which expresses the rate constant in an Arrhenius type form proportional to a pseudo attrition activation energy and excess gas energy above a minimum level. The value of this pseudo attrition activation energy for lime has been found to be 106 KJ/KG. For the attrition of wetted lime particles in a fluidized bed. the attrition rate has been found to be directly related to the volumetric flow rate of injected water.« less
NASA Technical Reports Server (NTRS)
Atwater, James E.; Akse, James R.; Wheeler, Richard R., Jr.; Jovanovic, Goran N.; Pinto-Espinoza, Joaquin; Reed, Brian; Sornchamni, Thana
2003-01-01
This report summarizes a three-year collaborative effort between researchers at UMPQUA Research Company (URC) and the Chemical Engineering Department at Oregon State University (OSU). The Magnetically Assisted Gasification (MAG) concept was originally conceived as a microgravity and hypogravity compatible means for the decomposition of solid waste materials generated aboard spacecraft, lunar and planetary habitations, and for the recovery of potentially valuable resources. While a number of methods such as supercritical water oxidation (SCW0), fluidized bed incineration, pyrolysis , composting and related biological processes have been demonstrated for the decomposition of solid wastes, none of these methods are particularly well- suited for employment under microgravity or hypogravity conditions. For example, fluidized bed incineration relies upon a balance between drag forces which the flowing gas stream exerts upon the fluidization particles and the opposing force of gravity. In the absence of gravity, conventional fluidization cannot take place. Hypogravity operation can also be problematic for conventional fluidized bed reactors, because the various factors which govern fluidization phenomena do not all scale linearly with gravity. For this reason it may be difficult to design and test fluidized bed reactors in lg, which are intended to operate under different gravitational conditions. However, fluidization can be achieved in microgravity (and hypogravity) if a suitable replacement force to counteract the forces between fluid and particles can be found. Possible alternatives include: centripetal force, electric fields, or magnetic fields. Of these, magnetic forces created by the action of magnetic fields and magnetic field gradients upon ferromagnetic media offer the most practical approach. The goal of this URC-OSU collaborative effort was to develop magnetic hardware and methods to control the degree of fluidization (or conversely consolidation) of granular ferromagnetic media and to employ these innovations in sequential filtration and fluidized bed processes for the segregation and decomposition of solid waste materials, and for the concentration and collection of inorganic residue (ash). This required the development of numerous enabling technologies and tools.
Fluidization and drying of biomass particles in a vibrating fluidized bed with pulsed gas flow
Jia, Dening; Cathary, Océane; Peng, Jianghong; ...
2015-10-01
Fluidization of biomass particles in the absence of inert bed materials has been tested in a pulsed fluidized bed with vibration, with the pulsation frequency ranging from 033 to 6.67 Hz. Intermittent fluidization at 033 Hz and apparently 'normal' fluidization at 6.67 Hz with regular bubble patterns were observed. Pulsation has proven to be effective in overcoming the bridging of irregular biomass particles induced by strong inter-particle forces. The vibration is only effective when the pulsation is inadequate, either at too low a frequency or too low in amplitude. We dried biomass in order to quantify the effectiveness of gasmore » pulsation for fluidized bed dryers and torrefiers in terms of gas-solid contact efficiency and heat and mass transfer rates. Furthermore, the effects of gas flow rate, bed temperature, pulsation frequency and vibration intensity on drying performance have been systematically investigated. While higher temperature and gas flow rate are favored in drying, there exists an optimal range of pulsation frequency between 0.75 Hz and 1.5 Hz where gas-solid contact is enhanced in both the constant rate drying and falling rate drying periods.« less
NASA Technical Reports Server (NTRS)
Deegan, P. B.
1976-01-01
Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).
Papp, Lajos
2008-08-03
For hundreds of years, universal medical practice has depicted the heart to be the central organ, showing the heart's function as the primary source of energy for blood circulation, paying particular importance to the role of the heart valves. At present the generally accepted paradigm: the main force component of blood circulation is the pressure-gradient generated by the working heart. In serious combined illnesses of heart valves, the function of the valve is almost nonexistent. Based on the value of pressure in the chambers of the heart and in the great arteries and veins, blood flows from a place of high pressure to lower pressure, and should work the other way around as well. It is a fact, however, that even in such cases the circulation of blood is directed from the main arteries towards the veins: without the function of the valves--seemingly opposing the basic laws of physics--it keeps its original direction. Therefore we can justifiably infer that it isn't the work of the heart muscle that provides the source of energy for blood circulation. The heart has an essential function in the maintenance of blood circulation: pulse generation. The principal role of the heart is to generate pulses and not pressure.
Fluidized bed injection assembly for coal gasification
Cherish, Peter; Salvador, Louis A.
1981-01-01
A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.
Coal-feeding mechanism for a fluidized bed combustion chamber
Gall, Robert L.
1981-01-01
The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.
Tidd PFBC demonstration project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrocco, M.
1997-12-31
The Tidd project was one of the first joint government-industry ventures to be approved by the US Department of Energy (DOE) in its Clean Coal Technology Program. In March 1987, DOE signed an agreement with the Ohio Power Company, a subsidiary of American Electric Power, to refurbish the then-idle Tidd plant on the banks of the Ohio River with advanced pressurized fluidized bed technology. Testing ended after 49 months of operation, 100 individual tests, and the generation of more than 500,000 megawatt-hours of electricity. The demonstration plant has met its objectives. The project showed that more than 95 percent ofmore » sulfur dioxide pollutants could be removed inside the advanced boiler using the advanced combustion technology, giving future power plants an attractive alternative to expensive, add-on scrubber technology. In addition to its sulfur removal effectiveness, the plant`s sustained periods of steady-state operation boosted its availability significantly above design projections, heightening confidence that pressurized fluidized bed technology will be a reliable, baseload technology for future power plants. The technology also controlled the release of nitrogen oxides to levels well below the allowable limits set by federal air quality standards. It also produced a dry waste product that is much easier to handle than wastes from conventional power plants and will likely have commercial value when produced by future power plants.« less
CFD Modeling of a CFB Riser Using Improved Inlet Boundary Conditions
NASA Astrophysics Data System (ADS)
Peng, B. T.; Zhang, C.; Zhu, J. X.; Qi, X. B.
2010-03-01
A computational fluid dynamics (CFD) model based on Eulerian-Eulerian approach coupled with granular kinetics theory was adopted to investigate the hydrodynamics and flow structures in a circulating fluidized bed (CFB) riser column. A new approach to specify the inlet boundary conditions was proposed in this study to simulate gas-solids flow in CFB risers more accurately. Simulation results were compared with the experimental data, and good agreement between the numerical results and experimental data was observed under different operating conditions, which indicates the effectiveness and accuracy of the CFD model with the proposed inlet boundary conditions. The results also illustrate a clear core annulus structure in the CFB riser under all operating conditions both experimentally and numerically.
Study of CFB Simulation Model with Coincidence at Multi-Working Condition
NASA Astrophysics Data System (ADS)
Wang, Z.; He, F.; Yang, Z. W.; Li, Z.; Ni, W. D.
A circulating fluidized bed (CFB) two-stage simulation model was developed. To realize the model results coincident with the design value or real operation value at specified multi-working conditions and with capability of real-time calculation, only the main key processes were taken into account and the dominant factors were further abstracted out of these key processes. The simulation results showed a sound accordance at multi-working conditions, and confirmed the advantage of the two-stage model over the original single-stage simulation model. The combustion-support effect of secondary air was investigated using the two-stage model. This model provides a solid platform for investigating the pant-leg structured CFB furnace, which is now under design for a supercritical power plant.
Sweet, W D; Schroeder, F
1986-01-01
The functional consequences of the differences in lipid composition and structure between the two leaflets of the plasma membrane were investigated. Fluorescence of 1,6-diphenylhexa-1,3,5-triene(DPH), quenching, and differential polarized phase fluorimetry demonstrated selective fluidization by local anaesthetics of individual leaflets in isolated LM-cell plasma membranes. As measured by decreased limiting anisotropy of DPH fluorescence, cationic (prilocaine) and anionic (phenobarbital and pentobarbital) amphipaths preferentially fluidized the cytofacial and exofacial leaflets respectively. Unlike prilocaine, procaine, also a cation, fluidized both leaflets of these membranes equally. Pentobarbital stimulated 5'-nucleotidase between 0.1 and 5 mM and inhibited at higher concentrations, whereas phenobarbital only inhibited, at higher concentrations. Cationic drugs were ineffective. Two maxima of (Na+ + K+)-ATPase activation were obtained with both anionic drugs. Only one activation maximum was obtained with both cationic drugs. The maximum in activity below 1 mM for all four drugs clustered about a single limiting anisotropy value in the cytofacial leaflet, whereas there was no correlation between activity and limiting anisotropy in the exofacial leaflets. Therefore, although phenobarbital and pentobarbital below 1 mM fluidized the exofacial leaflet more than the cytofacial leaflet, the smaller fluidization in the cytofacial leaflet was functionally significant for (Na+ + K+)-ATPase. Mg2+-ATPase was stimulated at 1 mM-phenobarbital, unaffected by pentobarbital and slightly stimulated by both cationic drugs at concentrations fluidizing both leaflets. Thus the activity of (Na+ + K+)-ATPase was highly sensitive to selective fluidization of the leaflet containing its active site, whereas the other enzymes examined were little affected by fluidization of either leaflet. PMID:3028369
METHOD FOR SENSING DEGREE OF FLUIDIZATION IN FLUIDIZED BED
Levey, R.P. Jr.; Fowler, A.H.
1961-12-12
A method is given for detecting, indicating, and controlling the degree of fluidization in a fluid-bed reactor into which powdered material is fed. The method comprises admitting of gas into the reactor, inserting a springsupported rod into the powder bed of the reactor, exciting the rod to vibrate at its resonant frequency, deriving a signal responsive to the amplitude of vibi-ation of the rod and spring, the signal being directiy proportional to the rate of flow of the gas through the reactor, displaying the signal to provide an indication of the degree of fluidization within the reactor, and controlling the rate of gas flow into the reactor until said signal stabilizes at a constant value to provide substantially complete fluidization within the reactor. (AEC)
Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung
2005-01-01
In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.
The local heat transfer mathematical model between vibrated fluidized beds and horizontal tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xuejun; College of Biology and Chemical Engineering, Panzhihua University, Panzhihua 617000; Ye, Shichao
2008-05-15
A dimensionless mathematical model is proposed to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes, and the effects of the thickness of gas film and the contact time of particle packets are well considered. Experiments using the glass beads (the average diameter bar d{sub p}=1.83mm) were conducted in a two-dimensional vibrated fluidized bed (240 mm x 80 mm). The local heat transfer law between vibrated fluidized bed and horizontal tube surface has been investigated. The results show that the values of theoretical prediction are in good agreement with experimental data, so the model ismore » able to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes reasonably well, and the error is in range of {+-}15%. The results can provide references for future designing and researching on the vibrated fluidized beds with immersed horizontal tubes. (author)« less
Shih, Yu-Jen; Tsai, Meng-Tso; Huang, Yao-Hui
2013-05-01
2,2,3,3-Tetrafluoro-1-propanol (TFP, C3H4F4O, M.W. = 132.06) is extensively used as the solvent in CD-R and DVD-R fabrication. Since it has a fluorinated alky-chain configuration and is non-biodegradable, its treatment by conventional oxidation methods is typically very inefficient. In this work, novel three-phase fluidized bed reactor (3P-FBR, 7.5 cm in diameter, 50 cm high) that combines photo oxidation (UV/H2O2, one of AOPs (Advanced Oxidation Process) and adsorption (BT5 iron oxide as adsorbent) processes is designed for mineralizing and defluorinizing TFP wastewater. The experimental results reveal that TFP can be efficiently mineralized, and the BT5 that is circulated by aeration in the 3P-FBR system can remove the released fluoride ions in the reaction period. Irradiation with 254 nm UV and a 10 mM H2O2 dose yield a TOC removal of TFP (1.39 mM, equivalent to an initial TOC of 50 ppm) of over 99.95% in 2 h, and 99% of fluoride was removed by BT5 with an adsorption capacity of 24.1 mg-F g(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.
CONCEPTUAL DESIGN AND ECONOMICS OF THE ADVANCED CO2 HYBRID POWER CYCLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Nehrozoglu
2004-12-01
Research has been conducted under United States Department of Energy Contract DEFC26-02NT41621 to analyze the feasibility of a new type of coal-fired plant for electric power generation. This new type of plant, called the Advanced CO{sub 2} Hybrid Power Plant, offers the promise of efficiencies nearing 36 percent, while concentrating CO{sub 2} for 100% sequestration. Other pollutants, such as SO{sub 2} and NOx, are sequestered along with the CO{sub 2} yielding a zero emissions coal plant. The CO{sub 2} Hybrid is a gas turbine-steam turbine combined cycle plant that uses CO{sub 2} as its working fluid to facilitate carbon sequestration. The key components of the plant are a cryogenic air separation unit (ASU), a pressurized circulating fluidized bed gasifier, a CO{sub 2} powered gas turbine, a circulating fluidized bed boiler, and a super-critical pressure steam turbine. The gasifier generates a syngas that fuels the gas turbine and a char residue that, together with coal, fuels a CFB boiler to power the supercritical pressure steam turbine. Both the gasifier and the CFB boiler use a mix of ASU oxygen and recycled boiler flue gas as their oxidant. The resulting CFB boiler flue gas is essentially a mixture of oxygen, carbon dioxide and water. Cooling the CFB flue gas to 80 deg. F condenses most of the moisture and leaves a CO{sub 2} rich stream containing 3%v oxygen. Approximately 30% of this flue gas stream is further cooled, dried, and compressed for pipeline transport to the sequestration site (the small amount of oxygen in this stream is released and recycled to the system when the CO{sub 2} is condensed after final compression and cooling). The remaining 70% of the flue gas stream is mixed with oxygen from the ASU and is ducted to the gas turbine compressor inlet. As a result, the gas turbine compresses a mixture of carbon dioxide (ca. 64%v) and oxygen (ca. 32.5%v) rather than air. This carbon dioxide rich mixture then becomes the gas turbine working fluid and also becomes the oxidant in the gasification and combustion processes. As a result, the plant provides CO{sub 2} for sequestration without the performance and economic penalties associated with water gas shifting and separating CO{sub 2} from gas streams containing nitrogen. The cost estimate of the reference plant (the Foster Wheeler combustion hybrid) was based on a detailed prior study of a nominal 300 MWe demonstration plant with a 6F turbine. Therefore, the reference plant capital costs were found to be 30% higher than an estimate for a 425 MW fully commercial IGCC with an H class turbine (1438more » $/kW vs. 1111 $$/kW). Consequently, the capital cost of the CO{sub 2} hybrid plant was found to be 25% higher than that of the IGCC with pre-combustion CO{sub 2} removal (1892 $$/kW vs. 1510 $/kW), and the levelized cost of electricity (COE) was found to be 20% higher (7.53 c/kWh vs. 6.26 c/kWh). Although the final costs for the CO{sub 2} hybrid are higher, the study confirms that the relative change in cost (or mitigation cost) will be lower. The conceptual design of the plant and its performance and cost, including losses due to CO{sub 2} sequestration, is reported. Comparison with other proposed power plant CO{sub 2} removal techniques reported by a December 2000 EPRI report is shown. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.« less
USDA-ARS?s Scientific Manuscript database
There has been no evaluation of sulfur-based autotrophic denitrification using fluidized biofilters in a recirculating aquaculture system to mitigate nitrate-nitrogen loads. The objectives of this work were to quantify the particle size distribution, specific surface area, and fluidization velocitie...
