Sample records for circulating red cells

  1. Neocytolysis: physiological down-regulator of red-cell mass

    NASA Technical Reports Server (NTRS)

    Alfrey, C. P.; Rice, L.; Udden, M. M.; Driscoll, T. B.

    1997-01-01

    It is usually considered that red-cell mass is controlled by erythropoietin-driven bone marrow red-cell production, and no physiological mechanisms can shorten survival of circulating red cells. In adapting to acute plethora in microgravity, astronauts' red-cell mass falls too rapidly to be explained by diminished red-cell production. Ferrokinetics show no early decline in erythropolesis, but red cells radiolabelled 12 days before launch survive normally. Selective destruction of the youngest circulating red cells-a process we call neocytolysis-is the only plausible explanation. A fall in erythropoietin below a threshold is likely to initiate neocytolysis, probably by influencing surface-adhesion molecules. Recognition of neocytolysis will require re-examination of the pathophysiology and treatment of several blood disorders, including the anaemia of renal disease.

  2. Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia.

    PubMed

    Boas, F E; Forman, L; Beutler, E

    1998-03-17

    Phosphatidylserine (PS) normally localizes to the inner leaflet of cell membranes but becomes exposed in abnormal or apoptotic cells, signaling macrophages to ingest them. Along similar lines, it seemed possible that the removal of red cells from circulation because of normal aging or in hemolytic anemias might be triggered by PS exposure. To investigate the role of PS exposure in normal red cell aging, we used N-hydroxysuccinimide-biotin to tag rabbit red cells in vivo, then used phycoerythrin-streptavidin to label the biotinylated cells, and annexin V-fluorescein isothiocyanate (FITC) to detect the exposed PS. Flow cytometric analysis of these cells drawn at 10-day intervals up to 70 days after biotinylation indicated that older, biotinylated cells expose more PS. Furthermore, our data match a simple model of red cell senescence that assumes both an age-dependent destruction of senescent red cells preceded by several hours of PS exposure and a random destruction of red cells without PS exposure. By using this model, we demonstrated that the exposure of PS parallels the rate at which biotinylated red cells are removed from circulation. On the other hand, using an annexin V-FITC label and flow cytometry demonstrates that exposed PS does not cause the reduced red cell life span of patients with hemolytic anemia, with the possible exception of those with unstable hemoglobins or sickle cell anemia. Thus, in some cases PS exposure on the cell surface may signal the removal of red cells from circulation, but in other cases some other signal must trigger the sequestration of cells.

  3. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells

    PubMed Central

    Mairbäurl, Heimo

    2013-01-01

    During exercise the cardiovascular system has to warrant substrate supply to working muscle. The main function of red blood cells in exercise is the transport of O2 from the lungs to the tissues and the delivery of metabolically produced CO2 to the lungs for expiration. Hemoglobin also contributes to the blood's buffering capacity, and ATP and NO release from red blood cells contributes to vasodilation and improved blood flow to working muscle. These functions require adequate amounts of red blood cells in circulation. Trained athletes, particularly in endurance sports, have a decreased hematocrit, which is sometimes called “sports anemia.” This is not anemia in a clinical sense, because athletes have in fact an increased total mass of red blood cells and hemoglobin in circulation relative to sedentary individuals. The slight decrease in hematocrit by training is brought about by an increased plasma volume (PV). The mechanisms that increase total red blood cell mass by training are not understood fully. Despite stimulated erythropoiesis, exercise can decrease the red blood cell mass by intravascular hemolysis mainly of senescent red blood cells, which is caused by mechanical rupture when red blood cells pass through capillaries in contracting muscles, and by compression of red cells e.g., in foot soles during running or in hand palms in weightlifters. Together, these adjustments cause a decrease in the average age of the population of circulating red blood cells in trained athletes. These younger red cells are characterized by improved oxygen release and deformability, both of which also improve tissue oxygen supply during exercise. PMID:24273518

  4. Red blood cell decreases of microgravity

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1985-01-01

    Postflight decreases in red blood cell mass (RBCM) have regularly been recorded after exposure to microgravity. These 5-25 percent decreases do not relate to the mission duration, workload, caloric intake or to the type of spacecraft used. The decrease is accompanied by normal red cell survivals, increased ferritin levels, normal radioactive iron studies, and increases in mean red blood cell volume. Comparable decreases in red blood cell mass are not found after bed rest, a commonly used simulation of the microgravity state. Inhibited bone marrow erythropoiesis has not been proven to date, although reticulocyte numbers in the peripheral circulation are decreased about 50 percent. To date, the cause of the microgravity induced decreases in RBCM is unknown. Increased splenic trapping of circulating red blood cells seem the most logical way to explain the results obtained.

  5. Hematology and immunology studies - The second manned Skylab mission

    NASA Technical Reports Server (NTRS)

    Kimzey, S. L.; Johnson, P. C.; Ritzman, S. E.; Mengel, C. E.

    1976-01-01

    The hematologic and immunologic functions of the Skylab 3 astronauts were monitored during the preflight, inflight, and postflight phases of the mission. Plasma protein profiles showed high consistency in all phases. A transient suppression of lymphocyte responsiveness was observed postflight. A reduction in the circulating blood volume due to drops in both the plasma volume and red cell mass was found. The loss of red cell mass is most likely a suppressed erythrypoiesis. The functional integrity of the circulating red cells did not appear to be compromised in the course of flight.

  6. What Is Blood?

    MedlinePlus

    ... Blood / What is Blood? WHERE CAN I DONATE? Blood is the red fluid that circulates in our blood vessels, i. ... cells, white blood cells, and platelets. The remainder is a fluid called plasma. Blood cells are produced in bone marrow. Red cells, white cells and platelets are made in ...

  7. Red blood cell and iron metabolism during space flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2002-01-01

    Space flight anemia is a widely recognized phenomenon in astronauts. Reduction in circulating red blood cells and plasma volume results in a 10% to 15% decrement in circulatory volume. This effect appears to be a normal physiologic adaptation to weightlessness and results from the removal of newly released blood cells from the circulation. Iron availability increases, and (in the few subjects studied) iron stores increase during long-duration space flight. The consequences of these changes are not fully understood.

  8. NMDA Receptor Activity in Circulating Red Blood Cells: Methods of Detection.

    PubMed

    Makhro, Asya; Kaestner, Lars; Bogdanova, Anna

    2017-01-01

    Abundance and activity of N-methyl-D-aspartate (NMDA) in circulating red blood cells contributes to the maintenance of intracellular Ca 2+ in these cells and, by doing that, controls red cell volume, membrane stability, and O 2 carrying capacity. Detection of the NMDA receptor activity in red blood cells is challenging as the number of its copies is low and shows substantial cell-to-cell heterogeneity. Receptor abundance is reliably assessed using the radiolabeled antagonist ([ 3 H]MK-801) binding technique. Uptake of Ca 2+ following the NMDA receptor activation is detected in cells loaded with Ca 2+ -sensitive fluorescent dye Fluo-4 AM. Both microfluorescence live-cell imaging and flow cytometry may be used for fluorescence intensity detection. Automated patch clamp is currently used for recording of electric currents triggered by the stimulation of the NMDA receptor. These currents are mediated by the Ca 2+ -sensitive K + (Gardos) channels that open upon Ca 2+ uptake via the active NMDA receptor. Furthermore, K + flux through the Gardos channels induced by the NMDA receptor stimulation in red blood cells may be detected using unidirectional K + ( 86 Rb + ) influx.

  9. The negative regulation of red cell mass by neocytolysis: physiologic and pathophysiologic manifestations.

    PubMed

    Rice, Lawrence; Alfrey, Clarence P

    2005-01-01

    We have uncovered a physiologic process which negatively regulates the red cell mass by selectively hemolyzing young circulating red blood cells. This allows fine control of the number of circulating red blood cells under steady-state conditions and relatively rapid adaptation to new environments. Neocytolysis is initiated by a fall in erythropoietin levels, so this hormone remains the major regulator of red cell mass both with anemia and with red cell excess. Physiologic situations in which there is increased neocytolysis include the emergence of newborns from the hypoxic uterine environment and the descent of polycythemic high-altitude dwellers to sea level. The process first became apparent while investigating the mechanism of the anemia that invariably occurs after spaceflight. Astronauts experience acute central plethora on entering microgravity resulting in erythropoietin suppression and neocytolysis, but the reduced blood volume and red cell mass become suddenly maladaptive on re-entry to earth's gravity. The pathologic erythropoietin deficiency of renal disease precipitates neocytolysis, which explains the prolongation of red cell survival consistently resulting from erythropoietin therapy and points to optimally efficient erythropoietin dosing schedules. Implications should extend to a number of other physiologic and pathologic situations including polycythemias, hemolytic anemias, 'blood-doping' by elite athletes, and oxygen therapy. It is likely that erythropoietin influences endothelial cells which in turn signal reticuloendothelial phagocytes to destroy or permit the survival of young red cells marked by surface molecules. Ongoing studies to identify the molecular targets and cytokine intermediaries should facilitate detection, dissection and eventual therapeutic manipulation of the process. Copyright (c) 2005 S. Karger AG, Basel.

  10. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles

    PubMed Central

    Merkel, Timothy J.; Jones, Stephen W.; Herlihy, Kevin P.; Kersey, Farrell R.; Shields, Adam R.; Napier, Mary; Luft, J. Christopher; Wu, Huali; Zamboni, William C.; Wang, Andrew Z.; Bear, James E.; DeSimone, Joseph M.

    2011-01-01

    It has long been hypothesized that elastic modulus governs the biodistribution and circulation times of particles and cells in blood; however, this notion has never been rigorously tested. We synthesized hydrogel microparticles with tunable elasticity in the physiological range, which resemble red blood cells in size and shape, and tested their behavior in vivo. Decreasing the modulus of these particles altered their biodistribution properties, allowing them to bypass several organs, such as the lung, that entrapped their more rigid counterparts, resulting in increasingly longer circulation times well past those of conventional microparticles. An 8-fold decrease in hydrogel modulus correlated to a greater than 30-fold increase in the elimination phase half-life for these particles. These results demonstrate a critical design parameter for hydrogel microparticles. PMID:21220299

  11. A mathematical and experimental simulation of the hematological response to weightlessness

    NASA Technical Reports Server (NTRS)

    Kimzey, S. L.; Leonard, J. I.; Johnson, P. C.

    1979-01-01

    A mathematical model of erythropoiesis control was used to simulate the effects of bedrest and zero-g on the circulating red cell mass. The model incorporates the best current understanding of the dynamics of red cell production and destruction and the associated feedback regulation. Specifically studied were the hemodynamic responses of a 28-day bedrest study devised to simulate Skylab experience. The results support the hypothesis that red cell loss during supine bedrest is a normal physiological feedback process in response to hemoconcentration enhanced tissue oxygenation and suppression of red cell production. Model simulation suggested the possibilities that this period was marked by some combination of increased oxygen-hemoglobin affinity, small reduction in mean red cell life span, ineffective erythropoiesis, or abnormal reticulocytosis.

  12. Stochastic simulation of human pulmonary blood flow and transit time frequency distribution based on anatomic and elasticity data.

    PubMed

    Huang, Wei; Shi, Jun; Yen, R T

    2012-12-01

    The objective of our study was to develop a computing program for computing the transit time frequency distributions of red blood cell in human pulmonary circulation, based on our anatomic and elasticity data of blood vessels in human lung. A stochastic simulation model was introduced to simulate blood flow in human pulmonary circulation. In the stochastic simulation model, the connectivity data of pulmonary blood vessels in human lung was converted into a probability matrix. Based on this model, the transit time of red blood cell in human pulmonary circulation and the output blood pressure were studied. Additionally, the stochastic simulation model can be used to predict the changes of blood flow in human pulmonary circulation with the advantage of the lower computing cost and the higher flexibility. In conclusion, a stochastic simulation approach was introduced to simulate the blood flow in the hierarchical structure of a pulmonary circulation system, and to calculate the transit time distributions and the blood pressure outputs.

  13. Red Blood Cell Volume, Plasma Volume and Total Blood Volume in Healthy Elderly Men and Women Aged 64 to 100

    DTIC Science & Technology

    1992-05-06

    Robert Valeri, Linda E. Pivacek, Hiliary Siebens, and Mark D. Altschule ». PERFORMING ORGANIZATION NAME AND AOORESS Naval Blood Research Laboratory...Gibson JG, Peacock WC, Seligman AM, Sack T: Circulating red cell volume measured simultaneously by the radioactive iron and dye methods. J Clin

  14. In vivo cell tracking and quantification method in adult zebrafish

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Alt, Clemens; Li, Pulin; White, Richard M.; Zon, Leonard I.; Wei, Xunbin; Lin, Charles P.

    2012-03-01

    Zebrafish have become a powerful vertebrate model organism for drug discovery, cancer and stem cell research. A recently developed transparent adult zebrafish using double pigmentation mutant, called casper, provide unparalleled imaging power in in vivo longitudinal analysis of biological processes at an anatomic resolution not readily achievable in murine or other systems. In this paper we introduce an optical method for simultaneous visualization and cell quantification, which combines the laser scanning confocal microscopy (LSCM) and the in vivo flow cytometry (IVFC). The system is designed specifically for non-invasive tracking of both stationary and circulating cells in adult zebrafish casper, under physiological conditions in the same fish over time. The confocal imaging part in this system serves the dual purposes of imaging fish tissue microstructure and a 3D navigation tool to locate a suitable vessel for circulating cell counting. The multi-color, multi-channel instrument allows the detection of multiple cell populations or different tissues or organs simultaneously. We demonstrate initial testing of this novel instrument by imaging vasculature and tracking circulating cells in CD41: GFP/Gata1: DsRed transgenic casper fish whose thrombocytes/erythrocytes express the green and red fluorescent proteins. Circulating fluorescent cell incidents were recorded and counted repeatedly over time and in different types of vessels. Great application opportunities in cancer and stem cell researches are discussed.

  15. Circulating levels of cell-derived microparticles are reduced by mild hypobaric hypoxia: data from a randomised controlled trial.

    PubMed

    Ayers, Lisa; Stoewhas, Anne-Christin; Ferry, Berne; Latshang, Tsogyal D; Lo Cascio, Christian M; Sadler, Ross; Stadelmann, Katrin; Tesler, Noemi; Huber, Reto; Achermann, Peter; Bloch, Konrad E; Kohler, Malcolm

    2014-05-01

    Hypoxia is known to induce the release of microparticles in vitro. However, few publications have addressed the role of hypoxia in vivo on circulating levels of microparticles. This randomised, controlled, crossover trial aimed to determine the effect of mild hypoxia on in vivo levels of circulating microparticles in healthy individuals. Blood was obtained from 51 healthy male volunteers (mean age of 26.9 years) at baseline altitude (490 m) and after 24 and 48 h at moderate altitude (2,590 m). The order of altitude exposure was randomised. Flow cytometry was used to assess platelet-poor plasma for levels of circulating microparticles derived from platelets, endothelial cells, leucocytes, granulocytes, monocytes, red blood cells and procoagulant microparticles. Mean (standard deviation) oxygen saturation was significantly lower on the first and second day after arrival at 2,590 m, 91.0 (2.0) and 92.0 (2.0) %, respectively, compared to 490 m, 96 (1.0) %, p < 0.001 for both comparisons. A significant decrease in the levels of procoagulant microparticles (annexin V+ -221/μl 95 % CI -370.8/-119.0, lactadherin+ -202/μl 95 % CI -372.2/-93.1), platelet-derived microparticles (-114/μl 95 % CI -189.9/-51.0) and red blood cell-derived microparticles (-81.4 μl 95 % CI -109.9/-57.7) after 48 h at moderate altitude was found. Microparticles derived from endothelial cells, granulocytes, monocytes and leucocytes were not significantly altered by exposure to moderate altitude. In healthy male individuals, mild hypobaric hypoxia, induced by a short-term stay at moderate altitude, is associated with lower levels of procoagulant microparticles, platelet-derived microparticles and red blood cell-derived microparticles, suggesting a reduction in thrombotic potential.

  16. 21 CFR 864.5200 - Automated cell counter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....5200 Automated cell counter. (a) Identification. An automated cell counter is a fully-automated or semi-automated device used to count red blood cells, white blood cells, or blood platelets using a sample of the patient's peripheral blood (blood circulating in one of the body's extremities, such as the arm). These...

  17. 21 CFR 864.5200 - Automated cell counter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....5200 Automated cell counter. (a) Identification. An automated cell counter is a fully-automated or semi-automated device used to count red blood cells, white blood cells, or blood platelets using a sample of the patient's peripheral blood (blood circulating in one of the body's extremities, such as the arm). These...

  18. 21 CFR 864.5200 - Automated cell counter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....5200 Automated cell counter. (a) Identification. An automated cell counter is a fully-automated or semi-automated device used to count red blood cells, white blood cells, or blood platelets using a sample of the patient's peripheral blood (blood circulating in one of the body's extremities, such as the arm). These...

  19. 21 CFR 864.5200 - Automated cell counter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....5200 Automated cell counter. (a) Identification. An automated cell counter is a fully-automated or semi-automated device used to count red blood cells, white blood cells, or blood platelets using a sample of the patient's peripheral blood (blood circulating in one of the body's extremities, such as the arm). These...

  20. In vivo multispectral photoacoustic and photothermal flow cytometry with multicolor dyes: a potential for real-time assessment of circulation, dye-cell interaction, and blood volume

    PubMed Central

    Proskurnin, Mikhail A.; Zhidkova, Tatyana V.; Volkov, Dmitry S.; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I.; Mock, Donald; Zharov, Vladimir P.

    2011-01-01

    Recently, photoacoustic (PA) flow cytometry (PAFC) has been developed for in vivo detection of circulating tumor cells and bacteria targeted by nanoparticles. Here, we propose multispectral PAFC with multiple dyes having distinctive absorption spectra as multicolor PA contrast agents. As a first step of our proof-of-concept, we characterized high-speed PAFC capability to monitor the clearance of three dyes (ICG, MB, and TB) in an animal model in vivo and in real time. We observed strong dynamic PA signal fluctuations, which can be associated with interactions of dyes with circulating blood cells and plasma proteins. PAFC demonstrated enumeration of circulating red and white blood cells labeled with ICG and MB, respectively, and detection of rare dead cells uptaking TB directly in bloodstream. The possibility for accurate measurements of various dye concentrations including CV and BG were verified in vitro using complementary to PAFC photothermal (PT) technique and spectrophotometry under batch and flow conditions. We further analyze the potential of integrated PAFC/PT spectroscopy with multiple dyes for rapid and accurate measurements of circulating blood volume without a priori information on hemoglobin content, which is impossible with existing optical techniques. This is important in many medical conditions including surgery and trauma with extensive blood loss, rapid fluid administration, transfusion of red blood cells. The potential for developing a robust clinical PAFC prototype that is, safe for human, and its applications for studying the liver function are further highlighted. PMID:21905207

  1. The absolute counting of red cell-derived microparticles with red cell bead by flow rate based assay.

    PubMed

    Nantakomol, Duangdao; Imwong, Malika; Soontarawirat, Ingfar; Kotjanya, Duangporn; Khakhai, Chulalak; Ohashi, Jun; Nuchnoi, Pornlada

    2009-05-01

    Activation of red blood cell is associated with the formation of red cell-derived microparticles (RMPs). Analysis of circulating RMPs is becoming more refined and clinically useful. A quantitative Trucount tube method is the conventional method uses for quantitating RMPs. In this study, we validated a quantitative method called "flow rate based assay using red cell bead (FCB)" to measure circulating RMPs in the peripheral blood of healthy subjects. Citrated blood samples collected from 30 cases of healthy subjects were determined the RMPs count by using double labeling of annexin V-FITC and anti-glycophorin A-PE. The absolute RMPs numbers were measured by FCB, and the results were compared with the Trucount or with flow rate based calibration (FR). Statistical correlation and agreement were analyzed using linear regression and Bland-Altman analysis. There was no significant difference in the absolute number of RMPs quantitated by FCB when compared with those two reference methods including the Trucount tube and FR method. The absolute RMPs count obtained from FCB method was highly correlated with those obtained from Trucount tube (r(2) = 0.98, mean bias 4 cell/microl, limit of agreement [LOA] -20.3 to 28.3 cell/microl), and FR method (r(2) = 1, mean bias 10.3 cell/microl, and LOA -5.5 to 26.2 cell/microl). This study demonstrates that FCB is suitable and more affordable for RMPs quantitation in the clinical samples. This method is a low cost and interchangeable to latex bead-based method for generating the absolute counts in the resource-limited areas. (c) 2008 Clinical Cytometry Society.

  2. Superior survival of ex vivo cultured human reticulocytes following transfusion into mice.

    PubMed

    Kupzig, Sabine; Parsons, Stephen F; Curnow, Elinor; Anstee, David J; Blair, Allison

    2017-03-01

    The generation of cultured red blood cells from stem cell sources may fill an unmet clinical need for transfusion-dependent patients, particularly in countries that lack a sufficient and safe blood supply. Cultured red blood cells were generated from human CD34 + cells from adult peripheral blood or cord blood by ex vivo expansion, and a comprehensive in vivo survival comparison with standard red cell concentrates was undertaken. Significant amplification (>10 5 -fold) was achieved using CD34 + cells from both cord blood and peripheral blood, generating high yields of enucleated cultured red blood cells. Following transfusion, higher levels of cultured red cells could be detected in the murine circulation compared to standard adult red cells. The proportions of cultured blood cells from cord or peripheral blood sources remained high 24 hours post-transfusion (82±5% and 78±9%, respectively), while standard adult blood cells declined rapidly to only 49±9% by this time. In addition, the survival time of cultured blood cells in mice was longer than that of standard adult red cells. A paired comparison of cultured blood cells and standard adult red blood cells from the same donor confirmed the enhanced in vivo survival capacity of the cultured cells. The study herein represents the first demonstration that ex vivo generated cultured red blood cells survive longer than donor red cells using an in vivo model that more closely mimics clinical transfusion. Cultured red blood cells may offer advantages for transfusion-dependent patients by reducing the number of transfusions required. Copyright© Ferrata Storti Foundation.

  3. Time-resolved optical spectroscopic quantification of red blood cell damage caused by cardiovascular devices

    NASA Astrophysics Data System (ADS)

    Sakota, D.; Sakamoto, R.; Sobajima, H.; Yokoyama, N.; Yokoyama, Y.; Waguri, S.; Ohuchi, K.; Takatani, S.

    2008-02-01

    Cardiovascular devices such as heart-lung machine generate un-physiological level of shear stress to damage red blood cells, leading to hemolysis. The diagnostic techniques of cell damages, however, have not yet been established. In this study, the time-resolved optical spectroscopy was applied to quantify red blood cell (RBC) damages caused by the extracorporeal circulation system. Experimentally, the fresh porcine blood was subjected to varying degrees of shear stress in the rotary blood pump, followed with measurement of the time-resolved transmission characteristics using the pico-second pulses at 651 nm. The propagated optical energy through the blood specimen was detected using a streak camera. The data were analyzed in terms of the mean cell volume (MCV) and mean cell hemoglobin concentration (MCHC) measured separately versus the energy and propagation time of the light pulses. The results showed that as the circulation time increased, the MCV increased with decrease in MCHC. It was speculated that the older RBCs with smaller size and fragile membrane properties had been selectively destroyed by the shear stress. The time-resolved optical spectroscopy is a useful technique in quantifying the RBCs' damages by measuring the energy and propagation time of the ultra-short light pulses through the blood.

  4. In vivo multispectral photoacoustic and photothermal flow cytometry with multicolor dyes: a potential for real-time assessment of circulation, dye-cell interaction, and blood volume.

    PubMed

    Proskurnin, Mikhail A; Zhidkova, Tatyana V; Volkov, Dmitry S; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I; Mock, Donald; Nedosekin, Dmitry A; Zharov, Vladimir P

    2011-10-01

    Recently, photoacoustic (PA) flow cytometry (PAFC) has been developed for in vivo detection of circulating tumor cells and bacteria targeted by nanoparticles. Here, we propose multispectral PAFC with multiple dyes having distinctive absorption spectra as multicolor PA contrast agents. As a first step of our proof-of-concept, we characterized high-speed PAFC capability to monitor the clearance of three dyes (Indocyanine Green [ICG], Methylene Blue [MB], and Trypan Blue [TB]) in an animal model in vivo and in real time. We observed strong dynamic PA signal fluctuations, which can be associated with interactions of dyes with circulating blood cells and plasma proteins. PAFC demonstrated enumeration of circulating red and white blood cells labeled with ICG and MB, respectively, and detection of rare dead cells uptaking TB directly in bloodstream. The possibility for accurate measurements of various dye concentrations including Crystal Violet and Brilliant Green were verified in vitro using complementary to PAFC photothermal (PT) technique and spectrophotometry under batch and flow conditions. We further analyze the potential of integrated PAFC/PT spectroscopy with multiple dyes for rapid and accurate measurements of circulating blood volume without a priori information on hemoglobin content, which is impossible with existing optical techniques. This is important in many medical conditions including surgery and trauma with extensive blood loss, rapid fluid administration, and transfusion of red blood cells. The potential for developing a robust clinical PAFC prototype that is safe for human, and its applications for studying the liver function are further highlighted. Copyright © 2011 International Society for Advancement of Cytometry.

  5. Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis.

    PubMed

    Hyun, Kyung-A; Jung, Hyo-Il

    2013-04-01

    Circulating rare cells have attracted interest because they can be good indicators of various types of diseases. For example, enumeration of circulating tumor cells is used for cancer diagnosis and prognosis, while DNA analysis or enumeration of nucleated red blood cells is useful for prenatal diagnosis or hypoxic anemia, and that of circulating stem cells to diagnose cancer metastasis. Isolation of these cells and their downstream analyses can provide significant information such as the origin and characteristics of a disease. Novel approaches based on microfluidics have many advantages, including the continuous process and integration with other components for analysis. For these reasons, a variety of microfluidic devices have been developed to isolate and characterize rare cells. In this article, we review several microfluidic devices, with a focus on affinity-based isolation (e.g. antigen-antibody reaction) and label-free separation (DEP and hydrophoresis). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Measurement of red blood cell mechanics during morphological changes

    PubMed Central

    Park, YongKeun; Best, Catherine A.; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.; Kuriabova, Tatiana; Henle, Mark L.; Levine, Alex J.; Popescu, Gabriel

    2010-01-01

    The human red blood cell (RBC) membrane, a fluid lipid bilayer tethered to an elastic 2D spectrin network, provides the principal control of the cell’s morphology and mechanics. These properties, in turn, influence the ability of RBCs to transport oxygen in circulation. Current mechanical measurements of RBCs rely on external loads. Here we apply a noncontact optical interferometric technique to quantify the thermal fluctuations of RBC membranes with 3 nm accuracy over a broad range of spatial and temporal frequencies. Combining this technique with a new mathematical model describing RBC membrane undulations, we measure the mechanical changes of RBCs as they undergo a transition from the normal discoid shape to the abnormal echinocyte and spherical shapes. These measurements indicate that, coincident with this morphological transition, there is a significant increase in the membrane’s shear, area, and bending moduli. This mechanical transition can alter cell circulation and impede oxygen delivery. PMID:20351261

  7. Born-again spleen. Return of splenic function after splenectomy for trauma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, H.A.; Johnston, D.; Smith, K.A.

    1978-06-22

    We assessed splenic activity after splenectomy by interference phase microscopical examination of circulating red cells. Normal eusplenic children had a low number (<1%) of red cells with surface indentations or pits. About 20% of red cells of children who had electively been subjected to splenectomy for hematologic indications were pitted. Thirteen of 22 children who had had emergency splenectomy because of traumatic injury had a low percentage of pitted red cells, suggesting a return of splenic function. In five of these children a /sup 99m/Tc sulfur colloid scan demonstrated multiple nodules of recurrent splenic tissue. In contrast to the prevailingmore » opinion that splenosis is rare, we have found it to be a frequent occurrence. Return of splenic function may, in part, account for the low frequency with which overwhelming bacterial sepsis and meningitis have been documented after splenectomy for traumatic indications.« less

  8. Normalized levels of red blood cells expressing phosphatidylserine, their microparticles, and activated platelets in young patients with β-thalassemia following bone marrow transplantation.

    PubMed

    Klaihmon, Phatchanat; Vimonpatranon, Sinmanus; Noulsri, Egarit; Lertthammakiat, Surapong; Anurathapan, Usanarat; Sirachainan, Nongnuch; Hongeng, Suradej; Pattanapanyasat, Kovit

    2017-10-01

    Bone marrow transplantation (BMT) serves as the only curative treatment for patients with β-thalassemia major; however, hemostatic changes have been observed in these BMT patients. Aggregability of thalassemic red blood cells (RBCs) and increased red blood cell-derived microparticles (RMPs) expressing phosphatidylserine (PS) are thought to participate in thromboembolic events by initially triggering platelet activation. To our knowledge, there has been no report providing quantitation of these circulating PS-expressing RBCs and RMPs in young β-thalassemia patients after BMT. Whole blood from each subject was fluorescently labeled to detect RBC markers (CD235a) and annexin-V together with the known number TruCount™ beads. PS-expressing RBCs, RMPs, and activated platelets were identified by flow cytometry. In our randomized study, we found the decreased levels of three aforementioned factors compared to levels in patients receiving regular blood transfusion (RT). This study showed that BMT in β-thalassemia patients decreases the levels of circulating PS-expressing RBCs, their MPs, and procoagulant platelets when compared to patients who received RT. Normalized levels of these coagulation markers may provide the supportive evidence of the effectiveness of BMT for curing thalassemia.

  9. Toll-like receptor expression and function differ between splenic marginal zone B cell lymphoma and splenic diffuse red pulp B cell lymphoma

    PubMed Central

    Verney, Aurélie; Traverse-Glehen, Alexandra; Callet-Bauchu, Evelyne; Jallades, Laurent; Magaud, Jean-Pierre; Salles, Gilles; Genestier, Laurent; Baseggio, Lucile

    2018-01-01

    In splenic marginal zone lymphoma (SMZL), specific and functional Toll-like Receptor (TLR) patterns have been recently described, suggesting their involvement in tumoral proliferation. Splenic diffuse red pulp lymphoma with villous lymphocytes (SDRPL) is close to but distinct from SMZL, justifying here the comparison of TLR patterns and functionality in both entities. Distinct TLR profiles were observed in both lymphoma subtypes. SDRPL B cells showed higher expression of TLR7 and to a lesser degree TLR9, in comparison to SMZL B cells. In both entities, TLR7 and TLR9 pathways appeared functional, as shown by IL-6 production upon TLR7 and TLR9 agonists stimulations. Interestingly, circulating SDRPL, but not SMZL B cells, constitutively expressed CD86. In addition, stimulation with both TLR7 and TLR9 agonists significantly increased CD80 expression in circulating SDRPL but not SMZL B cells. Finally, TLR7 and TLR9 stimulations had no impact on proliferation and apoptosis of SMZL or SDRPL B cells. In conclusion, SMZL and SDRPL may derive from different splenic memory B cells with specific immunological features that can be used as diagnosis markers in the peripheral blood.

  10. Red blood cells aggregability measurement of coagulating blood in extracorporeal circulation system with multiple-frequency electrical impedance spectroscopy.

    PubMed

    Li, Jianping; Sapkota, Achyut; Kikuchi, Daisuke; Sakota, Daisuke; Maruyama, Osamu; Takei, Masahiro

    2018-07-30

    Red blood cells (RBCs) aggregability A G of coagulating blood in extracorporeal circulation system has been investigated under the condition of pulsatile flow. Relaxation frequency f c from the multiple-frequency electrical impedance spectroscopy is utilized to obtain RBCs aggregability A G . Compared with other methods, the proposed multiple-frequency electrical impedance method is much easier to obtain non-invasive measurement with high speed and good penetrability performance in biology tissues. Experimental results show that, RBCs aggregability A G in coagulating blood falls down with the thrombus formation while that in non-coagulation blood almost keeps the same value, which has a great agreement with the activated clotting time (ACT) fibrinogen concertation (F bg ) tests. Modified Hanai formula is proposed to quantitatively analyze the influence of RBCs aggregation on multiple-frequency electrical impedance measurement. The reduction of RBCs aggregability A G is associated with blood coagulation reaction, which indicates the feasibility of the high speed, compact and cheap on-line thrombus measurement biosensors in extracorporeal circulation systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Simultaneous determination of hemolysis and hematocrit in extracorporeal circulation by plasma surface reflectance spectroscopy.

    PubMed

    Sakota, Daisuke; Kani, Yuki; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu

    2013-01-01

    To achieve quantitative non-invasive optical diagnosis of blood abnormalities during extracorporeal circulation therapies, plasma surface reflectance spectroscopy was developed by implementing oblique-incidence optical fiber reflectometry on the surface of circulating blood. The reflected light in the wavelength range from 450 to 600 nm changed with respect to the plasma free hemoglobin level and could be used to quantify the free hemoglobin at an accuracy of 5.7 ± 3.5 mg/dL. In contrast, the spectrum did not changed by varying the hematocrit. In the wavelength range from 600 to 800 nm, the obtained spectrum was affected by both the hematocrit change and hemolysis. The linear correlation between the hematocrit value and the spectrum was confirmed at R(2) = 0.99. The feasibility of determining of the hematocrit of arbitrary hemolyzed blood was confirmed. The developed system permits the extraction of the optical characteristics of both plasma and red blood cells without centrifugation. The study establishes non-invasive optical diagnostics capable of analyzing the optical properties of both plasma and red blood cells.

  12. Reduced progression of atherosclerosis in apolipoprotein E-deficient mice with phenylhydrazine-induced anemia.

    PubMed

    Paul, A; Calleja, L; Vilella, E; Martínez, R; Osada, J; Joven, J

    1999-11-01

    Epidemiological and experimental studies suggest that circulating erythrocytes play a role in the incidence of coronary heart disease. We investigated the influence of phenylhydrazine (PHZ)-induced anemia on the formation of atherosclerotic lesions in apo E-deficient mice on regular chow and on a high-fat, high-cholesterol diet during 10 weeks. The repeated doses of PHZ caused sustained anemia throughout the study, changes in the physical characteristics of erythrocytes and increased reticulocyte count. The lesions of the anemic animals were smaller than in the controls and this was even more evident in mice fed with the atherogenic diet. A positive correlation was found between circulating red blood cells at the end of the experiment and the area of aortic lesion. There was also a negative association between the lesion and the reticulocyte count. This reduced progression of atherosclerotic lesions is independent of nutritional status or the lipoprotein cholesterol distribution. The results suggest that mechanisms related to the number of circulating red blood cells may have a significant influence on the development of atherosclerosis.

  13. Some potential blood flow experiments for space

    NASA Technical Reports Server (NTRS)

    Cokelet, G. R.; Meiselman, H. J.; Goldsmith, H. L.

    1979-01-01

    Blood is a colloidal suspension of cells, predominantly erythrocytes, (red cells) in an aqueous solution called plasma. Because the red cells are more dense than the plasma, and because they tend to aggregate, erythrocyte sedimentation can be significant when the shear stresses in flowing blood are small. This behavior, coupled with equipment restrictions, has prevented certain definitive fluid mechanical studies from being performed with blood in ground-based experiments. Among such experiments, which could be satisfactorily performed in a microgravity environment, are the following: (1) studies of blood flow in small tubes, to obtain pressure-flow rate relationships, to determine if increased red cell aggregation can be an aid to blood circulation, and to determine vessel entrance lengths, and (2) studies of blood flow through vessel junctions (bifurcations), to obtain information on cell distribution in downstream vessels of (arterial) bifurcations, and to test flow models of stratified convergent blood flows downstream from (venous) bifurcations.

  14. Rare problems with RhD immunoglobulin for postnatal prophylaxis after large fetomaternal haemorrhage

    PubMed Central

    Kidson-Gerber, Giselle

    2015-01-01

    We report a case of unusually large fetomaternal haemorrhage in a RhD- patient; of symptomatic non-sustained haemolysis of fetal red cells in the maternal circulation with infusion of intravenous high-dose RhD immunoglobulin; and of a failure to prevent RhD alloimmunisation. The haemolytic reaction is not previously reported in this patient group and we suggest would be limited to patients where the number of fetal red cells in the circulation is high. We advocate caution in treatment and spaced dosing of RhD immunoglobulin where the required dose is high, and refer readers to the WinRhoSDF™ RhD immunoglobulin product information for their updated dosing recommendations. There is a need for better understanding of pathophysiology and RhD immunoglobulin effects, to further reduce alloimmunisation rates, and we support the reporting of prophylaxis failures to haemovigilance programmes as is in place in the United Kingdom. PMID:27512480

  15. E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells

    PubMed Central

    Mitchell, Michael J.; Chen, Christina S.; Ponmudi, Varun; Hughes, Andrew D.; King, Michael R.

    2012-01-01

    The presence of circulating tumor cells (CTCs) is believed to lead to the formation of secondary tumors via an adhesion cascade involving interaction between adhesion receptors of endothelial cells and ligands on CTCs. Many CTCs express sialylated carbohydrate ligands on their surfaces that adhere to selectin protein found on inflamed endothelial cells. We have investigated the feasibility of using immobilized selectin proteins as a targeting mechanism for CTCs under flow. Herein, targeted liposomal doxorubicin (L-DXR) was functionalized with recombinant human E-selectin (ES) and polyethylene glycol (PEG) to target and kill cancer cells under shear flow, both when immobilized along a microtube device or sheared in a cone-and-plate viscometer in a dilute suspension. Healthy circulating cells such as red blood cells were not targeted by this mechanism and were left to freely circulate, and minimal leukocyte death was observed. Halloysite nanotube (HNT)-coated microtube devices immobilized with nanoscale liposomes significantly enhanced the targeting, capture, and killing of cancer cells. This work demonstrates that E-selectin functionalized L-DXR, sheared in suspension or immobilized onto microtube devices, provides a novel approach to selectively target and deliver chemotherapeutics to CTCs in the bloodstream. PMID:22421423

  16. The Effect of Particle Size on the Biodistribution of Low-modulus Hydrogel PRINT Particles

    PubMed Central

    Merkel, Timothy J.; Chen, Kai; Jones, Stephen W.; Pandya, Ashish A.; Tian, Shaomin; Napier, Mary E.; Zamboni, William E.; DeSimone, Joseph M.

    2012-01-01

    There is a growing recognition that the deformability of particles used for drug delivery plays a significant role on their biodistribution and circulation profile. Understanding these effects would provide a crucial tool for the rational design of drug delivery systems. While particles resembling red blood cells (RBCs) in size, shape and deformability have extended circulation times and altered biodistribution profiles compared to rigid, but otherwise similar particles, the in vivo behavior of such highly deformable particles of varied size has not been explored. We report the fabrication of a series of discoid, monodisperse, low-modulus hydrogel particles with diameters ranging from 0.8 to 8.9 μm, spanning sizes smaller than and larger than RBCs. We injected these particles into healthy mice, and tracked their concentration in the blood and their distribution into major organs. These deformable particles all demonstrated some hold up in filtration tissues like the lungs and spleen, followed by release back into the circulation, characterized by decreases in particles in these tissues with concomitant increases in particle concentration in blood. Particles similar to red blood cells in size demonstrated longer circulation times, suggesting that this size and shape of deformable particle is uniquely suited to avoid clearance. PMID:22705460

  17. Circulating red cell-derived microparticles in human malaria.

    PubMed

    Nantakomol, Duangdao; Dondorp, Arjen M; Krudsood, Srivicha; Udomsangpetch, Rachanee; Pattanapanyasat, Kovit; Combes, Valery; Grau, Georges E; White, Nicholas J; Viriyavejakul, Parnpen; Day, Nicholas P J; Chotivanich, Kesinee

    2011-03-01

    In patients with falciparum malaria, plasma concentrations of cell-derived microparticles correlate with disease severity. Using flow cytometry, we quantified red blood cell-derived microparticles (RMPs) in patients with malaria and identified the source and the factors associated with production. RMP concentrations were increased in patients with Plasmodium falciparum (n = 29; median, 457 RMPs/μL [range, 13-4,342 RMPs/μL]), Plasmodium vivax (n = 5; median, 409 RMPs/μL [range, 281-503/μL]), and Plasmodium malariae (n = 2; median, 163 RMPs/μL [range, 127-200 RMPs/μL]) compared with those in healthy subjects (n = 11; median, 8 RMPs/μL [range, 3-166 RMPs/μL]; P = .01). RMP concentrations were highest in patients with severe falciparum malaria (P = .01). Parasitized red cells produced >10 times more RMPs than did unparasitized cells, but the overall majority of RMPs still derived from uninfected red blood cells (URBCs). In cultures, RMP production increased as the parasites matured. Hemin and parasite products induced RMP production in URBCs, which was inhibited by N-acetylcysteine, suggesting heme-mediated oxidative stress as a pathway for the generation of RMPs.

  18. Density increment and decreased survival of rat red blood cells induced by cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunimoto, M.; Miura, T.

    1986-01-01

    Male Wistar rats were injected with CdCl/sub 2/ subcutaneously to examine in vivo effects of Cd on density and survival of red blood cells. During the 7 days after administration of 1.0 mg Cd/kg, the following sequence of events occurred: (1) a progressive increase in the amount of more dense red blood cells concomitant with a decrease in that of light red blood cells from the first to the third day; (2) an increase in the spleen weight at the third day; (3) a decrease in the hematocrit value and an increase in the amount of light red blood cellsmore » at the fifth day; and (4) a recovery of the hematocrit value at the seventh day. Five days after administration, the hematocrit value decreased in a dose-dependent mode and the decrease was significant at the 1% level at 1.0 and 1.5 mg Cd/kg. A highly significant splenomegaly was also observed at 0.5 to 1.5 mg Cd/kg. In order to label red blood cells in vivo, (/sup 3/H) diisopropylfluorophosphate ((/sup 3/H)DFP) was injected into rats. At Day 11, Cd at either 0.5 or 1.0 mg/kg was administered to (/sup 3/H)DFP-prelabeled animals. Cd administration accelerated /sup 3/H-labeled red cell clearance from the blood. Six days after Cd administration, the radioactivity of red blood cells was 76 and 68% of the control at 0.5 and 1.0 mg Cd/kg, respectively. In vitro treatment of rat red density and accelerated in vivo clearance of red blood cells from the recipient circulation. These results show that Cd at low dose can cause anemia by increasing red cell density and by accelerating red cell sequestration, presumably in the spleen.« less

  19. Relationship between High Red Cell Distribution Width and Systemic Inflammatory Response Syndrome after Extracorporeal Circulation.

    PubMed

    Seth, Harsh Sateesh; Mishra, Prashant; Khandekar, Jayant V; Raut, Chaitanya; Mohapatra, Chandan Kumar Ray; Ammannaya, Ganesh Kumar K; Saini, Jaskaran Singh; Shah, Vaibhav

    2017-01-01

    Cardiac surgical operations involving extracorporeal circulation may develop severe inflammatory response. This severe inflammatory response syndrome (SIRS) is usually associated with poor outcome with no predictive marker. Red cell distribution width (RDW) is a routine hematological marker with a role in inflammation. We aim to determine the relationship between RDW and SIRS through our study. A total of 1250 patients who underwent cardiac surgery with extracorporeal circulation were retrospectively analyzed out of which 26 fell into the SIRS criteria and 26 consecutive control patients were taken. RDW, preoperative clinical data, operative time and postoperative data were compared between SIRS and control groups. The demographic profile of the patients was similar. RDW was significantly higher in the SIRS versus control group (15.5±2.0 vs. 13.03±1.90), respectively with P value <0.0001. There was significant mortality in the SIRS group, 20 (76.92%) as compared to 2 (7.6%) in control group with a P value of <0.005. Multiple logistic regression analysis revealed that there was significant association with high RDW and development of SIRS after extracorporeal circulation (OR for RDW levels exceeding 13.5%; 95% CI 1.0-1.2; P<0.05). Increased RDW was significantly associated with increased risk of SIRS after extracorporeal circulation. Thus, RDW can act as a useful tool to predict SIRS in patients undergoing cardiac surgery with extracorporeal circulation. Hence, more aggressive measures can be taken in patients with high RDW to prevent postoperative morbidity and mortality.

  20. Hemoglobin redox reactions and red blood cell aging.

    PubMed

    Rifkind, Joseph M; Nagababu, Enika

    2013-06-10

    The physiological mechanism(s) for recognition and removal of red blood cells (RBCs) from circulation after 120 days of its lifespan is not fully understood. Many of the processes thought to be associated with the removal of RBCs involve oxidative stress. We have focused on hemoglobin (Hb) redox reactions, which is the major source of RBC oxidative stress. The importance of Hb redox reactions have been shown to originate in large parts from the continuous slow autoxidation of Hb producing superoxide and its dramatic increase under hypoxic conditions. In addition, oxidative stress has been shown to be associated with redox reactions that originate from Hb reactions with nitrite and nitric oxide (NO) and the resultant formation of highly toxic peroxynitrite when NO reacts with superoxide released during Hb autoxidation. The interaction of Hb, particularly under hypoxic conditions with band 3 of the RBC membrane is critical for the generating the RBC membrane changes that trigger the removal of cells from circulation. These changes include exposure of antigenic sites, increased calcium leakage into the RBC, and the resultant leakage of potassium out of the RBC causing cell shrinkage and impaired deformability. The need to understand the oxidative damage to specific membrane proteins that result from redox reactions occurring when Hb is bound to the membrane. Proteomic studies that can pinpoint the specific proteins damaged under different conditions will help elucidate the cellular aging processes that result in cells being removed from circulation.

  1. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows

    NASA Astrophysics Data System (ADS)

    Brust, M.; Aouane, O.; Thiébaud, M.; Flormann, D.; Verdier, C.; Kaestner, L.; Laschke, M. W.; Selmi, H.; Benyoussef, A.; Podgorski, T.; Coupier, G.; Misbah, C.; Wagner, C.

    2014-03-01

    The supply of oxygen and nutrients and the disposal of metabolic waste in the organs depend strongly on how blood, especially red blood cells, flow through the microvascular network. Macromolecular plasma proteins such as fibrinogen cause red blood cells to form large aggregates, called rouleaux, which are usually assumed to be disaggregated in the circulation due to the shear forces present in bulk flow. This leads to the assumption that rouleaux formation is only relevant in the venule network and in arterioles at low shear rates or stasis. Thanks to an excellent agreement between combined experimental and numerical approaches, we show that despite the large shear rates present in microcapillaries, the presence of either fibrinogen or the synthetic polymer dextran leads to an enhanced formation of robust clusters of red blood cells, even at haematocrits as low as 1%. Robust aggregates are shown to exist in microcapillaries even for fibrinogen concentrations within the healthy physiological range. These persistent aggregates should strongly affect cell distribution and blood perfusion in the microvasculature, with putative implications for blood disorders even within apparently asymptomatic subjects.

  2. Investigating the Interannual Variability of the Circulation and Water Mass Formation in the Red Sea

    NASA Astrophysics Data System (ADS)

    Sofianos, S. S.; Papadopoulos, V. P.; Denaxa, D.; Abualnaja, Y.

    2014-12-01

    The interannual variability of the circulation and water mass formation in the Red Sea is investigated with the use of a numerical model and the combination of satellite and in-situ observations. The response of Red Sea to the large-scale variability of atmospheric forcing is studied through a 30-years simulation experiment, using MICOM model. The modeling results demonstrate significant trends and variability that are mainly located in the central and northern parts of the basin. On the other hand, the exchange pattern between the Red Sea and the Indian Ocean at the strait of Bab el Mandeb presents very weak interannual variability. The results verify the regularity of the water mass formation processes in the northern Red Sea but also show significant variability of the circulation and thermohaline conditions in the areas of formation. Enhanced water mass formation conditions are observed during specific years of the simulation (approximately five years apart). Analysis of recent warm and cold events in the northernmost part of the basin, based on a combination of atmospheric reanalysis results and oceanic satellite and in-situ observations, shows the importance of the cyclonic gyre that is prevailing in this part of the basin. This gyre can effectively influence the sea surface temperature (SST) and intensify or mitigate the winter effect of the atmospheric forcing. Upwelling induced by persistent periods of the gyre functioning drops the SST over the northernmost part of the Red Sea and can produce colder than normal winter SST even without extreme atmospheric forcing. These mechanisms are crucial for the formation of intermediate and deep water masses in the Red Sea and the strength of the subsequent thermohaline cells.

  3. The effect of anticoagulants on the distribution of chromium VI in blood fractions.

    PubMed

    Afolaranmi, Grace A; Tettey, Justice N A; Murray, Helen M; Meek, R M Dominic; Grant, M Helen

    2010-01-01

    Metal-on-metal resurfacing arthroplasty is associated with elevated circulating levels of cobalt and chromium ions. To establish the long-term safety of metal-on-metal resurfacing arthroplasty, it has been recommended that during clinical follow-up of these patients, the levels of these metal ions in blood be monitored. In this article, we provide information on the distribution of chromium VI ions (the predominant form of chromium released by cobalt-chrome alloys in vivo and in vitro) in blood fractions. Chromium VI is predominantly partitioned into red blood cells compared with plasma (analysis of variance, P < .05). The extent of accumulation in red blood cells is influenced by the anticoagulant used to collect the blood, with EDTA giving a lower partitioning into red cells compared with sodium citrate and sodium heparin. 2010 Elsevier Inc. All rights reserved.

  4. Processing of Cells' Trajectories Data for Blood Flow Simulation Model*

    NASA Astrophysics Data System (ADS)

    Slavík, Martin; Kovalčíková, Kristína; Bachratý, Hynek; Bachratá, Katarína; Smiešková, Monika

    2018-06-01

    Simulations of the red blood cells (RBCs) flow as a movement of elastic objects in a fluid, are developed to optimize microfluidic devices used for a blood sample analysis for diagnostic purposes in the medicine. Tracking cell behaviour during simulation helps to improve the model and adjust its parameters. For the optimization of the microfluidic devices, it is also necessary to analyse cell trajectories as well as likelihood and frequency of their occurrence in a particular device area, especially in the parts, where they can affect circulating tumour cells capture. In this article, we propose and verify several ways of processing and analysing the typology and trajectory stability in simulations with single or with a large number of red blood cells (RBCs) in devices with different topologies containing cylindrical obstacles.

  5. Microfluidic assay of the deformability of primitive erythroblasts.

    PubMed

    Zhou, Sitong; Huang, Yu-Shan; Kingsley, Paul D; Cyr, Kathryn H; Palis, James; Wan, Jiandi

    2017-09-01

    Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.

  6. Assessment of the role of circulating breast cancer cells in tumor formation and metastatic potential using in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Hwu, Derrick; Boutrus, Steven; Greiner, Cherry; Dimeo, Theresa; Kuperwasser, Charlotte; Georgakoudi, Irene

    2011-04-01

    The identification of breast cancer patients who will ultimately progress to metastatic disease is of significant clinical importance. The quantification and assessment of circulating tumor cells (CTCs) has been proposed as one strategy to monitor treatment effectiveness and disease prognosis. However, CTCs have been an elusive population of cells to study because of their small number and difficulties associated with isolation protocols. In vivo flow cytometry (IVFC) can overcome these limitations and provide insights in the role these cells play during primary and metastatic tumor growth. In this study, we used two-color IVFC to examine, for up to ten weeks following orthotopic implantation, changes in the number of circulating human breast cells expressing GFP and a population of circulating hematopoietic cells with strong autofluorescence. We found that the number of detected CTCs in combination with the number of red autofluorescent cells (650 to 690 nm) during the first seven days following implantation was predictive in development of tumor formation and metastasis eight weeks later. These results suggest that the combined detection of these two cell populations could offer a novel approach in the monitoring and prognosis of breast cancer progression, which in turn could aid significantly in their effective treatment.

  7. Prolonged red cell storage before transfusion increases extravascular hemolysis

    PubMed Central

    Rapido, Francesca; Brittenham, Gary M.; Bandyopadhyay, Sheila; La Carpia, Francesca; L’Acqua, Camilla; McMahon, Donald J.; Rebbaa, Abdelhadi; Wojczyk, Boguslaw S.; Netterwald, Jane; Wang, Hangli; Schwartz, Joseph; Eisenberger, Andrew; Soffing, Mark; Yeh, Randy; Divgi, Chaitanya; Ginzburg, Yelena Z.; Shaz, Beth H.; Sheth, Sujit; Francis, Richard O.; Spitalnik, Steven L.; Hod, Eldad A.

    2016-01-01

    BACKGROUND. Some countries have limited the maximum allowable storage duration for red cells to 5 weeks before transfusion. In the US, red blood cells can be stored for up to 6 weeks, but randomized trials have not assessed the effects of this final week of storage on clinical outcomes. METHODS. Sixty healthy adult volunteers were randomized to a single standard, autologous, leukoreduced, packed red cell transfusion after 1, 2, 3, 4, 5, or 6 weeks of storage (n = 10 per group). 51-Chromium posttransfusion red cell recovery studies were performed and laboratory parameters measured before and at defined times after transfusion. RESULTS. Extravascular hemolysis after transfusion progressively increased with increasing storage time (P < 0.001 for linear trend in the AUC of serum indirect bilirubin and iron levels). Longer storage duration was associated with decreasing posttransfusion red cell recovery (P = 0.002), decreasing elevations in hematocrit (P = 0.02), and increasing serum ferritin (P < 0.0001). After 6 weeks of refrigerated storage, transfusion was followed by increases in AUC for serum iron (P < 0.01), transferrin saturation (P < 0.001), and nontransferrin-bound iron (P < 0.001) as compared with transfusion after 1 to 5 weeks of storage. CONCLUSIONS. After 6 weeks of refrigerated storage, transfusion of autologous red cells to healthy human volunteers increased extravascular hemolysis, saturated serum transferrin, and produced circulating nontransferrin-bound iron. These outcomes, associated with increased risks of harm, provide evidence that the maximal allowable red cell storage duration should be reduced to the minimum sustainable by the blood supply, with 35 days as an attainable goal. REGISTRATION. ClinicalTrials.gov NCT02087514. FUNDING. NIH grant HL115557 and UL1 TR000040. PMID:27941245

  8. Effects of Aged Stored Autologous Red Blood Cells on Human Endothelial Function

    PubMed Central

    Kanias, Tamir; Triulzi, Darrel; Donadee, Chenell; Barge, Suchitra; Badlam, Jessica; Jain, Shilpa; Belanger, Andrea M.; Kim-Shapiro, Daniel B.

    2015-01-01

    Rationale: A major abnormality that characterizes the red cell “storage lesion” is increased hemolysis and reduced red cell lifespan after infusion. Low levels of intravascular hemolysis after transfusion of aged stored red cells disrupt nitric oxide (NO) bioavailabity, via accelerated NO scavenging reaction with cell-free plasma hemoglobin. The degree of intravascular hemolysis post-transfusion and effects on endothelial-dependent vasodilation responses to acetylcholine have not been fully characterized in humans. Objectives: To evaluate the effects of blood aged to the limits of Food and Drug Administration–approved storage time on the human microcirculation and endothelial function. Methods: Eighteen healthy individuals donated 1 U of leukopheresed red cells, divided and autologously transfused into the forearm brachial artery 5 and 42 days after blood donation. Blood samples were obtained from stored blood bag supernatants and the antecubital vein of the infusion arm. Forearm blood flow measurements were performed using strain-gauge plethysmography during transfusion, followed by testing of endothelium-dependent blood flow with increasing doses of intraarterial acetylcholine. Measurements and Main Results: We demonstrate that aged stored blood has higher levels of arginase-1 and cell-free plasma hemoglobin. Compared with 5-day blood, the transfusion of 42-day packed red cells decreases acetylcholine-dependent forearm blood flows. Intravascular venous levels of arginase-1 and cell-free plasma hemoglobin increase immediately after red cell transfusion, with more significant increases observed after infusion of 42-day-old blood. Conclusions: We demonstrate that the transfusion of blood at the limits of Food and Drug Administration–approved storage has a significant effect on the forearm circulation and impairs endothelial function. Clinical trial registered with www.clinicaltrials.gov (NCT 01137656) PMID:26222884

  9. Hereditary Xerocytosis Revisited

    PubMed Central

    Archer, Natasha; Shmukler, Boris E.; Andolfo, Immacolata; Vandorpe, David H.; Gnanasambandam, Radhakrishnan; Higgins, John M.; Rivera, Alicia; Fleming, Mark D.; Sachs, Frederick; Gottlieb, Philip A.; Iolascon, Achille; Brugnara, Carlo; Alper, Seth L.; Nathan, David G.

    2014-01-01

    A 21 year old male student presented in 1980 as an Olympic athlete with a 12 year history of jaundice, pallor, and darkened urine induced by the atraumatic exercise of swimming (1). Physical examination at that time was remarkable only for moderate scleral icterus without hepatosplenomegaly. Hematological examination revealed moderate macrocytosis (MCV 102 fL) without anemia (Hct 50%, Hb 17 g/dL, 9% reticulocytes). The peripheral blood smear showed occasional target cells. Red cell osmotic fragility was decreased. Red cell Na content was increased and K content was decreased, with reduced total monovalent ion content. Passive red cell permeability of both Na and K were increased. A supervised 2.5 hr swimming workout increased free plasma Hb from <5 to 45 mg/dL and decreased serum haptoglobin from 25 to 6 mg/dL. The post-exercise urine sediment was remarkable for hemosiderin-laden tubular epithelial cells, without frank hemoglobinuria. The circulating 15 day erythrocyte half-life measured after 6 days without exercise was further shortened to 12 days after resumption of twice-per-day swimming workouts for 1 week. The patient’s red cells were hypersensitive to in vitro shear stress applied by cone-plate viscometer. PMID:25044010

  10. The restoration in vivo of 2,3-diphosphoglycerate (2,3-DPG) in stored red cells, after transfusion. The levels of red cells 2,3-DPG.

    PubMed

    Stan, Ana; Zsigmond, Eva

    2009-01-01

    Since the main reason for transfusing preserved red cells is to increase the oxygen carrying capacity of the recipient, the circulating preserved red cells should have at the time of transfusion normal oxygen uptake and normal oxyhemoglobin dissociation characteristics. We evaluated the effectiveness of transfused red cells, through periodical determination of erythrocyte components, during 72 hours after transfusions of large quantities (3,000 mL) of blood. Three patients with massive hemorrhages, two after amputation and one after nephrectomy were given each 3,000 mL preserved blood (in ACD, 10 days, at 4 degrees C). Red cell 2,3-DPG and serum inorganic phosphorus were determined prior to transfusion and after, periodically, for three days. Red cell 2,3-DPG was determined by Krimsky's method and inorganic phosphorus by Kuttner and Lichtenstein's method. The in vivo restoration of 2,3-DPG--of transfused red cells is shown as a percentage of recipient's final 2,3-DPG level, and was calculated in each of the three patients. The level of erythrocyte 2,3-DPG was greater than 60% of the final level within 24 hours, after the end of transfusion. The in vivo rates of restoration of 2,3-DPG in transfused red cells for periods of 0-6, 6-24, 24-48 and 48-72 hours are 0.251, 0.238, 0.133, 0.120 mM/L cells/hour. The therapeutic significance of the increased oxygen affinity of stored blood becomes very important in clinical conditions, when large volumes of red cells are urgently needed. After massive transfusions, the restoration of 2,3-DPG in red cells produces a decrease of serum inorganic phosphorus through its consumption. The stored blood with low values of erythrocyte 2,3-DPG can be used without hesitation when correcting a chronic anemia for instance, but in acute situation, when the organism needs restoration of the oxygen releasing capacity within minutes, the resynthesis is obviously insufficient. In such situations, fresh blood or blood with a near normal 2,3-DPG content should be used.

  11. Flow of a circulating tumor cell and red blood cells in microvessels

    NASA Astrophysics Data System (ADS)

    Takeishi, Naoki; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2015-12-01

    Quantifying the behavior of circulating tumor cells (CTCs) in the blood stream is of fundamental importance for understanding metastasis. Here, we investigate the flow mode and velocity of CTCs interacting with red blood cells (RBCs) in various sized microvessels. The flow of leukocytes in microvessels has been described previously; a leukocyte forms a train with RBCs in small microvessels and exhibits margination in large microvessels. Important differences in the physical properties of leukocytes and CTCs result from size. The dimensions of leukocytes are similar to those of RBCs, but CTCs are significantly larger. We investigate numerically the size effects on the flow mode and the cell velocity, and we identify similarities and differences between leukocytes and CTCs. We find that a transition from train formation to margination occurs when (R -a ) /tR≈1 , where R is the vessel radius, a is the cell radius, and tR is the thickness of RBCs, but that the motion of RBCs differs from the case of leukocytes. Our results also show that the velocities of CTCs and leukocytes are larger than the average blood velocity, but only CTCs move faster than RBCs for microvessels of R /a ≈1.5 -2.0 . These findings are expected to be useful not only for understanding metastasis, but also for developing microfluidic devices.

  12. Neocytolysis on descent from altitude: a newly recognized mechanism for the control of red cell mass

    NASA Technical Reports Server (NTRS)

    Rice, L.; Ruiz, W.; Driscoll, T.; Whitley, C. E.; Tapia, R.; Hachey, D. L.; Gonzales, G. F.; Alfrey, C. P.

    2001-01-01

    BACKGROUND: Studies of space-flight anemia have uncovered a physiologic process, neocytolysis, by which young red blood cells are selectively hemolyzed, allowing rapid adaptation when red cell mass is excessive for a new environment. OBJECTIVES: 1) To confirm that neocytolysis occurs in another situation of acute plethora-when high-altitude dwellers with polycythemia descend to sea level; and 2) to clarify the role of erythropoietin suppression. DESIGN: Prospective observational and interventional study. SETTING: Cerro de Pasco (4380 m) and Lima (sea level), Peru. PARTICIPANTS: Nine volunteers with polycythemia. INTERVENTIONS: Volunteers were transported to sea level; three received low-dose erythropoietin. MEASUREMENTS: Changes in red cell mass, hematocrit, hemoglobin concentration, reticulocyte count, ferritin level, serum erythropoietin, and enrichment of administered(13)C in heme. RESULTS: In six participants, red cell mass decreased by 7% to 10% within a few days of descent; this decrease was mirrored by a rapid increase in serum ferritin level. Reticulocyte production did not decrease, a finding that establishes a hemolytic mechanism.(13)C changes in circulating heme were consistent with hemolysis of young cells. Erythropoietin was suppressed, and administration of exogenous erythropoietin prevented the changes in red cell mass, serum ferritin level, and(13)C-heme. CONCLUSIONS: Neocytolysis and the role of erythropoietin are confirmed in persons with polycythemia who descend from high altitude. This may have implications that extend beyond space and altitude medicine to renal disease and other situations of erythropoietin suppression, hemolysis, and polycythemia.

  13. Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance.

    PubMed

    Rao, Lang; Bu, Lin-Lin; Xu, Jun-Hua; Cai, Bo; Yu, Guang-Tao; Yu, Xiaolei; He, Zhaobo; Huang, Qinqin; Li, Andrew; Guo, Shi-Shang; Zhang, Wen-Feng; Liu, Wei; Sun, Zhi-Jun; Wang, Hao; Wang, Tza-Huei; Zhao, Xing-Zhong

    2015-12-01

    For decades, poly(ethylene glycol) (PEG) has been widely incorporated into nanoparticles for evading immune clearance and improving the systematic circulation time. However, recent studies have reported a phenomenon known as "accelerated blood clearance (ABC)" where a second dose of PEGylated nanomaterials is rapidly cleared when given several days after the first dose. Herein, we demonstrate that natural red blood cell (RBC) membrane is a superior alternative to PEG. Biomimetic RBC membrane-coated Fe(3)O(4) nanoparticles (Fe(3)O(4) @RBC NPs) rely on CD47, which is a "don't eat me" marker on the RBC surface, to escape immune clearance through interactions with the signal regulatory protein-alpha (SIRP-α) receptor. Fe(3)O(4) @RBC NPs exhibit extended circulation time and show little change between the first and second doses, with no ABC suffered. In addition, the administration of Fe(3)O(4) @RBC NPs does not elicit immune responses on neither the cellular level (myeloid-derived suppressor cells (MDSCs)) nor the humoral level (immunoglobulin M and G (IgM and IgG)). Finally, the in vivo toxicity of these cell membrane-camouflaged nanoparticles is systematically investigated by blood biochemistry, hematology testing, and histology analysis. These findings are significant advancements toward solving the long-existing clinical challenges of developing biomaterials that are able to resist both immune response and rapid clearance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Separation of cancer cells from a red blood cell suspension using inertial force.

    PubMed

    Tanaka, Tatsuya; Ishikawa, Takuji; Numayama-Tsuruta, Keiko; Imai, Yohsuke; Ueno, Hironori; Matsuki, Noriaki; Yamaguchi, Takami

    2012-11-07

    The circulating tumor cell (CTC) test has recently become popular for evaluating prognosis and treatment efficacy in cancer patients. The accuracy of the test is strongly dependent on the precision of the cancer cell separation. In this study, we developed a multistage microfluidic device to separate cancer cells from a red blood cell (RBC) suspension using inertial migration forces. The device was able to effectively remove RBCs up to the 1% hematocrit (Hct) condition with a throughput of 565 μL min(-1). The collection efficiency of cancer cells from a RBC suspension was about 85%, and the enrichment of cancer cells was about 120-fold. Further improvements can be easily achieved by parallelizing the device. These results illustrate that the separation of cancer cells from RBCs is possible using only inertial migration forces, thus paving the way for the development of a novel microfluidic device for future CTC tests.

  15. Seasonal Overturning Circulation in the Red Sea

    NASA Astrophysics Data System (ADS)

    Yao, F.; Hoteit, I.; Koehl, A.

    2010-12-01

    The Red Sea exhibits a distinct seasonal overturning circulation. In winter, a typical two-layer exchange structure, with a fresher inflow from the Gulf of Aden on top of an outflow from the Red Sea, is established. In summer months (June to September) this circulation pattern is changed to a three-layer structure: a surface outflow from the Red Sea on top of a subsurface intrusion of the Gulf of Aden Intermediate Water and a weakened deep outflow. This seasonal variability is studied using a general circulation model, MITgcm, with 6 hourly NCEP atmospheric forcing. The model is able to reproduce the observed seasonal variability very well. The forcing mechanisms of the seasonal variability related to seasonal surface wind stress and buoyancy flux, and water mass transformation processes associated with the seasonal overturning circulation are analyzed and presented.

  16. Red cell aspartate aminotransferase saturation with oral pyridoxine intake.

    PubMed

    Oshiro, Marilena; Nonoyama, Kimiyo; Oliveira, Raimundo Antônio Gomes; Barretto, Orlando Cesar de Oliveira

    2005-03-02

    The coenzyme of aspartate aminotransferase is pyridoxal phosphate, generated from fresh vegetables containing pyridoxine. Vitamin B6-responsive sideroblastic anemia, myelofibrosis and Peyronies syndrome respond to high pyridoxine doses. The objective was to investigate the oral pyridoxine oral dose that would lead to maximized pyridoxal phosphate saturation of red cell aspartate aminotransferase. Controlled trial, in Hematology Division of Instituto Adolfo Lutz. Red cell aspartate aminotransferase activity was assayed (before and after) in normal volunteers who were given oral pyridoxine for 15-18 days (30 mg, 100 mg and 200 mg daily). In vitro study of blood from seven normal volunteers was also performed, with before and after assaying of aspartate aminotransferase activity. The in vivo study showed increasing aspartate aminotransferase saturation with increasing pyridoxine doses. 83% saturation was reached with 30 mg daily, 88% with 100 mg, and 93% with 200 mg after 20 days of oral supplementation. The in vitro study did not reach 100% saturation. Neither in vivo nor in vitro study demonstrated thorough aspartate aminotransferase saturation with its coenzyme pyridoxal phosphate in red cells, from increasing pyridoxine supplementation. However, the 200-mg dose could be employed safely in vitamin B6-responsive sideroblastic anemia, myelofibrosis and Peyronies syndrome treatment. Although maximum saturation in circulating red cells is not achieved, erythroblasts and other nucleated and cytoplasmic organelles containing cells certainly will reach thorough saturation, which possibly explains the results obtained in these diseases.

  17. Modulation of red cell mass by neocytolysis in space and on Earth

    NASA Technical Reports Server (NTRS)

    Rice, L.; Alfrey, C. P.

    2000-01-01

    Astronauts predictably experience anemia after return from space. Upon entering microgravity, the blood volume in the extremities pools centrally and plasma volume decreases, causing plethora and erythropoietin suppression. There ensues neocytolysis, selective hemolysis of the youngest circulating red cells, allowing rapid adaptation to the space environment but becoming maladaptive on re-entry to a gravitational field. The existence of this physiologic control process was confirmed in polycythemic high-altitude dwellers transported to sea level. Pathologic neocytolysis contributes to the anemia of renal failure. Understanding the process has implications for optimizing erythropoietin-dosing schedules and the therapy of other human disorders. Human and rodent models of neocytolysis are being created to help find out how interactions between endothelial cells, reticuloendothelial phagocytes and young erythrocytes are altered, and to shed light on the expression of surface adhesion molecules underlying this process. Thus, unraveling a problem for space travelers has uncovered a physiologic process controlling the red cell mass that can be applied to human disorders on Earth.