The Breath of Planet Earth: Atmospheric Circulation. Assimilation of Surface Wind Observations
NASA Technical Reports Server (NTRS)
Atlas, Robert; Bloom, Stephen; Otterman, Joseph
2000-01-01
Differences in air pressure are a major cause of atmospheric circulation. Because heat excites the movement of atoms, warm temperatures cause, air molecules to expand. Because those molecules now occupy a larger space, the pressure that their weight exerts is decreased. Air from surrounding high-pressure areas is pushed toward the low-pressure areas, creating circulation. This process causes a major pattern of global atmosphere movement known as meridional circulation. In this form of convection, or vertical air movement, heated equatorial air rises and travels through the upper atmosphere toward higher latitudes. Air just above the equator heads toward the North Pole, and air just below the equator moves southward. This air movement fills the gap created where increased air pressure pushes down cold air. The ,cold air moves along the surface back toward the equator, replacing the air masses that rise there. Another influence on atmospheric. circulation is the Coriolis force. Because of the Earth's rotation, large-scale wind currents move in the direction of this axial spin around low-pressure areas. Wind rotates counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. just as the Earth's rotation affects airflow, so too does its surface. In the phenomenon of orographic lifting, elevated topographic features such as mountain ranges lift air as it moves up their surface.
Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; White, Thomas W.; Brink, Peter R.
2011-01-01
We recently modeled fluid flow through gap junction channels coupling the pigmented and nonpigmented layers of the ciliary body. The model suggested the channels could transport the secretion of aqueous humor, but flow would be driven by hydrostatic pressure rather than osmosis. The pressure required to drive fluid through a single layer of gap junctions might be just a few mmHg and difficult to measure. In the lens, however, there is a circulation of Na+ that may be coupled to intracellular fluid flow. Based on this hypothesis, the fluid would cross hundreds of layers of gap junctions, and this might require a large hydrostatic gradient. Therefore, we measured hydrostatic pressure as a function of distance from the center of the lens using an intracellular microelectrode-based pressure-sensing system. In wild-type mouse lenses, intracellular pressure varied from ∼330 mmHg at the center to zero at the surface. We have several knockout/knock-in mouse models with differing levels of expression of gap junction channels coupling lens fiber cells. Intracellular hydrostatic pressure in lenses from these mouse models varied inversely with the number of channels. When the lens’ circulation of Na+ was either blocked or reduced, intracellular hydrostatic pressure in central fiber cells was either eliminated or reduced proportionally. These data are consistent with our hypotheses: fluid circulates through the lens; the intracellular leg of fluid circulation is through gap junction channels and is driven by hydrostatic pressure; and the fluid flow is generated by membrane transport of sodium. PMID:21624945
21 CFR 890.5160 - Air-fluidized bed.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...
21 CFR 890.5160 - Air-fluidized bed.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...
21 CFR 890.5160 - Air-fluidized bed.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...
21 CFR 890.5160 - Air-fluidized bed.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...
21 CFR 890.5160 - Air-fluidized bed.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Air-fluidized bed. 890.5160 Section 890.5160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5160 Air-fluidized bed. (a...
Fluidized bed deposition of diamond
Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.
1998-01-01
A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.
Fluidized-Solid-Fuel Injection Process
NASA Technical Reports Server (NTRS)
Taylor, William
1992-01-01
Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gel'perin, N.I.; Ainshtein, V.G.; Nosova, V.V.
1983-01-01
The purpose of this article is to ascertain the reasons for the appearance of stagnant zones in a fluidized bed. Analyzed is the state of a hypothetical bed without the supporting gas distribution grate with fluctuations in the local velocities w of fluidizing agent in its cross sections in relation to the average value wav. It assumes that at any instant the distribution of the fluidizing agent over the bed cross section is inhomogeneous. As the local velocities and dimensions increase and the effective cross section of the grate decreases, the apparatus cross section regularly increases.
Packed fluidized bed blanket for fusion reactor
Chi, John W. H.
1984-01-01
A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.
Particle withdrawal from fluidized bed systems
Salvador, Louis A.; Andermann, Ronald E.; Rath, Lawrence K.
1982-01-01
Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.
Model of Fluidized Bed Containing Reacting Solids and Gases
NASA Technical Reports Server (NTRS)
Bellan, Josette; Lathouwers, Danny
2003-01-01
A mathematical model has been developed for describing the thermofluid dynamics of a dense, chemically reacting mixture of solid particles and gases. As used here, "dense" signifies having a large volume fraction of particles, as for example in a bubbling fluidized bed. The model is intended especially for application to fluidized beds that contain mixtures of carrier gases, biomass undergoing pyrolysis, and sand. So far, the design of fluidized beds and other gas/solid industrial processing equipment has been based on empirical correlations derived from laboratory- and pilot-scale units. The present mathematical model is a product of continuing efforts to develop a computational capability for optimizing the designs of fluidized beds and related equipment on the basis of first principles. Such a capability could eliminate the need for expensive, time-consuming predesign testing.
Thermal and chemical remediation of mixed waste
Nelson, P.A.; Swift, W.M.
1994-08-09
A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500 C by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO[sub 3]. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed. 3 figs.
Thermal and chemical remediation of mixed waste
Nelson, Paul A.; Swift, William M.
1994-01-01
A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500.degree. C. by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO.sub.3. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed.
Fuel Flexibility in Gasification
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLendon, T. Robert; Pineault, Richard L.; Richardson, Steven W.
2001-11-06
In order to increase efficiencies of carbonizers, operation at high pressures is needed. In addition, waste biomass fuels of opportunity can be used to offset fossil fuel use. The National Energy Technology Laboratory (NETL) Fluidized Bed Gasifier/Combustor (FBG/C) was used to gasify coal and mixtures of coal and biomass (sawdust) at 425 psig. The purpose of the testing program was to generate steady state operating data for modeling efforts of carbonizers. A test program was completed with a matrix of parameters varied one at a time in order to avoid second order interactions. Variables were: coal feed rate, pressure, andmore » varying mixtures of sawdust and coal types. Coal types were Montana Rosebud subbituminous and Pittsburgh No. 8 bituminous. The sawdust was sanding waste from a furniture manufacturer in upstate New York. Coal was sieved from -14 to +60 mesh and sawdust was sieved to -14 mesh. The FBG/C operates at a nominal 425 psig, but pressures can be lowered. For the tests reported it was operated as a jetting, fluidized bed, ash-agglomerating gasifier. Preheated air and steam are injected into the center of the bottom along with the solid feed that is conveyed with cool air. Fairly stable reactor internal flow patterns develop and temperatures stabilize (with some fluctuations) when steady state is reached. At nominal conditions the solids residence time in the reactor is on the order of 1.5 to 2 hours, so changes in feed types can require on the order of hours to equilibrate. Changes in operating conditions (e.g. feed rate) usually require much less time. The operating periods of interest for these tests were only the steady state periods, so transient conditions were not monitored as closely. The test matrix first established a base case of operations to which single parameter changes in conditions could be compared. The base case used Montana Rosebud at a coal feed rate of 70 lbm/hr at 425 psig. The coal sawdust mixtures are reported as percent by weight coal to percent by weight sawdust. The mixtures of interest were: 65/35 subbituminous, 75/25 subbituminous, 85/15 subbituminous, and 75/25 bituminous. Steady state was achieved quickly when going from one subbituminous mixture to another, but longer when going from subbituminous to bituminous coal. The most apparent observation when comparing the base case to subbituminous coal/sawdust mixtures is that operating conditions are nearly the same. Product gas does not change much in composition and temperatures remain nearly the same. Comparisons of identical weight ratios of sawdust and subbituminous and bituminous mixtures show considerable changes in operating conditions and gas composition. The highly caking bituminous coal used in this test swelled up and became about half as dense as the comparable subbituminous coal char. Some adjustments were required in accommodating changes in solids removal during the test. Nearly all the solids in the bituminous coal sawdust were conveyed into the upper freeboard section and removed at the mid-level of the reactor. This is in marked contrast to the ash-agglomerating condition where most solids are removed at the very bottom of the gasifier. Temperatures in the bottom of the reactor during the bituminous test were very high and difficult to control. The most significant discovery of the tests was that the addition of sawdust allowed gasification of a coal type that had previously resulted in nearly instant clinkering of the gasifier. Several previous attempts at using Pittsburgh No. 8 were done only at the end of the tests when shutdown was imminent anyway. It is speculated that the fine wood dust somehow coats the pyrolyzed sticky bituminous coal particles and prevents them from agglomerating quickly. As the bituminous coal char particles swell, they are carried to the cooler upper regions of the reactor where they re-solidify. Other interesting phenomena were revealed regarding the transport (rheological) properties of the coal sawdust mixtures. The coal sawdust mixtures segregate quickly when transported. This is visibly apparent. To prevent bridges and ratholes from developing in the lowest coal feed hopper, it is normally fluidized. When feeding the coal sawdust mixtures the fluidizing gas was turned off to prevent segregation. The feed system worked as well with no fluidizing gas when using the mixtures as it did with fluidizing gas and only coal. In addition, it was inadvertently discovered that greatly increased pressure above the feeder resulted in greatly increased flow with the mixtures. Increased pressure above the feeder with coal only results in quickly plugging the feed system. Also, it was learned that addition of sawdust reduces the system loss during conveying compared to coal only. This is in spite of overall smaller particle sizes with the coal sawdust mixtures.« less
Control method for mixed refrigerant based natural gas liquefier
Kountz, Kenneth J.; Bishop, Patrick M.
2003-01-01
In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.
Provol, Steve J.; Russell, David B.; Isaksson, Matti J.
1994-01-01
A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.
Method and apparatus for decoupled thermo-catalytic pollution control
Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric
2006-07-11
A new method for design and scale-up of thermocatalytic processes is disclosed. The method is based on optimizing process energetics by decoupling of the process energetics from the DRE for target contaminants. The technique is applicable to high temperature thermocatalytic reactor design and scale-up. The method is based on the implementation of polymeric and other low-pressure drop support for thermocatalytic media as well as the multifunctional catalytic media in conjunction with a novel rotating fluidized particle bed reactor.
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
2001-01-01
This research is computational /theoretical and complements the Caltech experimental program. We have developed an understanding of the basic physical processes and produced computational models and implemented these into Eulerian and Lagrangian finite element codes. The key issues we have addressed include the conditions required for: faulting (strain localization), elastic moduli weakening, dynamic weakening (layering elastic instabilities and fluidization), bulking (creation of porosity at zero pressure) and compaction of pores, frictional melting (creation of pseudotachylytes), partial and selective devolatilization of materials (e.g. CaCO3, water/ice mixtures), and debris flows.
Yamakoshi, Yoshiki
2016-01-01
Blood circulation function of peripheral blood vessels in skin dermis was evaluated employing an optical sensor with a pressurization mechanism using the blood outflow and reflow characteristics. The device contains a light source and an optical sensor. When applied to the skin surface, it first exerts the primary pressure (higher than the systolic blood pressure), causing an outflow of blood from the dermal peripheral blood vessels. After two heartbeats, the pressure is lowered (secondary pressure) and blood reflows into the peripheral blood vessels. Hemoglobin concentration, which changes during blood outflow and reflow, is derived from the received light intensity using the Beer–Lambert law. This method was evaluated in 26 healthy female volunteers and 26 female scleroderma patients. In order to evaluate the blood circulation function of the peripheral blood vessels of scleroderma patients, pressurization sequence which consists of primary pressure followed by secondary pressure was adopted. Blood reflow during the first heartbeat period after applying the secondary pressure of 40mmHg was (mean±SD) 0.059±0.05%mm for scleroderma patients and 0.173±0.104%mm for healthy volunteers. Blood reflow was significantly lower in scleroderma patients than in healthy volunteers (p<0.05). This result indicates that the information necessary for assessing blood circulation disorder of peripheral blood vessels in scleroderma patients is objectively obtained by the proposed method. PMID:27479094
Yamakoshi, Yoshiki; Motegi, Sei-Ichiro; Ishikawa, Osamu
2016-01-01
Blood circulation function of peripheral blood vessels in skin dermis was evaluated employing an optical sensor with a pressurization mechanism using the blood outflow and reflow characteristics. The device contains a light source and an optical sensor. When applied to the skin surface, it first exerts the primary pressure (higher than the systolic blood pressure), causing an outflow of blood from the dermal peripheral blood vessels. After two heartbeats, the pressure is lowered (secondary pressure) and blood reflows into the peripheral blood vessels. Hemoglobin concentration, which changes during blood outflow and reflow, is derived from the received light intensity using the Beer-Lambert law. This method was evaluated in 26 healthy female volunteers and 26 female scleroderma patients. In order to evaluate the blood circulation function of the peripheral blood vessels of scleroderma patients, pressurization sequence which consists of primary pressure followed by secondary pressure was adopted. Blood reflow during the first heartbeat period after applying the secondary pressure of 40mmHg was (mean±SD) 0.059±0.05%mm for scleroderma patients and 0.173±0.104%mm for healthy volunteers. Blood reflow was significantly lower in scleroderma patients than in healthy volunteers (p<0.05). This result indicates that the information necessary for assessing blood circulation disorder of peripheral blood vessels in scleroderma patients is objectively obtained by the proposed method.
Research on acting mechanism and behavior of a gas bubble in the air dense medium fluidized bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, X.; Chen, Q.; Yang, Y.
1996-12-31
Coal dry beneficiation with air-dense medium fluidized bed has now been established as a high efficiency dry separation technology, it is the application of fluidization technology to the coal preparation field. The tiny particle media forms an uniform and stable fluidized bed with a density acted by airflow, which is used to separate 80{micro}m to {approximately}6mm size coal. This technology has achieved satisfied industrialization results, and attracted the expert`s attention in the field. In fluidized bed, the interaction between gas and solid was mainly decided by the existence state of heavy media particles mass (position and distance) relative velocity ofmore » gas-solid two phase, as well turbulent action. A change of vertical gas-solid fluidizing state essentially is the one of a energy transforming process. For a coal separating process with air-dense medium fluidized bed, the gas bubble, producing a turbulent and stirring action in the bed, leads to two effects. It can promote a uniform distribution of heavy media particles, and a uniform and stability of a bed density. Otherwise it will decrease effective contacts between gas-solids two phases, producing a bigger gas bubble. Therefore controlling a gas bubble size in bed should be optimized. This paper analyzes mutual movement between gas-solid, and studies the gas bubble behavior in the bed. A mechanic mode and a separating process of coal in the bed is discussed. It aims to research the coal separating mechanism with air-dense fluidized bed.« less
Qian, Feifei; Zhang, Tingnan; Korff, Wyatt; Umbanhowar, Paul B; Full, Robert J; Goldman, Daniel I
2015-10-08
Natural substrates like sand, soil, leaf litter and snow vary widely in penetration resistance. To search for principles of appendage design in robots and animals that permit high performance on such flowable ground, we developed a ground control technique by which the penetration resistance of a dry granular substrate could be widely and rapidly varied. The approach was embodied in a device consisting of an air fluidized bed trackway in which a gentle upward flow of air through the granular material resulted in a decreased penetration resistance. As the volumetric air flow, Q, increased to the fluidization transition, the penetration resistance decreased to zero. Using a bio-inspired hexapedal robot as a physical model, we systematically studied how locomotor performance (average forward speed, v(x)) varied with ground penetration resistance and robot leg frequency. Average robot speed decreased with increasing Q, and decreased more rapidly for increasing leg frequency, ω. A universal scaling model revealed that the leg penetration ratio (foot pressure relative to penetration force per unit area per depth and leg length) determined v(x) for all ground penetration resistances and robot leg frequencies. To extend our result to include continuous variation of locomotor foot pressure, we used a resistive force theory based terradynamic approach to perform numerical simulations. The terradynamic model successfully predicted locomotor performance for low resistance granular states. Despite variation in morphology and gait, the performance of running lizards, geckos and crabs on flowable ground was also influenced by the leg penetration ratio. In summary, appendage designs which reduce foot pressure can passively maintain minimal leg penetration ratio as the ground weakens, and consequently permits maintenance of effective locomotion over a range of terradynamically challenging surfaces.
Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Steven
2016-07-11
Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests onmore » forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.« less
Granular compaction by fluidization
NASA Astrophysics Data System (ADS)
Tariot, Alexis; Gauthier, Georges; Gondret, Philippe
2017-06-01
How to arrange a packing of spheres is a scientific question that aroused many fundamental works since a long time from Kepler's conjecture to Edward's theory (S. F. Edwards and R.B.S Oakeshott. Theory of powders. Physica A, 157: 1080-1090, 1989), where the role traditionally played by the energy in statistical problems is replaced by the volume for athermal grains. We present experimental results on the compaction of a granular pile immersed in a viscous fluid when submited to a continuous or bursting upward flow. An initial fluidized bed leads to a well reproduced initial loose packing by the settling of grains when the high enough continuous upward flow is turned off. When the upward flow is then turned on again, we record the dynamical evolution of the bed packing. For a low enough continuous upward flow, below the critical velocity of fluidization, a slow compaction dynamics is observed. Strikingly, a slow compaction can be also observed in the case of "fluidization taps" with bursts of fluid velocity higher than the critical fluidization velocity. The different compaction dynamics is discussed when varying the different control parameters of these "fluidization taps".
Process for the production of fuel gas from coal
Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.
1982-01-01
An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.
Thermally activated creep and fluidization in flowing disordered materials
NASA Astrophysics Data System (ADS)
Merabia, Samy; Detcheverry, François
2016-11-01
When submitted to a constant mechanical load, many materials display power law creep followed by fluidization. A fundamental understanding of these processes is still far from being achieved. Here, we characterize creep and fluidization on the basis of a mesoscopic viscoplastic model that includes thermally activated yielding events and a broad distribution of energy barriers, which may be lowered under the effect of a local deformation. We relate the creep exponent observed before fluidization to the width of barrier distribution and to the specific form of stress redistribution following yielding events. We show that Andrade creep is accompanied by local strain hardening driven by stress redistribution and find that the fluidization time depends exponentially on the applied stress. The simulation results are interpreted in the light of a mean-field analysis, and should help in rationalizing the creep phenomenology in disordered materials.
Method for producing and regenerating a synthetic CO.sub.2 acceptor
Lancet, Michael S [Pittsburgh, PA; Curran, George P [Pittsburgh, PA; Gorin, Everett [San Rafael, CA
1982-01-01
A method for producing a synthetic CO.sub.2 acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO.sub.2 acceptor and recovering the pellets of synthetic CO.sub.2 acceptor from the fluidized bed. Optionally, spent synthetic CO.sub.2 acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO.sub.2 acceptor.
Method for producing and regenerating a synthetic CO[sub 2] acceptor
Lancet, M. S.; Curran, G. P.; Gorin, E.
1982-05-18
A method is described for producing a synthetic CO[sub 2] acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO[sub 2] acceptor and recovering the pellets of synthetic CO[sub 2] acceptor from the fluidized bed. Optionally, spent synthetic CO[sub 2] acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO[sub 2] acceptor. 1 fig.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sai, P.M.S.; Ahmed, J.; Krishnaiah, K.
Activated carbon is produced from coconut shell char using steam or carbon dioxide as the reacting gas in a 100 mm diameter fluidized bed reactor. The effect of process parameters such as reaction time, fluidizing velocity, particle size, static bed height, temperature of activation, fluidizing medium, and solid raw material on activation is studied. The product is characterized by determination of iodine number and BET surface area. The product obtained in the fluidized bed reactor is much superior in quality to the activated carbons produced by conventional processes. Based on the experimental observations, the optimum values of process parameters aremore » identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, G.P.; Delzer, G.A.; Kubicek, D.H.
Phillips Z-Sorb sorbents have been evaluated successfully as regenerable sorbents for hydrogen sulfide in the fuel gas that is produced in a clean coal technology power plant. Tests have been carried out in fixed-,moving-, and fluid-bed applications. The fixed-bed tests completed at the Morgantown Energy Technology Center showed that Phillips Z-Sorb sorbent performed better than zinc titanate. The performance of Phillips Z-Sorb sorbent in a moving-bed application was very encouraging. The sorbent flowed well, H{sub 2}S was reduced to less than 50 ppm at the absorber outlet over long periods and post-test analysis of the sorbent indicated very low sulfatemore » levels at the regenerator exit. The fluidizable version of Phillips Z-Sorb sorbent was tested in Research Triangle Institutes`s high temperature, high pressure, semi-bath, fluidized-bed reactor system. in a life cycle test consisting of 50 cycles of sulfidation and regeneration, this sorbent exhibited excellent activity and regenerability. The sulfur loading was observed to be 90 + percent of the theoretical capacity. The sorbent consistently demonstrated a sharp regeneration profile with no evidence of sulfate accumulation. 7 refs., 7 fig., 5 tabs.« less
Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation
Abdul Raman, Abdul Aziz; Daud, Wan Mohd Ashri Wan
2014-01-01
Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment. PMID:25309949
NASA Astrophysics Data System (ADS)
Nikravech, Mehrdad; Rahmani, Abdelkader
2016-09-01
The association of plasma and spray will permit to process materials where organometallic precursors are not available or economically non-reliable. The injection of aerosols in low pressure plasma results in the rapid evaporation of solvent and the rapid transformation of small amounts of precursors contained in each droplet leading to form nanoscale oxide particles. We developed two configurations of this technique: one is Spray Plasma that permits to deposit this layers on flat substrates; the second one is Fluidized Spray Plasma that permits to deposit thin layers on the surface of solid beads. The aim of this presentation is to describe the principles of this new technique together with several applications. The influence of experimental parameters to deposit various mixed metal oxides will be demonstrated: thin dense layers of nanostructured ZnO for photovoltaic applications, porous layers of LaxSr1-x MnO3 as the cathode for fuel cells, ZnO-Cu, NiO layers on solid pellets in fluidized bed for catalysis applications. Aknowledgement to Programme interdisciplinaire SPC Énergies de Demain.
Cheng, Hai-Hsuan; Whang, Liang-Ming; Yi, Tse-Fu; Liu, Cheng-Pin; Lin, Tsair-Fuh; Yeh, Mao-Song
2018-05-09
A pilot-scale single-stage anaerobic fluidized membrane bioreactor (AFMBR) was firstly used in this study to treat cold-rolling emulsion wastewater from steel industry. It was continuously operated for 302 days with influent COD concentration of 860-1120 mg/L. Under a hydraulic retention time of 1.5 d, the average effluent COD concentration of 72 mg/L achieved corresponding 90% of COD removal. The permeate flux was varied between 1.7 and 2.9 L/m 2 /h during operation which decreased with increased biomass concentration inside AFMBR. The trans-membrane pressure (TMP) was generally around 35-40 kPa, however, it increased up to 60 kPa when volatile suspended solid increased to above 2.5 g/L. Both flux and TMP data reveal the importance of biomass control for AFMBR operation. Results from terminal restriction fragment length polymorphism (T-RFLP) show the genus Methanosaeta was dominant on GAC and it shared dominance with the genera Methanomethylovorans and Methanosarcina in suspended sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Nan; Battaglia, Francine; Pannala, Sreekanth
2008-01-01
Simulations of fluidized beds are performed to study and determine the effect on the use of coordinate systems and geometrical configurations to model fluidized bed reactors. Computational fluid dynamics is employed for an Eulerian-Eulerian model, which represents each phase as an interspersed continuum. The transport equation for granular temperature is solved and a hyperbolic tangent function is used to provide a smooth transition between the plastic and viscous regimes for the solid phase. The aim of the present work is to show the range of validity for employing simulations based on a 2D Cartesian coordinate system to approximate both cylindricalmore » and rectangular fluidized beds. Three different fluidization regimes, bubbling, slugging and turbulent regimes, are investigated and the results of 2D and 3D simulations are presented for both cylindrical and rectangular domains. The results demonstrate that a 2D Cartesian system can be used to successfully simulate and predict a bubbling regime. However, caution must be exercised when using 2D Cartesian coordinates for other fluidized regimes. A budget analysis that explains all the differences in detail is presented in Part II [N. Xie, F. Battaglia, S. Pannala, Effects of Using Two-Versus Three-Dimensional Computational Modeling of Fluidized Beds: Part II, budget analysis, 182 (1) (2007) 14] to complement the hydrodynamic theory of this paper.« less
Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheldon, R.W.
1997-12-31
An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stagesmore » are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.« less
Bed material agglomeration during fluidized bed combustion. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.C.; Dawson, M.R.; Smeenk, J.L.
The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occurmore » in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).« less
Treatment of N-Nitrosodimethylamine (NDMA) in Groundwater Using a Fluidized Bed Bioreactor
2014-01-01
Nitrosodimethylamine ( NDMA ) in Groundwater Using a Fluidized Bed Bioreactor Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Treatment of N-Nitrosodimethylamine ( NDMA ) in Groundwater Using a Fluidized Bed Bioreactor 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...21 5.6.1 NDMA and DMN
Nishite, Yoshiaki; Takesawa, Shingo
2016-01-01
Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. The aim of this study was to create an extracorporeal circulation system (hereinafter, the circulation system) for dialysis machines so that it sets off five types of alarms for: 1) decreased arterial pressure, 2) increased arterial pressure, 3) decreased venous pressure, 4) increased venous pressure, and 5) blood leakage, according to the five types of accidents chosen based on their frequency of occurrence and the degree of severity. In order to verify the alarm from the dialysis apparatus connected to the circulation system and the accident corresponding to it, an evaluation of the alarm for its reproducibility of an accident was performed under normal treatment circumstances. The method involved testing whether the dialysis apparatus raised the desired alarm from the moment of control of the circulation system, and measuring the time it took until the desired alarm was activated. This was tested on five main models from four dialyzer manufacturers that are currently used in Japan. The results of the tests demonstrated successful activation of the alarms by the dialysis apparatus, which were appropriate for each of the five types of accidents. The time between the control of the circulatory system to the alarm signal was as follows, 1) venous pressure lower limit alarm: 7 seconds; 2) venous pressure lower limit: 8 seconds; 3) venous pressure upper limit: 7 seconds; 4) venous pressure lower limit alarm: 2 seconds; and 5) blood leakage alarm: 19 seconds. All alarms were set off in under 20 seconds. Thus, we can conclude that a simulator system using an extracorporeal circulation system can be set to different models of dialyzers, and that the reproduced treatment scenarios can be used for simulation training.
NASA Technical Reports Server (NTRS)
Vasquez, Arturo
2011-01-01
An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also be used with NASA's advanced nonflow-through fuel cell power systems by simply incorporating a jet nozzle with an appropriate nozzle diameter.
Research and Development of Large Capacity CFB Boilers in TPRI
NASA Astrophysics Data System (ADS)
Xianbin, Sun; Minhua, Jiang
This paper presents an overview of advancements of circulating fluidized bed (CFB) technology in Thermal Power Research Institute (TPRI),including technologies and configuration and progress of scaling up. For devoloping large CFB boiler, the CFB combustion test facilities have been established, the key technologies of large capacity CFB boiler have been research systematically, the 100MW ˜330MW CFB boiler have been developed and manufactured. The first domestically designed 100MW and 210MW CFB boiler have been put into commericial operation and have good operating performance. Domestic 330MW CFB boiler demonstration project also has been put into commericial operation,which is H type CFB boiler with Compact heat exchanger. This boiler is China's largest CFB boiler. The technical plan of domestic 600MW supercritical CFB boiler are also briefly introduced.
CFD analysis of hydrodynamic studies of a bubbling fluidized bed
NASA Astrophysics Data System (ADS)
Rao, B. J. M.; Rao, K. V. N. S.; Ranga Janardhana, G.
2018-03-01
Fluidization velocity is one of the most important parameter to characterize the hydrodynamic studies of fluidized bed asit determines different flow regimes. Computational Fluid Dynamics simulations are carriedfor a cylindrical bubbling fluidized bed with a static bed height 1m with 0.150m diameter of gasification chamber. The parameter investigated is fluidization velocity in range of 0.05m/s to 0.7m/s. Sand with density 2600kg/m3 and with a constant particle diameter of sand 385μm is employed for all the simulations. Simulations are conducted using the commercial Computational Fluid Dynamics software, ANSYS-FLUENT.The bubbling flow regime is appeared above the air inlet velocity of 0.2m/s. Bubbling character is increased with increase in inlet air velocities indicated by asymmetrical fluctuations of volume fractions in radial directions at different bed heights
Method and apparatus for improving heat transfer in a fluidized bed
Lessor, Delbert L.; Robertus, Robert J.
1990-01-01
An apparatus contains a fluidized bed that includes particles of different triboelectrical types, each particle type acquiring an opposite polarity upon contact. The contact may occur between particles of the two types or between particles of etiher type and structure or fluid present in the apparatus. A fluidizing gas flow is passed through the particles to produce the fluidized bed. Immersed within the bed are electrodes. An alternating EMF source connected to the electrodes applies an alternating electric field across the fluidized bed to cause particles of the first type to move relative to particles of the second type and relative to the gas flow. In a heat exchanger incorporating the apparatus, the electrodes are conduits conveying a fluid to be heated. The two particle types alternately contact each conduit to transfer heat from a hot gas flow to the second fluid within the conduit.
Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang
2017-09-15
The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.
A postscript to Circulation of the blood: men and ideas.
Riley, R L
1982-10-01
Since 1964, when Fishman and Richards published Circulation of the Blood: Men and Ideas, Guyton's model of the circulation, in which mean circulatory pressure serves as the upstream pressure for venous return, has been extended, and the concept of vascular smooth muscle tone acting like the pressure surrounding a Starling resistor has been postulated. According to this scheme, the positive zero flow intercepts of rapidly determined arterial pressure-flow curves are the effective downstream pressures for arterial flow to different tissues. The arterioles, like Starling resistors, determine the downstream pressures and are followed by abrupt pressure drops, or "waterfalls." Capillary pressures are closely linked to those of the venules into which they flow. Capillary-venular pressures are the upstream pressures for venous return. In exercising muscles, reduced arteriolar tone lowers arteriolar pressure and increases arterial flow. This, in turn, raises capillary-venular pressure and increases venous flow. The arteriolar-capillary waterfall is decreased or eliminated. Total blood flow is increased by diversion of blood from tissues with slow venous drainage to muscles with fast venous drainage (low resistance X compliance). The heart pumps away the increased venous return by shifting to a new ventricular function curve.
Optimization of Limestone Feed Size of a Pressurized Fluidized Bed Combustor
NASA Astrophysics Data System (ADS)
Shimizu, Tadaaki; Saastamolnen, Jaakko
Limestone attrition is a major cause of loss of limestone during pressurized fluidized bed combustion. In the authors' previous works, the analysis of published results of solid attrition and desulfurization was conducted to determine the attrition rate expression. The specific attrition rate (rate of decrease in diameter) was estimated to be second order with respect to particle diameter in the previous work. This rate expression implies that reduction of feed size of limestone is effective for suppression of loss of limestone by attrition. However, too much grinding of raw limestone will increase the content of fine particles that are readily elutriated by gas stream and do not contribute to the sulfur capture. In this work, modeling works are conducted for particle attrition and desulfurization in order to predict the effect of feed size of limestone on total consumption of limestone and desulfurization is discussed. Optimum particle size to suppress limestone consumption was approximately 0.7 mm (as D p50 ). However, the control of solid drain rate from the bottom was found to have more influence on total limestone consumption rate. Emissions of SO2 from low sulfur coal (S=0.33%) could be sufficiently low irrespective of limestone feed size but SO2 emissions from coals with higher sulfur content than 0.5% were anticipated to increase drastically. Such drastic change in SO2 emissions with the change in sulfur content is attributable to non-linear nature of reaction rate for attrition-enhanced desulfurization by limestone.
Effects of nifedipine and captopril on vascular capacitance of ganglion-blocked anesthetized dogs.
Ogilvie, R I; Zborowska-Sluis, D
1990-03-01
The hemodynamic effects of nifedipine and captopril at doses producing similar reductions in arterial pressure were studied in pentobarbital-anesthetized ventilated dogs after splenectomy during ganglion blockade with hexamethonium. Mean circulatory filling pressure (Pmcf) was determined during transient circulatory arrest induced by acetylcholine at baseline circulating blood volumes and after increases of 5 and 10 mL/kg. Central blood volumes (pulmonary artery to aortic root) were determined from transit times, and separately determined cardiac outputs (right atrium to pulmonary artery) were estimated by thermodilution. Nifedipine (n = 5) increased Pmcf at all circulating blood volumes and reduced total vascular capacitance without a change in total vascular compliance. Central blood volume, right atrial pressure, and cardiac output were increased with induced increases in circulating blood volume. In contrast, captopril (n = 5) did not alter total vascular capacitance, central blood volume, right atrial pressure, or cardiac output at baseline or with increased circulating volume. Thus, at doses producing similar reductions in arterial pressure, nifedipine but not captopril increased venous return and cardiac output in ganglion-blocked dogs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.