  18. THE PRODUCTION OF ERYTHROCYTE AUTOANTIBODIES IN CHIMPANZEES

    PubMed Central

    Zmijewski, Chester M.

    1965-01-01

    Young adult chimpanzees immunized with human blood products produced circulating antibodies which reacted with human red cells of a certain proportion of chimpanzees. In addition, agglutinins were formed which reacted with the animals' own erythrocytes. That these agglutinins were true autoantibodies was demonstrated by: (a) their ability to sensitize the animals' own erythrocytes at 37°C both in vivo and in intro; (b) the iso-specificity which they displayed toward other chimpanzee red cells; and (c) the fact that they belonged to the γG-class of immunoglobulins. Complement appeared to be bound to the in vivo sensitized cells but no evidence of increased cell destruction was observed. It seemed most likely that these autoagglutinins were produced as a result of active immunization with closely related antigens. PMID:14278223

  19. Multiscale simulation of red blood cell aggregation

    NASA Astrophysics Data System (ADS)

    Bagchi, P.; Popel, A. S.

    2004-11-01

    In humans and other mammals, aggregation of red blood cells (RBC) is a major determinant to blood viscosity in microcirculation under physiological and pathological conditions. Elevated levels of aggregation are often related to cardiovascular diseases, bacterial infection, diabetes, and obesity. Aggregation is a multiscale phenomenon that is governed by the molecular bond formation between adjacent cells, morphological and rheological properties of the cells, and the motion of the extra-cellular fluid in which the cells circulate. We have developed a simulation technique using front tracking methods for multiple fluids that includes the multiscale characteristics of aggregation. We will report the first-ever direct computer simulation of aggregation of deformable cells in shear flows. We will present results on the effect of shear rate, strength of the cross-bridging bonds, and the cell rheological properties on the rolling motion, deformation and subsequent breakage of an aggregate.

  20. The role of phosphatidylserine in recognition and removal of erythrocytes.

    PubMed

    Kuypers, F A; de Jong, K

    2004-03-01

    During the time that erythrocytes (RBC) spend in the circulation, a series of progressive events take place that lead to their removal and determine their apparent aging and limited survival. In addition, a fraction of RBC precursors will be removed during erythropoiesis by apoptotic processes, often described as "ineffective erythropoiesis". Both will determine the survival of erythroid cells and play an important role in red cell pathology, including hemoglobinopathies and red cell membrane disorders. The loss of phospholipid asymmetry, and the exposure of phosphatidylserine (PS) on the surface of plasma membranes may be a general trigger by which cells, including aging RBC and apoptotic cells, are removed. Oxidant stress and inactivation of the system that maintains phospholipid asymmetry play a central role in the events that will lead to PS exposure, death and removal.

  1. Real-time photoacoustic flow cytography and photothermolysis of single circulating melanoma cells in vivo

    NASA Astrophysics Data System (ADS)

    He, Yun; Wang, Lidai; Shi, Junhui; Yao, Junjie; Li, Lei; Zhang, Ruiying; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2017-03-01

    Metastasis is responsible for as many as 90% of cancer-related deaths, and the deadliest skin cancer, melanoma, has a high propensity for metastasis. Since hematogenous spread of circulating tumor cells (CTCs) is cancer's main route of metastasis, detecting and destroying CTCs can impede metastasis and improve patients' prognoses. Extensive studies employing exogenous agents to detect tumor-specific biomarkers and guide therapeutics to CTCs have achieved promising results, but biosafety remains a critical concern. Taking another approach, physical detection and destruction of CTCs is a safer way to evaluate and reduce metastasis risks. Melanoma cells strongly express melanosomes, providing a striking absorption contrast with the blood background in the red to near-infrared spectrum. Exploiting this intrinsic optical absorption contrast of circulating melanoma cells, we coupled dual-wavelength photoacoustic flow cytography with a nanosecond-pulsed laser killing mechanism that specifically targets melanoma CTCs. We have successfully achieved in vivo label-free imaging of rare single CTCs and CTC clusters in mice. Further, the photoacoustic signal from a CTC immediately hardware-triggers a lethal pinpoint laser irradiation that lyses it on the spot in a thermally confined manner. Our technology can facilitate early inhibition of metastasis by clearing circulating tumor cells from vasculature.

  2. Neonatal nucleated red blood cell counts in small-for-gestational age fetuses with abnormal umbilical artery Doppler studies.

    PubMed

    Bernstein, P S; Minior, V K; Divon, M Y

    1997-11-01

    The presence of elevated nucleated red blood cell counts in neonatal blood has been associated with fetal hypoxia. We sought to determine whether small-for-gestational-age fetuses with abnormal umbilical artery Doppler velocity waveforms have elevated nucleated red blood cell counts. Hospital charts of neonates with the discharge diagnosis of small for gestational age (birth weight < 10th percentile) who were delivered between October 1988 and June 1995 were reviewed for antepartum testing, delivery conditions, and neonatal outcome. We studied fetuses who had an umbilical artery systolic/diastolic ratio within 3 days of delivery and a complete blood cell count on the first day of life. Multiple gestations, anomalous fetuses, and infants of diabetic mothers were excluded. Statistical analysis included the Student t test, chi 2 analysis, analysis of variance, and simple and stepwise regression. Fifty-two infants met the inclusion criteria. Those with absent or reversed end-diastolic velocity (n = 19) had significantly greater nucleated red blood cell counts than did those with end-diastolic velocity present (n = 33) (nucleated red blood cells/100 nucleated cells +/- SD: 135.5 +/- 138 vs 17.4 +/- 23.7, p < 0.0001). These infants exhibited significantly longer time intervals for clearance of nucleated red blood cells from their circulation (p < 0.0001). They also had lower birth weights (p < 0.05), lower initial platelet count (p = 0.0006), lower arterial cord blood pH (p < 0.05), higher cord blood base deficit (p < 0.05), and an increased likelihood of cesarean section for "fetal distress" (p < 0.05). Multivariate analysis demonstrated that absent or reversed end-diastolic velocity (p < 0.0001) and low birth weight (p < 0.0001) contributed to the elevation of the nucleated red blood cell count, whereas gestational age at delivery was not a significant contributor. We observed significantly greater nucleated red blood cell counts and lower platelet counts in small-for-gestational-age fetuses with abnormal umbilical artery Doppler studies. This may suggest that antenatal thrombotic events lead to an increased placental impedance. Fetal response to this chronic condition may result in an increased nucleated red blood cell count.

  3. Circulating Red Cell–derived Microparticles in Human Malaria

    PubMed Central

    Nantakomol, Duangdao; Dondorp, Arjen M.; Krudsood, Srivicha; Udomsangpetch, Rachanee; Pattanapanyasat, Kovit; Combes, Valery; Grau, Georges E.; White, Nicholas J.; Viriyavejakul, Parnpen; Day, Nicholas P.J.

    2011-01-01

    In patients with falciparum malaria, plasma concentrations of cell-derived microparticles correlate with disease severity. Using flow cytometry, we quantified red blood cell–derived microparticles (RMPs) in patients with malaria and identified the source and the factors associated with production. RMP concentrations were increased in patients with Plasmodium falciparum (n = 29; median, 457 RMPs/μL [range, 13–4,342 RMPs/μL]), Plasmodium vivax (n = 5; median, 409 RMPs/μL [range, 281–503/μL]), and Plasmodium malariae (n = 2; median, 163 RMPs/μL [range, 127–200 RMPs/μL]) compared with those in healthy subjects (n = 11; median, 8 RMPs/μL [range, 3–166 RMPs/μL]; P = .01). RMP concentrations were highest in patients with severe falciparum malaria (P = .01). Parasitized red cells produced >10 times more RMPs than did unparasitized cells, but the overall majority of RMPs still derived from uninfected red blood cells (URBCs). In cultures, RMP production increased as the parasites matured. Hemin and parasite products induced RMP production in URBCs, which was inhibited by N-acetylcysteine, suggesting heme-mediated oxidative stress as a pathway for the generation of RMPs. PMID:21282195

  4. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes

    PubMed Central

    Clafshenkel, William P.; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Russell, Alan J.

    2016-01-01

    Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system. PMID:27331401

  5. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.

    PubMed

    Clafshenkel, William P; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Koepsel, Richard R; Russell, Alan J

    2016-01-01

    Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.

  6. Modeling malaria infected cells in microcirculation

    NASA Astrophysics Data System (ADS)

    Raffiee, Amir Hossein; Dabiri, Sadegh; Motavalizadeh Ardekani, Arezoo

    2016-11-01

    Plasmodim (P.) falciparum is one of the deadliest types of malaria species that invades healthy red blood cells (RBC) in human blood flow. This parasite develops through 48-hour intra-RBC process leading to significant morphological and mechanical (e.g., stiffening) changes in RBC membrane. These changes have remarkable effects on blood circulation such as increase in flow resistance and obstruction in microcirculation. In this work a computational framework is developed to model RBC suspension in blood flow using front-tracking technique. The present study focuses on blood flow behavior under normal and infected circumstances and predicts changes in blood rheology for different levels of parasitemia and hematocrit. This model allows better understanding of blood flow circulation up to a single cell level and provides us with realistic and deep insight into hematologic diseases such as malaria.

  7. Development of Multifunctional Fluorescent–Magnetic Nanoprobes for Selective Capturing and Multicolor Imaging of Heterogeneous Circulating Tumor Cells

    PubMed Central

    2016-01-01

    Circulating tumor cells (CTC) are highly heterogeneous in nature due to epithelial–mesenchymal transition (EMT), which is the major obstacle for CTC analysis via “liquid biopsy”. This article reports the development of a new class of multifunctional fluorescent–magnetic multicolor nanoprobes for targeted capturing and accurate identification of heterogeneous CTC. A facile design approach for the synthesis and characterization of bioconjugated multifunctonal nanoprobes that exhibit excellent magnetic properties and emit very bright and photostable multicolor fluorescence at red, green, and blue under 380 nm excitation is reported. Experimental data presented show that the multifunctional multicolor nanoprobes can be used for targeted capture and multicolor fluorescence mapping of heterogeneous CTC and can distinguish targeted CTC from nontargeted cells. PMID:27255574

  8. Circulating Blood eNOS Contributes to the Regulation of Systemic Blood Pressure and Nitrite Homeostasis

    PubMed Central

    Wood, Katherine C.; Cortese-Krott, Miriam M.; Kovacic, Jason C.; Noguchi, Audrey; Liu, Virginia B.; Wang, Xunde; Raghavachari, Nalini; Boehm, Manfred; Kato, Gregory J.; Kelm, Malte; Gladwin, Mark T.

    2013-01-01

    Objective Mice genetically deficient in endothelial nitric oxide synthase (eNOS−/−) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. While the current paradigm holds that this bioactivity derives specifically from expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. Approach and Results To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted WT and eNOS−/− mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NAME and repristinated by the NOS substrate L-Arginine, and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert 14C-Arginine into 14C-Citrulline in a NOS-dependent fashion. Conclusions These are the first studies to definitively establish a role for a blood borne eNOS, using cross transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect. PMID:23702660

  9. Blood Infusion and the Risk of Haemorrhage in Patients Undergoing Cardiac Surgery with Extracorporeal Circulation.

    PubMed

    Luque-Oliveros, Manuel; Garcia-Carpintero, Maria Angeles; Cauli, Omar

    2017-01-01

    Patients undergoing cardiac surgery with extracorporeal circulation (ECC) frequently present haemorrhages as a complication associated with high morbidity and mortality. One of the factors that influences this risk is the volume of blood infused during surgery. The objective of this study was to determine the optimal volume of autologous blood that can be processed during cardiac surgery with ECC. We also determined the number of salvaged red blood cells to be reinfused into the patient in order to minimize the risk of haemorrhage in the postoperative period. This was an observational retrospective cross-sectional study performed in 162 ECC cardiac surgery patients. Data regarding the sociodemographic profiles of the patients, their pathologies and surgical treatments, and the blood volume recovered, processed, and reinfused after cell salvage were collected. We also evaluated the occurrence of postoperative haemorrhage. The volume of blood infused after cell salvage had a statistically significant effect (p < 0.01) on the risk of post-operative haemorrhage; the receiver operating characteristic sensitivity was 0.813 and the optimal blood volume cut-off was 1800 ml. The best clinical outcome (16.7% of patients presenting haemorrhages) was in patients that had received less than 1800 ml of recovered and processed autologous blood, which represented a volume of up to 580 ml reinfused red blood cells. The optimum thresholds for autologous processed blood and red blood cells reinfused into the patient were 1800 and 580 ml, respectively. Increasing these thresholds augmented the risk of haemorrhage as an immediate postoperative period complication. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Monoclonal antibodies to human hemoglobin S and cell lines for the production thereof

    DOEpatents

    Jensen, Ronald H.; Vanderlaan, Martin; Bigbee, William L.; Stanker, Larry H.; Branscomb, Elbert W.; Grabske, Robert J.

    1988-01-01

    The present invention provides monoclonal antibodies specific to and distinguish between hemoglobin S and hemoglobin A and methods for their production and use. These antibodies are capable of distinguishing between two hemoglobin types which differ from each other by only a single amino acid residue. The antibodies produced according to the present method are useful as immunofluorescent markers to enumerate circulating red blood cells which have the property of altered expression of the hemoglobin gene due to somatic mutation in stem cells. Such a measurement is contemplated as an assay for in vivo cellular somatic mutations in humans. Since the monoclonal antibodies produced in accordance with the instant invention exhibit a high degree of specificity to and greater affinity for hemoglobin S, they are suitable for labeling human red blood cells for flow cytometric detection of hemoglobin genotype.

  11. Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application

    PubMed Central

    Wang, Yinsong; Liu, Quan; Chung, Hee Sun; Kwon, Young Min; Shin, Meong Cheol; Lee, Kyuri; Yang, Victor C

    2014-01-01

    Red blood cells (RBCs) based drug carrier appears to be the most appealing for protein drugs due to their unmatched biocompatability, biodegradability, and long lifespan in the circulation. Numerous methods for encapsulating protein drugs into RBCs were developed, however, most of them induce partial disruption of the cell membrane, resulting in irreversible alterations in both physical and chemical properties of RBCs. Herein, we introduce a novel method for encapsulating proteins into intact RBCs, which was meditated by a cell penetrating peptide (CPP) developed in our lab—low molecular weight protamine (LMWP). L-asparaginase, one of the primary drugs used in treatment of acute lymphoblastic leukemia (ALL), was chosen as a model protein to illustrate the encapsulation into erythrocytes mediated by CPPs. In addition current treatment of ALL using different L-asparaginase delivery and encapsulation methods as well as their associated problems were also reviewed. PMID:24374002

  12. Reducing the Viscosity of Blood by Pulsed Magnetic Field

    NASA Astrophysics Data System (ADS)

    Tao, R.; Huang, K.

    2010-03-01

    Blood viscosity is a major player in heart disease. When blood is viscous, in addition to a high blood pressure required for the blood circulation, blood vessel walls are also easy to be damaged. While this issue is very important, currently the only method to reduce the blood viscosity is to take medicine, such as aspirin. Here we report our new finding that the blood viscosity can be reduced by pulsed magnetic field. Blood is a suspension of red blood cells (erythrocytes), white blood cells (leukocytes) and platelets in plasma, a complex solution of gases, salts, proteins, carbohydrates, and lipids. The base liquid, plasma, has low viscosity. The effective viscosity of whole blood increases mainly due to the red blood cells, which have a volume fraction about 40% or above. Red blood cells contain iron and are sensitive to magnetic field. Therefore, when we apply a strong magnetic field, the red cells make their diameters align in the field direction to form short chains. This change in rheology reduces the effective viscosity as high as 20-30%. While this reduction is not permanent, it lasts for several hours and repeatable. The reduction rate can be controlled by selecting suitable magnetic field and duration of field application to make blood viscosity within the normal range.

  13. [Establishment and evaluation of extracorporeal circulation model in rats].

    PubMed

    Xie, Xiao-Jun; Tao, Kai-Yu; Tang, Meng-Lin; Du, Lei; An, Qi; Lin, Ke; Gan, Chang-Ping; Chen, You-Wen; Luo, Shu-Hua

    2012-09-01

    To establish an extracorporeal circulation (ECC) rat model, and evaluate the inflammatory response and organ injury induced in the model. SD rats were anesthetized and cannulated from right common carotid artery to left femoral vein to establish the bypass of extracorporeal circulation. Then the rats were randomly divided into ECC group and sham group. The rats in ECC group were subjected to extracorporeal circulation for 2 hours and then rest for 2 hours, while the rats in sham group were only observed for 4 hours without extracorporeal circulation. After that, blood routine examination, blood gas analysis, the measurement of pro-inflammatory factors in bronchoalveolar lavage fluid and lung tissue were performed to evaluate the lung injury induced by ECC. Circulating endothelial cells were also calculated by flow cytometry to assess the vascular endothelial injury. At 2 hours after ECC, red blood cell counts in both groups kept normal, while leukocyte and neutrophil counts, plasmatic tumor necrosis factor-a level and neutrophil elastase level, circulating endothelial cells in the rats of ECC group were significantly higher than those in sham group. Tumor necrosis factor-alpha in bronchoalveolar lavage fluid and water content in lung of the ECC rats were also significantly higher, while the oxygenation index was significantly lower. Neutrophil infiltration was also observed in lung tissues with increased thickness of alveolar membrane in ECC group. The ECC model established from right common carotid artery to left femoral vein in our study can successfully induce systemic inflammatory response, and acute lung injury associated with inflammation.

  14. Increased circulating blood cell counts in combat-related PTSD: Associations with inflammation and PTSD severity.

    PubMed

    Lindqvist, Daniel; Mellon, Synthia H; Dhabhar, Firdaus S; Yehuda, Rachel; Grenon, S Marlene; Flory, Janine D; Bierer, Linda M; Abu-Amara, Duna; Coy, Michelle; Makotkine, Iouri; Reus, Victor I; Aschbacher, Kirstin; Bersani, F Saverio; Marmar, Charles R; Wolkowitz, Owen M

    2017-12-01

    Inflammation is reported in post-traumatic stress disorder (PTSD). Few studies have investigated circulating blood cells that may contribute to inflammation. We assessed circulating platelets, white blood cells (WBC) and red blood cells (RBC) in PTSD and assessed their relationship to inflammation and symptom severity. One-hundred and sixty-three male combat-exposed veterans (82 PTSD, 81 non-PTSD) had blood assessed for platelets, WBC, and RBC. Data were correlated with symptom severity and inflammation. All cell counts were significantly elevated in PTSD. There were small mediation effects of BMI and smoking on these relationships. After adjusting for these, the differences in WBC and RBC remained significant, while platelet count was at trend level. In all subjects, all of the cell counts correlated significantly with inflammation. Platelet count correlated with inflammation only in the PTSD subjects. Platelet count, but none of the other cell counts, was directly correlated with PTSD severity ratings in the PTSD group. Combat PTSD is associated with elevations in RBC, WBC, and platelets. Dysregulation of all three major lineages of hematopoietic cells in PTSD, as well as their significant correlation with inflammation, suggest clinical significance of these changes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Erythrocyte deformation in ischemic acute tubular necrosis and amelioration by splenectomy in the dog.

    PubMed

    Mandal, A K; Taylor, C A; Bell, R D; Hillman, N M; Jarnot, M D; Cunningham, J D; Phillips, L G

    1991-11-01

    Bilateral renal artery occlusion (RAO) for 120 minutes in dogs results in acute tubular necrosis (ATN) and peritubular capillary (PTC) congestion with rapidly deteriorating renal function. We have shown that prior splenectomy minimizes RAO-induced renal functional and histopathologic changes. The purpose of this study was to examine whether this renal protection is due to prevention of red blood cell echinocyte formation and resultant renal PTC congestion. Echinocytes (burr cells) are poorly deformable, impart high viscosity to the blood, and may hinder reperfusion by increasing resistance to renal capillary blood flow. Splenectomized (SPLX) or sham-SPLX dogs were treated with bilateral RAO for 120 minutes. After RAO, renal function and renal blood flow were monitored, and peripheral blood red blood cells were examined at 1 hour and at 24-hour intervals for 96 hours. Renal biopsies were taken 1 hour after RAO and the kidneys removed 96 hours after RAO. The RBCs and renal tissues were studied using scanning electron microscopy. Renal function was assessed by endogenous creatinine clearance. Sham-SPLX animals showed a marked and sustained decrease in creatinine clearance, consistently elevated serum creatinine levels and fractional excretion of sodium, and diffuse ATN and PTC congestion with echinocytes. These animals had a peak in circulating echinocytes 1 hour after RAO (p less than 0.05), which showed an excellent negative correlation with creatinine clearance (r = -0.999; p less than 0.001). On the contrary, SPLX animals had essentially no change in serum creatinine or fractional excretion of sodium, minimal tubular changes, no PTC congestion, and no rise in circulating echinocytes during the 96-hour observation. In vitro treatment of the postischemic red blood cells from sham animals with adenosine-inosine or fresh postischemic plasma from the SPLX animals showed almost complete reversal to discocytes (normal red blood cells), whereas in vitro treatment of postischemic red blood cells from the SPLX animals with fresh postischemic plasma from the sham animals resulted in a marked echinocytic response. We conclude that 1) a marked echinocyte response in the immediate postischemic period is an important mechanism in initiating ischemic ATN, 2) an echinocyte inducing factor may reside in the plasma of spleen-intact animals, and 3) mitigation of ATN and PTC congestion by splenectomy is, at least in part, consequential to attenuated echinocytic response in the immediate postischemic period.

  16. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    NASA Astrophysics Data System (ADS)

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Köhl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.

  17. Multinode acoustic focusing for parallel flow cytometry

    PubMed Central

    Piyasena, Menake E.; Suthanthiraraj, Pearlson P. Austin; Applegate, Robert W.; Goumas, Andrew M.; Woods, Travis A.; López, Gabriel P.; Graves, Steven W.

    2012-01-01

    Flow cytometry can simultaneously measure and analyze multiple properties of single cells or particles with high sensitivity and precision. Yet, conventional flow cytometers have fundamental limitations with regards to analyzing particles larger than about 70 microns, analyzing at flow rates greater than a few hundred microliters per minute, and providing analysis rates greater than 50,000 per second. To overcome these limits, we have developed multi-node acoustic focusing flow cells that can position particles (as small as a red blood cell and as large as 107 microns in diameter) into as many as 37 parallel flow streams. We demonstrate the potential of such flow cells for the development of high throughput, parallel flow cytometers by precision focusing of flow cytometry alignment microspheres, red blood cells, and the analysis of CD4+ cellular immunophenotyping assay. This approach will have significant impact towards the creation of high throughput flow cytometers for rare cell detection applications (e.g. circulating tumor cells), applications requiring large particle analysis, and high volume flow cytometry. PMID:22239072

  18. Monoclonal antibodies to human hemoglobin S and cell lines for the production thereof

    DOEpatents

    Jensen, R.H.; Vanderlaan, M.; Bigbee, W.L.; Stanker, L.H.; Branscomb, E.W.; Grabske, R.J.

    1984-11-29

    The present invention provides monoclonal antibodies specific to and distinguishing between hemoglobin S and hemoglobin A and methods for their production and use. These antibodies are capable of distinguishing between two hemoglobin types which differ from each other by only a single amino acid residue. The antibodies produced according to the present method are useful as immunofluorescent markers to enumerate circulating red blood cells which have the property of altered expression of the hemoglobin gene due to somatic mutation in stem cells. Such a measurement is contemplated as an assay for in vivo cellular somatic mutations in humans. Since the monoclonal antibodies produced in accordance with the instant invention exhibit a high degree of specificity to and greater affinity for hemoglobin S, they are suitable for labeling human red blood cells for flow cytometric detection of hemoglobin genotype. 4 figs.

  19. A new molecular link between defective autophagy and erythroid abnormalities in chorea-acanthocytosis.

    PubMed

    Lupo, Francesca; Tibaldi, Elena; Matte, Alessandro; Sharma, Alok K; Brunati, Anna Maria; Alper, Seth L; Zancanaro, Carlo; Benati, Donatella; Siciliano, Angela; Bertoldi, Mariarita; Zonta, Francesca; Storch, Alexander; Walker, Ruth H; Danek, Adrian; Bader, Benedikt; Hermann, Andreas; De Franceschi, Lucia

    2016-12-22

    Chorea-acanthocytosis is one of the hereditary neurodegenerative disorders known as the neuroacanthocytoses. Chorea-acanthocytosis is characterized by circulating acanthocytes deficient in chorein, a protein of unknown function. We report here for the first time that chorea-acanthocytosis red cells are characterized by impaired autophagy, with cytoplasmic accumulation of active Lyn and of autophagy-related proteins Ulk1 and Atg7. In chorea-acanthocytosis erythrocytes, active Lyn is sequestered by HSP90-70 to form high-molecular-weight complexes that stabilize and protect Lyn from its proteasomal degradation, contributing to toxic Lyn accumulation. An interplay between accumulation of active Lyn and autophagy was found in chorea-acanthocytosis based on Lyn coimmunoprecipitation with Ulk1 and Atg7 and on the presence of Ulk1 in Lyn-containing high-molecular-weight complexes. In addition, chorein associated with Atg7 in healthy but not in chorea-acanthocytosis erythrocytes. Electron microscopy detected multivesicular bodies and membrane remnants only in circulating chorea-acanthocytosis red cells. In addition, reticulocyte-enriched chorea-acanthocytosis red cell fractions exhibited delayed clearance of mitochondria and lysosomes, further supporting the impairment of authophagic flux. Because autophagy is also important in erythropoiesis, we studied in vitro CD34 + -derived erythroid precursors. In chorea-acanthocytosis, we found (1) dyserythropoiesis; (2) increased active Lyn; (3) accumulation of a marker of autophagic flux and autolysososme degradation; (4) accumlation of Lamp1, a lysosmal membrane protein, and LAMP1-positive aggregates; and (5) reduced clearance of lysosomes and mitochondria. Our results uncover in chorea-acanthocytosis erythroid cells an association between accumulation of active Lyn and impaired autophagy, suggesting a link between chorein and autophagic vesicle trafficking in erythroid maturation.

  20. What we have learned about minimized extracorporeal circulation versus conventional extracorporeal circulation: an updated meta-analysis.

    PubMed

    Sun, Yanhua; Gong, Bing; Yuan, Xin; Zheng, Zhe; Wang, Guyan; Chen, Guo; Zhou, Chenghui; Wang, Wei; Ji, Bingyang

    2015-08-01

    The benefits of minimized extracorporeal circulation (MECC) compared with conventional extracorporeal circulation (CECC) are still in debate. PubMed, EMBASE and the Cochrane Library were searched until November 10, 2014. After quality assessment, we chose a fixed-effects model when the trials showed low heterogeneity, otherwise a random-effects model was used. We performed univariate meta-regression and sensitivity analysis to search for the potential sources of heterogeneity. Cumulative meta-analysis was performed to access the evolution of outcome over time. 41 RCTs enrolling 3744 patients were included after independent article review by 2 authors. MECC significantly reduced atrial fibrillation (RR, 0.76; 95% CI, 0.66 to 0.89; P < 0.001; I2 = 0%), and myocardial infarction (RR, 0.43; 95% CI, 0.26 to 0.71; P = 0.001; I2 = 0%). In addition, the results regarding chest tube drainage, transfusion rate, blood loss, red blood cell transfusion volume, and platelet count favored MECC as well. MECC diminished morbidity of cardiovascular complications postoperatively, conserved blood cells, and reduced allogeneic blood transfusion.

  1. Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics.

    PubMed

    Strohm, Eric M; Kolios, Michael C

    2015-08-01

    A label-free method that can identify cells in a blood sample using high frequency photoacoustic and ultrasound signals is demonstrated. When the wavelength of the ultrasound or photoacoustic wave is similar to the size of a single cell (frequencies of 100-500 MHz), unique periodic features occur within the ultrasound and photoacoustic power spectrum that depend on the cell size, structure, and morphology. These spectral features can be used to identify different cell types present in blood, such as red blood cells (RBCs), white blood cells (WBCs), and circulating tumor cells. Circulating melanoma cells are ideal for photoacoustic detection due to their endogenous optical absorption properties. Using a 532 nm pulsed laser and a 375 MHz transducer, the ultrasound and photoacoustic signals from RBCs, WBCs, and melanoma cells were individually measured in an acoustic microscope to examine how the signals change between cell types. A photoacoustic and ultrasound signal was detected from RBCs and melanoma cells; only an ultrasound signal was detected from WBCs. The different cell types were distinctly separated using the ultrasound and photoacoustic signal amplitude and power spectral periodicity. The size of each cell was also estimated from the spectral periodicity. For the first time, sound waves generated using pulse-echo ultrasound and photoacoustics have been used to identify and size single cells, with applications toward counting and identifying cells, including circulating melanoma cells. © 2015 International Society for Advancement of Cytometry.

  2. Evaluation of polyethylene glycol coated liposomes labeled with Tc-99m as a blood pool agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, W.T.; Klipper, R.; Goins, B.

    1994-05-01

    This investigation evaluated Tc-99m liposomes coated with polyethylene glycol (PEG) as a blood pool agent in comparison with Tc-99m liposomes carrying no surface charge (Neutral) and with Tc-99m autologous red cells. Liposomes (135 nm diameter) encapsulating glutathione were labeled with Tc-99m using the lipophilic chelator, HMPAO as previously described. Autologous red cells were labeled using an Ultratag kit. Labeling efficiencies averaged 66%, 52%, and 97% for the PEG liposomes. Neutral liposomes, and red cells, respectively. Rabbits (3-3.5 Kg) were injected IV via ear vein with 2.0 mls of PEG liposomes (2 mCi, 17 mg phospholipid/Kg body weight, n=5). Neutral liposomesmore » (1.3 mCi, 17 mg phospholipid/Kg body weight, n=4), or red cells (2.6 mCi, n=2). Gamma camera images were acquired at 5,22, and 45 minutes, and 2,20,and 44 hours post-injection. Blood samples were obtained at each time point to determine clearance kinetics. Circulation half lives of both Tc-99m liposome formulations were longer than Tc-99m red cells (8 hrs), with the half life of PEG liposomes (35 hrs) 1.6 times longer than Neutral liposomes (22 hrs). In vivo stability of the Tc-99m label was excellent for the liposomes with only 3.5-4% bladder activity at 45 minutes compared to 12% bladder activity for the red cells. Excellent blood pool images were obtained for the PEG liposomes in the rabbit. Heart/liver ratios calculated from region of interest analysis of 45 minutes images were 1.9, 1.5, and 1.7 for PEG liposomes, Neutral liposomes and red cells. This study demonstrates the feasibility of using Tc-99m PEG liposomes to perform gated cardiac blood pool and rapid gastrointestinal bleeding studies.« less

  3. Circulating membrane-derived microvesicles in redox biology.

    PubMed

    Larson, Michael Craig; Hillery, Cheryl A; Hogg, Neil

    2014-08-01

    Microparticles or microvesicles (MVs) are subcellular membrane blebs shed from all cells in response to various stimuli. MVs carry a battery of signaling molecules, many of them related to redox-regulated processes. The role of MVs, either as a cause or as a result of cellular redox signaling, has been increasingly recognized over the past decade. This is in part due to advances in flow cytometry and its detection of MVs. Notably, recent studies have shown that circulating MVs from platelets and endothelial cells drive reactive species-dependent angiogenesis; circulating MVs in cancer alter the microenvironment and enhance invasion through horizontal transfer of mutated proteins and nucleic acids and harbor redox-regulated matrix metalloproteinases and procoagulative surface molecules; and circulating MVs from red blood cells and other cells modulate cell-cell interactions through scavenging or production of nitric oxide and other free radicals. Although our recognition of MVs in redox-related processes is growing, especially in the vascular biology field, much remains unknown regarding the various biologic and pathologic functions of MVs. Like reactive oxygen and nitrogen species, MVs were originally believed to have a solely pathological role in biology. And like our understanding of reactive species, it is now clear that MVs also play an important role in normal growth, development, and homeostasis. We are just beginning to understand how MVs are involved in various biological processes-developmental, homeostatic, and pathological-and the role of MVs in redox signaling is a rich and exciting area of investigation. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Role of smooth muscle cells on endothelial cell cytosolic free calcium in porcine coronary arteries.

    PubMed

    Budel, S; Schuster, A; Stergiopoulos, N; Meister, J J; Bény, J L

    2001-09-01

    We tested the hypothesis that the cytosolic free calcium concentration in endothelial cells is under the influence of the smooth muscle cells in the coronary circulation. In the left descending branch of porcine coronary arteries, cytosolic free calcium concentration ([Ca(2+)](i)) was estimated by determining the fluorescence ratio of two calcium probes, fluo 4 and fura red, in smooth muscle and endothelial cells using confocal microscopy. Acetylcholine and potassium, which act directly on smooth muscle cells to increase [Ca(2+)](i), were found to indirectly elevate [Ca(2+)](i) in endothelial cells; in primary cultures of endothelial cells, neither stimulus affected [Ca(2+)](i), yet substance P increased the fluorescence ratio twofold. In response to acetylcholine and potassium, isometric tension developed by arterial strips with intact endothelium was attenuated by up to 22% (P < 0.05) compared with strips without endothelium. These findings suggest that stimuli that increase smooth muscle [Ca(2+)](i) can indirectly influence endothelial cell function in porcine coronary arteries. Such a pathway for negative feedback can moderate vasoconstriction and diminish the potential for vasospasm in the coronary circulation.

  5. In vitro culture and characterization of human lung cancer circulating tumor cells isolated by size exclusion from an orthotopic nude-mouse model expressing fluorescent protein.

    PubMed

    Kolostova, Katarina; Zhang, Yong; Hoffman, Robert M; Bobek, Vladimir

    2014-09-01

    In the present study, we demonstrate an animal model and recently introduced size-based exclusion method for circulating tumor cells (CTCs) isolation. The methodology enables subsequent in vitro CTC-culture and characterization. Human lung cancer cell line H460, expressing red fluorescent protein (H460-RFP), was orthotopically implanted in nude mice. CTCs were isolated by a size-based filtration method and successfully cultured in vitro on the separating membrane (MetaCell®), analyzed by means of time-lapse imaging. The cultured CTCs were heterogeneous in size and morphology even though they originated from a single tumor. The outer CTC-membranes were blebbing in general. Abnormal mitosis resulting in three daughter cells was frequently observed. The expression of RFP ensured that the CTCs originated from lung tumor. These readily isolatable, identifiable and cultivable CTCs can be used to characterize individual patient cancers and for screening of more effective treatment.

  6. Observations of the summer Red Sea circulation

    NASA Astrophysics Data System (ADS)

    Sofianos, Sarantis S.; Johns, William E.

    2007-06-01

    Aiming at exploring and understanding the summer circulation in the Red Sea, a cruise was conducted in the basin during the summer of 2001 involving hydrographic, meteorological, and direct current observations. The most prominent feature, characteristic of the summer circulation and exchange with the Indian Ocean, is a temperature, salinity, and oxygen minimum located around a depth of 75 m at the southern end of the basin, associated with Gulf of Aden Intermediate Water inflowing from the Gulf of Aden during the summer season as an intruding subsurface layer. Stirring and mixing with ambient waters lead to marked increases in temperature (from 16.5 to almost 33°C) and salinity (from 35.7 to more than 38 psu) in this layer by the time it reaches midbasin. The observed circulation presents a very vigorous pattern with strong variability and intense features that extend the width of the basin. A permanent cyclone, detected in the northern Red Sea, verifies previous observations and modeling studies, while in the central sector of the basin a series of very strong anticyclones were observed with maximum velocities exceeding 1 m/s. The three-layer flow pattern, representative of the summer exchange between the Red Sea and the Gulf of Aden, is observed in the strait of Bab el Mandeb. In the southern part of the basin the layer flow is characterized by strong banking of the inflows and outflows against the coasts. Both surface and intermediate water masses involved in the summer Red Sea circulation present prominent spatial variability in their characteristics, indicating that the eddy field and mixing processes play an important role in the summer Red Sea circulation.

  7. Red wine consumption increases antioxidant status and decreases oxidative stress in the circulation of both young and old humans

    PubMed Central

    Micallef, Michelle; Lexis, Louise; Lewandowski, Paul

    2007-01-01

    Background Red wine contains a naturally rich source of antioxidants, which may protect the body from oxidative stress, a determinant of age-related disease. The current study set out to determine the in vivo effects of moderate red wine consumption on antioxidant status and oxidative stress in the circulation. Methods 20 young (18–30 yrs) and 20 older (≥ 50 yrs) volunteers were recruited. Each age group was randomly divided into treatment subjects who consumed 400 mL/day of red wine for two weeks, or control subjects who abstained from alcohol for two weeks, after which they crossed over into the other group. Blood samples were collected before and after red wine consumption and were used for analysis of whole blood glutathione (GSH), plasma malondialdehyde (MDA) and serum total antioxidant status. Results Results from this study show consumption of red wine induced significant increases in plasma total antioxidant status (P < 0.03), and significant decreases in plasma MDA (P < 0.001) and GSH (P < 0.004) in young and old subjects. The results show that the consumption of 400 mL/day of red wine for two weeks, significantly increases antioxidant status and decreases oxidative stress in the circulation Conclusion It may be implied from this data that red wine provides general oxidative protection and to lipid systems in circulation via the increase in antioxidant status. PMID:17888186

  8. Increased erythrocyte deformability in fetal erythropoiesis and in erythrocytes deficient in glucose-6-phosphate dehydrogenase and other glycolytic enzymes.

    PubMed

    Johnson, R M; Panchoosingh, H; Goyette, G; Ravindranath, Y

    1999-01-01

    Erythrocyte deformability was determined in more than 500 clinical samples, and was found to be elevated in conditions in which fetal-like red cells are produced: aplastic anemia (3/3 cases), myelodysplastic syndromes, polycythemias, sickle cell anemia during treatment with hydroxyurea, paroxysmal nocturnal hemoglobinuria, and recovery from B12 deficiency. Elevated deformability was observed in neonatal erythrocytes, and during recovery from transient erythroblastopenia of childhood, when fetal-like red cells are known to be produced. Increased deformability appears to be a feature of fetal and fetal-like red cells. Forty-eight cases of enzymatically verified glucose-6-phosphate (G-6-PD) deficiency were also examined. Thirty out of 32 G-6-PD(A-) individuals, including both heterozygotes and hemizygotes, exhibited increased deformability during the steady state. In contrast, G-6-PD(Med) hemizygotes had normal deformability. Increased deformability was also found in G-6-PD(Huron) (n=3), G-6-PD(Wayne) (n=4), triose phosphate isomerase deficiency (n=2), and pyruvate kinase deficiency (n=2). An elevated osmoscan was found in more than 90% of female G-6-PD heterozygotes, affording a simple screening test for heterozygotes. Deformability remained high during hemolytic episodes, when older enzyme deficient cells are removed from the circulation. In four cases of G-6-PD deficiency with normal deformability, evidence for co-existing hereditary spherocytosis was found. The combination of conditions with opposing effects on deformability resulted in nearly normal deformability. Because increased red cell deformability is a feature of fetal erythrocytes, these results suggest that the red cells in many cases of glycolytic enzyme deficiency are fetal-like.

  9. Red Sea circulation during marine isotope stage 5e

    NASA Astrophysics Data System (ADS)

    Siccha, Michael; Biton, Eli; Gildor, Hezi

    2015-04-01

    We have employed a regional Massachusetts Institute of Technology oceanic general circulation model of the Red Sea to investigate its circulation during marine isotope stage (MIS) 5e, the peak of the last interglacial, approximately 125 ka before present. Compared to present-day conditions, MIS 5e was characterized by higher Northern Hemisphere summer insolation, accompanied by increases in air temperature of more than 2°C and global sea level approximately 8 m higher than today. As a consequence of the increased seasonality, intensified monsoonal conditions with increased winds, rainfall, and humidity in the Red Sea region are evident in speleothem records and supported by model simulations. To assess the dominant factors responsible for the observed changes, we conducted several sensitivity experiments in which the MIS 5 boundary conditions or forcing parameters were used individually. Overall, our model simulation for the last interglacial maximum reconstructs a Red Sea that is colder, less ventilated and probably more oligotrophic than at present day. The largest alteration in Red Sea circulation and properties was found for the simulation of the northward displacement and intensification of the African tropical rain belt during MIS 5e, leading to a notable increase in the fresh water flux into the Red Sea. Such an increase significantly reduced the Red Sea salinity and exchange volume of the Red Sea with the Gulf of Aden. The Red Sea reacted to the MIS 5e insolation forcing by the expected increase in seasonal sea surface temperature amplitude and overall cooling caused by lower temperatures during deep water formation in winter.

  10. Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application.

    PubMed

    He, Huining; Ye, Junxiao; Wang, Yinsong; Liu, Quan; Chung, Hee Sun; Kwon, Young Min; Shin, Meong Cheol; Lee, Kyuri; Yang, Victor C

    2014-02-28

    Red blood cells (RBCs) based drug carrier appears to be the most appealing for protein drugs due to their unmatched biocompatability, biodegradability, and long lifespan in the circulation. Numerous methods for encapsulating protein drugs into RBCs were developed, however, most of them induce partial disruption of the cell membrane, resulting in irreversible alterations in both physical and chemical properties of RBCs. Herein, we introduce a novel method for encapsulating proteins into intact RBCs, which was meditated by a cell penetrating peptide (CPP) developed in our lab-low molecular weight protamine (LMWP). l-asparaginase, one of the primary drugs used in treatment of acute lymphoblastic leukemia (ALL), was chosen as a model protein to illustrate the encapsulation into erythrocytes mediated by CPPs. In addition current treatment of ALL using different l-asparaginase delivery and encapsulation methods as well as their associated problems were also reviewed. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. The Modern Primitives: Applying New Technological Approaches to Explore the Biology of the Earliest Red Blood Cells

    PubMed Central

    Fraser, Stuart T.

    2013-01-01

    One of the most critical stages in mammalian embryogenesis is the independent production of the embryo's own circulating, functional red blood cells. Correspondingly, erythrocytes are the first cell type to become functionally mature during embryogenesis. Failure to achieve this invariably leads to in utero lethality. The recent application of technologies such as transcriptome analysis, flow cytometry, mutant embryo analysis, and transgenic fluorescent gene expression reporter systems has shed new light on the distinct erythroid lineages that arise early in development. Here, I will describe the similarities and differences between the distinct erythroid populations that must form for the embryo to survive. While much of the focus of this review will be the poorly understood primitive erythroid lineage, a discussion of other erythroid and hematopoietic lineages, as well as the cell types making up the different niches that give rise to these lineages, is essential for presenting an appropriate developmental context of these cells. PMID:24222861

  12. Endothelial nitric oxide synthase in red blood cells: Key to a new erythrocrine function?☆

    PubMed Central

    Cortese-Krott, Miriam M.; Kelm, Malte

    2014-01-01

    Red blood cells (RBC) have been considered almost exclusively as a transporter of metabolic gases and nutrients for the tissues. It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting NO available for vasodilatation. Yet it has also been shown that RBCs not only act as “NO sinks”, but exert an erythrocrine function – i.e an endocrine function of RBC – by synthesizing, transporting and releasing NO metabolic products and ATP, thereby potentially controlling systemic NO bioavailability and vascular tone. Recent work from our and others laboratory demonstrated that human RBCs carry an active type 3, endothelial NO synthase (eNOS), constitutively producing NO under normoxic conditions, the activity of which is compromised in patients with coronary artery disease. In this review we aim to discuss the potential role of red cell eNOS in RBC signaling and function, and to critically revise evidence to this date showing a role of non-endothelial circulating eNOS in cardiovascular pathophysiology. PMID:24494200

  13. Effect of strenuous physical exercise on circulating cell-derived microparticles.

    PubMed

    Chaar, Vicky; Romana, Marc; Tripette, Julien; Broquere, Cédric; Huisse, Marie-Geneviève; Hue, Olivier; Hardy-Dessources, Marie-Dominique; Connes, Philippe

    2011-01-01

    Strenuous exercise is associated with an inflammatory response involving the activation of several types of blood cells. In order to document the specific activation of these cell types, we studied the effect of three maximal exercise tests conducted to exhaustion on the quantitative and qualitative pattern of circulating cell-derived microparticles and inflammatory molecules in healthy subjects. This study mainly indicated that the plasma concentration of microparticles from platelets and polymorphonuclear neutrophils (PMN) was increased immediately after the strenuous exercise. In addition, the increase in plasma concentration of microparticles from PMN and platelets was still observed after 2 hours of recovery. A similar pattern was observed for the IL-6 plasma level. In contrast, no change was observed for either soluble selectins or plasma concentration of microparticles from red blood cells, monocytes and endothelial cells. In agreement, sVCAM-1 and sICAM-1 levels were not changed by the exercise. We conclude that a strenuous exercise is accompanied by platelet- and PMN-derived microparticle production that probably reflects the activation of these two cell types.

  14. Red Wine Prevents the Acute Negative Vascular Effects of Smoking.

    PubMed

    Schwarz, Viktoria; Bachelier, Katrin; Schirmer, Stephan H; Werner, Christian; Laufs, Ulrich; Böhm, Michael

    2017-01-01

    Moderate consumption of red wine is associated with fewer cardiovascular events. We investigated whether red wine consumption counteracts the adverse vascular effects of cigarette smoking. Participants smoked 3 cigarettes alone or after drinking a titrated volume of red wine. Clinical chemistry, blood counts, plasma cytokine enzyme-linked immunosorbent assays, immunomagnetic separation of CD14 + monocytes for gene expression analysis, fluorescence-activated cell sorting for microparticles, and isolation of circulating mononuclear cells to measure telomerase activity were performed, and urine cotinine levels were quantified. Compared with baseline, leukocytosis (P = .019), neutrophilia (P <.001), lymphopenia (P <.001), and eosinopenia (P = .008) were observed after only smoking. Endothelial and platelet-, monocyte-, and leukocyte-derived microparticles (P <.001 each) were elevated. In monocytes, messenger RNA expression of interleukin (IL)-6 (2.6- ± 0.57-fold), tumor necrosis factor alpha (2.2- ± 0.62-fold), and IL-1b (2.3- ± 0.44-fold) were upregulated, as was IL-6 (1.2 ± 0.12-fold) protein concentration in plasma. Smoking acutely inhibited mononuclear cell telomerase activity. Markers of endothelial damage, inflammation, and cellular aging were completely attenuated by red wine consumption. Cigarette smoke results in acute endothelial damage, vascular and systemic inflammation, and indicators of the cellular aging processes in otherwise healthy nonsmokers. Pretreatment with red wine was preventive. The findings underscore the magnitude of acute damage exerted by cigarette smoking in "occasional lifestyle smokers" and demonstrate the potential of red wine as a protective strategy to avert markers of vascular injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.

    1990-06-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of (G-{sup 3}H) hypoxanthine (Hy) into ({sup 3}H) labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate ({sup 3}H) ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubatedmore » under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation.« less

  16. Drug-Induced Hematologic Syndromes

    PubMed Central

    Mintzer, David M.; Billet, Shira N.; Chmielewski, Lauren

    2009-01-01

    Objective. Drugs can induce almost the entire spectrum of hematologic disorders, affecting white cells, red cells, platelets, and the coagulation system. This paper aims to emphasize the broad range of drug-induced hematological syndromes and to highlight some of the newer drugs and syndromes. Methods. Medline literature on drug-induced hematologic syndromes was reviewed. Most reports and reviews focus on individual drugs or cytopenias. Results. Drug-induced syndromes include hemolytic anemias, methemoglobinemia, red cell aplasia, sideroblastic anemia, megaloblastic anemia, polycythemia, aplastic anemia, leukocytosis, neutropenia, eosinophilia, immune thrombocytopenia, microangiopathic syndromes, hypercoagulability, hypoprothrombinemia, circulating anticoagulants, myelodysplasia, and acute leukemia. Some of the classic drugs known to cause hematologic abnormalities have been replaced by newer drugs, including biologics, accompanied by their own syndromes and unintended side effects. Conclusions. Drugs can induce toxicities spanning many hematologic syndromes, mediated by a variety of mechanisms. Physicians need to be alert to the potential for iatrogenic drug-induced hematologic complications. PMID:19960059

  17. Rapid and selective removal of larval erythrocytes from systemic circulation during metamorphosis of the bullfrog, Rana catesbeiana.

    PubMed

    Hasebe, T; Oshima, H; Kawamura, K; Kikuyama, S

    1999-10-01

    Mechanisms of hemoglobin transition during bullfrog metamorphosis were investigated by labeling red blood cells from larvae (L-RBC) and from froglets (A-RBC) with a fluorescent dye, PKH26. The life span of the labeled L-RBC in systemic circulation was significantly shorter when they were injected into the animals at the metamorphic climax, compared to injection into pre- or postmetamorphic animals. The A-RBC had a long life span regardless of the metamorphic stage of the recipient animal. Therefore, L-RBC were selectively removed from the systemic circulation at the time of metamorphic climax. During climax, the labeled L-RBC were ingested by hepatic and splenic macrophages, indicating that macrophages are involved in the specific elimination of L-RBC.

  18. Towards a needle-free diagnosis of malaria: in vivo identification and classification of red and white blood cells containing haemozoin.

    PubMed

    Burnett, Jennifer L; Carns, Jennifer L; Richards-Kortum, Rebecca

    2017-11-07

    Optical detection of circulating haemozoin has been suggested as a needle free method to diagnose malaria using in vivo microscopy. Haemozoin is generated within infected red blood cells by the malaria parasite, serving as a highly specific, endogenous biomarker of malaria. However, phagocytosis of haemozoin by white blood cells which persist after the infection is resolved presents the potential for false positive diagnosis; therefore, the focus of this work is to identify a feature of the haemozoin signal to discriminate between infected red blood cells and haemozoin-containing white blood cells. Conventional brightfield microscopy of thin film blood smears was used to analyse haemozoin absorbance signal in vitro. Cell type and parasite maturity were morphologically determined using colocalized DAPI staining. The ability of features to discriminate between infected red blood cells and haemozoin-containing white blood cells was evaluated using images of smears from subjects infected with two species of Plasmodium, Plasmodium yoelii and Plasmodium falciparum. Discriminating features identified by blood smear microscopy were characterized in vivo in P. yoelii-infected mice. Two features of the haemozoin signal, haemozoin diameter and normalized intensity difference, were identified as potential parameters to differentiate infected red blood cells and haemozoin-containing white blood cells. Classification performance was evaluated using the area under the receiver operating characteristic curve, with area under the curve values of 0.89 for the diameter parameter and 0.85 for the intensity parameter when assessed in P. yoelii samples. Similar results were obtained from P. falciparum blood smears, showing an AUC of 0.93 or greater for both classification features. For in vivo investigations, the intensity-based metric was the best classifier, with an AUC of 0.91. This work demonstrates that size and intensity features of haemozoin absorbance signal collected by in vivo microscopy are effective classification metrics to discriminate infected red blood cells from haemozoin-containing white blood cells. This reduces the potential for false positive results associated with optical imaging strategies for in vivo diagnosis of malaria based on the endogenous biomarker haemozoin.

  19. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea

    NASA Astrophysics Data System (ADS)

    Sofianos, Sarantis S.; Johns, William E.

    2003-03-01

    The three-dimensional circulation of the Red Sea is studied using a set of Miami Isopycnic Coordinate Ocean Model (MICOM) simulations. The model performance is tested against the few available observations in the basin and shows generally good agreement with the main observed features of the circulation. The main findings of this analysis include an intensification of the along-axis flow toward the coasts, with a transition from western intensified boundary flow in the south to eastern intensified flow in the north, and a series of strong seasonal or permanent eddy-like features. Model experiments conducted with different forcing fields (wind-stress forcing only, surface buoyancy forcing only, or both forcings combined) showed that the circulation produced by the buoyancy forcing is stronger overall and dominates the wind-driven part of the circulation. The main circulation pattern is related to the seasonal buoyancy flux (mostly due to the evaporation), which causes the density to increase northward in the basin and produces a northward surface pressure gradient associated with the downward sloping of the sea surface. The response of the eastern boundary to the associated mean cross-basin geostrophic current depends on the stratification and β-effect. In the northern part of the basin this results in an eastward intensification of the northward surface flow associated with the presence of Kelvin waves while in the south the traditional westward intensification due to Rossby waves takes place. The most prominent gyre circulation pattern occurs in the north where a permanent cyclonic gyre is present that is involved in the formation of Red Sea Outflow Water (RSOW). Beneath the surface boundary currents are similarly intensified southward undercurrents that carry the RSOW to the sill to flow out of the basin into the Indian Ocean.

  20. Red blood cells promote survival and cell cycle progression of human peripheral blood T cells independently of CD58/LFA-3 and heme compounds.

    PubMed

    Fonseca, Ana Mafalda; Pereira, Carlos Filipe; Porto, Graça; Arosa, Fernando A

    2003-07-01

    Red blood cells (RBC) are known to modulate T cell proliferation and function possibly through downregulation of oxidative stress. By examining parameters of activation, division, and cell death in vitro, we show evidence that the increase in survival afforded by RBC is due to the maintenance of the proliferative capacity of the activated T cells. We also show that the CD3+CD8+ T cell subset was preferentially expanded and rescued from apoptosis both in bulk peripheral blood lymphocyte cultures and with highly purified CD8+ T cells. The ability of RBC to induce survival of dividing T cells was not affected by blocking the CD58/CD2 interaction. Moreover, addition of hemoglobin, heme or protoporphyrin IX to cultures of activated T cells did not reproduce the effect of intact RBC. Considering that RBC circulate throughout the body, they could play a biological role in the modulation of T cell differentiation and survival in places of active cell division. Neither CD58 nor the heme compounds studied seem to play a direct relevant role in the modulation of T cell survival.

  1. Effects of a TASER® conducted energy weapon on the circulating red-blood-cell population and other factors in Sus scrofa.

    PubMed

    Jauchem, James R; Bernhard, Joshua A; Cerna, Cesario Z; Lim, Tiffany Y; Seaman, Ronald L; Tarango, Melissa

    2013-09-01

    In previous studies hematocrit has been consistently increased in an anesthetized animal model after exposures to TASER(®) conducted energy weapons (CEWs). In the present study we analyzed changes in blood cell counts and red blood cell membrane proteins following two 30-s applications of a TASER C2 device (which is designed for civilian use). Hematocrit increased significantly from 33.2 ± 2.4 (mean ± SD) to 42.8 ± 4.6 % immediately after CEW exposure of eleven pigs (Sus scrofa). Red blood cell count increased significantly from 6.10 ± 0.55 × 10(12)/L to 7.45 ± 0.94 × 10(12)/L, and mean corpuscular volume increased significantly from 54.5 ± 2.4 fl to 57.8 ± 2.6 fl. Mean corpuscular hemoglobin concentration decreased significantly from 20.5 ± 0.7 to 18.5 ± 0.6 mM. Thirty protein spots (from two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis, selected for detailed comparison) exhibited greater densities 30-min post-exposure compared with pre-exposure values. A greater number of echinocytes were observed following CEW exposure. On the basis of these results it appears that, during the strong muscle contractions produced by TASER CEWs, a specific population of red blood cells (RBCs) may be released from the spleen or other reservoirs within the body. The total time of CEW exposure in the present study was relatively long compared with exposures in common law-enforcement scenarios. Despite statistically significant changes in red blood cell counts (and other measures directly related to RBCs), the alterations were short-lived. The transient nature of the changes would be likely to counteract any potentially detrimental effects.

  2. Physical-biological coupling induced aggregation mechanism for the formation of high biomass red tides in low nutrient waters.

    PubMed

    Lai, Zhigang; Yin, Kedong

    2014-01-01

    Port Shelter is a semi-enclosed bay in northeast Hong Kong where high biomass red tides are observed to occur frequently in narrow bands along the local bathymetric isobars. Previous study showed that nutrients in the Bay are not high enough to support high biomass red tides. The hypothesis is that physical aggregation and vertical migration of dinoflagellates appear to be the driving mechanism to promote the formation of red tides in this area. To test this hypothesis, we used a high-resolution estuarine circulation model to simulate the near-shore water dynamics based on in situ measured temperature/salinity profiles, winds and tidal constitutes taken from a well-validated regional tidal model. The model results demonstrated that water convergence occurs in a narrow band along the west shore of Port Shelter under a combined effect of stratified tidal current and easterly or northeasterly wind. Using particles as dinoflagellate cells and giving diel vertical migration, the model results showed that the particles aggregate along the convergent zone. By tracking particles in the model predicted current field, we estimated that the physical-biological coupled processes induced aggregation of the particles could cause 20-45 times enhanced cell density in the convergent zone. This indicated that a high cell density red tide under these processes could be initialized without very high nutrients concentrations. This may explain why Port Shelter, a nutrient-poor Bay, is the hot spot for high biomass red tides in Hong Kong in the past 25 years. Our study explains why red tide occurrences are episodic events and shows the importance of taking the physical-biological aggregation mechanism into consideration in the projection of red tides for coastal management. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Effects of a diet high in plant sterols, vegetable proteins, and viscous fibers (dietary portfolio) on circulating sterol levels and red cell fragility in hypercholesterolemic subjects.

    PubMed

    Jones, Peter J; Raeini-Sarjaz, Mahmoud; Jenkins, David J A; Kendall, Cyril W C; Vidgen, Edward; Trautwein, Elke A; Lapsley, Karen G; Marchie, Augustine; Cunnane, Stephen C; Connelly, Philip W

    2005-02-01

    Plant sterols, soy proteins, viscous fibers, and nuts are advised for cholesterol reduction, but their combined effect on plant sterol absorption has never been tested. We assessed their combined action on serum sterols in hyperlipidemic subjects who were following low-saturated fat diets before starting the study and who returned to these diets post-test. The 1-mon test (combination) diet was high in plant sterols (1 g/1,000 kcal), soy protein (23 g/1,000 kcal), viscous fiber (9 g/1,000 kcal), and almonds (14 g/1000 kcal). Fasting blood was obtained for serum lipids and sterols, and erythrocytes were obtained for fragility prior to and at 2-wk intervals during the study. The combination diet raised serum campesterol concentrations by 50% and beta-sitosterol by 27%, although these changes were not significant after Bonferroni correction; near-maximal rises were found by the end of the first week, but no change was found in red cell fragility despite a 29% reduction in the LDL cholesterol level. No significant associations were observed between changes in red cell fragility and blood lipids or sterols. We conclude that plant sterols had a minimal impact on serum sterol concentrations or red cell fragility in hyperlipidemic subjects on diets that greatly reduced their serum lipids.

  4. The maternal to fetal transfer of immunoglobulins associated with placental lesions in sheep.

    PubMed Central

    Poitras, B J; Miller, R B; Wilkie, B N; Bosu, W T

    1986-01-01

    In this study we evaluated maternofetal transmission of immunoglobulins in ewes under conditions of altered placental morphology. Intravenous injection of human red blood cells was used to induce immunoglobulins in pregnant ewes. The hemagglutination test was used to detect antibody in maternal serum, fetal and placental fluids. Placental injury was induced by intravenous inoculation of Escherichia coli endotoxin or spores of Aspergillus fumigatus into pregnant ewes at days 99 or 100 of gestation respectively. Placental infarction, thrombosis of maternal placental vessels and variable neutrophil infiltrate characterized lesions produced by A. fumigatus. Endotoxin treated ewes developed marked placental edema, congestion, hemorrhage and focal loss of uterine epithelium. Human red blood cell agglutinating antibody was not detected in placental or fetal fluids obtained from ewes with either of the above placental lesions. Placentitis of undetermined etiology was observed in seven ewes. Two ewes had received A. fumigatus, two had received endotoxin and three were untreated ewes. Histological examination of their placentas revealed trophoblastic and endometrial epithelial necrosis and necrotizing vasculitis of the chorioallantois. Human red blood cell agglutinating antibody was detected only in the fetal and placental fluids of the seven ewes with these placental lesions. The nature of these lesions would have produced a functional confluence of the maternal and fetal circulations. Antibody transfer from dam to fetus was observed only in association with placental lesions which produced this confluence of circulations. The character of the placental lesions, rather than the mere presence of placental lesions apparently determined the transfer of immunoglobulins.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3742359

  5. THE EFFECTS OF EXPERIMENTAL PLETHORA ON BLOOD PRODUCTION.

    PubMed

    Robertson, O H

    1917-08-01

    With the purpose of determining whether a diminished activity of the bone marrow could be brought about experimentally, plethora was produced in rabbits by means of repeated small transfusions of blood. Counts of the number of reticulated red cells in the circulating blood were made during the course of the experiments as an index to changes in the activity of the bone marrow. With the development of plethora, the number of reticulated cells in the blood decreased. In the majority of the plethoric animals, this diminution was extreme, and in some instances, reticulated cells practically disappeared from the blood. A comparison of the red bone marrow of these animals with that of normal controls revealed a marked reduction in the content of reticulated cells. After a number of transfusions, there occurred in some of the plethoric rabbits a sudden and marked drop in hemoglobin. The hemoglobin continued to fall until a severe grade of anemia was reached. This was followed by an extremely rapid regeneration accompanied by a striking rise in color index. During regeneration, the reticulated cells were enormously increased in number. Taken together, these facts show that the bone marrow is markedly influenced by plethora. The diminished number of reticulated cells observed, both in the circulating blood and in the marrow, would make it appear that a decided decrease in blood production occurs. The reduction in the number of these cells cannot be due to changes in the constitution of the red cells put out by the bone marrow, as a result of an increased quantity of hemoglobin in the body, because during regeneration from the above mentioned anemia, when the color index was very high, reticulated cells were still present in large numbers. That the activity of the bone marrow does actually diminish during plethora is further evidenced by the occurrence of the anemia. The most reasonable explanation of this phenomenon is that the recipient develops an immunity against the blood of the donors, which results in the destruction of the strange cells that are in circulation. In keeping with this conception is the appearance of isoagglutinins for the donors' red cells in the blood of the recipient, at about the time of the beginning fall in hemoglobin. The occurrence of anemia as a result of the destruction of the alien blood only would seem to be due to the circumstance that, during the period of plethora, blood production is greatly diminished; as a consequence, the blood cells proper to the recipient are gradually reduced in number and replaced by alien cells until the latter come to constitute the bulk of the animal's blood. In those rabbits developing anemia, the initial drop of hemoglobin from the plethoric level to the normal was constantly accompanied by a marked rise in the number of reticulated cells. This brought up a subsidiary problem for study. With the idea that the stimulation of the bone marrow might be due to the presence of an increased quantity of broken down blood, rabbits, were injected intravenously with large amounts of laked blood cells. The procedure had no evident effect on the blood picture. It was then found that simple blood removal from a plethoric animal which brought back the hemoglobin to the normal level, or even to a point somewhat above, sufficed to cause a marked increase in the number of reticulated cells. Although these findings are not conclusive, they suggest an explanation for the increased bone marrow activity accompanying the initial drop of hemoglobin in the plethoric rabbits; namely, that the organism had in some way adapted itself during the period of plethora to the presence of a greater amount of blood and that the result of blood loss in such an organism was a relative but not absolute anemia. The finding that the activity of the bone marrow can be depressed by the introduction of a large quantity of blood into the circulation accounts for the diminished bone marrow activity which sometimes occurs after transfusion in pernicious anemia. In such cases there is a marked drop in the number of reticulated cells and other evidence of bone marrow depression; the patient shows no benefit from transfusion or may grow rapidly worse. The cause of this depression is best explained on the basis that in severe instances of the disease where exhaustion of the bone marrow is imminent, the stimulus of the anemia is only just sufficient to keep the marrow functioning. A sudden lowering of this stimulus is brought about by the introduction of a large quantity of blood into the circulation, and the result is a fall in the activity of the bone marrow. It follows from this that in pernicious anemia with a feebly reacting bone marrow as indicated by the number of reticulated red cells, small transfusions are preferable to large ones.

  6. Normal versus sickle red blood cells: hemodynamic and permeability characteristics in reperfusion lung injury.

    PubMed

    Haynes, J; Seibert, A; Shah, A; Taylor, A

    1990-01-01

    Decreased deformability and increased internal viscosity of the sickle red blood cell (SRBC) contribute to abnormal flow in the microcirculation. Since the lungs are commonly affected in sickle cell disease, we compared the hemodynamics of the normal human red blood cell (NRBC) with the SRBC in the pulmonary circulation. The SRBC has decreased antioxidant enzyme activities compared with the NRBC. Thus, using the capillary filtration coefficient (Kfc), we determined the ability of the NRBC and the SRBC to attenuate the increased permeability and resulting edema seen in the oxidant stress of reperfusion lung injury (RLI). We found that lungs perfused with a 5% SRBC perfusate had higher pulmonary arterial pressures (Ppa) and resistances than lungs perfused with a 5% NRBC perfusate. Lungs made ischemic and reperfused with a physiologic cell-free perfusate resulted in a significant increase (P less than .05) in Kfc compared with the preischemic Kfc (.45 +/- .06 to 1.4 +/- 22 mL.min-1.cm H2O.100 g-1). In lungs reperfused with 5% RBC-containing perfusates, the Kfc did not change from preischemic Kfc with NRBCs and decreased from the preischemic Kfc with SRBCs. These findings suggest that the SRBC causes physiologically significant increases in Ppa and resistances and the SRBC, like the NRBC, offers apparent protection in RLI.

  7. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging.

    PubMed

    Mohanty, Joy G; Nagababu, Enika; Rifkind, Joseph M

    2014-01-01

    Red Blood Cells (RBCs) need to deform and squeeze through narrow capillaries. Decreased deformability of RBCs is, therefore, one of the factors that can contribute to the elimination of aged or damaged RBCs from the circulation. This process can also cause impaired oxygen delivery, which contributes to the pathology of a number of diseases. Studies from our laboratory have shown that oxidative stress plays a significant role in damaging the RBC membrane and impairing its deformability. RBCs are continuously exposed to both endogenous and exogenous sources of reactive oxygen species (ROS) like superoxide and hydrogen peroxide (H2O2). The bulk of the ROS are neutralized by the RBC antioxidant system consisting of both non-enzymatic and enzymatic antioxidants including catalase, glutathione peroxidase and peroxiredoxin-2. However, the autoxidation of hemoglobin (Hb) bound to the membrane is relatively inaccessible to the predominantly cytosolic RBC antioxidant system. This inaccessibility becomes more pronounced under hypoxic conditions when Hb is partially oxygenated, resulting in an increased rate of autoxidation and increased affinity for the RBC membrane. We have shown that a fraction of peroxyredoxin-2 present on the RBC membrane may play a major role in neutralizing these ROS. H2O2 that is not neutralized by the RBC antioxidant system can react with the heme producing fluorescent heme degradation products (HDPs). We have used the level of these HDP as a measure of RBC oxidative Stress. Increased levels of HDP are detected during cellular aging and various diseases. The negative correlation (p < 0.0001) between the level of HDP and RBC deformability establishes a contribution of RBC oxidative stress to impaired deformability and cellular stiffness. While decreased deformability contributes to the removal of RBCs from the circulation, oxidative stress also contributes to the uptake of RBCs by macrophages, which plays a major role in the removal of RBCs from circulation. The contribution of oxidative stress to the removal of RBCs by macrophages involves caspase-3 activation, which requires oxidative stress. RBC oxidative stress, therefore, plays a significant role in inducing RBC aging.

  8. Intake of red wine increases the number and functional capacity of circulating endothelial progenitor cells by enhancing nitric oxide bioavailability.

    PubMed

    Huang, Po-Hsun; Chen, Yung-Hsiang; Tsai, Hsiao-Ya; Chen, Jia-Shiong; Wu, Tao-Cheng; Lin, Feng-Yen; Sata, Masataka; Chen, Jaw-Wen; Lin, Shing-Jong

    2010-04-01

    Red wine (RW) consumption has been associated with a reduction of cardiovascular events, but limited data are available on potential mediating mechanisms. This study tested the hypothesis that intake of RW may promote the circulating endothelial progenitor cell (EPC) level and function through enhancement of nitric oxide bioavailability. Eighty healthy, young subjects were randomized and assigned to consume water (100 mL), RW (100 mL), beer (250 mL), or vodka (30 mL) daily for 3 weeks. Flow cytometry was used to quantify circulating EPC numbers, and in vitro assays were used to evaluate EPC functions. After RW ingestion, endothelial function determined by flow-mediated vasodilation was significantly enhanced; however, it remained unchanged after water, beer, or vodka intake. There were significantly increased numbers of circulating EPC (defined as KDR(+)CD133(+), CD34(+)CD133(+), CD34(+)KDR(+)) and EPC colony-forming units only in the RW group (all P<0.05). Only RW ingestion significantly enhanced plasma levels of nitric oxide and decreased asymmetrical dimethylarginine (both P<0.01). Incubation of EPC with RW (but not beer or ethanol) and resveratrol in vitro attenuated tumor necrosis factor-alpha-induced EPC senescence and improved tumor necrosis factor-alpha-suppressed EPC functions and tube formation. Incubation with nitric oxide donor sodium nitroprusside significantly ameliorated the inhibition of tumor necrosis factor-alpha on EPC proliferation, but incubation with endothelial nitric oxide synthase inhibitor l-NAME and PI3K inhibitor markedly attenuated the effect of RW on EPC proliferation. The intake of RW significantly enhanced circulating EPC levels and improved EPC functions by modifying nitric oxide bioavailability. These findings may help explain the beneficial effects of RW on the cardiovascular system. This study demonstrated that a moderate intake of RW can enhance circulating levels of EPC in healthy subjects by increasing nitric oxide availability. Direct incubation of EPC with RW and resveratrol can modify the functions of EPC, including attenuation of senescence and promotion of EPC adhesion, migration, and tube formation. These data suggest that RW ingestion may alter the biology of EPC, and these alterations may contribute to its unique cardiovascular-protective effect.

  9. Noninvasive Antenatal Determination of Fetal Blood Group Using Next-Generation Sequencing

    PubMed Central

    Rieneck, Klaus; Clausen, Frederik Banch; Dziegiel, Morten Hanefeld

    2016-01-01

    Hemolytic disease of the fetus and newborn (HDFN) is a condition characterized by a decreased lifespan of fetal red blood cells caused by maternally produced allospecific antibodies transferred to the fetus during pregnancy. The antibodies bind to the corresponding blood group antigens on fetal red blood cells and induce hemolysis. Cell-free DNA derived from the conceptus circulates in maternal blood. Using next-generation sequencing (NGS), it can be determined if this cell-free fetal DNA encodes the corresponding blood group antigen that is the target of the maternal allospecific antibodies. This determination carries no risk to the fetus. It is important to determine if the fetus is at risk of hemolysis to enable timely intervention. Many tests for blood groups are based solely on the presence or absence of a single nucleotide polymorphism (SNP). Antenatal determination of fetal blood group by NGS analysis holds advantages over polymerase chain reaction (PCR) determination based on allele specific amplification. PMID:26511760

  10. Assessment of the ``cross-bridge''-induced interaction of red blood cells by optical trapping combined with microfluidics

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Wagner, Christian; Priezzhev, Alexander V.

    2017-09-01

    Red blood cell (RBC) aggregation is an intrinsic property of the blood that has a direct effect on the blood viscosity and circulation. Nevertheless, the mechanism behind the RBC aggregation has not been confirmed and is still under investigation with two major hypotheses, known as "depletion layer" and "cross-bridging." We aim to ultimately understand the mechanism of the RBC aggregation and clarify both models. To measure the cell interaction in vitro in different suspensions (including plasma, isotonic solution of fibrinogen, isotonic solution of fibrinogen with albumin, and phosphate buffer saline) while moving the aggregate from one solution to another, an approach combining optical trapping and microfluidics has been applied. The study reveals evidence that RBC aggregation in plasma is at least partly due to the cross-bridging mechanism. The cell interaction strength measured in the final solution was found to be significantly changed depending on the initial solution where the aggregate was formed.

  11. Hypoxia increases erythropoiesis and decreases thrombocytopoiesis in mice: a comparison of two mouse strains.

    PubMed

    Cottrell, M B; Jackson, C W; McDonald, T P

    1991-07-01

    Several previous studies have shown that hypoxia increases erythropoiesis and decreases thrombocytopoiesis in mice. It has been postulated that the thrombocytopenia is caused by stem cell competition between the erythrocytic and megakaryocytic cell lines. In the present work, we compared the effects of severe hypoxia (5.5-6.0% O2) in both male and female C3H and BALB/c mice by measuring their abilities to produce red blood cells and platelets. All mice had significant increases in packed cell volumes and marked decreases in platelet production after hypoxia; however, there were significant differences in the degree of stimulation in the two mouse strains. After 14 days of hypoxia, the percentage of 35S incorporation into platelets, total circulating platelet counts and total circulating platelet masses were lower in C3H mice than in BALB/c mice, but platelet sizes were larger. Also, hypoxia caused greater changes in male mice than in female mice, with male C3H mice showing the greatest increase in packed cell volumes and the lowest platelet counts of all mice tested. The least responses were observed in female BALB/c mice. BALB/c mice had higher P50 (right-shifted O2 dissociation curves) and lower erythrocyte 2,3-diphosphoglycerate values than C3H mice, indicating a lower hemoglobin O2 affinity for BALB/c mice. The results indicate that the effects of hypoxia are not direct upon platelet production, but that the thrombocytopenia is a result of stimulation of erythropoiesis. These data support the stem cell competition hypothesis and illustrate that the degree of the inverse relationship between red blood cells and platelet production of hypoxic mice is dependent, to a large degree, upon the sex and strain of mice that are used.

  12. A mild transient decrease of peripheral red blood cell counts induced by a suprapharmacological dose of pegylated human megakaryocyte growth and development factor in rats.

    PubMed

    Harada, K; Ide, Y; Tazunoki, Y; Imai, A; Yanagida, M; Kikuchi, Y; Imai, A; Ishii, H; Kawahara, J; Izumi, H; Kusaka, M; Tokiwa, T

    1999-07-01

    Previous studies have shown that pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) at suprapharmacological dose induces a mild transient decrease of red blood cell counts according to thrombopoiesis in normal mice. To unravel the mechanism underlying this mild transient decrease of red blood cells, we have studied the effect of PEG-rHuMGDF on the circulating plasma and blood volume, and the serum biochemical parameters of anaemia and splenectomy. Also, we have performed histological studies of the bone marrow and the spleen of PEG-rHuMGDF-treated rats. PEG-rHuMGDF (300 microg kg(-1)]) or vehicle was subcutaneously administered to rats once a day for up to five days. From day 6 after the start of PEG-rHuMGDF administration, the platelet counts and plateletcrit levels were significantly increased, reaching peak values on day 10, and recovering to normal by day 20. The red blood cell counts and the haematocrit levels were significantly decreased on day 6 to 13. The decreases in red blood cell levels and haematocrit produced by PEG-rHuMGDF treatment were mild and had recovered by day 15. The plasma and blood volumes were significantly increased on day 10 in PEG-rHuMGDF-treated rats. No alteration of the serum biochemical parameters for anaemia, iron or total bilirubin, were observed on day 10. The histological examination on day 10 revealed a marked increase in megakaryocytes and a slight decrease in erythropoiesis in the bone marrow of rats that received PEG-rHuMGDF (300 microg kg(-1)). There was also a slight increase in splenic megakaryocytes and erythropoiesis. The decrease of red blood cells by PEG-rHuMGDF was not affected by splenectomy. These results suggest that the mild transient decrease of red blood cells induced by PEG-rHuMGDF treatment for up to five days is based mainly on the increases in the plasma and blood volume. These events are secondary changes due to the regulation of the excess production of megakaryocytes in the marrow and the peripheral platelets.

  13. Method of acetaldehyde measurement with minimal artifactual formation in red blood cells and plasma of actively drinking subjects with alcoholism.

    PubMed

    Hernandez-Munoz, R; Ma, X L; Baraona, E; Lieber, C S

    1992-07-01

    After alcohol consumption, a substantial amount of acetaldehyde that is reversibly bound to protein and nonprotein components of the red blood cells circulates in the blood and could cause extrahepatic toxicity. However, acetaldehyde measurement in human red blood cells is hampered by considerable ex vivo artifactual formation as a result of nonenzymatic oxidation of ethanol during protein precipitation. To eliminate this source of artifactual formation, free and reversibly bound acetaldehyde were trapped with semicarbazide from red blood cell hemolysates, and both the stroma and the hemoglobin were sequentially removed by centrifugation and ion-exchange chromatography in carboxymethyl Sephadex, respectively. The eluted semi-carbazone was dissociated with perchloric acid, and the acetaldehyde that was released in the protein-free supernatants was measured by head-space gas chromatography. Maximal retention of hemoglobin by carboxymethyl Sephadex and complete recovery of acetaldehyde and ethanol were achieved at a pH of 5.3. The artifactual formation decreased from 2.62 +/- 0.32 mumol of acetaldehyde per millimole of ethanol in the initial hemolysates to 1.38 +/- 0.20 mumol after removal of the stroma and to a level that is comparable to measurements in plasma (0.09 +/- 0.02 mumol) after removal of both the stroma and the hemoglobin. In 12 actively drinking subjects with alcoholism, with blood ethanol levels that ranged between 9 and 81 mmol/L, the concentrations of acetaldehyde in red blood cells (11.50 +/- 1.46 mumol/L; range: 7.5 to 22 mumol/L) were minimally affected by blood ethanol levels and were three times as high as those in the plasma (3.74 +/- 1.49 mumol/L).(ABSTRACT TRUNCATED AT 250 WORDS)

  14. A Modeling Study of Deep Water Renewal in the Red Sea

    NASA Astrophysics Data System (ADS)

    Yao, F.; Hoteit, I.

    2016-02-01

    Deep water renewal processes in the Red Sea are examined in this study using a 50-year numerical simulation from 1952-2001. The deep water in the Red Sea below the thermocline ( 200 m) exhibits a near-uniform vertical structure in temperature and salinity, but geochemical tracer distributions, such as 14C and 3He, and dissolved oxygen concentrations indicate that the deep water is renewed on time scales as short as 36 years. The renewal process is accomplished through a deep overturning cell that consists of a southward bottom current and a northward returning current at depths of 400-600 m. Three sources regions are proposed for the formation of the deep water, including two deep outflows from the Gulfs of Aqaba and Suez and winter deep convections in the northern Red Sea. The MITgcm (MIT general circulation model), which has been used to simulate the shallow overturning circulations in the Red Sea, is configured in this study with increased resolutions in the deep water. During the 50 years of simulation, artificial passive tracers added in the model indicate that the deep water in the Red Sea was only episodically renewed during some anomalously cold years; two significant episodes of deep water renewal are reproduced in the winters of 1983 and 1992, in accordance with reported historical hydrographic observations. During these renewal events, deep convections reaching the bottom of the basin occurred, which further facilitated deep sinking of the outflows from the Gulfs of Aqaba and Suez. Ensuing spreading of the newly formed deep water along the bottom caused upward displacements of thermocline, which may have profound effects on the water exchanges in the Strait of Bab el Mandeb between the Red Sea and the Gulf of Aden and the functioning of the ecosystem in the Red Sea by changing the vertical distributions of nutrients.

  15. Meridional circulation and CNO anomalies in red giant stars

    NASA Technical Reports Server (NTRS)

    Sweigart, A. V.; Mengel, J. G.

    1979-01-01

    The possibility is investigated that meridional circulation driven by internal rotation might lead to the mixing of CNO-processed material from the vicinity of the hydrogen shell into the envelope of a red giant star. This theory of meridional mixing is found to be generally consistent with available data and to be capable of explaining a number of observational results without invoking a radical departure from the standard physics of stellar interiors. It is suggested that meridional circulation must be a normal characteristic of a rotating star and that meridional mixing provides a reasonable framework for understanding many of the CNO anomalies exhibited by weak-G-band and CN-strong stars as well as the low C-12/C-13 ratios measured among field red giants.

  16. High-throughput microfluidic device for rare cell isolation

    NASA Astrophysics Data System (ADS)

    Yang, Daniel; Leong, Serena; Lei, Andy; Sohn, Lydia L.

    2015-06-01

    Enumerating and analyzing circulating tumor cells (CTCs)—cells that have been shed from primary solid tumors—can potentially be used to determine patient prognosis and track the progression of disease. There is a great challenge to create an effective platform that can isolate these cells, as they are extremely rare: only 1-10 CTCs are present in a 7.5mL of a cancer patient's peripheral blood. We have developed a novel microfluidic system that can isolate CTC populations label free. Our system consists of a multistage separator that employs inertial migration to sort cells based on size. We demonstrate the feasibility of our device by sorting colloids that are comparable in size to red blood cells (RBCs) and CTCs.

  17. High-Throughput Microfluidic Device for Rare Cell Isolation.

    PubMed

    Yang, Daniel; Leong, Serena; Lei, Andy; Sohn, Lydia L

    2015-05-04

    Enumerating and analyzing circulating tumor cells (CTCs)-cells that have been shed from primary solid tumors-can potentially be used to determine patient prognosis and track the progression of disease. There is a great challenge to create an effective platform that can isolate these cells, as they are extremely rare: only 1-10 CTCs are present in a 7.5mL of a cancer patient's peripheral blood. We have developed a novel microfluidic system that can isolate CTC populations label free. Our system consists of a multistage separator that employs inertial migration to sort cells based on size. We demonstrate the feasibility of our device by sorting colloids that are comparable in size to red blood cells (RBCs) and CTCs.

  18. A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen.

    PubMed

    Picot, Julien; Ndour, Papa Alioune; Lefevre, Sophie D; El Nemer, Wassim; Tawfik, Harvey; Galimand, Julie; Da Costa, Lydie; Ribeil, Jean-Antoine; de Montalembert, Mariane; Brousse, Valentine; Le Pioufle, Bruno; Buffet, Pierre; Le Van Kim, Caroline; Français, Olivier

    2015-04-01

    Red blood cells (RBCs) are deformable and flow through vessels narrower than their own size. Their deformability is most stringently challenged when they cross micrometer-wide slits in the spleen. In several inherited or acquired RBC disorders, blockade of small vessels by stiff RBCs can trigger organ damage, but a functional spleen is expected to clear these abnormal RBCs from the circulation before they induce such complications. We analyzed flow behavior of RBCs in a microfluidic chip that replicates the mechanical constraints imposed on RBCs as they cross the human spleen. Polymer microchannels obtained by soft lithography with a hydraulic diameter of 25 μm drove flow into mechanical filtering units where RBCs flew either slowly through 5- to 2-μm-wide slits or rapidly along 10-μm-wide channels, these parallel paths mimicking the splenic microcirculation. Stiff heated RBCs accumulated in narrow slits seven times more frequently than normal RBCs infused simultaneously. Stage-dependent retention of Plasmodium falciparum-infected RBCs was also observed in these slits. We also analyzed RBCs from patients with hereditary spherocytosis and observed retention for those having the most altered mechanical properties as determined by ektacytometry. Thus, in keeping with previous observations in vivo and ex vivo, the chip successfully discriminated poorly deformable RBCs based on their distinct mechanical properties and on the intensity of the cell alteration. Applications to the exploration of the pathogenesis of malaria, hereditary spherocytosis, sickle cell disease and other RBC disorders are envisioned. © 2015 Wiley Periodicals, Inc.

  19. Mechanism of erythrocyte death in human population exposed to arsenic through drinking water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Debabrata; Banerjee, Mayukh; Sen, Gargi

    2008-07-01

    Arsenic contamination in drinking water is one of the biggest natural calamities, which has become an imperative threat to human health throughout the world. Abbreviation of erythrocyte lifespan leading to the development of anemia is a common sequel in arsenic exposed population. This study was undertaken to explore the mechanism of cell death in human erythrocytes during chronic arsenic exposure. Results revealed transformation of smooth discoid red cells into evaginated echinocytic form in the exposed individuals. Further distortion converted reversible echinocytes to irreversible spheroechinocytes. Arsenic toxicity increased membrane microviscosity along with an elevation of cholesterol/phospholipid ratio, which hampered the flexibilitymore » of red cell membrane and made them less deformable. Significant increase in the binding of merocyanine 540 with erythrocyte membrane due to arsenic exposure indicated disruption of lipid packing in the outer leaflet of the cell membrane resulting from altered transbilayer phospholipid asymmetry. Arsenic induced eryptosis was characterized by cell shrinkage and exposure of phosphatidylserine at the cell surface. Furthermore, metabolic starvation with depletion of cellular ATP triggered apoptotic removal of erythrocytes from circulation. Significant decrease in reduced glutathione content indicating defective antioxidant capacity was coupled with enhancement of malondialdehyde and protein carbonyl levels, which pointed to oxidative damage to erythrocyte membrane. Arsenic toxicity intervened into red cell membrane integrity eventually leading to membrane destabilization and hemoglobin release. The study depicted the involvement of both erythrophagocytosis and hemolysis in the destruction of human erythrocytes during chronic arsenic exposure.« less

  20. Clearance and organ localization of particles and soluble complexes in mice with circulating complexes.

    PubMed Central

    Carter, S D; Brennan, F M; Grace, S A; Elson, C J

    1984-01-01

    The clearance and organ localization of a number of substances cleared by either Fc-dependent or -independent mechanisms was studied in normal mice and in mice with endogenously produced persistent circulating complexes. Clearance of covalent dimers of mouse IgG, chicken IgG and ovalbumin were no different between the two groups of mice. By contrast, hepatic and splenic uptake of dimeric mouse IgG (but not of chicken IgG or ovalbumin dimer) was impaired in the mice with persisting complexes. Surprisingly the rate of clearance of sheep red blood cells (SRBC) was increased in mice with persisting complexes as was hepatic uptake of polyvinyl pyrrolidone. It is suggested that the mononuclear phagocytes of mice with persistent circulating complexes are non-specifically stimulated while their ability to take up soluble complexes by Fc-dependent attachment is selectively impaired. PMID:6746002

  1. Photoacoustic detection of induced melanoma in vitro using a mouse model

    NASA Astrophysics Data System (ADS)

    Gupta, Sagar; Bhattacharya, Kiran; Newton, Jessica R.; Quinn, Thomas P.; Viator, John A.

    2012-03-01

    Metastasis is a life threatening complex physiological phenomenon that involves the movement of cancer cells from one organ to another by means of blood and lymph. An understanding about metastasis is extremely important to device diagnostic systems to detect and monitor its spread within the body. For the first time we report rapid photoacoustic detection of the induced metastatic melanoma in mice in vitro using photoacoustic flowmetry. A new photoacoustic flow system is developed, that employs photoacoustic excitation coupled with an ultrasound transducer capable of determining the presence of individual, induced mouse melanoma cells (B16/F10) within the circulating system in vitro. Tumor was induced in mice by injecting mouse melanoma cells through tail vein into the C57BL/6 mice. A luciferase based in vivo bioluminescence imaging is performed to confirm the tumor load and multiple metastases in the tumor-induced mice. 1ml of blood obtained through cardiac puncture of the induced metastasized mice was treated to lyse the red blood cells (RBC) and enriched, leaving the induced melanoma in the peripheral blood mononuclear suspension (PBMC). A photoacoustic flowsystem coupled with an ultrasound transducer is used to detect the individual circulating metastatic melanoma cells from the enriched cell suspension.

  2. Microparticles Provide a Novel Biomarker To Predict Severe Clinical Outcomes of Dengue Virus Infection

    PubMed Central

    Punyadee, Nuntaya; Mairiang, Dumrong; Thiemmeca, Somchai; Komoltri, Chulaluk; Pan-ngum, Wirichada; Chomanee, Nusara; Charngkaew, Komgrid; Tangthawornchaikul, Nattaya; Limpitikul, Wannee; Vasanawathana, Sirijitt; Malasit, Prida

    2014-01-01

    ABSTRACT Shedding of microparticles (MPs) is a consequence of apoptotic cell death and cellular activation. Low levels of circulating MPs in blood help maintain homeostasis, whereas increased MP generation is linked to many pathological conditions. Herein, we investigated the role of MPs in dengue virus (DENV) infection. Infection of various susceptible cells by DENV led to apoptotic death and MP release. These MPs harbored a viral envelope protein and a nonstructural protein 1 (NS1) on their surfaces. Ex vivo analysis of clinical specimens from patients with infections of different degrees of severity at multiple time points revealed that MPs generated from erythrocytes and platelets are two major MP populations in the circulation of DENV-infected patients. Elevated levels of red blood cell-derived MPs (RMPs) directly correlated with DENV disease severity, whereas a significant decrease in platelet-derived MPs was associated with a bleeding tendency. Removal by mononuclear cells of complement-opsonized NS1–anti-NS1 immune complexes bound to erythrocytes via complement receptor type 1 triggered MP shedding in vitro, a process that could explain the increased levels of RMPs in severe dengue. These findings point to the multiple roles of MPs in dengue pathogenesis. They offer a potential novel biomarker candidate capable of differentiating dengue fever from the more serious dengue hemorrhagic fever. IMPORTANCE Dengue is the most important mosquito-transmitted viral disease in the world. No vaccines or specific treatments are available. Rapid diagnosis and immediate treatment are the keys to achieve a positive outcome. Dengue virus (DENV) infection, like some other medical conditions, changes the level and composition of microparticles (MPs), tiny bag-like structures which are normally present at low levels in the blood of healthy individuals. This study investigated how MPs in culture and patients' blood are changed in response to DENV infection. Infection of cells led to programmed cell death and MP release. In patients' blood, the majority of MPs originated from red blood cells and platelets. Decreased platelet-derived MPs were associated with a bleeding tendency, while increased levels of red blood cell-derived MPs (RMPs) correlated with more severe disease. Importantly, the level of RMPs during the early acute phase could serve as a biomarker to identify patients with potentially severe disease who require immediate care. PMID:25410854

  3. Microparticles provide a novel biomarker to predict severe clinical outcomes of dengue virus infection.

    PubMed

    Punyadee, Nuntaya; Mairiang, Dumrong; Thiemmeca, Somchai; Komoltri, Chulaluk; Pan-Ngum, Wirichada; Chomanee, Nusara; Charngkaew, Komgrid; Tangthawornchaikul, Nattaya; Limpitikul, Wannee; Vasanawathana, Sirijitt; Malasit, Prida; Avirutnan, Panisadee

    2015-02-01

    Shedding of microparticles (MPs) is a consequence of apoptotic cell death and cellular activation. Low levels of circulating MPs in blood help maintain homeostasis, whereas increased MP generation is linked to many pathological conditions. Herein, we investigated the role of MPs in dengue virus (DENV) infection. Infection of various susceptible cells by DENV led to apoptotic death and MP release. These MPs harbored a viral envelope protein and a nonstructural protein 1 (NS1) on their surfaces. Ex vivo analysis of clinical specimens from patients with infections of different degrees of severity at multiple time points revealed that MPs generated from erythrocytes and platelets are two major MP populations in the circulation of DENV-infected patients. Elevated levels of red blood cell-derived MPs (RMPs) directly correlated with DENV disease severity, whereas a significant decrease in platelet-derived MPs was associated with a bleeding tendency. Removal by mononuclear cells of complement-opsonized NS1-anti-NS1 immune complexes bound to erythrocytes via complement receptor type 1 triggered MP shedding in vitro, a process that could explain the increased levels of RMPs in severe dengue. These findings point to the multiple roles of MPs in dengue pathogenesis. They offer a potential novel biomarker candidate capable of differentiating dengue fever from the more serious dengue hemorrhagic fever. Dengue is the most important mosquito-transmitted viral disease in the world. No vaccines or specific treatments are available. Rapid diagnosis and immediate treatment are the keys to achieve a positive outcome. Dengue virus (DENV) infection, like some other medical conditions, changes the level and composition of microparticles (MPs), tiny bag-like structures which are normally present at low levels in the blood of healthy individuals. This study investigated how MPs in culture and patients' blood are changed in response to DENV infection. Infection of cells led to programmed cell death and MP release. In patients' blood, the majority of MPs originated from red blood cells and platelets. Decreased platelet-derived MPs were associated with a bleeding tendency, while increased levels of red blood cell-derived MPs (RMPs) correlated with more severe disease. Importantly, the level of RMPs during the early acute phase could serve as a biomarker to identify patients with potentially severe disease who require immediate care. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Of macrophages and red blood cells; a complex love story.

    PubMed

    de Back, Djuna Z; Kostova, Elena B; van Kraaij, Marian; van den Berg, Timo K; van Bruggen, Robin

    2014-01-01

    Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 10(10) RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.

  5. Influence of electromagnetic radiation produced by mobile phone on some biophysical blood properties in rats.

    PubMed

    El-Bediwi, Abu Bakr; Saad, Mohamed; El-kott, Attall F; Eid, Eman

    2013-04-01

    Effects of electromagnetic radiation produced by mobile phone on blood viscosity, plasma viscosity, hemolysis, Osmotic fragility, and blood components of rats have been investigated. Experimental results show that there are significant change on blood components and its viscosity which affects on a blood circulation due to many body problems. Red blood cells, White blood cells, and Platelets are broken after exposure to electromagnetic radiation produced by mobile phone. Also blood viscosity and plasma viscosity values are increased but Osmotic fragility value decreased after exposure to electromagnetic radiation produced by mobile phone.

  6. Circulation kinetics and organ distribution of Hb-vesicles developed as a red blood cell substitute.

    PubMed

    Sou, Keitaro; Klipper, Robert; Goins, Beth; Tsuchida, Eishun; Phillips, William T

    2005-02-01

    Phospholipid vesicles encapsulating concentrated human hemoglobin (Hb-vesicles, HbV), also known as liposomes, have a membrane structure similar to that of red blood cells (RBCs). These vesicles circulate in the bloodstream as an oxygen carrier, and their circulatory half-life times (t(1/2)) and biodistribution are fundamental characteristics required for representation of their efficacy and safety as a RBC substitute. Herein, we report the pharmacokinetics of HbV and empty vesicles (EV) that do not contain Hb, in rats and rabbits to evaluate the potential of HbV as a RBC substitute. The samples were labeled with technetium-99m and then intravenously infused into animals at 14 ml/kg to measure the kinetics of HbV elimination from blood and distribution to the organs. The t(1/2) values were 34.8 and 62.6 h for HbV and 29.3 and 57.3 h for EV in rats and rabbits, respectively. At 48 h after infusion, the liver, bone marrow, and spleen of both rats and rabbits had significant concentrations of HbV and EV, and the percentages of the infused dose in these three organs were closely correlated to the circulatory half-life times in elimination phase (t(1/2beta)). Furthermore, the milligrams of HbV per gram of tissue correlated well between rats and rabbits, suggesting that the balance between organ weight and body weight is a fundamental factor determining the pharmacokinetics of HbV. This factor could be used to estimate the biodistribution and the circulation time of HbV in humans, which is estimated to be equal to that in rabbit.

  7. Microparticles variability in fresh frozen plasma: preparation protocol and storage time effects

    PubMed Central

    Kriebardis, Anastasios G.; Antonelou, Marianna H.; Georgatzakou, Hara T.; Tzounakas, Vassilis L.; Stamoulis, Konstantinos E.; Papassideri, Issidora S.

    2016-01-01

    Background Extracellular vesicles or microparticles exhibiting procoagulant and thrombogenic activity may contribute to the haemostatic potential of fresh frozen plasma. Materials and methods Fresh frozen plasma was prepared from platelet-rich plasma at 20 °C (Group-1 donors) or directly from whole blood at 4 °C (Group-2 donors). Each unit was aseptically divided into three parts, stored frozen for specific periods of time, and analysed by flow cytometry for procoagulant activity immediately after thaw or following post-thaw storage for 24 h at 4 °C. Donors’ haematologic, biochemical and life-style profiles as well as circulating microparticles were analysed in parallel. Results Circulating microparticles exhibited a considerable interdonor but not intergroup variation. Fresh frozen plasma units were enriched in microparticles compared to plasma in vivo. Duration of storage significantly affected platelet- and red cell-derived microparticles. Fresh frozen plasma prepared directly from whole blood contained more residual platelets and more platelet-derived microparticles compared to fresh frozen plasma prepared from platelet-rich plasma. Consequently, there was a statistically significant difference in total, platelet- and red cell-derived microparticles between the two preparation protocols over storage time in the freezer. Preservation of the thawed units for 24 h at 4 °C did not significantly alter microparticle accumulation. Microparticle accumulation and anti-oxidant capacity of fresh frozen plasma was positively or negatively correlated, respectively, with the level of circulating microparticles in individual donors. Discussion The preparation protocol and the duration of storage in the freezer, independently and in combination, influenced the accumulation of microparticles in fresh frozen plasma units. In contrast, storage of thawed units for 24 h at 4 °C had no significant effect on the concentration of microparticles. PMID:27136430

  8. Microparticles variability in fresh frozen plasma: preparation protocol and storage time effects.

    PubMed

    Kriebardis, Anastasios G; Antonelou, Marianna H; Georgatzakou, Hara T; Tzounakas, Vassilis L; Stamoulis, Konstantinos E; Papassideri, Issidora S

    2016-05-01

    Extracellular vesicles or microparticles exhibiting procoagulant and thrombogenic activity may contribute to the haemostatic potential of fresh frozen plasma. Fresh frozen plasma was prepared from platelet-rich plasma at 20 °C (Group-1 donors) or directly from whole blood at 4 °C (Group-2 donors). Each unit was aseptically divided into three parts, stored frozen for specific periods of time, and analysed by flow cytometry for procoagulant activity immediately after thaw or following post-thaw storage for 24 h at 4 °C. Donors' haematologic, biochemical and life-style profiles as well as circulating microparticles were analysed in parallel. Circulating microparticles exhibited a considerable interdonor but not intergroup variation. Fresh frozen plasma units were enriched in microparticles compared to plasma in vivo. Duration of storage significantly affected platelet- and red cell-derived microparticles. Fresh frozen plasma prepared directly from whole blood contained more residual platelets and more platelet-derived microparticles compared to fresh frozen plasma prepared from platelet-rich plasma. Consequently, there was a statistically significant difference in total, platelet- and red cell-derived microparticles between the two preparation protocols over storage time in the freezer. Preservation of the thawed units for 24 h at 4 °C did not significantly alter microparticle accumulation. Microparticle accumulation and anti-oxidant capacity of fresh frozen plasma was positively or negatively correlated, respectively, with the level of circulating microparticles in individual donors. The preparation protocol and the duration of storage in the freezer, independently and in combination, influenced the accumulation of microparticles in fresh frozen plasma units. In contrast, storage of thawed units for 24 h at 4 °C had no significant effect on the concentration of microparticles.

  9. Simulation of Dust Radiative Impact on the Red Sea Using Coupled Regional Ocean/Atmosphere Modeling System

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Osipov, S.

    2016-12-01

    This study focuses on the Middle East regional climate response to the dust aerosol radiative forcing. MODIS and SEVIRI satellite observations show extremely high (exceeding 1) dust optical depths over the southern Red Sea during the summer season. The significant north-to-south gradient of the dust optical depth over the Red Sea persists throughout the entire year. The radiative forcing of dust at the sea surface exceeds 120 Wm-2. The effect of this forcing to the Red Sea thermal regime and circulations is not well quantified yet. Therefore here we employ the Regional Ocean Modeling system (ROMS) fully coupled with the Weather Research and Forecasting (WRF) model to study the impact of dust on the Red Sea. The WRF was modified to interactively account for the radiative effect of dust. Daily spectral optical properties of dust are computed using Mie, T-matrix and geometric optics approaches, and are based on the SEVIRI climatological optical depth. The WRF model parent and nested domains are configured over the Middle East and North Africa (MENA) region and over the Red Sea with 30 and 10 km resolution, respectively. The ROMS model over the Red Sea has 2 km grid spacing. The simulations show that, in the equilibrium response, dust causes 0.5-0.7K cooling of the Red Sea surface waters, and weakens the overturning circulation in the Red Sea. The salinity distribution, fresh water and heat budgets are significantly perturbed. This indicates that dust plays an important role in formation of the Red Sea energy balance and circulation regimes, and has to be thoroughly accounted for in the future modeling studies.

  10. Relationship between serum 25-hydroxyvitamin D and red blood cell indices in German adolescents.

    PubMed

    Doudin, Asmma; Becker, Andreas; Rothenberger, Aribert; Meyer, Thomas

    2018-04-01

    Since the impact of vitamin D on red blood cell formation has not been well studied, we aimed at assessing the putative link between serum 25-hydroxyvitamin D (25[OH]D) concentrations and hematological markers of erythropoiesis in a large cohort of German adolescents aged 11 to 17 years. In total, 5066 participants from the population-based, nationally representative KiGGS study (Kinder- und Jugendgesundheitssurvey, German Health Interview and Examination Survey for Children and Adolescents) were grouped into either tertiles or clinically accepted cutoff levels for serum 25(OH)D. Results demonstrated significant and inverse correlations between 25(OH)D levels and several hematological parameters including hemoglobin concentration (r = - 0.04, p = 0.003), mean corpuscular hemoglobin (r = - 0.11, p < 0.001), red blood cell count (r = - 0.04, p = 0.002), and soluble transferrin receptor (r = - 0.1, p < 0.001), whereas, in contrast, serum 25(OH)D was positively correlated to the mean corpuscular volume of erythrocytes (r = 0.08, p < 0.001). Multinomial regression models adjusted for clinically relevant confounders confirmed statistically significant differences between the two strata of 25(OH)D groups with respect to red blood cell markers (hemoglobin concentration, red blood cell count, mean corpuscular volume, and corpuscular hemoglobin, as well as iron and soluble transferrin receptor). The link between serum 25(OH)D and several important hematological parameters may point to an inhibitory role of vitamin D in the regulation of erythropoiesis in adolescents. What is Known: • The physiological effects of vitamin D on calcium homeostasis and bone metabolism have been established. • However, much less is known about the impact of circulating vitamin D on erythropoiesis. What is New: • Data from the KiGGS study in German adolescents demonstrated significant associations between serum vitamin D concentrations and red blood cell indices. • Further studies should be conducted to decipher the underlying mechanisms of vitamin D on erythropoiesis.

  11. Cellular fluid mechanics.

    PubMed

    Kamm, Roger D

    2002-01-01

    The coupling of fluid dynamics and biology at the level of the cell is an intensive area of investigation because of its critical role in normal physiology and disease. Microcirculatory flow has been a focus for years, owing to the complexity of cell-cell or cell-glycocalyx interactions. Noncirculating cells, particularly those that comprise the walls of the circulatory system, experience and respond biologically to fluid dynamic stresses. In this article, we review the more recent studies of circulating cells, with an emphasis on the role of the glycocalyx on red-cell motion in small capillaries and on the deformation of leukocytes passing through the microcirculation. We also discuss flows in the vicinity of noncirculating cells, the influence of fluid dynamic shear stress on cell biology, and diffusion in the lipid bi-layer, all in the context of the important fluid-dynamic phenomena.

  12. Pulsed near-infrared photoacoustic spectroscopy of blood

    NASA Astrophysics Data System (ADS)

    Laufer, Jan G.; Elwell, Clare E.; Delpy, Dave T.; Beard, Paul C.

    2004-07-01

    The aim of this study was to use pulsed near infrared photoacoustic spectroscopy to determine the oxygen saturation (SO2) of a saline suspension of red blood cells in vitro. The photoacoustic measurements were made in a cuvette which formed part of a larger circuit through which the red blood cell suspension was circulated. Oxygen saturation of the red blood cell suspension was altered between 2-3% to 100% in step increments using a membrane oxygenator and at each increment an independent measurement of oxygen saturation was made using a co-oximeter. An optical parametric oscillator laser system provided nanosecond excitation pulses at a number of wavelengths in the near-infrared spectrum (740-1040nm) which were incident on the cuvette. The resulting acoustic signals were detected using a broadband (15MHz) Fabry-Perot polymer film transducer. The optical transport coefficient and amplitude were determined from the acoustic signals as a function of wavelength. These data were then used to calculate the relative concentrations of oxy- and deoxyhaemoglobin, using their known specific absorption coefficients and an empirically determined wavelength dependence of optical scattering over the wavelength range investigated. From this, the oxygen saturation of the suspension was derived with an accuracy of +/-5% compared to the co-oximeter SO2 measurements.

  13. Optoelectronic pH Meter: Further Details

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Antony S.; Anderson, Mejody M.; Macatangay, Ariel V.

    2009-01-01

    A collection of documents provides further detailed information about an optoelectronic instrument that measures the pH of an aqueous cell-culture medium to within 0.1 unit in the range from 6.5 to 7.5. The instrument at an earlier stage of development was reported in Optoelectronic Instrument Monitors pH in a Culture Medium (MSC-23107), NASA Tech Briefs, Vol. 28, No. 9 (September 2004), page 4a. To recapitulate: The instrument includes a quartz cuvette through which the medium flows as it is circulated through a bioreactor. The medium contains some phenol red, which is an organic pH-indicator dye. The cuvette sits between a light source and a photodetector. [The light source in the earlier version comprised red (625 nm) and green (558 nm) light-emitting diodes (LEDs); the light source in the present version comprises a single green- (560 nm)-or-red (623 nm) LED.] The red and green are repeatedly flashed in alternation. The responses of the photodiode to the green and red are processed electronically to obtain the ratio between the amounts of green and red light transmitted through the medium. The optical absorbance of the phenol red in the green light varies as a known function of pH. Hence, the pH of the medium can be calculated from the aforesaid ratio.

  14. Modeling of Red Blood Cells and Related Spleen Function

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Pivkin, Igor; Dao, Ming

    2011-11-01

    A key function of the spleen is to clear red blood cells (RBCs) with abnormal mechanical properties from the circulation. These abnormal mechanical properties may be due to RBC aging or RBC diseases, e.g., malaria and sickle cell anemia. Specifically, 10% of RBCs passing through the spleen are forced to squeeze into the narrow slits between the endothelial cells, and stiffer cells which get stuck are killed and digested by macrophages. To investigate this important physiological process, we employ three different approaches to study RBCs passage through these small slits, including analytical theory, Dissipative Particle Dynamics (DPD) simulation and Multiscale Finite Element Method (MS-FEM). By applying the analytical theory, we estimate the critical limiting geometries RBCs can pass. By using the DPD method, we study the full fluid-structure interaction problem, and compute RBC deformation under different pressure gradients. By employing the MS-FEM approach, we model the lipid bilayer and the cytoskeleton as two distinct layers, and focus on the cytoskeleton deformation and the bilayer-skeleton interaction force at the molecular level. Finally the results of these three approaches are compared to each other and correlated to the experimental observations.

  15. Cell-derived microparticles in haemostasis and vascular medicine.

    PubMed

    Burnier, Laurent; Fontana, Pierre; Kwak, Brenda R; Angelillo-Scherrer, Anne

    2009-03-01

    Considerable interest for cell-derived microparticles has emerged, pointing out their essential role in haemostatic response and their potential as disease markers, but also their implication in a wide range of physiological and pathological processes. They derive from different cell types including platelets - the main source of microparticles - but also from red blood cells, leukocytes and endothelial cells, and they circulate in blood. Despite difficulties encountered in analyzing them and disparities of results obtained with a wide range of methods, microparticle generation processes are now better understood. However, a generally admitted definition of microparticles is currently lacking. For all these reasons we decided to review the literature regarding microparticles in their widest definition, including ectosomes and exosomes, and to focus mainly on their role in haemostasis and vascular medicine.

  16. Fetal Circulation

    MedlinePlus

    ... also enters the right atrium, but the fetus is able to send this blue blood from the right atrium to the right ventricle ( ... Heart Rate (Pulse) 8 Low Blood Pressure - When Blood Pressure Is Too Low 9 ... editorial process. *Red Dress ™ DHHS, Go Red ™ AHA ; National Wear Red ...

  17. The immunogenicity of phagocytosed T4 bacteriophage: cell replacement studies with splenectomized and irradiated mice

    PubMed Central

    Inchley, C. J.; Howard, J. G.

    1969-01-01

    The role of phagocytosed antigen in the production of antibody to bacteriophage T4 has been studied. The ability of mice to give an antibody response to this antigen was first impaired either by splenectomy or by X-irradiation, and then restored by injection of syngeneic lymphoid cells given at various times relative to the injection of T4. In splenectomized animals administration of lymphoid cells had only a marginal effect on the severely depressed response to T4. It was concluded that the presence of an intact spleen is essential to the development of the normal immune response, and that circulating immunocompetent cells are unable to respond to circulating antigen or to antigen sequestered within the liver. On the other hand, in irradiated mice, there was a faster and more complete restoration of the anti-T4 response, confirming the ability of antigen localized within the spleen to stimulate competent cells. It was also found that the immunogenicity of T4 within this organ was not lost at a rate which corresponded to its gross breakdown but persisted without decrease for at least 48 hr. A similar observation was made for sheep red blood cells when this antigen was used in conjunction with T4. PMID:5370054

  18. Studies of Tissue Perfusion Failure at LAC+USCMC and the Incorporation of the Results into a National Trauma Database

    DTIC Science & Technology

    2005-04-01

    Context Link] 29. Gibson JG, Seligman AM, Peacock WC, et al: The circulating red cell and plasma volume and the distribution of blood in large and...BS; Gandhi, Ashutosh BS; Chien, Li-Chien MD; Lu, Kevin MD; Martin, Matthew J. MD; Chan, Linda S. PhD; Demetriades, Demetrios MD, PhD; Ahmadpour...Physicians Outcome Prediction of Emergency Patients by Noninvasive Hemodynamic Monitoring* William C. Shoemaker, MD; Charles C. J. Wo, BS; Linda

  19. Anemia and mechanism of erythrocyte destruction in ducks with acute Leucocytozoon infections

    USGS Publications Warehouse

    Kocan, R.M.

    1968-01-01

    In the anemia which accompanies infection by Leucocytozoon simondi in Pekin ducks there was a far greater loss of erythrocytes than could be accounted for as a result of direct physical rupture by the parasite. Erythrocyte loss began at the same time the 1st parasites appeared in the blood and was severest just prior to maximum parasitemia. Blood replacement and parasite loss occurred simultaneously. Examination of the spleen and bone marrow revealed that erythrophagocytosis was not the cause of anemia as reported for infections of Plasmodium, Babesia and Anaplasma. An anti-erythrocyte (A-E) factor was found in the serum of acutely infected ducks which agglutinated and hemolyzed normal untreated duck erythrocytes as well as infected cells. This A-E factor appeared when the 1st red cell loss was detected and reached its maximum titer just prior to the greatest red cell loss. Titers of the A-E factor were determined using normal uninfected erythrocytes at temperatures between 4 and 42 C. Cells agglutinated below 25 C and hemolyzed at 37 and 42 C. These results indicated that the A-E factor could be responsible for loss of cells other than those which were infected and could thus produce an excess loss of red cells. Attempts to implicate the A-E factor as an autoantibody were all negative. The A-E factor was present in the gamma fraction of acute serum but no anamnestic response could be detected when recovered ducks were reinfected. Anemia was never as severe in reinfections as in primary infections. The A-E factor also never reached as high a titer and was removed from the circulation very rapidly in reinfected ducks. It is concluded that red cell loss in ducks with acute Leucocytozoon disease results from intravascular hemolysis rather than erythrophagocytosis. The A-E factor responsible for hemolysis is more likely a parasite product rather than autoantibody.

  20. Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells

    PubMed Central

    Diez-Silva, Monica; Park, YongKeun; Huang, Sha; Bow, Hansen; Mercereau-Puijalon, Odile; Deplaine, Guillaume; Lavazec, Catherine; Perrot, Sylvie; Bonnefoy, Serge; Feld, Michael S.; Han, Jongyoon; Dao, Ming; Suresh, Subra

    2012-01-01

    Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs deformability, the parameters influencing their microcirculatory behavior remain unexplored. Here, we study the dynamic properties of ring-stage Pf-RBCs and the role of the parasite protein Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA). Diffraction phase microscopy revealed RESA-driven decreased Pf-RBCs membrane fluctuations. Microfluidic experiments showed a RESA-dependent reduction in the Pf-RBCs transit velocity, which was potentiated at febrile temperature. In a microspheres filtration system, incubation at febrile temperature impaired traversal of RESA-expressing Pf-RBCs. These results show that RESA influences ring-stage Pf-RBCs microcirculation, an effect that is fever-enhanced. This is the first identification of a parasite factor influencing the dynamic circulation of young asexual Pf-RBCs in physiologically relevant conditions, offering novel possibilities for interventions to reduce parasite survival and pathogenesis in its human host. PMID:22937223

  1. Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells

    NASA Astrophysics Data System (ADS)

    Diez-Silva, Monica; Park, Yongkeun; Huang, Sha; Bow, Hansen; Mercereau-Puijalon, Odile; Deplaine, Guillaume; Lavazec, Catherine; Perrot, Sylvie; Bonnefoy, Serge; Feld, Michael S.; Han, Jongyoon; Dao, Ming; Suresh, Subra

    2012-08-01

    Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs deformability, the parameters influencing their microcirculatory behavior remain unexplored. Here, we study the dynamic properties of ring-stage Pf-RBCs and the role of the parasite protein Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA). Diffraction phase microscopy revealed RESA-driven decreased Pf-RBCs membrane fluctuations. Microfluidic experiments showed a RESA-dependent reduction in the Pf-RBCs transit velocity, which was potentiated at febrile temperature. In a microspheres filtration system, incubation at febrile temperature impaired traversal of RESA-expressing Pf-RBCs. These results show that RESA influences ring-stage Pf-RBCs microcirculation, an effect that is fever-enhanced. This is the first identification of a parasite factor influencing the dynamic circulation of young asexual Pf-RBCs in physiologically relevant conditions, offering novel possibilities for interventions to reduce parasite survival and pathogenesis in its human host.

  2. Separation of breast cancer cells from peripherally circulating blood using antibodies fixed in microchannels

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Soper, Steven A.; McCarley, Robin L.; Murphy, Michael C.

    2004-07-01

    Bio-Micro Electro Mechanical System (Bio-MEMS) technology was applied to the problem of early breast cancer detection and diagnosis. A micro-device is being developed to identify and specifically collect tumor cells of low abundance (1 tumor cell among 107 normal blood cells) from circulating whole blood. By immobilizing anti-EpCAM (Epithelial Cell Adhesion Molecule) antibodies on polymer micro-channel walls by chemically modifying the surface of the PMMA, breast cancer cells from the MCF-7 cell line, which over-express EpCAM, were selected from a sample volume by the strong binding affinity between the antibody and antigen. To validate the capture of the breast cancer cells, three fluorochrome markers, each identified by a separate color, were used to reliably identify the cancer cells. The cancer cells were defined by DAPI+ (blue), CD45- and the FITC-cell membrane linker+ (green). White blood cells, which may interfere in the detection of the cancer cells, were identified by DAPI+ (blue), CD45+ (red), and the FITC-cell membrane linker+ (green). EpCAM/anti-EpCAM binding models from the literature were used to estimate an optimal velocity, 2mm/sec, for maximizing the number of cells binding and the critical binding force. At higher velocities, shear forces (> 0.48 dyne) will break existing bonds and prevent the formation of new ones. This detection micro-device can be assembled with other lab-on-a-chip components for follow-up gene and protein analysis.

  3. Brain nuclei in actively courting red-sided garter snakes: a paradigm of neural trimorphism.

    PubMed

    Krohmer, Randolph W; DeMarchi, Geno A; Baleckaitis, Daniel D; Lutterschmidt, Deborah I; Mason, Robert T

    2011-03-28

    During the breeding season, two distinct male phenotypes are exhibited by red-sided garter snakes (Thamnophis sirtalis parietalis), with courtship behavior being directed not only toward females, but also toward a sub-population of males called she-males. She-males are morphologically identical to other males except for a circulating androgen level three times that of normal males and their ability to produce a female-like pheromone. As in other vertebrates, limbic nuclei in the red-sided garter snake brain are involved in the control of sexual behaviors. For example, an intact anterior hypothalamus pre-optic area (AHPOA) is essential for the initiation and maintenance of reproduction. To determine if brain morphology varies among the three behavioral phenotypes (i.e., males, she-males, and females) during the breeding season, we examined the volume, cell size and cell density of the AHPOA as well as a control region, the external nucleus of the optic tract (ENOT). We used Luxol Fast Blue and Ziehl's Fuchsin to visualize neurons and glial cells, respectively. No significant differences were observed among the three behavioral phenotypes in the volume, cell size or density in the control region. In contrast, the volume, cell size and density of the AHPOA of she-males were significantly greater than those of both male and female snakes. While the volume of the AHPOA was significantly greater in females compared to males, no differences were observed in cell size or density. These differences in brain morphology suggest a possible underlying mechanism for phenotypic-specific behavioral patterns. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. [First attempts of detecting fetal cells in the maternal circulation].

    PubMed

    Nagy, Gyula Richárd; Bán, Zoltán; Sipos, Ferenc; Fent, János; Oroszné Nagy, Judit; Beke, Artúr; Furész, József; Papp, Zoltán

    2004-10-31

    In prenatal diagnosis there is great interest for noninvasive diagnostic methods. Authors report their first results in detecting fetal cells in the maternal circulation during pregnancy. The aim of the study was to detect fetal gender from maternal peripheral blood samples during pregnancy. Authors have analysed fetal nucleated red blood cells. In 12 cases after a double density Percoll gradient separation they labelled the surface antigens of the cells with anti-glycophorin-A and anti-CD45 fluorescent antibodies, did an intracellular staining of the epsilon haemoglobin chain, and analysed the cells with flow cytometry. The CD45 negative/glycophorin-A positive/epsilon-haemoglobin chain positive cells were considered as fetal cells. Having the results, in another 13 cases magnetic activated cell sorting with CD71 antibody were used as an enrichment step. Authors made an intracellular staining of the epsilon haemoglobin chain, the positive cells were isolated by micromanipulation, and analysed by single cell fluorescent polymerase chain reaction. Primers for the amelogenin gene were used to detect fetal gender. Only the Percoll enrichment step itself is not enough for using the samples for diagnostic molecular-biologic examinations, a following enrichment step is needed. For this the authors used magnetic activated cell sorting with CD71 antibody. With the help of this enrichment step, after the intracellular staining of the epsilon haemoglobin chain the direct micromanipulator isolation of the epsilon haemoglobin chain positive cells could be done. After analysing single cells by fluorescent polymerase chain reaction, in 8 out of the 11 comparable cases the results were similar to those, what was found during the genetic amniocentesis. In 2 cases from this 8, genetic amniocentesis proved Klinefelter syndrome, which they could also confirm with the examination of fetal cells in the maternal circulation. The results of the study suggest that the method described above can be useful in prenatal genetic diagnosis, and improving it could be useful to detect other genetic abnormalities (chromosomal abnormalities, single gene disorders) as well.

  5. Spectrin-ankyrin interaction mechanics: A key force balance factor in the red blood cell membrane skeleton.

    PubMed

    Saito, Masakazu; Watanabe-Nakayama, Takahiro; Machida, Shinichi; Osada, Toshiya; Afrin, Rehana; Ikai, Atsushi

    2015-01-01

    As major components of red blood cell (RBC) cytoskeleton, spectrin and F-actin form a network that covers the entire cytoplasmic surface of the plasma membrane. The cross-linked two layered structure, called the membrane skeleton, keeps the structural integrity of RBC under drastically changing mechanical environment during circulation. We performed force spectroscopy experiments on the atomic force microscope (AFM) as a means to clarify the mechanical characteristics of spectrin-ankyrin interaction, a key factor in the force balance of the RBC cytoskeletal structure. An AFM tip was functionalized with ANK1-62k and used to probe spectrin crosslinked to mica surface. A force spectroscopy study gave a mean unbinding force of ~30 pN under our experimental conditions. Two energy barriers were identified in the unbinding process. The result was related to the well-known flexibility of spectrin tetramer and participation of ankyrin 1-spectrin interaction in the overall balance of membrane skeleton dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Regulation of Blood Volume During Spaceflight

    NASA Technical Reports Server (NTRS)

    Alfrey, Clarence P.

    1997-01-01

    The effects of spaceflight on erythropoiesis and blood volume in the rat were studied during the 14-day NASA Spacelab Life Sciences 2 (SLS-2) Shuttle mission. Measurements included red blood cell mass (RBCM), plasma volume (PV), iron utilization and iron utilization in response to an injection of erythropoietin. Red blood cell (RBC) survival, splenic sequestration and erythrocyte morphology were also evaluated. At landing, the RBCM adjusted for body weight was significantly lower in the flight animals than in the ground controls. While the PV was also decreased, the change was not statistically significant. Incorporation of iron into circulating RBCs was normal when measured after five days of spaceflight and the rat responded normally to the single in-flight injection of erythropoietin. No change in RBC morphology could be attributed to spaceflight. A normal survival was found for the RBC population that was represented by Cr-51 labeled RBCS. These results demonstrate that rats, like humans, return from spaceflight with a decreased RBCM and total blood volume.

  7. Effects of growth, diving history, and high altitude on blood oxygen capacity in harbor seals

    NASA Technical Reports Server (NTRS)

    Kodama, A. M.; Elsner, R.; Pace, N.

    1977-01-01

    Blood volume and body composition for diving and nondiving harbor seals were measured at six-week intervals during a 10-month period of captitivity. Whole body hematocrit, red cell volume per kg of lean body mass, and total circulating hemoglobin per kg lean body mass were significantly higher in the diving group, but relatively large blood volumes expressed in terms of body weight (11-12%) were found in both groups. A pair of harbor seals exposed to high altitude for about three months registered significant increases in red cell volume, blood hemoglobin levels, and blood volume expressed in terms of body weight; results of alveolar gas analyses indicate that hyperventilation also occurred. These typical mammalian responses to hypoxia suggest that the harbor seal's large blood volume and high hemoglobin content are an expression of phylogenetic control, and that in spite of its adaptability to apnea during its diving life, the animal cannot be considered preacclimatized to high altitude.

  8. Alterations of red blood cell sodium transport during malarial infection

    PubMed Central

    Dunn, Michael J.

    1969-01-01

    Previous studies have suggested that malaria induces changes in erythrocytic membrane permeability and susceptibility to osmotic lysis. The present study investigated erythrocytic transport of sodium with cells from Rhesus monkeys infected with Plasmodium knowlesi. Red blood cell sodium concentration was significantly elevated in 37 parasitized animals (21.8±1.2 mM; mean ±SEM), as compared to 23 control animals (10.0±0.38 mM). The cellular sodium increased with the density of parasitemia and the cellular potassium decreased in proportion to the elevation of sodium. Nonparasitized as well as parasitized erythrocytes possessed this abnormality of cation metabolism. Effective chloroquine therapy reversed the changes over a period of 4 days. Active sodium outflux rate constants were depressed in animals with malaria (0.202±0.012), as compared to controls (0.325±0.027). Passive sodium influx rate constants were higher in infected monkeys (0.028±0.002) than in control animals (0.019±0.002). The cross incubation of malarial plasma with normal red blood cells induced a 22% diminution in active sodium outflux but no changes were observed in sodium influx. It is concluded that malaria alters erythrocytic sodium transport in all erythrocytes. The elevated intracellular sodium concentration is the net result of decreased sodium outflux and increased sodium influx. The plasmodium organism or the affected host may produce a circulating substance that is deleterious to erythrocytic membrane cation transport. PMID:4975361

  9. Immune Defenses of the Invasive Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae): Phagocytic Hemocytes in the Circulation and the Kidney

    PubMed Central

    Vega, Israel A.; Castro-Vazquez, Alfredo

    2015-01-01

    Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to microorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using flow cytometry, light microscopy (including confocal laser scanning microscopy) and transmission electron microscopy (TEM). Three circulating hemocyte types (hyalinocytes, agranulocytes and granulocytes) were distinguished by phase contrast microscopy of living cells and after light and electron microscopy of fixed material. Also, three different populations of circulating hemocytes were separated by flow cytometry, which corresponded to the three hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent granules in stained material, but showed granules of moderate electron density under TEM (L granules) and at least some L granules appear acidic when labeled with LysoTracker Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all) L granules when exposed to microorganisms in vitro. The phagosomes formed differed whether hyalinocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulocytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining. These granules are electron dense and rod-shaped under TEM (R granules). Granulocytes may show merging of R granules into gigantic ones, particularly when exposed to microorganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly higher in hyalinocytes. Extensive hemocyte aggregates ('islets') occupy most renal hemocoelic spaces and hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen deposits were observed in most hyalinocytes in renal islets (they also occur in the circulation but less frequently) and may mean that hyalinocytes participate in the storage and circulation of this compound. Injection of microorganisms in the foot results in phagocytosis by hemocytes in the islets, and the different phagosomes formed are similar to those in circulating hyalinocytes. Dispersed hemocytes were obtained after kidney collagenase digestion and cell sorting, and they were able to phagocytize fluorescent beads. A role for the kidney as an immune barrier is proposed for this snail. PMID:25893243

  10. Immune Defenses of the Invasive Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae): Phagocytic Hemocytes in the Circulation and the Kidney.

    PubMed

    Cueto, Juan A; Rodriguez, Cristian; Vega, Israel A; Castro-Vazquez, Alfredo

    2015-01-01

    Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to microorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using flow cytometry, light microscopy (including confocal laser scanning microscopy) and transmission electron microscopy (TEM). Three circulating hemocyte types (hyalinocytes, agranulocytes and granulocytes) were distinguished by phase contrast microscopy of living cells and after light and electron microscopy of fixed material. Also, three different populations of circulating hemocytes were separated by flow cytometry, which corresponded to the three hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent granules in stained material, but showed granules of moderate electron density under TEM (L granules) and at least some L granules appear acidic when labeled with LysoTracker Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all) L granules when exposed to microorganisms in vitro. The phagosomes formed differed whether hyalinocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulocytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining. These granules are electron dense and rod-shaped under TEM (R granules). Granulocytes may show merging of R granules into gigantic ones, particularly when exposed to microorganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly higher in hyalinocytes. Extensive hemocyte aggregates ('islets') occupy most renal hemocoelic spaces and hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen deposits were observed in most hyalinocytes in renal islets (they also occur in the circulation but less frequently) and may mean that hyalinocytes participate in the storage and circulation of this compound. Injection of microorganisms in the foot results in phagocytosis by hemocytes in the islets, and the different phagosomes formed are similar to those in circulating hyalinocytes. Dispersed hemocytes were obtained after kidney collagenase digestion and cell sorting, and they were able to phagocytize fluorescent beads. A role for the kidney as an immune barrier is proposed for this snail.

  11. [The Relevance of Hemolysis in Anesthesia and Intensive Care Medicine].

    PubMed

    Graw, Jan A; Baron, David M; Francis, Roland C E

    2018-04-01

    Hemolysis leads to an increase of circulating intravascular cell-free hemoglobin. Increased plasma concentrations of cell-free hemoglobin are relevant in critically ill patients because cell-free hemoglobin causes vasoconstriction by depletion of endothelial nitric oxide, oxidative stress, and inflammation. Furthermore, cell-free hemoglobin contributes to tissue injuries such as renal failure and intestinal mucosa damage after cardiac surgery. High concentrations of cell-free hemoglobin are associated with an increased mortality in patients with sepsis. Currently, it is unclear if hemolysis associated with transfusion of packed red blood cells that have been stored for prolonged periods of time is relevant for the clinical outcome. However, humans possess plasma proteins haptoglobin and hemopexin which bind to plasma hemoglobin and cell-free heme, respectively. The haptoglobin-hemoglobin and hemopexin-heme complexes are then eliminated from the plasma by hepatic or splenic uptake. Georg Thieme Verlag KG Stuttgart · New York.

  12. Defected red blood cell membranes and direct correlation with the uraemic milieu: the connection with the decreased red blood cell lifespan observed in haemodialysis patients

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Grapsa, E.; Manios, E.; Gogola, V.; Bakirtzi, N.

    2012-12-01

    Together with impaired production of erythropoietin and iron deficiency, the decreased lifespan of red blood cells (RBCs) is a main factor contributing to the chronic anaemia observed in haemodialysis (HD) patients. Atomic force microscopy is employed in this work to thoroughly survey the membrane of intact RBCs (iRBCs) of HD patients in comparison to those of healthy donors, aiming to obtain direct information on the structural status of RBCs that can be related to their decreased lifespan. We observed that the iRBC membrane of the HD patients is overpopulated with extended circular defects, termed ‘orifices’, that have typical dimension ranging between 0.2 and 1.0 μm. The ‘orifice’ index—that is, the mean population of ‘orifices’ per top membrane surface—exhibits a pronounced relative increase of order 54 ± 12% for the HD patients as compared to healthy donors. Interestingly, for the HD patients, the ‘orifice’ index, which relates to the structural status of the RBC membrane, correlates strongly with urea concentration, which is a basic index of the uraemic milieu. Thus, these results indicate that the uraemic milieu downgrades the structural status of the RBC membrane, possibly triggering biochemical processes that result in their premature elimination from the circulation. This process could decrease the lifespan of RBCs, as observed in HD patients.

  13. Physiologic mechanisms of circulatory and body fluid losses in weightlessness identified by mathematical modeling

    NASA Technical Reports Server (NTRS)

    Simanonok, K. E.; Srinivasan, R. S.; Charles, J. B.

    1993-01-01

    Central volume expansion due to fluid shifts in weightlessness is believed to activate adaptive reflexes which ultimately result in a reduction of the total circulating blood volume. However, the flight data suggests that a central volume overdistention does not persist, in which case some other factor or factors must be responsible for body fluid losses. We used a computer simulation to test the hypothesis that factors other than central volume overdistention are involved in the loss of blood volume and other body fluid volumes observed in weightlessness and in weightless simulations. Additionally, the simulation was used to identify these factors. The results predict that atrial volumes and pressures return to their prebedrest baseline values within the first day of exposure to head down tilt (HDT) as the blood volume is reduced by an elevated urine formation. They indicate that the mechanisms for large and prolonged body fluid losses in weightlessness is red cell hemoconcentration that elevates blood viscosity and peripheral resistance, thereby lowering capillary pressure. This causes a prolonged alteration of the balance of Starling forces, depressing the extracellular fluid volume until the hematocrit is returned to normal through a reduction of the red cell mass, which also allows some restoration of the plasma volume. We conclude that the red cell mass becomes the physiologic driver for a large 'undershoot' of the body fluid volumes after the normalization of atrial volumes and pressures.

  14. Optoelectronic Instrument Monitors pH in a Culture Medium

    NASA Technical Reports Server (NTRS)

    Anderson, Melody M.; Pellis, Neal; Jeevarajan, Anthony S.; Taylor, Thomas D.

    2004-01-01

    An optoelectronic instrument monitors the pH of an aqueous cell-culture medium in a perfused rotating-wall-vessel bioreactor. The instrument is designed to satisfy the following requirements: It should be able to measure the pH of the medium continuously with an accuracy of 0.1 in the range from 6.5 to 7.5. It should be noninvasive. Any material in contact with the culture medium should be sterilizable as well as nontoxic to the cells to be grown in the medium. The biofilm that inevitably grows on any surface in contact with the medium should not affect the accuracy of the pH measurement. It should be possible to obtain accurate measurements after only one calibration performed prior to a bioreactor cell run. The instrument should be small and lightweight. The instrument includes a quartz cuvette through which the culture medium flows as it is circulated through the bioreactor. The cuvette is sandwiched between light source on one side and a photodetector on the other side. The light source comprises a red and a green light-emitting diode (LED) that are repeatedly flashed in alternation with a cycle time of 5 s. The responses of the photodiode to the green and red LEDs are processed electronically to obtain a quantity proportional to the ratio between the amounts of green and red light transmitted through the medium.

  15. The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation

    PubMed Central

    Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung

    2016-01-01

    Background Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Methods Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous O2 saturation, and lactate were measured. Results The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. Conclusion After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow. PMID:27298790

  16. The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation.

    PubMed

    Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung

    2016-06-01

    Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous O2 saturation, and lactate were measured. The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow.

  17. Low-shear red blood cell oxygen transport effectiveness is adversely affected by transfusion and further worsened by deoxygenation in sickle cell disease patients on chronic transfusion therapy.

    PubMed

    Detterich, Jon; Alexy, Tamas; Rabai, Miklos; Wenby, Rosalinda; Dongelyan, Ani; Coates, Thomas; Wood, John; Meiselman, Herbert

    2013-02-01

    Simple chronic transfusion therapy (CTT) is a mainstay for stroke prophylaxis in sickle cell anemia, but its effects on hemodynamics are poorly characterized. Transfusion improves oxygen-carrying capacity, reducing demands for high cardiac output. While transfusion decreases factors associated with vasoocclusion, including percent hemoglobin (Hb)S, reticulocyte count, and circulating cell-free Hb, it increases blood viscosity, which reduces microvascular flow. The hematocrit-to-viscosity ratio (HVR) is an index of red blood cell oxygen transport effectiveness that varies with shear stress and balances the benefits of improved oxygen capacity to viscosity-mediated impairment of microvascular flow. We hypothesized that transfusion would improve HVR at high shear despite increased blood viscosity, but would decrease HVR at low shear. To test this hypothesis, we examined oxygenated and deoxygenated blood samples from 15 sickle cell patients on CTT immediately before transfusion and again 12 to 120 hours after transfusion. Comparable changes in Hb, hematocrit (Hct), reticulocyte count, and HbS with transfusion were observed in all subjects. Viscosity, Hct, and high-shear HVR increased with transfusion while low-shear HVR decreased significantly. Decreased low-shear HVR suggests impaired oxygen transport to low-flow regions and may explain why some complications of sickle cell anemia are ameliorated by CTT and others may be made worse. © 2012 American Association of Blood Banks.

  18. GENE CONTROL OF HEMATOPOIESIS

    PubMed Central

    Mintz, Beatrice; Palm, Joy

    1969-01-01

    Erythropoietic cells of two unrelated strains, C3H (or C3Hf) and C57BL/6, can coexist throughout hematopoiesis in allophenic mice experimentally produced from aggregated, undifferentiated blastomeres of separate genotypes. The presence of two red cell genotypes in these circumstances signifies that the erythroid population must normally be multiclonal, i.e., derived mitotically from at least two genetically determined cells. The two strains were detected by hemagglutination and absorption tests of erythrocytes for the specific histocompatibility antigens dictated by the H-2k and H-2b alleles. Of 34 C3H(f) ↔ C57BL/6 allophenics tested, 16 had both red cell types; the remaining 18 showed only C3H or C57 red cells and included 12 mice with both cell strains present in some other tissues. All animals with evidence of two H-2 phenotypes among circulating erythrocytes were permanently immunologically tolerant of both antigenic types and remained free of runt disease. They lived a full lifespan, up to 2 yr 7½ months of age. The data suggest a possible specific selective advantage of C57BL/6 over C3H erythropoietic tissue. There is considerable individual variability, not only in proportions of antigenically distinct erythrocytes, but also in strain composition of other tissues in the same animals. A broad spectrum of distinctive situations is found, in which parameters are varied within or outside of the circulatory system. Allophenic mice can therefore serve as investigative tools for entirely new kinds of experimental studies of gene control mechanisms and blood physiology in normal hematopoiesis and in a number of hereditary blood diseases. PMID:5778785

  19. The Effect of In Vivo Hydrocortisone on Subpopulations of Human Lymphocytes

    PubMed Central

    Fauci, Anthony S.; Dale, David C.

    1974-01-01

    This study was designed to determine the effect of in vivo hydrocortisone on subpopulations of lymphoid cells in normal humans. Subjects received a single intravenous dose of either 100 mg or 400 mg of hydrocortisone, and blood was drawn at hourly intervals for 6 h, and then again at 10 and 24 h after injection. Profound decreases in absolute numbers of circulating lymphocytes and monocytes occurred at 4-6 h after both 100 mg and 400 mg of hydrocortisone. Counts returned to normal by 24 h. The relative proportion of circulating thymus-derived lymphocytes as measured by the sheep red blood cell rosette assay decreased maximally by 4 h and returned to base line 24 h after hydrocortisone. There was a selective depletion of functional subpopulations of lymphocytes as represented by differential effects on in vitro stimulation with various mitogens and antigens. Phytohaemagglutinin response was relatively unaffected, while responses to concanavalin A were significantly diminished. Responses to pokeweed mitogen were unaffected by 100 mg of hydrocortisone, but greatly diminished by 400 mg of hydrocortisone. In vitro responses to the antigens streptokinase-streptodornase and tetanus toxoid were markedly diminished by in vivo hydrocortisone. Reconstitution of monocyte-depleted cultures with autologous monocytes partially corrected the diminished response to antigens. This transient selective depletion of monocytes and subsets of human lymphocytes by a single dose of hydrocortisone is most compatible with a redistribution of these cells out of the circulation into other body compartments. Images PMID:4808638

  20. Pharmacological inhibition of calpain-1 prevents red cell dehydration and reduces Gardos channel activity in a mouse model of sickle cell disease

    PubMed Central

    De Franceschi, Lucia; Franco, Robert S.; Bertoldi, Mariarita; Brugnara, Carlo; Matté, Alessandro; Siciliano, Angela; Wieschhaus, Adam J.; Chishti, Athar H.; Joiner, Clinton H.

    2013-01-01

    Sickle cell disease (SCD) is a globally distributed hereditary red blood cell (RBC) disorder. One of the hallmarks of SCD is the presence of circulating dense RBCs, which are important in SCD-related clinical manifestations. In human dense sickle cells, we found reduced calpastatin activity and protein expression compared to either healthy RBCs or unfractionated sickle cells, suggesting an imbalance between activator and inhibitor of calpain-1 in favor of activator in dense sickle cells. Calpain-1 is a nonlysosomal cysteine proteinase that modulates multiple cell functions through the selective cleavage of proteins. To investigate the relevance of this observation in vivo, we evaluated the effects of the orally active inhibitor of calpain-1, BDA-410 (30 mg/kg/d), on RBCs from SAD mice, a mouse model for SCD. In SAD mice, BDA-410 improved RBC morphology, reduced RBC density (D20; from 1106±0.001 to 1100±0.001 g/ml; P<0.05) and increased RBC-K+ content (from 364±10 to 429±12.3 mmol/kg Hb; P<0.05), markedly reduced the activity of the Ca2+-activated K+channel (Gardos channel), and decreased membrane association of peroxiredoxin-2. The inhibitory effect of calphostin C, a specific inhibitor of protein kinase C (PKC), on the Gardos channel was eliminated after BDA-410 treatment, which suggests that calpain-1 inhibition affects the PKC-dependent fraction of the Gardos channel. BDA-410 prevented hypoxia-induced RBC dehydration and K+ loss in SAD mice. These data suggest a potential role of BDA-410 as a novel therapeutic agent for treatment of SCD.—De Franceschi, L., Franco, R. S., Bertoldi, M., Brugnara, C., Matté, A., Siciliano, A., Wieschhaus, A. J., Chishti, A. H., Joiner, C. H. Pharmacological inhibition of calpain-1 prevents red cell dehydration and reduces Gardos channel activity in a mouse model of sickle cell disease. PMID:23085996

  1. SOD2 deficiency in hematopoietic cells in mice results in reduced red blood cell deformability and increased heme degradation

    PubMed Central

    Mohanty, Joy G.; Nagababu, Enika; Friedman, Jeffrey S.; Rifkind, Joseph M.