Luz, Ignacio; Soukri, Mustapha; Lail, Marty
2018-01-01
Solid-state synthesis ensures a high loading and well dispersed growth of a large collection of metal–organic framework (MOF) nanostructures within a series of commercially available mesoporous silica allowing to render MOFs into fluidized solid sorbents for CO 2 capture from post-combustion flue gas in a fluidized-bed reactor.
Twelfth annual fluidized bed conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
The Proceedings of the Twelfth Annual Fluidized Bed Conference held November 11-13, 1996 in Pittsburgh, PA are presented. Information is given on: owner`s discussions; new aspects and field upgrades in fluidized bed boilers; manufacturer`s perspectives; fuel considerations; FBC ash reclassification; and beneficial uses of FBC ash. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
Combined fluidized bed retort and combustor
Shang, Jer-Yu; Notestein, John E.; Mei, Joseph S.; Zeng, Li-Wen
1984-01-01
The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.
Recent advances in fluidized bed drying
NASA Astrophysics Data System (ADS)
Haron, N. S.; Zakaria, J. H.; Mohideen Batcha, M. F.
2017-09-01
Fluidized bed drying are very well known to yield high heat and mass transfer and hence adopted to many industrial drying processes particularly agricultural products. In this paper, recent advances in fluidized bed drying were reviewed and focus is given to the drying related to the usage of Computational Fluid Dynamics (CFD). It can be seen that usage of modern computational tools such as CFD helps to optimize the fluidized bed dryer design and operation for lower energy consumption and thus better thermal efficiency. Among agricultural products that were reviewed in this paper were oil palm frond, wheat grains, olive pomace, coconut, pepper corn and millet.
Li, Jie; Liu, Yung Y
2015-01-20
The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.
[Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].
Xing, Liming; Zhao, Zhengsheng
2012-07-01
To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.
NASA Astrophysics Data System (ADS)
Zhang, Qi; Gui, Keting; Wang, Xiaobo
2016-02-01
The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.
Fluidized bed gasification of industrial solid recovered fuels.
Arena, Umberto; Di Gregorio, Fabrizio
2016-04-01
The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design of a Localized Fluidization Burrowing Robot
NASA Astrophysics Data System (ADS)
Dorsch, Daniel; Winter, Amos
2014-11-01
This presentation will focus on the critical fluid and granular mechanics principles that drove the design of RoboClam 2.0, a self-actuated, radially expanding underwater burrowing device. RoboClam 2.0 was inspired by the Atlantic razor clam, Ensis directus, which burrows by contracting its valves and fluidizing the surrounding soil to reduce burrowing drag. This contraction results in a localized fluidized region occurring 1-5 body radii away from the animal. Moving through a fluidized, rather than static, soil requires energy that scales linearly with depth, rather than depth squared. In addition to providing an advantage for the animal, localized fluidization may yield significant value to engineering applications such as subsea robot anchoring and pipe installation. RoboClam 2.0 is sized to be an anchoring platform for autonomous underwater vehicles. We will present the scaling relationships that can be used to design RoboClam derivatives for different size scales and applications. The critical speed, displacement and force with which the device must contract to create fluidization are calculated based on soil parameters. These parametric relationships allow for choosing actuators of appropriate size and power output for desired burrowing performance.
Mechanism of sand slide - cold lahar induced by extreme rainfall
NASA Astrophysics Data System (ADS)
Fukuoka, Hiroshi; Yamada, Masumi; Dok, Atitkagna
2014-05-01
Along with the increasing frequencies of extreme rainfall events in almost every where on the earth, shallow slide - debris flow, i.e. cold lahars running long distance often occurs and claims downslope residents lives. In the midnight of 15 October 2013, Typhoon Wilpha attacked the Izu-Oshima, a active volcanic Island and the extreme rainfall of more than 800 mm / 24 hours was recorded. This downpour of more than 80 mm/hr lasted 4 hours at its peak and caused a number of cold lahars. The initial stage of those lahars was shallow slides of surface black volcanic ash deposits, containing mostly fine sands. The thickness was only 50 cm - 1 m. In the reconnaissance investigation, author found that the sliding surface was the boundary of two separate volcanic ash layers between the black and yellow colored and apparently showing contrast of permeability and hardness. Permeability contrast may have contributed to generation of excess pore pressure on the border and trigger the slide. Then, the unconsolidated, unpacked mass was easily fluidized and transformed into mud flows, that which volcanologists call cold lahars. Seismometers installed for monitoring the active volcano's activities, succeeded to detect many tremors events. Many are spikes but 5 larger and longer events were extracted. They lasted 2 -3 minutes and if we assume that this tremors reflects the runout movement, then we can calculate the mean velocity of the lahars. Estimated velocity was 45 - 60 km/h, which is much higher than the average speed 30 - 40 km/h of debris flows observed in Japan. Flume tests of volcanic ash flows by the Forestry and Forest Products Research Institute showed the wet volcanic ash can run at higher speed than other materials. The two tremor records were compare d with the local residents witnessed and confirmed by newspaper reported that the reach of the lahar was observed at the exact time when tremor ends. We took the black volcanic ash and conducted ring shear tests to reveal the mechanism of rapid motion. In the undrained or partially drained tests under pore water pressure test, monotonic loading of shear stress, and constant shear speed conditions, we found that immediately after failure takes place, a big excess pore pressure was generated and accelerating motions had stated in all cases. The reduced shear resistance thereafter was maintained because of the lasting high pore pressure. Even in the partially-drained test, we found once the pore pressure reached almost same with the normal stress and then gradually decreased due to dissipation. Those tests apparently shows that the high mobility and high acceleration of the motion are expected and this could be the key mechanism of the fluidization of initial shallow slides into sand flows, i.e., cold lahars. In the past ring shear test series on volcanic materials from fluidized landslides at El Picaccho of El Salvador, Mt Aso of Kumamto Prefecture, and Nagari Tandikat near Padang, Indonesia, show very similar trends. In all those cases, we expected serious grain crushing during shear, contributed to the generation of excess pore pressure, because those material are deposited recently (in geological time) and suffered no big overburden pressure which means no consolidation and no serious grain crushing ever before. So those volcanic materials are generally susceptible to crushing and expect high mobility when slides are initiated under fully saturated condition.
Apparatus and method for batch-wire continuous pumping
Fassbender, Alexander G.
1996-01-01
The apparatus of the present invention contains at least one pressure vessel having a separator defining two chambers within each pressure vessel. The separator slideably seals the two chambers. Feedstock is placed within a second chamber adjoining the first chamber via a feedstock pump operating in a high volume low head mode. A pressurizer operates in a low volume high pressure mode to pressurize the working fluid and the feedstock in the pressure vessels to a process operating pressure. A circulating pump operates in a high volume, low head mode to circulate feedstock through the process. A fourth pump is used for moving feedstock and product at a pressure below the process operating pressure.
MBM fuel feeding system design and evaluation for FBG pilot plant.
Campbell, William A; Fonstad, Terry; Pugsley, Todd; Gerspacher, Regan
2012-06-01
A biomass fuel feeding system has been designed, constructed and evaluated for a fluidized bed gasifier (FBG) pilot plant at the University of Saskatchewan (Saskatoon, SK, Canada). The system was designed for meat and bone meal (MBM) to be injected into the gasifier at a mass flow-rate range of 1-5 g/s. The designed system consists of two stages of screw conveyors, including a metering stage which controlled the flow-rate of fuel, a rotary airlock and an injection conveyor stage, which delivered that fuel at a consistent rate to the FBG. The rotary airlock which was placed between these conveyors, proved unable to maintain a pressure seal, thus the entire conveying system was sealed and pressurized. A pneumatic injection nozzle was also fabricated, tested and fitted to the end of the injection conveyor for direct injection and dispersal into the fluidized bed. The 150 mm metering screw conveyor was shown to effectively control the mass output rate of the system, across a fuel output range of 1-25 g/s, while the addition of the 50mm injection screw conveyor reduced the irregularity (error) of the system output rate from 47% to 15%. Although material plugging was found to be an issue in the inlet hopper to the injection conveyor, the addition of air sparging ports and a system to pulse air into those ports was found to successfully eliminate this issue. The addition of the pneumatic injection nozzle reduced the output irregularity further to 13%, with an air supply of 50 slpm as the minimum air supply to drive this injector. After commissioning of this final system to the FBG reactor, the injection nozzle was found to plug with char however, and was subsequently removed from the system. Final operation of the reactor continues satisfactorily with the two screw conveyors operating at matching pressure with the fluidized bed, with the output rate of the system estimated based on system characteristic equations, and confirmed by static weight measurements made before and after testing. The error rate by this method is reported to be approximately 10%, which is slightly better than the estimated error rate of 15% for the conveyor system. The reliability of this measurement prediction method relies upon the relative consistency of the physical properties of MBM with respect to its bulk density and feeding characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saqib, Naeem, E-mail: naeem.saqib@oru.se; Bäckström, Mattias, E-mail: mattias.backstrom@oru.se
Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of flymore » ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature.« less
Parrish, Judith T.; Peterson, F.
1988-01-01
Wind directions for Middle Pennsylvanian through Jurassic time are predicted from global circulation models for the western United States. These predictions are compared with paleowind directions interpreted from eolian sandstones of Middle Pennsylvanian through Jurassic age. Predicted regional wind directions correspond with at least three-quarters of the paleowind data from the sandstones; the rest of the data may indicate problems with correlation, local effects of paleogeography on winds, and lack of resolution of the circulation models. The data and predictions suggest the following paleoclimatic developments through the time interval studied: predominance of winter subtropical high-pressure circulation in the Late Pennsylvanian; predominance of summer subtropical high-pressure circulation in the Permian; predominance of summer monsoonal circulation in the Triassic and earliest Jurassic; and, during the remainder of the Jurassic, influence of both summer subtropical and summer monsoonal circulation, with the boundary between the two systems over the western United States. This sequence of climatic changes is largely owing to paleogeographic changes, which influenced the buildup and breakdown of the monsoonal circulation, and possibly owing partly to a decrease in the global temperature gradient, which might have lessened the influence of the subtropical high-pressure circulation. The atypical humidity of Triassic time probably resulted from the monsoonal circulation created by the geography of Pangaea. This circulation is predicted to have been at a maximum in the Triassic and was likely to have been powerful enough to draw moisture along the equator from the ocean to the west. ?? 1988.
High-Purity Silicon Seeds for Silane Pyrolysis
NASA Technical Reports Server (NTRS)
Hsu, G. C.; Rohatgi, N. K.; Morrison, A.
1985-01-01
Seed particles for fluidized-bed production of silicon made by new contamination-free, economical method. In new method, large particles of semiconductor-grade silicon fired at each other by high-speed streams of gas and thereby break up into particles of suitable size for fluidized bed. No foreign materials introduced, and leaching unnecessary. Method used to feed fluidized-bed reactor for continuous production of high-purity silicon.
Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry
2014-03-01
Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated - two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides and for (40)K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ((210)Pb and (40)K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ((238)U, (226)Ra, (210)Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, (226)Ra and (228)Ra. A part of (226)Ra input activity, unlike (228)Ra, was undetectable in the solid ash fractions of the boiler. Most probably it is released to the surrounding environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Soil separator and sampler and method of sampling
O'Brien, Barry H [Idaho Falls, ID; Ritter, Paul D [Idaho Falls, ID
2010-02-16
A soil sampler includes a fluidized bed for receiving a soil sample. The fluidized bed may be in communication with a vacuum for drawing air through the fluidized bed and suspending particulate matter of the soil sample in the air. In a method of sampling, the air may be drawn across a filter, separating the particulate matter. Optionally, a baffle or a cyclone may be included within the fluidized bed for disentrainment, or dedusting, so only the finest particulate matter, including asbestos, will be trapped on the filter. The filter may be removable, and may be tested to determine the content of asbestos and other hazardous particulate matter in the soil sample.
2013-09-30
tropopause polar vortices, which are prevalent circulation features over the Arctic that play a major role in the evolution of surface pressure anomalies...pressure and tropospheric circulation anomalies and will allow us to answer specific questions regarding its ability to reproduce the appropriate AO... circulation patterns (Fig. 1c). While the mean patterns are favorable regarding the ability of MPAS to encapsulate the overall patterns of these two
Wood, Katherine C.; Cortese-Krott, Miriam M.; Kovacic, Jason C.; Noguchi, Audrey; Liu, Virginia B.; Wang, Xunde; Raghavachari, Nalini; Boehm, Manfred; Kato, Gregory J.; Kelm, Malte; Gladwin, Mark T.
2013-01-01
Objective Mice genetically deficient in endothelial nitric oxide synthase (eNOS−/−) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. While the current paradigm holds that this bioactivity derives specifically from expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. Approach and Results To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted WT and eNOS−/− mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NAME and repristinated by the NOS substrate L-Arginine, and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert 14C-Arginine into 14C-Citrulline in a NOS-dependent fashion. Conclusions These are the first studies to definitively establish a role for a blood borne eNOS, using cross transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect. PMID:23702660
Arctic Ocean Freshwater Content and Its Decadal Memory of Sea-Level Pressure
NASA Astrophysics Data System (ADS)
Johnson, Helen L.; Cornish, Sam B.; Kostov, Yavor; Beer, Emma; Lique, Camille
2018-05-01
Arctic freshwater content (FWC) has increased significantly over the last two decades, with potential future implications for the Atlantic meridional overturning circulation downstream. We investigate the relationship between Arctic FWC and atmospheric circulation in the control run of a coupled climate model. Multiple linear lagged regression is used to extract the response of total Arctic FWC to a hypothetical step increase in the principal components of sea-level pressure. The results demonstrate that the FWC adjusts on a decadal timescale, consistent with the idea that wind-driven ocean dynamics and eddies determine the response of Arctic Ocean circulation and properties to a change in surface forcing, as suggested by idealized models and theory. Convolving the response of FWC to a change in sea-level pressure with historical sea-level pressure variations reveals that the recent observed increase in Arctic FWC is related to natural variations in sea-level pressure.
Skopets, A A; Lomivorotov, V V; Karakhalis, N B; Makarov, A A; Duman'ian, E S; Lomivorotova, L V
2009-01-01
The purpose of the study was to evaluate the efficiency of oxygen-transporting function of the circulatory system under sevoflurane anesthesia during myocardial revascularization operations under extracorporeal circulation. Twenty-five patients with coronary heart disease were examined. Mean blood pressure, heart rate, cardiac index, total peripheral vascular resistance index, pulmonary pressure, pulmonary wedge pressure, and central venous pressure were measured. Arterial and mixed venous blood oxygen levels, oxygen delivery and consumption index, arteriovenous oxygen difference, and glucose and lactate concentrations were calculated. The study has demonstrated that sevoflurane is an effective and safe anesthetic for myocardial revascularization operations in patients with coronary heart disease. The use of sevoflurane contributes to steady-state oxygen-transporting function of the circulatory system at all surgical stages.
Culture of C3A cells in alginate beads for fluidized bed bioartificial liver.
Kinasiewicz, A; Gautier, A; Lewinska, D; Bukowski, J; Legallais, C; Weryński, A
2007-11-01
Extracorporeal bioartificial liver has been designed to sustain the detoxification and synthetic function of the failed liver in patients suffering from acute liver failure until the time of liver allotransplantation or regeneration of their own. A fluidized bed, bioartificial liver improves the mass transfer velocity between the medium and the hepatocytes. Detoxification functions of the liver could be replaced by completely artificial systems, but the synthetic functions of hepatocytes may be obtained only by metabolically active cells. The aim of our study was to investigate the influence of C3A cell culture in alginate beads on synthetic function in a fluidized bed, bioartificial liver. Cells in alginate beads were prepared using an electrostatic droplet generator of our own design using low-viscosity alginate. Beads were cultured for 24 hours then 7 days in static conditions and then 24 hours of fluidization in the bioreactor to assess albumin production. We observed significantly increased albumin production by C3A cells entrapped in alginate beads during static culture. Fluidization increased albumin production compared with static culture. Fluidization performed after 7 days of static culture resulted in a significant increase in albumin synthesis. In conclusion, static culture of alginate beads hosting hepatic cells facilitates restoration of cell function.