    2013-01-01

    Among the three types of super oxide dismutases (SODs) known, SOD2 deficiency is lethal in neonatal mice owing to cardiomyopathy caused by severe oxidative damage. SOD2 is found in red blood cell (RBC) precursors, but not in mature RBCs. To investigate the potential damage to mature RBCs resulting from SOD2 deficiency in precursor cells, we studied RBCs from mice in which fetal liver stem cells deficient in SOD2 were capable of efficiently rescuing lethally irradiated host animals. These transplanted animals lack SOD2 only in hematopoietically generated cells and live longer than SOD2 knockouts. In these mice, approximately 2.8% of their total RBCs in circulation are iron-laden reticulocytes, with numerous siderocytic granules and increased protein oxidation similar to that seen in sideroblastic anemia. We have studied the RBC deformability and oxidative stress in these animals and the control group by measuring them with a microfluidic ektacytometer and assaying fluorescent heme degradation products with a fluorimeter, respectively. In addition, the rate of hemoglobin oxidation in RBCs from these mice and the control group were measured spectrophotometrically. The results show that RBCs from these SOD2-deficient mice have reduced deformability, increased heme degradation products, and an increased rate of hemoglobin oxidation compared with control animals, indicative of increased RBC oxidative stress. PMID:23142655

  2. Unloading oxygen in a capillary vessel under a pathological condition.

    PubMed

    Escobar, C; Méndez, F

    2008-10-01

    In this work, we study theoretically the unloading of oxygen from a hemoglobin molecule to the wall of a typical capillary vessel, considering that the hemoglobin under pathological conditions, obeys the rheological Maxwell model. Based on recent experimental evidences in hypertension, we consider that the red blood cells (RBCs) are composed by a single continuous medium in contrast with the classical particulate or discrete RBC models, which are only valid under normal physiological conditions. The analysis considers the hemodynamic interactions between the plasma and the hemoglobin, both circulating in a long horizontal capillary. We apply numerical and analytical methods to obtain the main fluid-dynamic characteristics for both fluids in the limit of low Reynolds and Womersley numbers. A diffusion boundary layer formulation for the oxygen transport in the combined plasma-hemoglobin core region is presented. The main aspects derived are the time and spatial evolution of the membrane. The hemoglobin and plasma velocities and the pressure distributions are shown. For the oxygen unloading the results are the oxy-hemoglobin saturation, the oxygen flux and the oxygen concentration in the cell-free plasma layer. The volume fraction of red blood cells and the Strouhal number have a great influence on the hemodynamic interactions.

  3. A single-platform approach using flow cytometry and microbeads to evaluate immune reconstitution in mice after bone marrow transplantation.

    PubMed

    Perruche, Sylvain; Kleinclauss, François; Lienard, Agnès; Robinet, Eric; Tiberghien, Pierre; Saas, Philippe

    2004-11-01

    The monitoring of immune reconstitution in murine models of HC transplantation, using accurate and automated methods, is necessary in view of the recent developments of hematopoietic cell (HC) transplantation (including reduced intensity conditioning regimens) as well as emerging immunological concepts (such as the involvement of dendritic cells or regulatory T cells). Here, we describe the use of a single-platform approach based on flow cytometry and tubes that contain a defined number of microbeads to evaluate absolute blood cell counts in mice. This method, previously used in humans to quantify CD34+ stem cells or CD4+ T cells in HIV infected patients, was adapted for mouse blood samples. A CD45 gating strategy in this "lyse no wash" protocol makes it possible to discriminate erythroblasts or red blood cell debris from CD45+ leukocytes, thus avoiding cell loss. Tubes contain a lyophilized brightly fluorescent microbead pellet permitting the acquisition of absolute counts of leukocytes after flow cytometric analysis. We compared this method to determine absolute counts of circulating cells with another method combining Unopette reservoir diluted blood samples, hemocytometer, microscopic examination and flow cytometry. The sensitivity of this single-platform approach was evaluated in different situations encountered in allogeneic HC transplantation, including immune cell depletion after different conditioning regimens, activation status of circulating cells after transplantation, evaluation of in vivo cell depletion and hematopoietic progenitor mobilization in the periphery. This single-platform flow cytometric assay can also be proposed to standardize murine (or other mammalian species) leukocyte count determination for physiological, pharmacological/toxicological and diagnostic applications in veterinary practice.

  4. Coupled Regional Ocean-Atmosphere Modeling of the Mount Pinatubo Impact on the Red Sea

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Osipov, S.

    2017-12-01

    The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.

  5. Regional Effects of the Mount Pinatubo Eruption on the Middle East and the Red Sea

    NASA Astrophysics Data System (ADS)

    Osipov, Sergey; Stenchikov, Georgiy

    2017-11-01

    The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.

  6. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.

    PubMed

    Bhagat, Ali Asgar S; Hou, Han Wei; Li, Leon D; Lim, Chwee Teck; Han, Jongyoon

    2011-06-07

    Blood is a highly complex bio-fluid with cellular components making up >40% of the total volume, thus making its analysis challenging and time-consuming. In this work, we introduce a high-throughput size-based separation method for processing diluted blood using inertial microfluidics. The technique takes advantage of the preferential cell focusing in high aspect-ratio microchannels coupled with pinched flow dynamics for isolating low abundance cells from blood. As an application of the developed technique, we demonstrate the isolation of cancer cells (circulating tumor cells (CTCs)) spiked in blood by exploiting the difference in size between CTCs and hematologic cells. The microchannel dimensions and processing parameters were optimized to enable high throughput and high resolution separation, comparable to existing CTC isolation technologies. Results from experiments conducted with MCF-7 cells spiked into whole blood indicate >80% cell recovery with an impressive 3.25 × 10(5) fold enrichment over red blood cells (RBCs) and 1.2 × 10(4) fold enrichment over peripheral blood leukocytes (PBL). In spite of a 20× sample dilution, the fast operating flow rate allows the processing of ∼10(8) cells min(-1) through a single microfluidic device. The device design can be easily customized for isolating other rare cells from blood including peripheral blood leukocytes and fetal nucleated red blood cells by simply varying the 'pinching' width. The advantage of simple label-free separation, combined with the ability to retrieve viable cells post enrichment and minimal sample pre-processing presents numerous applications for use in clinical diagnosis and conducting fundamental studies.

  7. Removal of malaria-infected red blood cells using magnetic cell separators: A computational study

    PubMed Central

    Kim, Jeongho; Massoudi, Mehrdad; Antaki, James F.; Gandini, Alberto

    2012-01-01

    High gradient magnetic field separators have been widely used in a variety of biological applications. Recently, the use of magnetic separators to remove malaria-infected red blood cells (pRBCs) from blood circulation in patients with severe malaria has been proposed in a dialysis-like treatment. The capture efficiency of this process depends on many interrelated design variables and constraints such as magnetic pole array pitch, chamber height, and flow rate. In this paper, we model the malaria-infected RBCs (pRBCs) as paramagnetic particles suspended in a Newtonian fluid. Trajectories of the infected cells are numerically calculated inside a micro-channel exposed to a periodic magnetic field gradient. First-order stiff ordinary differential equations (ODEs) governing the trajectory of particles under periodic magnetic fields due to an array of wires are solved numerically using the 1st –5th order adaptive step Runge-Kutta solver. The numerical experiments show that in order to achieve a capture efficiency of 99% for the pRBCs it is required to have a longer length than 80 mm; this implies that in principle, using optimization techniques the length could be adjusted, i.e., shortened to achieve 99% capture efficiency of the pRBCs. PMID:22345827

  8. Parenteral irons versus transfused red blood cells for treatment of anemia during canine experimental bacterial pneumonia.

    PubMed

    Suffredini, Dante A; Xu, Wanying; Sun, Junfeng; Barea-Mendoza, Jesús; Solomon, Steven B; Brashears, Samuel L; Perlegas, Andreas; Kim-Shapiro, Daniel B; Klein, Harvey G; Natanson, Charles; Cortés-Puch, Irene

    2017-10-01

    No studies have been performed comparing intravenous (IV) iron with transfused red blood cells (RBCs) for treating anemia during infection. In a previous report, transfused older RBCs increased free iron release and mortality in infected animals when compared to fresher cells. We hypothesized that treating anemia during infection with transfused fresh RBCs, with minimal free iron release, would prove superior to IV iron therapy. Purpose-bred beagles (n = 42) with experimental Staphylococcus aureus pneumonia rendered anemic were randomized to be transfused RBCs stored for 7 days or one of two IV iron preparations (7 mg/kg), iron sucrose, a widely used preparation, or ferumoxytol, a newer formulation that blunts circulating iron levels. Both irons increased the alveolar-arterial oxygen gradient at 24 to 48 hours (p = 0.02-0.001), worsened shock at 16 hours (p = 0.02-0.003, respectively), and reduced survival (transfusion 56%; iron sucrose 8%, p = 0.01; ferumoxytol 9%, p = 0.04). Compared to fresh RBC transfusion, plasma iron measured by non-transferrin-bound iron levels increased with iron sucrose at 7, 10, 13, 16, 24, and 48 hours (p = 0.04 to p < 0.0001) and ferumoxytol at 7, 24, and 48 hours (p = 0.04 to p = 0.004). No significant differences in cardiac filling pressures or performance, hemoglobin (Hb), or cell-free Hb were observed. During canine experimental bacterial pneumonia, treatment of mild anemia with IV iron significantly increased free iron levels, shock, lung injury, and mortality compared to transfusion of fresh RBCs. This was true for iron preparations that do or do not blunt circulating free iron level elevations. These findings suggest that treatment of anemia with IV iron during infection should be undertaken with caution. © 2017 AABB.

  9. Stearidonic and γ-linolenic acids in echium oil improves glucose disposal in insulin resistant monkeys.

    PubMed

    Kavanagh, K; Flynn, D M; Jenkins, K A; Wilson, M D; Chilton, F H

    2013-07-01

    Echium oil (EO) contains stearidonic acid (18:4), a n-3 polyunsaturated fatty acids (PUFAs), and gamma-linolenic acids (18:3), a n-6 PUFA that can be converted to long chain (LC)-PUFAs. We aimed to compare a safflower oil (SO)-enriched diet to EO- and fish oil (FO)-enriched diets on circulating and tissue PUFAs levels and glycemic, inflammatory, and cardiovascular health biomarkers in insulin resistant African green monkeys. In a Latin-square cross-over study, eight monkeys consumed matched diets for 6 weeks with 3-week washout periods. Monkeys consuming FO had significantly higher levels of n-3 LC-PUFAs and EO supplementation resulted in higher levels of circulating n-3 LC-PUFAs and a significant increase in dihomo-gamma linolenic acid (DGLA) in red blood cells and muscle. Glucose disposal was improved after EO consumption. These data suggest that PUFAs in EO supplementation have the capacity to alter circulating, RBC and muscle LC-PUFA levels and improve glucose tolerance in insulin-resistant monkeys. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Paper-Based MicroRNA Expression Profiling from Plasma and Circulating Tumor Cells.

    PubMed

    Leong, Sai Mun; Tan, Karen Mei-Ling; Chua, Hui Wen; Huang, Mo-Chao; Cheong, Wai Chye; Li, Mo-Huang; Tucker, Steven; Koay, Evelyn Siew-Chuan

    2017-03-01

    Molecular characterization of circulating tumor cells (CTCs) holds great promise for monitoring metastatic progression and characterizing metastatic disease. However, leukocyte and red blood cell contamination of routinely isolated CTCs makes CTC-specific molecular characterization extremely challenging. Here we report the use of a paper-based medium for efficient extraction of microRNAs (miRNAs) from limited amounts of biological samples such as rare CTCs harvested from cancer patient blood. Specifically, we devised a workflow involving the use of Flinders Technology Associates (FTA) ® Elute Card with a digital PCR-inspired "partitioning" method to extract and purify miRNAs from plasma and CTCs. We demonstrated the sensitivity of this method to detect miRNA expression from as few as 3 cancer cells spiked into human blood. Using this method, background miRNA expression was excluded from contaminating blood cells, and CTC-specific miRNA expression profiles were derived from breast and colorectal cancer patients. Plasma separated out during purification of CTCs could likewise be processed using the same paper-based method for miRNA detection, thereby maximizing the amount of patient-specific information that can be derived from a single blood draw. Overall, this paper-based extraction method enables an efficient, cost-effective workflow for maximized recovery of small RNAs from limited biological samples for downstream molecular analyses. © 2016 American Association for Clinical Chemistry.

  11. Mechanosensing Dynamics of Red blood Cells

    NASA Astrophysics Data System (ADS)

    Wan, Jiandi

    2015-11-01

    Mechanical stress-induced deformation of human red blood cells (RBCs) plays important physiopathological roles in oxygen delivery, blood rheology, transfusion, and malaria. Recent studies demonstrate that, in response to mechanical deformation, RBCs release adenosine-5'-triphosphate (ATP), suggesting the existence of mechanotransductive pathways in RBCs. Most importantly, the released ATP from RBCs regulates vascular tone and impaired release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. To date, however, the mechanisms of mechanotransductive release of ATP from RBCs remain unclear. Given that RBCs experience shear stresses continuously during the circulation cycle and the released ATP plays a central role in vascular physiopathology, understanding the mechanotransductive release of ATP from RBCs will provide not only fundamental insights to the role of RBCs in vascular homeostasis but also novel therapeutic strategies for red cell dysfunction and vascular disease. This talk describes the main research in my group on integrating microfluidic-based approaches to study the mechanosensing dynamics of RBCs. Specifically, I will introduce a micro?uidic approach that can probe the dynamics of shear-induced ATP release from RBCs with millisecond resolution and provide quantitative understandings of the mechanosensitive ATP release processes in RBCs. Furthermore, I will also describe our recent findings about the roles of the Piezo1 channel, a newly discovered mechanosensitive cation channel in the mechanotransductive ATP release in RBCs. Last, possible functions of RBCs in the regulation of cerebral blood flow will be discussed.

  12. THE RELATIVE REACTION WITHIN LIVING MAMMALIAN TISSUES

    PubMed Central

    Rous, Peyton

    1925-01-01

    The present paper is the first of a series of reports on the relative reaction of living tissues as determined by vital staining with indicators. It is possible to bring about a localized and a general coloration of living rats and mice with litmus. The animals remain in good health and the coloration of some of the tissues persists for months. Much of the dye is stored in cell granules, especially in those of the reticulo-endothelial elements, but a diffuse staining of certain tissues occurs, notably of bone, epidermis, cartilage, and connective tissue everywhere. In the intensity and localization of the bony coloration litmus has resemblances to madder. Diffuse staining with it renders blue most, if not all, of the tissues affected, while a granular staining causes others to become notably pink, owing to the fact that the indicator, though introduced into the organism in the blue form and circulating as such in the body fluids, is ordinarily red when stored in cells. The polymorphonuclear elements and macrophages of a peritoneal exudate, may become so laden with material colored red by litmus that the blue color of the fluid constituent is masked and the exudate appears a deep, turbid red. The phenomenon is but one manifestation of a notable acidity within cell granules throughout the organism. Like many another in the stained animals it would appear to be of physiological import. Some of the questions suggested by the work will be dealt with in the paper immediately following. PMID:19868995

  13. Optical aggregometry of red blood cells associated with the blood-clotting reaction in extracorporeal circulation support.

    PubMed

    Sakota, Daisuke; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu

    2016-09-01

    The aggregability of red blood cell (RBCs) is associated with the contribution of plasma proteins, such as fibrinogen and lipoproteids, to blood-clotting. Hence, we hypothesized that RBC aggregability reflects the blood-clotting reaction. A noninvasive optical monitoring method to measure RBC aggregability for the assessment of blood-clotting stage during mechanical circulatory support was developed. An in vitro thrombogenic test was conducted with a rotary blood pump using heparinized fresh porcine blood. Near-infrared laser light at a wavelength of 785 nm was guided by an optical fiber. The fibers for detecting incident, forward-, and backward-scattered light were fixed on the circuit tubing with an inner diameter of 1/4 inch. Because there is substantial RBC aggregation at low shear flow rates, a pulsatile flow was generated by controlling the pump rotational speed. The flow rate was changed from 0 to 8.5 L/min at a period of 40 s. The intensities of forward- and backward-scattered light changed dramatically when the flow stopped. The aggregability was evaluated by the increase ratio of the transmitted light intensity from the flow stopping in the low-flow condition. The experiment started when the anticoagulation was stopped by the addition of protamine into the circulating blood. Reduction in RBC aggregability was associated with a decrease in the amount of fibrinogen and the number of platelets. Continuous, noninvasive monitoring of thrombosis risk is possible using optical measurements combining pulsatile flow control of a rotary blood pump. RBC aggregometry is a potential label-free method for evaluating blood-clotting risk.

  14. Effects of Cross-axis Wind Jet Events on the Northern Red Sea Circulation

    NASA Astrophysics Data System (ADS)

    Menezes, V. V.; Bower, A. S.; Farrar, J. T.

    2016-12-01

    Despite its small size, the Red Sea has a complex circulation. There are boundary currents in both sides of the basin, a meridional overturning circulation, water mass formation in the northern part and an intense eddy activity. This complex pattern is driven by strong air-sea interactions. The Red Sea has one of the largest evaporation rates of the global oceans (2m/yr), an intricate and seasonally varying wind pattern. The winds blowing over the Northern Rea Sea (NRS, north of 20N) are predominantly southeastward along the main axis all year round; in the southern, they reverse seasonally due to the monsoonal regime. Although the winds are mostly along-axis in the NRS, several works have shown that sometimes during the boreal winter, the winds blow in a cross-axis direction. The westward winds from Saudi Arabia bring relatively cold dry air and dust from the desert, enhancing heat loss and evaporation off the Red Sea. These wind-jet events may contribute to increased eddy activity and are a trigger for water mass formation. Despite that, our knowledge about the cross-axis winds and their effect on NRS circulation is still incipient. In the present work we analyze 10-years of Quikscat scatterometer winds and altimetric sea surface height anomalies, together with 2-yrs of mooring data, to characterize the westward wind jet events and their impacts on the circulation. We show that the cross-axis winds are, indeed, an important component of the wind regime, explaining 11% of wind variability of the NRS (well-described by a 2nd EOF mode). The westward events occur predominantly in the winter, preferentially in January (about 15 events in 10-years) and have a mean duration of 4-5 days, with a maximum of 12 days (north of 22N). There are around 6 events per year, but in 2002-2003 and 2007-2008, twice more events were detected. The westward wind events are found to strongly modify the wind stress curl, causing a distinct positive/negative curl pattern along the main axis. This pattern enhances the eddy activity and impacts the NRS circulation.

  15. Korean red ginseng extract enhances paclitaxel distribution to mammary tumors and its oral bioavailability by P-glycoprotein inhibition.

    PubMed

    Bae, Jin Kyung; Kim, You-Jin; Chae, Hee-Sung; Kim, Do Yeun; Choi, Han Seok; Chin, Young-Won; Choi, Young Hee

    2017-05-01

    1. Drug efflux by P-glycoprotein (P-gp) is a common resistance mechanism of breast cancer cells to paclitaxel, the primary chemotherapy in breast cancer. As a means of overcoming the drug resistance-mediated failure of paclitaxel chemotherapy, the potential of Korean red ginseng extract (KRG) as an adjuvant chemotherapy has been reported only in in vitro. Therefore, we assessed whether KRG alters P-gp mediated paclitaxel efflux, and therefore paclitaxel efficacy in in vitro and vivo models. 2. KRG inhibited P-gp protein expression and transcellular efflux of paclitaxel in MDCK-mdr1 cells, but KRG was not a substrate of P-gp ATPase. In female rats with mammary tumor, the combination of paclitaxel with KRG showed the greater reduction of tumor volumes, lower P-gp protein expression and higher paclitaxel distribution in tumors, and greater oral bioavailability of paclitaxel than paclitaxel alone. 3. From these results, KRG increased systemic circulation of oral paclitaxel and its distribution to tumors via P-gp inhibition in rats and under the current study conditions.

  16. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice.

    PubMed

    Matsuoka, Yumiko; Swayne, David E; Thomas, Colleen; Rameix-Welti, Marie-Anne; Naffakh, Nadia; Warnes, Christine; Altholtz, Melanie; Donis, Ruben; Subbarao, Kanta

    2009-05-01

    Following circulation of avian influenza H5 and H7 viruses in poultry, the hemagglutinin (HA) can acquire additional glycosylation sites, and the neuraminidase (NA) stalk becomes shorter. We investigated whether these features play a role in the pathogenesis of infection in mammalian hosts. From 1996 to 2007, H5N1 viruses with a short NA stalk have become widespread in several avian species. Compared to viruses with a long-stalk NA, viruses with a short-stalk NA showed a decreased capacity to elute from red blood cells and an increased virulence in mice, but not in chickens. The presence of additional HA glycosylation sites had less of an effect on virulence than did NA stalk length. The short-stalk NA of H5N1 viruses circulating in Asia may contribute to virulence in humans.

  17. Neuraminidase Stalk Length and Additional Glycosylation of the Hemagglutinin Influence the Virulence of Influenza H5N1 Viruses for Mice▿

    PubMed Central

    Matsuoka, Yumiko; Swayne, David E.; Thomas, Colleen; Rameix-Welti, Marie-Anne; Naffakh, Nadia; Warnes, Christine; Altholtz, Melanie; Donis, Ruben; Subbarao, Kanta

    2009-01-01

    Following circulation of avian influenza H5 and H7 viruses in poultry, the hemagglutinin (HA) can acquire additional glycosylation sites, and the neuraminidase (NA) stalk becomes shorter. We investigated whether these features play a role in the pathogenesis of infection in mammalian hosts. From 1996 to 2007, H5N1 viruses with a short NA stalk have become widespread in several avian species. Compared to viruses with a long-stalk NA, viruses with a short-stalk NA showed a decreased capacity to elute from red blood cells and an increased virulence in mice, but not in chickens. The presence of additional HA glycosylation sites had less of an effect on virulence than did NA stalk length. The short-stalk NA of H5N1 viruses circulating in Asia may contribute to virulence in humans. PMID:19225004

  18. Mechanical clearance of red blood cells by the human spleen: Potential therapeutic applications of a biomimetic RBC filtration method.

    PubMed

    Duez, J; Holleran, J P; Ndour, P A; Pionneau, C; Diakité, S; Roussel, C; Dussiot, M; Amireault, P; Avery, V M; Buffet, P A

    2015-08-01

    During their lifespan, circulating RBC are frequently checked for their deformability. This mechanical quality control operates essentially in the human spleen. RBC unable to squeeze though narrow splenic slits are retained and cleared from the blood circulation. Under physiological conditions this prevents microvessels from being clogged by senescent, rigid RBC. Retention of poorly deformable RBC is an important determinant of pathogenesis in malaria and may also impact the clinical benefit of transfusion. Modulating the splenic retention of RBC has already been proposed to support therapeutic approaches in these research fields. To this aim, the development of microplates for high throughput filtration of RBC through microsphere layers (microplate-based microsphiltration) has been undertaken. This review focuses on potential therapeutic applications provided by this technology in malaria chemotherapy and transfusion. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Exacerbation of oxidative stress during sickle vaso-occlusive crisis is associated with decreased anti-band 3 autoantibodies rate and increased red blood cell-derived microparticle level: a prospective study.

    PubMed

    Hierso, Régine; Lemonne, Nathalie; Villaescusa, Rinaldo; Lalanne-Mistrih, Marie-Laure; Charlot, Keyne; Etienne-Julan, Maryse; Tressières, Benoit; Lamarre, Yann; Tarer, Vanessa; Garnier, Yohann; Hernandez, Ada Arce; Ferracci, Serge; Connes, Philippe; Romana, Marc; Hardy-Dessources, Marie-Dominique

    2017-03-01

    Painful vaso-occlusive crisis, a hallmark of sickle cell anaemia, results from complex, incompletely understood mechanisms. Red blood cell (RBC) damage caused by continuous endogenous and exogenous oxidative stress may precipitate the occurrence of vaso-occlusive crises. In order to gain insight into the relevance of oxidative stress in vaso-occlusive crisis occurrence, we prospectively compared the expression levels of various oxidative markers in 32 adults with sickle cell anaemia during vaso-occlusive crisis and steady-state conditions. Compared to steady-state condition, plasma levels of free haem, advanced oxidation protein products and myeloperoxidase, RBC caspase-3 activity, as well as the concentrations of total, neutrophil- and RBC-derived microparticles were increased during vaso-occlusive crises, whereas the reduced glutathione content was decreased in RBCs. In addition, natural anti-band 3 autoantibodies levels decreased during crisis and were negatively correlated with the rise in plasma advanced oxidation protein products and RBC caspase-3 activity. These data showed an exacerbation of the oxidative stress during vaso-occlusive crises in sickle cell anaemia patients and strongly suggest that the higher concentration of harmful circulating RBC-derived microparticles and the reduced anti-band 3 autoantibodies levels may be both related to the recruitment of oxidized band 3 into membrane aggregates. © 2016 John Wiley & Sons Ltd.

  20. A New Cell Block Method for Multiple Immunohistochemical Analysis of Circulating Tumor Cells in Patients with Liver Cancer.

    PubMed

    Nam, Soo Jeong; Yeo, Hyun Yang; Chang, Hee Jin; Kim, Bo Hyun; Hong, Eun Kyung; Park, Joong-Won

    2016-10-01

    We developed a new method of detecting circulating tumor cells (CTCs) in liver cancer patients by constructing cell blocks from peripheral blood cells, including CTCs, followed by multiple immunohistochemical analysis. Cell blockswere constructed from the nucleated cell pellets of peripheral blood afterremoval of red blood cells. The blood cell blocks were obtained from 29 patients with liver cancer, and from healthy donor blood spikedwith seven cell lines. The cell blocks and corresponding tumor tissues were immunostained with antibodies to seven markers: cytokeratin (CK), epithelial cell adhesion molecule (EpCAM), epithelial membrane antigen (EMA), CK18, α-fetoprotein (AFP), Glypican 3, and HepPar1. The average recovery rate of spiked SW620 cells from blood cell blocks was 91%. CTCs were detected in 14 out of 29 patients (48.3%); 11/23 hepatocellular carcinomas (HCC), 1/2 cholangiocarcinomas (CC), 1/1 combined HCC-CC, and 1/3 metastatic cancers. CTCs from 14 patients were positive for EpCAM (57.1%), EMA (42.9%), AFP (21.4%), CK18 (14.3%), Gypican3 and CK (7.1%, each), and HepPar1 (0%). Patients with HCC expressed EpCAM, EMA, CK18, and AFP in tissue and/or CTCs, whereas CK, HepPar1, and Glypican3 were expressed only in tissue. Only EMA was significantly associated with the expressions in CTC and tissue. CTC detection was associated with higher T stage and portal vein invasion in HCC patients. This cell block method allows cytologic detection and multiple immunohistochemical analysis of CTCs. Our results show that tissue biomarkers of HCC may not be useful for the detection of CTC. EpCAM could be a candidate marker for CTCs in patients with HCC.

  1. Evaluation of Stem Cell-Derived Red Blood Cells as a Transfusion Product Using a Novel Animal Model.

    PubMed

    Shah, Sandeep N; Gelderman, Monique P; Lewis, Emily M A; Farrel, John; Wood, Francine; Strader, Michael Brad; Alayash, Abdu I; Vostal, Jaroslav G

    2016-01-01

    Reliance on volunteer blood donors can lead to transfusion product shortages, and current liquid storage of red blood cells (RBCs) is associated with biochemical changes over time, known as 'the storage lesion'. Thus, there is a need for alternative sources of transfusable RBCs to supplement conventional blood donations. Extracorporeal production of stem cell-derived RBCs (stemRBCs) is a potential and yet untapped source of fresh, transfusable RBCs. A number of groups have attempted RBC differentiation from CD34+ cells. However, it is still unclear whether these stemRBCs could eventually be effective substitutes for traditional RBCs due to potential differences in oxygen carrying capacity, viability, deformability, and other critical parameters. We have generated ex vivo stemRBCs from primary human cord blood CD34+ cells and compared them to donor-derived RBCs based on a number of in vitro parameters. In vivo, we assessed stemRBC circulation kinetics in an animal model of transfusion and oxygen delivery in a mouse model of exercise performance. Our novel, chronically anemic, SCID mouse model can evaluate the potential of stemRBCs to deliver oxygen to tissues (muscle) under resting and exercise-induced hypoxic conditions. Based on our data, stem cell-derived RBCs have a similar biochemical profile compared to donor-derived RBCs. While certain key differences remain between donor-derived RBCs and stemRBCs, the ability of stemRBCs to deliver oxygen in a living organism provides support for further development as a transfusion product.

  2. Simulating Dust Regional Impact on the Middle East Climate and the Red Sea

    NASA Astrophysics Data System (ADS)

    Osipov, Sergey; Stenchikov, Georgiy

    2017-04-01

    Dust is one of the most abundant aerosols, however, currently only a few regional climate downscalings account for dust. This study focuses on the Middle East and the Red Sea regional climate response to the dust aerosol radiative forcing. The Red Sea is located between North Africa and Arabian Peninsula, which are first and third largest source regions of dust, respectively. MODIS and SEVIRI satellite observations show extremely high dust optical depths in the region, especially over the southern Red Sea during the summer season. The significant north-to-south gradient of the dust optical depth over the Red Sea persists throughout the entire year. Modeled atmospheric radiative forcing at the surface, top of the atmosphere and absorption in the atmospheric column indicate that dust significantly perturbs radiative balance. Top of the atmosphere modeled forcing is validated against independently derived GERB satellite product. Due to strong radiative forcing at the sea surface (daily mean forcing during summer reaches -32 Wm-2 and 10 Wm-2 in SW and LW, respectively), using uncoupled ocean model with prescribed atmospheric boundary conditions would result in an unrealistic ocean response. Therefore, here we employ the Regional Ocean Modeling system (ROMS) fully coupled with the Weather Research and Forecasting (WRF) model to study the impact of dust on the Red Sea thermal regime and circulation. The WRF was modified to interactively account for the radiative effect of dust. Daily spectral optical properties of dust are computed using Mie, T-matrix, and geometric optics approaches, and are based on the SEVIRI climatological optical depth. The WRF model parent and nested domains are configured over the Middle East and North Africa (MENA) region and over the Red Sea with 30 and 10 km resolution, respectively. The ROMS model over the Red Sea has 2 km grid spacing. The simulations show that, in the equilibrium response, dust causes 0.3-0.5 K cooling of the Red Sea surface waters, and weakens the overturning circulation in the Red Sea. The salinity distribution, freshwater, and heat budgets are significantly perturbed. This indicates that dust plays an important role in the formation of the Red Sea energy balance and circulation regimes, and has to be thoroughly accounted for in future modeling studies.

  3. Pair-collision between heterogeneous capsules in simple shear: Effect of membrane stiffness and membrane constitutive laws

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Sarkar, Kausik

    2012-11-01

    Deformability of red blood cells affects hydrodynamic properties of blood and thereby physiological functions in many cardiovascular diseases, e.g. in sickle cell anemia and malaria, the cell membrane becomes stiff affecting their circulation through microvessels. Here, we numerically simulate the hydrodynamic interaction between a pair of cell-like capsules in a free shear flow, using a front-tracking method. The membrane is modeled using various constitutive equations. By varying the stiffness of one capsule (C2) and keeping all other parameters constant, we find a significant effect on the deformation and trajectory of the other (C1) . Increasing the stiffness of C2 surprisingly increases the peak deformation of C1 while decreasing the cross-stream shift in its trajectory However, the relative trajectory between capsules remains the same. Effects of constitutive laws and difference in behaviors between capsules and drops are investigated explaining underlying physics. partial support from NSF.

  4. Further characterization of the circulating cell in chronic lymphocytic leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schutz, E.F.; Davis, S.; Rubin, A.D.

    Peripheral lymphocytes from normal individuals and from patients with chronic lymphocytic leukemia (CLL) were cultured in vitro for 1-7 days. The growth response to phytohemagglutinin (PHA) was quantitated by the incorporation of tritiated uridine into RNA nucleotide during a 2-hr pulse with the radioisotope. While the maximum response in PHA-stimulated normal cultures appeared at 2-3 days, CLL cultures required 5-7 days to develop their maximal response, which was 50 percent-60 percent of the normal magnitude. Dilution of the number of normally reactive lymphocytes by culturing them with totally unreactive, mitomycin-treated cells produced a normal 72-hr maximal response, no matter whatmore » proportion of unreactive cells was included in the PHA-stimulated cultures. In addition, the response of peripheral lymphocytes from patients with myeloblastic leukemia, where large numbers of unreactive myeloblasts diluted the normal small lymphocytes, a depressed reaction occurred at the anticipated 2-3 days. Nylon fiber-adherent lymphocytes consisting of 85 percent immunoglobulin (Ig)-bearing cells responded minimally to PHA, but showed no evidence of a delay. When isolated from CLL patients, both fiber-adherent cells (ig-bearing) as well as non-fiber-adherent (sheep erythrocyte-rosetting) cells responded to PHA in a delayed fashion. Similarly, a case of CLL, in which 93.5 percent of the circulating lymphocytes bore sheep red blood cell receptors, showed its peak response to PHA at 7 days. Therefore, using surface marker criteria considered characteristic of normal T cells and B cells, the delayed response to PHA on the part of CLL lymphocytes was independent of thymic or nonthymic origin.« less

  5. Detection of FAM172A expressed in circulating tumor cells is a feasible method to predict high-risk subgroups of colorectal cancer.

    PubMed

    Cui, Chun-Hui; Chen, Ri-Hong; Zhai, Duan-Yang; Xie, Lang; Qi, Jia; Yu, Jin-Long

    2017-06-01

    Previous studies used to enumerate circulating tumor cells to predict prognosis and therapeutic effect of colorectal cancer. However, increasing studies have shown that only circulating tumor cells enumeration was not enough to reflect the heterogeneous condition of tumor. In this study, we classified different metastatic-potential circulating tumor cells from colorectal cancer patients and measured FAM172A expression in circulating tumor cells to improve accuracy of clinical diagnosis and treatment of colorectal cancer. Blood samples were collected from 45 primary colorectal cancer patients. Circulating tumor cells were enriched by blood filtration using isolation by size of epithelial tumor cells, and in situ hybridization with RNA method was used to identify and discriminate subgroups of circulating tumor cells. Afterwards, FAM172A expression in individual circulating tumor cells was measured. Three circulating tumor cell subgroups (epithelial/biophenotypic/mesenchymal circulating tumor cells) were identified using epithelial-mesenchymal transition markers. In our research, mesenchymal circulating tumor cells significantly increased along with tumor progression, development of distant metastasis, and vascular invasion. Furthermore, FAM172A expression rate in mesenchymal circulating tumor cells was significantly higher than that in epithelial circulating tumor cells, which suggested that FAM172A may correlate with malignant degree of tumor. This hypothesis was further verified by FAM172A expression in mesenchymal circulating tumor cells, which was strictly related to tumor aggressiveness factors. Mesenchymal circulating tumor cells and FAM172A detection may predict highrisk stage II colorectal cancer. Our research proved that circulating tumor cells were feasible surrogate samples to detect gene expression and could serve as a predictive biomarker for tumor evaluation.

  6. Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Toye, Habib; Zhan, Peng; Gopalakrishnan, Ganesh; Kartadikaria, Aditya R.; Huang, Huang; Knio, Omar; Hoteit, Ibrahim

    2017-07-01

    We present our efforts to build an ensemble data assimilation and forecasting system for the Red Sea. The system consists of the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm) to simulate ocean circulation and of the Data Research Testbed (DART) for ensemble data assimilation. DART has been configured to integrate all members of an ensemble adjustment Kalman filter (EAKF) in parallel, based on which we adapted the ensemble operations in DART to use an invariant ensemble, i.e., an ensemble Optimal Interpolation (EnOI) algorithm. This approach requires only single forward model integration in the forecast step and therefore saves substantial computational cost. To deal with the strong seasonal variability of the Red Sea, the EnOI ensemble is then seasonally selected from a climatology of long-term model outputs. Observations of remote sensing sea surface height (SSH) and sea surface temperature (SST) are assimilated every 3 days. Real-time atmospheric fields from the National Center for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasts (ECMWF) are used as forcing in different assimilation experiments. We investigate the behaviors of the EAKF and (seasonal-) EnOI and compare their performances for assimilating and forecasting the circulation of the Red Sea. We further assess the sensitivity of the assimilation system to various filtering parameters (ensemble size, inflation) and atmospheric forcing.

  7. Effects of a Taser: Conducted Energy Weapon on the Circulating Red-Blood-Cell Population and Other Factors in Sus scrofa

    DTIC Science & Technology

    2013-03-30

    canvas sling. Heart rate, respiration rate, and oxygen saturation were monitored continuously using a pulse oximeter (VetOx G2 Digital, Heska Corporation...Pre Post 30 min Mean SD Median Range Mean SD Median Range Mean SD Median Range Oxygen saturation % 93.7 2.1 93.7 91–97 63.2* 17.4 66.5 36.7–91.3 92.2...as actin in human RBC membranes [29] and human neutrophils [34]. Discussion General findings Changes in heart rate, venous-blood oxygen saturation

  8. Phosphatidylserine exposure on stored red blood cells as a parameter for donor-dependent variation in product quality.

    PubMed

    Dinkla, Sip; Peppelman, Malou; Van Der Raadt, Jori; Atsma, Femke; Novotný, Vera M J; Van Kraaij, Marian G J; Joosten, Irma; Bosman, Giel J C G M

    2014-04-01

    Exposure of phosphatidylserine on the outside of red blood cells contributes to recognition and removal of old and damaged cells. The fraction of phosphatidylserine-exposing red blood cells varies between donors, and increases in red blood cell concentrates during storage. The susceptibility of red blood cells to stress-induced phosphatidylserine exposure increases with storage. Phosphatidylserine exposure may, therefore, constitute a link between donor variation and the quality of red blood cell concentrates. In order to examine the relationship between storage parameters and donor characteristics, the percentage of phosphatidylserine-exposing red blood cells was measured in red blood cell concentrates during storage and in fresh red blood cells from blood bank donors. The percentage of phosphatidylserine-exposing red blood cells was compared with red blood cell susceptibility to osmotic stress-induced phosphatidylserine exposure in vitro, with the regular red blood cell concentrate quality parameters, and with the donor characteristics age, body mass index, haemoglobin level, gender and blood group. Phosphatidylserine exposure varies between donors, both on red blood cells freshly isolated from the blood, and on red blood cells in red blood cell concentrates. Phosphatidylserine exposure increases with storage time, and is correlated with stress-induced phosphatidylserine exposure. Increased phosphatidylserine exposure during storage was found to be associated with haemolysis and vesicle concentration in red blood cell concentrates. The percentage of phosphatidylserine-exposing red blood cells showed a positive correlation with the plasma haemoglobin concentration of the donor. The fraction of phosphatidylserine-exposing red blood cells is a parameter of red blood cell integrity in red blood cell concentrates and may be an indicator of red blood cell survival after transfusion. Measurement of phosphatidylserine exposure may be useful in the selection of donors and red blood cell concentrates for specific groups of patients.

  9. Optical tweezers for measuring the interaction of the two single red blood cells in flow condition

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Muravyov, Alexei; Semenov, Alexei; Wagner, Christian; Priezzhev, Alexander

    2017-03-01

    Aggregation of red blood cells (RBCs) is an intrinsic property of blood, which has direct effect on the blood viscosity and therefore affects overall the blood circulation throughout the body. It is attracting interest for the research in both fundamental science and clinical application. Despite of the intensive research, the aggregation mechanism is remaining not fully clear. Recent advances in methods allowed measuring the interaction between single RBCs in a well-defined configuration leading the better understanding of the mechanism of the process. However the most of the studies were made on the static cells. Thus, the measurements in flow mimicking conditions are missing. In this work, we aim to study the interaction of two RBCs in the flow conditions. We demonstrate the characterization of the cells interaction strength (or flow tolerance) by measuring the flow velocity to be applied to separate two aggregated cells trapped by double channel optical tweezers in a desired configuration. The age-separated cells were used for this study. The obtained values for the minimum flow velocities needed to separate the two cells were found to be 78.9 +/- 6.1 μm/s and 110 +/- 13 μm/s for old and young cells respectively. The data obtained is in agreement with the observations reported by other authors. The significance of our results is in ability for obtaining a comprehensible and absolute physical value characterizing the cells interaction in flow conditions (not like the Aggregation Index measured in whole blood suspensions by other techniques, which is some abstract parameter)

  10. Diagnostic Applications and Methods to Isolate Circulating Tumor Cells (CTCs) from Blood

    NASA Astrophysics Data System (ADS)

    Tang, Cha-Mei

    2013-03-01

    Each year a million new cancer cases are diagnosed in the United States. Ninety percent of the deaths will be the result of metastasis, not from the primary tumor. Tissue biopsy is a universally accepted tool for cancer diagnosis and determination of treatment. The procedure varies, but is invasive, costly, and can be fatal, and for these reasons is seldom repeated after initial diagnosis. Monitoring of treatment response and for possible relapse is usually done by CT or MRI scan, both of which are expensive and require the tumor to change size perceptibly. Further, cancer can mutate or develop resistance to therapeutics and require modification of the treatment regimen. The initial tissue biopsy often cannot reflect the disease as it progresses, requiring new biopsy samples to determine a change of treatment. All carcinomas, about 80% of all cancer, shed tumor cells into the circulation, most often at the later stages when treatment is more critical. These circulating tumor cells (CTCs) are the cause of metastasis, and can be isolated from patient blood to serve as ``liquid biopsy''. These CTCs contain a valuable trove of information that help both patient and clinician understand disease status. In addition to counting the number of CTCs (known to be a prognostic indicator of survival), CTCs can provide biomarker information such as protein expressions and gene mutations, amplifications, and translocations. This information can be used to determine treatment. During treatment, the number of intact and apoptotic CTCs can be measured on a repeated basis to measure the patient's response to treatment and disease progression. Following treatment, liquid biopsy can be repeated at regular intervals to watch for relapse. Methods to isolate CTCs can be grouped into three categories: i) immunocapture based on surface markers of CTCs, ii) size exclusion based on CTC size, typically larger than blood cells, and iii) negative selection utilizing red blood cell lysis, white blood cell depletion or FICOLL. Various implementations of the CTC isolation methods will be presented.

  11. Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule.

    PubMed

    Witek, Małgorzata A; Aufforth, Rachel D; Wang, Hong; Kamande, Joyce W; Jackson, Joshua M; Pullagurla, Swathi R; Hupert, Mateusz L; Usary, Jerry; Wysham, Weiya Z; Hilliard, Dawud; Montgomery, Stephanie; Bae-Jump, Victoria; Carey, Lisa A; Gehrig, Paola A; Milowsky, Matthew I; Perou, Charles M; Soper, John T; Whang, Young E; Yeh, Jen Jen; Martin, George; Soper, Steven A

    2017-01-01

    Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges.

  12. Flow interactions with cells and tissues: cardiovascular flows and fluid-structure interactions. Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28-30, 2008, Pasadena, California.

    PubMed

    Friedman, Morton H; Krams, Rob; Chandran, Krishnan B

    2010-03-01

    Interactions between flow and biological cells and tissues are intrinsic to the circulatory, respiratory, digestive and genitourinary systems. In the circulatory system, an understanding of the complex interaction between the arterial wall (a living multi-component organ with anisotropic, nonlinear material properties) and blood (a shear-thinning fluid with 45% by volume consisting of red blood cells, platelets, and white blood cells) is vital to our understanding of the physiology of the human circulation and the etiology and development of arterial diseases, and to the design and development of prosthetic implants and tissue-engineered substitutes. Similarly, an understanding of the complex dynamics of flow past native human heart valves and the effect of that flow on the valvular tissue is necessary to elucidate the etiology of valvular diseases and in the design and development of valve replacements. In this paper we address the influence of biomechanical factors on the arterial circulation. The first part presents our current understanding of the impact of blood flow on the arterial wall at the cellular level and the relationship between flow-induced stresses and the etiology of atherosclerosis. The second part describes recent advances in the application of fluid-structure interaction analysis to arterial flows and the dynamics of heart valves.

  13. Red blood cells serve as intravascular carriers of myeloperoxidase.

    PubMed

    Adam, Matti; Gajdova, Silvie; Kolarova, Hana; Kubala, Lukas; Lau, Denise; Geisler, Anne; Ravekes, Thorben; Rudolph, Volker; Tsao, Philip S; Blankenberg, Stefan; Baldus, Stephan; Klinke, Anna

    2014-09-01

    Myeloperoxidase (MPO) is a heme enzyme abundantly expressed in polymorphonuclear neutrophils. MPO is enzymatically capable of catalyzing the generation of reactive oxygen species (ROS) and the consumption of nitric oxide (NO). Thus MPO has both potent microbicidal and, upon binding to the vessel wall, pro-inflammatory properties. Interestingly, MPO - a highly cationic protein - has been shown to bind to both endothelial cells and leukocyte membranes. Given the anionic surface charge of red blood cells, we investigated binding of MPO to erythrocytes. Red blood cells (RBCs) derived from patients with elevated MPO plasma levels showed significantly higher amounts of MPO by flow cytometry and ELISA than healthy controls. Heparin-induced MPO-release from patient-derived RBCs was significantly increased compared to controls. Ex vivo experiments revealed dose and time dependency for MPO-RBC binding, and immunofluorescence staining as well as confocal microscopy localized MPO-RBC interaction to the erythrocyte plasma membrane. NO-consumption by RBC-membrane fragments (erythrocyte "ghosts") increased with incrementally greater concentrations of MPO during incubation, indicating preserved catalytic MPO activity. In vivo infusion of MPO-loaded RBCs into C57BL/6J mice increased local MPO tissue concentrations in liver, spleen, lung, and heart tissue as well as within the cardiac vasculature. Further, NO-dependent relaxation of aortic rings was altered by RBC bound-MPO and systemic vascular resistance significantly increased after infusion of MPO-loaded RBCs into mice. In summary, we find that MPO binds to RBC membranes in vitro and in vivo, is transported by RBCs to remote sites in mice, and affects endothelial function as well as systemic vascular resistance. RBCs may avidly bind circulating MPO, and act as carriers of this leukocyte-derived enzyme. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Circulating levels of prolactin and progesterone in a wild population of red kangaroos (Macropus rufus) Marsupialia: Macropodidae

    USGS Publications Warehouse

    Muths, E.; Hinds, L. A.

    1996-01-01

    Circulating progesterone and prolactin levels were measured in shot and live-caught wild red kangaroos using radioimmunoassays validated for the red kangaroo. The objective of the study was to correlate hormone profiles with reproductive status and determine if red kangaroos follow the general pattern elucidated for other macropodids. During Phase 2a lactation (<70 days) plasma progesterone concentrations were <189 pg/ml (n= 41). This value increased to >600 pg/ml (n= 32) during the transition to Phase 3 lactation (181 to 235 days) when the quiescent corpus luteum and embryo were reactivated. Progesterone concentrations then decreased to <300 pg/ml (n= 29) during dual lactation when females were suckling a neonate and a young at foot. Concentrations of prolactin during Phase 2a were <6 ng/ml (n= 17). Coincident with the period of reactivation of the diapausing blastocyst (181 to 235 days), plasma prolactin concentrations increased to 15 ng/ml (n= 32), then decreased and remained low through the subsequent stage of dual lactation. These results indicate that progesterone and prolactin profiles in wild red kangaroos follow patterns found previously in other macropodid species, the tammar and Bennett's wallabies.

  15. Flickering analysis of erythrocyte mechanical properties: dependence on oxygenation level, cell shape, and hydration level.

    PubMed

    Yoon, Young-Zoon; Hong, Ha; Brown, Aidan; Kim, Dong Chung; Kang, Dae Joon; Lew, Virgilio L; Cicuta, Pietro

    2009-09-16

    Erythrocytes (red blood cells) play an essential role in the respiratory functions of vertebrates, carrying oxygen from lungs to tissues and CO(2) from tissues to lungs. They are mechanically very soft, enabling circulation through small capillaries. The small thermally induced displacements of the membrane provide an important tool in the investigation of the mechanics of the cell membrane. However, despite numerous studies, uncertainties in the interpretation of the data, and in the values derived for the main parameters of cell mechanics, have rendered past conclusions from the fluctuation approach somewhat controversial. Here we revisit the experimental method and theoretical analysis of fluctuations, to adapt them to the case of cell contour fluctuations, which are readily observable experimentally. This enables direct measurements of membrane tension, of bending modulus, and of the viscosity of the cell cytoplasm. Of the various factors that influence the mechanical properties of the cell, we focus here on: 1), the level of oxygenation, as monitored by Raman spectrometry; 2), cell shape; and 3), the concentration of hemoglobin. The results show that, contrary to previous reports, there is no significant difference in cell tension and bending modulus between oxygenated and deoxygenated states, in line with the softness requirement for optimal circulatory flow in both states. On the other hand, tension and bending moduli of discocyte- and spherocyte-shaped cells differ markedly, in both the oxygenated and deoxygenated states. The tension in spherocytes is much higher, consistent with recent theoretical models that describe the transitions between red blood cell shapes as a function of membrane tension. Cell cytoplasmic viscosity is strongly influenced by the hydration state. The implications of these results to circulatory flow dynamics in physiological and pathological conditions are discussed.

  16. Formation and spreading of Red Sea Outflow Water in the Red Sea

    NASA Astrophysics Data System (ADS)

    Zhai, Ping; Bower, Amy S.; Smethie, William M.; Pratt, Larry J.

    2015-09-01

    Hydrographic data, chlorofluorocarbon-12 (CFC-12) and sulfur hexafluoride (SF6) measurements collected in March 2010 and September-October 2011 in the Red Sea, as well as an idealized numerical experiment are used to study the formation and spreading of Red Sea Outflow Water (RSOW) in the Red Sea. Analysis of inert tracers, potential vorticity distributions, and model results confirm that RSOW is formed through mixed-layer deepening caused by sea surface buoyancy loss in winter in the northern Red Sea and reveal more details on RSOW spreading rates, pathways, and vertical structure. The southward spreading of RSOW after its formation is identified as a layer with minimum potential vorticity and maximum CFC-12 and SF6. Ventilation ages of seawater within the RSOW layer, calculated from the partial pressure of SF6 (pSF6), range from 2 years in the northern Red Sea to 15 years at 17°N. The distribution of the tracer ages is in agreement with the model circulation field which shows a rapid transport of RSOW from its formation region to the southern Red Sea where there are longer circulation pathways and hence longer residence time due to basin wide eddies. The mean residence time of RSOW within the Red Sea estimated from the pSF6 age is 4.7 years. This time scale is very close to the mean transit time (4.8 years) for particles from the RSOW formation region to reach the exit at the Strait of Bab el Mandeb in the numerical experiment.

  17. THE RELATIVE REACTION WITHIN LIVING MAMMALIAN TISSUES : I. GENERAL FEATURES OF VITAL STAINING WITH LITMUS.

    PubMed

    Rous, P

    1925-02-28

    The present paper is the first of a series of reports on the relative reaction of living tissues as determined by vital staining with indicators. It is possible to bring about a localized and a general coloration of living rats and mice with litmus. The animals remain in good health and the coloration of some of the tissues persists for months. Much of the dye is stored in cell granules, especially in those of the reticulo-endothelial elements, but a diffuse staining of certain tissues occurs, notably of bone, epidermis, cartilage, and connective tissue everywhere. In the intensity and localization of the bony coloration litmus has resemblances to madder. Diffuse staining with it renders blue most, if not all, of the tissues affected, while a granular staining causes others to become notably pink, owing to the fact that the indicator, though introduced into the organism in the blue form and circulating as such in the body fluids, is ordinarily red when stored in cells. The polymorphonuclear elements and macrophages of a peritoneal exudate, may become so laden with material colored red by litmus that the blue color of the fluid constituent is masked and the exudate appears a deep, turbid red. The phenomenon is but one manifestation of a notable acidity within cell granules throughout the organism. Like many another in the stained animals it would appear to be of physiological import. Some of the questions suggested by the work will be dealt with in the paper immediately following.

  18. Short-Chain PEG Mixed-Monolayer Protected Gold Clusters Increase Clearance and Red Blood Cell Counts

    PubMed Central

    Simpson, Carrie A.; Agrawal, Amanda C.; Balinski, Andrzej; Harkness, Kellen M.; Cliffel, David E.

    2011-01-01

    Monolayer-protected gold nanoparticles have great potential as novel building blocks for the design of new drugs and therapeutics based on the easy ability to multifunctionalize them for biological targeting and drug activity. In order to create nanoparticles that are biocompatible in vivo, poly-ethylene glycol functional groups have been added to many previous multifunctionalized particles to eliminate non-specific binding. Recently, monolayer-protected gold nanoparticles with mercaptoglycine functionalities were shown to elicit deleterious effects on the kidney in vivo that were eliminated by incorporating a long-chain, mercapto-undecyl-tetraethylene glycol, at very high loadings into a mixed monolayer. These long-chain PEGs induced an immune response to the particle presumably generating an anti-PEG antibody as seen in other long-chain PEG-ylated nanoparticles in vivo. In the present work, we explore the in vivo effects of high and low percent ratios of a shorter chain, mercapto-tetraethylene glycol, within the monolayer using simple place-exchange reactions. The shorter chain PEG MPCs were expected to have better water solubility due to elimination of the alkyl chain, no toxicity, and long-term circulation in vivo. Shorter chain lengths at lower concentrations should not trigger the immune system into creating an anti-PEG antibody. We found that a 10% molar exchange of this short chain PEG within the monolayer met three of the desired goals: high water solubility, no toxicity, and no immune response as measured by white blood cell counts, but none of the short chain PEG mixed monolayer compositions enabled the nanoparticles to have a long circulation time within the blood as compared to mercapto-undecyl-ethylene glycol, which had a residence time of 4 weeks. We also compared the effects of a hydroxyl versus a carboxylic acid terminal functional group on the end of the PEG thiol on both clearance and immune response. The results indicate that short-chain length PEGs, regardless of termini, increase clearance rates compared to the previous long-chain PEG studies while carboxylated-termini increase red blood cell counts at high loadings. Given these findings, short-chain, alcohol-terminated PEG, exchanged at 10% was identified as a potential nanoparticle for further in vivo applications requiring short circulation lifetimes with desired features of no toxicity, no immune response, and high water solubility. PMID:21473648

  19. Does the extracorporeal circulation worsen anemia in hemodialysis patients? Investigation with advanced microscopes of red blood cells drawn at the beginning and end of dialysis.

    PubMed

    Stamopoulos, Dimosthenis; Bakirtzi, Nerantzoula; Manios, Efthymios; Grapsa, Eirini

    2013-01-01

    In hemodialysis (HD) patients, anemia relates to three main factors: insufficient production of erythropoietin; impaired management of iron; and decreased lifespan of red blood cells (RBCs). The third factor can relate to structural deterioration of RBCs due to extrinsic (extracorporeal circuit; biochemical activation and/or mechanical stress during dialysis) and intrinsic (uremic milieu; biochemical interference of the RBC membrane constituents with toxins) mechanisms. Herein, we evaluate information accessed with advanced imaging techniques at the cellular level. Atomic force and scanning electron microscopes were employed to survey intact RBCs (iRBCs) of seven HD patients in comparison to seven healthy donors. The extrinsic factor was investigated by contrasting pre- and post-HD samples. The intrinsic environment was investigated by comparing the microscopy data with the clinical ones. The iRBC membranes of the enrolled HD patients were overpopulated with orifice-like (high incidence; typical size within 100-1,000 nm) and crevice-like (low incidence; typical size within 500-4,000 nm) defects that exhibited a statistically significant (P < 0.05) relative increase (+55% and +350%, respectively) in respect to healthy donors. The relative variation of the orifice and crevice indices (mean population of orifices and crevices per top membrane surface) between pre- and post-HD was not statistically significant (-3.3% and +4.5%, respectively). The orifice index correlates with the concentrations of urea, calcium, and phosphorus, but not, however, with that of creatinine. Extracorporeal circulation is not detrimental to the structural integrity of RBC membranes. Uremic milieu is a candidate cause of RBC membrane deterioration, which possibly worsens anemia.

  20. Accelerated removal of antibody-coated red blood cells from the circulation is accurately tracked by a biotin label

    PubMed Central

    Mock, Donald M.; Lankford, Gary L.; Matthews, Nell I.; Burmeister, Leon F.; Kahn, Daniel; Widness, John A.; Strauss, Ronald G.

    2013-01-01

    BACKGROUND Safe, accurate methods to reliably measure circulating red blood cell (RBC) kinetics are critical tools to investigate pathophysiology and therapy of anemia, including hemolytic anemias. This study documents the ability of a method using biotin-labeled RBCs (BioRBCs) to measure RBC survival (RCS) shortened by coating with a highly purified monomeric immunoglobulin G antibody to D antigen. STUDY DESIGN AND METHODS Autologous RBCs from 10 healthy D+ subjects were labeled with either biotin or 51Cr (reference method), coated (opsonized) either lightly (n = 4) or heavily (n = 6) with anti-D, and transfused. RCS was determined for BioRBCs and for 51Cr independently as assessed by three variables: 1) posttransfusion recovery at 24 hours (PTR24) for short-term RCS; 2) time to 50% decrease of the label (T50), and 3) mean potential life span (MPL) for long-term RCS. RESULTS BioRBCs tracked both normal and shortened RCS accurately relative to 51Cr. For lightly coated RBCs, mean PTR24, T50, and MPL results were not different between BioRBCs and 51Cr. For heavily coated RBCs, both short-term and long-term RCS were shortened by approximately 17 and 50%, respectively. Mean PTR24 by BioRBCs (84 ± 18%) was not different from 51Cr (81 ± 10%); mean T50 by BioRBCs (23 ± 17 days) was not different from 51Cr (22 ± 18 days). CONCLUSION RCS shortened by coating with anti-D can be accurately measured by BioRBCs. We speculate that BioRBCs will be useful for studying RCS in conditions involving accelerated removal of RBCs including allo- and autoimmune hemolytic anemias. PMID:22023312

  1. Does the extracorporeal circulation worsen anemia in hemodialysis patients? Investigation with advanced microscopes of red blood cells drawn at the beginning and end of dialysis

    PubMed Central

    Stamopoulos, Dimosthenis; Bakirtzi, Nerantzoula; Manios, Efthymios; Grapsa, Eirini

    2013-01-01

    Background In hemodialysis (HD) patients, anemia relates to three main factors: insufficient production of erythropoietin; impaired management of iron; and decreased lifespan of red blood cells (RBCs). The third factor can relate to structural deterioration of RBCs due to extrinsic (extracorporeal circuit; biochemical activation and/or mechanical stress during dialysis) and intrinsic (uremic milieu; biochemical interference of the RBC membrane constituents with toxins) mechanisms. Herein, we evaluate information accessed with advanced imaging techniques at the cellular level. Methods Atomic force and scanning electron microscopes were employed to survey intact RBCs (iRBCs) of seven HD patients in comparison to seven healthy donors. The extrinsic factor was investigated by contrasting pre- and post-HD samples. The intrinsic environment was investigated by comparing the microscopy data with the clinical ones. Results The iRBC membranes of the enrolled HD patients were overpopulated with orifice-like (high incidence; typical size within 100–1,000 nm) and crevice-like (low incidence; typical size within 500–4,000 nm) defects that exhibited a statistically significant (P < 0.05) relative increase (+55% and +350%, respectively) in respect to healthy donors. The relative variation of the orifice and crevice indices (mean population of orifices and crevices per top membrane surface) between pre- and post-HD was not statistically significant (−3.3% and +4.5%, respectively). The orifice index correlates with the concentrations of urea, calcium, and phosphorus, but not, however, with that of creatinine. Conclusion Extracorporeal circulation is not detrimental to the structural integrity of RBC membranes. Uremic milieu is a candidate cause of RBC membrane deterioration, which possibly worsens anemia. PMID:24143093

  2. A genome-wide association study of red-blood cell fatty acids and ratios incorporating dietary covariates: Framingham Heart Study Offspring Cohort.

    PubMed

    Kalsbeek, Anya; Veenstra, Jenna; Westra, Jason; Disselkoen, Craig; Koch, Kristin; McKenzie, Katelyn A; O'Bott, Jacob; Vander Woude, Jason; Fischer, Karen; Shearer, Greg C; Harris, William S; Tintle, Nathan L

    2018-01-01

    Recent analyses have suggested a strong heritable component to circulating fatty acid (FA) levels; however, only a limited number of genes have been identified which associate with FA levels. In order to expand upon a previous genome wide association study done on participants in the Framingham Heart Study Offspring Cohort and FA levels, we used data from 2,400 of these individuals for whom red blood cell FA profiles, dietary information and genotypes are available, and then conducted a genome-wide evaluation of potential genetic variants associated with 22 FAs and 15 FA ratios, after adjusting for relevant dietary covariates. Our analysis found nine previously identified loci associated with FA levels (FADS, ELOVL2, PCOLCE2, LPCAT3, AGPAT4, NTAN1/PDXDC1, PKD2L1, HBS1L/MYB and RAB3GAP1/MCM6), while identifying four novel loci. The latter include an association between variants in CALN1 (Chromosome 7) and eicosapentaenoic acid (EPA), DHRS4L2 (Chromosome 14) and a FA ratio measuring delta-9-desaturase activity, as well as two loci associated with less well understood proteins. Thus, the inclusion of dietary covariates had a modest impact, helping to uncover four additional loci. While genome-wide association studies continue to uncover additional genes associated with circulating FA levels, much of the heritable risk is yet to be explained, suggesting the potential role of rare genetic variation, epistasis and gene-environment interactions on FA levels as well. Further studies are needed to continue to understand the complex genetic picture of FA metabolism and synthesis.

  3. A genome-wide association study of red-blood cell fatty acids and ratios incorporating dietary covariates: Framingham Heart Study Offspring Cohort

    PubMed Central

    Veenstra, Jenna; Westra, Jason; Disselkoen, Craig; Koch, Kristin; McKenzie, Katelyn A.; O’Bott, Jacob; Vander Woude, Jason; Fischer, Karen; Shearer, Greg C.; Harris, William S.; Tintle, Nathan L.

    2018-01-01

    Recent analyses have suggested a strong heritable component to circulating fatty acid (FA) levels; however, only a limited number of genes have been identified which associate with FA levels. In order to expand upon a previous genome wide association study done on participants in the Framingham Heart Study Offspring Cohort and FA levels, we used data from 2,400 of these individuals for whom red blood cell FA profiles, dietary information and genotypes are available, and then conducted a genome-wide evaluation of potential genetic variants associated with 22 FAs and 15 FA ratios, after adjusting for relevant dietary covariates. Our analysis found nine previously identified loci associated with FA levels (FADS, ELOVL2, PCOLCE2, LPCAT3, AGPAT4, NTAN1/PDXDC1, PKD2L1, HBS1L/MYB and RAB3GAP1/MCM6), while identifying four novel loci. The latter include an association between variants in CALN1 (Chromosome 7) and eicosapentaenoic acid (EPA), DHRS4L2 (Chromosome 14) and a FA ratio measuring delta-9-desaturase activity, as well as two loci associated with less well understood proteins. Thus, the inclusion of dietary covariates had a modest impact, helping to uncover four additional loci. While genome-wide association studies continue to uncover additional genes associated with circulating FA levels, much of the heritable risk is yet to be explained, suggesting the potential role of rare genetic variation, epistasis and gene-environment interactions on FA levels as well. Further studies are needed to continue to understand the complex genetic picture of FA metabolism and synthesis. PMID:29652918

  4. Mobilization Characteristics and Strategies to Improve Hematopoietic Progenitor Cell Mobilization and Collection in Patients with Chronic Granulomatous Disease and Severe Combined Immunodeficiency

    PubMed Central

    Panch, Sandhya R.; Yau, Yu Ying; Kang, Elizabeth M.; De Ravin, Suk See; Malech, Harry L.; Leitman, Susan F.

    2014-01-01

    Background G-CSF mobilized autologous hematopoietic progenitor cells (HPC) may be collected by apheresis of patients with chronic granulomatous disease (CGD) and severe combined immunodeficiency (SCID) for use in gene therapy trials. CD34+ cell mobilization has not been well characterized in such patients. Study Design and Methods We retrospectively evaluated CD34+ cell mobilization and collection in 73 consecutive CGD and SCID patients and in 99 age, weight and G-CSF dose-matched healthy allogeneic controls. Results In subjects aged ≤20 years, day 5 pre-apheresis circulating CD34+ counts were significantly lower in CGD and SCID than in controls; mean peak CD34+ cells 58, 64, and 87/uL, respectively, p=0.01. The SCIDs had lower CD34+ collection efficiency than CGDs and controls; mean efficiency 40%, 63% and 57%, respectively, p=0.003. In subjects >20 years, the CGDs had significantly lower CD34+ cell mobilization than controls; mean peak CD34+ cells 41 and 113/uL, respectively, p<0.0001. In a multivariate analysis, lower sedimentation rate (ESR) at mobilization was significantly correlated with better CD34+ cell mobilization, p=0.007. In SCIDs, CD34 collection efficiency was positively correlated with higher red cell indices (MCV: R2=0.77; MCH: R2=0.94; MCHC: R2=0.7, p<0.007) but not hemoglobin. Conclusions CGD and SCID populations are characterized by significantly less robust CD34+ HPC mobilization than healthy controls. The presence of active inflammation/infection as suggested by an elevated ESR may negatively impact mobilization. Among SCIDs, markedly reduced CD34 collection efficiencies were related to iron deficiency, wherein decreased red cell size and density may impair apheresis cell separation mechanics. PMID:25143186

  5. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Sofianos, Sarantis S.; Johns, William E.

    2002-11-01

    The mechanisms involved in the seasonal exchange between the Red Sea and the Indian Ocean are studied using an Oceanic General Circulation Model (OGCM), namely the Miami Isopycnic Coordinate Ocean Model (MICOM). The model reproduces the basic characteristics of the seasonal circulation observed in the area of the strait of Bab el Mandeb. There is good agreement between model results and available observations on the strength of the exchange and the characteristics of the water masses involved, as well as the seasonal flow pattern. During winter, this flow consists of a typical inverse estuarine circulation, while during summer, the surface flow reverses, there is an intermediate inflow of relatively cold and fresh water, and the hypersaline outflow at the bottom of the strait is significantly reduced. Additional experiments with different atmospheric forcing (seasonal winds, seasonal thermohaline air-sea fluxes, or combinations) were performed in order to assess the role of the atmospheric forcing fields in the exchange flow at Bab el Mandeb. The results of both the wind- and thermohaline-driven experiments exhibit a strong seasonality at the area of the strait, which is in phase with the observations. However, it is the combination of both the seasonal pattern of the wind stress and the seasonal thermohaline forcing that can reproduce the observed seasonal variability at the strait. The importance of the seasonal cycle of the thermohaline forcing on the exchange flow pattern is also emphasized by these results. In the experiment where the thermohaline forcing is represented by its annual mean, the strength of the exchange is reduced almost by half.

  6. Significantly higher number of fetal cells in the maternal circulation of women with pre-eclampsia.

    PubMed

    Jansen, M W; Korver-Hakkennes, K; van Leenen, D; Visser, W; in 't Veld, P A; de Groot, C J; Wladimiroff, J W

    2001-12-01

    Although the pathophysiology of pre-eclampsia is unknown, several studies have indicated that abnormal placentation early in pregnancy might play a key role. It has recently been suggested that this abnormal placentation may result in transfusion of fetal cells (feto-maternal transfusion) in women with pre-eclampsia. In the present study, fetal nucleated red blood cells were isolated from 20 women with pre-eclampsia and 20 controls using a very efficient magnetic activated cell sorting (MACS) protocol. The number of male cells was determined using two-color fluorescence in situ hybridization (FISH) for X and Y chromosomes. Significantly more XY cells could be detected in women with pre-eclampsia (0.61+/-1.2 XY cells/ml blood) compared to women with uncomplicated pregnancies (0.02+/-0.04 XY cells/ml blood) (Mann-Whitney U-test, p<0.001). These results suggest that fetal cell trafficking is enhanced in women with pre-eclampsia, and this finding may contribute to the understanding of the pathophysiology of the disease. Copyright 2001 John Wiley & Sons, Ltd.