SpaceX Dragon Air Circulation System
NASA Technical Reports Server (NTRS)
Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro
2011-01-01
The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.
Iron crystallization in a fluidized-bed Fenton process.
Boonrattanakij, Nonglak; Lu, Ming-Chun; Anotai, Jin
2011-05-01
The mechanisms of iron precipitation and crystallization in a fluidized-bed reactor were investigated. Within the typical Fenton's reagent dosage and pH range, ferric ions as a product from ferrous ion oxidation would be supersaturated and would subsequently precipitate out in the form of ferric hydroxide after the initiation of the Fenton reaction. These precipitates would simultaneously crystallize onto solid particles in a fluidized-bed Fenton reactor if the precipitation proceeded toward heterogeneous nucleation. The heterogeneous crystallization rate was controlled by the fluidized material type and the aging/ripening period of the crystallites. Iron crystallization onto the construction sand was faster than onto SiO(2), although the iron removal efficiencies at 180 min, which was principally controlled by iron hydroxide solubility, were comparable. To achieve a high iron removal rate, fluidized materials have to be present at the beginning of the Fenton reaction. Organic intermediates that can form ferro-complexes, particularly volatile fatty acids, can significantly increase ferric ion solubility, hence reducing the crystallization performance. Therefore, the fluidized-bed Fenton process will achieve exceptional performance with respect to both organic pollutant removal and iron removal if it is operated with the goal of complete mineralization. Crystallized iron on the fluidized media could slightly retard the successive crystallization rate; thus, it is necessary to continuously replace a portion of the iron-coated bed with fresh media to maintain iron removal performance. The iron-coated construction sand also had a catalytic property, though was less than those of commercial goethite. Copyright © 2011 Elsevier Ltd. All rights reserved.
Air Circulation and Heat Exchange under Reduced Pressures
NASA Astrophysics Data System (ADS)
Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip
Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crisp, T.E.; Nairn, R.W.; Strevett, K.A.
1998-12-31
A column study was conducted to evaluate the feasibility of using of coal combustion by-products (CCB) as alkaline materials in a field scale downflow constructed wetlands for acid mine drainage treatment. Five columns (15.24 cm in diameter and 91.44 cm high) were constructed and filled with a combination of spent mushroom substrate (SMS) and one of three alkaline materials (limestone, hydrated fly ash, or fluidized bed ash). The five mixtures utilized were 10% fluidized bed ash/40% limestone (FBA/LS), 10% fluidized bed ash (FBA), 50% limestone (LS), 50% hydrated fly ash (HFA),m and 50% sieved (>1.5 cm) hydrated fly ash (S.more » HFA) with the remainder as SMS on a w/w basis. Column received synthetic acid mine drainage containing: 400 mg/L iron, 59 mg/L aluminum, 11 mg/L manganese, 50% mg/L magnesium, 40 mg/L calcium, and 1200 mg/L sulfate for 5 months. Anoxic conditions in the influent reservoirs were maintained by a positive nitrogen pressure head. Flow rates of 2.0 mL/minute to each column were maintained by a multichannel peristaltic pump. For all columns, effluent acidity concentrations were less than influent acidity concentration (877{sup {minus}}30, n = 75f). Mean effluent acidity concentrations were 241 mg/L (FBA/LS), 186 mg/L (FBA), 419 mg/L (LS), {minus}28.5 mg/L (HFA), and 351 mg/L (S. HFA), respectively. While all column produced measurable alkalinity, only the HFA column produced a net alkaline discharge. The results of these column studies are applicable to the design and sizing of innovative field scale systems using alkaline-rich CCB`s.« less
The annual cycle of pressure on Mars measured by Viking landers 1 and 2
NASA Technical Reports Server (NTRS)
Hess, S. L.; Ryan, J. A.; Tillman, J. E.; Henry, R. M.; Leovy, C. B.
1980-01-01
Daily mean atmospheric pressures at the two Viking landers are presented for slightly more than a Martian year. The seasonal variation of pressure owing to exchange of CO2 with the polar caps is quite evident and contradicts, in part, earlier theoretical results. Day-to-day variations are the result of passage of synoptic-scale high and low pressure systems and are an important clue to the general circulation of the atmosphere. The effects of global dust storms on the general circulation and on the diurnal variation of pressure are detected and interpreted.
Nishite, Yoshiaki; Takesawa, Shingo
2016-01-01
Background: Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. Objectives: The aim of this study was to create an extracorporeal circulation system (hereinafter, the circulation system) for dialysis machines so that it sets off five types of alarms for: 1) decreased arterial pressure, 2) increased arterial pressure, 3) decreased venous pressure, 4) increased venous pressure, and 5) blood leakage, according to the five types of accidents chosen based on their frequency of occurrence and the degree of severity. Materials and Methods: In order to verify the alarm from the dialysis apparatus connected to the circulation system and the accident corresponding to it, an evaluation of the alarm for its reproducibility of an accident was performed under normal treatment circumstances. The method involved testing whether the dialysis apparatus raised the desired alarm from the moment of control of the circulation system, and measuring the time it took until the desired alarm was activated. This was tested on five main models from four dialyzer manufacturers that are currently used in Japan. Results: The results of the tests demonstrated successful activation of the alarms by the dialysis apparatus, which were appropriate for each of the five types of accidents. The time between the control of the circulatory system to the alarm signal was as follows, 1) venous pressure lower limit alarm: 7 seconds; 2) venous pressure lower limit: 8 seconds; 3) venous pressure upper limit: 7 seconds; 4) venous pressure lower limit alarm: 2 seconds; and 5) blood leakage alarm: 19 seconds. All alarms were set off in under 20 seconds. Conclusions: Thus, we can conclude that a simulator system using an extracorporeal circulation system can be set to different models of dialyzers, and that the reproduced treatment scenarios can be used for simulation training. PMID:26981503
Understanding and Portraying the Global Atmospheric Circulation.
ERIC Educational Resources Information Center
Harrington, John, Jr.; Oliver, John E.
2000-01-01
Examines teaching models of atmospheric circulation and resultant surface pressure patterns, focusing on the three-cell model and the meaning of meridional circulation as related to middle and high latitudes. Addresses the failure of the three-cell model to explain seasonal variations in atmospheric circulation. Suggests alternative models. (CMK)
Fluidized-bed calciner with combustion nozzle and shroud
Wielang, Joseph A.; Palmer, William B.; Kerr, William B.
1977-01-01
A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition.
Fluidized bed selective pyrolysis of coal
Shang, J.Y.; Cha, C.Y.; Merriam, N.W.
1992-12-15
The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.
Fluidized bed selective pyrolysis of coal
Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.
1992-01-01
The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.
Apparatus for hot-gas desulfurization of fuel gases
Bissett, Larry A.
1992-01-01
An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.
Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui; Hu, Yunhu
2016-08-01
A combination of thermogravimetric analysis (TG) and laboratory-scale circulated fluidized bed combustion experiment was conducted to investigate the thermochemical, kinetic and arsenic retention behavior during co-combustion bituminous coal with typical agricultural biomass. Results shown that ignition performance and thermal reactivity of coal could be enhanced by adding biomass in suitable proportion. Arsenic was enriched in fly ash and associated with fine particles during combustion of coal/biomass blends. The emission of arsenic decreased with increasing proportion of biomass in blends. The retention of arsenic may be attributed to the interaction between arsenic and fly ash components. The positive correlation between calcium content and arsenic concentration in ash suggesting that the arsenic-calcium interaction may be regarded as the primary mechanism for arsenic retention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Xiaolong; Ye, Meng; Wang, Xue; Liu, Wen; Zhu, Tingyu
2017-04-01
The activated carbon injection-circulating fluidized bed (ACI-CFB)-bag filter coupling technique was studied in an iron ore sintering plant. For comparison, the removal efficiencies under the conditions without or with ACI technology were both evaluated. It was found that the polychlorinated dibenzo-p-dioxins and dibenzofuran (PCDD/F) removal efficiency for total international toxic equivalence quantity (I-TEQ) concentration was improved from 91.61% to 97.36% when ACI was employed, revealing that ACI was very conducive to further controlling the PCDD/F emissions. Detailed congener distributions of PCDD/Fs in the gas-phase and particle-phase of the Inlet and Outlet samples were determined. Additionally, the PCDD/F distribution for the Fly ash-with ACI sample of was also studied. Copyright © 2016. Published by Elsevier B.V.
A Thermodynamically General Theory for Convective Circulations and Vortices
NASA Astrophysics Data System (ADS)
Renno, N. O.
2007-12-01
Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.
Yoo, R H; Kim, J H; McCarty, P L; Bae, J H
2014-01-01
A laboratory staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was applied to the treatment of primary clarifier effluent from a domestic wastewater treatment plant with temperature decreasing from 25 to 10 °C. At all temperatures and with a total hydraulic retention time of 2.3 h, overall chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) removals were 89% and 94% or higher, with permeate COD and BOD5 of 30 and 7 mg/L or lower, respectively. No noticeable negative effects of low temperature on organic removal were found, although a slight increase to 3 mg/L in volatile fatty acids concentrations in the effluent was observed. Biosolids production was 0.01-0.03 kg volatile suspended solids/kg COD, which is far less than that with aerobic processes. Although the rate of trans-membrane pressure at the membrane flux of 9 L/m(2)/h increased as temperature decreased, the SAF-MBR was operated for longer than 200 d before chemical cleaning was needed. Electrical energy potential from combustion of the total methane production (gaseous and dissolved) was more than that required for system operation.
Freeboard reactions in fluidized coal combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, P.M.; Dutta, A.; Beer, J.M.
1984-05-11
The objective of this study was to determine the contribution of freeboard combustion to overall fixed carbon conversion during atmospheric pressure fluidized bed combustion of Kentucky No. 9 high volatile bituminous coal. The progress of the O/sub 2//char reaction in the freeboard was inferred from O/sub 2/ profiles determined by gas sampling. The rates of O/sub 2/ consumption were in good agreement with the O/sub 2//char rate expression of Sergeant and Smith (1973), except at the lowest temperature investigated (964 K). The discrepancy in this case might be due to catalysis of the O/sub 2//char reaction by lime, since thismore » was the first run of the series. Extrapolation of the O/sub 2/ profile to the bed surface using the rate expression of Sergeant and Smith showed that approximately all of the fixed carbon conversion could be accounted for by freeboard combustion. A simple model is proposed in which devolatilization, fragmentation, attrition, and volatile combustion are limited to the bed; with combustion of the finely ground char occurring only in the freeboard. This model predicts O/sub 2/ at the combustor outlet within 60% of the measured values, except in the low temperature/high lime case.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Avik; Milioli, Fernando E.; Ozarkar, Shailesh
2016-10-01
The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse-grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431-1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265-3275, 2013], new filtered models are constructed from highly-resolved 3-D simulations of gas-particle flows. Although qualitatively similar to the older 2-D models, the new 3-D relationships exhibit noticeable quantitative and functionalmore » differences. In particular, the filtered stresses are strongly dependent on the gas-particle slip velocity. Closures for the filtered inter-phase drag, gas- and solids-phase pressures and viscosities are reported. A new model for solids stress anisotropy is also presented. These new filtered 3-D constitutive relationships are better suited to practical coarse-grid 3-D simulations of large, commercial-scale devices.« less
MBM fuel feeding system design and evaluation for FBG pilot plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, William A., E-mail: bill.campbell@usask.ca; Fonstad, Terry; Pugsley, Todd
2012-06-15
Highlights: Black-Right-Pointing-Pointer A 1-5 g/s fuel feeding system for pilot scale FBG was designed, built and tested. Black-Right-Pointing-Pointer Multiple conveying stages improve pressure balancing, flow control and stability. Black-Right-Pointing-Pointer Secondary conveyor stage reduced output irregularity from 47% to 15%. Black-Right-Pointing-Pointer Pneumatic air sparging effective in dealing with poor flow ability of MBM powder. Black-Right-Pointing-Pointer Pneumatic injection port plugs with char at gasification temperature of 850 Degree-Sign C. - Abstract: A biomass fuel feeding system has been designed, constructed and evaluated for a fluidized bed gasifier (FBG) pilot plant at the University of Saskatchewan (Saskatoon, SK, Canada). The system was designedmore » for meat and bone meal (MBM) to be injected into the gasifier at a mass flow-rate range of 1-5 g/s. The designed system consists of two stages of screw conveyors, including a metering stage which controlled the flow-rate of fuel, a rotary airlock and an injection conveyor stage, which delivered that fuel at a consistent rate to the FBG. The rotary airlock which was placed between these conveyors, proved unable to maintain a pressure seal, thus the entire conveying system was sealed and pressurized. A pneumatic injection nozzle was also fabricated, tested and fitted to the end of the injection conveyor for direct injection and dispersal into the fluidized bed. The 150 mm metering screw conveyor was shown to effectively control the mass output rate of the system, across a fuel output range of 1-25 g/s, while the addition of the 50 mm injection screw conveyor reduced the irregularity (error) of the system output rate from 47% to 15%. Although material plugging was found to be an issue in the inlet hopper to the injection conveyor, the addition of air sparging ports and a system to pulse air into those ports was found to successfully eliminate this issue. The addition of the pneumatic injection nozzle reduced the output irregularity further to 13%, with an air supply of 50 slpm as the minimum air supply to drive this injector. After commissioning of this final system to the FBG reactor, the injection nozzle was found to plug with char however, and was subsequently removed from the system. Final operation of the reactor continues satisfactorily with the two screw conveyors operating at matching pressure with the fluidized bed, with the output rate of the system estimated based on system characteristic equations, and confirmed by static weight measurements made before and after testing. The error rate by this method is reported to be approximately 10%, which is slightly better than the estimated error rate of 15% for the conveyor system. The reliability of this measurement prediction method relies upon the relative consistency of the physical properties of MBM with respect to its bulk density and feeding characteristics.« less
Desulfurizing Coal With an Alkali Treatment
NASA Technical Reports Server (NTRS)
Ravindram, M.; Kalvinskas, J. J.
1987-01-01
Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.
Inclined fluidized bed system for drying fine coal
Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.
1992-02-11
Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.
Fluidized bed drying characteristics and modeling of ginger ( zingiber officinale) slices
NASA Astrophysics Data System (ADS)
Parlak, Nezaket
2015-08-01
In this study fluidized bed drying characteristics of ginger have been investigated. The effects of the fluidizing air temperature, velocity, humidity and bed height on the drying performance of ginger slices have been found. The experimental moisture loss data of ginger slices has been fitted to the eight thin layer drying models. Two-term model drying model has shown a better fit to the experimental data with R2 of 0.998 as compared to others.
Ultra-High Temperature ContinuousReactors based on Electro-thermal FluidizedBed Concept
Fedorov, Sergiy S.; Rohatgi, Upendra Singh; Barsukov, Igor V.; ...