  7. Potential roles of cell-derived microparticles in ischemic brain disease.

    PubMed

    Horstman, Lawrence L; Jy, Wenche; Bidot, Carlos J; Nordberg, Mary L; Minagar, Alireza; Alexander, J Steven; Kelley, Roger E; Ahn, Yeon S

    2009-10-01

    The objective of this study is to review the role of cell-derived microparticles in ischemic cerebrovascular diseases. An extensive PubMed search of literature pertaining to this study was performed in April 2009 using specific keyword search terms related to cell-derived microparticles and ischemic stroke. Some references are not cited here as it is not possible to be all inclusive or due to space limitation. Cell-derived microparticles are small membranous vesicles released from the plasma membranes of platelets, leukocytes, red cells and endothelial cells in response to diverse biochemical agents or mechanical stresses. They are the main carriers of circulating tissue factor, the principal initiator of intravascular thrombosis, and are implicated in a variety of thrombotic and inflammatory disorders. This review outlines evidence suggesting that cell-derived microparticles are involved predominantly with microvascular, as opposed to macrovascular, thrombosis. More specifically, cell-derived microparticles may substantially contribute to ischemic brain disease in several settings, as well as to neuroinflammatory conditions. If further work confirms this hypothesis, novel therapeutic strategies for minimizing cell-derived microparticles-mediated ischemia are available or can be developed, as discussed.

  8. Quantifying the abnormal hemodynamics of sickle cell anemia

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Karniadakis, George

    2012-02-01

    Sickle red blood cells (SS-RBC) exhibit heterogeneous morphologies and abnormal hemodynamics in deoxygenated states. A multi-scale model for SS-RBC is developed based on the Dissipative Particle Dynamics (DPD) method. Different cell morphologies (sickle, granular, elongated shapes) typically observed in deoxygenated states are constructed and quantified by the Asphericity and Elliptical shape factors. The hemodynamics of SS-RBC suspensions is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. Moreover, SS-RBCs exhibit abnormal adhesive interactions with both the vessel endothelium cells and the leukocytes. The effect of the abnormal adhesive interactions on the hemodynamics of sickle blood is investigated using the current model. It is found that both the SS-RBC - endothelium and the SS-RBC - leukocytes interactions, can potentially trigger the vicious ``sickling and entrapment'' cycles, resulting in vaso-occlusion phenomena widely observed in micro-circulation experiments.

  9. DiI Perfusion as a Method for Vascular Visualization in Ambystoma mexicanum.

    PubMed

    Saltman, Anna J; Barakat, May; Bryant, Donald M; Brodovskaya, Anastasia; Whited, Jessica L

    2017-06-16

    Perfusion techniques have been used for centuries to visualize the circulation of tissues. Axolotl (Ambystoma mexicanum) is a species of salamander that has emerged as an essential model for regeneration studies. Little is known about how revascularization occurs in the context of regeneration in these animals. Here we report a simple method for visualization of the vasculature in axolotl via perfusion of 1,1'-Dioctadecy-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). DiI is a lipophilic carbocyanine dye that inserts into the plasma membrane of endothelial cells instantaneously. Perfusion is done using a peristaltic pump such that DiI enters the circulation through the aorta. During perfusion, dye flows through the axolotl's blood vessels and incorporates into the lipid bilayer of vascular endothelial cells upon contact. The perfusion procedure takes approximately one hour for an eight-inch axolotl. Immediately after perfusion with DiI, the axolotl can be visualized with a confocal fluorescent microscope. The DiI emits light in the red-orange range when excited with a green fluorescent filter. This DiI perfusion procedure can be used to visualize the vascular structure of axolotls or to demonstrate patterns of revascularization in regenerating tissues.

  10. Growth and tolerance of infants fed formula with a new algal source of docosahexaenoic acid: Double-blind, randomized, controlled trial.

    PubMed

    Yeiser, Michael; Harris, Cheryl L; Kirchoff, Ashlee L; Patterson, Ashley C; Wampler, Jennifer L; Zissman, Edward N; Berseth, Carol Lynn

    2016-12-01

    Docosahexaenoic acid (DHA) in infant formula at concentrations based on worldwide human milk has resulted in circulating red blood cell (RBC) lipids related to visual and cognitive development. In this study, infants received study formula (17mg DHA/100kcal) with a commercially-available (Control: n=140; DHASCO®) or alternative (DHASCO®-B: n=127) DHA single cell oil from 14 to 120 days of age. No significant group differences were detected for growth rates by gender through 120 days of age. Blood fatty acids at 120 days of age were assessed by capillary column gas chromatography in a participant subset (Control: n=34; DHASCO-B: n=27). The 90% confidence interval (91-104%) for the group mean (geometric) total RBC DHA (µg/mL) ratio fell within the pre-specified equivalence limit (80-125%), establishing study formula equivalence with respect to DHA. This study demonstrated infant formula with DHASCO-B was safe, well-tolerated, and associated with normal growth. Furthermore, DHASCO and DHASCO-B represented equivalent sources of DHA as measured by circulating RBC DHA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Obesity suppresses circulating level and function of endothelial progenitor cells and heart function

    PubMed Central

    2012-01-01

    Background and aim This study tested the hypothesis that obesity suppresses circulating number as well as the function of endothelial progenitor cells (EPCs) and left ventricular ejection fraction (LVEF). Methods High fat diet (45 Kcal% fat) was given to 8-week-old C57BL/6 J mice (n = 8) for 20 weeks to induce obesity (group 1). Another age-matched group (n = 8) were fed with control diet for 20 weeks as controls (group 2). The animals were sacrificed at the end of 20 weeks after obesity induction. Results By the end of study period, the heart weight, body weight, abdominal fat weight, serum levels of total cholesterol and fasting blood sugar were remarkably higher in group 1 than in group 2 (all p<0.01). The circulating level of EPCs (C-kit/CD31, Sca-1/KDR, CXCR4/CD34) was significantly lower in group 1 than in group 2 (p<0.03) at 18 h after critical limb ischemia induction. The angiogenesis and migratory ability of bone marrow-derived EPCs was remarkably impaired in group 1 compared to that in group 2 (all p<0.01). The repair ability of aortic endothelium damage by lipopolysaccharide was notably attenuated in group 1 compared with that in group 2 (p<0.01). Collagen deposition (Sirius red staining) and fibrotic area (Masson's Trichrome staining) in LV myocardium were notably increased in group 1 compared with group 2 (p<0.001). LVEF was notably lower, whereas LV end-diastolic and end-systolic dimensions were remarkably higher in group 1 than in group 2 (all p<0.001). Conclusions Obesity diminished circulating EPC level, impaired the recovery of damaged endothelium, suppressed EPC angiogenesis ability and LVEF, and increased LV remodeling. PMID:22747715

  12. Single-cell mRNA profiling reveals transcriptional heterogeneity among pancreatic circulating tumour cells.

    PubMed

    Lapin, Morten; Tjensvoll, Kjersti; Oltedal, Satu; Javle, Milind; Smaaland, Rune; Gilje, Bjørnar; Nordgård, Oddmund

    2017-05-31

    Single-cell mRNA profiling of circulating tumour cells may contribute to a better understanding of the biology of these cells and their role in the metastatic process. In addition, such analyses may reveal new knowledge about the mechanisms underlying chemotherapy resistance and tumour progression in patients with cancer. Single circulating tumour cells were isolated from patients with locally advanced or metastatic pancreatic cancer with immuno-magnetic depletion and immuno-fluorescence microscopy. mRNA expression was analysed with single-cell multiplex RT-qPCR. Hierarchical clustering and principal component analysis were performed to identify expression patterns. Circulating tumour cells were detected in 33 of 56 (59%) examined blood samples. Single-cell mRNA profiling of intact isolated circulating tumour cells revealed both epithelial-like and mesenchymal-like subpopulations, which were distinct from leucocytes. The profiled circulating tumour cells also expressed elevated levels of stem cell markers, and the extracellular matrix protein, SPARC. The expression of SPARC might correspond to an epithelial-mesenchymal transition in pancreatic circulating tumour cells. The analysis of single pancreatic circulating tumour cells identified distinct subpopulations and revealed elevated expression of transcripts relevant to the dissemination of circulating tumour cells to distant organ sites.

  13. High-Efficiency Multiscale Modeling of Cell Deformations in Confined Microenvironments in Microcirculation and Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Lu, Huijie; Peng, Zhangli

    2017-11-01

    Our goal is to develop a high-efficiency multiscale modeling method to predict the stress and deformation of cells during the interactions with their microenvironments in microcirculation and microfluidic devices, including red blood cells (RBCs) and circulating tumor cells (CTCs). There are more than 1 billion people in the world suffering from RBC diseases, e.g. anemia, sickle cell diseases, and malaria. The mechanical properties of RBCs are changed in these diseases due to molecular structure alternations, which is not only important for understanding the disease pathology but also provides an opportunity for diagnostics. On the other hand, the mechanical properties of cancer cells are also altered compared to healthy cells. This can lead to acquired ability to cross the narrow capillary networks and endothelial gaps, which is crucial for metastasis, the leading cause of cancer mortality. Therefore, it is important to predict the deformation and stress of RBCs and CTCs in microcirculations. We are developing a high-efficiency multiscale model of cell-fluid interaction to study these two topics.

  14. Femtosecond laser pulse optimization for multiphoton cytometry and control of fluorescence

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Eric Robert

    This body of work encompasses optimization of near infrared femtosecond laser pulses both for enhancement of flow cytometry as well as adaptive pulse shaping to control fluorescence. A two-photon system for in vivo flow cytometry is demonstrated, which allows noninvasive quantification of circulating cell populations in a single live mouse. We monitor fluorescently-labeled red blood cells for more than two weeks, and are also able to noninvasively measure circulation times of two distinct populations of breast cancer cells simultaneously in a single mouse. We build a custom laser excitation source in the form of an extended cavity mode-locked oscillator, which enables superior detection in whole blood or saline of cell lines expressing fluorescent proteins including the green fluorescent protein (GFP), tdTomato and mPlum. A mathematical model explains unique features of the signals. The ability to distinguish different fluorescent species is central to simultaneous measurement of multiple molecular targets in high throughput applications including the multiphoton flow cytometer. We demonstrate that two dyes which are not distinguishable to one-photon measurements can be differentiated and in fact quantified in mixture via phase-shaped two-photon excitation pulses found by a genetic algorithm. We also selectively enhance or suppress two-photon fluorescence of numerous common dyes with tailored pulse shapes. Using a multiplicative (rather than ratiometric) fitness parameter, we are able to control the fluorescence while maintaining a strong signal. With this method, we control the two-photon fluorescence of the blue fluorescent protein (BFP), which is of particular interest in investigations of protein-protein interactions, and has frustrated previous attempts of control. Implementing an acousto-optic interferometer, we use the same experimental setup to measure two-photon excitation cross-sections of dyes and prove that photon-photon interferences are the predominant mechanism of control. This research establishes the basis for molecularly tailored pulse shaping in multiphoton flow cytometry, which will advance our ability to probe the biology of circulating cells during disease progression and response to therapy.

  15. Simulating the Regional Impact of Dust on the Middle East Climate and the Red Sea

    NASA Astrophysics Data System (ADS)

    Osipov, Sergey; Stenchikov, Georgiy

    2018-02-01

    The Red Sea is located between North Africa and the Arabian Peninsula, the largest sources of dust in the world. Satellite retrievals show very high aerosol optical depth in the region, which increases during the summer season, especially over the southern Red Sea. Previously estimated and validated radiative effect from dust is expected to have a profound thermal and dynamic impact on the Red Sea, but that impact has not yet been studied or evaluated. Due to the strong dust radiative effect at the sea surface, uncoupled ocean modeling approaches with prescribed atmospheric boundary conditions result in an unrealistic ocean response. Therefore, to study the impact of dust on the regional climate of the Middle East and the Red Sea, we employed the Regional Ocean Modeling System fully coupled with the Weather Research and Forecasting model. We modified the atmospheric model to account for the radiative effect of dust. The simulations show that, in the equilibrium response, dust cools the Red Sea, reduces the surface wind speed, and weakens both the exchange at the Bab-el-Mandeb strait and the overturning circulation. The salinity distribution, freshwater, and heat budgets are significantly altered. A validation of the simulations against satellite products indicates that accounting for radiative effect from dust almost completely removes the bias and reduces errors in the top of the atmosphere fluxes and sea surface temperature. Our results suggest that dust plays an important role in the energy balance, thermal, and circulation regimes in the Red Sea.

  16. Constant Hepatitis E Virus (HEV) Circulation in Wild Boar and Red Deer in Spain: An Increasing Concern Source of HEV Zoonotic Transmission.

    PubMed

    Kukielka, D; Rodriguez-Prieto, V; Vicente, J; Sánchez-Vizcaíno, J M

    2016-10-01

    Hepatitis E is a viral zoonosis that affects multiple hosts. The complete dynamics of infection in wildlife are still unknown, but the previous fact facilitates the maintenance and circulation of the virus, posing a risk to human health in the case of meat consumption from susceptible animals. In Spain, it has been shown how domestic pigs, cattle and wildlife (i.e. wild boar and red deer) clearly interact in hunting farms, generating a complex epidemiological situation in terms of interspecies pathogen transmission. Therefore, in this study, we aimed to (i) evaluate the circulation of the virus in geographically close domestic (Iberian pigs) and wild animals (wild boar and deer) living in hunting areas from central Spain over an 8-year period (2003-2010) and (ii) to determine whether HEV could be used as a marker of domestic-wildlife contact. For these purposes, a longitudinal analysis of Iberian pig, wild boar and red deer samples (n = 287) through virological and serological tests was conducted to shed light upon the circulation events of HEV. Regarding HEV RNA detection by real-time RT-PCR, 10.12% samples (95% CI: 5.44-14.8) from wild boar and 16.05% samples (95% CI: 8.06-24.04) from red deer were positive. As for the Iberian pigs, none of the 48 samples was positive for HEV RNA detection. In the serological analysis, 43.75% (95% CI: 29.75-57.75) from Iberian pig, 57.40% (95% CI: 48.10-66.70) from wild boar and 12.85% (95% CI: 5.01-20.69) samples from red deer presented anti-HEV antibodies. Positive samples were distributed among all study years (2003-2010). These results depict the urgent need to improve the inspection and surveillance of these species and their products. In the case of HEV, it is clear that the stable and constant presence of the virus in wildlife and its contact with Iberian pigs pose a risk for human health as they are all destined for human consumption. © 2015 Blackwell Verlag GmbH.

  17. A multiscale SPH particle model of the near-wall dynamics of leukocytes in flow.

    PubMed

    Gholami, Babak; Comerford, Andrew; Ellero, Marco

    2014-01-01

    A novel multiscale Lagrangian particle solver based on SPH is developed with the intended application of leukocyte transport in large arteries. In such arteries, the transport of leukocytes and red blood cells can be divided into two distinct regions: the bulk flow and the near-wall region. In the bulk flow, the transport can be modeled on a continuum basis as the transport of passive scalar concentrations. Whereas in the near-wall region, specific particle tracking of the leukocytes is required and lubrication forces need to be separately taken into account. Because of large separation of spatio-temporal scales involved in the problem, simulations of red blood cells and leukocytes are handled separately. In order to take the exchange of leukocytes between the bulk fluid and the near-wall region into account, solutions are communicated through coupling of conserved quantities at the interface between these regions. Because the particle tracking is limited to those leukocytes lying in the near-wall region only, our approach brings considerable speedup to the simulation of leukocyte circulation in a test geometry of a backward-facing step, which encompasses many flow features observed in vivo. Copyright © 2013 John Wiley & Sons, Ltd.

  18. The potential of a dielectrophoresis activated cell sorter (DACS) as a next generation cell sorter

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Hwang, Bohyun; Kim, Byungkyu

    2016-12-01

    Originally introduced by H. A. Pohl in 1951, dielectrophoretic (DEP) force has been used as a striking tool for biological particle manipulation (or separation) for the last few decades. In particular, dielectrophoresis activated cell sorters (DACSes) have been developed for applications in various biomedical fields. These applications include cell replacement therapy, drug screening and medical diagnostics. Since a DACS does not require a specific bio-marker, it is able to function as a biological particle sorting tool with numerous configurations for various cells [e.g. red blood cells (RBCs), white blood cells (WBCs), circulating tumor cells, leukemia cells, breast cancer cells, bacterial cells, yeast cells and sperm cells]. This article explores current DACS capabilities worldwide, and it also looks at recent developments intended to overcome particular limitations. First, the basic theories are reviewed. Then, representative DACSes based on DEP trapping, traveling wave DEP systems, DEP field-flow fractionation and DEP barriers are introduced, and the strong and weak points of each DACS are discussed. Finally, for the purposes of commercialization, prerequisites regarding throughput, efficiency and recovery rates are discussed in detail through comparisons with commercial cell sorters (e.g. fluorescent activated and magnetic activated cell sorters).

  19. Morphology and Topography of Retinal Pericytes in the Living Mouse Retina Using In Vivo Adaptive Optics Imaging and Ex Vivo Characterization

    PubMed Central

    Schallek, Jesse; Geng, Ying; Nguyen, HoanVu; Williams, David R.

    2013-01-01

    Purpose. To noninvasively image retinal pericytes in the living eye and characterize NG2-positive cell topography and morphology in the adult mouse retina. Methods. Transgenic mice expressing fluorescent pericytes (NG2, DsRed) were imaged using a two-channel, adaptive optics scanning laser ophthalmoscope (AOSLO). One channel imaged vascular perfusion with near infrared light. A second channel simultaneously imaged fluorescent retinal pericytes. Mice were also imaged using wide-field ophthalmoscopy. To confirm in vivo imaging, five eyes were enucleated and imaged in flat mount with conventional fluorescent microscopy. Cell topography was quantified relative to the optic disc. Results. We observed strong DsRed fluorescence from NG2-positive cells. AOSLO revealed fluorescent vascular mural cells enveloping all vessels in the living retina. Cells were stellate on larger venules, and showed banded morphology on arterioles. NG2-positive cells indicative of pericytes were found on the smallest capillaries of the retinal circulation. Wide-field SLO enabled quick assessment of NG2-positive distribution, but provided insufficient resolution for cell counts. Ex vivo microscopy showed relatively even topography of NG2-positive capillary pericytes at eccentricities more than 0.3 mm from the optic disc (515 ± 94 cells/mm2 of retinal area). Conclusions. We provide the first high-resolution images of retinal pericytes in the living animal. Subcellular resolution enabled morphological identification of NG2-positive cells on capillaries showing classic features and topography of retinal pericytes. This report provides foundational basis for future studies that will track and quantify pericyte topography, morphology, and function in the living retina over time, especially in the progression of microvascular disease. PMID:24150762

  20. The application and value of virtual animation in Jinzhai revolutionary site

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Zhou, Xiaocheng

    2017-04-01

    A virtual interactive technology in Jinzhai revolutionary site virtual interactive animation, with “Internet plus Jinzhai revolutionary site virtual animation” spread display, to achieve a variety of ways to carry forward the patriotic education, Jinzhai red culture, but also promote benign circulation of red tourism and economic development of Jinzhai revolutionary site protection investment group.

  1. PROTEIN METABOLISM AND EXCHANGE AS INFLUENCED BY CONSTRICTION OF THE VENA CAVA

    PubMed Central

    McKee, Frank W.; Schloerb, Paul R.; Schilling, John A.; Tishkoff, Garson H.; Whipple, George H.

    1948-01-01

    Constriction of inferior vena cava above the diaphragm is used to produce experimental ascites in the dog. This type of experimental ascites drains the body protein reserves, reduces the level of circulating plasma proteins, and in effect is an internal plasmapheresis. As the ascitic fluid is withdrawn and the proteins measured, we observe a production of ascitic protein (80–90 gm. per week) comparable to that removed by plasmapheresis (bleeding and replacement of red cells in saline). High protein diet tends to decrease the ascites but the protein content of the ascitic fluid may increase. Sodium chloride increases notably the volume of the ascites which accumulates and the total ascitic protein output increases. Sodium-free salt mixtures have a negative influence. High protein diet low in sodium salts gives minimal ascitic accumulation under these conditions. The question of circulation of the ascitic fluid is raised—how rapid is the absorption and the related accumulation? PMID:18858638

  2. Rejuvenation of allogenic red cells: benefits and risks.

    PubMed

    Aujla, H; Woźniak, M; Kumar, T; Murphy, G J

    2018-06-04

    To review preclinical and clinical studies that have evaluated the effects of red cell rejuvenation in vivo and in vitro and to assess the potential risks and benefits from their clinical use. A systematic review and narrative synthesis of the intervention of red cell rejuvenation using a red cell processing solution containing inosine, pyruvate, phosphate and adenine. Outcomes of interest in vitro were changes in red cell characteristics including adenosine triphosphate (ATP), 2,3-diphosphoglycerate (2,3-DPG), deformability and the accumulation of oxidized lipids and other reactive species in the red cell supernatant. Outcomes in vivo were 24-h post-transfusion survival and the effects on oxygen delivery, organ function and inflammation in transfused recipients. The literature search identified 49 studies evaluating rejuvenated red cells. In vitro rejuvenation restored cellular properties including 2,3-DPG and ATP to levels similar to freshly donated red cells. In experimental models, in vivo transfusion of rejuvenated red cells improved oxygen delivery and myocardial, renal and pulmonary function when compared to stored red cells. In humans, in vivo 24-h survival of rejuvenated red cells exceeded 75%. In clinical studies, rejuvenated red cells were found to be safe, with no reported adverse effects. In one adult cardiac surgery trial, transfusion of rejuvenated red cells resulted in improved myocardial performance. Transfusion of rejuvenated red cells reduces organ injury attributable to the red cell storage lesion without adverse effects in experimental studies in vivo. The clinical benefits of this intervention remain uncertain. © 2018 International Society of Blood Transfusion.

  3. pH modulation ameliorates the red blood cell storage lesion in a murine model of transfusion.

    PubMed

    Chang, Alex L; Kim, Young; Seitz, Aaron P; Schuster, Rebecca M; Pritts, Timothy A

    2017-05-15

    Prolonged storage of packed red blood cells (pRBCs) induces a series of harmful biochemical and metabolic changes known as the RBC storage lesion. RBCs are currently stored in an acidic storage solution, but the effect of pH on the RBC storage lesion is unknown. We investigated the effect of modulation of storage pH on the RBC storage lesion and on erythrocyte survival after transfusion. Murine pRBCs were stored in Additive Solution-3 (AS3) under standard conditions (pH, 5.8), acidic AS3 (pH, 4.5), or alkalinized AS3 (pH, 8.5). pRBC units were analyzed at the end of the storage period. Several components of the storage lesion were measured, including cell-free hemoglobin, microparticle production, phosphatidylserine externalization, lactate accumulation, and byproducts of lipid peroxidation. Carboxyfluorescein-labeled erythrocytes were transfused into healthy mice to determine cell survival. Compared with pRBCs stored in standard AS3, those stored in alkaline solution exhibited decreased hemolysis, phosphatidylserine externalization, microparticle production, and lipid peroxidation. Lactate levels were greater after storage in alkaline conditions, suggesting that these pRBCs remained more metabolically viable. Storage in acidic AS3 accelerated erythrocyte deterioration. Compared with standard AS3 storage, circulating half-life of cells was increased by alkaline storage but decreased in acidic conditions. Storage pH significantly affects the quality of stored RBCs and cell survival after transfusion. Current erythrocyte storage solutions may benefit from refinements in pH levels. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Moderate consumption of red wine and human platelet responsiveness.

    PubMed

    Tozzi Ciancarelli, Maria Giuliana; Di Massimo, Caterina; De Amicis, Daniela; Ciancarelli, Irene; Carolei, Antonio

    2011-08-01

    Available studies showed an inverse association between red wine consumption and prevalence of vascular risk factors in coronary hearth disease and stroke. Effects were mainly associated to wine antioxidant and antiaggregant properties. Actually, in vitro studies indicate a favourable effect of wine and/or of its non-alcoholic components in decreasing platelet sensitivity and aggregability. In a 4-week supplementation in 15 healthy male volunteers, we evaluated whether moderate red wine consumption might improve antioxidant defence mechanisms and promote positive modulation of inflammatory cytokines and cell adhesion molecules in relation to platelet responsiveness. We did not find any change of ADP- and collagen-induced platelet aggregation ex vivo, any change of biomarkers of oxidative stress, and any change of plasma lipid profile and haemostatic parameters, with the only exception of decreased fibrinogen levels (P<0.05). We also found an increase of mean platelet volume (P<0.05) without any significant modification of CD40 Ligand and P-selectin levels. Increased expressions of intercellular adhesion molecule-1, soluble E-selectin and interleukin-6 (P<0.05) were also observed. According to our findings increased circulating levels of inflammatory and endothelial cell activation markers may indicate a low-grade systemic inflammation and vascular activation that could be responsible for the lack of inhibition or of decreased platelet responsiveness, possibly because the plasmatic increase of wine antioxidant compounds is insufficient to improve endothelial function and to counteract the influence of ethanol on endothelial activation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and...

  6. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and...

  7. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Red Blood Cells. 640.10 Section 640.10 Food and...

  8. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and...

  9. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining...

  10. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture

    PubMed Central

    Zhu, Wei; Qu, Xin; Zhu, Jie; Ma, Xuanyi; Patel, Sherrina; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Gou, Maling; Xu, Yang; Zhang, Kang; Chen, Shaochen

    2017-01-01

    Living tissues rely heavily on vascular networks to transport nutrients, oxygen and metabolic waste. However, there still remains a need for a simple and efficient approach to engineer vascularized tissues. Here, we created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid bioprinting method – microscale continuous optical bioprinting (μCOB). Multiple cell types mimicking the native vascular cell composition were encapsulated directly into hydrogels with precisely controlled distribution without the need of sacrificial materials or perfusion. With regionally controlled biomaterial properties the endothelial cells formed lumen-like structures spontaneously in vitro. In vivo implantation demonstrated the survival and progressive formation of the endothelial network in the prevascularized tissue. Anastomosis between the bioprinted endothelial network and host circulation was observed with functional blood vessels featuring red blood cells. With the superior bioprinting speed, flexibility and scalability, this new prevascularization approach can be broadly applicable to the engineering and translation of various functional tissues. PMID:28192772

  11. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture.

    PubMed

    Zhu, Wei; Qu, Xin; Zhu, Jie; Ma, Xuanyi; Patel, Sherrina; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Gou, Maling; Xu, Yang; Zhang, Kang; Chen, Shaochen

    2017-04-01

    Living tissues rely heavily on vascular networks to transport nutrients, oxygen and metabolic waste. However, there still remains a need for a simple and efficient approach to engineer vascularized tissues. Here, we created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid bioprinting method - microscale continuous optical bioprinting (μCOB). Multiple cell types mimicking the native vascular cell composition were encapsulated directly into hydrogels with precisely controlled distribution without the need of sacrificial materials or perfusion. With regionally controlled biomaterial properties the endothelial cells formed lumen-like structures spontaneously in vitro. In vivo implantation demonstrated the survival and progressive formation of the endothelial network in the prevascularized tissue. Anastomosis between the bioprinted endothelial network and host circulation was observed with functional blood vessels featuring red blood cells. With the superior bioprinting speed, flexibility and scalability, this new prevascularization approach can be broadly applicable to the engineering and translation of various functional tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. mTOR Inhibition Improves Anaemia and Reduces Organ Damage in a Murine Model of Sickle Cell Disease

    PubMed Central

    Wang, Jintao; Tran, Jennifer; Wang, Hui; Guo, Chiao; Harro, David; Campbell, Andrew D.; Eitzman, Daniel T.

    2016-01-01

    Summary Mechanistic target of rapamycin (mTOR) has been shown to play an important role in red blood cell physiology, with inhibition of mTOR signalling leading to alterations in erythropoiesis. To determine if mTOR inhibition would improve anaemia in sickle cell disease (SCD), mice with SCD were treated with the dual mTORC1/2 inhibitor, INK128. 1 week after daily oral drug treatment, erythrocyte count, haemoglobin, and haematocrit were all significantly increased while reticulocyte counts were reduced. These parameters remained stable during 3 weeks of treatment. Similar effects were observed following oral treatment with the mTORC1 inhibitor, sirolimus. Sirolimus treatment prolonged the lifespan of sickle cell erythrocytes in circulation, reduced spleen size, and reduced renal and hepatic iron accumulation in SCD mice. Following middle cerebral artery occlusion, stroke size was reduced in SCD mice treated with sirolimus. In conclusion, mTOR inhibition is protective against anaemia and organ damage in a murine model of SCD. PMID:27030515

  13. Transforming growth factor-β released by apoptotic white blood cells during red blood cell storage promotes transfusion-induced alloimmunomodulation.

    PubMed

    Vallion, Romain; Bonnefoy, Francis; Daoui, Anna; Vieille, Loredane; Tiberghien, Pierre; Saas, Philippe; Perruche, Sylvain

    2015-07-01

    Red blood cell (RBC) alloimmunization is a major immunologic risk of transfusion. However, RBC storage facilitates white blood cell (WBC) apoptosis and apoptotic cells have immunomodulatory properties. We investigated the behavior of WBCs, and apoptosis in particular, in RBC units during storage and then studied the impact of WBC apoptosis on the modulation of posttransfusion alloimmunization in RBC products stored short term. We used a mouse model of alloimmunization to transfused HEL-ovalbumin-Duffy (HOD) surface antigen expressed specifically on RBCs. The presence of circulating anti-HOD immunoglobulin G detected by flow cytometry confirmed immunization to HOD+ RBCs. WBC apoptosis and factors released by apoptotic WBCs during storage were determined and in particular the role of transforming growth factor (TGF)-β was assessed on RBC alloimmunization. In blood stored 72 hours, 30% of WBCs were apoptotic, and transfusion of short-term-stored blood resulted in lesser immunization than did fresh blood or stored leukoreduced (LR) RBCs. WBCs undergoing apoptosis released during short-term storage factors modulating RBC alloimmunization. Indeed apoptotic cell-released factors modulate alloimmunization whereas exogenous apoptotic cells directly transfused with LR RBCs did not. While microparticles released during RBC storage had no immunomodulatory role, TGF-β found in the supernatant of stored blood demonstrated the capacity to favor Treg polarization of naïve CD4+CD25- T cells in vitro and limited RBC alloimmunization in vivo. Indeed, addition of recombinant TGF-β to stored LR RBC transfusion strongly limited posttransfusion RBC alloimmunization. Our findings show that short-term storage of non-LR blood facilitates WBC apoptosis therefore releasing TGF-β that modulates posttransfusion RBC alloimmunization. © 2015 AABB.

  14. Pharmacological inhibition of calpain-1 prevents red cell dehydration and reduces Gardos channel activity in a mouse model of sickle cell disease.

    PubMed

    De Franceschi, Lucia; Franco, Robert S; Bertoldi, Mariarita; Brugnara, Carlo; Matté, Alessandro; Siciliano, Angela; Wieschhaus, Adam J; Chishti, Athar H; Joiner, Clinton H

    2013-02-01

    Sickle cell disease (SCD) is a globally distributed hereditary red blood cell (RBC) disorder. One of the hallmarks of SCD is the presence of circulating dense RBCs, which are important in SCD-related clinical manifestations. In human dense sickle cells, we found reduced calpastatin activity and protein expression compared to either healthy RBCs or unfractionated sickle cells, suggesting an imbalance between activator and inhibitor of calpain-1 in favor of activator in dense sickle cells. Calpain-1 is a nonlysosomal cysteine proteinase that modulates multiple cell functions through the selective cleavage of proteins. To investigate the relevance of this observation in vivo, we evaluated the effects of the orally active inhibitor of calpain-1, BDA-410 (30 mg/kg/d), on RBCs from SAD mice, a mouse model for SCD. In SAD mice, BDA-410 improved RBC morphology, reduced RBC density (D(20); from 1106 ± 0.001 to 1100 ± 0.001 g/ml; P<0.05) and increased RBC-K(+) content (from 364 ± 10 to 429 ± 12.3 mmol/kg Hb; P<0.05), markedly reduced the activity of the Ca(2+)-activated K(+)channel (Gardos channel), and decreased membrane association of peroxiredoxin-2. The inhibitory effect of calphostin C, a specific inhibitor of protein kinase C (PKC), on the Gardos channel was eliminated after BDA-410 treatment, which suggests that calpain-1 inhibition affects the PKC-dependent fraction of the Gardos channel. BDA-410 prevented hypoxia-induced RBC dehydration and K(+) loss in SAD mice. These data suggest a potential role of BDA-410 as a novel therapeutic agent for treatment of SCD.

  15. Label-free counting of circulating cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Zhou, Quanyu; Yang, Ping; Wang, Qiyan; Pang, Kai; Zhou, Hui; He, Hao; Wei, Xunbin

    2018-02-01

    Melanoma, developing from melanocytes, is the most serious type of skin cancer. Circulating melanoma cells, the prognosis marker for metastasis, are present in the circulation at the early stage. Thus, quantitative detection of rare circulating melanoma cells is essential for monitoring tumor metastasis and prognosis evaluation. Compared with in vitro assays, in vivo flow cytometry is able to identify circulating tumor cells without drawing blood. Here, we built in vivo photoacoustic flow cytometry based on the high absorption coefficient of melanoma cells, which is applied to labelfree counting of circulating melanoma cells in tumor-bearing mice.

  16. HER2 expression identifies dynamic functional states within circulating breast cancer cells.

    PubMed

    Jordan, Nicole Vincent; Bardia, Aditya; Wittner, Ben S; Benes, Cyril; Ligorio, Matteo; Zheng, Yu; Yu, Min; Sundaresan, Tilak K; Licausi, Joseph A; Desai, Rushil; O'Keefe, Ryan M; Ebright, Richard Y; Boukhali, Myriam; Sil, Srinjoy; Onozato, Maristela L; Iafrate, Anthony J; Kapur, Ravi; Sgroi, Dennis; Ting, David T; Toner, Mehmet; Ramaswamy, Sridhar; Haas, Wilhelm; Maheswaran, Shyamala; Haber, Daniel A

    2016-09-01

    Circulating tumour cells in women with advanced oestrogen-receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer acquire a HER2-positive subpopulation after multiple courses of therapy. In contrast to HER2-amplified primary breast cancer, which is highly sensitive to HER2-targeted therapy, the clinical significance of acquired HER2 heterogeneity during the evolution of metastatic breast cancer is unknown. Here we analyse circulating tumour cells from 19 women with ER + /HER2 - primary tumours, 84% of whom had acquired circulating tumour cells expressing HER2. Cultured circulating tumour cells maintain discrete HER2 + and HER2 - subpopulations: HER2 + circulating tumour cells are more proliferative but not addicted to HER2, consistent with activation of multiple signalling pathways; HER2 - circulating tumour cells show activation of Notch and DNA damage pathways, exhibiting resistance to cytotoxic chemotherapy, but sensitivity to Notch inhibition. HER2 + and HER2 - circulating tumour cells interconvert spontaneously, with cells of one phenotype producing daughters of the opposite within four cell doublings. Although HER2 + and HER2 - circulating tumour cells have comparable tumour initiating potential, differential proliferation favours the HER2 + state, while oxidative stress or cytotoxic chemotherapy enhances transition to the HER2 - phenotype. Simultaneous treatment with paclitaxel and Notch inhibitors achieves sustained suppression of tumorigenesis in orthotopic circulating tumour cell-derived tumour models. Together, these results point to distinct yet interconverting phenotypes within patient-derived circulating tumour cells, contributing to progression of breast cancer and acquisition of drug resistance.

  17. The effects of conventional extracorporeal circulation versus miniaturized extracorporeal circulation on microcirculation during cardiopulmonary bypass-assisted coronary artery bypass graft surgery.

    PubMed

    Yuruk, Koray; Bezemer, Rick; Euser, Mariska; Milstein, Dan M J; de Geus, Hilde H R; Scholten, Evert W; de Mol, Bas A J M; Ince, Can

    2012-09-01

    OBJECTIVES To reduce the complications associated with cardiopulmonary bypass (CPB) during cardiac surgery, many modifications have been made to conventional extracorporeal circulation systems. This trend has led to the development of miniaturized extracorporeal circulation systems. Cardiac surgery using conventional extracorporeal circulation systems has been associated with significantly reduced microcirculatory perfusion, but it remains unknown whether this could be prevented by an mECC system. Here, we aimed to test the hypothesis that microcirculatory perfusion decreases with the use of a conventional extracorporeal circulation system and would be preserved with the use of an miniaturized extracorporeal circulation system. METHODS Microcirculatory density and perfusion were assessed using sublingual side stream dark-field imaging in patients undergoing on-pump coronary artery bypass graft (CABG) surgery before, during and after the use of either a conventional extracorporeal circulation system (n = 10) or a miniaturized extracorporeal circulation system (n = 10). In addition, plasma neutrophil gelatinase-associated lipocalin and creatinine levels and creatinine clearance were assessed up to 5 days post-surgery to monitor renal function. RESULTS At the end of the CPB, one patient in the miniaturized extracorporeal circulation-treated group and five patients in the conventional extracorporeal circulation-treated group received one bag of packed red blood cells (300 ml). During the CPB, the haematocrit and haemoglobin levels were slightly higher in the miniaturized extracorporeal circulation-treated patients compared with the conventional extracorporeal circulation-treated patients (27.7 ± 3.3 vs 24.7 ± 2.0%; P = 0.03; and 6.42 ± 0.75 vs 5.41 ± 0.64 mmol/l; P < 0.01). The density of perfused vessels with a diameter <25 µm (i.e. perfused vessel density) decreased slightly in the conventional extracorporeal circulation-treated group from 16.4 ± 3.8 to 12.8 ± 3.3 mm/mm(2) (P < 0.01) and remained stable in the miniaturized extracorporeal circulation-treated group (16.3 ± 2.7 and 15.2 ± 2.9 mm/mm(2) before and during the pump, respectively). Plasma neutrophil gelatinase-associated lipocalin levels were increased following the use of extracorporeal circulation in both groups, and no differences were observed between the groups. Plasma creatinine levels and creatinine clearance were not affected by CABG surgery or CPB. CONCLUSIONS The results from this relatively small study suggest that the use of the miniaturized extracorporeal circulation system is associated with a statistically significant (but clinically insignificant) reduction in haemodilution and microcirculatory hypoperfusion compared with the use of the conventional extracorporeal circulation system.

  18. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calibrator for red cell and white cell counting... Calibrator for red cell and white cell counting. (a) Identification. A calibrator for red cell and white cell counting is a device that resembles red or white blood cells and that is used to set instruments intended...

  19. Dietary fat intake, circulating and membrane fatty acid composition of healthy Norwegian men and women.

    PubMed

    Min, Y; Blois, A; Geppert, J; Khalil, F; Ghebremeskel, K; Holmsen, H

    2014-02-01

    The present study aimed to assess the dietary fat intake and blood fatty acid status of healthy Norwegian men and women living in Bergen whose habitual diet is known to be high in long-chain omega-3 fat. Healthy men (n = 41) and women (n = 40) aged 20-50 years who were regular blood donors completed 7-day food diaries and their nutrient intake was analysed by Norwegian food database software, kbs, version 4.9 (kostberegningssystem; University of Oslo, Oslo, Norway). Blood samples were obtained before blood donation and assessed for the fatty acid composition of plasma triglycerides and cholesterol esters, phosphatidylcholine, and red cell phosphatidylcholine and phosphatidylethanolamine. There was no difference in dietary fat intake between men and women. Total and saturated fat intakes exceeded the upper limits of the recommendations of the National Nutrition Council of Norway. Although polyunsaturated fat intake was close to the lower limit of the recommended level, the intake varied greatly among individuals, partly as a result of the use of supplementary fish oil. Moreover, the proportional fatty acid composition of plasma and red cell lipids was similar between men and women. Enrichment of docosahexaenoic acid in red cell phosphatidylethanolamine was found in fish oil users. The results of the present study provide a snapshot of the current nutritional status of healthy Norwegian adults. Moreover, the detailed blood fatty acid composition of men and women whose habitual diet constitutes high long-chain polyunsaturated omega-3 fat as well as saturated fat could be used as reference value for population studies. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  20. A Comparison of Red Cell Rejuvenation versus Mechanical Washing for the Prevention of Transfusion-associated Organ Injury in Swine.

    PubMed

    Woźniak, Marcin J; Qureshi, Saqib; Sullo, Nikol; Dott, William; Cardigan, Rebecca; Wiltshire, Michael; Nath, Mintu; Patel, Nishith N; Kumar, Tracy; Goodall, Alison H; Murphy, Gavin J

    2018-02-01

    We evaluated the effects of two interventions that modify the red cell storage lesion on kidney and lung injury in experimental models of transfusion. White-landrace pigs (n = 32) were allocated to receive sham transfusion (crystalloid), 14-day stored allogeneic red cells, 14-day red cells washed using the red cells washing/salvage system (CATS; Fresenius, Germany), or 14-day red cells rejuvenated using the inosine solution (Rejuvesol solution; Zimmer Biomet, USA) and washed using the CATS device. Functional, biochemical, and histologic markers of organ injury were assessed for up to 24 h posttransfusion. Transfusion of 14 day red cells resulted in lung injury (lung injury score vs. sham, mean difference -0.3 (95% CI, -0.6 to -0.1; P = 0.02), pulmonary endothelial dysfunction, and tissue leukocyte sequestration. Mechanical washing reduced red cell-derived microvesicles but increased cell-free hemoglobin in 14-day red cell units. Transfusion of washed red cells reduced leukocyte sequestration but did not reduce the lung injury score (mean difference -0.2; 95% CI, -0.5 to 0.1; P = 0.19) relative to 14-day cells. Transfusion of washed red cells also increased endothelial activation and kidney injury. Rejuvenation restored adenosine triphosphate to that of fresh red cells and reduced microvesicle concentrations without increasing cell-free hemoglobin release. Transfusion of rejuvenated red cells reduced plasma cell-free hemoglobin, leukocyte sequestration, and endothelial dysfunction in recipients and reduced lung and kidney injury relative to 14-day or washed 14-day cells. Reversal of the red cell storage lesion by rejuvenation reduces transfusion-associated organ injury in swine.

  1. Effects of chronic elevated levels of CO2 on the concentration of blood cellular elements and plasma corticosterone in the male rat

    NASA Technical Reports Server (NTRS)

    Alexander, R. A.; Lang, C. K.; Steele, M. K.; Corbin, B. J.; Wade, C. E.

    1995-01-01

    The mean CO2 concentration on the Space Shuttle is 0.3% and has reached 0.7%, for extended periods of time. Following space flight, it has been shown that both humans and animals have significant changes in red blood cell counts (RBC) and white blood cell counts (WBC). In other studies, where no significant change did occur in the total WBC, a significant change did occur in the distribution of WBC. WBC are affected by circulating levels of glucocorticoids, which often increase when animals or humans are exposed to adverse and/or novel stimuli (e.g. elevated CO2 levels or weightlessness). The purpose of this study was to determine if elevations in CO2 concentration produce changes in total WBC and/or their distribution.

  2. Cell-Based Biohybrid Drug Delivery Systems: The Best of the Synthetic and Natural Worlds.

    PubMed

    Banskota, Samagya; Yousefpour, Parisa; Chilkoti, Ashutosh

    2017-01-01

    The goal of drug delivery is to deliver therapeutics to the site of disease while reducing unwanted side effects. In recent years, a diverse variety of synthetic nano and microparticles have been developed as drug delivery systems. The success of these systems for drug delivery lies in their ability to overcome biological barriers such as the blood-brain barrier, to evade immune clearance and avoid nonspecific biodistribution. This Review provides an overview of recent advances in the design of biohybrid drug delivery systems, which combine cells with synthetic systems to overcome some of these biological hurdles. Examples include eukaryotic cells, such as stem cells, red blood cells, immune cells, platelets, and cancer cells that are used to carry drug-loaded synthetic particles. Synthetic particles can also be cloaked with naturally derived cell membranes and thereby evade immune clearance, exhibit prolonged systemic circulation, and target specific tissues by capitalizing on the interaction/homing tendency of certain cells and their membrane components to particular tissues. Different designs of cell-based biohybrid systems and their applications, as well as their promise and limitations, are discussed herein. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rheologic and hemodynamic characteristics of red cells of mouse, rat and human.

    PubMed

    Chen, D; Kaul, D K

    1994-01-01

    The present study compares hematologic, rheologic and hemodynamic characteristics of red cells from mouse, rat and human. Red cells in these species are biconcave discs that show significant differences in diameter and mean corpuscular volume (MCV). However, differences in mean corpuscular hemoglobin concentration (MCHC) are not significant. Viscosity measurement of washed red cell suspensions (in each case the medium osmolarity adjusted to match plasma osmolarity) showed significant interspecies differences at shear rates of 37.5 and 750 sec-1 as follows: Human > rat > mouse. Hemodynamic and microcirculatory behavior of these red cells was investigated in the artificially perfused ex vivo mesocecum vasculature of the rat. Hemodynamic measurements in the whole ex vivo mesocecum preparation revealed maximal increase in the peripheral resistance unit (PRU) for the human red cells followed by the rat and mouse red cells, respectively at a hematocrit (Hct) of 40%. Further, measurements of red cell velocities (Vrbc) in single arterioles of the mesocecum vasculature, during sustained perfusion with washed red cell suspensions, showed that at any given perfusion pressure (Pa), Vrbc for both mouse and rat red cells was higher than that for human red cells, while Vrbc for mouse red cells was higher than that for the rat. These results demonstrate that the microvascular flow behavior of these red cells is likely to be influenced by both physical and rheologic characteristics.

  4. A NUMERICAL ANALYSIS OF LANDFALL OF THE 1979 RED TIDE OF KARENIA BREVIS ALONG THE WEST COAST OF FLORIDA. (R827085)

    EPA Science Inventory

    Abstract

    A simple ecological model, coupled to a primitive equation circulation model, is able to replicate the observed alongshore transport of the toxic dinoflagellate Karenia brevis on the West Florida shelf during a fall red tide in 1979. Initial land fall o...

  5. ECOHAB - HYDROGRAPHY AND BIOLOGY TO PROVIDE INFORMATION FOR THE CONSTRUCTION OF A MODEL TO PREDICT THE INITIATION, MAINTANENCE AND DISPERSAL OF RED TIDE ON THE WEST COAST OF FLORIDA

    EPA Science Inventory

    This program is part of a larger program called ECOHAB: Florida that includes this study as well as physical oceanography, circulation patterns, and shelf scale modeling for predicting the occurrence and transport of Karenia brevis (=Gymnodinium breve) red tides. The physical par...

  6. Indolic uremic solutes enhance procoagulant activity of red blood cells through phosphatidylserine exposure and microparticle release.

    PubMed

    Gao, Chunyan; Ji, Shuting; Dong, Weijun; Qi, Yushan; Song, Wen; Cui, Debin; Shi, Jialan

    2015-10-28

    Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs), the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS) and indole-3-acetic acid (IAA) on procoagulant activity (PCA) of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients). Phosphatidylserine (PS) exposure of RBCs and their microparticles (MPs) release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca(2+) ([Ca(2+)]) with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca(2+)]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process.

  7. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    NASA Astrophysics Data System (ADS)

    Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-06-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis.

  8. Culture and Characterization of Circulating Endothelial Progenitor Cells in Patients with Renal Cell Carcinoma.

    PubMed

    Gu, Wenyu; Sun, Wei; Guo, Changcheng; Yan, Yang; Liu, Min; Yao, Xudong; Yang, Bin; Zheng, Junhua

    2015-07-01

    Although emerging evidence demonstrates increased circulating endothelial progenitor cells in patients with solid tumors, to our knowledge it is still unknown whether such cells can be cultured from patients with highly angiogenic renal cell carcinoma. We cultured and characterized circulating endothelial progenitor cells from patients with renal cell carcinoma. The circulating endothelial progenitor cell level (percent of CD45(-)CD34(+) VEGF-R2(+) cells in total peripheral blood mononuclear cells) was quantified in 47 patients with renal cell carcinoma and 40 healthy controls. Peripheral blood mononuclear cells were then isolated from 33 patients with renal cell carcinoma and 30 healthy controls to culture and characterize circulating endothelial progenitor cells. The circulating endothelial progenitor cell level was significantly higher in patients with renal cell carcinoma than in healthy controls (0.276% vs 0.086%, p <0.001). A colony of circulating endothelial progenitor cells first emerged significantly earlier in patient than in control preparations (6.72 vs 14.67 days, p <0.001). The culture success rate (87.8% vs 40.0% of participants) and the number of colonies (10.06 vs 1.83) were significantly greater for patients than for controls (each p <0.001). The circulating endothelial progenitor cell level correlated positively with the number of patient colonies (r = 0.762, p <0.001). Cells cultured from patients and controls showed a similar growth pattern, immunophenotype, ability to uptake Ac-LDL and bind lectin, and form capillary tubes in vitro. However, significantly more VEGF-R2(+) circulating endothelial progenitor cells were found in preparations from patients with renal cell carcinoma than from healthy controls (21.1% vs 13.4%, p <0.001). Earlier emergence of circulating endothelial progenitor cell colonies, a higher cell culture success rate and more colonies were found for patients with renal cell carcinoma than for healthy controls. Results indicate the important significance of VEGF-R2(+) circulating endothelial progenitors in patients with renal cell carcinoma. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Macrophages clear refrigerator storage-damaged red blood cells and subsequently secrete cytokines in vivo, but not in vitro, in a murine model.

    PubMed

    Wojczyk, Boguslaw S; Kim, Nina; Bandyopadhyay, Sheila; Francis, Richard O; Zimring, James C; Hod, Eldad A; Spitalnik, Steven L

    2014-12-01

    In mice, refrigerator-stored red blood cells (RBCs) are cleared by extravascular hemolysis and induce cytokine production. To enhance understanding of this phenomenon, we sought to model it in vitro. Ingestion of refrigerator-stored murine RBCs and subsequent cytokine production were studied using J774A.1 mouse macrophage cells and primary murine splenic macrophages. Wild-type and Ccl2-GFP reporter mice were used for RBC clearance in vivo. Although J774A.1 cells and primary macrophages preferentially ingested refrigerator-stored RBCs in vitro, compared to freshly isolated RBCs, neither produced increased cytokines after erythrophagocytosis. In contrast, phagocytosis of refrigerator-stored RBCs in vivo induced increases in circulating monocyte chemoattractant protein-1 (MCP-1) and keratinocyte chemoattractant (KC) and correspondingly increased mRNA levels in mouse spleen and liver. In the spleen, these were predominantly expressed by CD11b+ cells. Using Ccl2-GFP reporter mice, the predominant splenic population responsible for MCP-1 mRNA production was tissue-resident macrophages (i.e., CD45+, CD11b+, F4/80+, Ly6c+, and CD11c(low) cells). J774A.1 cells and primary macrophages selectively ingested refrigerator-stored RBCs by phagocytosis. Although cytokine expression was not enhanced, this approach could be used to identify the relevant receptor-ligand combination(s). In contrast, cytokine levels increased after phagocytosis of refrigerator-stored RBCs in vivo. These were primarily cleared in the liver and spleen, which demonstrated increased MCP-1 and KC mRNA expression. Finally, in mouse spleen, tissue-resident macrophages were predominantly involved in MCP-1 mRNA production. The differences between cytokine production in vitro and in vivo are not yet well understood. © 2014 AABB.

  10. pH-activatable nanoparticles for tumor-specific drug delivery

    NASA Astrophysics Data System (ADS)

    Liu, Karen C.

    To address the need for a tumor-specific drug delivery system that can achieve both prolonged circulation and cellular retention at the tumor site, nanocomplexes of Zwitterionic Chitosan (ZWC) and Polyamidoamine (PAMAM) generation 5 were designed. Polyamidoamine (PAMAM) dendrimers have been widely explored as carriers of therapeutics and imaging agents, however, amine-terminated PAMAM dendrimers are rarely utilized in systemic applications due to its cytotoxicity and risk of opsonization, caused by its cationic charge. Such undesirable effects may be mitigated by shielding the PAMAM dendrimer surface with polymers that reduce the charges. However, this shielding may also interfere with PAMAM dendrimers' ability to interact with target cells, thus reducing cellular uptake and overall efficacy of the delivery system. ZWC, a new chitosan derivative, has a unique pH-sensitive charge profile and can shield the cationic surface of PAMAM dendrimers and block adsorption of serum proteins to allow for prolonged circulation. The hypothesis of this approach is that ZWC is anionic and able to coat PAMAM in neutral pH but becomes positive in the acidic tumor microenvironment, revealing the polycationic drug carrier. We expect that ZWC will provide (i) stealth coating for PAMAM drug carrier during circulation (pH 7.4) and (ii) be removed from the PAMAM drug carrier at acidic pH (pH ~6.3), allowing for cellular interaction. The cationic charge of PAMAM has been demonstrated to facilitate uptake and drug delivery to tumor cells via interactions with the negatively charged cell surface. Stable electrostatic complexes of ZWC and PAMAM dendrimers were formed at pH 7.4, as demonstrated by fluorescence spectroscopy and transmission electron microscopy. The presence of ZWC coating protected red blood cells and fibroblast cells from hemolytic and cytotoxic activities of PAMAM dendrimers, respectively. Confocal microscopy showed that the protective effect of ZWC disappeared at low pH as the complex dissociated due to the charge conversion of ZWC, allowing PAMAM dendrimers to enter cells. These results demonstrate that ZWC is able to provide a surface coverage of PAMAM dendrimers in a pH-dependent manner and, thus, enhance the utility of PAMAM dendrimers as a drug carrier to solid tumors with acidifying microenvironment. Paclitaxel, curcumin, and camptothecin were evaluated as model drugs for use in ZWC(PAMAM) drug carrier based on bioactivity against SKOV-3 ovarian cancer cells and drug loading and release. Stability of nanocarriers in circulation is a requirement for successful tumor-specific drug release. Strategies to improve the stability of ZWC(PAMAM) NPs were also explored and evaluated.

  11. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  12. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  13. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  14. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  15. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and enumeration...

  16. In vivo studies of sickle red blood cells.

    PubMed

    Kaul, Dhananjay K; Fabry, Mary E

    2004-03-01

    The defining clinical feature of sickle cell anemia is periodic occurrence of painful vasoocclusive crisis. Factors that promote trapping and sickling of red cells in the microcirculation are likely to trigger vasoocclusion. The marked red cell heterogeneity in sickle blood and abnormal adhesion of sickle red cells to vascular endothelium would be major disruptive influences. Using ex vivo and in vivo models, the authors show how to dissect the relative contribution of heterogeneous sickle red cell classes to adhesive and obstructive events. These studies revealed that (1) both rheological abnormalities and adhesion of sickle red cells contribute to their abnormal hemodynamic behavior, (2) venules are the sites of sickle cell adhesion, and (3) sickle red cell deformability plays an important role in adhesive and obstructive events. Preferential adhesion of deformable sickle red cells in postcapillary venules followed by selective trapping of dense sickle red cells could result in vasoocclusion. An updated version of this 2-step model is presented. The multifactorial nature of sickle red cell adhesion needs to be considered in designing antiadhesive therapy in vivo.

  17. Carbon and nitrogen stable isotope ratios of pelagic zooplankton elucidate ecohydrographic features in the oligotrophic Red Sea

    NASA Astrophysics Data System (ADS)

    Kürten, Benjamin; Al-Aidaroos, Ali M.; Kürten, Saskia; El-Sherbiny, Mohsen M.; Devassy, Reny P.; Struck, Ulrich; Zarokanellos, Nikolaos; Jones, Burton H.; Hansen, Thomas; Bruss, Gerd; Sommer, Ulrich

    2016-01-01

    Although zooplankton occupy key roles in aquatic biogeochemical cycles, little is known about the pelagic food web and trophodynamics of zooplankton in the Red Sea. Natural abundance stable isotope analysis (SIA) of carbon (δ13C) and N (δ15N) is one approach to elucidating pelagic food web structures and diet assimilation. Integrating the combined effects of ecological processes and hydrography, ecohydrographic features often translate into geographic patterns in δ13C and δ15N values at the base of food webs. This is due, for example, to divergent 15N abundances in source end-members (deep water sources: high δ15N, diazotrophs: low δ15N). Such patterns in the spatial distributions of stable isotope values were coined isoscapes. Empirical data of atmospheric, oceanographic, and biological processes, which drive the ecohydrographic gradients of the oligotrophic Red Sea, are under-explored and some rather anticipated than proven. Specifically, five processes underpin Red Sea gradients: (a) monsoon-related intrusions of nutrient-rich Indian Ocean water; (b) basin scale thermohaline circulation; (c) mesoscale eddy activity that causes up-welling of deep water nutrients into the upper layer; (d) the biological fixation of atmospheric nitrogen (N2) by diazotrophs; and (e) the deposition of dust and aerosol-derived N. This study assessed relationships between environmental samples (nutrients, chlorophyll a), oceanographic data (temperature, salinity, current velocity [ADCP]), particulate organic matter (POM), and net-phytoplankton, with the δ13C and δ15N values of zooplankton collected in spring 2012 from 16°28‧ to 26°57‧N along the central axis of the Red Sea. The δ15N of bulk POM and most zooplankton taxa increased from North (Duba) to South (Farasan). The potential contribution of deep water nutrient-fueled phytoplankton, POM, and diazotrophs varied among sites. Estimates suggested higher diazotroph contributions in the North, a greater contribution of POM in the South, and of small phytoplankton in the central Red Sea. Consistent variation across taxonomic and trophic groups at latitudinal scale, corresponding with patterns of nutrient stoichiometry and phytoplankton composition, indicates that the zooplankton ecology in the Red Sea is largely influenced by hydrographic features. It suggests that the primary ecohydrography of the Red Sea is driven not only by the thermohaline circulation, but also by mesoscale activities that transports nutrients to the upper water layers and interact with the general circulation pattern. Ecohydrographic features of the Red Sea, therefore, aid in explaining the observed configuration of its isoscape at the macroecological scale.

  18. The effect of red ginseng extract on inflammatory cytokines after chemotherapy in children.

    PubMed

    Lee, Jae Min; Hah, Jeong Ok; Kim, Hee Sun

    2012-10-01

    Ginseng has been used as an herbal medicine, widely used in Asian countries, for long time. Recently, beneficial effects for immune functions of Korean red ginseng (KRG) have been reported in adults. This study was performed to investigate the effects of ginseng on immune functions in children after cessation of chemotherapy or stem cell transplantation for advanced cancer. Thirty patients, who were diagnosed and treated for leukemia and solid cancer at the department of pediatrics and adolescence of the Yeungnam University Hospital from June 2004 to June 2009, were enrolled for the study. The study group consisted of 19 patients who received KRG extract (60 mg/kg/d) for 1 yr and 11 patients who did not receive KRG extract were the control group. Blood samples were collected every 6 mo. Immune assays included circulating lymphocyte subpopulation, serum cytokines (IL- 2, IL-10, IL-12, TNF-alpha, and IFN-gamma), and total concentrations of serum IgG, IgA, and IgM subclasses. Age at diagnosis ranged from 2 mo to 15 yr (median 5 yr). Nine patients received stem cell transplantation. The cytokines of the KRG treated group were decreasing more rapidly than that of the control group. Lymphocyte subpopulations (T cell, B cell, NK cell, T4, T8, and T4/ T8 ratio) and serum immunoglobulin subclasses (IgG, IgA, and IgM) did not show significant differences between the study and the control groups. This study suggests that KRG extract might have a stabilizing effect on the inflammatory cytokines in children with cancer after chemotherapy.

  19. Continuous Change in Membrane and Membrane-Skeleton Organization During Development From Proerythroblast to Senescent Red Blood Cell

    PubMed Central

    Minetti, Giampaolo; Achilli, Cesare; Perotti, Cesare; Ciana, Annarita

    2018-01-01

    Within the context of erythropoiesis and the possibility of producing artificial red blood cells (RBCs) in vitro, a most critical step is the final differentiation of enucleated erythroblasts, or reticulocytes, to a fully mature biconcave discocyte, the RBC. Reviewed here is the current knowledge about this fundamental maturational process. By combining literature data with our own experimental evidence we propose that the early phase in the maturation of reticulocytes to RBCs is driven by a membrane raft-based mechanism for the sorting of disposable membrane proteins, mostly the no longer needed transferrin receptor (TfR), to the multivesicular endosome (MVE) as cargo of intraluminal vesicles that are subsequently exocytosed as exosomes, consistently with the seminal and original observation of Johnstone and collaborators of more than 30 years ago (Pan BT, Johnstone RM. Cell. 1983;33:967-978). According to a strikingly selective sorting process, the TfR becomes cargo destined to exocytosis while other molecules, including the most abundant RBC transmembrane protein, band 3, are completely retained in the cell membrane. It is also proposed that while this process could be operating in the early maturational steps in the bone marrow, additional mechanism(s) must be at play for the final removal of the excess reticulocyte membrane that is observed to occur in the circulation. This processing will most likely require the intervention of the spleen, whose function is also necessary for the continuous remodeling of the RBC membrane all along this cell's circulatory life. PMID:29632498

  20. Red cell metabolism studies on Skylab

    NASA Technical Reports Server (NTRS)

    Mengel, C. E.

    1977-01-01

    Blood samples from Spacelab crewmembers were studied for possible environment effects on red cell components. Analysis involved peroxidation of red cell lipids, enzymes of red cell metabolism, and levels of 2,3-diphosphoglyceric acid and adenosine triphosphate. Results show that there is no evidence of lipid peroxidation, that biochemical effect known to be associated with irreversible red cell damage. Changes observed in glycolytic intermediates and enzymes cannot be directly implicated as indicating evidence of red cell damage.

  1. Method using CO for extending the useful shelf-life of refrigerated red blood cells

    DOEpatents

    Bitensky, Mark W.

    1995-01-01

    Method using CO for extending the useful shelf-life of refrigerated red blood cells. Carbon monoxide is utilized for stabilizing hemoglobin in red blood cells to be stored at low temperature. Changes observed in the stored cells are similar to those found in normal red cell aging in the body, the extent thereof being directly related to the duration of refrigerated storage. Changes in cell buoyant density, vesiculation, and the tendency of stored cells to bind autologous IgG antibody directed against polymerized band 3 IgG, all of which are related to red blood cell senescence and increase with refrigerated storage time, have been substantially slowed when red blood cells are treated with CO. Removal of the carbon monoxide from the red blood cells is readily and efficiently accomplished by photolysis in the presence of oxygen so that the stored red blood cells may be safely transfused into a recipient.

  2. [Establishment and identification of mouse lymphoma cell line EL4 expressing red fluorescent protein].

    PubMed

    Li, Yan-Jie; Cao, Jiang; Chen, Chong; Wang, Dong-Yang; Zeng, Ling-Yu; Pan, Xiu-Ying; Xu, Kai-Lin

    2010-02-01

    This study was purposed to construct a lentiviral vector encoding red fluorescent protein (DsRed) and transfect DsRed into EL4 cells for establishing mouse leukemia/lymphoma model expressing DsRed. The bicistronic SIN lentiviral transfer plasmid containing the genes encoding neo and internal ribosomal entry site-red fluorescent protein (IRES-DsRed) was constructed. Human embryonic kidney 293FT cells were co-transfected with the three plasmids by liposome method. The viral particles were collected and used to transfect EL4 cells, then the cells were selected by G418. The results showed that the plasmid pXZ208-neo-IRES-DsRed was constructed successfully, and the viral titer reached to 10(6) U/ml. EL4 cells were transfected by the viral solution efficiently. The transfected EL4 cells expressing DsRed survived in the final concentration 600 microg/ml of G418. The expression of DsRed in the transfected EL4 cells was demonstrated by fluorescence microscopy and flow cytometry. In conclusion, the EL4/DsRed cell line was established successfully.

  3. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...

  4. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...

  5. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...

  6. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...

  7. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...

  8. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for...

  9. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...

  10. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...

  11. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...

  12. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...

  13. Method for semi-automated microscopy of filtration-enriched circulating tumor cells.

    PubMed

    Pailler, Emma; Oulhen, Marianne; Billiot, Fanny; Galland, Alexandre; Auger, Nathalie; Faugeroux, Vincent; Laplace-Builhé, Corinne; Besse, Benjamin; Loriot, Yohann; Ngo-Camus, Maud; Hemanda, Merouan; Lindsay, Colin R; Soria, Jean-Charles; Vielh, Philippe; Farace, Françoise

    2016-07-14

    Circulating tumor cell (CTC)-filtration methods capture high numbers of CTCs in non-small-cell lung cancer (NSCLC) and metastatic prostate cancer (mPCa) patients, and hold promise as a non-invasive technique for treatment selection and disease monitoring. However filters have drawbacks that make the automation of microscopy challenging. We report the semi-automated microscopy method we developed to analyze filtration-enriched CTCs from NSCLC and mPCa patients. Spiked cell lines in normal blood and CTCs were enriched by ISET (isolation by size of epithelial tumor cells). Fluorescent staining was carried out using epithelial (pan-cytokeratins, EpCAM), mesenchymal (vimentin, N-cadherin), leukocyte (CD45) markers and DAPI. Cytomorphological staining was carried out with Mayer-Hemalun or Diff-Quik. ALK-, ROS1-, ERG-rearrangement were detected by filter-adapted-FISH (FA-FISH). Microscopy was carried out using an Ariol scanner. Two combined assays were developed. The first assay sequentially combined four-color fluorescent staining, scanning, automated selection of CD45(-) cells, cytomorphological staining, then scanning and analysis of CD45(-) cell phenotypical and cytomorphological characteristics. CD45(-) cell selection was based on DAPI and CD45 intensity, and a nuclear area >55 μm(2). The second assay sequentially combined fluorescent staining, automated selection of CD45(-) cells, FISH scanning on CD45(-) cells, then analysis of CD45(-) cell FISH signals. Specific scanning parameters were developed to deal with the uneven surface of filters and CTC characteristics. Thirty z-stacks spaced 0.6 μm apart were defined as the optimal setting, scanning 82 %, 91 %, and 95 % of CTCs in ALK-, ROS1-, and ERG-rearranged patients respectively. A multi-exposure protocol consisting of three separate exposure times for green and red fluorochromes was optimized to analyze the intensity, size and thickness of FISH signals. The semi-automated microscopy method reported here increases the feasibility and reliability of filtration-enriched CTC assays and can help progress towards their validation and translation to the clinic.

  14. Human red blood cells have an enhancing effect on the relative expansion of CD8+ T lymphocytes in vitro.

    PubMed

    Porto, B; Fonseca, A M; Godinho, I; Arosa, F A; Porto, G

    2001-12-01

    The present study was designed to analyse the effect of red blood cells on T-cell proliferation and expansion. A comparative study was done in peripheral blood cell cultures stimulated with phytohemagglutinin, with or without red blood cells. The presence of red blood cells had a consistent enhancing effect on T lymphocyte proliferation, as determined by an increase in both the mitotic index and thymidine uptake. Phenotypic characterization of T cell blasts by flow cytometry revealed that, in the presence of red blood cells, expanding cells were preferentially CD8+ cells. Accordingly, proliferation of CD8+ lymphocytes from two patients with CD8+ hyperlymphocytosis was dependent on the presence of red blood cells. In contrast, proliferation of CD4+ lymphocytes from two patients with CD4+ hyperlymphocytosis was strongly inhibited by the presence of red blood cells. This is the first reported evidence that human red blood cells have an enhancing effect on the expansion of CD8+ lymphocytes in vitro.

  15. Multiple-locus variable-number tandem repeat analysis potentially reveals the existence of two groups of Anaplasma phagocytophilum circulating in cattle in France with different wild reservoirs.

    PubMed

    Dugat, Thibaud; Zanella, Gina; Véran, Luc; Lesage, Céline; Girault, Guillaume; Durand, Benoît; Lagrée, Anne-Claire; Boulouis, Henri-Jean; Haddad, Nadia

    2016-11-22

    Anaplasma phagocytophilum is the causative agent of tick-borne fever, a disease with high economic impact for domestic ruminants in Europe. Epidemiological cycles of this species are complex, and involve different ecotypes circulating in various host species. To date, these epidemiological cycles are poorly understood, especially in Europe, as European reservoir hosts (i.e. vertebrate hosts enabling long-term maintenance of the bacterium in the ecosystem), of the bacterium have not yet been clearly identified. In this study, our objective was to explore the presence, the prevalence, and the genetic diversity of A. phagocytophilum in wild animals, in order to better understand their implications as reservoir hosts of this pathogen. The spleens of 101 wild animals were collected from central France and tested for the presence of A. phagocytophilum DNA by msp2 qPCR. Positive samples were then typed by multi-locus variable-number tandem repeat (VNTR) analysis (MLVA), and compared to 179 previously typed A. phagocytophilum samples. Anaplasma phagocytophilum DNA was detected in 82/101 (81.2%) animals including 48/49 red deer (98%), 20/21 roe deer (95.2%), 13/29 wild boars (44.8%), and 1/1 red fox. MLVA enabled the discrimination of two A. phagocytophilum groups: group A contained the majority of A. phagocytophilum from red deer and two thirds of those from cattle, while group B included a human strain and variants from diverse animal species, i.e. sheep, dogs, a horse, the majority of variants from roe deer, and the remaining variants from cattle and red deer. Our results suggest that red deer and roe deer are promising A. phagocytophilum reservoir host candidates. Moreover, we also showed that A. phagocytophilum potentially circulates in at least two epidemiological cycles in French cattle. The first cycle may involve red deer as reservoir hosts and cattle as accidental hosts for Group A strains, whereas the second cycle could involve roe deer as reservoir hosts and at least domestic ruminants, dogs, horses, and humans as accidental hosts for Group B strains.

  16. New Developments in Red Blood Cell Preservation Using Liquid and Freezing Procedures.

    DTIC Science & Technology

    1982-04-02

    restore or improve the red cell 2,3 DPG and ATP levels . Biochemically modified red blood cells may be cryopreserved for indefinite storage, or they may...salvage outdated red blood cells. However,,-ndated red blood cells are also being biochemically modified to increase’the 2,3 DPG levels to 2 to 3...restore or improve the edcell 2,3 DPG and ATP levels . Biochemically modified red blood cells iay-be cryopreserved for indefinite storage. or-thy my be

  17. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukemia definition

    PubMed Central

    Granell, Miquel; Calvo, Xavier; Garcia-Guiñón, Antoni; Escoda, Lourdes; Abella, Eugènia; Martínez, Clara Mª; Teixidó, Montserrat; Gimenez, Mª Teresa; Senín, Alicia; Sanz, Patricia; Campoy, Desirée; Vicent, Ana; Arenillas, Leonor; Rosiñol, Laura; Sierra, Jorge; Bladé, Joan; de Larrea, Carlos Fernández

    2017-01-01

    The presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the study herein, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analyzed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukemia were reviewed and patients were classified into 4 categories according to the percentage of circulating plasma cells: 0%, 1–4%, 5–20%, and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%), respectively. Median overall survival according to the circulating plasma cells group was 47, 50, 6 and 14 months, respectively. At multivariate analysis, the presence of 5 to 20% circulating plasma cells was associated with a worse overall survival (relative risk 4.9, 95% CI 2.6–9.3) independently of age, creatinine, the Durie-Salmon system stage and the International Staging System (ISS) stage. Patients with ≥5% circulating plasma cells had lower platelet counts (median 86×109/L vs. 214×109/L, P<0.0001) and higher bone marrow plasma cells (median 53% vs. 36%, P=0.004). The presence of ≥5% circulating plasma cells in patients with multiple myeloma has a similar adverse prognostic impact as plasma cell leukemia. PMID:28255016

  18. Analyses of genome wide association data, cytokines, and gene expression in African-Americans with benign ethnic neutropenia

    PubMed Central

    Shriner, Daniel; Ramos, Edward; Chin, Kyung; Srivastava, Kshitij; Zakai, Neil A.; Cushman, Mary; McClure, Leslie A.; Howard, Virginia; Flegel, Willy A.; Rotimi, Charles N.; Rodgers, Griffin P.

    2018-01-01

    Background Benign ethnic neutropenia (BEN) is a hematologic condition associated with people of African ancestry and specific Middle Eastern ethnic groups. Prior genetic association studies in large population showed that rs2814778 in Duffy Antigen Receptor for Chemokines (DARC) gene, specifically DARC null red cell phenotype, was associated with BEN. However, the mechanism of this red cell phenotype leading to low white cell count remained elusive. Methods We conducted an extreme phenotype design genome-wide association study (GWAS), analyzed ~16 million single nucleotide polymorphisms (SNP) in 1,178 African-Americans individuals from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study and replicated from 819 African-American participants in the Atherosclerosis Risk in Communities (ARIC) study. Conditional analyses on rs2814778 were performed to identify additional association signals on chromosome 1q22. In a separate cohort of healthy individuals with and without BEN, whole genome gene expression from peripheral blood neutrophils were analyzed for DARC. Results We confirmed that rs2814778 in DARC was associated with BEN (p = 4.09×10−53). Conditioning on rs2814778 abolished other significant chromosome 1 associations. Inflammatory cytokines (IL-2, 6, and 10) in participants in the Howard University Family Study (HUFS) and Multi-Ethnic Study in Atherosclerosis (MESA) showed similar levels in individuals homozygous for the rs2814778 allele compared to others, indicating cytokine sink hypothesis played a minor role in leukocyte homeostasis. Gene expression in neutrophils of individuals with and without BEN was also similar except for low DARC expression in BEN, suggesting normal function. BEN neutrophils had slightly activated profiles in leukocyte migration and hematopoietic stem cell mobilization pathways (expression fold change <2). Conclusions These results in humans support the notion of DARC null erythroid progenitors preferentially differentiating to myeloid cells, leading to activated DARC null neutrophils egressing from circulation to the spleen, and causing relative neutropenia. Collectively, these human data sufficiently explained the mechanism DARC null red cell phenotype causing BEN and further provided a biologic basis that BEN is clinically benign. PMID:29596498

  19. Analyses of genome wide association data, cytokines, and gene expression in African-Americans with benign ethnic neutropenia.

    PubMed

    Charles, Bashira A; Hsieh, Matthew M; Adeyemo, Adebowale A; Shriner, Daniel; Ramos, Edward; Chin, Kyung; Srivastava, Kshitij; Zakai, Neil A; Cushman, Mary; McClure, Leslie A; Howard, Virginia; Flegel, Willy A; Rotimi, Charles N; Rodgers, Griffin P

    2018-01-01

    Benign ethnic neutropenia (BEN) is a hematologic condition associated with people of African ancestry and specific Middle Eastern ethnic groups. Prior genetic association studies in large population showed that rs2814778 in Duffy Antigen Receptor for Chemokines (DARC) gene, specifically DARC null red cell phenotype, was associated with BEN. However, the mechanism of this red cell phenotype leading to low white cell count remained elusive. We conducted an extreme phenotype design genome-wide association study (GWAS), analyzed ~16 million single nucleotide polymorphisms (SNP) in 1,178 African-Americans individuals from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study and replicated from 819 African-American participants in the Atherosclerosis Risk in Communities (ARIC) study. Conditional analyses on rs2814778 were performed to identify additional association signals on chromosome 1q22. In a separate cohort of healthy individuals with and without BEN, whole genome gene expression from peripheral blood neutrophils were analyzed for DARC. We confirmed that rs2814778 in DARC was associated with BEN (p = 4.09×10-53). Conditioning on rs2814778 abolished other significant chromosome 1 associations. Inflammatory cytokines (IL-2, 6, and 10) in participants in the Howard University Family Study (HUFS) and Multi-Ethnic Study in Atherosclerosis (MESA) showed similar levels in individuals homozygous for the rs2814778 allele compared to others, indicating cytokine sink hypothesis played a minor role in leukocyte homeostasis. Gene expression in neutrophils of individuals with and without BEN was also similar except for low DARC expression in BEN, suggesting normal function. BEN neutrophils had slightly activated profiles in leukocyte migration and hematopoietic stem cell mobilization pathways (expression fold change <2). These results in humans support the notion of DARC null erythroid progenitors preferentially differentiating to myeloid cells, leading to activated DARC null neutrophils egressing from circulation to the spleen, and causing relative neutropenia. Collectively, these human data sufficiently explained the mechanism DARC null red cell phenotype causing BEN and further provided a biologic basis that BEN is clinically benign.

  20. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection

    NASA Astrophysics Data System (ADS)

    Rahmer, J.; Antonelli, A.; Sfara, C.; Tiemann, B.; Gleich, B.; Magnani, M.; Weizenecker, J.; Borgert, J.

    2013-06-01

    Magnetic particle imaging (MPI) is a new medical imaging approach that is based on the nonlinear magnetization response of super-paramagnetic iron oxide nanoparticles (SPIOs) injected into the blood stream. To date, real-time MPI of the bolus passage of an approved MRI SPIO contrast agent injected into the tail vein of living mice has been demonstrated. However, nanoparticles are rapidly removed from the blood stream by the mononuclear phagocyte system. Therefore, imaging applications for long-term monitoring require the repeated administration of bolus injections, which complicates quantitative comparisons due to the temporal variations in concentration. Encapsulation of SPIOs into red blood cells (RBCs) has been suggested to increase the blood circulation time of nanoparticles. This work presents first evidence that SPIO-loaded RBCs can be imaged in the blood pool of mice several hours after injection using MPI. This finding is supported by magnetic particle spectroscopy performed to quantify the iron concentration in blood samples extracted from the mice 3 and 24 h after injection of SPIO-loaded RBCs. Based on these results, new MPI applications can be envisioned, such as permanent 3D real-time visualization of the vessel tree during interventional procedures, bleeding monitoring after stroke, or long-term monitoring and treatment control of cardiovascular diseases.

  1. [Tissue oxygen saturation in the critically ill patient].

    PubMed

    Gruartmoner, G; Mesquida, J; Baigorri, F

    2014-05-01

    Hemodynamic resuscitation seeks to correct global macrocirculatory parameters of pressure and flow. However, current evidence has shown that despite the normalization of these global parameters, microcirculatory and regional perfusion alterations can persist, and these alterations have been independently associated with a poorer patient prognosis. This in turn has lead to growing interest in new technologies for exploring regional circulation and microcirculation. Near infra-red spectroscopy allows us to monitor tissue oxygen saturation, and has been proposed as a noninvasive, continuous and easy-to-obtain measure of regional circulation. The present review aims to summarize the existing evidence on near infra-red spectroscopy and its potential clinical role in the resuscitation of critically ill patients in shock. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  2. Blood volume changes. [weightlessness effects

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Driscoll, T. B.; Leblance, A. D.

    1974-01-01

    Analysis of radionuclide volume determinations made for the crewmembers of selected Gemini and Apollo missions showed that orbital spaceflight has an effect on red cell mass. Because the methods and the protocol developed for earlier flights were used for the crews of the three Skylab missions, direct comparisons are possible. After each Skylab mission, decreases were found in crewmembers' red cell masses. The mean red cell mass decrease of 11 percent or 232 milliliters was approximately equal to the 10 percent mean red cell mass decrease of the Apollo 14 to 17 crewmembers. The red cell mass drop was greatest and the postrecovery reticulocyte response least for crewmembers of the 28-day Skylab 2 mission. Analyses of data from the red cell mass determinations indicate that the red cell mass drops occurred in the first 30 days of flight and that a gradual recovery of the red cell mass deficits began approximately 60 days after launch. The beginning of red cell mass regeneration during the Skylab 4 flight may explain the higher postmission reticulocyte counts.

  3. Evidence for circulating cancer stem-like cells and epithelial-mesenchymal transition phenotype in the pleurospheres derived from lung adenocarcinoma using liquid biopsy.

    PubMed

    Mirza, Sheefa; Jain, Nayan; Rawal, Rakesh

    2017-03-01

    Lung cancer stem cells are supposed to be the main drivers of tumor initiation, maintenance, drug resistance, and relapse of the disease. Hence, identification of the cellular and molecular aspects of these cells is a prerequisite for targeted therapy of lung cancer. Currently, analysis of circulating tumor cells has the potential to become the main diagnostic technique to monitor disease progression or therapeutic response as it is non-invasive. However, accurate detection of circulating tumor cells has remained a challenge, as epithelial cell markers used so far are not always trustworthy for detecting circulating tumor cells, especially during epithelial-mesenchymal transition. As cancer stem cells are the only culprit to initiate metastatic tumors, our aim was to isolate and characterize circulating tumor stem cells rather than circulating tumor cells from the peripheral blood of NSCLC adenocarcinoma as limited data are available addressing the gene expression profiling of lung cancer stem cells. Here, we reveal that CD44(+)/CD24(-) population in circulation not only exhibit stem cell-related genes but also possess epithelial-mesenchymal transition characteristics. In conclusion, the use of one or more cancer stem cell markers along with epithelial, mesenchymal and epithelial mesenchymal transition markers will prospectively provide the most precise assessment of the threat for recurrence and metastatic disease and has a great potential for forthcoming applications in harvesting circulating tumor stem cells and their downstream applications. Our results will aid in developing diagnostic and prognostic modalities and personalized treatment regimens like dendritic cell-based immunotherapy that can be utilized for targeting and eliminating circulating tumor stem cells, to significantly reduce the possibility of relapse and improve clinical outcomes.

  4. Physical and biological response of mesoscale eddies to wintertime forcing in the north central Red Sea (22˚N-25.5˚N)

    NASA Astrophysics Data System (ADS)

    Zarokanellos, N.; Jones, B. H.

    2016-02-01

    Red Sea is one of the saltiest and warmer seas in the world and acts as inverted estuary. Until recently, the Red Sea has been relatively underexplored. The limited observations that exist and results from various modeling exercises for the Red Sea have indicated that the sea has a complex mesoscale circulation often dominated by eddies. These mesoscale eddies are often visible in satellite imagery of sea surface height, temperature or chlorophyll, but only the surface expression of them. Because of previously limited in situ observations, the processes that drive the physical dynamics and the coupled biological responses have been poorly understood. To resolve and understand the role of these eddies in the dynamics of the north-central Red Sea during the wintertime, we used a combination of approaches that include remote sensing and autonomous underwater gliders equipped with physical, chemical, and bio-optical sensors. Remote sensing analyses of these eddies has shown that these eddies not only affect the physical circulation, but modify and disperse the phytoplankton populations and enhance exchange between the open sea and coastal coral reef ecosystems. During winter 2015, we observed deeper mixing driven by surface cooling and strong winds. As of result of the deeper mixing, phytoplankton populations became well mixed such that the ocean color imagery now reflected the integrated vertical processes. Localized diel fluctuations in phytoplankton are clearly evident during these well mixed periods. The mixing likely contributes to enhanced nutrient fluxes as well. Through sustained AUV observations, we have better understand the development, evolution, and dissipation of eddies. We also now have a better understanding of the mixing of source water from both the northern and southern Red Sea in this region of the north central Red Sea.

  5. Kinetic and stoichiometric constraints determine the pathway of H2O2 consumption by red blood cells.

    PubMed

    Orrico, Florencia; Möller, Matías N; Cassina, Adriana; Denicola, Ana; Thomson, Leonor

    2018-05-09

    Red blood cells (RBC) are considered as a circulating sink of H 2 O 2 , but a significant debate remains over the role of the different intraerythocyte peroxidases. Herein we examined the kinetic of decomposition of exogenous H 2 O 2 by human RBC at different cell densities, using fluorescent and oxymetric methods, contrasting the results against a mathematical model. Fluorescent measurements as well as oxygen production experiments showed that catalase was responsible for most of the decomposition of H 2 O 2 at cell densities suitable for both experimental settings (0.1-10 × 10 10 cell L -1 ), since sodium azide but not N-ethylmaleimide (NEM) inhibited H 2 O 2 consumption. Oxygen production decreased at high cell densities until none was detected above 1.1 × 10 12 cell L- 1 , being recovered after inhibition of the thiol dependent systems by NEM. This result underlined that the consumption of H 2 O 2 by catalase prevail at RBC densities regularly used for research, while the thiol dependent systems predominate when the cell density increases, approaching the normal number in blood (5 × 10 12 cell L- 1 ). The mathematical model successfully reproduced experimental results and at low cell number it showed a time sequence involving Prx as the first line of defense, followed by catalase, with a minor role by Gpx. The turning points were given by the total consumption of reduced Prx in first place and reduced GSH after that. However, Prx alone was able to account for the added H 2 O 2 (50µM) at physiological RBC density, calling attention to the importance of cell density in defining the pathway of H 2 O 2 consumption and offering an explanation to current apparently conflicting results in the literature. Copyright © 2018. Published by Elsevier Inc.

  6. Method using CO for extending the useful shelf-life of refrigerated red blood cells

    DOEpatents

    Bitensky, M.W.

    1995-12-19

    A method is disclosed using CO for extending the useful shelf-life of refrigerated red blood cells. Carbon monoxide is utilized for stabilizing hemoglobin in red blood cells to be stored at low temperature. Changes observed in the stored cells are similar to those found in normal red cell aging in the body, the extent thereof being directly related to the duration of refrigerated storage. Changes in cell buoyant density, vesiculation, and the tendency of stored cells to bind autologous IgG antibody directed against polymerized band 3 IgG, all of which are related to red blood cell senescence and increase with refrigerated storage time, have been substantially slowed when red blood cells are treated with CO. Removal of the carbon monoxide from the red blood cells is readily and efficiently accomplished by photolysis in the presence of oxygen so that the stored red blood cells may be safely transfused into a recipient. 5 figs.

  7. Intra- and Interorgan Communication in the Cardiovascular System: A Special View on Redox Regulation.

    PubMed

    Gödecke, Axel; Haendeler, Judith

    2017-04-20

    Intraorgan communication in the cardiovascular system is exerted not only by direct cell-cell contacts but also by locally released factors, which modulate neighboring cells by paracrine signals (e.g., NO, vascular endothelial growth factor, adenosine, reactive oxygen species). Moreover, cells in close proximity to the typical cardiovascular cells such as fibroblasts, red blood cells, as well as resident and invading immune cells must be considered in attempts to understand cardiovascular function in physiology and pathology. The second level of communication is the interorgan communication, which may be distinguished from intraorgan communication, since it involves signaling from remote organs to the heart and circulation. Therefore, mediators released by, for example, the kidney or skeletal muscle reach the heart and modulate its function. This is not only the case under physiological conditions, because there is increasing evidence that the organ-specific response to a primary insult may affect also the function of remote organs by the release of factors. This Forum will summarize novel mechanisms involved in intraorgan and interorgan communication of the cardiovascular system, with a special view on the remote organs, skeletal muscle and kidney. Antioxid. Redox Signal. 26, 613-615.

  8. Destruction of newly released red blood cells in space flight

    NASA Technical Reports Server (NTRS)

    Alfrey, C. P.; Udden, M. M.; Huntoon, C. L.; Driscoll, T.

    1996-01-01

    Space flight results in a rapid change in total blood volume, plasma volume, and red blood cell mass because the space to contain blood is decreased. The plasma volume and total blood volume decreases during the first hours in space and remain at a decreased level for the remainder of the flight. During the first several hours following return to earth, plasma volume and total blood volume increase to preflight levels. During the first few days in space recently produced red blood cells disappear from the blood resulting in a decrease in red blood cell mass of 10-15%. Red cells 12 d old or older survive normally and production of new cells continues at near preflight levels. After the first few days in space, the red cell mass is stable at the decreased level. Following return to earth the hemoglobin and red blood cell mass concentrations decrease reflecting the increase in plasma volume. The erythropoietin levels increase responding to "postflight anemia"; red cell production increases, and the red cell mass is restored to preflight levels after several weeks.

  9. Phosphate Ion Exchange Resin Used in the Liquid Preservation of Baboon Red Blood Cells.

    DTIC Science & Technology

    1982-06-08

    absence of resin. The addition of a phosphate anion exchange resin to the CPD anticoagulant provided better maintenance of red cell 23 DPG and P50 levels ...than red blood cells S.prepared from blood without resin. Red blood cell ATP levels and 24-hour post- transfusion survival values were similar whether or...coagulant provided better maintenance of red cell 2,3 DPG and P50 levels during storage of whole blood at 4 C, and red blood cells prepared from whole

  10. Fluid Mechanics of Blood Clot Formation.

    PubMed

    Fogelson, Aaron L; Neeves, Keith B

    2015-01-01

    Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.

  11. Fluid Mechanics of Blood Clot Formation

    NASA Astrophysics Data System (ADS)

    Fogelson, Aaron L.; Neeves, Keith B.

    2015-01-01

    Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.

  12. Relative Risks of Thrombosis and Bleeding in Different ABO Blood Groups.

    PubMed

    Franchini, Massimo; Lippi, Giuseppe

    2016-03-01

    The ABO blood group system is composed of complex carbohydrate molecules (i.e., the A, B, and H determinants) that are widely expressed on the surface of red blood cells and in a variety of other cell and tissues. Along with their pivotal role in transfusion and transplantation medicine, the ABO antigens participate in many other physiological processes and, in particular, are important determinants of von Willebrand factor and factor VIII circulating plasma levels. The precise influence of the ABO system on hemostasis has led the way to the investigation of a putative implication in the risk of developing cardiovascular disorders. Along with the underlying molecular mechanisms, the current knowledge on the role of ABO blood group antigens in both the thrombotic and hemorrhagic risk will be summarized in this narrative review. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells

    NASA Astrophysics Data System (ADS)

    He, Yun; Wang, Lidai; Shi, Junhui; Yao, Junjie; Li, Lei; Zhang, Ruiying; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2016-12-01

    Metastasis causes as many as 90% of cancer-related deaths, especially for the deadliest skin cancer, melanoma. Since hematogenous dissemination of circulating tumor cells is the major route of metastasis, detection and destruction of circulating tumor cells are vital for impeding metastasis and improving patient prognosis. Exploiting the exquisite intrinsic optical absorption contrast of circulating melanoma cells, we developed dual-wavelength photoacoustic flow cytography coupled with a nanosecond-pulsed melanoma-specific laser therapy mechanism. We have successfully achieved in vivo label-free imaging of rare single circulating melanoma cells in both arteries and veins of mice. Further, the photoacoustic signal from a circulating melanoma cell immediately hardware-triggers a lethal pinpoint laser irradiation to kill it on the spot in a thermally confined manner without causing collateral damage. A pseudo-therapy study including both in vivo and in vitro experiments demonstrated the performance and the potential clinical value of our method, which can facilitate early treatment of metastasis by clearing circulating tumor cells from vasculature.

  14. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Calibrator for red cell and white cell counting...

  15. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Calibrator for red cell and white cell counting...

  16. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Calibrator for red cell and white cell counting...

  17. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... counting is a device that resembles red or white blood cells and that is used to set instruments intended to count red cells, white cells, or both. It is a suspension of particles or cells whose size, shape... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Calibrator for red cell and white cell counting...

  18. The effects of conventional extracorporeal circulation versus miniaturized extracorporeal circulation on microcirculation during cardiopulmonary bypass-assisted coronary artery bypass graft surgery

    PubMed Central

    Yuruk, Koray; Bezemer, Rick; Euser, Mariska; Milstein, Dan M.J.; de Geus, Hilde H.R.; Scholten, Evert W.; de Mol, Bas A.J.M.; Ince, Can

    2012-01-01

    OBJECTIVES To reduce the complications associated with cardiopulmonary bypass (CPB) during cardiac surgery, many modifications have been made to conventional extracorporeal circulation systems. This trend has led to the development of miniaturized extracorporeal circulation systems. Cardiac surgery using conventional extracorporeal circulation systems has been associated with significantly reduced microcirculatory perfusion, but it remains unknown whether this could be prevented by an mECC system. Here, we aimed to test the hypothesis that microcirculatory perfusion decreases with the use of a conventional extracorporeal circulation system and would be preserved with the use of an miniaturized extracorporeal circulation system. METHODS Microcirculatory density and perfusion were assessed using sublingual side stream dark-field imaging in patients undergoing on-pump coronary artery bypass graft (CABG) surgery before, during and after the use of either a conventional extracorporeal circulation system (n = 10) or a miniaturized extracorporeal circulation system (n = 10). In addition, plasma neutrophil gelatinase-associated lipocalin and creatinine levels and creatinine clearance were assessed up to 5 days post-surgery to monitor renal function. RESULTS At the end of the CPB, one patient in the miniaturized extracorporeal circulation-treated group and five patients in the conventional extracorporeal circulation-treated group received one bag of packed red blood cells (300 ml). During the CPB, the haematocrit and haemoglobin levels were slightly higher in the miniaturized extracorporeal circulation-treated patients compared with the conventional extracorporeal circulation-treated patients (27.7 ± 3.3 vs 24.7 ± 2.0%; P = 0.03; and 6.42 ± 0.75 vs 5.41 ± 0.64 mmol/l; P < 0.01). The density of perfused vessels with a diameter <25 µm (i.e. perfused vessel density) decreased slightly in the conventional extracorporeal circulation-treated group from 16.4 ± 3.8 to 12.8 ± 3.3 mm/mm2 (P < 0.01) and remained stable in the miniaturized extracorporeal circulation-treated group (16.3 ± 2.7 and 15.2 ± 2.9 mm/mm2 before and during the pump, respectively). Plasma neutrophil gelatinase-associated lipocalin levels were increased following the use of extracorporeal circulation in both groups, and no differences were observed between the groups. Plasma creatinine levels and creatinine clearance were not affected by CABG surgery or CPB. CONCLUSIONS The results from this relatively small study suggest that the use of the miniaturized extracorporeal circulation system is associated with a statistically significant (but clinically insignificant) reduction in haemodilution and microcirculatory hypoperfusion compared with the use of the conventional extracorporeal circulation system. PMID:22700685

  19. Growth and replication of red rain cells at 121°C and their red fluorescence

    NASA Astrophysics Data System (ADS)

    Gangappa, Rajkumar; Wickramasinghe, Chandra; Wainwright, Milton; Kumar, A. Santhosh; Louis, Godfrey

    2010-09-01

    We have shown that the red cells found in the Red Rain (which fell on Kerala, India, in 2001) survive and grow after incubation for periods of up to two hours at 121°C . Under these conditions daughter cells appear within the original mother cells and the number of cells in the samples increases with length of exposure to 121°C. No such increase in cells occurs at room temperature, suggesting that the increase in daughter cells is brought about by exposure of the Red Rain cells to high temperatures. This is an independent confirmation of results reported earlier by two of the present authors, claiming that the cells can replicate under high pressure at temperatures upto 300°C. The flourescence behaviour of the red cells is shown to be in remarkable correspondence with the extended red emission observed in the Red Rectagle planetary nebula and other galactic and extragalactic dust clouds, suggesting, though not proving an extraterrestrial origin.

  20. The number and function of circulating CD34+CD133+ progenitor cells decreased in stable coronary artery disease but not in acute myocardial infarction

    PubMed Central

    Kondo, Takahisa; Shintani, Satoshi; Maeda, Kengo; Hayashi, Mutsuharu; Inden, Yasuya; Numaguchi, Yasushi; Sugiura, Kaichiro; Morita, Yasuhiro; Kitamura, Tomoya; Kamiya, Haruo; Sone, Takahito; Ohno, Miyoshi; Murohara, Toyoaki

    2010-01-01

    Objective Circulating CD34+CD133+ cells are one of the main sources of circulating endothelial progenitor cells (EPCs). Age is inversely related to the number and function of CD34+CD133+ progenitor cells in stable coronary artery disease (CAD), but the relationship remains unclear in acute myocardial infarction (AMI). The authors aimed to clarify how ageing affects the number and function of mobilised CD34+CD133+ progenitor cells in AMI. Design and results Circulating CD34+CD133+ progenitor cells were measured by flow cytometry. Measurements were made at admission for CAD, or on day 7 after the onset of AMI. In stable CAD (n=131), circulating CD34+CD133+ cells decreased with age (r=−0.344, p<0.0001). In AMI, circulating CD34+CD133+ cells did not correlate with age (n=50), and multivariate analysis revealed that the decreased number of circulating CD34+CD133+ cells was associated with male sex and higher peak creatinine kinase. The ability to give rise to functional EPCs, which show good migratory and tube-forming capabilities, deteriorated among stable CAD subjects (n=10) compared with AMI subjects (N=6). Conclusions In stable CAD, the number and function of circulating CD34+CD133+ progenitor cells decreased with age, whereas those mobilised and circulating in AMI did not. PMID:27325937

  1. Optical Aptamer Probes of Fluorescent Imaging to Rapid Monitoring of Circulating Tumor Cell

    PubMed Central

    Hwang, Ji Yeon; Kim, Sang Tae; Han, Ho-Seong; Kim, Kyunggon; Han, Jin Soo

    2016-01-01

    Fluorescence detecting of exogenous EpCAM (epithelial cell adhesion molecule) or muc1 (mucin1) expression correlated to cancer metastasis using nanoparticles provides pivotal information on CTC (circulating tumor cell) occurrence in a noninvasive tool. In this study, we study a new skill to detect extracellular EpCAM/muc1 using quantum dot-based aptamer beacon (QD-EpCAM/muc1 ALB (aptamer linker beacon). The QD-EpCAM/muc1 ALB was designed using QDs (quantum dots) and probe. The EpCAM/muc1-targeting aptamer contains a Ep-CAM/muc1 binding sequence and BHQ1 (black hole quencher 1) or BHQ2 (black hole quencher2). In the absence of target EpCAM/muc1, the QD-EpCAM/muc1 ALB forms a partial duplex loop-like aptamer beacon and remained in quenched state because the BHQ1/2 quenches the fluorescence signal-on of the QD-EpCAM/muc1 ALB. The binding of EpCAM/muc1 of CTC to the EpCAM/muc1 binding aptamer sequence of the EpCAM/muc1-targeting oligonucleotide triggered the dissociation of the BHQ1/2 quencher and subsequent signal-on of a green/red fluorescence signal. Furthermore, acute inflammation was stimulated by trigger such as caerulein in vivo, which resulted in increased fluorescent signal of the cy5.5-EpCAM/muc1 ALB during cancer metastasis due to exogenous expression of EpCAM/muc1 in Panc02-implanted mouse model. PMID:27886058

  2. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukemia definition.

    PubMed

    Granell, Miquel; Calvo, Xavier; Garcia-Guiñón, Antoni; Escoda, Lourdes; Abella, Eugènia; Martínez, Clara Mª; Teixidó, Montserrat; Gimenez, Mª Teresa; Senín, Alicia; Sanz, Patricia; Campoy, Desirée; Vicent, Ana; Arenillas, Leonor; Rosiñol, Laura; Sierra, Jorge; Bladé, Joan; de Larrea, Carlos Fernández

    2017-06-01

    The presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the study herein, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analyzed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukemia were reviewed and patients were classified into 4 categories according to the percentage of circulating plasma cells: 0%, 1-4%, 5-20%, and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%), respectively. Median overall survival according to the circulating plasma cells group was 47, 50, 6 and 14 months, respectively. At multivariate analysis, the presence of 5 to 20% circulating plasma cells was associated with a worse overall survival (relative risk 4.9, 95% CI 2.6-9.3) independently of age, creatinine, the Durie-Salmon system stage and the International Staging System (ISS) stage. Patients with ≥5% circulating plasma cells had lower platelet counts (median 86×10 9 /L vs 214×10 9 /L, P <0.0001) and higher bone marrow plasma cells (median 53% vs 36%, P =0.004). The presence of ≥5% circulating plasma cells in patients with multiple myeloma has a similar adverse prognostic impact as plasma cell leukemia. Copyright© Ferrata Storti Foundation.

  3. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin

    2015-03-01

    Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.

  4. Usefulness of elevated red cell distribution width for predicting systemic inflammatory response syndrome after extracorporeal circulation.

    PubMed

    Özeren, M; Aytaçoğlu, B; Vezir, Ö; Karaca, K; Akın, R; Sucu, N

    2015-10-01

    Cardiac surgical operations performed by using extracorporeal circulation (ECC) lead to a systemic inflammatory response (SIR). Sometimes SIR may turn into a severe state, the systemic inflammatory response syndrome (SIRS) that usually has a poor outcome with no specific clinical tools described for its prediction. Red cell distribution width (RDW) is a routine hematological parameter. It has been proposed as a marker of morbidity and mortality in various clinical conditions. We aimed to investigate the relationship between high RDW and SIRS which is triggered by ECC. Eleven hundred consecutive patients who underwent elective heart surgery with the use of ECC were retrospectively analyzed. A total of 19 patients fulfilled the described SIRS criteria and 20 consecutive patients were selected as the control group. RDW and other laboratory parameters, preoperative clinical status, operative data and postoperative data were compared between the SIRS and the control groups. Baseline characteristics of the patient groups were similar. Significant mortality was found in the SIRS group; 18 (94.73%) patients and 2 (10%) patients in the control group (p < 0.002). RDW was found to be significantly higher in the SIRS group vs the control group (15.02 ± 2.03 vs 13.01 ± 1.93, respectively, p < 0.003). Multiple logistic regression analyses showed an association between high RDW levels and SIRS development (OR for RDW levels exceeding 13.5%; 95% confidence limits of 1.0-1.3; p < 0.04). Total operation time and the need for inotropic support were also found to be significant against the SIRS group (p = 0.049). Increased RDW was significantly associated with increased risk of SIRS after ECC. The results of this study suggest that paying attention to RDW might provide valuable clinical information for predicting SIRS development among patients who are candidates for open heart surgery, without incurring additional costs. © The Author(s) 2015.

  5. Design of a Novel MEMS Microgripper with Rotatory Electrostatic Comb-Drive Actuators for Biomedical Applications.

    PubMed

    Velosa-Moncada, Luis A; Aguilera-Cortés, Luz Antonio; González-Palacios, Max A; Raskin, Jean-Pierre; Herrera-May, Agustin L

    2018-05-22

    Primary tumors of patients can release circulating tumor cells (CTCs) to flow inside of their blood. The CTCs have different mechanical properties in comparison with red and white blood cells, and their detection may be employed to study the efficiency of medical treatments against cancer. We present the design of a novel MEMS microgripper with rotatory electrostatic comb-drive actuators for mechanical properties characterization of cells. The microgripper has a compact structural configuration of four polysilicon layers and a simple performance that control the opening and closing displacements of the microgripper tips. The microgripper has a mobile arm, a fixed arm, two different actuators and two serpentine springs, which are designed based on the SUMMiT V surface micromachining process from Sandia National Laboratories. The proposed microgripper operates at its first rotational resonant frequency and its mobile arm has a controlled displacement of 40 µm at both opening and closing directions using dc and ac bias voltages. Analytical models are developed to predict the stiffness, damping forces and first torsional resonant frequency of the microgripper. In addition, finite element method (FEM) models are obtained to estimate the mechanical behavior of the microgripper. The results of the analytical models agree very well respect to FEM simulations. The microgripper has a first rotational resonant frequency of 463.8 Hz without gripped cell and it can operate up to with maximum dc and ac voltages of 23.4 V and 129.2 V, respectively. Based on the results of the analytical and FEM models about the performance of the proposed microgripper, it could be used as a dispositive for mechanical properties characterization of circulating tumor cells (CTCs).

  6. Design of a Novel MEMS Microgripper with Rotatory Electrostatic Comb-Drive Actuators for Biomedical Applications

    PubMed Central

    Velosa-Moncada, Luis A.; Aguilera-Cortés, Luz Antonio; Raskin, Jean-Pierre

    2018-01-01

    Primary tumors of patients can release circulating tumor cells (CTCs) to flow inside of their blood. The CTCs have different mechanical properties in comparison with red and white blood cells, and their detection may be employed to study the efficiency of medical treatments against cancer. We present the design of a novel MEMS microgripper with rotatory electrostatic comb-drive actuators for mechanical properties characterization of cells. The microgripper has a compact structural configuration of four polysilicon layers and a simple performance that control the opening and closing displacements of the microgripper tips. The microgripper has a mobile arm, a fixed arm, two different actuators and two serpentine springs, which are designed based on the SUMMiT V surface micromachining process from Sandia National Laboratories. The proposed microgripper operates at its first rotational resonant frequency and its mobile arm has a controlled displacement of 40 µm at both opening and closing directions using dc and ac bias voltages. Analytical models are developed to predict the stiffness, damping forces and first torsional resonant frequency of the microgripper. In addition, finite element method (FEM) models are obtained to estimate the mechanical behavior of the microgripper. The results of the analytical models agree very well respect to FEM simulations. The microgripper has a first rotational resonant frequency of 463.8 Hz without gripped cell and it can operate up to with maximum dc and ac voltages of 23.4 V and 129.2 V, respectively. Based on the results of the analytical and FEM models about the performance of the proposed microgripper, it could be used as a dispositive for mechanical properties characterization of circulating tumor cells (CTCs). PMID:29789474

  7. Krüppel-Like Factor 1 (KLF1), KLF2, and Myc Control a Regulatory Network Essential for Embryonic Erythropoiesis

    PubMed Central

    Pang, Christopher J.; Lemsaddek, Wafaa; Alhashem, Yousef N.; Bondzi, Cornelius; Redmond, Latasha C.; Ah-Son, Nicolas; Dumur, Catherine I.; Archer, Kellie J.; Haar, Jack L.

    2012-01-01

    The Krüppel-like factor 1 (KLF1) and KLF2 positively regulate embryonic β-globin expression and have additional overlapping roles in embryonic (primitive) erythropoiesis. KLF1−/− KLF2−/− double knockout mice are anemic at embryonic day 10.5 (E10.5) and die by E11.5, in contrast to single knockouts. To investigate the combined roles of KLF1 and KLF2 in primitive erythropoiesis, expression profiling of E9.5 erythroid cells was performed. A limited number of genes had a significantly decreasing trend of expression in wild-type, KLF1−/−, and KLF1−/− KLF2−/− mice. Among these, the gene for Myc (c-Myc) emerged as a central node in the most significant gene network. The expression of the Myc gene is synergistically regulated by KLF1 and KLF2, and both factors bind the Myc promoters. To characterize the role of Myc in primitive erythropoiesis, ablation was performed specifically in mouse embryonic proerythroblast cells. After E9.5, these embryos exhibit an arrest in the normal expansion of circulating red cells and develop anemia, analogous to KLF1−/− KLF2−/− embryos. In the absence of Myc, circulating erythroid cells do not show the normal increase in α- and β-like globin gene expression but, interestingly, have accelerated erythroid cell maturation between E9.5 and E11.5. This study reveals a novel regulatory network by which KLF1 and KLF2 regulate Myc to control the primitive erythropoietic program. PMID:22566683

  8. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model.

    PubMed

    O'Loughlin, Aonghus; Kulkarni, Mangesh; Vaughan, Erin E; Creane, Michael; Liew, Aaron; Dockery, Peter; Pandit, Abhay; O'Brien, Timothy

    2013-01-01

    Diabetic foot ulceration is the leading cause of amputation in people with diabetes mellitus. Peripheral vascular disease is present in the majority of patients with diabetic foot ulcers. Despite standard treatments there exists a high amputation rate. Circulating angiogenic cells previously known as early endothelial progenitor cells are derived from peripheral blood and support angiogenesis and vasculogenesis, providing a potential topical treatment for non-healing diabetic foot ulcers. A scaffold fabricated from Type 1 collagen facilitates topical cell delivery to a diabetic wound. Osteopontin is a matricellular protein involved in wound healing and increases the angiogenic potential of circulating angiogenic cells. A collagen scaffold seeded with circulating angiogenic cells was developed. Subsequently the effect of autologous circulating angiogenic cells that were seeded in a collagen scaffold and topically delivered to a hyperglycemic cutaneous wound was assessed. The alloxan-induced diabetic rabbit ear ulcer model was used to determine healing in response to the following treatments: collagen seeded with autologous circulating angiogenic cells exposed to osteopontin, collagen seeded with autologous circulating angiogenic cells, collagen alone and untreated wound. Stereology was used to assess angiogenesis in wounds. The cells exposed to osteopontin and seeded on collagen increased percentage wound closure as compared to other groups. Increased angiogenesis was observed with the treatment of collagen and collagen seeded with circulating angiogenic cells. These results demonstrate that topical treatment of full thickness cutaneous ulcers with autologous circulating angiogenic cells increases wound healing. Cells exposed to the matricellular protein osteopontin result in superior wound healing. The wound healing benefit is associated with a more efficient vascular network. This topical therapy provides a potential novel therapy for the treatment of non-healing diabetic foot ulcers in humans.

  9. Computational Hemodynamic Simulation of Human Circulatory System under Altered Gravity

    NASA Technical Reports Server (NTRS)

    Kim. Chang Sung; Kiris, Cetin; Kwak, Dochan

    2003-01-01

    A computational hemodynamics approach is presented to simulate the blood flow through the human circulatory system under altered gravity conditions. Numerical techniques relevant to hemodynamics issues are introduced to non-Newtonian modeling for flow characteristics governed by red blood cells, distensible wall motion due to the heart pulse, and capillary bed modeling for outflow boundary conditions. Gravitational body force terms are added to the Navier-Stokes equations to study the effects of gravity on internal flows. Six-type gravity benchmark problems are originally presented to provide the fundamental understanding of gravitational effects on the human circulatory system. For code validation, computed results are compared with steady and unsteady experimental data for non-Newtonian flows in a carotid bifurcation model and a curved circular tube, respectively. This computational approach is then applied to the blood circulation in the human brain as a target problem. A three-dimensional, idealized Circle of Willis configuration is developed with minor arteries truncated based on anatomical data. Demonstrated is not only the mechanism of the collateral circulation but also the effects of gravity on the distensible wall motion and resultant flow patterns.

  10. Brain regions involved in the development of acute phase responses accompanying fever in rabbits.

    PubMed Central

    Morimoto, A; Murakami, N; Nakamori, T; Sakata, Y; Watanabe, T

    1989-01-01

    1. The effects of microinjection of rabbit endogenous pyrogen and human recombinant interleukin-1 alpha on rectal temperature and acute phase responses were extensively examined in forty different brain regions of rabbits. The acute phase responses that were investigated were the changes in plasma levels of iron, zinc and copper concentration and the changes in circulating leucocyte count. 2. The rostral hypothalamic regions, such as nucleus broca ventralis, preoptic area and anterior hypothalamic region, responded to the microinjection of endogenous pyrogen or interleukin-1 by producing both fever and acute phase responses. 3. The microinjection of endogenous pyrogen or interleukin-1 into the rostral hypothalamic regions significantly decreased the plasma levels of iron and zinc concentration 8 and 24 h after injection. The circulating leucocyte count increased 8 h after injection. However, neither the injections of endogenous pyrogen nor interleukin-1 affected the number of red blood cells. 4. The present results show that the rostral hypothalamic regions respond directly to endogenous pyrogen or interleukin-1 with the consequent development of fever and acute phase responses. PMID:2514261

  11. Significant decrease of saturation index in erythrocytes membrane from subjects with non-alcoholic fatty liver disease (NAFLD).

    PubMed

    Notarnicola, Maria; Caruso, Maria Gabriella; Tutino, Valeria; Bonfiglio, Caterina; Cozzolongo, Raffaele; Giannuzzi, Vito; De Nunzio, Valentina; De Leonardis, Giampiero; Abbrescia, Daniela I; Franco, Isabella; Intini, Vincenza; Mirizzi, Antonella; Osella, Alberto R

    2017-08-23

    The lipidomic profiling of erythrocyte membranes is expected to provide a peculiar scenario at molecular level of metabolic and nutritional pathways which may influence the lipid balance and the adaptation and homeostasis of the organism. Considering that lipid accumulation in the cell is important in promoting tissue inflammation, the purpose of this study is to analyze the fatty acid profile in red blood cell membranes of patients with Non-Alcoholic Fatty Liver Disease (NAFLD), in order to identify and validate membrane profiles possibly associated with the degree of hepatic damage. This work presents data obtained at baseline from 101 subjects that participated to a nutritional trial (registration number: NCT02347696) enrolling consecutive subjects with NAFLD. Diagnosis of liver steatosis was performed by using vibration-controlled elastography implemented on FibroScan. Fatty acids, extracted from phospholipids of erythrocyte membranes, were quantified by gas chromatography method. The subjects with severe NAFLD showed a significant decrease of the ratio of stearic acid to oleic acid (saturation index, SI) compared to controls, 1.281 ± 0.31 vs 1.5 ± 0.29, respectively. Low levels of SI in red blood cell membranes, inversely associated with degree of liver damage, suggest that an impairment of circulating cell membrane structure can reflect modifications that take place in the liver. Subjects with severe NAFLDalso showed higher levels of elongase 5 enzymatic activity, evaluated as vaccenic acid to palmitoleic acid ratio. Starting from these evidences, our findings show the importance of lipidomic approach in the diagnosis and the staging of NAFLD.

  12. Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve. Non-Newtonian blood flow in the aortic root

    NASA Astrophysics Data System (ADS)

    De Vita, F.; de Tullio, M. D.; Verzicco, R.

    2016-04-01

    This work focuses on the comparison between Newtonian and non-Newtonian blood flows through a bileaflet mechanical heart valve in the aortic root. The blood, in fact, is a concentrated suspension of cells, mainly red blood cells, in a Newtonian matrix, the plasma, and consequently its overall behavior is that of a non-Newtonian fluid owing to the action of the cells' membrane on the fluid part. The common practice, however, assumes the blood in large vessels as a Newtonian fluid since the shear rate is generally high and the effective viscosity becomes independent of the former. In this paper, we show that this is not always the case even in the aorta, the largest artery of the systemic circulation, owing to the pulsatile and transitional nature of the flow. Unexpectedly, for most of the pulsating cycle and in a large part of the fluid volume, the shear rate is smaller than the threshold level for the blood to display a constant effective viscosity and its shear thinning character might affect the system dynamics. A direct inspection of the various flow features has shown that the valve dynamics, the transvalvular pressure drop and the large-scale features of the flow are very similar for the Newtonian and non-Newtonian fluid models. On the other hand, the mechanical damage of the red blood cells (hemolysis), induced by the altered stress values in the flow, is larger for the non-Newtonian fluid model than for the Newtonian one.

  13. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Reagent Red Blood Cells. 660.30 Section 660.30 Food... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall be Reagent Red...

  14. Altered expression of blood group A and H antigens on red cells from an acute leukemic patient.

    PubMed

    Matsuki, T; Shimano, S; Furukawa, K

    1992-01-01

    Alternate expressions of the blood group A and H antigens on red cells are described in a patient with acute myelocytic leukemia. The patient's red cells showed mixed field agglutination with anti-A and anti-H sera and lectins, and no agglutination with anti-B serum. The agglutinability of the A red cells with Dolichos biflorus lectin was between A1 and A2 (A intermediate). Inagglutinable red cells were separated with anti-A agglutinin, and the proportion was about 80% of total cells. The agglutinating activity with Ulex europaeus anti-H of red cells, which were inagglutinable with anti-A, was 16 times weaker than that of group O cells. The weaker reaction with Ricinus communis lectin and the stronger reaction with Psathyrella velutina lectin on the inagglutinable cells with anti-A than those on the group O cells suggest that fucosyl alpha (1-2) and galactosyl beta (1-4) residues at the nonreducing end of carbohydrate chains of H antigens on the red cells were diminished, and N-acetylglucosaminyl beta (1-3) residues were sequentially exposed. His saliva contained A and H substances in normal amounts of a secretor. Serum alpha-N-acetylgalactosaminyltransferase activity which converts O red cells to A red cells was the same as those in sera from A1 individuals. These results suggest that the synthesis of H precursors is partially blocked in this patient's red cells.

  15. mTOR Inhibition improves anaemia and reduces organ damage in a murine model of sickle cell disease.

    PubMed

    Wang, Jintao; Tran, Jennifer; Wang, Hui; Guo, Chiao; Harro, David; Campbell, Andrew D; Eitzman, Daniel T

    2016-08-01

    Mechanistic target of rapamycin (mTOR) has been shown to play an important role in red blood cell physiology, with inhibition of mTOR signalling leading to alterations in erythropoiesis. To determine if mTOR inhibition would improve anaemia in sickle cell disease (SCD), mice with SCD were treated with the dual mTORC1/2 inhibitor, INK128. One week after daily oral drug treatment, erythrocyte count, haemoglobin, and haematocrit were all significantly increased while reticulocyte counts were reduced. These parameters remained stable during 3 weeks of treatment. Similar effects were observed following oral treatment with the mTORC1 inhibitor, sirolimus. Sirolimus treatment prolonged the lifespan of sickle cell erythrocytes in circulation, reduced spleen size, and reduced renal and hepatic iron accumulation in SCD mice. Following middle cerebral artery occlusion, stroke size was reduced in SCD mice treated with sirolimus. In conclusion, mTOR inhibition is protective against anaemia and organ damage in a murine model of SCD. © 2016 John Wiley & Sons Ltd.

  16. Red Cabbage Microgreens Lower Circulating Low-Density Lipoprotein (LDL), Liver Cholesterol, and Inflammatory Cytokines in Mice Fed a High-Fat Diet.

    PubMed

    Huang, Haiqiu; Jiang, Xiaojing; Xiao, Zhenlei; Yu, Lu; Pham, Quynhchi; Sun, Jianghao; Chen, Pei; Yokoyama, Wallace; Yu, Liangli Lucy; Luo, Yaguang Sunny; Wang, Thomas T Y

    2016-12-07

    Cardiovascular disease (CVD) is the leading cause of death in the United States, and hypercholesterolemia is a major risk factor. Population studies, as well as animal and intervention studies, support the consumption of a variety of vegetables as a means to reduce CVD risk through modulation of hypercholesterolemia. Microgreens of a variety of vegetables and herbs have been reported to be more nutrient dense compared to their mature counterparts. However, little is known about the effectiveness of microgreens in affecting lipid and cholesterol levels. The present study used a rodent diet-induced obesity (DIO) model to address this question. C57BL/6NCr mice (n = 60, male, 5 weeks old) were randomly assigned to six feeding groups: (1) low-fat diet; (2) high-fat diet; (3) low-fat diet + 1.09% red cabbage microgreens; (4) low-fat diet + 1.66% mature red cabbage; (5) high-fat diet + 1.09% red cabbage microgreens; (6) high-fat diet + 1.66% mature red cabbage. The animals were on their respective diets for 8 weeks. We found microgreen supplementation attenuated high-fat diet induced weight gain. Moreover, supplementation with microgreens significantly lowered circulating LDL levels in animals fed the high-fat diet and reduced hepatic cholesterol ester, triacylglycerol levels, and expression of inflammatory cytokines in the liver. These data suggest that microgreens can modulate weight gain and cholesterol metabolism and may protect against CVD by preventing hypercholesterolemia.

  17. Red Blood Cell Susceptibility to Pneumolysin

    PubMed Central

    Bokori-Brown, Monika; Petrov, Peter G.; Khafaji, Mawya A.; Mughal, Muhammad K.; Naylor, Claire E.; Shore, Angela C.; Gooding, Kim M.; Casanova, Francesco; Mitchell, Tim J.; Titball, Richard W.; Winlove, C. Peter

    2016-01-01

    This study investigated the effect of the biochemical and biophysical properties of the plasma membrane as well as membrane morphology on the susceptibility of human red blood cells to the cholesterol-dependent cytolysin pneumolysin, a key virulence factor of Streptococcus pneumoniae, using single cell studies. We show a correlation between the physical properties of the membrane (bending rigidity and surface and dipole electrostatic potentials) and the susceptibility of red blood cells to pneumolysin-induced hemolysis. We demonstrate that biochemical modifications of the membrane induced by oxidative stress, lipid scrambling, and artificial cell aging modulate the cell response to the toxin. We provide evidence that the diversity of response to pneumolysin in diabetic red blood cells correlates with levels of glycated hemoglobin and that the mechanical properties of the red blood cell plasma membrane are altered in diabetes. Finally, we show that diabetic red blood cells are more resistant to pneumolysin and the related toxin perfringolysin O relative to healthy red blood cells. Taken together, these studies indicate that the diversity of cell response to pneumolysin within a population of human red blood cells is influenced by the biophysical and biochemical status of the plasma membrane and the chemical and/or oxidative stress pre-history of the cell. PMID:26984406

  18. Acquired RhD mosaicism identifies fibrotic transformation of thrombopoietin receptor-mutated essential thrombocythemia.

    PubMed

    Montemayor-Garcia, Celina; Coward, Rebecca; Albitar, Maher; Udani, Rupa; Jain, Prachi; Koklanaris, Eleftheria; Battiwalla, Minoo; Keel, Siobán; Klein, Harvey G; Barrett, A John; Ito, Sawa

    2017-09-01

    Acquired copy-neutral loss of heterozygosity has been described in myeloid malignant progression with an otherwise normal karyotype. A 65-year-old woman with MPL-mutated essential thrombocythemia and progression to myelofibrosis was noted upon routine pretransplant testing to have mixed field reactivity with anti-D and an historic discrepancy in RhD type. The patient had never received transfusions or transplantation. Gel immunoagglutination revealed group A red blood cells and a mixed-field reaction for the D phenotype, with a predominant D-negative population and a small subset of circulating red blood cells carrying the D antigen. Subsequent genomic microarray single nucleotide polymorphism profiling revealed copy-neutral loss of heterozygosity of chromosome 1 p36.33-p34.2, a known molecular mechanism underlying fibrotic progression of MPL-mutated essential thrombocythemia. The chromosomal region affected by this copy-neutral loss of heterozygosity encompassed the RHD, RHCE, and MPL genes. We propose a model of chronological molecular events that is supported by RHD zygosity assays in peripheral lymphoid and myeloid-derived cells. Copy-neutral loss of heterozygosity events that lead to clonal selection and myeloid malignant progression may also affect the expression of adjacent unrelated genes, including those encoding for blood group antigens. Detection of mixed-field reactions and investigation of discrepant blood typing results are important for proper transfusion support of these patients and can provide useful surrogate markers of myeloproliferative disease progression. © 2017 AABB.

  19. LPS-induced microvascular leukocytosis can be assessed by blue-field entoptic phenomenon.

    PubMed

    Kolodjaschna, Julia; Berisha, Fatmire; Lung, Solveig; Schaller, Georg; Polska, Elzbieta; Jilma, Bernd; Wolzt, Michael; Schmetterer, Leopold

    2004-08-01

    Administration of low doses of Escherichia coli endotoxin [a lipopolysaccharide (LPS)] to humans enables the study of inflammatory mechanisms. The purpose of the present study was to investigate whether the blue-field entoptic technique may be used to quantify the increase in circulating leukocytes in the ocular microvasculature after LPS infusion. In addition, combined laser Doppler velocimetry and retinal vessel size measurement were used to study red blood cell movement. Twelve healthy male volunteers received 20 IU/kg iv LPS as a bolus infusion. Outcome parameters were measured at baseline and 4 h after LPS administration. In the first protocol (n = 6 subjects), ocular hemodynamic effects were assessed with the blue-field entoptic technique, the retinal vessel analyzer, and laser Doppler velocimetry. In the second protocol (n = 6 subjects), white blood cell (WBC) counts from peripheral blood samples and blue-field entoptic technique measurements were performed. LPS caused peripheral blood leukocytosis and increased WBC density in ocular microvessels (by 49%; P = 0.036) but did not change WBC velocity. In addition, retinal venous diameter was increased (by 9%; P = 0.008), but red blood cell velocity remained unchanged. The LPS-induced changes in retinal WBC density and leukocyte counts were significantly correlated (r = 0.87). The present study indicates that the blue-field entoptic technique can be used to assess microvascular leukocyte recruitment in vivo. In addition, our data indicate retinal venous dilation in response to endotoxin.

  20. Red cell-derived microparticles (RMP) as haemostatic agent.

    PubMed

    Jy, Wenche; Johansen, Max E; Bidot, Carlos; Horstman, Lawrence L; Ahn, Yeon S

    2013-10-01

    Among circulating cell-derived microparticles, those derived from red cells (RMP) have been least well investigated. To exploit potential haemostatic benefit of RMP, we developed a method of producing them in quantity, and here report on their haemostatic properties. High-pressure extrusion of washed RBC was employed to generate RMP. RMP were identified and enumerated by flow cytometry. Their size distribution was assessed by Doppler electrophoretic light scattering analysis (DELSA). Interaction with platelets was studied by platelet aggregometry, and shear-dependent adhesion by Diamed IMPACT-R. Thrombin generation and tissue factor (TF) expression was also measured. The effect of RMP on blood samples of patients with bleeding disorders was investigated ex vivo by thromboelastography (TEG). Haemostatic efficacy in vivo was assessed by measuring reduction of blood loss and bleeding time in rats and rabbits. RMP have mean diameter of 0.45 µm and 50% of them exhibit annexin V binding, a proxy for procoagulant phospholipids (PL). No TF could be detected by flow cytometry. At saturating concentrations of MPs, RMP generated thrombin robustly but after longer delay compared to PMP and EMP. RMP enhanced platelet adhesion and aggregation induced by low-dose ADP or AA. In TEG study, RMP corrected or improved haemostatic defects in blood of patients with platelet and coagulation disorders. RMP reduced bleeding time and blood loss in thrombocytopenic rabbits (busulfan-treated) and in Plavix-treated rats. In conclusion, RMP has broad haemostatic activity, enhancing both primary (platelet) and secondary (coagulation) haemostasis, suggesting potential use as haemostatic agent for treatment of bleeding.

  1. GMI-1070, a novel pan-selectin antagonist, reverses acute vascular occlusions in sickle cell mice

    PubMed Central

    Chang, Jungshan; Patton, John T.; Sarkar, Arun; Ernst, Beat

    2010-01-01

    Leukocyte adhesion in the microvasculature influences blood rheology and plays a key role in vaso-occlusive manifestations of sickle cell disease. Notably, polymorphonuclear neutrophils (PMNs) can capture circulating sickle red blood cells (sRBCs) in inflamed venules, leading to critical reduction in blood flow and vaso-occlusion. Recent studies have suggested that E-selectin expression by endothelial cells plays a key role by sending activating signals that lead to the activation of Mac-1 at the leading edge of PMNs, thereby allowing RBC capture. Thus, the inhibition of E-selectin may represent a valuable target in this disease. Here, we have tested the biologic properties of a novel synthetic pan-selectin inhibitor, GMI-1070, with in vitro assays and in a humanized model of sickle cell vaso-occlusion analyzed by intravital microscopy. We have found that GMI-1070 predominantly inhibited E-selectin–mediated adhesion and dramatically inhibited sRBC-leukocyte interactions, leading to improved microcirculatory blood flow and improved survival. These results suggest that GMI-1070 may represent a valuable novel therapeutic intervention for acute sickle cell crises that should be further evaluated in a clinical trial. PMID:20508165

  2. “Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions”

    PubMed Central

    Mannino, Robert G.; Myers, David R.; Ahn, Byungwook; Wang, Yichen; Margo Rollins; Gole, Hope; Lin, Angela S.; Guldberg, Robert E.; Giddens, Don P.; Timmins, Lucas H.; Lam, Wilbur A.

    2015-01-01

    Investigating biophysical cellular interactions in the circulation currently requires choosing between in vivo models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or in vitro systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an in vitro “do-it-yourself” perfusable vasculature model that recapitulates in vivo geometries, such as aneurysms, stenoses, and bifurcations, and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly (<2 hours) with high precision and repeatability, using standard off-the-shelf laboratory supplies. Using these “endothelialized” systems, we demonstrate that spatial variation in vascular cell adhesion molecule (VCAM-1) expression correlates with the wall shear stress patterns of vascular geometries. We further observe that the presence of endothelial cells in stenoses reduces platelet adhesion but increases sickle cell disease (SCD) red blood cell (RBC) adhesion in bifurcations. Overall, our method enables researchers from all disciplines to study cellular interactions in physiologically relevant, yet simple-to-make, in vitro vasculature models. PMID:26202603

  3. [Studies on red orpiment induction of NB4 and HL-60 cell apoptosis].

    PubMed

    Bai, Y; Huang, S

    1998-09-01

    To study the possible mechanism of red orpiment, which is main component of composite indigo naturalis tablets, in the treatment of acute promyelocytic leukemia(APL). The effect of red orpiment on induction of APL cell line NB4 and HL-60 apoptosis were studied by cell morphology, DNA gel electrophoresis and flow cytometry assay. Red orpiment induced NB4 and HL-60 cell apoptosis. When treated with different concentration of red orpiment(25-200 micrograms/ml) for 16 hours, both NB4 and HL-60 cells showed typical apoptosis features. If decreased the concentration of red orpiment to 12.5 micrograms/ml, the NB4 cell still showed apoptosis features while the HL-60 cell did not when cultured for 72 hours. Arsenic disulfide(As2S2) had the same effect as red orpiment did under the same experiment condition. It is the main component, As2S2 of the red orpiment that can induces NB4 and HL-60 cell apoptosis. and the red orpiment is responsible for the high CR rate of APL induced by the composite indigo naturalis tablets.

  4. Red blood cell vesiculation in hereditary hemolytic anemia

    PubMed Central

    Alaarg, Amr; Schiffelers, Raymond M.; van Solinge, Wouter W.; van Wijk, Richard

    2013-01-01

    Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterized by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely assessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary hemolytic anemias. PMID:24379786

  5. Effects of selected synthetic insecticides on the total and differential populations of circulating haemocytes in adults of the red cotton stainer bug Dysdercus koenigii (Fabricius) (Hemiptera: Pyrrhocoridae).

    PubMed

    Sarwar, Zahid Mahmood; Ijaz, Mamuna; Sabri, Muhammad Altaf; Yousaf, Hasnain; Mohsan, Muhammad

    2018-06-01

    Red cotton bug, Dysdercus koenigii (Hemiptera: Pyrrhocoridae), has become the major insect pest of various crops, including cotton, and thereby reducing the yield qualitatively and quantitatively and synthetic insecticides belonging to different groups are the major control agents for such insect pests. A laboratory experiment was carried out to evaluate the effect of different conventional insecticides, i.e., imidacloprid, deltamethrin, lambda cyhalothrin, gamma cyhalothrin and cyfluthirn on haemocytes of D. koenigii. The individuals were exposed to insecticides separately and data was recorded after 30 and 60 min of the exposure. The findings of current study depicted chlorpyrifos to be more effective and significant alterations in total haemocyte counts and differential haemocyte counts were observed in the cyfluthirn treated D. koenigii. In addition to this, cell structure was also disrupted as an immune response. Similar studies would also be helpful to understand the defence mechanisms of insects against the xenobiotics which will help to device efficient management tools for D. koenigii.

  6. Inflight Assay of Red Blood Cell Deformability

    NASA Technical Reports Server (NTRS)

    Ingram, M.; Paglia, D. E.; Eckstein, E. C.; Frazer, R. E.

    1985-01-01

    Studies on Soviet and American astronauts have demonstrated that red blood cell production is altered in response to low gravity (g) environment. This is associated with changes in individual red cells including increased mean cell volume and altered membrane deformability. During long orbital missions, there is a tendency for the red cell mass deficit to be at least partly corrected although the cell shape anomalies are not. Data currently available suggest that the observed decrease in red cell mass is the result of sudden suppression of erythropoieses and that the recovery trend observed during long missions reflects re-establishment of erythropoietic homeostasis at a "set point" for the red cell mass that is slightly below the normal level at 1 g.

  7. Enrichment and Detection of Circulating Tumor Cells and Other Rare Cell Populations by Microfluidic Filtration.

    PubMed

    Pugia, Michael; Magbanua, Mark Jesus M; Park, John W

    2017-01-01

    The current standard methods for isolating circulating tumor cells (CTCs) from blood involve EPCAM-based immunomagnetic approaches. A major disadvantage of these strategies is that CTCs with low EPCAM expression will be missed. Isolation by size using filter membranes circumvents the reliance on this cell surface marker, and can facilitate the capture not only of EPCAM-negative CTCs but other rare cells as well. These cells that are trapped on the filter membrane can be characterized by immunocytochemistry (ICC) , enumerated and profiled to elucidate their clinical significance. In this chapter, we discuss advances in filtration systems to capture rare cells as well as downstream ICC methods to detect and identify these cells. We highlight our recent clinical study demonstrating the feasibility of using a novel method consisting of automated microfluidic filtration and sequential ICC for detection and enumeration of CTCs, as well as circulating mesenchymal cells (CMCs), circulating endothelial cells (CECs), and putative circulating stem cells (CSCs). We hypothesize that simultaneous analysis of circulating rare cells in blood of cancer patients may lead to a better understanding of disease progression and development of resistance to therapy.

  8. Inhaled concentrated ambient particles are associated with hematologic and bronchoalveolar lavage changes in canines.

    PubMed Central

    Clarke, R W; Coull, B; Reinisch, U; Catalano, P; Killingsworth, C R; Koutrakis, P; Kavouras, I; Murthy, G G; Lawrence, J; Lovett, E; Wolfson, J M; Verrier, R L; Godleski, J J

    2000-01-01

    Pulmonary inflammatory and hematologic responses of canines were studied after exposure to concentrated ambient particles (CAPs) using the Harvard ambient particle concentrator (HAPC). For pulmonary inflammatory studies, normal dogs were exposed in pairs to either CAPs or filtered air (paired studies) for 6 hr/day on 3 consecutive days. For hematologic studies, dogs were exposed for 6 hr/day for 3 consecutive days with one receiving CAPs while the other was simultaneously exposed to filtered air; crossover of exposure took place the following week (crossover studies). Physicochemical characterization of CAPs exposure samples included measurements of particle mass, size distribution, and composition. No statistical differences in biologic responses were found when all CAPs and all sham exposures were compared. However, the variability in biologic response was considerably higher with CAPs exposure. Subsequent exploratory graphical analyses and mixed linear regression analyses suggested associations between CAPs constituents and biologic responses. Factor analysis was applied to the compositional data from paired and crossover experiments to determine elements consistently associated with each other in CAPs samples. In paired experiments, four factors were identified; in crossover studies, a total of six factors were observed. Bronchoalveolar lavage (BAL) and hematologic data were regressed on the factor scores. Increased BAL neutrophil percentage, total peripheral white blood cell (WBC) counts, circulating neutrophils, and circulating lymphocytes were associated with increases in the aluminum/silicon factor. Increased circulating neutrophils and increased BAL macrophages were associated with the vanadium/nickel factor. Increased BAL neutrophils were associated with the bromine/lead factor when only the compositional data from the third day of CAPs exposure were used. Significant decreases in red blood cell counts and hemoglobin levels were correlated with the sulfur factor. BAL or hematologic parameters were not associated with increases in total CAPs mass concentration. These data suggest that CAPs inhalation is associated with subtle alterations in pulmonary and systemic cell profiles, and specific components of CAPs may be responsible for these biologic responses. PMID:11133399

  9. Effect of reconstructive vascular surgery on red cell deformability--preliminary results.

    PubMed Central

    Irwin, S T; Rocks, M J; McGuigan, J A; Patterson, C C; Morris, T C; O'Reilly, M J

    1983-01-01

    Using a simple filtration method, red cell deformability was measured in healthy control subjects and in patients with peripheral vascular disease. Impaired red cell deformability was demonstrated in patients with rest pain or gangrene and in patients with intermittent claudication. An improvement in red cell deformability was demonstrated after successful reconstructive vascular surgery in both patient groups. An improvement in red cell deformability was demonstrated in patients undergoing major limb amputation. PMID:6619311

  10. Exchange transfusion with red blood cells preserved in adenine clears a child of severe falciparum malaria.

    PubMed

    Boctor, F N; Ali, N M; Choi, Y J; Morse, E E

    1997-01-01

    Falciparum malaria may be associated with significant morbidity and mortality. The degree of mortality and morbidity usually corresponds to the degree of parasitemia. Quinine and other antimalarial drugs are relatively slow acting and not always effective owing to the presence of drug resistance falciparum. Rapid reduction of the number of circulating parasites may be required. Exchange transfusion has been used as a safe and quick approach to decreasing the parasitemia and antimalaria drugs used to eradicate the rest of the Plasmodium. In the present report, a case is described of a child with severe falciparum malaria who was successfully treated with exchange transfusion using the new adenine and mannitol enriched preservative media, Adsol.

  11. Membrane Mucin Muc4 Promotes Blood Cell Association with Tumor Cells and Mediates Efficient Metastasis in a Mouse Model of Breast Cancer

    PubMed Central

    Rowson-Hodel, A.R.; Wald, J.H.; Hatakeyama, J.; O’Neal, W.K.; Stonebraker, J.R.; VanderVorst, K.; Saldana, M.J.; Borowsky, A.D.; Sweeney, C.; Carraway, K.L.

    2018-01-01

    Mucin-4 (Muc4) is a large cell surface glycoprotein implicated in the protection and lubrication of epithelial structures. Previous studies suggest that aberrantly expressed Muc4 can influence the adhesiveness, proliferation, viability and invasiveness of cultured tumor cells, as well as the growth rate and metastatic efficiency of xenografted tumors. While it has been suggested that one of the major mechanisms by which Muc4 potentiates tumor progression is via its engagement of the ErbB2/HER2 receptor tyrosine kinase, other mechanisms exist and remain to be delineated. Moreover, the requirement for endogenous Muc4 for tumor growth progression has not been previously explored in the context of gene ablation. To assess the contribution of endogenous Muc4 to mammary tumor growth properties, we first created a genetically-engineered mouse line lacking functional Muc4 (Muc4ko), and then crossed these animals with the NDL model of ErbB2-induced mammary tumorigenesis. We observed that Muc4ko animals are fertile and develop normally, and adult mice exhibit no overt tissue abnormalities. In tumor studies, we observed that although some markers of tumor growth such as vascularity and cyclin D1 expression are suppressed, primary mammary tumors from Muc4ko/NDL female mice exhibit similar latencies and growth rates as Muc4wt/NDL animals. However, the presence of lung metastases is markedly suppressed in Muc4ko/NDL mice. Interestingly, histological analysis of lung lesions from Muc4ko/NDL mice revealed a reduced association of disseminated cells with red and white blood cells. Moreover, isolated cells derived from Muc4ko/NDL tumors interact with fewer blood cells when injected directly into the vasculature or diluted into blood from wild type mice. We further observed that blood cells more efficiently promote the viability of non-adherent Muc4wt/NDL cells than Muc4ko/NDL cells. Together, our observations suggest that Muc4 may facilitate metastasis by promoting the association of circulating tumor cells with blood cells to augment tumor cell survival in circulation. PMID:28892049

  12. Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin C disease.