2015-12-08
This paper presents the results of research and development in high-temperature (i.e. 2,000- 3,000ºС) continuous furnaces operating on the principle of electro-thermal fluidized bed for the purification of recycled, finely sized carbon materials. The basis of this fluidized bed furnace is specific electrical resistance and a new correlation has been developed to predict specific electrical resistance for the natural graphite-based precursors entering the fluidized bed reactor This correlation has been validated with the data from a fully functional pilot furnace whose throughput capacity is 10 kg per hour built as part of this work. Data collected in the course ofmore » graphite refining experiments demonstrated that difference between the calculated and measured values of specific electrical resistance of fluidized bed does not exceed 25%. It was concluded that due to chaotic nature of electro-thermal fluidized bed reactors this discrepancy is acceptable. The fluid mechanics of the three types of operating regimes, have been described. The numerical relationships obtained as part of this work allowed proposing an algorithm for selection of technological operational modes with large- scale high-temperature furnaces rated for throughputs of several tons of product per hour. Optimizations proposed now allow producing natural graphite-based end product with the purity level of 99.98+ wt%C which is the key passing criteria for applications in the advanced battery markets.« less
Mohanty, C R; Adapala, Sivaji; Meikap, B C
2009-06-15
Sulfur dioxide and other sulfur compounds are generated as primary pollutants from the major industries such as sulfuric acid plants, cupper smelters, catalytic cracking units, etc. and cause acid rain. To remove the SO(2) from waste flue gas a three-stage counter-current multi-stage fluidized bed adsorber was developed as desulfurization equipment and operated in continuous bubbling fluidization regime for the two-phase system. This paper represents the desulfurization of gas mixtures by chemical sorption of sulfur dioxide on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of the multi-stage fluidized bed reactor are of high mass transfer and high gas-solid residence time that can enhance the removal of acid gas at low temperature by dry method. Experiments were carried out in the bubbling fluidization regime supported by visual observation. The effects of the operating parameters such as sorbent (lime) flow rate, superficial gas velocity, and the weir height on SO(2) removal efficiency in the multistage fluidized bed are reported. The results have indicated that the removal efficiency of the sulfur dioxide was found to be 65% at high solid flow rate (2.0 kg/h) corresponding to lower gas velocity (0.265 m/s), wier height of 70 mm and SO(2) concentration of 500 ppm at room temperature.
NASA Technical Reports Server (NTRS)
Moynihan, P. I.; Young, D. L.
1979-01-01
Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.
A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Zhang, Yongmin
2013-10-11
Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve themore » 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.« less
Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System
NASA Astrophysics Data System (ADS)
Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.
2017-05-01
Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.
Staged fluidized-bed combustion and filter system
Mei, Joseph S.; Halow, John S.
1994-01-01
A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.
Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed.
Buist, Kay A; Jayaprakash, Pavithra; Kuipers, J A M; Deen, Niels G; Padding, Johan T
2017-12-01
In granular flow operations, often particles are nonspherical. This has inspired a vast amount of research in understanding the behavior of these particles. Various models are being developed to study the hydrodynamics involving nonspherical particles. Experiments however are often limited to obtain data on the translational motion only. This paper focusses on the unique capability of Magnetic Particle Tracking to track the orientation of a marker in a full 3-D cylindrical fluidized bed. Stainless steel particles with the same volume and different aspect ratios are fluidized at a range of superficial gas velocities. Spherical and rod-like particles show distinctly different fluidization behavior. Also, the distribution of angles for rod-like particles changes with position in the fluidized bed as well as with the superficial velocity. Magnetic Particle Tracking shows its unique capability to study both spatial distribution and orientation of the particles allowing more in-depth validation of Discrete Particle Models. © 2017 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers , 63: 5335-5342, 2017.
Chemical Looping Combustion Reactions and Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarofim, Adel; Lighty, JoAnn; Smith, Philip
2014-03-01
Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) themore » exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore, they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.« less
Hinske, Ludwig Christian; Hoechter, Dominik Johannes; Schröeer, Eva; Kneidinger, Nikolaus; Schramm, René; Preissler, Gerhard; Tomasi, Roland; Sisic, Alma; Frey, Lorenz; von Dossow, Vera; Scheiermann, Patrick
2017-06-01
The factors leading to the implementation of unplanned extracorporeal circulation during lung transplantation are poorly defined. Consequently, the authors aimed to identify patients at risk for unplanned extracorporeal circulation during lung transplantation. Retrospective data analysis. Single-center university hospital. A development data set of 170 consecutive patients and an independent validation cohort of 52 patients undergoing lung transplantation. The authors investigated a cohort of 170 consecutive patients undergoing single or sequential bilateral lung transplantation without a priori indication for extracorporeal circulation and evaluated the predictive capability of distinct preoperative and intraoperative variables by using automated model building techniques at three clinically relevant time points (preoperatively, after endotracheal intubation, and after establishing single-lung ventilation). Preoperative mean pulmonary arterial pressure was the strongest predictor for unplanned extracorporeal circulation. A logistic regression model based on preoperative mean pulmonary arterial pressure and lung allocation score achieved an area under the receiver operating characteristic curve of 0.85. Consequently, the authors developed a novel 3-point scoring system based on preoperative mean pulmonary arterial pressure and lung allocation score, which identified patients at risk for unplanned extracorporeal circulation and validated this score in an independent cohort of 52 patients undergoing lung transplantation. The authors showed that patients at risk for unplanned extracorporeal circulation during lung transplantation could be identified by their novel 3-point score. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1971-01-01
The rotating fluidized bed reactor concept is being investigated for possible application in nuclear propulsion systems. Physics calculations show U-233 to be superior to U-235 as a fuel for a cavity reactor of this type. Preliminary estimates of the effect of hydrogen in the reactor, reflector material, and power peaking are given. A preliminary engineering analysis was made for U-235 and U-233 fueled systems. An evaluation of the parameters affecting the design of the system is given, along with the thrust-to-weight ratios. The experimental equipment is described, as are the special photographic techniques and procedures. Characteristics of the fluidized bed and experimental results are given, including photographic evidence of bed fluidization at high rotational velocities.
Valve for controlling solids flow
Staiger, M. Daniel
1985-01-01
A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.
Valve for controlling solids flow
Staiger, M.D.
1982-09-29
A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and means for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.
Roy, Ipsita; Jain, Sulakshana; Teotia, Sunita; Gupta, Munishwar Nath
2004-01-01
Calcium alginate microbeads (212-425 microm) were prepared by spraying 2% (w/v) alginate solution into 1 M CaCl2 solution. The fluidization behavior of these beads was studied, and the bed expansion index and terminal velocity were found to be 4.3 and 1808 cm h(-1), respectively. Residence time distribution curves showed that the dispersion of the protein was much less with these microbeads than with conventionally prepared calcium alginate macrobeads when both kinds of beads were used for chromatography in a fluidized bed format. The fluidized bed of these beads was used for the purification of pectinase from a commercial preparation. The media performed well even with diluted feedstock; 90% activity recovery with 211-fold purification was observed.
de Moura, R; Lopes, M A
1995-01-01
1. The mechanism underlying the foetal toxicity induced by captopril is not well understood. Since bradykinin and angiotensin II appear to be important in the regulation of the placental circulation, experiments were performed to assess the effects of captopril on the vascular actions of these peptides on the human foetal placental circulation. 2. Full-term human placentas, obtained from normal pregnancy, were perfused with a modified Tyrode solution bubbled with O2 using a pulsatile pump. The placental perfusion pressure was measured with a Statham pressure transducer and recorded continuously on a Hewlett-Packard polygraph. 3. Bradykinin (0.1, 0.3 and 1.0 nmol) injected into the placental arterial circulation produced an increase in placental perfusion pressure in all experiments. This effect of bradykinin was significantly inhibited by indomethacin (3 x 10(-7) M). 4. Captopril (10(-7) M) significantly potentiated the pressor effect of bradykinin on the human placental circulation (n = 6). This effect of captopril was reversed by indomethacin (3 x 10(-7) M). 5. Angiotensin I (n = 6) and angiotensin II (n = 6), injected into the placental arterial circulation, both produced dose-dependent increases in placental perfusion pressure. The dose-response curves to angiotensin I (n = 6) were significantly displaced to the right by captopril in a concentration-dependent manner. 6. We suggest that the toxic effects of captopril on the foetus, rather than reflecting an inhibition of angiotensin II formation, may instead be related to a potentiation of the vasoconstrictor effect of bradykinin on the foetal placental circulation, thereby reducing blood flow and causing foetal damage. The reasons for this are discussed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7669485
Fluidized-Bed Cleaning of Silicon Particles
NASA Technical Reports Server (NTRS)
Rohatgi, Naresh K.; Hsu, George C.
1987-01-01
Fluidized-bed chemical cleaning process developed to remove metallic impurities from small silicon particles. Particles (250 micrometer in size) utilized as seed material in silane pyrolysis process for production of 1-mm-size silicon. Product silicon (1 mm in size) used as raw material for fabrication of solar cells and other semiconductor devices. Principal cleaning step is wash in mixture of hydrochloric and nitric acids, leaching out metals and carrying them away as soluble chlorides. Particles fluidized by cleaning solution to assure good mixing and uniform wetting.
Staged cascade fluidized bed combustor
Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.
1984-01-01
A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.
Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process
DeGeorge, Charles W.
1981-01-01
In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.
Regeneration of lime from sulfates for fluidized-bed combustion
Yang, Ralph T.; Steinberg, Meyer
1980-01-01
In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinstein, R.E.; Goldstein, H.N.; White, J.S.
It is often more economical to keep existing generation capacity in operation than to build new capacity. Repowering is considered at a number of sites because of the need for added capacity, the poor condition of plant equipment (particularly the boiler), the need for improved environmental performance, the need for shorter licensing period, and other reasons. This paper describes the results of a US Department of Energy (DOE) conceptual design evaluation of an early commercial repowering application of advanced circulating pressurized fluidized bed combustion combined cycle technology (APFBC). The paper provides a review of the DOE study and summarizes themore » preliminary results. This all-coal technology has projected energy efficiency in the 42 to 46% HHV (43 to 48% LHV) range and environmental emissions superior to New Source Performance Standards (NSPS). A DOE-sponsored demonstration program will pioneer the first commercial APFBC demonstration in year 2001. That 170 MWe APFBC CCT demonstration will use all new equipment, and become the City of Lakeland`s C.D. McIntosh, Jr. steam plant Unit 4. This paper`s concept evaluation is for a larger implementation. A modern large frame combustion turbine is used to produce a 300 + MWe class APFBC. At this size, APFBC has a wide application for repowering many existing units in America. Here, APFBC would repower an existing generation station, the Carolina Power and Light Company`s (CP and L) L.V. Suttong steam station. Repowering concepts are presented for APFBC repowering of Unit 2 (252 MWe) and of both Units 1 and 2 in combination (360 MWe total).« less
James, H; Witte, M H; Bernas, M; Barber, B
2016-09-01
In Fontan circulations created for univentricular hearts, systemic venous return is diverted to the lungs before returning to the heart. The Total Cavopulmonary Connection (TCPC) is often the preferred surgical procedure whereby a 4-way anastomosis is created with inflow from the superior vena cava (SVC) and inferior vena cava (IVC) and outflow to the right and left branches of the pulmonary artery. In this arrangement, the systemic venous pressure must be elevated sufficiently to perfuse the lungs passively without the normal boost of the right ventricle. Hence, unlike surgical corrections for other congenital heart conditions, the systemic venous pressures in a Fontan circuit must be elevated to make the circulation work. It is proposed here that the incidence of PLE/LLE is directly related to elevated venous and lymphatic pressures, which cause leakage of proteins/lymph into the gastrointestinal tract (GIT) and expulsion from the body. It is commonly held that elevated venous pressures are relatively better tolerated in the upper body, but much less so in the heptatosplanchnic circulation and the lower body. It is also well established that elevated venous pressure increases lymph formation, most of which is produced in the hepatosplanchnic region (liver and intestine). It is further argued here that the increase in lymph filling pressure arising from the higher lymph flow, in association with the backpressure exerted by elevated venous pressure at the main drainage point into the venous system, results in a substantial increase in pressure in the thoracic duct. This pressure is transmitted back to the intestinal lymphatics, causing dilatation with lacteal rupture and protein or bulk lymph leakage into the intestine. We propose in this paper a new approach, based on experimental evidence, to prevent and/or alleviate this condition by draining or redirecting the thoracic duct (or, alternatively, a more localized intestinal lymphatic vessel) into one of the pulmonary veins or the left atrium, which are typically at near-normal pressure in a Fontan circulation. This “lymphatic-venous right-to-left” shunt maneuver would significantly reduce the venous backpressure on the lymphatics as well as improve lymph circulation, resulting in a decrease in the intestinal lymphatic pressure and thereby prevent or alleviate protein/lymph loss, i.e. lymph balance would be restored. Moreover, the greatly facilitated lymphatic flow would encourage further capillary filtration to relieve excessive venous pressure in the hepatosplanchnic region and protect the liver and kidneys. This paper is intended as a discussion document for elicitation of comments on the soundness and viability of this proposal as well as on technical challenges and steps to explore and advance it.
Apparatus for decoupled thermo-photocatalytic pollution control
Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric
2003-04-22
A new method for design and scale-up of photocatalytic and thermocatalytic processes is disclosed. The method is based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to photo-thermocatalytic reactor design and scale-up. At low irradiance levels, the method is based on the implementation of low pressure drop biopolymeric and synthetic polymeric support for titanium dioxide and other band-gap media. At high irradiance levels, the method utilizes multifunctional metal oxide aerogels and other media within a novel rotating fluidized particle bed reactor.
Ripley, Edward B
2013-02-12
Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.
Synergistic erosion/corrosion of superalloys in PFB coal combustor effluent
NASA Technical Reports Server (NTRS)
Benford, S. M.; Zellars, G. R.; Lowell, C. E.
1981-01-01
Two Ni-based superalloys were exposed to the high velocity effluent of a pressurized fluidized bed coal combustor. Targets were 15 cm diameter rotors operating at 40,000 rpm and small flat plate specimens. Above an erosion rate threshold, the targets were eroded to bare metal. The presence of accelerated oxidation at lower erosion rates suggests erosion/corrosion synergism. Various mechanisms which may contribute to the observed oxide growth enhancement include erosive removal of protective oxide layers, oxide and subsurface cracking, and chemical interaction with sulfur in the gas and deposits through damaged surface layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auban, Olivier; Paladino, Domenico; Zboray, Robert
2004-12-15
Twenty-five tests have been carried out in the large-scale thermal-hydraulic facility PANDA to investigate natural-circulation and stability behavior under low-pressure/low-power conditions, when void flashing might play an important role. This work, which extends the current experimental database to a large geometric scale, is of interest notably with regard to the start-up procedures in natural-circulation-cooled boiling water reactors. It should help the understanding of the physical phenomena that may cause flow instability in such conditions and can be used for validation of thermal-hydraulics system codes. The tests were performed at a constant power, balanced by a specific condenser heat removal capacity.more » The test matrix allowed the reactor pressure vessel power and pressure to be varied, as well as other parameters influencing the natural-circulation flow. The power spectra of flow oscillations showed in a few tests a major and unique resonance peak, and decay ratios between 0.5 and 0.9 have been found. The remainder of the tests showed an even more pronounced stable behavior. A classification of the tests is presented according to the circulation modes (from single-phase to two-phase flow) that could be assumed and particularly to the importance and the localization of the flashing phenomenon.« less
JPL in-house fluidized-bed reactor research
NASA Technical Reports Server (NTRS)
Rohatgi, N. K.
1984-01-01
Fluidized bed reactor research techniques for fabrication of quartz linears was reviewed. Silane pyrolysis was employed in this fabrication study. Metallic contaminant levels in the silicon particles were below levels detectable by emission spectroscopy.
Fluctuations, Stratification and Stability in a Liquid Fluidized Bed at Low Reynolds Number
NASA Technical Reports Server (NTRS)
Segre, P. N.; McClymer, J. P.
2004-01-01
The sedimentation dynamics of extremely low polydispersity, non-colloidal, particles are studied in a liquid fluidized bed at low Reynolds number, Re much less than 1. When fluidized, the system reaches a steady state, defined where the local average volume fraction does not vary in time. In steady state, the velocity fluctuations and the particle concentrations are found to strongly depend on height. Using our results, we test a recently developed stability model for steady state sedimentation. The model describes the data well, and shows that in steady state there is a balancing of particle fluxes due to the fluctuations and the concentration gradient. Some results are also presented for the dependence of the concentration gradient in fluidized beds on particle size; the gradients become smaller as the particles become larger and fewer in number.
Solar heated fluidized bed gasification system
NASA Technical Reports Server (NTRS)
Qader, S. A. (Inventor)
1981-01-01
A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.
Computational study of heat transfer in gas fluidization
NASA Astrophysics Data System (ADS)
Hou, Q. F.; Zhou, Z. Y.; Yu, A. B.