    PubMed

    Tripette, Julien; Alexy, Tamas; Hardy-Dessources, Marie-Dominique; Mougenel, Daniele; Beltan, Eric; Chalabi, Tawfik; Chout, Roger; Etienne-Julan, Maryse; Hue, Olivier; Meiselman, Herbert J; Connes, Philippe

    2009-08-01

    Recent evidence suggests that red blood cell aggregation and the ratio of hematocrit to blood viscosity (HVR), an index of the oxygen transport potential of blood, might considerably modulate blood flow dynamics in the microcirculation. It thus seems likely that these factors could play a role in sickle cell disease. We compared red blood cell aggregation characteristics, blood viscosity and HVR at different shear rates between sickle cell anemia and sickle cell hemoglobin C disease (SCC) patients, sickle cell trait carriers (AS) and control individuals (AA). Blood viscosity determined at high shear rate was lower in sickle cell anemia (n=21) than in AA (n=52), AS (n=33) or SCC (n=21), and was markedly increased in both SCC and AS. Despite differences in blood viscosity, both sickle cell anemia and SCC had similar low HVR values compared to both AA and AS. Sickle cell anemia (n=21) and SCC (n=19) subjects had a lower red blood cell aggregation index and longer time for red blood cell aggregates formation than AA (n=16) and AS (n=15), and a 2 to 3 fold greater shear rate required to disperse red blood cell aggregates. The low HVR levels found in sickle cell anemia and SCC indicates a comparable low oxygen transport potential of blood in both genotypes. Red blood cell aggregation properties are likely to be involved in the pathophysiology of sickle cell disease: the increased shear forces needed to disperse red blood cell aggregates may disturb blood flow, especially at the microcirculatory level, since red blood cell are only able to pass through narrow capillaries as single cells rather than as aggregates.

  13. Blood volume and red cell life span (M113), part C

    NASA Technical Reports Server (NTRS)

    Johnson, P. C., Jr.

    1973-01-01

    Prechamber, in-chamber, and postchamber blood samples taken from Skylab simulation crewmembers did not indicate significant shortening of the red cell life span during the mission. This does not suggest that the space simulation environment could not be associated with red cell enzyme changes. It does show that any changes in enzymes were not sufficiently great to significantly shorten red cell survival. There was no evidence of bone marrow erythropoetic suppression nor was there any evidence of increased red cell destruction.

  14. Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation

    PubMed Central

    Cuff, Antonia O.; Robertson, Francis P.; Stegmann, Kerstin A.; Pallett, Laura J.; Maini, Mala K.; Davidson, Brian R.

    2016-01-01

    Human liver contains an Eomeshi population of NK cells that is not present in the blood. In this study, we show that these cells are characterized by a molecular signature that mediates their retention in the liver. By examining liver transplants where donors and recipients are HLA mismatched, we distinguish between donor liver–derived and recipient-derived leukocytes to show that Eomeslo NK cells circulate freely whereas Eomeshi NK cells are unable to leave the liver. Furthermore, Eomeshi NK cells are retained in the liver for up to 13 y. Therefore, Eomeshi NK cells are long-lived liver-resident cells. We go on to show that Eomeshi NK cells can be recruited from the circulation during adult life and that circulating Eomeslo NK cells are able to upregulate Eomes and molecules mediating liver retention under cytokine conditions similar to those in the liver. This suggests that circulating NK cells are a precursor of their liver-resident counterparts. PMID:27798170

  15. Separable Bilayer Microfiltration Device for Label-Free Enrichment of Viable Circulating Tumor Cells.

    PubMed

    Hao, Sijie; Nisic, Merisa; He, Hongzhang; Tai, Yu-Chong; Zheng, Si-Yang

    2017-01-01

    Analysis of rare circulating tumor cells enriched from metastatic cancer patients yields critical information on disease progression, therapy response, and the mechanism of cancer metastasis. Here we describe in detail a label-free enrichment process of circulating tumor cells based on its unique physical properties (size and deformability). Viable circulating tumor cells can be successfully enriched and analyzed, or easily released for further characterization due to the novel separable two-layer design.

  16. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOEpatents

    Bitensky, M.W.; Yoshida, Tatsuro

    1997-04-29

    A method is disclosed using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time is achieved by removing oxygen from the red blood cells at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate. 4 figs.

  17. High-Efficiency Multiscale Modeling of Cell Deformations in Confined Microenvironments in Microcirculation and Microfluidics

    NASA Astrophysics Data System (ADS)

    Lu, Huijie; Peng, Zhangli

    2017-11-01

    We developed a high-efficiency multiscale modeling method to predict the stress and deformation of cells during the interactions with their microenvironments in microcirculation and microfluidics, including red blood cells (RBCs) and circulating tumor cells (CTCs). There are more than 1 billion people in the world suffering from RBC diseases. The mechanical properties of RBCs are changed in these diseases due to molecular structure alternations, which is not only important for understanding the disease pathology but also provides an opportunity for diagnostics. On the other hand, the mechanical properties of cancer cells are also altered compared to healthy cells. This can lead to acquired ability to cross the narrow capillary networks and endothelial gaps, which is crucial for metastasis, the leading cause of cancer mortality. Therefore, it is important to predict the deformation and stress of RBCs and CTCs in microcirculations. We develop a high-efficiency multiscale model of cell-fluid interaction. We pass the information from our molecular scale models to the cell scale to study the effect of molecular mutations. Using our high-efficiency boundary element methods of fluids, we will be able to run 3D simulations using a single CPU within several hours, which will enable us to run extensive parametric studies and optimization.

  18. Biomimetic postcapillary expansions for enhancing rare blood cell separation on a microfluidic chip†

    PubMed Central

    Jain, Abhishek

    2013-01-01

    Blood cells naturally auto-segregate in postcapillary venules, with the erythrocytes (red blood cells, RBCs) aggregating near the axis of flow and the nucleated cells (NCs)—which include leukocytes, progenitor cells and, in cancer patients, circulating tumor cells—marginating toward the vessel wall. We have used this principle to design a microfluidic device that extracts nucleated cells (NCs) from whole blood. Fabricated using polydimethylsiloxane (PDMS) soft lithography, the biomimetic cell extraction device consists of rectangular microchannels that are 20–400 μm wide, 11 μm deep and up to 2 cm long. The key design feature is the use of repeated expansions/contractions of triangular geometry mimicking postcapillary venules, which enhance margination and optimize the extraction. The device operates on unprocessed whole blood and is able to extract 94 ± 4.5% of NCs with 45.75 ± 2.5-fold enrichment in concentration at a rate of 5 nl s−1. The device eliminates the need to preprocess blood via centrifugation or RBC lysis, and is ready to be implemented as the initial stage of lab-on-a-chip devices that require enriched nucleated cells. The potential downstream applications are numerous, encompassing all preclinical and clinical assays that operate on enriched NC populations and include on-chip flow cytometry PMID:21773633

  19. Heterogeneity of circulating epithelial tumour cells from individual patients with respect to expression profiles and clonal growth (sphere formation) in breast cancer.

    PubMed

    Pizon, M; Zimon, D; Carl, S; Pachmann, U; Pachmann, K; Camara, O

    2013-01-01

    The detection of tumour cells circulating in the peripheral blood of patients with breast cancer is a sign that cells have been able to leave the primary tumour and survive in the circulation. However, in order to form metastases, they require additional properties such as the ability to adhere, self-renew, and grow. Here we present data that a variable fraction among the circulating tumour cells detected by the Maintrac(®) approach expresses mRNA of the stem cell gene NANOG and of the adhesion molecule vimentin and is capable of forming tumour spheres, a property ascribed to tumour-initiating cells (TICs). Between ten and 50 circulating epithelial antigen-positive cells detected by the Maintrac approach were selected randomly from each of 20 patients with breast cancer before and after surgery and were isolated using automated capillary aspiration and deposited individually onto slides for expression profiling. In addition, the circulating tumour cells were cultured without isolation among the white blood cells from 39 patients with breast cancer in different stages of disease using culture methods favouring growth of epithelial cells. Although no epithelial cell adhesion molecule (EpCAM)-positive cells expressing stem cell genes or the adhesion molecule vimentin was detected before surgery, 10%-20% of the cells were found to be positive for mRNA of these genes after surgery. Tumour spheres from circulating cells of 39 patients with different stages of breast cancer were grown without previous isolation in a fraction increasing with the aggressivity of the tumour. Here we show that among the peripherally circulating tumour cells, a variable fraction is able to express stem cell and adhesion properties and can be grown into tumour spheres, a property ascribed to cells capable of initiating tumours and metastases.

  20. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall be...

  1. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall be...

  2. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall be...

  3. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall be...

  4. Haemoglobin variants, iron status and anaemia in Sri Lankan adolescents with low red cell indices: A cross sectional survey.

    PubMed

    Rodrigo, Rexan; Allen, Angela; Manampreri, Aresha; Perera, Luxman; Fisher, Christopher A; Allen, Stephen; Weatherall, David J; Premawardhena, Anuja

    2018-07-01

    Iron deficiency complicates the use of red cell indices to screen for carriers of haemoglobin variants in many populations. In a cross sectional survey of 7526 secondary school students from 25 districts of Sri Lanka, 1963 (26.0%) students had low red cell indices. Iron deficiency, identified by low serum ferritin, was the major identifiable cause occurring in 550/1806 (30.5%) students. Low red cell indices occurred in iron-replete students with alpha-thalassaemia including those with single alpha-globin gene deletions. Anaemia and low red cell indices were also common in beta-thalassaemia trait. An unexpected finding was that low red cell indices occurred in 713 iron-replete students with a normal haemoglobin genotype. It is common practice to prescribe iron supplements to individuals with low red cell indices. Since low red cell indices were a feature of all forms of α thalassaemia and also of iron deficiency, in areas where both conditions are common, such as Sri Lanka, it is imperative to differentiate between the two, to allow targeted administration of iron supplements and avoid the possible deleterious effects of increased iron availability in iron replete individuals with low red cell indices due to other causes such as α thalassaemia. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Red Dot Basal Cell Carcinoma: An Unusual Variant of a Common Malignancy.

    PubMed

    Loh, Tiffany Y; Cohen, Philip R

    2016-05-01

    Red dot basal cell carcinoma is a distinct but rare subtype of basal cell carcinoma (BCC). It presents as a red macule or papule; therefore, in most cases, it may easily be mistaken for a benign vascular lesion, such as a telangiectasia or angioma.
    A red dot BCC in an older woman is described. Clinical and histological differences between red dot BCCs and telangiectasias are described.
    A 72-year-old woman initially presented with a painless red macule on her nose. Biopsy of the lesion established the diagnosis of a red dot BCC. Pubmed was searched for the following terms: angioma, basal cell carcinoma, dermoscope, diascopy, red dot, non-melanoma skin cancer, telangiectasia, and vascular. The papers were reviewed for cases of red dot basal cell carcinoma. Clinical and histological characteristics of red dot basal cell carcinoma and telangiectasias were compared.
    Red dot BCC is an extremely rare variant of BCC that may be confused with benign vascular lesions. Although BCCs rarely metastasize and are associated with low mortality, they have the potential to become locally invasive and destructive if left untreated. Thus, a high index of suspicion for red dot BCC is necessary.

    J Drugs Dermatol. 2016;15(5):645-647.

  6. Reduced DIDS-sensitive chloride conductance in Ae1-/- mouse erythrocytes

    PubMed Central

    Alper, Seth L.; Vandorpe, David H.; Peters, Luanne L.; Brugnara, Carlo

    2008-01-01

    The resting membrane potential of the human erythrocyte is largely determined by a constitutive Cl- conductance ∼100-fold greater than the resting cation conductance. The 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS)-sensitive electroneutral Cl- transport mediated by the human erythroid Cl-/HCO3- exchanger, AE1 (SLC4A1, band 3) is ≥10,000-fold greater than can be accounted for by the Cl- conductance of the red cell. The molecular identities of conductive anion pathways across the red cell membrane remain poorly defined. We have examined red cell Cl- conductance in the Ae1-/- mouse as a genetic test of the hypothesis that Ae1 mediates DIDS-sensitive Cl- conductance in mouse red cells. We report here that wildtype mouse red cell membrane potential resembles that of human red cells in the predominance of its Cl- conductance. We show with four technical approaches that the DIDS-sensitive component of erythroid Cl- conductance is reduced or absent from Ae1-/- red cells. These results are consistent with the hypothesis that the Ae1 anion exchanger polypeptide can operate infrequently in a conductive mode. However, the fragile red cell membrane of the Ae1-/- mouse red cell exhibits reduced abundance or loss of multiple polypeptides. Thus, loss of one or more distinct, DIDS-sensitive anion channel polypeptide(s) from the Ae1-/- red cell membrane cannot be ruled out as an explanation for the reduced DIDS-sensitive anion conductance. PMID:18329299

  7. Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood.

    PubMed

    Olivier, Emmanuel; Qiu, Caihong; Bouhassira, Eric E

    2012-08-01

    The current supply of red blood cells expressing rare blood groups is not sufficient to cover all the existing transfusion needs for chronically transfused patients, such as sickle cell disease homozygous carriers, because of alloimmunization. In vitro production of cultured red blood cells is slowly emerging as a possible complement to the existing collection-based red blood cell procurement system. The yield of cultured red blood cells can theoretically be maximized by amplifying the stem, progenitor, or precursor compartment. Here, we combined methods designed to expand these three compartments to optimize the yield of cultured red blood cells and found that exposing CD34(+) cells to a short pulse of cytokines favorable for erythroid differentiation prior to stem cell expansion followed by progenitor expansion produced the highest yield of erythroid cells. This novel serum-free red blood cell production protocol was efficient on CD34(+) cells derived from human embryonic stem cells, 6-8-week yolk sacs, 16-18-week fetal livers, cord blood, and peripheral blood. The yields of cells obtained with these new protocols were larger by an order of magnitude than the yields observed previously. Globin expression analysis by high-performance liquid chromatography revealed that these expansion protocols generally yielded red blood cells that expressed a globin profile similar to that expected for the developmental age of the CD34(+) cells.

  8. Endothelial glycocalyx: permeability barrier and mechanosensor.

    PubMed

    Curry, F E; Adamson, R H

    2012-04-01

    Endothelial cells are covered with a polysaccharide rich layer more than 400 nm thick, mechanical properties of which limit access of circulating plasma components to endothelial cell membranes. The barrier properties of this endothelial surface layer are deduced from the rate of tracer penetration into the layer and the mechanics of red and white cell movement through capillary microvessels. This review compares the mechanosensor and permeability properties of an inner layer (100-150 nm, close to the endothelial membrane) characterized as a quasi-periodic structure which accounts for key aspects of transvascular exchange and vascular permeability with those of the whole endothelial surface layers. We conclude that many of the barrier properties of the whole surface layer are not representative of the primary fiber matrix forming the molecular filter determining transvascular exchange. The differences between the properties of the whole layer and the inner glycocalyx structures likely reflect dynamic aspects of the endothelial surface layer including tracer binding to specific components, synthesis and degradation of key components, activation of signaling pathways in the endothelial cells when components of the surface layer are lost or degraded, and the spatial distribution of adhesion proteins in microdomains of the endothelial cell membrane.

  9. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage.

    PubMed

    Nemkov, Travis; Sun, Kaiqi; Reisz, Julie A; Song, Anren; Yoshida, Tatsuro; Dunham, Andrew; Wither, Matthew J; Francis, Richard O; Roach, Robert C; Dzieciatkowska, Monika; Rogers, Stephen C; Doctor, Allan; Kriebardis, Anastasios; Antonelou, Marianna; Papassideri, Issidora; Young, Carolyn T; Thomas, Tiffany A; Hansen, Kirk C; Spitalnik, Steven L; Xia, Yang; Zimring, James C; Hod, Eldad A; D'Alessandro, Angelo

    2018-02-01

    Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1-7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13 C 1 -aspartate or 13 C 5 -adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and - preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates. Copyright© 2018 Ferrata Storti Foundation.

  10. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage

    PubMed Central

    Nemkov, Travis; Sun, Kaiqi; Reisz, Julie A.; Song, Anren; Yoshida, Tatsuro; Dunham, Andrew; Wither, Matthew J.; Francis, Richard O.; Roach, Robert C.; Dzieciatkowska, Monika; Rogers, Stephen C.; Doctor, Allan; Kriebardis, Anastasios; Antonelou, Marianna; Papassideri, Issidora; Young, Carolyn T.; Thomas, Tiffany A.; Hansen, Kirk C.; Spitalnik, Steven L.; Xia, Yang; Zimring, James C.; Hod, Eldad A.; D’Alessandro, Angelo

    2018-01-01

    Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1–7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13C1-aspartate or 13C5-adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and – preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo. Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates. PMID:29079593

  11. Interconnected subsets of memory follicular helper T cells have different effector functions.

    PubMed

    Asrir, Assia; Aloulou, Meryem; Gador, Mylène; Pérals, Corine; Fazilleau, Nicolas

    2017-10-10

    Follicular helper T cells regulate high-affinity antibody production. Memory follicular helper T cells can be local in draining lymphoid organs and circulate in the blood, but the underlying mechanisms of this subdivision are unresolved. Here we show that both memory follicular helper T subsets sustain B-cell responses after reactivation. Local cells promote more plasma cell differentiation, whereas circulating cells promote more secondary germinal centers. In parallel, local memory B cells are homogeneous and programmed to become plasma cells, whereas circulating memory B cells are able to rediversify. Local memory follicular helper T cells have higher affinity T-cell receptors, which correlates with expression of peptide MHC-II at the surface of local memory B cells only. Blocking T-cell receptor-peptide MHC-II interactions induces the release of local memory follicular helper T cells in the circulating compartment. Our studies show that memory follicular helper T localization is highly intertwined with memory B cells, a finding that has important implications for vaccine design.Tfh cells can differentiate into memory cells. Here the authors describe distinct functional and phenotypic profiles of these memory Tfh cells dependent on their anatomical localization to the lymphoid organs or to the circulation.

  12. Red Dot Basal Cell Carcinoma: Report of Cases and Review of This Unique Presentation of Basal Cell Carcinoma.

    PubMed

    Cohen, Philip R

    2017-03-22

    Red dot basal cell carcinoma is a unique variant of basal cell carcinoma. Including the three patients described in this report, red dot basal cell carcinoma has only been described in seven individuals. This paper describes the features of two males and one female with red dot basal cell carcinoma and reviews the characteristics of other patients with this clinical subtype of basal cell carcinoma. A 70-year-old male developed a pearly-colored papule with a red dot in the center on his nasal tip. A 71-year-old male developed a red dot surrounded by a flesh-colored papule on his left nostril. Lastly, a 74-year-old female developed a red dot within an area of erythema on her left mid back. Biopsy of the lesions all showed nodular and/or superficial basal cell carcinoma. Correlation of the clinical presentation and pathology established the diagnosis of red dot basal cell carcinoma. The tumors were treated by excision using the Mohs surgical technique. Pubmed was searched with the keyword: basal, cell, cancer, carcinoma, dot, red, and skin. The papers generated by the search and their references were reviewed. Red dot basal cell carcinoma has been described in three females and two males; the gender was not reported in two patients. The tumor was located on the nose (five patients), back (one patient) and thigh (one patient). Cancer presented as a solitary small red macule or papule; often, the carcinoma was surrounded by erythema or a flesh-colored papule. Although basal cell carcinomas usually do not blanch after a glass microscope slide is pressed against them, the red dot basal cell carcinoma blanched after diascopy in two of the patients, resulting in a delay of diagnosis in one of these individuals. Dermoscopy may be a useful non-invasive modality for evaluating skin lesions when the diagnosis of red dot basal cell carcinoma is considered. Mohs surgery is the treatment of choice; in some of the patients, the ratio of the area of the postoperative wound to that of the preoperative cancer was greater than 12:1, demonstrating a significant lateral spread of the tumor beyond the observed clinical margins of the neoplasm. In conclusion, in a patient with a personal history of actinic keratosis or nonmelanoma skin cancer, the appearance of a new red dot in a sun-exposed site should prompt additional evaluation of the skin lesion to exclude or establish the diagnosis of red dot basal cell carcinoma.

  13. Red Dot Basal Cell Carcinoma: Report of Cases and Review of This Unique Presentation of Basal Cell Carcinoma

    PubMed Central

    2017-01-01

    Red dot basal cell carcinoma is a unique variant of basal cell carcinoma. Including the three patients described in this report, red dot basal cell carcinoma has only been described in seven individuals. This paper describes the features of two males and one female with red dot basal cell carcinoma and reviews the characteristics of other patients with this clinical subtype of basal cell carcinoma. A 70-year-old male developed a pearly-colored papule with a red dot in the center on his nasal tip. A 71-year-old male developed a red dot surrounded by a flesh-colored papule on his left nostril. Lastly, a 74-year-old female developed a red dot within an area of erythema on her left mid back. Biopsy of the lesions all showed nodular and/or superficial basal cell carcinoma. Correlation of the clinical presentation and pathology established the diagnosis of red dot basal cell carcinoma. The tumors were treated by excision using the Mohs surgical technique. Pubmed was searched with the keyword: basal, cell, cancer, carcinoma, dot, red, and skin. The papers generated by the search and their references were reviewed. Red dot basal cell carcinoma has been described in three females and two males; the gender was not reported in two patients. The tumor was located on the nose (five patients), back (one patient) and thigh (one patient). Cancer presented as a solitary small red macule or papule; often, the carcinoma was surrounded by erythema or a flesh-colored papule. Although basal cell carcinomas usually do not blanch after a glass microscope slide is pressed against them, the red dot basal cell carcinoma blanched after diascopy in two of the patients, resulting in a delay of diagnosis in one of these individuals. Dermoscopy may be a useful non-invasive modality for evaluating skin lesions when the diagnosis of red dot basal cell carcinoma is considered. Mohs surgery is the treatment of choice; in some of the patients, the ratio of the area of the postoperative wound to that of the preoperative cancer was greater than 12:1, demonstrating a significant lateral spread of the tumor beyond the observed clinical margins of the neoplasm. In conclusion, in a patient with a personal history of actinic keratosis or nonmelanoma skin cancer, the appearance of a new red dot in a sun-exposed site should prompt additional evaluation of the skin lesion to exclude or establish the diagnosis of red dot basal cell carcinoma. PMID:28465868

  14. Quantification of the fraction poorly deformable red blood cells using ektacytometry.

    PubMed

    Streekstra, G J; Dobbe, J G G; Hoekstra, A G

    2010-06-21

    We describe a method to obtain the fraction of poorly deformable red blood cells in a blood sample from the intensity pattern in an ektacytometer. In an ektacytometer red blood cells are transformed into ellipsoids by a shear flow between two transparent cylinders. The intensity pattern, due to a laser beam that is sent through the suspension, is projected on a screen. When measuring a healthy red blood cell population iso-intensity curves are ellipses with an axial ratio equal to that of the average red blood cell. In contrast poorly deformable cells result in circular iso-intensity curves. In this study we show that for mixtures of deformable and poorly deformable red blood cells, iso-intensity curves in the composite intensity pattern are neither elliptical nor circular but obtain cross-like shapes. We propose a method to obtain the fraction of poorly deformable red blood cells from those intensity patterns. Experiments with mixtures of poorly deformable and deformable red blood cells validate the method and demonstrate its accuracy. In a clinical setting our approach is potentially of great value for the detection of the fraction of sickle cells in blood samples of patients with sickle cell disease or to find a measure for the parasitemia in patients infected with malaria.

  15. Integration of red cell genotyping into the blood supply chain: a population-based study.

    PubMed

    Flegel, Willy A; Gottschall, Jerome L; Denomme, Gregory A

    2015-07-01

    When problems with compatibility arise, transfusion services often use time-consuming serological tests to identify antigen-negative red cell units for safe transfusion. New methods have made red cell genotyping possible for all clinically relevant blood group antigens. We did mass-scale genotyping of donor blood and provided hospitals with access to a large red cell database to meet the demand for antigen-negative red cell units beyond ABO and Rh blood typing. We established a red cell genotype database at the BloodCenter of Wisconsin on July 17, 2010. All self-declared African American, Asian, Hispanic, and Native American blood donors were eligible irrespective of their ABO and Rh type or history of donation. Additionally, blood donors who were groups O, A, and B, irrespective of their Rh phenotype, were eligible for inclusion only if they had a history of at least three donations in the previous 3 years, with one donation in the previous 12 months at the BloodCenter of Wisconsin. We did red cell genotyping with a nanofluidic microarray system, using 32 single nucleotide polymorphisms to predict 42 blood group antigens. An additional 14 antigens were identified via serological phenotype. We monitored the ability of the red cell genotype database to meet demand for compatible blood during 3 years. In addition to the central database at the BloodCenter of Wisconsin, we gave seven hospitals online access to a web-based antigen query portal on May 1, 2013, to help them to locate antigen-negative red cell units in their own inventories. We analysed genotype data for 43,066 blood donors. Requests were filled for 5661 (99.8%) of 5672 patient encounters in which antigen-negative red cell units were needed. Red cell genotyping met the demand for antigen-negative blood in 5339 (94.1%) of 5672 patient encounters, and the remaining 333 (5.9%) requests were filled by use of serological data. Using the 42 antigens represented in our red cell genotype database, we were able to fill 14,357 (94.8%) of 15,140 requests for antigen-negative red cell units from hospitals served by the BloodCenter of Wisconsin. In the pilot phase, the seven hospitals identified 71 units from 52 antigen-negative red cell unit requests. Red cell genotyping has the potential to transform the way antigen-negative red cell units are provided. An antigen query portal could reduce the need for transportation of blood and serological screening. If this wealth of genotype data can be made easily accessible online, it will help with the supply of affordable antigen-negative red cell units to ensure patient safety. BloodCenter of Wisconsin Diagnostic Laboratories Strategic Initiative and the NIH Clinical Center Intramural Research Program. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biosensors for liquid biopsy: circulating nucleic acids to diagnose and treat cancer.

    PubMed

    Bellassai, Noemi; Spoto, Giuseppe

    2016-10-01

    The detection of cancer biomarkers freely circulating in blood offers new opportunities for cancer early diagnosis, patient follow-up, and therapy efficacy assessment based on liquid biopsy. In particular, circulating cell-free nucleic acids released from tumor cells have recently attracted great attention also because they become detectable in blood before the appearance of other circulating biomarkers, such as circulating tumor cells. The detection of circulating nucleic acids poses several technical challenges that arise from their low concentration and relatively small size. Here, possibilities offered by innovative biosensing approaches for the detection of circulating DNA in peripheral blood and blood-derived products such as plasma and serum blood are discussed. Different transduction principles are used to detect circulating DNAs and great advantages are derived from the combined use of nanostructured materials.

  17. Sickle red cell-endothelium interactions.

    PubMed

    Kaul, Dhananjay K; Finnegan, Eileen; Barabino, Gilda A

    2009-01-01

    Periodic recurrence of painful vaso-occlusive crisis is the defining feature of sickle cell disease. Among multiple pathologies associated with this disease, sickle red cell-endothelium interaction has been implicated as a potential initiating mechanism in vaso-occlusive events. This review focuses on various interrelated mechanisms involved in human sickle red cell adhesion. We discuss in vitro and microcirculatory findings on sickle red cell adhesion, its potential role in vaso-occlusion, and the current understanding of receptor-ligand interactions involved in this pathological phenomenon. In addition, we discuss the contribution of other cellular interactions (leukocytes recruitment and leukocyte-red cell interaction) to vaso-occlusion, as observed in transgenic sickle mouse models. Emphasis is given to recently discovered adhesion molecules that play a predominant role in mediating human sickle red cell adhesion. Finally, we analyze various therapeutic approaches for inhibiting sickle red cell adhesion by targeting adhesion molecules and also consider therapeutic strategies that target stimuli involved in endothelial activation and initiation of adhesion.

  18. Repetitive obidoxime treatment induced increase of red blood cell acetylcholinesterase activity even in a late phase of a severe methamidophos poisoning: A case report.

    PubMed

    Steinritz, Dirk; Eyer, Florian; Worek, Franz; Thiermann, Horst; John, Harald

    2016-02-26

    Accidental self-poisoning or deliberate use in suicidal intent of organophosphorus pesticides (OPP), which are widely used in agriculture, represent a health problem worldwide. Symptoms of poisoning are characterized by acute cholinergic crisis caused by inhibition of acetylcholinesterase. A 75-year-old male patient ingested 20ml of an OPP solution containing 10% methamidophos in suicidal intent. In the course of poisoning typical clinical symptoms of cholinergic crisis (miosis, bradycardia, hypotension, hypersalivation and impairment of neurologic status) were evident. Butyryl (plasma) cholinesterase (BChE) and red blood cell acetylcholinesterase (RBC-AChE) revealed decreased activities, thus specific treatment with the enzyme reactivator obidoxime was started. Inhibitory activity of the patient's plasma indicated significant amounts of persisting methamidophos in the circulation and was still found on day 4 after ingestion. Due to missing spontaneous breathing on day 6, obidoxime was administered again. Afterwards a significant increase of RBC-AChE activity was found. The patient was extubated on day 10 and a restitution ad integrum was achieved. In conclusion, obidoxime is a potent reactivator of OPP-inhibited AChE. A repetitive and prolonged administration of obidoxime should be considered in cases of severe methamidophos poisoning and should be tailored with an advanced analytical biomonitoring. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Cytoskeletal rearrangements in human red blood cells induced by snake venoms: light microscopy of shapes and NMR studies of membrane function.

    PubMed

    Yau, Tsz Wai; Kuchel, Rhiannon P; Koh, Jennifer M S; Szekely, David; Mirtschin, Peter J; Kuchel, Philip W

    2012-01-01

    RBCs (red blood cells) circulating through narrow blood capillaries withstand major deformation. The mechanical and chemical stresses commonly exerted on RBCs continue to attract interest for the study of membrane structure and function. Snake venoms are lethal biochemical 'cocktails' that often contain haemotoxins, metalloproteinases, myotoxins, neurotoxins, phosphodiesterases, phospholipases and proteases. We have monitored the effects of 4 snake venoms (Pseudechis guttatus, Oxyuranus scutellatus, Notechis scutatus and Naja kaouthia) on human RBCs using NMR spectroscopy, DIC (differential interference contrast) and confocal light microscopy. RBCs underwent reproducible stomatocytosis, with unusual geographical-like indentations, spherocytosis, followed by rapid lysis. Confocal micrographs using a fluorescent dye linked to phalloidin showed that the change in morphology was associated with the aggregation of actin in the cytoskeleton. (31)P NMR saturation transfer experiments recorded transport of the univalent anion HPA (hypophosphite) on a subsecond time scale, thereby reporting on the function of capnophorin or Band 3 linked to the cytoskeleton; anion-exchange activity was substantially reduced by venom treatment. We propose a molecular-cytological hypothesis for the shape and functional changes that is different from, or supplementary to, the more 'traditional' bilayer-couple hypothesis more often used to account for similar morphological changes invoked by other reagents. © The Author(s) Journal compilation © 2012 Portland Press Limited

  20. The role of red blood cell deformability and Na,K-ATPase function in selected risk factors of cardiovascular diseases in humans: focus on hypertension, diabetes mellitus and hypercholesterolemia.

    PubMed

    Radosinska, J; Vrbjar, N

    2016-09-19

    Deformability of red blood cells (RBC) is the ability of RBC to change their shape in order to pass through narrow capillaries in circulation. Deterioration in deformability of RBC contributes to alterations in microcirculatory blood flow and delivery of oxygen to tissues. Several factors are responsible for maintenance of RBC deformability. One of them is the Na,K-ATPase known as crucial enzyme in maintenance of intracellular ionic homeostasis affecting thus regulation of cellular volume and consequently RBC deformability. Decreased deformability of RBC has been found to be the marker of adverse outcomes in cardiovascular diseases (CVD) and the presence of cardiovascular risk factors influences rheological properties of the blood. This review summarizes knowledge concerning the RBC deformability in connection with selected risk factors of CVD, including hypertension, hyperlipidemia, and diabetes mellitus, based exclusively on papers from human studies. We attempted to provide an update on important issues regarding the role of Na,K-ATPase in RBC deformability. In patients suffering from hypertension as well as diabetes mellitus the Na,K-ATPase appears to be responsible for the changes leading to alterations in RBC deformability. The triggering factor for changes of RBC deformability during hypercholesterolemia seems to be the increased content of cholesterol in erythrocyte membranes.

  1. Nanodiamonds for Medical Applications: Interaction with Blood in Vitro and in Vivo.

    PubMed

    Tsai, Lin-Wei; Lin, Yu-Chung; Perevedentseva, Elena; Lugovtsov, Andrei; Priezzhev, Alexander; Cheng, Chia-Liang

    2016-07-12

    Nanodiamonds (ND) have emerged to be a widely-discussed nanomaterial for their applications in biological studies and for medical diagnostics and treatment. The potentials have been successfully demonstrated in cellular and tissue models in vitro. For medical applications, further in vivo studies on various applications become important. One of the most challenging possibilities of ND biomedical application is controllable drug delivery and tracing. That usually assumes ND interaction with the blood system. In this work, we study ND interaction with rat blood and analyze how the ND surface modification and coating can optimize the ND interaction with the blood. It was found that adsorption of a low concentration of ND does not affect the oxygenation state of red blood cells (RBC). The obtained in vivo results are compared to the results of in vitro studies of nanodiamond interaction with rat and human blood and blood components, such as red blood cells and blood plasma. An in vivo animal model shows ND injected in blood attach to the RBC membrane and circulate with blood for more than 30 min; and ND do not stimulate an immune response by measurement of proinflammatory cytokine TNF-α with ND injected into mice via the caudal vein. The results further confirm nanodiamonds' safety in organisms, as well as the possibility of their application without complicating the blood's physiological conditions.

  2. Nanodiamonds for Medical Applications: Interaction with Blood in Vitro and in Vivo

    PubMed Central

    Tsai, Lin-Wei; Lin, Yu-Chung; Perevedentseva, Elena; Lugovtsov, Andrei; Priezzhev, Alexander; Cheng, Chia-Liang

    2016-01-01

    Nanodiamonds (ND) have emerged to be a widely-discussed nanomaterial for their applications in biological studies and for medical diagnostics and treatment. The potentials have been successfully demonstrated in cellular and tissue models in vitro. For medical applications, further in vivo studies on various applications become important. One of the most challenging possibilities of ND biomedical application is controllable drug delivery and tracing. That usually assumes ND interaction with the blood system. In this work, we study ND interaction with rat blood and analyze how the ND surface modification and coating can optimize the ND interaction with the blood. It was found that adsorption of a low concentration of ND does not affect the oxygenation state of red blood cells (RBC). The obtained in vivo results are compared to the results of in vitro studies of nanodiamond interaction with rat and human blood and blood components, such as red blood cells and blood plasma. An in vivo animal model shows ND injected in blood attach to the RBC membrane and circulate with blood for more than 30 min; and ND do not stimulate an immune response by measurement of proinflammatory cytokine TNF-α with ND injected into mice via the caudal vein. The results further confirm nanodiamonds’ safety in organisms, as well as the possibility of their application without complicating the blood’s physiological conditions. PMID:27420044

  3. Proper cytoskeletal architecture beneath the plasma membrane of red blood cells requires Ttll4

    PubMed Central

    Ijaz, Faryal; Hatanaka, Yasue; Hatanaka, Takahiro; Tsutsumi, Koji; Iwaki, Takayuki; Umemura, Kazuo; Ikegami, Koji; Setou, Mitsutoshi

    2017-01-01

    Mammalian red blood cells (RBCs) circulate through blood vessels, including capillaries, for tens of days under high mechanical stress. RBCs tolerate this mechanical stress while maintaining their shape because of their elastic membrane skeleton. This membrane skeleton consists of spectrin-actin lattices arranged as quasi-hexagonal units beneath the plasma membrane. In this study, we found that the organization of the RBC cytoskeleton requires tubulin tyrosine ligase–like 4 (Ttll4). RBCs from Ttll4-knockout mice showed larger average diameters in smear test. Based on the rate of hemolysis, Ttll4-knockout RBCs showed greater vulnerability to phenylhydrazine-induced oxidative stress than did wild-type RBCs. Ultrastructural analyses revealed the macromolecular aggregation of cytoskeletal components in RBCs of Ttll4-knockout mice. Immunoprecipitation using the anti-glutamylation antibody GT335 revealed nucleosome assembly protein 1 (NAP1) to be the sole target of TTLL4 in the RBCs, and NAP1 glutamylation was completely lost in Ttll4-knockout RBCs. In wild-type RBCs, the amount of glutamylated NAP1 in the membrane was nearly double that in the cytosol. Furthermore, the absence of TTLL4-dependent glutamylation of NAP1 weakened the binding of NAP1 to the RBC membrane. Taken together, these data demonstrate that Ttll4 is required for proper cytoskeletal organization in RBCs. PMID:27974641

  4. The photonic device for integrated evaluation of collateral circulation of lower extremities in patients with local hypertensive-ischemic pain syndrome

    NASA Astrophysics Data System (ADS)

    Pavlov, Volodymyr S.; Bezsmernyi, Yurii O.; Zlepko, Sergey M.; Bezsmertna, Halyna V.

    2017-08-01

    The given paper analyzes principles of interaction and analysis of the reflected optical radiation from biotissue in the process of assessment of regional hemodynamics state in patients with local hypertensive- ischemic pain syndrome of amputation stumps of lower extremities, applying the method of photoplethysmography. The purpose is the evaluation of Laser photoplethysmography (LPPG) diagnostic value in examination of patients with chronic ischemia of lower extremities. Photonic device is developed to determine the level of the peripheral blood circulation, which determines the basic parameters of peripheral blood circulation and saturation level. Device consists of two sensors: infrared sensor, which contains the infrared laser radiation source and photodetector, and red sensor, which contains the red radiation source and photodetector. LPPG method allows to determined pulsatility of blood flow in different areas of the foot and lower leg, the degree of compensation and conservation perspectives limb. Surgical treatment of local hypertensive -ischemic pain syndrome of amputation stumps of lower extremities by means of semiclosed fasciotomy in combination with revasculating osteotrepanation enabled to improve considerably regional hemodynamics in the tissues of the stump and decrease pain and hypostatic disorders.

  5. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red blood cell enzyme assay. 864.7100 Section 864... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme defects...

  6. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme defects... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...

  7. 42 CFR 410.161 - Part B blood deductible.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... deductible. (a) General rules. (1) As used in this section, packed red cells means the red blood cells that remain after plasma is separated from whole blood. (2) A unit of packed red cells is treated as the... beneficiary is responsible for the first three units of whole blood or packed red cells received during a...

  8. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme defects... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...

  9. 42 CFR 410.161 - Part B blood deductible.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... deductible. (a) General rules. (1) As used in this section, packed red cells means the red blood cells that remain after plasma is separated from whole blood. (2) A unit of packed red cells is treated as the... beneficiary is responsible for the first three units of whole blood or packed red cells received during a...

  10. 42 CFR 410.161 - Part B blood deductible.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... deductible. (a) General rules. (1) As used in this section, packed red cells means the red blood cells that remain after plasma is separated from whole blood. (2) A unit of packed red cells is treated as the... beneficiary is responsible for the first three units of whole blood or packed red cells received during a...

  11. 42 CFR 410.161 - Part B blood deductible.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... deductible. (a) General rules. (1) As used in this section, packed red cells means the red blood cells that remain after plasma is separated from whole blood. (2) A unit of packed red cells is treated as the... beneficiary is responsible for the first three units of whole blood or packed red cells received during a...

  12. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme defects... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...

  13. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7100 Red blood cell enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in...

  14. Red blood cell sedimentation of Apheresis Granulocytes.

    PubMed

    Lodermeier, Michelle A; Byrne, Karen M; Flegel, Willy A

    2017-10-01

    Sedimentation of Apheresis Granulocyte components removes red blood cells. It is used to increase the blood donor pool when blood group-compatible donors cannot be recruited for a patient because of a major ABO incompatibility or incompatible red blood cell antibodies in the recipient. Because granulocytes have little ABO and few other red blood cell antigens on their membrane, such incompatibility lies mostly with the contaminating red blood cells. Video Clip S1 shows the process of red blood cell sedimentation of an Apheresis Granulocyte component. This video was filmed with a single smart phone attached to a commercial tripod and was edited on a tablet computer with free software by an amateur videographer without prior video experience. © 2017 AABB.

  15. In vitro microfluidic circulatory system for circulating cancer cells

    PubMed Central

    wan, jiandi; Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-01-01

    Circulating tumor cells (CTCs) experience hemodynamic shear stress in circulation and play critical roles in cancer metastasis. The effect of shear on CTCs, however, remains less studied. Here, we described a protocol to circulate HCT116 human colon cancer cells in a microfluidic circulatory system mimicking physiologically relevant circulating conditions. This protocol represents a useful scaffold to mimic the transportation of CTCs in circulation and thus provides an effective means to study the effect of shear on CTCs. We anticipate that future studies using the developed system will help us to further investigate the regulatory roles of shear in molecular responses of CTCs. PMID:28690779

  16. Changes in endometrial natural killer cell expression of CD94, CD158a and CD158b are associated with infertility.

    PubMed

    McGrath, Emma; Ryan, Elizabeth J; Lynch, Lydia; Golden-Mason, Lucy; Mooney, Eoghan; Eogan, Maeve; O'Herlihy, Colm; O'Farrelly, Cliona

    2009-04-01

    Cycle-dependent fluctuations in natural killer (NK) cell populations in endometrium and circulation may differ, contributing to unexplained infertility. NK cell phenotypes were determined by flow cytometry in endometrial biopsies and matched blood samples. While circulating and endometrial T cell populations remained constant throughout the menstrual cycle in fertile and infertile women, circulating NK cells in infertile women increased during the secretory phase. However, increased expression of CD94, CD158b (secretory phase), and CD158a (proliferative phase) by endometrial NK cells from infertile women was observed. These changes were not reflected in the circulation. In infertile women, changes in circulating NK cell percentages are found exclusively during the secretory phase and not in endometrium; cycle-related changes in NK receptor expression are observed only in infertile endometrium. While having exciting implications for understanding NK cell function in fertility, our data emphasize the difficulty in attaching diagnostic or prognostic significance to NK cell analyses in individual patients.

  17. Red blood cell production

    MedlinePlus Videos and Cool Tools

    ... body's tissues in exchange for carbon dioxide, which is carried to and eliminated by the lungs. Red blood cells are formed in the red bone marrow ... 2 days. The body makes about two million red blood cells every second. Blood is made up of both cellular and liquid components. ...

  18. Monsoon-driven variability in the southern Red Sea and the exchange with the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Sofianos, S. S.; Papadopoulos, V. P.; Abualnaja, Y.; Nenes, A.; Hoteit, I.

    2016-02-01

    Although progress has been achieved in describing and understanding the mean state and seasonal cycle of the Red Sea dynamics, their interannual variability is not yet well evaluated and explained. The thermohaline characteristics and the circulation patterns present strong variability at various time scales and are affected by the strong and variable atmospheric forcing and the exchange with the Indian Ocean and the gulfs located at the northern end of the basin. Sea surface temperature time-series, derived from satellite observations, show considerable trends and interannual variations. The spatial variability pattern is very diverse, especially in the north-south direction. The southern part of the Red Sea is significantly influenced by the Indian Monsoon variability that affects the sea surface temperature through the surface fluxes and the circulation patterns. This variability has also a strong impact on the lateral fluxes and the exchange with the Indian Ocean through the strait of Bab el Mandeb. During summer, there is a reversal of the surface flow and an intermediate intrusion of a relatively cold and fresh water mass. This water originates from the Gulf of Aden (the Gulf of Aden Intermediate Water - GAIW), is identified in the southern part of the basin and spreads northward along the eastern Red Sea boundary to approximately 24°N and carried across the Red Sea by basin-size eddies. The GAIW intrusion plays an important role in the heat and freshwater budget of the southern Red Sea, especially in summer, impacting the thermohaline characteristics of the region. It is a permanent feature of the summer exchange flow but it exhibits significant variation from year to year. The intrusion is controlled by a monsoon-driven pressure gradient in the two ends of the strait and thus monsoon interannual variability can laterally impose its signal to the southern Red Sea thermohaline patterns.

  19. Circulating CXCR5+CD4+ T cells participate in the IgE accumulation in allergic asthma.

    PubMed

    Gong, Fang; Zhu, Hua-Yan; Zhu, Jie; Dong, Qiao-Jing; Huang, Xuan; Jiang, Dong-Jin

    2018-05-01

    The pathogenesis of allergic asthma is primarily characterized by abnormality in immunoglobin(Ig)E pathway, suggesting a possible role for follicular helper T cells (Tfh) in the genesis of excessive IgE accumulation. The blood chemokine (C-X-C motif) receptor 5 (CXCR)5 + CD4 + T cells, known as "circulating" Tfh, share common functional characteristics with Tfh cells from germinal centers. The aim of this study was to determine the phenotypes and functions of circulating CXCR5 + CD4 + T cells in allergic asthmatics. Here we found the frequency of the circulating CXCR5 + CD4 + T cells was raised in allergic asthma compared with healthy control (HC). Phenotypic assays showed that activated circulating CXCR5 + CD4 + T cells display the key features of Tfh cells, including invariably coexpressed programmed cell death (PD)-1 and inducible costimulator (ICOS). The frequency of interleukin IL-4 + -, IL-21 + -producing CXCR5 + CD4 + T cells was increased in allergic asthma patients compared with HC. Furthermore, sorted circulating CXCR5 + CD4 + T cells from allergic asthma patients boosted IgE production in coculture assay which could be inhibited by IL-4 or IL-21 blockage. Interestingly, IL-4 + -, IL-21 + -CXCR5 + CD4 + T cells positively correlated with total IgE in the blood. Our data indicated that circulating CXCR5 + CD4 + T cells may have a significant role in facilitating IgE production in allergic asthma patients. Copyright © 2018 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  20. Circulating anti-double-stranded DNA antibody-secreting cells in patients with systemic lupus erythematosus: a novel biomarker for disease activity.

    PubMed

    Hanaoka, H; Okazaki, Y; Satoh, T; Kaneko, Y; Yasuoka, H; Seta, N; Kuwana, M

    2012-10-01

    Antibodies against double-stranded DNA (dsDNA) are widely used to diagnose systemic lupus erythematosus (SLE) and evaluate its activity in patients. This study was undertaken to examine the clinical utility of circulating anti-dsDNA antibody-secreting cells for evaluating SLE patients. Anti-dsDNA antibody-secreting cells quantified using an enzyme-linked immunospot assay were detected in the spleen, bone marrow and peripheral blood from MRL/lpr but not in control BALB/c mice. Circulating anti-dsDNA antibody-secreting cells were detected in 29 (22%) of 130 patients with SLE, but in none of 49 with non-SLE connective-tissue disease or 18 healthy controls. The presence of circulating anti-dsDNA antibody-secreting cells was associated with persistent proteinuria, high SLE disease activity index and systemic lupus activity measures, and a high serum anti-dsDNA antibody titre measured with an enzyme-linked immunosorbent assay. The positive predictive value for active disease was 48% for circulating anti-dsDNA antibody-secreting cells versus 17% for serum anti-dsDNA antibodies. A prospective cohort of patients with circulating anti-dsDNA antibodies and inactive SLE showed that the cumulative disease flare-free rate was significantly lower in patients with than without circulating anti-dsDNA antibody-secreting cells (p < 0.001). Circulating anti-dsDNA antibody-secreting cells are a useful biomarker for assessing disease activity in SLE patients.

  1. Stably Fluorescent Cell Line of Human Ovarian Epithelial Cancer Cells SK-OV-3ip-red.

    PubMed

    Konovalova, E V; Shulga, A A; Chumakov, S P; Khodarovich, Yu M; Woo, Eui-Jeon; Deev, S M

    2017-11-01

    Stable red fluorescing line of human ovarian epithelial cancer cells SK-OV-3ip-red was generated expressing gene coding for protein TurboFP635 (Katushka) fluorescing in the far-red spectrum region with excitation and emission peaks at 588 and 635 nm, respectively. Fluorescence of SK-OV-3ip-red line remained high during long-term cell culturing and after cryogenic freezing. The obtained cell line SK-OV-3ip-red can serve a basis for a model of a scattered tumor with numerous/extended metastases and used both for testing anticancer drugs inhibiting metastasis growth and for non-invasive monitoring of the growth dynamics with high precision.

  2. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).

    PubMed

    Moon, Hui-Sung; Kwon, Kiho; Kim, Seung-Il; Han, Hyunju; Sohn, Joohyuk; Lee, Soohyeon; Jung, Hyo-Il

    2011-03-21

    Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 µL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications. This journal is © The Royal Society of Chemistry 2011

  3. A Two-Dimensional Numerical Investigation of Transport of Malaria-Infected Red Blood Cells in Stenotic Microchannels

    PubMed Central

    Tao, Yong; Rongin, Uwitije; Xing, Zhongwen

    2016-01-01

    The malaria-infected red blood cells experience a significant decrease in cell deformability and increase in cell membrane adhesion. Blood hemodynamics in microvessels is significantly affected by the alteration of the mechanical property as well as the aggregation of parasitized red blood cells. In this study, we aim to numerically study the connection between cell-level mechanobiological properties of human red blood cells and related malaria disease state by investigating the transport of multiple red blood cell aggregates passing through microchannels with symmetric stenosis. Effects of stenosis magnitude, aggregation strength, and cell deformability on cell rheology and flow characteristics were studied by a two-dimensional model using the fictitious domain-immersed boundary method. The results indicated that the motion and dissociation of red blood cell aggregates were influenced by these factors and the flow resistance increases with the increase of aggregating strength and cell stiffness. Further, the roughness of the velocity profile was enhanced by cell aggregation, which considerably affected the blood flow characteristics. The study may assist us in understanding cellular-level mechanisms in disease development. PMID:28105411

  4. Understanding and Portraying the Global Atmospheric Circulation.

    ERIC Educational Resources Information Center

    Harrington, John, Jr.; Oliver, John E.

    2000-01-01

    Examines teaching models of atmospheric circulation and resultant surface pressure patterns, focusing on the three-cell model and the meaning of meridional circulation as related to middle and high latitudes. Addresses the failure of the three-cell model to explain seasonal variations in atmospheric circulation. Suggests alternative models. (CMK)

  5. Neutral-red reaction is related to virulence and cell wall methyl-branched lipids in Mycobacterium tuberculosis.

    PubMed

    Cardona, P-J; Soto, C Y; Martín, C; Giquel, B; Agustí, G; Andreu, Núria; Guirado, E; Sirakova, T; Kolattukudy, P; Julián, E; Luquin, M

    2006-01-01

    Searching for virulence marking tests for Mycobacterium tuberculosis, Dubos and Middlebrook reported in 1948 that in an alkaline aqueous solution of neutral-red, the cells of the virulent H37Rv M. tuberculosis strain fixed the dye and became red in color, whereas the cells of the avirulent H37Ra M. tuberculosis strain remained unstained. In the 1950 and 1960s, fresh isolates of M. tuberculosis were tested for this neutral-red cytochemical reaction and it was reported that they were neutral-red positive, whereas other mycobacteria of diverse environmental origins that were non-pathogenic for guinea pigs were neutral-red negative. However, neutral-red has not really been proven to be a virulence marker. To test if virulence is in fact correlated to neutral-red, we studied a clinical isolate of M. tuberculosis that was originally neutral-red positive but, after more than 1 year passing through culture mediums, turned neutral-red negative. We found that, in comparison to the original neutral-red positive strain, this neutral-red negative variant was attenuated in two murine models of experimental tuberculosis. Lipid analysis showed that this neutral-red negative natural mutant lost the capacity to synthesize pthiocerol dimycocerosates, a cell wall methyl-branched lipid that has been related to virulence in M. tuberculosis. We also studied the neutral-red of different gene-targeted M. tuberculosis mutants unable to produce pthiocerol dimycocerosates or other cell wall methyl-branched lipids such as sulfolipids, and polyacyltrehaloses. We found a negative neutral-red reaction in mutants that were deficient in more than one type of methyl-branched lipids. We conclude that neutral-red is indeed a marker of virulence and it indicates important perturbations in the external surface of M. tuberculosis cells.

  6. A Novel Mechanism for the Pathogenesis of Nonmelanoma Skin Cancer Resulting from Early Exposure to Ultraviolet Light

    DTIC Science & Technology

    2014-09-01

    hybrid mice show a large population of cells that fluoresce with Tomato Red and few cells that fluoresce with GFP only or GFP/ Tomato Red double positive...percent of total cells Double Negative GFP Tomato Red Double Positive 15 Figure 3. Fluorescent activated cell sorting (FACS) shows slight...Negative Tomato Red Double Positive 17 Figure 5. Fluorescent activated cell sorting (FACS) shows no K14-GFP expressing cells and slight expression of

  7. Combinatorial Screening Of Inorganic And Organometallic Materials

    DOEpatents

    Li, Yi , Li, Jing , Britton, Ted W.

    2002-06-25

    A method for differentiating and enumerating nucleated red blood cells in a blood sample is described. The method includes the steps of lysing red blood cells of a blood sample with a lytic reagent, measuring nucleated blood cells by DC impedance measurement in a non-focused flow aperture, differentiating nucleated red blood cells from other cell types, and reporting nucleated red blood cells in the blood sample. The method further includes subtracting nucleated red blood cells and other interference materials from the count of remaining blood cells, and reporting a corrected white blood cell count of the blood sample. Additionally, the method further includes measuring spectrophotometric absorbance of the sample mixture at a predetermined wavelength of a hemoglobin chromogen formed upon lysing the blood sample, and reporting hemoglobin concentration of the blood sample.

  8. Sickle red cell adhesion: many issues and some answers.

    PubMed

    Kaul, D K

    2008-01-01

    Among multiple pathologies associated with sickle cell disease, sickle red cell-endothelial interaction has been implicated as a potential initiating mechanism in vaso-occlusive events that characterize this disease. Vast literature exists on various aspects of sickle red cell adhesion, but many issues remain unresolved, especially pertaining to the role of sickle red cell heterogeneity, the relative role of multiple adhesion mechanisms and targets of antiadhesive therapy. This review briefly analyzes these issues.

  9. 21 CFR 640.17 - Modifications for specific products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.17 Modifications for specific products. Red Blood Cells Frozen: A cryophylactic substance may be added to the Red... safety, purity, and potency for Red Blood Cells, and that the frozen product will maintain those...

  10. 21 CFR 640.17 - Modifications for specific products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.17 Modifications for specific products. Red Blood Cells Frozen: A cryophylactic substance may be added to the Red... safety, purity, and potency for Red Blood Cells, and that the frozen product will maintain those...

  11. 21 CFR 640.17 - Modifications for specific products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.17 Modifications for specific products. Red Blood Cells Frozen: A cryophylactic substance may be added to the Red... safety, purity, and potency for Red Blood Cells, and that the frozen product will maintain those...

  12. Preliminary model of fluid and solute distribution and transport during hemorrhage.

    PubMed

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    2003-01-01

    The distribution and transport of fluid, ions, and other solutes (plasma proteins and glucose) are described in a mathematical model of unresuscitated hemorrhage. The model is based on balances of each material in both the circulation and its red blood cells, as well as in a whole-body tissue compartment along with its cells. Exchange between these four compartments occurs by a number of different mechanisms. The hemorrhage model has as its basis a validated model, due to Gyenge et al., of fluid and solute exchange in the whole body of a standard human. Hypothetical but physiologically based features such as glucose and small ion releases along with cell membrane changes are incorporated into the hemorrhage model to describe the system behavior, particularly during larger hemorrhages. Moderate (10%-30% blood volume loss) and large (> 30% blood loss) hemorrhage dynamics are simulated and compared with available data. The model predictions compare well with the available information for both types of hemorrhages and provide a reasonable description of the progression of a large hemorrhage from the compensatory phase through vascular collapse.

  13. Partial Red Blood Cell Exchange in Children and Young Patients with Sickle Cell Disease: Manual Versus Automated Procedure.

    PubMed

    Escobar, Carlos; Moniz, Marta; Nunes, Pedro; Abadesso, Clara; Ferreira, Teresa; Barra, António; Lichtner, Anabela; Loureiro, Helena; Dias, Alexandra; Almeida, Helena

    2017-10-31

    The benefits of manual versus automated red blood cell exchange have rarely been documented and studies in young sickle cell disease patients are scarce. We aim to describe and compare our experience in these two procedures. Young patients (≤ 21 years old) who underwent manual- or automated-red blood cell exchange for prevention or treatment of sickle cell disease complications were included. Clinical, technical and hematological data were prospectively recorded and analyzed. Ninety-four red blood cell exchange sessions were performed over a period of 68 months, including 57 manual and 37 automated, 63 for chronic complications prevention, 30 for acute complications and one in the pre-operative setting. Mean decrease in sickle hemoglobin levels was higher in automated-red blood cell exchange (p < 0.001) and permitted a higher sickle hemoglobin level decrease per volume removed (p < 0.001), while hemoglobin and hematocrit remained stable. Ferritin levels on chronic patients decreased 54%. Most frequent concern was catheter outflow obstruction on manual-red blood cell exchange and access alarm on automated-red blood cell exchange. No major complication or alloimunization was recorded. Automated-red blood cell exchange decreased sickle hemoglobin levels more efficiently than manual procedure in the setting of acute and chronic complications of sickle cell disease, with minor technical concerns mainly due to vascular access. The threshold of sickle hemoglobin should be individualized for clinical and hematological goals. In our cohort of young patients, the need for an acceptable venous access was a limiting factor, but iron-overload was avoided. Automated red blood cell exchange is safe and well tolerated. It permits a higher sickle hemoglobin removal efficacy, better volume status control and iron-overload avoidance.

  14. Inhibition of cell adhesion by anti–P-selectin aptamer: a new potential therapeutic agent for sickle cell disease

    PubMed Central

    Gutsaeva, Diana R.; Parkerson, James B.; Yerigenahally, Shobha D.; Kurz, Jeffrey C.; Schaub, Robert G.; Ikuta, Tohru

    2011-01-01

    Adhesive interactions between circulating sickle red blood cells (RBCs), leukocytes, and endothelial cells are major pathophysiologic events in sickle cell disease (SCD). To develop new therapeutics that efficiently inhibit adhesive interactions, we generated an anti–P-selectin aptamer and examined its effects on cell adhesion using knockout-transgenic SCD model mice. Aptamers, single-stranded oligonucleotides that bind molecular targets with high affinity and specificity, are emerging as new therapeutics for cardiovascular and hematologic disorders. In vitro studies found that the anti–P-selectin aptamer exhibits high specificity to mouse P-selectin but not other selectins. SCD mice were injected with the anti–P-selectin aptamer, and cell adhesion was observed under hypoxia. The anti–P-selectin aptamer inhibited the adhesion of sickle RBCs and leukocytes to endothelial cells by 90% and 80%, respectively. The anti–P-selectin aptamer also increased microvascular flow velocities and reduced the leukocyte rolling flux. SCD mice treated with the anti–P-selectin aptamer demonstrated a reduced mortality rate associated with the experimental procedures compared with control mice. These results demonstrate that anti–P-selectin aptamer efficiently inhibits the adhesion of both sickle RBCs and leukocytes to endothelial cells in SCD model mice, suggesting a critical role for P-selectin in cell adhesion. Anti–P-selectin aptamer may be useful as a novel therapeutic agent for SCD. PMID:20926770

  15. Effects of red blood cell aggregates dissociation on the estimation of ultrasound speckle image velocimetry.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Paeng, Dong-Guk; Lee, Sang-Joon

    2014-08-01

    Ultrasound speckle image of blood is mainly attributed by red blood cells (RBCs) which tend to form RBC aggregates. RBC aggregates are separated into individual cells when the shear force is over a certain value. The dissociation of RBC aggregates has an influence on the performance of ultrasound speckle image velocimetry (SIV) technique in which a cross-correlation algorithm is applied to the speckle images to get the velocity field information. The present study aims to investigate the effect of the dissociation of RBC aggregates on the estimation quality of SIV technique. Ultrasound B-mode images were captured from the porcine blood circulating in a mock-up flow loop with varying flow rate. To verify the measurement performance of SIV technique, the centerline velocity measured by the SIV technique was compared with that measured by Doppler spectrograms. The dissociation of RBC aggregates was estimated by using decorrelation of speckle patterns in which the subsequent window was shifted as much as the speckle displacement to compensate decorrelation caused by in-plane loss of speckle patterns. The decorrelation of speckles is considerably increased according to shear rate. Its variations are different along the radial direction. Because the dissociation of RBC aggregates changes ultrasound speckles, the estimation quality of SIV technique is significantly correlated with the decorrelation of speckles. This degradation of measurement quality may be improved by increasing the data acquisition rate. This study would be useful for simultaneous measurement of hemodynamic and hemorheological information of blood flows using only speckle images. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. NO supplementation for transfusion medicine and cardiovascular applications.

    PubMed

    Cabrales, Pedro; Ortiz, Daniel; Friedman, Joel M

    Blood transfusions are used to treat reduced O 2 -carrying capacity consequent to anemia. In many cases anemia is caused by a major blood loss, which also creates a state of hypovolemia. Whereas O 2 transport capacity is restored by increasing levels of circulating Hb, transfusion does not resolve the hypoperfusion, the hypoxia and the inflammatory cascades initiated during the anemia and hypovolemia. This explains why blood transfusion is not always an effective treatment and why transfusion of stored blood has been associated with increased morbidity and mortality, especially in patient populations receiving multiple transfusions. Epidemiologic data indicate that adverse events after transfusion are relatively common, having a great impact on the patients outcome and on the costs of public health. In this chapter, we explain why classical transfusion strategies target the reversal of hypoxia only, but do not address the inflammatory cascades initiated during anemic states and the importance of the flow and vascular endothelium interactions. We also establish the relation between red blood cells storage lesions, limited NO bioavailability and transfusion-associated adverse events. Lastly, we explain the potential use of long-lived sources of bioactive NO to reverse the hypoxic inflammatory cascades, promote a sustained increase in tissue perfusion and thereby allow transfusions to achieve their intended goal. The underlying premise is that adverse effects associated with transfusions are intimately linked to vascular dysfunction. Understanding of these mechanisms would lead to novel transfusion medicine strategies to preserve red cell function and to correct for functional changes induced by hemoglobinopathies that affect cell structure and function.

  17. Korean Red Ginseng Saponin Fraction Rich in Ginsenoside-Rb1, Rc and Rb2 Attenuates the Severity of Mouse Collagen-Induced Arthritis

    PubMed Central

    Endale, Mehari; Im, Eun Ju; Lee, Joo Young; Kim, Sung Dae; Song, Yong-Bum; Kwak, Yi-Seong; Kim, Chaekyun; Kim, Seung-Hyung; Roh, Seong-Soo; Rhee, Man Hee

    2014-01-01

    Despite a multitude of reports on anti-inflammatory properties of ginseng extracts or individual ginsenosides, data on antiarthritic effect of ginseng saponin preparation with mixed ginsenosides is limited. On the other hand, a combined therapy of safe and inexpensive plant-derived natural products such as ginsenosides can be considered as an alternative to treat arthritis. Our previous in vitro data displayed a strong anti-inflammatory action of red ginseng saponin fraction-A (RGSF-A). We, herein, report a marked antiarthritic property of RGSF-A rich in ginsenoside Rb1, Rc, and Rb2. Collagen-induced arthritic (CIA) mice were treated with RGSF-A or methotrexate (MTX) for 5 weeks. Joint pathology, serum antibody production and leukocye activation, cytokine production in the circulation, lymph nodes, and joints were examined. RGSF-A markedly reduced severity of arthritis, cellular infiltration, and cartilage damage. It suppressed CD3+/CD69+, CD4+/CD25+, CD8+ T-cell, CD19+, B220/CD23+ B-cell, MHCII+/CD11c+, and Gr-1+/CD11b+ cell activations. It further suppressed anti-CII- or anti-RF-IgG/IgM, TNF-α, IL-1β, IL-17, and IL-6 secretions but stimulated IL-10 levels in the serum, joint, or splenocyte. RGSF-A attenuated arthritis severity, modified leukocyte activations, and restored cytokine imbalances, suggesting that it can be considered as an antiarthritic agent with the capacity to ameliorate the immune and inflammatory responses in CIA mice. PMID:24833816

  18. Inhibition of aberrant circulating Tfh cell proportions by corticosteroids in patients with systemic lupus erythematosus.

    PubMed

    Feng, Xuebing; Wang, Dandan; Chen, Jingjing; Lu, Lin; Hua, Bingzhu; Li, Xia; Tsao, Betty P; Sun, Lingyun

    2012-01-01

    To observe the proportion of peripheral T follicular helper (Tfh) cells in patients with systemic lupus erythematosus (SLE) and to assess the role of steroids on Tfh cells from SLE patients. Peripheral blood mononuclear cells (PBMCs) from 42 SLE patients and 22 matched healthy subjects were collected to assess proportions of circulating CXCR5(+)PD1(+)/CD4(+) T cells (Tfh), CD4(+)CCR6(+) T cells (Th17-like) and CD19(+)CD138(+) plasma cells by flow cytometry. 8 of the patients had their blood redrawn within one week after receiving methylprednisolone pulse treatment. Disease activity was evaluated by SLE disease activity index. To test the effect of IL-21 and corticosteroids on Tfh cells in vitro, PBMCs harvested from another 15 SLE patients were cultured with medium, IL-21, or IL-21+ dexamethasone for 24 hours and 72 hours. PBMCs from an independent 23 SLE patients were cultured with different concentrations of dexamethasone for 24 hours. Compared to normal controls, percentages of circulating Tfh cells, but not Th17 cells, were elevated in SLE patients and correlated with disease activity. Proportions of Tfh cells in SLE patients were positively correlated with those of plasma cells and serum levels of antinuclear antibodies. After methylprednisolone pulse treatment, both percentages and absolute numbers of circulating Tfh cells were significantly decreased. In vitro cultures showed an increase of Tfh cell proportion after IL-21 stimulation that was totally abolished by the addition of dexamethasone. Both 0.5 and 1 µM dexamethasone decreased Tfh cells dose dependently (overall p = 0.013). We demonstrated that elevated circulating Tfh cell proportions in SLE patients correlated with their disease activities, and circulating levels of plasma cells and ANA. Corticosteroids treatment down-regulated aberrant circulating Tfh cell proportions both in vivo and in vitro, making Tfh cells a new treatment target for SLE patients.

  19. Parallel Microchannel-Based Measurements of Individual Erythrocyte Areas and Volumes

    PubMed Central

    Gifford, Sean C.; Frank, Michael G.; Derganc, Jure; Gabel, Christopher; Austin, Robert H.; Yoshida, Tatsuro; Bitensky, Mark W.

    2003-01-01

    We describe a microchannel device which utilizes a novel approach to obtain area and volume measurements on many individual red blood cells. Red cells are aspirated into the microchannels much as a single red blood cell is aspirated into a micropipette. Inasmuch as there are thousands of identical microchannels with defined geometry, data for many individual red cells can be rapidly acquired, and the fundamental heterogeneity of cell membrane biophysics can be analyzed. Fluorescent labels can be used to quantify red cell surface and cytosolic features of interest simultaneously with the measurement of area and volume for a given cell. Experiments that demonstrate and evaluate the microchannel measuring capabilities are presented and potential improvements and extensions are discussed. PMID:12524315

  20. Red cell exchange to mitigate a delayed hemolytic transfusion reaction in a patient transfused with incompatible red blood cells.

    PubMed

    Irani, Mehraboon S; Karafin, Matthew S; Ernster, Luke

    2017-02-01

    A red cell exchange was performed to prevent a potentially fatal hemolytic transfusion reaction in a patient with anti-e who was transfused with e-antigen unscreened red blood cells during liver transplant surgery. A 64-year-old woman with cirrhosis due to hepatitis C was scheduled to receive a liver transplant. She had a previously documented anti-e, an antibody to the Rh(e)-antigen that is known to cause delayed hemolytic transfusion reactions. Pre-operatively and intra-operatively, she had massive hemorrhage which required transfusion of 34 e-antigen unscreened red blood cells (RBCs) most of which were incompatible. The hemoglobin dropped from 9.1 g/dL on post-operative day (POD)1 to 6.6 g/dL on POD6, with no evidence of blood loss. The bilirubin also increased from 5.0 mg/dL on POD 1 to 11.0 mg/dL on POD 6. As she was also becoming more hemodynamically unstable, a red cell exchange with 10 units of e-negative RBCs was performed on POD 6. She improved clinically and was extubated the following day. A few residual transfused e-positive red cells were detected after the red cell exchange until POD 13. This case illustrates how a red cell exchange can mitigate the potentially harmful effects of a delayed hemolytic transfusion reaction caused by red cell antibodies. With massive intraoperative blood loss it may not be possible to have antigen-negative RBCs immediately available, particularly for the e-antigen, which is present in 98% of the donor population. The ability to perform such a procedure may be life-saving in such patients. J. Clin. Apheresis 32:59-61, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Effects of helicopter transport on red blood cell components.