2013-06-01
Heat transfer in gas fluidization is investigated at a particle scale by means of a combined discrete element method and computational fluid dynamicsapproach. To develop understanding of heat transfer at various conditions, the effects of a few important material properties such as particle size, the Hamaker constant and particle thermal conductivity are examined through controlled numerical experiments. It is found that the convective heat transfer is dominant, and radiative heat transfer becomes important when the temperature is high. Conductive heat transfer also plays a role depending on the flow regimes and material properties. The heat transfer between a fluidized bed and an immersed surface is enhanced by the increase of particle thermal conductivity while it is little affected by Young's modulus. The findings should be useful for better understanding and predicting the heat transfer in gas fluidization.
NASA Technical Reports Server (NTRS)
Atwater, James; Wheeler, Richard, Jr.; Akse, James; Jovanovic, Goran; Reed, Brian
2013-01-01
To support long-duration manned missions in space such as a permanent lunar base, Mars transit, or Mars Surface Mission, improved methods for the treatment of solid wastes, particularly methods that recover valuable resources, are needed. The ability to operate under microgravity and hypogravity conditions is essential to meet this objective. The utilization of magnetic forces to manipulate granular magnetic media has provided the means to treat solid wastes under variable gravity conditions by filtration using a consolidated magnetic media bed followed by thermal processing of the solid wastes in a fluidized bed reactor. Non-uniform magnetic fields will produce a magnetic field gradient in a bed of magnetically susceptible media toward the distributor plate of a fluidized bed reactor. A correctly oriented magnetic field gradient will generate a downward direct force on magnetic media that can substitute for gravitational force in microgravity, or which may augment low levels of gravity, such as on the Moon or Mars. This approach is termed Gradient Magnetically Assisted Fluidization (G-MAFB), in which the magnitude of the force on the fluidized media depends upon the intensity of the magnetic field (H), the intensity of the field gradient (dH/dz), and the magnetic susceptibility of the media. Fluidized beds based on the G-MAFB process can operate in any gravitational environment by tuning the magnetic field appropriately. Magnetic materials and methods have been developed that enable G-MAFB operation under variable gravity conditions.
Yuan, G; Chen, D; Yin, L; Wang, Z; Zhao, L; Wang, J Y
2014-06-01
In this research a gas-liquid fluidized bed reactor was developed for removing chlorine (Cl) from polyvinyl chloride (PVC) to favor its pyrolysis treatment. In order to efficiently remove Cl within a limited time before extensive generation of hydrocarbon products, the gas-liquid fluidized bed reactor was running at 280-320 °C, where hot N2 was used as fluidizing gas to fluidize the molten polymer, letting the molten polymer contact well with N2 to release Cl in form of HCl. Experimental results showed that dechlorination efficiency is mainly temperature dependent and 300 °C is a proper reaction temperature for efficient dechlorination within a limited time duration and for prevention of extensive pyrolysis; under this temperature 99.5% of Cl removal efficiency can be obtained within reaction time around 1 min after melting is completed as the flow rate of N2 gas was set around 0.47-0.85 Nm(3) kg(-1) for the molten PVC. Larger N2 flow rate and additives in PVC would enhance HCl release but did not change the final dechlorination efficiency; and excessive N2 flow rate should be avoided for prevention of polymer entrainment. HCl is emitted from PVC granules or scraps at the mean time they started to melt and the melting stage should be taken into consideration when design the gas-liquid fluidized bed reactor for dechlorination. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dynamical balance in the Indonesian Seas circulation
NASA Astrophysics Data System (ADS)
Burnett, William H.; Kamenkovich, Vladimir M.; Jaffe, David A.; Gordon, Arnold L.; Mellor, George L.
2000-09-01
A high resolution, four-open port, non-linear, barotropic ocean model (2D POM) is used to analyze the Indonesian Seas circulation. Both local and overall momentum balances are studied. It is shown that geostrophy holds over most of the area and that the Pacific-Indian Ocean pressure difference is essentially balanced by the resultant of pressure forces acting on the bottom.
Preferential paths in yield stress fluid flow through a porous medium
NASA Astrophysics Data System (ADS)
Guasto, Jeffrey; Waisbord, Nicolas; Stoop, Norbert; Dunkel, Jörn
2016-11-01
A broad range of biological, geological, and industrial materials with complex rheological properties are subjected to flow through porous media in applications ranging from oil recovery to food manufacturing. In this experimental study, we examine the flow of a model yield stress fluid (Carbopol micro-gel) through a quasi-2D porous medium, fabricated in a microfluidic channel. The flow is driven by applying a precisely-controlled pressure gradient and measured by particle tracking velocimetry, and our observations are complemented by a pore-network model of the yield stress fluid flow. While remaining unyielded at small applied pressure, the micro-gel begins to yield at a critical pressure gradient, exhibiting a single preferential flow path that percolates through the porous medium. As the applied pressure gradient increases, we observe a subsequent coarsening and invasion of the yielded, fluidized network. An examination of both the yielded network topology and pore-scale flow reveal that two cooperative phenomena are involved in sculpting the preferential flow paths: (1) the geometry of the porous microstructure, and (2) the adhesive surface interactions between the micro-gel and substrate. NSF CBET-1511340.
Ye, Zhi-Long; Deng, Yujun; Ye, Xin; Lou, Yaoyin; Chen, Shaohua
2018-01-01
Fluidized granulation is one of the common methods used in wastewater treatment and resource recovery with harvesting millimeter-scale large particles. Presently, effective methods are lacking to measure the fluidized granules ranging from micro- to millimeter scales, with the consequence of ineffectively controlling and optimizing the granulation process. In this work, recovering struvite (MgNH 4 PO 4 ·6H 2 O) from swine wastewater by using a fluidized bed was taken as an example. Image processing was applied to analyze the properties of different types of struvite granules, including morphology, particle size distribution, number density and mass concentration. Four stages of the struvite crystal evolution were therefore defined: aggregation, aggregate compaction, cluster-agglomerating and coating growth. These stages could occur simultaneously or sequentially. Up-flow rates of 30-80 mm/s in the fluidized bed sustained 600-876 g/L granular solids. Results revealed that the coating-growth granules were formed with compact aggregates or cluster-agglomerating granules as the nuclei. The growth rates for the different types of particles, including population growth, mass increase and particle size enlargement, were determined. In final, a schematic illustration for struvite granulation process is also presented.
CFB: technology of the future?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankship, S.
2008-02-15
Fuel flexibility and a smaller carbon footprint are behind renewed interest in circulating fluidized bed (CFB) technology. The article explains the technology of CFB and discusses development of CFB units since the late 1990s. China is seeing an explosion in the number of utility-size CFBs. Alstom, Foster Wheeler, Babcock and Wilson and Alex Kvaener are today's major CFB boiler manufacturers. Alstom is testing and developing oxy-firing and post-combustion carbon capture strategies on CFB boilers. One CFB asset is its ability to burn a variety of fuels including waste coal, high sulfur coal and even discarded tires. The article mentions successfulmore » CFB projects at the Seward Station using waste coal and at the Gilbert 3 plant in the USA. Lamar is converting its Light and Power Plant from natural gas to burn coal in a 38.5 MW CFB boiler. 1 tab., 3 photos.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Circulating fluidized-bed (CFB) boilers have ben used for years in Scandinavia to burn refuse-derived fuel (RDF). Now, Foster Wheeler Power Systems, Inc., (Clinton, N.J.) is bringing the technology to the US. Touted as the world`s largest waste-to-energy plant to use CFB technology, the Robbins (III.) Resource Recovery Facility will have the capacity to process 1,600 tons/d of municipal solid waste (MSW) when it begins operation in early 1997. The facility will have two materials-separation and RDF-processing trains, each with dual trommel screens, magnetic and eddy current separators, and shredders. About 25% of the incoming MSW will be sorted and removedmore » for recycling, while 75% of it will be turned into fuel, with a heat value of roughly 6,170 btu/lb. Once burned in the twin CFB boilers the resulting steam will be routed through a single turbine generator to produce 50,000 mW of electric power.« less
Seasonal circulation over the Catalan inner-shelf (northwest Mediterranean Sea)
Grifoll, Manel; Aretxabaleta, Alfredo L.; Pelegrí, Josep L.; Espino, Manuel; Warner, John C.; Sánchez-Arcilla, Agustín
2013-01-01
This study characterizes the seasonal cycle of the Catalan inner-shelf circulation using observations and complementary numerical results. The relation between seasonal circulation and forcing mechanisms is explored through the depth-averaged momentum balance, for the period between May 2010 and April 2011, when velocity observations were partially available. The monthly-mean along-shelf flow is mainly controlled by the along-shelf pressure gradient and by surface and bottom stresses. During summer, fall, and winter, the along-shelf momentum balance is dominated by the barotropic pressure gradient and local winds. During spring, both wind stress and pressure gradient act in the same direction and are compensated by bottom stress. In the cross-shelf direction the dominant forces are in geostrophic balance, consistent with dynamic altimetry data.
Seasonal circulation over the Catalan inner-shelf (northwest Mediterranean Sea)
NASA Astrophysics Data System (ADS)
Grifoll, Manel; Aretxabaleta, Alfredo L.; Pelegrí, Josep L.; Espino, Manuel; Warner, John C.; Sánchez-Arcilla, Agustín.
2013-10-01
This study characterizes the seasonal cycle of the Catalan inner-shelf circulation using observations and complementary numerical results. The relation between seasonal circulation and forcing mechanisms is explored through the depth-averaged momentum balance, for the period between May 2010 and April 2011, when velocity observations were partially available. The monthly-mean along-shelf flow is mainly controlled by the along-shelf pressure gradient and by surface and bottom stresses. During summer, fall, and winter, the along-shelf momentum balance is dominated by the barotropic pressure gradient and local winds. During spring, both wind stress and pressure gradient act in the same direction and are compensated by bottom stress. In the cross-shelf direction the dominant forces are in geostrophic balance, consistent with dynamic altimetry data.
Fluidized bed coal desulfurization
NASA Technical Reports Server (NTRS)
Ravindram, M.
1983-01-01
Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.
Biparticle fluidized bed reactor
Scott, Charles D.; Marasco, Joseph A.
1995-01-01
A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.
Biparticle fluidized bed reactor
Scott, Charles D.; Marasco, Joseph A.
1996-01-01
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.
Biparticle fluidized bed reactor
Scott, C.D.; Marasco, J.A.
1995-04-25
A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.
Biparticle fluidized bed reactor
Scott, C.D.
1993-12-14
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.
Biparticle fluidized bed reactor
Scott, C.D.; Marasco, J.A.
1996-02-27
A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.
Biparticle fluidized bed reactor
Scott, Charles D.
1993-01-01
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.
The origin of mean arterial and jugular venous blood pressures in giraffes.
Mitchell, Graham; Maloney, Shane K; Mitchell, Duncan; Keegan, D James
2006-07-01
Using a mechanical model of the giraffe neck and head circulation consisting of a rigid, ascending, 'carotid' limb, a 'cranial' circulation that could be rigid or collapsible, and a descending, 'jugular' limb that also could be rigid or collapsible, we have analyzed the origin of the high arterial and venous pressures in giraffe, and whether blood flow is assisted by a siphon. When the tubes were rigid and the 'jugular' limb exit was lower than the 'carotid' limb entrance a siphon operated, 'carotid' hydrostatic pressures became more negative, and flow was 3.3 l min(-1) but ceased when the 'cranial' and 'jugular' limbs were collapsible or when the 'jugular' limb was opened to the atmosphere. Pumping water through the model produced positive pressures in the 'carotid' limb similar to those found in giraffe. Applying an external 'tissue' pressure to the 'jugular' tube during pump flow produced the typical pressures found in the jugular vein in giraffe. Constriction of the lowest, 'jugular cuff', portion of the 'jugular' limb showed that the cuff may augment the orthostatic reflex during head raising. Except when all tubes were rigid, pressures were unaffected by a siphon. We conclude that mean arterial blood pressure in giraffes is a consequence of the hydrostatic pressure generated by the column of blood in the neck, that tissue pressure around the collapsible jugular vein produces the known jugular pressures, and that a siphon does not assist flow through the cranial circulation.
Lipid encapsulated phenolic compounds by fluidization
USDA-ARS?s Scientific Manuscript database
Phenolic compounds exhibit antioxidant and antimicrobial activities with applications as functional food and feed additives. Ferulic acid, a phenolic compound present in grain crops and lignocellulose biomass, was encapsulated with saturated triglycerides using a laboratory fluidizer. Stability of t...
A 2.5D Computational Method to Simulate Cylindrical Fluidized Beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Benyahia, Sofiane; Dietiker, Jeff
2015-02-17
In this paper, the limitations of axisymmetric and Cartesian two-dimensional (2D) simulations of cylindrical gas-solid fluidized beds are discussed. A new method has been proposed to carry out pseudo-two-dimensional (2.5D) simulations of a cylindrical fluidized bed by appropriately combining computational domains of Cartesian 2D and axisymmetric simulations. The proposed method was implemented in the open-source code MFIX and applied to the simulation of a lab-scale bubbling fluidized bed with necessary sensitivity study. After a careful grid study to ensure the numerical results are grid independent, detailed comparisons of the flow hydrodynamics were presented against axisymmetric and Cartesian 2D simulations. Furthermore,more » the 2.5D simulation results have been compared to the three-dimensional (3D) simulation for evaluation. This new approach yields better agreement with the 3D simulation results than with axisymmetric and Cartesian 2D simulations.« less
Relationship between fluid bed aerosol generator operation and the aerosol produced
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, R.L.; Yerkes, K.
1980-12-01
The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriationmore » constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.« less
NASA Technical Reports Server (NTRS)
Sornchamni, T.; Jovanovic, G. N.; Reed, B. P.; Atwater, J. E.; Akse, J. R.; Wheeler, R. R.
2004-01-01
The conversion of solid waste into useful resources in support of long duration manned missions in space presents serious technological challenges. Several technologies, including supercritical water oxidation, microwave powered combustion and fluidized bed incineration, have been tested for the conversion of solid waste. However, none of these technologies are compatible with microgravity or hypogravity operating conditions. In this paper, we present the gradient magnetically assisted fluidized bed (G-MAFB) as a promising operating platform for fluidized bed operations in the space environment. Our experimental and theoretical work has resulted in both the development of a theoretical model based on fundamental principles for the design of the G-MAFB, and also the practical implementation of the G-MAFB in the filtration and destruction of solid biomass waste particles from liquid streams. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed.
Heo, Hyeon Su; Park, Hyun Ju; Park, Young-Kwon; Ryu, Changkook; Suh, Dong Jin; Suh, Young-Woong; Yim, Jin-Heong; Kim, Seung-Soo
2010-01-01
The amount of waste furniture generated in Korea was over 2.4 million tons in the past 3 years, which can be used for renewable energy or fuel feedstock production. Fast pyrolysis is available for thermo-chemical conversion of the waste wood mostly into bio-oil. In this work, fast pyrolysis of waste furniture sawdust was investigated under various reaction conditions (pyrolysis temperature, particle size, feed rate and flow rate of fluidizing medium) in a fluidized-bed reactor. The optimal pyrolysis temperature for increased yields of bio-oil was 450 degrees C. Excessively smaller or larger feed size negatively affected the production of bio-oil. Higher flow and feeding rates were more effective for the production of bio-oil, but did not greatly affect the bio-oil yields within the tested ranges. The use of product gas as the fluidizing medium had a potential for increased bio-oil yields.
Comparison of attrition test methods: ASTM standard fluidized bed vs jet cup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, R.; Goodwin, J.G. Jr.; Jothimurugesan, K.
2000-05-01
Attrition resistance is one of the key design parameters for catalysts used in fluidized-bed and slurry phase types of reactors. The ASTM fluidized-bed test has been one of the most commonly used attrition resistance evaluation methods; however, it requires the use of 50 g samples--a large amount for catalyst development studies. Recently a test using the jet cup requiring only 5 g samples has been proposed. In the present study, two series of spray-dried iron catalysts were evaluated using both the ASTM fluidized-bed test and a test based on the jet cup to determine this comparability. It is shown thatmore » the two tests give comparable results. This paper, by reporting a comparison of the jet-cup test with the ASTM standard, provides a basis for utilizing the more efficient jet cup with confidence in catalyst attrition studies.« less
Steam reforming of heptane in a fluidized bed membrane reactor
NASA Astrophysics Data System (ADS)
Rakib, Mohammad A.; Grace, John R.; Lim, C. Jim; Elnashaie, Said S. E. H.
n-Heptane served as a model compound to study steam reforming of naphtha as an alternative feedstock to natural gas for production of pure hydrogen in a fluidized bed membrane reactor. Selective removal of hydrogen using Pd 77Ag 23 membrane panels shifted the equilibrium-limited reactions to greater conversion of the hydrocarbons and lower yields of methane, an intermediate product. Experiments were conducted with no membranes, with one membrane panel, and with six panels along the height of the reactor to understand the performance improvement due to hydrogen removal in a reactor where catalyst particles were fluidized. Results indicate that a fluidized bed membrane reactor (FBMR) can provide a compact reformer for pure hydrogen production from a liquid hydrocarbon feedstock at moderate temperatures (475-550 °C). Under the experimental conditions investigated, the maximum achieved yield of pure hydrogen was 14.7 moles of pure hydrogen per mole of heptane fed.
Design and evaluation of fluidized bed heat recovery for diesel engine systems
NASA Technical Reports Server (NTRS)
Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.
1985-01-01
The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Mamoru
The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less
High Pressure Rotary Shaft Sealing Mechanism
Dietle, Lannie; Gobeli, Jeffrey D.
2001-05-08
A laterally translatable pressure staged rotary shaft sealing mechanism having a seal housing with a shaft passage therein being exposed to a fluid pressure P1 and with a rotary shaft being located within the shaft passage. At least one annular laterally translatable seal carrier is provided. First and second annular resilient sealing elements are supported in axially spaced relation by the annular seal carriers and have sealing relation with the rotary shaft. The seal housing and at least one seal carrier define a first pressure staging chamber exposed to the first annular resilient sealing element and a second pressure staging chamber located between and exposed to the first and second annular resilient sealing elements. A first fluid is circulated to the first pressure chamber at a pressure P1, and a second staging pressure fluid is circulated to the second pressure chamber at a fraction of pressure P1 to achieve pressure staging, cooling of the seals. Seal placement provides hydraulic force balancing of the annular seal carriers.
Shi, F.; Hanes, D.M.; Kirby, J.T.; Erikson, L.; Barnard, P.; Eshleman, J.
2011-01-01
The nearshore circulation induced by a focused pattern of surface gravity waves is studied at a beach adjacent to a major inlet with a large ebb tidal shoal. Using a coupled wave and wave-averaged nearshore circulation model, it is found that the nearshore circulation is significantly affected by the heterogeneous wave patterns caused by wave refraction over the ebb tidal shoal. The model is used to predict waves and currents during field experiments conducted near the mouth of San Francisco Bay and nearby Ocean Beach. The field measurements indicate strong spatial variations in current magnitude and direction and in wave height and direction along Ocean Beach and across the ebb tidal shoal. Numerical simulations suggest that wave refraction over the ebb tidal shoal causes wave focusing toward a narrow region at Ocean Beach. Due to the resulting spatial variation in nearshore wave height, wave-induced setup exhibits a strong alongshore nonuniformity, resulting in a dramatic change in the pressure field compared to a simulation with only tidal forcing. The analysis of momentum balances inside the surf zone shows that, under wave conditions with intensive wave focusing, the alongshore pressure gradient associated with alongshore nonuniform wave setup can be a dominant force driving circulation, inducing heterogeneous alongshore currents. Pressure-gradient- forced alongshore currents can exhibit flow reversals and flow convergence or divergence, in contrast to the uniform alongshore currents typically caused by tides or homogeneous waves.
Wang, Ruwei; Liu, Guijian; Sun, Ruoyu; Yousaf, Balal; Wang, Jizhong; Liu, Rongqiong; Zhang, Hong
2018-07-01
The partitioning behavior of polycyclic aromatic hydrocarbons (PAHs) between gaseous and particulate phases from coal-fired power plants (CFPPs) is critically important to predict PAH removal by dust control devices. In this study, 16 US-EPA priority PAHs in gaseous and size-segregated particulate phases at the inlet and outlet of the fabric filter unit (FFs) of a circulating fluidized bed (CFB) boiler were analyzed. The partitioning mechanisms of PAHs between gaseous and particulate phases and in particles of different size classes were investigated. We found that the removal efficiencies of PAHs are 45.59% and 70.67-89.06% for gaseous and particulate phases, respectively. The gaseous phase mainly contains low molecular weight (LMW) PAHs (2- and 3-ring PAHs), which is quite different from the particulate phase that mainly contains medium and high molecular weight (MMW and HMW) PAHs (4- to 6-ring PAHs). The fractions of LMW PAHs show a declining trend with the decrease of particle size. The gas-particle partitioning of PAHs is primarily controlled by organic carbon absorption, in addition, it has a clear dependence on the particle sizes. Plot of log (TPAH/PM) against logD p shows that all slope values were below -1, suggesting that PAHs were mainly adsorbed to particulates. The adsorption effect of PAHs in size-segregated PMs for HMW PAHs is more evident than LMW PAHs. The particle size distributions (PSDs) of individual PAHs show that most of PAHs exhibit bi-model structures, with one mode peaking in the accumulation size range (2.1-1.1 μm) and another mode peaking in coarse size range (5.8-4.7 μm). The intensities of these two peaks vary in function of ring number of PAHs, which is likely attributed to Kelvin effect that the less volatile HMW PAH species preferentially condense onto the finer particulates. The emission factor of PAHs was calculated as 3.53 mg/kg of coal burned, with overall mean EF PAH of 0.55 and 2.98 mg/kg for gaseous and particulate phase, respectively. Moreover, the average emission amount of PAHs for the investigated CFPP was 1016.6 g/day and 371073.6 g/y, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yang, Ming; Bhopale, Veena M; Thom, Stephen R
2015-08-01
An elevation in levels of circulating microparticles (MPs) due to high air pressure exposure and the associated inflammatory changes and vascular injury that occur with it may be due to oxidative stress. We hypothesized that these responses arise due to elevated partial pressures of N2 and not because of high-pressure O2. A comparison was made among high-pressure air, normoxic high-pressure N2, and high-pressure O2 in causing an elevation in circulating annexin V-positive MPs, neutrophil activation, and vascular injury by assessing the leakage of high-molecular-weight dextran in a murine model. After mice were exposed for 2 h to 790 kPa air, there were over 3-fold elevations in total circulating MPs as well as subgroups bearing Ly6G, CD41, Ter119, CD31, and CD142 surface proteins-evidence of neutrophil activation; platelet-neutrophil interaction; and vascular injury to brain, omentum, psoas, and skeletal muscles. Similar changes were found in mice exposed to high-pressure N2 using a gas mixture so that O2 partial pressure was the same as that of ambient air, whereas none of these changes occurred after exposures to 166 kPa O2, the same partial pressure that occurs during high-pressure air exposures. We conclude that N2 plays a central role in intra- and perivascular changes associated with exposure to high air pressure and that these responses appear to be a novel form of oxidative stress. Copyright © 2015 the American Physiological Society.
Performance of the Fluidized Bed Steam Reforming Product Under Hydraulically Unsaturated Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.
2014-05-01
Currently, several candidates for secondary waste immobilization at the Hanford site in the State of Washington, USA are being considered. To demonstrate the durability of the product in the unsaturated Integrated Disposal Facility (IDF) at the site, a series of tests have been performed one of the candidate materials using the Pressurized Unsaturated Flow (PUF) system. The material that was tested was the Fluidized Bed Steam Reformer (FBSR) granular product and the granular product encapsulated in a geopolymer matrix. The FBSR product is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals mostly nepheline,more » sodalite, and nosean. The PUF test method allows for the accelerated weathering of materials, including radioactive waste forms, under hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that most likely will be present at the IDF. The experiments show a trend of decreasing tracer release as a function of time for several of the elements released from the material including Na, Si, Al, and Cs. However, some of the elements, notably I and Re, show a steady release throughout the yearlong test. This result suggests that the release of these minerals from the sodalite cage occurs at a different rate compared with the dissolution of the predominant nepheline phase.« less
Hydrodynamics study on drying of pepper in swirling fluidized bed dryer (SFBD)
NASA Astrophysics Data System (ADS)
Syaif Haron, Nazrul; Hazri Zakaria, Jamal; Faizal Mohideen Batcha, Mohd
2017-08-01
Malaysia is one of the pepper producer with exports quantity reaching more than 90000 tonnes between 2010 until 2016. Drying of pepper is mandatory before their export and at present, pepper was dried by sun drying to reduce cost. This conventional drying method was time consuming and may take four days during rainy season, which retards the production of pepper. This paper proposes the swirling fluidized bed drying (SFBD) method, which was known to have high mixing ability and improved solid-gas contact to shorten the drying time of products. A lab scale SFBD system was constructed to carry out this study. Hydrodynamic study was conducted for three beds loadings of 1.0 kg, 1.4 kg at a drying temperature of 90°C. The SFBD has shown excellent potential to dry the pepper with a relatively short drying time compared to the conventional method. Batch drying for the bed loads studied only took 3 hours of drying time only. It was found that bed higher bed loading of wet pepper requires longer drying time due to higher amount of moisture content in the bed. Four distinct regimes of operation were found during drying in the SFBD and these regimes offer flexibility of operation. The total bed pressure drop was relatively low during drying.
Heat pump employing optimal refrigerant compressor for low pressure ratio applications
Ecker, Amir L.
1982-01-01
What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.
Integration of stripping of fines slurry in a coking and gasification process
DeGeorge, Charles W.
1980-01-01
In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.
NASA Astrophysics Data System (ADS)
Ngoma, Jeff; Philippe, Pierre; Bonelli, Stéphane; Radjaï, Farhang; Delenne, Jean-Yves
2018-05-01
We present here a numerical study dedicated to the fluidization of a submerged granular medium induced by a localized fluid injection. To this end, a two-dimensional (2D) model is used, coupling the lattice Boltzmann method (LBM) with the discrete element method (DEM) for a relevant description of fluid-grains interaction. An extensive investigation has been carried out to analyze the respective influences of the different parameters of our configuration, both geometrical (bed height, grain diameter, injection width) and physical (fluid viscosity, buoyancy). Compared to previous experimental works, the same qualitative features are recovered as regards the general phenomenology including transitory phase, stationary states, and hysteretic behavior. We also present quantitative findings about transient fluidization, for which several dimensionless quantities and scaling laws are proposed, and about the influence of the injection width, from localized to homogeneous fluidization. Finally, the impact of the present 2D geometry is discussed, by comparison to the real three-dimensional (3D) experiments, as well as the crucial role of the prevailing hydrodynamic regime within the expanding cavity, quantified through a cavity Reynolds number, that can presumably explain some substantial differences observed regarding upward expansion process of the fluidized zone when the fluid viscosity is changed.
The role of membrane fluidization in the gel-assisted formation of giant polymersomes
Greene, Adrienne C.; Henderson, Ian M.; Gomez, Andrew; ...
2016-07-13
Polymersomes are being widely explored as synthetic analogs of lipid vesicles based on their enhanced stability and potential uses in a wide variety of applications in (e.g., drug delivery, cell analogs, etc.). Controlled formation of giant polymersomes for use in membrane studies and cell mimetic systems, however, is currently limited by low-yield production methodologies. Here, we describe for the first time, how the size distribution of giant poly(ethylene glycol)-poly(butadiene) (PEO-PBD) polymersomes formed by gel-assisted rehydration may be controlled based on membrane fluidization. We first show that the average diameter and size distribution of PEO-PBD polymersomes may be readily increased bymore » increasing the temperature of the rehydration solution. Further, we describe a correlative relationship between polymersome size and membrane fluidization through the addition of sucrose during rehydration, enabling the formation of PEO-PBD polymersomes with a range of diameters, including giant-sized vesicles (>100 μm). This correlative relationship suggests that sucrose may function as a small molecule fluidizer during rehydration, enhancing polymer diffusivity during formation and increasing polymersome size. Altogether the ability to easily regulate the size of PEO-PBD polymersomes based on membrane fluidity, either through temperature or fluidizers, has broadly applicability in areas including targeted therapeutic delivery and synthetic biology.« less
Mechanical support of total cavopulmonary connection with an axial flow pump.
Riemer, R Kirk; Amir, Gabriel; Reichenbach, Steven H; Reinhartz, Olaf
2005-08-01
Even under optimal circumstances, total cavopulmonary connection is associated with a continuous late risk of death. Hemodynamics are distinctly abnormal, with increased systemic venous pressures and frequent low cardiac output. Our study uses a sheep model of total cavopulmonary connection to test the response to axial flow pump (Thoratec HeartMate II; Thoratec Corporation (Pleasanton, Calif)) support of total cavopulmonary connection, which might be suitable to treat patients with failing Fontan circulation. Eight sheep (42-48 kg) were studied. After pilot studies in 3 animals, 5 underwent both pump-supported and nonsupported total cavopulmonary connection in alternating sequence for up to 2 hours. This was achieved with a 12-mm polytetrafluoroethylene graft from the (distally ligated) superior vena cava to the main pulmonary artery and a cannula placed in the inferior vena cava with an attached 16-mm Dacron graft to the main pulmonary artery. Pressures (arterial, inferior vena cava, left atrium, and pulmonary artery) and flows (ascending aorta and inferior vena cava) were recorded over 1 hour both with unsupported total cavopulmonary connection and after placing an axial flow pump (Thoratec HeartMate II) between the inferior vena caval inflow cannula and the main pulmonary artery. Under nonsupported total cavopulmonary connection circulation, inferior vena caval and aortic blood flow decreased by nearly 50%. Inferior vena caval pressure nearly doubled, whereas arterial pressure decreased by one third. Pulmonary artery pressure became nonpulsatile; however, mean pulmonary artery pressure and left atrial pressure did not change significantly. With pump-supported Fontan circulation, cardiac output, inferior vena caval flow, and arterial pressure returned to baseline. Inferior vena caval pressure decreased to below baseline levels. Mean pulmonary artery pressure and left atrial pressure again remained unchanged. Axial flow pump support from the inferior vena cava to the pulmonary artery can prevent the substantial decrease of aortic flow and pressure associated with total cavopulmonary connection and can reverse its poor hemodynamics. This is a simple model that can be used to further evaluate the potential of mechanical support as a treatment option in failing Fontan circulation.
Wuopio, Jonas; Östgren, Carl Johan; Länne, Toste; Lind, Lars; Ruge, Toralph; Carlsson, Axel C; Larsson, Anders; Nyström, Fredrik H; Ärnlöv, Johan
2018-02-28
Endostatin, cleaved from collagen XVIII in the extracellular matrix, is a promising circulating biomarker for cardiovascular damage. It possesses anti-angiogenic and anti-fibrotic functions and has even been suggested to be involved in blood pressure regulation. Less is known if endostatin levels relate to circadian blood pressure patterns. In the present paper we studied the association between circulating levels of endostatin and nocturnal dipping in blood pressure. We used the CARDIPP-study, a cohort of middle aged, type 2 diabetics (n = 593, 32% women), with data on both 24-hour and office blood pressure, serum-endostatin, cardiovascular risk factors, and incident major cardiovascular events. Nocturnal dipping was defined as a >10% difference between day- and night-time blood pressures. Two-hundred four participants (34%) were classified as non-dippers. The mean endostatin levels were significantly higher in non-dippers compared to dippers (mean ± standard deviation: 62.6 ± 1.8 µg/l vs. 58.7 ± 1.6 µg/l, respectively, p = .007). Higher serum levels of endostatin were associated with a diminished decline in nocturnal blood pressure adjusted for age, sex, HbA1c, mean systolic day blood pressure, hypertension treatment, glomerular filtration rate, and prevalent cardiovascular disease (regression coefficient per SD increase of endostatin -0.01, 95% CI, -0.02-(-0.001), p = .03). Structural equation modelling analyses suggest that endostatin mediates 7% of the association between non-dipping and major cardiovascular events. We found an independent association between higher circulating levels of endostatin and a reduced difference between day- and night-time systolic blood pressure in patients with type 2 diabetes. Yet endostatin mediated only a small portion of the association between non-dipping and cardiovascular events arguing against a clinical utility of our findings.