    PubMed

    Otani, Taiichi; Oki, Ken-ichi; Akino, Mitsuaki; Tamura, Satoru; Naito, Yuki; Homma, Chihiro; Ikeda, Hisami; Sumita, Shinzou

    2012-01-01

    There are no reported studies on whether a helicopter flight affects the quality and shelf-life of red blood cells stored in mannitol-adenine-phosphate. Seven days after donation, five aliquots of red blood cells from five donors were packed into an SS-BOX-110 container which can maintain the temperature inside the container between 2 °C and 6 °C with two frozen coolants. The temperature of an included dummy blood bag was monitored. After the box had been transported in a helicopter for 4 hours, the red blood cells were stored again and their quality evaluated at day 7 (just after the flight), 14, 21 and 42 after donation. Red blood cell quality was evaluated by measuring adenosine triphosphate, 2,3-diphosphoglycerate, and supernatant potassium, as well as haematocrit, intracellular pH, glucose, supernatant haemoglobin, and haemolysis rate at the various time points. During the experiment the recorded temperature remained between 2 and 6 °C. All data from the red blood cells that had undergone helicopter transportation were the same as those from a control group of red blood cell samples 7 (just after the flight), 14, 21, and 42 days after the donation. Only supernatant Hb and haemolysis rate 42 days after the donation were slightly increased in the helicopter-transported group of red blood cell samples. All other parameters at 42 days after donation were the same in the two groups of red blood cells. These results suggest that red blood cells stored in mannitol-adenine-phosphate are not significantly affected by helicopter transportation. The differences in haemolysis by the end of storage were small and probably not of clinical significance.

  2. Effects of helicopter transport on red blood cell components

    PubMed Central

    Otani, Taiichi; Oki, Ken-ichi; Akino, Mitsuaki; Tamura, Satoru; Naito, Yuki; Homma, Chihiro; Ikeda, Hisami; Sumita, Shinzou

    2012-01-01

    Background There are no reported studies on whether a helicopter flight affects the quality and shelf-life of red blood cells stored in mannitol-adenine-phosphate. Materials and methods Seven days after donation, five aliquots of red blood cells from five donors were packed into an SS-BOX-110 container which can maintain the temperature inside the container between 2 °C and 6 °C with two frozen coolants. The temperature of an included dummy blood bag was monitored. After the box had been transported in a helicopter for 4 hours, the red blood cells were stored again and their quality evaluated at day 7 (just after the flight), 14, 21 and 42 after donation. Red blood cell quality was evaluated by measuring adenosine triphosphate, 2,3-diphosphoglycerate, and supernatant potassium, as well as haematocrit, intracellular pH, glucose, supernatant haemoglobin, and haemolysis rate at the various time points. Results During the experiment the recorded temperature remained between 2 and 6 °C. All data from the red blood cells that had undergone helicopter transportation were the same as those from a control group of red blood cell samples 7 (just after the flight), 14, 21, and 42 days after the donation. Only supernatant Hb and haemolysis rate 42 days after the donation were slightly increased in the helicopter-transported group of red blood cell samples. All other parameters at 42 days after donation were the same in the two groups of red blood cells. Discussion These results suggest that red blood cells stored in mannitol-adenine-phosphate are not significantly affected by helicopter transportation. The differences in haemolysis by the end of storage were small and probably not of clinical significance. PMID:22153688

  3. Effects of acute hypoxic exposure on oxygen affinity of human red blood cells.

    PubMed

    Chowdhury, Aniket; Dasgupta, Raktim

    2017-01-20

    Adaptation of red blood cells subjected to acute hypoxia, crucial for managing high altitude syndrome and pulmonary diseases, has been investigated. For this, red blood cells were exposed to the acute hypoxic condition by purging nitrogen over increasing time periods from 15 to 60 min and thereafter equilibrated with atmospheric oxygen for 10 min. Raman spectra of these red blood cells were then recorded and analyzed to look for changes in the level of oxygenation compared to unexposed cells. A decreasing oxygen affinity for the cells was observed with increasing time of exposure to the hypoxic condition. This change in oxygen affinity for the red blood cells may result from metabolic adjustment of the cells under the hypoxic condition to promote increased concentration of intracellular 2, 3-diphosphoglycerate.

  4. Basal cell adhesion molecule/lutheran protein. The receptor critical for sickle cell adhesion to laminin.

    PubMed Central

    Udani, M; Zen, Q; Cottman, M; Leonard, N; Jefferson, S; Daymont, C; Truskey, G; Telen, M J

    1998-01-01

    Sickle red cells bind significant amounts of soluble laminin, whereas normal red cells do not. Solid phase assays demonstrate that B-CAM/LU binds laminin on intact sickle red cells and that red cell B-CAM/LU binds immobilized laminin, whereas another putative laminin binding protein, CD44, does not. Ligand blots also identify B-CAM/LU as the only erythrocyte membrane protein(s) that binds laminin. Finally, transfection of murine erythroleukemia cells with human B-CAM cDNA induces binding of both soluble and immobilized laminin. Thus, B-CAM/LU appears to be the major laminin-binding protein of sickle red cells. Previously reported overexpression of B-CAM/LU by epithelial cancer cells suggests that this protein may also serve as a laminin receptor in malignant tumors. PMID:9616226

  5. Congo red agar, a differential medium for Aeromonas salmonicida, detects the presence of the cell surface protein array involved in virulence.

    PubMed Central

    Ishiguro, E E; Ainsworth, T; Trust, T J; Kay, W W

    1985-01-01

    Strains of the fish pathogen Aeromonas salmonicida which possess the cell surface protein array known as the A-layer (A+) involved in virulence formed deep red colonies on tryptic soy agar containing 30 micrograms of Congo red per ml. These were readily distinguished from colorless or light orange colonies of avirulent mutants lacking A-layer (A-). The utility of Congo red agar for quantifying A+ and A- cells in the routine assessment of culture virulence was demonstrated. Intact A+ cells adsorbed Congo red, whereas A- mutants did not bind Congo red unless first permeabilized with EDTA. The dye-binding component of A+ cells was shown to be the 50,000-Mr A-protein component of the surface array. Purified A-protein avidly bound Congo red at a dye-to-protein molar ratio of about 30 by a nonspecific hydrophobic mechanism enhanced by high salt concentrations. Neither A+ nor A- cells adsorbed to Congo red-Sepharose columns at low salt concentrations. On the other hand, A+ (but not A-) cells were avidly bound at high salt concentrations. Images PMID:3934141

  6. Collection and use of circulating hematopoietic progenitor cells.

    PubMed

    Lee, J H; Klein, H G

    1995-02-01

    Although lymphocytes and monocytes are becoming increasingly important in transfusion therapy, peripheral stem cells have been responsible for the recent explosive interest in harvesting mononuclear cells from the peripheral circulation. Despite their low concentration in peripheral blood and the consequent difficulty in cell collection, circulating hematopoietic progenitor cells are collected and used almost routinely. These mononuclear cells, possessing the capacity for hematopoietic reconstitution and the potential for definitive therapy of a variety of disorders, have been the focus of recent intense interest in transfusion medicine.

  7. The effect of xanthine oxidase and hypoxanthine on the permeability of red cells from patients with sickle cell anemia.

    PubMed

    Al Balushi, Halima W M; Rees, David C; Brewin, John N; Hannemann, Anke; Gibson, John S

    2018-03-01

    Red cells from patients with sickle cell anemia (SCA) are under greater oxidative challenge than those from normal individuals. We postulated that oxidants generated by xanthine oxidase (XO) and hypoxanthine (HO) contribute to the pathogenesis of SCA through altering solute permeability. Sickling, activities of the main red cell dehydration pathways (P sickle , Gardos channel, and KCl cotransporter [KCC]), and cell volume were measured at 100, 30, and 0 mmHg O 2 , together with deoxygenation-induced nonelectrolyte hemolysis. Unexpectedly, XO/HO mixtures had mainly inhibitory effects on sickling, P sickle , and Gardos channel activities, while KCC activity and nonelectrolyte hemolysis were increased. Gardos channel activity was significantly elevated in red cells pharmacologically loaded with Ca 2+ using the ionophore A23187, consistent with an effect on the transport system per se as well as via Ca 2+ entry likely via the P sickle pathway. KCC activity is controlled by several pairs of conjugate protein kinases and phosphatases. Its activity, however, was also stimulated by XO/HO mixtures in red cells pretreated with N-ethylmaleimide (NEM), which is thought to prevent regulation via changes in protein phosphorylation, suggesting that the oxidants formed could also have direct effects on this transporter. In the presence of XO/HO, red cell volume was better maintained in deoxygenated red cells. Overall, the most notable effect of XO/HO mixtures was an increase in red cell fragility. These findings increase our understanding of the effects of oxidative challenge in SCA patients and are relevant to the behavior of red cells in vivo. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  8. Lymph node and circulating T cell characteristics are strongly correlated in end-stage renal disease patients, but highly differentiated T cells reside within the circulation.

    PubMed

    Dedeoglu, B; de Weerd, A E; Huang, L; Langerak, A W; Dor, F J; Klepper, M; Verschoor, W; Reijerkerk, D; Baan, C C; Litjens, N H R; Betjes, M G H

    2017-05-01

    Ageing is associated with changes in the peripheral T cell immune system, which can be influenced significantly by latent cytomegalovirus (CMV) infection. To what extent changes in circulating T cell populations correlate with T cell composition of the lymph node (LN) is unclear, but is crucial for a comprehensive understanding of the T cell system. T cells from peripheral blood (PB) and LN of end-stage renal disease patients were analysed for frequency of recent thymic emigrants using CD31 expression and T cell receptor excision circle content, relative telomere length and expression of differentiation markers. Compared with PB, LN contained relatively more CD4 + than CD8 + T cells (P < 0·001). The percentage of naive and central memory CD4 + and CD8 + T cells and thymic output parameters showed a strong linear correlation between PB and LN. Highly differentiated CD28 null T cells, being CD27 - , CD57 + or programmed death 1 (PD-1 + ), were found almost exclusively in the circulation but not in LN. An age-related decline in naive CD4 + and CD8 + T cell frequency was observed (P = 0·035 and P = 0·002, respectively) within LN, concomitant with an increase in central memory CD8 + T cells (P = 0·033). Latent CMV infection increased dramatically the frequency of circulating terminally differentiated T cells, but did not alter T cell composition and ageing parameters of LN significantly. Overall T cell composition and measures of thymic function in PB and LN are correlated strongly. However, highly differentiated CD28 null T cells, which may comprise a large part of circulating T cells in CMV-seropositive individuals, are found almost exclusively within the circulation. © 2017 British Society for Immunology.

  9. Measurement of Erythrocyte Methotrexate Polyglutamate Levels: Ready for Clinical Use in Rheumatoid Arthritis?

    PubMed Central

    Danila, Maria I.; Hughes, Laura B.; Brown, Elizabeth E.; Morgan, Sarah L.; Baggott, Joseph E.; Arnett, Donna K.; Bridges, S. Louis

    2013-01-01

    Methotrexate (MTX) is one of the most commonly prescribed and most effective drugs for the treatment of rheumatoid arthritis (RA). Given the partial response of many patients and the side effect profile of the drug, there is considerable interest in identification of biomarkers to guide MTX therapy in RA. Upon entering cells, MTX is polyglutamated. Measuring methotrexate polyglutamates (MTX PGs) levels in circulating red blood cells (RBC) has been proposed as an objective measure that can help to optimize MTX therapy in RA. There is conflicting data with regard to the clinical utility of measurement of MTX PGs measurements as a predictor of the efficacy or toxicity of low-dose MTX effects in RA. Should large, randomized clinical trials of this assay show consistent, reproducible, long-term correlations between MTX PG levels and efficacy and toxicity, this test could become a prominent tool for clinicians to optimize the use of MTX in RA. PMID:20665136

  10. Isolation and Characterization of Circulating Tumor Cells in Squamous Cell Carcinoma of the Lung Using a Non-EpCAM-Based Capture Method.

    PubMed

    Bozzetti, Cecilia; Quaini, Federico; Squadrilli, Anna; Tiseo, Marcello; Frati, Caterina; Lagrasta, Costanza; Azzoni, Cinzia; Bottarelli, Lorena; Galetti, Maricla; Alama, Angela; Belletti, Silvana; Gatti, Rita; Passaro, Antonio; Gradilone, Angela; Cavazzoni, Andrea; Alfieri, Roberta; Petronini, Pier Giorgio; Bonelli, Mara; Falco, Angela; Carubbi, Cecilia; Pedrazzi, Giuseppe; Nizzoli, Rita; Naldi, Nadia; Pinto, Carmine; Ardizzoni, Andrea

    2015-01-01

    The exclusion of circulating tumor cells (CTCs) that have lost epithelial antigens during the epithelial-to-mesenchymal transition (EMT) process by using Epithelial Cell Adhesion Molecule (EpCAM) based capture methods is still a matter of debate. In this study, cells obtained after depletion procedure from blood samples of squamous cell lung cancer (SQCLC) patients were identified based on morphology and characterized with the combination of FISH assessment and immunophenotypic profile. Five mL blood samples, collected from 55 advanced SQCLC patients, were analyzed by a non-EpCAM-based capture method. After depletion of leukocytes and erythroid cells, the negative fraction was characterized by both FISH using a fibroblast growth factor receptor 1 (FGFR1) probe and by immunocytochemistry. Thirty healthy donors were also tested. Based on morphology (nuclear dimension ≥10 μm, shape and hypercromatic aspect) suspicious circulating cells clearly distinguishable from contaminant leukocytes were observed in 49/55 (89%) SQCLC patients. Thirty-four of the 44 (77%) samples evaluable for FGFR1 FISH showed ≥ 6 FGFR1 gene copy number on average per cell. Vimentin expression involved 43% (18/42) of pooled circulating SQCLC cells, whereas only 29% (14/48) were EpCAM positive. Confocal microscopy confirmed the localization of FGFR1 probe in suspicious circulating cells. Suspicious circulating elements were also observed in healthy donors and did not show any epithelial associated antigens. A significantly lower number of suspicious circulating cells in healthy donors compared to SQCLC patients was found. Among the heterogeneous cell population isolated by depletion procedure, the coexistence of cells with epithelial and/or mesenchymal phenotype suggests that EMT may participate to transendothelial invasion and migration of tumor cells in advanced SQCLC. The finding of cells with neither EpCAM or EMT phenotype, retrieved after non-EpCAM-based systems, underlines the presence of suspicious elements in the blood of both SQCLC patients and healthy donors. Further phenotyping and molecular analyses are necessary to fully characterize these circulating elements.

  11. Measuring skewness of red blood cell deformability distribution by laser ektacytometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitin, S Yu; Priezzhev, A V; Lugovtsov, A E

    An algorithm is proposed for measuring the parameters of red blood cell deformability distribution based on laser diffractometry of red blood cells in shear flow (ektacytometry). The algorithm is tested on specially prepared samples of rat blood. In these experiments we succeeded in measuring the mean deformability, deformability variance and skewness of red blood cell deformability distribution with errors of 10%, 15% and 35%, respectively. (laser biophotonics)

  12. [Correlation between red blood cell count and liver function status].

    PubMed

    Xie, Xiaomeng; Wang, Leijie; Yao, Mingjie; Wen, Xiajie; Chen, Xiangmei; You, Hong; Jia, Jidong; Zhao, Jingmin; Lu, Fengmin

    2016-02-01

    To investigate the changes in red blood cell count in patients with different liver diseases and the correlation between red blood cell count and degree of liver damage. The clinical data of 1427 patients with primary liver cancer, 172 patients with liver cirrhosis, and 185 patients with hepatitis were collected, and the Child-Pugh class was determined for all patients. The differences in red blood cell count between patients with different liver diseases were retrospectively analyzed, and the correlation between red blood cell count and liver function status was investigated. The Mann-Whitney U test, Kruskal-Wallis H test, rank sum test, Spearman rank sum correlation test, and chi-square test were performed for different types of data. Red blood cell count showed significant differences between patients with chronic hepatitis, liver cancer, and liver cirrhosis and was highest in patients with chronic hepatitis and lowest in patients with liver cirrhosis (P < 0.05). In the patients with liver cirrhosis, red blood cell count tended to decrease in patients with a higher Child-Pugh class (P < 0.05). For patients with liver cirrhosis, red blood cell count can reflect the degree of liver damage, which may contribute to an improved liver function prediction model for these patients.

  13. Directly observed reversible shape changes and hemoglobin stratification during centrifugation of human and Amphiuma red blood cells.

    PubMed

    Hoffman, Joseph F; Inoué, Shinya

    2006-02-21

    This paper describes changes that occur in human and Amphiuma red blood cells observed during centrifugation with a special microscope. Dilute suspensions of cells were layered, in a centrifuge chamber, above an osmotically matched dense solution, containing Nycodenz, Ficoll, or Percoll (Pharmacia) that formed a density gradient that allowed the cells to slowly settle to an equilibrium position. Biconcave human red blood cells moved downward at low forces with minimum wobble. The cells oriented vertically when the force field was increased and Hb sedimented as the lower part of each cell became bulged and assumed a "bag-like" shape. The upper centripetal portion of the cell became thinner and remained biconcave. These changes occurred rapidly and were completely reversible upon lowering the centrifugal force. Bag-shaped cells, upon touching red cells in rouleau, immediately reverted to biconcave disks as they flipped onto a stack. Amphiuma red cells displayed a different type of reversible stratification and deformation at high force fields. Here the cells became stretched, with the nucleus now moving centrifugally, the Hb moving centripetally, and the bottom of the cells becoming thinner and clear. Nevertheless, the distribution of the marginal bands at the cells' rim was unchanged. We conclude that centrifugation, per se, while changing a red cell's shape and the distribution of its intracellular constituents, does so in a completely reversible manner. Centrifugation of red cells harboring altered or missing structural elements could provide information on shape determinants that are still unexplained.

  14. Use of minimal extracorporeal circulation improves outcome after heart surgery; a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Anastasiadis, Kyriakos; Antonitsis, Polychronis; Haidich, Anna-Bettina; Argiriadou, Helena; Deliopoulos, Apostolos; Papakonstantinou, Christos

    2013-04-05

    The question whether use of minimal extracorporeal circulation (MECC) influences patients' outcome remains unanswered. We performed a systemic review of the literature and a meta-analysis of randomized controlled trials to evaluate the impact of MECC compared to conventional extracorporeal circulation (CECC) on mortality and major adverse cardiovascular events in patients undergoing heart surgery. We independently conducted a systemic review of English and non-English articles using Medline, Embase and Cochrane database. Random allocation to treatment with a minimum of 40 patients in both groups was considered mandatory for inclusion in the meta-analysis. Primary outcomes were operative mortality and major adverse cardiac and cerebrovascular events comprising death before discharge, myocardial infarction and neurologic damage. We included 24 studies comparing MECC vs. CECC with a total of 2770 patients. Use of MECC was associated with a significant decrease in mortality (0.5% vs. 1.7%, P=0.02), in the risk of postoperative myocardial infarction (1.0% vs. 3.8%, P=0.03) and reduced rate of neurologic events (2.3% vs. 4.0%, P=0.08). Additionally, MECC was associated with reduced systemic inflammatory response as measured by polymorphonuclear elastase, hemodilution as calculated by hematocrit drop after procedure, need for red blood cell transfusion, reduced levels of peak troponin release, incidence of low cardiac output syndrome, need for inotropic support, peak creatinine level, occurrence of postoperative atrial fibrillation, duration of mechanical ventilation and intensive care unit stay. Use of MECC in heart surgery resulted in improved short-term outcome as reflected by reduced mortality and morbidity compared with conventional extracorporeal circulation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. From tissue iron retention to low systemic haemoglobin levels, new pathophysiological biomarkers of human abdominal aortic aneurysm.

    PubMed

    Martinez-Pinna, R; Lindholt, J S; Madrigal-Matute, J; Blanco-Colio, L M; Esteban-Salan, M; Torres-Fonseca, M M; Lefebvre, T; Delbosc, S; Laustsen, J; Driss, F; Vega de Ceniga, M; Gouya, L; Weiss, G; Egido, J; Meilhac, O; Michel, J-B; Martin-Ventura, J

    2014-07-03

    Iron deposits are observed in tissue of abdominal aortic aneurysm (AAA) patients, although the underlying mechanisms are not completely elucidated. Therefore we explored circulating markers of iron metabolism in AAA patients, and tested if they could serve as biomarkers of AAA. Increased red blood cell (RBC)-borne iron retention and transferrin, transferrin receptor and ferritin expression was observed in AAA tissue compared to control aorta (immunohistochemistry and western blot). In contrast, decreased circulating iron, transferrin, mean corpuscular haemoglobin concentration (MCHC) and haemoglobin concentration, along with circulating RBC count, were observed in AAA patients (aortic diameter >3 cm, n=114) compared to controls (aortic diameter <3 cm, n=88) (ELISA), whereas hepcidin concentrations were increased in AAA subjects (MS/MS assay). Moreover, iron, transferrin and haemoglobin levels were negatively, and hepcidin positively, correlated with aortic diameter in AAA patients. The association of low haemoglobin with AAA presence or aortic diameter was independent of specific risk factors. Moreover, MCHC negatively correlated with thrombus area in another cohort of AAA patients (aortic diameter 3-5 cm, n=357). We found that anaemia was significantly more prevalent in AAA patients (aortic diameter >5 cm, n=8,912) compared to those in patients with atherosclerotic aorto-iliac occlusive disease (n=17,737) [adjusted odds ratio=1.77 (95% confidence interval: 1.61;1.93)]. Finally, the mortality risk among AAA patients with anaemia was increased by almost 30% [adjusted hazard ratio: 1.29 (95% confidence interval: 1.16;1.44)] as compared to AAA subjects without anaemia. In conclusion, local iron retention and altered iron recycling associated to high hepcidin and low transferrin systemic concentrations could lead to reduced circulating haemoglobin levels in AAA patients. Low haemoglobin levels are independently associated to AAA presence and clinical outcome.

  16. Studies on the erythron and the ferrokinetic responses in beagles adapted to hypergravity

    NASA Technical Reports Server (NTRS)

    Beckman, D. A.; Evans, J. W.; Oyama, J.

    1978-01-01

    Red cell survival, ferrokinetics, and hematologic parameters were investigated in beagle dogs exposed to chronic hypergravity (2.6 Gx). Ineffective erythropoiesis, red cell mass, plasma volume, and Cr-51-elution were significantly increased; maximum Fe-59 incorporation was decreased; and there was no change in the mean erythrocyte life span following autologous injection of Cr-51-labeled red cells and Fe-59-labeled transferrin. Red cell count, F(cells), total body hemoglobin (Hb), susceptability to osmotic lysis, and differential reticulocyte count were increased. White blood cell count, venous blood %Hb, mean cell volume, mean cell Hb, mean cell Hb concentration, and serum iron were decreased. No changes were observed for body mass, mg Fe per g Hb, iron binding capacity, percent saturation of iron carrying capacity, or the electrophoretic mobility of purified Hb. This study indicated that chronic exposure to hypergravity induced changes in red cell size, volume, total mass, and membrane permeability.

  17. Size-Based Enrichment Technologies for Non-cancerous Tumor-Derived Cells in Blood.

    PubMed

    Mong, Jamie; Tan, Min-Han

    2018-05-01

    Enumeration of circulating tumor cells (CTCs) in the bloodstream can predict prognosis and survival in cancer patients. However, CTC rarity and heterogeneity pose challenges in using them as biomarkers. Recent publications have reported new classes of circulating, non-cancerous tumor-derived cells present in cancer patients but not in healthy controls; these include cancer-associated macrophages, tumor-endothelial clusters (TECs), and cancer-associated fibroblasts (CAFs). Well-established marker-dependent CTC enrichment technologies will miss this group of circulating cells. To maximize our chance of finding useful circulating biomarkers in cancer patients, we propose the use of size-based enrichment technologies to isolate both cancerous and non-cancerous cells in circulation. We review their biological properties and discuss device features to consider in their enrichment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The pathological anatomy of acute experimental baryllium poisoning peripheral blood changes resulting from intravenous administration of beryllium sulphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, J.E.

    1947-09-01

    The lesions produced in the organs following a single intravenous administration of hydrated beryllium sulfate are described. The lesions of the lungs and eyes of animals exposed to the above compound are reviewed. When the baryllium sulfate is given intravenously, midsonal focal necrosis of the liver cells, necrosis of cells of the distal one-third of the proximal convoluted tubules of the kidney and generative changes in the cells of the hemopoietic system are produced. Following exposure of animals to beryllium sulfate dust (100 mg/m{sup 3}, 8 hours daily for eleven days), inflammatory pulmonary lesions are produced which vary in intensitymore » with different species. Pulmonary edema, a terminal bronchitis, and focal atelectasis are the most commonly observed lesions. The eyes of some species exposed to this dust develop conjunctivitis, heratitis, and corneal ulcers. Following a single intravenous administration of beryllium sulfate, rather sharp changes occur in the elements of the peripheral blood. These consist of a secondary anemia (probably resulting from intravascular lysis of red cells), a leukocytosis, and an increase in the number of circulating platelets. 29 figs.« less

  19. Blood bank issues associated with red cell exchanges in sickle cell disease.

    PubMed

    Sarode, Ravindra; Altuntas, Fevzi

    2006-12-01

    Sickle cell disease (SCD) patients are prone to develop complications that include stroke, acute chest syndrome, and other crises. Some of these complications require chronic transfusion therapy or red cell exchange (RCE), either for therapeutic or prophylactic reasons. Due to a discrepancy of red cell antigens between African Americans and Caucasians (majority blood donors), the incidence of alloantibody formation is very high, which makes it difficult to find compatible red cell units, especially for urgent RCE. Some of the above conditions require immediate oxygen delivery to the tissues. Thus, SCD patients undergoing RCE should receive red blood cells with special attributes that include matching for Rh and Kell blood group antigens; RBCs should be fresh in order to provide (1) immediate oxygen delivery and (2) longer surviving cells to reduce the interval between RCE. Also, these units should be pre-storage leukoreduced to prevent febrile non-hemolytic reactions and screened for sickle cell traits to avoid transfusing red cells containing HbS. This requires a concerted effort between the apheresis unit, the local blood bank, and the central blood supplier.

  20. In vivo acoustic and photoacoustic focusing of circulating cells

    NASA Astrophysics Data System (ADS)

    Galanzha, Ekaterina I.; Viegas, Mark G.; Malinsky, Taras I.; Melerzanov, Alexander V.; Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2016-03-01

    In vivo flow cytometry using vessels as natural tubes with native cell flows has revolutionized the study of rare circulating tumor cells in a complex blood background. However, the presence of many blood cells in the detection volume makes it difficult to count each cell in this volume. We introduce method for manipulation of circulating cells in vivo with the use of gradient acoustic forces induced by ultrasound and photoacoustic waves. In a murine model, we demonstrated cell trapping, redirecting and focusing in blood and lymph flow into a tight stream, noninvasive wall-free transportation of blood, and the potential for photoacoustic detection of sickle cells without labeling and of leukocytes targeted by functionalized nanoparticles. Integration of cell focusing with intravital imaging methods may provide a versatile biological tool for single-cell analysis in circulation, with a focus on in vivo needleless blood tests, and preclinical studies of human diseases in animal models.

  1. In vivo acoustic and photoacoustic focusing of circulating cells

    PubMed Central

    Galanzha, Ekaterina I.; Viegas, Mark G.; Malinsky, Taras I.; Melerzanov, Alexander V.; Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2016-01-01

    In vivo flow cytometry using vessels as natural tubes with native cell flows has revolutionized the study of rare circulating tumor cells in a complex blood background. However, the presence of many blood cells in the detection volume makes it difficult to count each cell in this volume. We introduce method for manipulation of circulating cells in vivo with the use of gradient acoustic forces induced by ultrasound and photoacoustic waves. In a murine model, we demonstrated cell trapping, redirecting and focusing in blood and lymph flow into a tight stream, noninvasive wall-free transportation of blood, and the potential for photoacoustic detection of sickle cells without labeling and of leukocytes targeted by functionalized nanoparticles. Integration of cell focusing with intravital imaging methods may provide a versatile biological tool for single-cell analysis in circulation, with a focus on in vivo needleless blood tests, and preclinical studies of human diseases in animal models. PMID:26979811

  2. PARABIOTIC INTOXICATION. II. THE DISTRIBUTION AND SURVIVAL OF Cr$sup 51$- LABELED RED BLOOD CELLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokuda, S.; MacGillivray, M.H.

    1962-04-01

    The anemia and polycythemia in parent-to-F/sub 1/ parabiotic intoxication in mice were studied using Cr/sup 51/- and Fe/sup 59/ labeled red blood cells. It was observed that the anemia and polycythemia result from a shift in red cell mass from the hybrid into its parent strain partner. Because crosscirculation was observed between the parabionts during the anemia and polycythemia, the shift is attributed to unequal cross transfusion between the parabionts. There was neither preferential selection nor preferential destruction of either parental or hybrid red cells during the shift in red cell mass. (auth)

  3. Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.

    PubMed

    Li, Qingli; Zhou, Mei; Liu, Hongying; Wang, Yiting; Guo, Fangmin

    2015-12-01

    Red blood cell counts have been proven to be one of the most frequently performed blood tests and are valuable for early diagnosis of some diseases. This paper describes an automated red blood cell counting method based on microscopic hyperspectral imaging technology. Unlike the light microscopy-based red blood count methods, a combined spatial and spectral algorithm is proposed to identify red blood cells by integrating active contour models and automated two-dimensional k-means with spectral angle mapper algorithm. Experimental results show that the proposed algorithm has better performance than spatial based algorithm because the new algorithm can jointly use the spatial and spectral information of blood cells.

  4. Detection of melanoma cells suspended in mononuclear cells and blood plasma using photoacoustic generation

    NASA Astrophysics Data System (ADS)

    Spradling, Emily M.; Viator, John A.

    2009-02-01

    Melanoma is the deadliest form of skin cancer. Although the initial malignant cells are removed, it is impossible to determine whether or not the cancer has metastasized until a secondary tumor forms that is large enough to detect with conventional imaging. Photoacoustic detection of circulating melanoma cells in the bloodstream has shown promise for early detection of metastasis that may aid in treatment of this aggressive cancer. When blood is irradiated with energy from an Nd:YAG laser at 532 nm, photoacoustic signals are created and melanoma cells can be differentiated from the surrounding cells based on waveforms produced by an oscilloscope. Before this can be used as a diagnostic technique, however, we needed to investigate several parameters. Specifically, the current technique involves the in vitro separation of blood through centrifugation to isolate and test only the white blood cell layer. Using this method, we have detected a single cultured melanoma cell among a suspension of white blood cells. However, the process could be made simpler if the plasma layer were used for detection instead of the white blood cell layer. This layer is easier to obtain after blood separation, the optical difference between plasma and melanoma cells is more pronounced in this layer than in the white blood cell layer, and the possibility that any stray red blood cells could distort the results is eliminated. Using the photoacoustic apparatus, we detected no melanoma cells within the plasma of whole blood samples spiked with cultured melanoma cells.

  5. Congo red modulates ACh-induced Ca2+ oscillations in single pancreatic acinar cells of mice

    PubMed Central

    Huang, Ze-bing; Wang, Hai-yan; Sun, Na-na; Wang, Jing-ke; Zhao, Meng-qin; Shen, Jian-xin; Gao, Ming; Hammer, Ronald P; Fan, Xue-gong; Wu, Jie

    2014-01-01

    Aim: Congo red, a secondary diazo dye, is usually used as an indicator for the presence of amyloid fibrils. Recent studies show that congo red exerts neuroprotective effects in a variety of models of neurodegenerative diseases. However, its pharmacological profile remains unknown. In this study, we investigated the effects of congo red on ACh-induced Ca2+ oscillations in mouse pancreatic acinar cells in vitro. Methods: Acutely dissociated pancreatic acinar cells of mice were prepared. A U-tube drug application system was used to deliver drugs into the bath. Intracellular Ca2+ oscillations were monitored by whole-cell recording of Ca2+-activated Cl− currents and by using confocal Ca2+ imaging. For intracellular drug application, the drug was added in pipette solution and diffused into cell after the whole-cell configuration was established. Results: Bath application of ACh (10 nmol/L) induced typical Ca2+ oscillations in dissociated pancreatic acinar cells. Addition of congo red (1, 10, 100 μmol/L) dose-dependently enhanced Ach-induced Ca2+ oscillations, but congo red alone did not induce any detectable response. Furthermore, this enhancement depended on the concentrations of ACh: congo red markedly enhanced the Ca2+ oscillations induced by ACh (10–30 nmol/L), but did not alter the Ca2+ oscillations induced by ACh (100–10000 nmol/L). Congo red also enhanced the Ca2+ oscillations induced by bath application of IP3 (30 μmol/L). Intracellular application of congo red failed to alter ACh-induced Ca2+ oscillations. Conclusion: Congo red significantly modulates intracellular Ca2+ signaling in pancreatic acinar cells, and this pharmacological effect should be fully considered when developing congo red as a novel therapeutic drug. PMID:25345744

  6. Interaction between phloretin and the red blood cell membrane

    PubMed Central

    1976-01-01

    Phloretin binding to red blood cell components has been characterized at pH6, where binding and inhibitory potency are maximal. Binding to intact red cells and to purified hemoglobin are nonsaturated processes approximately equal in magnitude, which strongly suggests that most of the red cell binding may be ascribed to hemoglobin. This conclusion is supported by the fact that homoglobin-free red cell ghosts can bind only 10% as much phloretin as an equivalent number of red cells. The permeability of the red cell membrane to phloretin has been determined by a direct measurement at the time-course of the phloretin uptake. At a 2% hematocrit, the half time for phloretin uptake is 8.7s, corresponding to a permeability coefficient of 2 x 10(-4) cm/s. The concentration dependence of the binding to ghosts reveals two saturable components. Phloretin binds with high affinity (K diss = 1.5 muM) to about 2.5 x 10(6) sites per cell; it also binds with lower affinity (Kdiss = 54 muM) to a second (5.5 x 10(7) per cell) set of sites. In sonicated total lipid extracts of red cell ghosts, phloretin binding consists of a single, saturable component. Its affinity and total number of sites are not significantly different from those of the low affinity binding process in ghosts. No high affinity binding of phloretin is exhibited by the red cell lipid extracts. Therefore, the high affinity phloretin binding sites are related to membrane proteins, and the low affinity sites result from phloretin binding to lipid. The identification of these two types of binding sites allows phloretin effects on protein-mediated transport processes to be distinguished from effects on the lipid region of the membrane. PMID:5575

  7. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells.

    PubMed

    Antfolk, Maria; Magnusson, Cecilia; Augustsson, Per; Lilja, Hans; Laurell, Thomas

    2015-09-15

    Enrichment of rare cells from peripheral blood has emerged as a means to enable noninvasive diagnostics and development of personalized drugs, commonly associated with a prerequisite to concentrate the enriched rare cell population prior to molecular analysis or culture. However, common concentration by centrifugation has important limitations when processing low cell numbers. Here, we report on an integrated acoustophoresis-based rare cell enrichment system combined with integrated concentration. Polystyrene 7 μm microparticles could be separated from 5 μm particles with a recovery of 99.3 ± 0.3% at a contamination of 0.1 ± 0.03%, with an overall 25.7 ± 1.7-fold concentration of the recovered 7 μm particles. At a flow rate of 100 μL/min, breast cancer cells (MCF7) spiked into red blood cell-lysed human blood were separated with an efficiency of 91.8 ± 1.0% with a contamination of 0.6 ± 0.1% from white blood cells with a 23.8 ± 1.3-fold concentration of cancer cells. The recovery of prostate cancer cells (DU145) spiked into whole blood was 84.1 ± 2.1% with 0.2 ± 0.04% contamination of white blood cells with a 9.6 ± 0.4-fold concentration of cancer cells. This simultaneous on-chip separation and concentration shows feasibility of future acoustofluidic systems for rapid label-free enrichment and molecular characterization of circulating tumor cells using peripheral venous blood in clinical practice.

  8. Red cell distribution width does not predict stroke severity or functional outcome.

    PubMed

    Ntaios, George; Gurer, Ozgur; Faouzi, Mohamed; Aubert, Carole; Michel, Patrik

    2012-01-01

    Red cell distribution width was recently identified as a predictor of cardiovascular and all-cause mortality in patients with previous stroke. Red cell distribution width is also higher in patients with stroke compared with those without. However, there are no data on the association of red cell distribution width, assessed during the acute phase of ischemic stroke, with stroke severity and functional outcome. In the present study, we sought to investigate this relationship and ascertain the main determinants of red cell distribution width in this population. We used data from the Acute Stroke Registry and Analysis of Lausanne for patients between January 2003 and December 2008. Red cell distribution width was generated at admission by the Sysmex XE-2100 automated cell counter from ethylene diamine tetraacetic acid blood samples stored at room temperature until measurement. An χ(2) -test was performed to compare frequencies of categorical variables between different red cell distribution width quartiles, and one-way analysis of variance for continuous variables. The effect of red cell distribution width on severity and functional outcome was investigated in univariate and multivariate robust regression analysis. Level of significance was set at 95%. There were 1504 patients (72±15·76 years, 43·9% females) included in the analysis. Red cell distribution width was significantly associated to NIHSS (β-value=0·24, P=0·01) and functional outcome (odds ratio=10·73 for poor outcome, P<0·001) at univariate analysis but not multivariate. Prehospital Rankin score (β=0·19, P<0·001), serum creatinine (β=0·008, P<0·001), hemoglobin (β=-0·009, P<0·001), mean platelet volume (β=0·09, P<0·05), age (β=0·02, P<0·001), low ejection fraction (β=0·66, P<0·001) and antihypertensive treatment (β=0·32, P<0·001) were independent determinants of red cell distribution width. Red cell distribution width, assessed during the early phase of acute ischemic stroke, does not predict severity or functional outcome. © 2011 The Authors. International Journal of Stroke © 2011 World Stroke Organization.

  9. Tannic acid and chromic chloride-induced binding of protein to red cells: a preliminary study of possible binding sites and reaction mechanisms.

    PubMed

    Hunt, A F; Reed, M I

    1990-07-01

    The binding mechanisms and binding sites involved in the tannic acid and chromic chloride-induced binding of protein to red cells were investigated using the binding of IgA paraprotein to red cells as model systems. Inhibition studies of these model systems using amino acid homopolymers and compounds (common as red cell membrane constituents) suggest that the mechanisms involved are similar to those proposed for the conversion of hide or skin collagen to leather, as in commercial tanning. These studies also suggest that tannic acid-induced binding of IgA paraprotein to red cells involves the amino acid residues of L-arginine, L-lysine, L-histidine, and L-proline analogous to tanning with phenolic plant extracts. The amino acid residues of L-aspartate, L-glutamate and L-asparagine are involved in a similar manner in chronic chloride-induced binding of protein to red cells.

  10. Human spleen and red blood cells

    NASA Astrophysics Data System (ADS)

    Pivkin, Igor; Peng, Zhangli; Karniadakis, George; Buffet, Pierre; Dao, Ming

    2016-11-01

    Spleen plays multiple roles in the human body. Among them is removal of old and altered red blood cells (RBCs), which is done by filtering cells through the endothelial slits, small micron-sized openings. There is currently no experimental technique available that allows us to observe RBC passage through the slits. It was previously noticed that people without a spleen have less deformable red blood cells, indicating that the spleen may play a role in defining the size and shape of red blood cells. We used detailed RBC model implemented within the Dissipative Particle Dynamics (DPD) simulation framework to study the filter function of the spleen. Our results demonstrate that spleen indeed plays major role in defining the size and shape of the healthy human red blood cells.

  11. Role of red cells and plasma composition on blood sessile droplet evaporation

    NASA Astrophysics Data System (ADS)

    Lanotte, Luca; Laux, Didier; Charlot, Benoît; Abkarian, Manouk

    2017-11-01

    The morphology of dried blood droplets derives from the deposition of red cells, the main components of their solute phase. Up to now, evaporation-induced convective flows were supposed to be at the base of red cell distribution in blood samples. Here, we present a direct visualization by videomicroscopy of the internal dynamics in desiccating blood droplets, focusing on the role of cell concentration and plasma composition. We show that in diluted suspensions, the convection is promoted by the rich molecular composition of plasma, whereas it is replaced by an outward red blood cell displacement front at higher hematocrits. We also evaluate by ultrasounds the effect of red cell deposition on the temporal evolution of sample rigidity and adhesiveness.

  12. B Cell Depletion Therapy Normalizes Circulating Follicular Th Cells in Primary Sjögren Syndrome.

    PubMed

    Verstappen, Gwenny M; Kroese, Frans G M; Meiners, Petra M; Corneth, Odilia B; Huitema, Minke G; Haacke, Erlin A; van der Vegt, Bert; Arends, Suzanne; Vissink, Arjan; Bootsma, Hendrika; Abdulahad, Wayel H

    2017-01-01

    To assess the effect of B cell depletion therapy on effector CD4+ T cell homeostasis and its relation to objective measures of disease activity in patients with primary Sjögren syndrome (pSS). Twenty-four patients with pSS treated with rituximab (RTX) and 24 healthy controls (HC) were included. Frequencies of circulating effector CD4+ T cell subsets were examined by flow cytometry at baseline and 16, 24, 36, and 48 weeks after the first RTX infusion. Th1, Th2, follicular Th (TFH), and Th17 cells were discerned based on surface marker expression patterns. Additionally, intracellular cytokine staining was performed for interferon-γ, interleukin (IL)-4, IL-21, and IL-17 and serum levels of these cytokines were analyzed. In patients with pSS, frequencies of circulating TFH cells and Th17 cells were increased at baseline compared with HC, whereas frequencies of Th1 and Th2 cells were unchanged. B cell depletion therapy resulted in a pronounced decrease in circulating TFH cells, whereas Th17 cells were only slightly lowered. Frequencies of IL-21-producing and IL-17-producing CD4+ T cells and serum levels of IL-21 and IL-17 were also reduced. Importantly, the decrease in circulating TFH cells was associated with lower systemic disease activity over time, as measured by the European League Against Rheumatism Sjögren's Syndrome Disease Activity Index scores and serum IgG levels. B cell depletion therapy in patients with pSS results in normalization of the elevated levels of circulating TFH cells. This reduction is associated with improved objective clinical disease activity measures. Our observations illustrate the pivotal role of the crosstalk between B cells and TFH cells in the pathogenesis of pSS.

  13. On the Mechanism of Human Red Blood Cell Longevity: Roles of Calcium, the Sodium Pump, PIEZO1, and Gardos Channels.

    PubMed

    Lew, Virgilio L; Tiffert, Teresa

    2017-01-01

    In a healthy adult, the transport of O 2 and CO 2 between lungs and tissues is performed by about 2 · 10 13 red blood cells, of which around 1.7 · 10 11 are renewed every day, a turnover resulting from an average circulatory lifespan of about 120 days. Cellular lifespan is the result of an evolutionary balance between the energy costs of maintaining cells in a fit functional state versus cell renewal. In this Review we examine how the set of passive and active membrane transporters of the mature red blood cells interact to maximize their circulatory longevity thus minimizing costs on expensive cell turnover. Red blood cell deformability is critical for optimal rheology and gas exchange functionality during capillary flow, best fulfilled when the volume of each human red blood cell is kept at a fraction of about 0.55-0.60 of the maximal spherical volume allowed by its membrane area, the optimal-volume-ratio range. The extent to which red blood cell volumes can be preserved within or near these narrow optimal-volume-ratio margins determines the potential for circulatory longevity. We show that the low cation permeability of red blood cells allows volume stability to be achieved with extraordinary cost-efficiency, favouring cell longevity over cell turnover. We suggest a mechanism by which the interplay of a declining sodium pump and two passive membrane transporters, the mechanosensitive PIEZO1 channel, a candidate mediator of P sickle in sickle cells, and the Ca 2+ -sensitive, K + -selective Gardos channel, can implement red blood cell volume stability around the optimal-volume-ratio range, as required for extended circulatory longevity.

  14. On the Mechanism of Human Red Blood Cell Longevity: Roles of Calcium, the Sodium Pump, PIEZO1, and Gardos Channels

    PubMed Central

    Lew, Virgilio L.; Tiffert, Teresa

    2017-01-01

    In a healthy adult, the transport of O2 and CO2 between lungs and tissues is performed by about 2 · 1013 red blood cells, of which around 1.7 · 1011 are renewed every day, a turnover resulting from an average circulatory lifespan of about 120 days. Cellular lifespan is the result of an evolutionary balance between the energy costs of maintaining cells in a fit functional state versus cell renewal. In this Review we examine how the set of passive and active membrane transporters of the mature red blood cells interact to maximize their circulatory longevity thus minimizing costs on expensive cell turnover. Red blood cell deformability is critical for optimal rheology and gas exchange functionality during capillary flow, best fulfilled when the volume of each human red blood cell is kept at a fraction of about 0.55–0.60 of the maximal spherical volume allowed by its membrane area, the optimal-volume-ratio range. The extent to which red blood cell volumes can be preserved within or near these narrow optimal-volume-ratio margins determines the potential for circulatory longevity. We show that the low cation permeability of red blood cells allows volume stability to be achieved with extraordinary cost-efficiency, favouring cell longevity over cell turnover. We suggest a mechanism by which the interplay of a declining sodium pump and two passive membrane transporters, the mechanosensitive PIEZO1 channel, a candidate mediator of Psickle in sickle cells, and the Ca2+-sensitive, K+-selective Gardos channel, can implement red blood cell volume stability around the optimal-volume-ratio range, as required for extended circulatory longevity. PMID:29311949

  15. In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts.

    PubMed

    Galanzha, Ekaterina I; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A; Keyrouz, Salah G; Mehta, Jawahar L; Zharov, Vladimir P

    2011-10-01

    Conventional photothermal (PT) and photoacousic (PA) imaging, spectroscopy, and cytometry are preferentially based on positive PT/PA effects, when signals are above background. Here, we introduce PT/PA technique based on detection of negative signals below background. Among various new applications, we propose label-free in vivo flow cytometry of circulating clots. No method has been developed for the early detection of clots of different compositions as a source of thromboembolism including ischemia at strokes and myocardial infarction. When a low-absorbing, platelet-rich clot passes a laser-irradiated vessel volume, a transient decrease in local absorption results in an ultrasharp negative PA hole in blood background. Using this phenomenon alone or in combination with positive contrasts, we demonstrated identification of white, red, and mixed clots on a mouse model of myocardial infarction and human blood. The concentration and size of clots were measured with threshold down to few clots in the entire circulation with size as low as 20 μm. This multiparameter diagnostic platform using portable personal high-speed flow cytometer with negative dynamic contrast mode has potential to real-time defining risk factors for cardiovascular diseases, and for prognosis and prevention of stroke or use clot count as a marker of therapy efficacy. Possibility for label-free detection of platelets, leukocytes, tumor cells or targeting themby negative PA probes (e.g., nonabsorbing beads or bubbles) is also highlighted. Copyright © 2011 International Society for Advancement of Cytometry.

  16. In vivo flow cytometry of circulating clots using negative phototothermal and photoacoustic contrasts

    PubMed Central

    Galanzha, Ekaterina I.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Keyrouz, Salah G.; Mehta, Jawahar L.; Zharov, Vladimir P.

    2012-01-01

    Conventional photothermal (PT) and photoacousic (PA) imaging, spectroscopy, and cytometry are preferentially based on positive PT/PA effects, when signals are above background. Here, we introduce PT/PA technique based on detection of negative signals below background. Among various new applications, we propose label-free in vivo flow cytometry of circulating clots. No method has been developed for the early detection of clots of different compositions as a source of severe thromboembolisms including ischemia at strokes and myocardial dysfunction at heart attack. When a low-absorbing, platelet-rich clot passes a laser-irradiated vessel volume, a transient decrease in local absorption results in an ultrasharp negative PA hole in blood background. Using this phenomenon alone or in combination with positive contrasts, we demonstrated identification of white, red and mixed clots on a mouse model of myocardial infarction and human blood. The concentration and size of clots were measured with threshold down to few clots in the entire circulation with size as low as 20 µm. This multiparameter diagnostic platform using portable personal high-speed flow cytometer with negative dynamic contrast mode has potential to real-time defining risk factors for cardiovascular diseases, and for prognosis and prevention of stroke or use clot count as a marker of therapy efficacy. Possibility for label-free detection of platelets, leukocytes, tumor cells or targeting them by negative PA probes (e.g., nonabsorbing beads or bubbles) is also highlighted. PMID:21976458

  17. Mechanoreceptor Cells on the Tertiary Pulvini of Mimosa pudica L.

    PubMed Central

    Világi, Ildikó; Varró, Petra; Kristóf, Zoltán

    2007-01-01

    Special red cells were found on the adaxial surface of tertiary pulvini of Mimosa pudica and experiments performed to determine the origin and function of these cells. Using anatomical (light, scanning electron and transmission electron microscopy) and electrophysiological techniques, we have demonstrated that these red cells are real mechanoreceptor cells. They can generate receptor potential following mechanical stimuli and they are in connection with excitable motor cells (through plasmodesmata). We also provide evidence that these red cells are derived from stomatal subsidiary cells and not guard cells. As histochemical studies show red cells contain tannin, which is important in development of action potentials and movements of plants. These cells could be one of unidentified mechanoreceptors of mimosa. PMID:19517007

  18. Increased numbers of circulating ECs are associated with systemic GVHD.

    PubMed

    Yan, Z; Zeng, L; Jia, L; Xu, S; Ding, S

    2011-10-01

    Circulating endothelial cells (ECs) are known to reflect endothelial injury, and endothelial injury is associated with graft-versus-host disease (GVHD). We hypothesised that circulating ECs might be associated with systemic acute graft-versus-host disease (aGVHD). BALB/c (H-2k(d) ) mice were treated with total body irradiation and then infused with C57B/6-derived T-cell-depleted bone marrow (TCD-BM) cells or TCD-BM cells and splenocytes. Cyclosporine was used to prevent aGVHD. Circulating ECs and allogeneic lymphocytes were analysed by flow cytometry at multiple time points. The morphology and ultrastructure of the endothelium were examined by light microscopy or transmission electron microscopy. The results indicated that the number of circulating ECs peaked at day 5 after lethal irradiation in all mice; allogenic transplanted mice (TCD-BM cells and splenocytes) developed typical aGVHD beginning at day 7, exhibiting both histological and clinical symptoms of disease. Circulating ECs peaked a second time at day 9 with aGVHD progression. However, following the administration of CSA, an absence of or a reduction in the amount of subsequent endothelial injury was observed. Circulating ECs might be associated with systemic aGVHD. © 2011 Blackwell Publishing Ltd.

  19. 21 CFR 640.16 - Processing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.16 Processing. (a) Separation. Within the..., Red Blood Cells may be prepared either by centrifugation, done in a manner that will not tend to... sufficient to insure optimal cell preservation shall be left with the red cells except when a cryoprotective...

  20. Phototoxic effects of lysosome-associated genetically encoded photosensitizer KillerRed

    NASA Astrophysics Data System (ADS)

    Serebrovskaya, Ekaterina O.; Ryumina, Alina P.; Boulina, Maria E.; Shirmanova, Marina V.; Zagaynova, Elena V.; Bogdanova, Ekaterina A.; Lukyanov, Sergey A.; Lukyanov, Konstantin A.

    2014-07-01

    KillerRed is a unique phototoxic red fluorescent protein that can be used to induce local oxidative stress by green-orange light illumination. Here we studied phototoxicity of KillerRed targeted to cytoplasmic surface of lysosomes via fusion with Rab7, a small GTPase that is known to be attached to membranes of late endosomes and lysosomes. It was found that lysosome-associated KillerRed ensures efficient light-induced cell death similar to previously reported mitochondria- and plasma membrane-localized KillerRed. Inhibitory analysis demonstrated that lysosomal cathepsins play an important role in the manifestation of KillerRed-Rab7 phototoxicity. Time-lapse monitoring of cell morphology, membrane integrity, and nuclei shape allowed us to conclude that KillerRed-Rab7-mediated cell death occurs via necrosis at high light intensity or via apoptosis at lower light intensity. Potentially, KillerRed-Rab7 can be used as an optogenetic tool to direct target cell populations to either apoptosis or necrosis.

  1. Cytologic characteristics of circulating epithelioid cells in pancreatic disease.

    PubMed

    Rosenbaum, Matthew W; Cauley, Christy E; Kulemann, Birte; Liss, Andrew S; Castillo, Carlos Fernandez-Del; Warshaw, Andrew L; Lillemoe, Keith D; Thayer, Sarah P; Pitman, Martha B

    2017-05-01

    Circulating epithelioid cells (CECs), also known as circulating tumor, circulating cancer, circulating epithelial, or circulating nonhematologic cells, are a prognostic factor in various malignancies that can be isolated via various protocols. In the current study, the authors analyzed the cytomorphologic characteristics of CECs isolated by size in a cohort of patients with benign and malignant pancreatic diseases to determine whether cytomorphological features could predict CEC origin. Blood samples were collected from 9 healthy controls and 171 patients with pancreatic disease who were presenting for surgical evaluation before treatment. Blood was processed with the ScreenCell size-based filtration device. Evaluable CECs were analyzed in a blinded fashion for cytomorphologic characteristics, including cellularity; nucleoli; nuclear size, irregularity, variability, and hyperchromasia; and nuclear-to-cytoplasmic ratio. Statistical differences between variables were analyzed via the Fisher exact test. No CECs were identified among the 9 normal healthy controls. Of the 115 patients with CECs (positive or suspicious for), 25 had nonmalignant disease and 90 had malignancy. There were no significant differences in any of the cytologic criteria noted between groups divided by benign versus malignant, neoplastic versus nonneoplastic, or pancreatic ductal adenocarcinoma versus neuroendocrine tumor. CECs were observed in patients with malignant and nonmalignant pancreatic disease, but not in healthy controls. There were no morphologic differences observed between cells from different pancreatic diseases, suggesting that numerous conditions may be associated with CECs in the circulation and that care must be taken not to overinterpret cells identified by cytomorphology as indicative of circulating tumor cells of pancreatic cancer. Additional studies are required to determine the origin and clinical significance of these cells. Cancer Cytopathol 2017;125:332-340. © 2017 American Cancer Society. © 2017 American Cancer Society.

  2. Red Maca (Lepidium meyenii) did not affect cell viability despite increased androgen receptor and prostate-specific antigen gene expression in the human prostate cancer cell line LNCaP.

    PubMed

    Díaz, P; Cardenas, H; Orihuela, P A

    2016-10-01

    We examined whether aqueous extract of Lepidium meyenii (red Maca) could inhibit growth, potentiate apoptotic activity of two anticancer drugs Taxol and 2-methoxyestradiol (2ME) or change mRNA expression for the androgen target genes, androgen receptor (Ar) and prostate-specific antigen (Psa) in the human prostate cancer cell line LNCaP. Red Maca aqueous extract at 0, 10, 20, 40 or 80 μg/ml was added to LNCaP cells, and viability was evaluated by the MTS assay at 24 or 48 hr after treatment. Furthermore, LNCaP cells were treated with 80 μg/ml of red Maca plus Taxol or 2ME 5 μM and viability was assessed 48 hr later. Finally, LNCaP cells were treated with red Maca 0, 20, 40 or 80 μg/ml, and 12 hr later, mRNA level for Ar or Psa was assessed by real-time PCR. Treatment with red Maca did not affect viability of LNCaP cells. Apoptotic activity induced by Taxol and 2ME in LNCaP cells was not altered with red Maca treatment. Relative expression of the mRNA for Ar and Psa increased with red Maca 20 and 40 μg/ml, but not at 80 μg/ml. We conclude that red Maca aqueous extract does not have toxic effects, but stimulates androgen signalling in LNCaP cells. © 2016 Blackwell Verlag GmbH.

  3. Long-term Effects on the Histology and Function of Livers and Spleens in Rats after 33% Toploading of PEG-PLA-nano Artificial Red Blood Cells

    PubMed Central

    Liu, Zun Chang; Chang, Thomas M.S.

    2012-01-01

    This study is to investigate the long-term effects of nanodimension PEG-PLA artificial red blood cells containing hemoglobin and red blood cell enzymes on the liver and spleen after 1/3 blood volume top loading in rats. The experimental rats received one of the following infusions: Nano artificial red blood cells in Ringer lactate, Ringer lactate, stroma-free hemoglobin, polyhemoglobin, and autologous rat whole blood. Blood samples were taken before infusions and on days 1, 7, and 21 after infusions for analysis. Nano artificial red blood cells, polyhemoglobin, Ringer lactate and rat red blood cells did not have any significant adverse effects on alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, creatine kinase, amylase and creatine kinase. On the other hand, stroma-free hemoglobin induced significant adverse effects on liver as shown by elevation in alanine aminotransferase and aspartate aminotransferase throughout the 21 days. On day 21 after infusions rats were sacrificed and livers and spleens were excised for histological examination. Nano artificial red blood cells, polyhemoglobin, Ringer lactate and rat red blood cells did not cause any abnormalities in the microscopic histology of the livers and spleens. In the stroma-free hemoglobin group the livers showed accumulation of hemoglobin in central veins and sinusoids, and hepatic steatosis. In conclusion, injected nano artificial red blood cells can be efficiently metabolized and removed by the reticuloendothelial system, and do not have any biochemical or histological adverse effects on the livers or the spleens. PMID:19043818

  4. Seasonal and ontogenetic changes modulate oxygen consumption and antioxidant defenses in the cutlassfish Trichiurus lepturus (Pisces, Trichiuridae).

    PubMed

    Wilhelm-Filho, Danilo; Fraga, César G; Boveris, Alberto

    2017-09-01

    Several oxidative stress markers and liver oxygen consumption were measured in different tissues of the marine fish Trichiurus lepturus in late summer and late winter, as well as in juveniles and adult females. Oxygen consumption in liver, superoxide dismutase (SOD) and catalase (CAT) activity in liver, red cells, lens and roe, vitamin E, ubiquinol 10 , β-carotene in liver, red cells, and roe, as well as contents of reduced glutathione (GSH) and lipoperoxidation (TBARS) in red cells were evaluated. Regarding ontogeny, compared to adult fish, juveniles showed significant higher SOD activity in liver and lens, as well as higher liver contents of vitamin E. In contrast, adult females showed higher contents of vitamin E in roe, ubiquinol 10 in liver and roe, and higher GSH levels in red cells, while the other markers remained unchanged. Regarding seasonal changes, no differences were detected in adult females for liver CAT and ubiquinol 10 , CAT in roe, vitamin E in roe and in red cells, liver and red cell ubiquinol 10 , and in GSH in red cells. However, and coinciding with the spawning period of late summer, liver oxygen consumption, SOD and CAT activity and ubiquinol 10 contents in roe and SOD activity in red cells, and red cell TBARS contents were higher compared to late winter. These temporal antioxidant adjustments of Trichiurus lepturus seem to be parallel to the higher oxygen consumption typical of juvenile forms and also to the intense spawning and foraging activities of adult females in late summer. Copyright © 2017. Published by Elsevier Inc.

  5. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells

    PubMed Central

    Enamorado, Michel; Iborra, Salvador; Priego, Elena; Cueto, Francisco J.; Quintana, Juan A.; Martínez-Cano, Sarai; Mejías-Pérez, Ernesto; Esteban, Mariano; Melero, Ignacio; Hidalgo, Andrés; Sancho, David

    2017-01-01

    The goal of successful anti-tumoural immunity is the development of long-term protective immunity to prevent relapse. Infiltration of tumours with CD8+ T cells with a resident memory (Trm) phenotype correlates with improved survival. However, the interplay of circulating CD8+ T cells and Trm cells remains poorly explored in tumour immunity. Using different vaccination strategies that fine-tune the generation of Trm cells or circulating memory T cells, here we show that, while both subsets are sufficient for anti-tumour immunity, the presence of Trm cells improves anti-tumour efficacy. Transferred central memory T cells (Tcm) generate Trm cells following viral infection or tumour challenge. Anti-PD-1 treatment promotes infiltration of transferred Tcm cells within tumours, improving anti-tumour immunity. Moreover, Batf3-dependent dendritic cells are essential for reactivation of circulating memory anti-tumour response. Our findings show the plasticity, collaboration and requirements for reactivation of memory CD8+ T cells subsets needed for optimal tumour vaccination and immunotherapy. PMID:28714465

  6. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches.

    PubMed

    Hira, Vashendriya V V; Van Noorden, Cornelis J F; Carraway, Hetty E; Maciejewski, Jaroslaw P; Molenaar, Remco J

    2017-08-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Experimental splenosis in the liver and lung spread through the vasculature.

    PubMed

    Seguchi, S; Yue, F; Asanuma, K; Sasaki, K

    2015-05-01

    To demonstrate that intra-organ splenosis can engraft and develop after being distributed through the vasculature, tiny fragments of splenic tissues were injected into the inferior vena cava or the portal vein to induce intrapulmonary and intrahepatic splenosis in rats. After 1 month, splenic autograft structures in the lung and liver were assessed for structure by histology, for immunologic compartments by immunohistochemistry, for phagocytic function by carbon uptake and for vascular formation by Microfil (a silicon rubber compound) injection. Intrapulmonary and intrahepatic splenoses were indeed able to spread through the vasculature. The intrapulmonary splenic autografts were trapped and spread out in the interstitium, without forming a capsule. White pulp was markedly developed, showing lymphocyte aggregations that consisted in B cells surrounding the dilated vessel. Splenic sinuses were not definitively observed. Although macrophages were detected by immunohistochemistry, they showed no indication of having phagocytized carbon particles from the vessels, implying a closed circulation. In contrast, intrahepatic splenic autografts formed well-developed capsules, trabeculae and red pulp with splenic sinuses. Macrophages detected by immunohistochemistry were observed capturing carbon particles, which clearly revealed an open system circulation, as seen in normal rat spleen. The development of white pulp was poor and lymphocytes consisting in B cells aggregated in the peripheral margins. These results demonstrate that intra-organ splenosis can spread through the vasculature and that the morphologic and immunologic structures formed in these regenerated autografts are influenced by the organ vasculature and extracellular matrix wherein the tissue fragments settled.

  8. Cation Homeostasis in Red Cells From Patients With Sickle Cell Disease Heterologous for HbS and HbC (HbSC Genotype).

    PubMed

    Hannemann, A; Rees, D C; Tewari, S; Gibson, J S

    2015-11-01

    Sickle cell disease (SCD) in patients of HbSC genotype is considered similar, albeit milder, to that in homozygous HbSS individuals--but with little justification. In SCD, elevated red cell cation permeability is critical as increased solute loss causes dehydration and encourages sickling. Recently, we showed that the KCl cotransporter (KCC) activity in red cells from HbSC patients correlated significantly with disease severity, but that in HbSS patients did not. Two transporters involved in red cell dehydration, the conductive channels Psickle and the Gardos channel, behaved similarly in red cells from the two genotypes, but were significantly less active in HbSC patients. By contrast, KCC activity was quantitatively greater in HbSC red cells. Results suggest that KCC is likely to have greater involvement in red cell dehydration in HbSC patients, which could explain its association with disease severity in this genotype. This work supports the hypothesis that SCD in HbSC patients is a distinct disease entity to that in HbSS patients. Results suggest the possibility of designing specific treatments of particular benefit to HbSC patients and a rationale for the development of prognostic markers, to inform early treatment of children likely to develop more severe complications of the disease.

  9. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOEpatents

    Bitensky, Mark W.; Yoshida, Tatsuro

    1997-01-01

    Method using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4.degree. C. storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4.degree. C. for prolonged periods of time is achieved by removing oxygen therefrom at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate.

  10. Red Cell Indexes Made Easy Using an Interactive Animation: Do Students and Their Scores Concur?

    ERIC Educational Resources Information Center

    Kachroo, Upasana; Vinod, Elizabeth; Balasubramanian, Sivakumar; W., Jesi; Prince, Neetu

    2018-01-01

    A good understanding of red cell indexes can aid medical students in a considerable manner, serving as a basis to unravel both concepts in red cell physiology and abnormalities associated with the same. In this study, we tried to assess whether an interactive animation was helpful in improving student comprehension and understanding of red cell…

  11. In vivo regeneration of red cell 2,3-diphosphoglycerate following transfusion of DPG-depleted AS-1, AS-3 and CPDA-1 red cells.

    PubMed

    Heaton, A; Keegan, T; Holme, S

    1989-01-01

    Regeneration of 2,3-diphosphoglycerate (DPG) was determined following transfusion of DPG-depleted group O red cells into group A recipients. Blood from five donors was stored in the adenine-containing solutions CPDA-1, AS-1 or AS-3 for 35 d at 4 degrees C. Post-transfusion red cell DPG and ATP were measured in separated group O red cells over a 7 d period. The studies confirmed rapid in vivo DPG regeneration with greater than or equal to 50% of the maximum level being achieved within 7 h. An average of 95% of the recipients' pre-transfusion DPG level was achieved by 72 h and by 7 d mean (+/- SEM) DPG levels relative to recipient's pre-transfusion DPG averaged 84% (+/- 13%), 92% (+/- 17%) and 84% (+/- 21%) for CPDA-1, AS-1 and AS-3 red cells, respectively. Results were comparable to those previously reported for blood stored in ACD for 15-20 d (Valeri & Hirsch, 1969; Beutler & Wood, 1969). The immediate regeneration rate, V, closely approximated first order regeneration kinetics with AS-3 red cells exhibiting double the rate of CPDA-1 red cells (P less than 0.001). AS-1 red cells exhibited an intermediate rate of regeneration which was not significantly different compared to either CPDA-1 or AS-3 (P greater than 0.05). V exhibited a significant (P less than 0.05) positive correlation with ATP levels 5-7 h post-infusion. ATP regeneration of the infused cells was rapid with a mean increase of 1.2 mumol/g Hb above post-storage levels being achieved 1 h following transfusion.

  12. Effects of deoxygenation on active and passive Ca2+ transport and cytoplasmic Ca2+ buffering in normal human red cells.

    PubMed Central

    Tiffert, T; Etzion, Z; Bookchin, R M; Lew, V L

    1993-01-01

    1. The effects of deoxygenation on cytoplasmic Ca2+ buffering, saturated Ca2+ extrusion rate through the Ca2+ pump (Vmax), passive Ca2+ influx and physiological [Ca2+]i level were investigated in human red cells to assess whether or not their Ca2+ metabolism might be altered by deoxygenation in capillaries and venous circulation. 2. The study was performed in fresh human red cells maintained in a tonometer either fully oxygenated or deoxygenated. Cytoplasmic Ca2+ buffering was estimated from the equilibrium distribution of 45Ca2+ induced by the divalent cation ionophore A23187 and the Vmax of the Ca2+ pump was measured either by the Co(2+)-exposure method or following ionophore wash-out. The passive Ca2+ influx and physiological [Ca2+]i were determined in cells preloaded with the Ca2+ chelator benz-2 and resuspended in autologous plasma. 3. Deoxygenation increased the fraction of ionized Ca2+ in cell water by 34-74% and reduced the Vmax of the Ca2+ pump by 18-32%. 4. To elucidate whether or not these effects were secondary to deoxygenation-induced pH shifts, the effects of deoxygenation on cell and medium pH, and of pH on cytoplasmic Ca2+ binding and Ca2+ pump Vmax in oxygenated cells were examined in detail. 5. Deoxygenation generated large alkaline pH shifts that could be explained if the apparent isoelectric point (pI) of haemoglobin increased by 0.2-0.4 pH units in intact cells, consistently higher than the value of 0.15 reported for pure haemoglobin solutions. 6. In oxygenated cells, the fraction of ionized cell calcium, alpha, was little affected by pH within the 7.0-7.7 range. Ca2+ pump Vmax was maximal at a medium pH of about 7.55. Comparison between pH effects elicited by HCl-NaOH additions and by replacing Cl- with gluconate suggested that Vmax was inhibited by both internal acidification and external alkalinization. Since deoxygenation alkalinized cells and medium within a range stimulatory for Vmax, the inhibition observed was not due to pH. 7. There was no significant effect of deoxygenation on passive Ca2+ uptake, or steady-state physiological [Ca2+]i level. 8. The deoxygenation-induced reduction in Ca2+ binding capacity may result from the increased protonation of haemoglobin on deoxygenation and from binding of 2,3-diphosphoglyceric acid (2,3-DPG) and ATP to deoxyhaemoglobin; inhibition of the Ca2+ pump may result from shifts in the [Mg2+]i/[ATP]i ratio away from a near optimal stimulatory value in the oxygenated state. PMID:8229816

  13. Red ginseng and vitamin C increase immune cell activity and decrease lung inflammation induced by influenza A virus/H1N1 infection.

    PubMed

    Kim, Hyemin; Jang, Mirim; Kim, Yejin; Choi, Jiyea; Jeon, Jane; Kim, Jihoon; Hwang, Young-Il; Kang, Jae Seung; Lee, Wang Jae

    2016-03-01

    Because red ginseng and vitamin C have immunomodulatory function and anti-viral effect, we investigated whether red ginseng and vitamin C synergistically regulate immune cell function and suppress viral infection. Red ginseng and vitamin C were treated to human peripheral blood mononuclear cells (PBMCs) or sarcoma-associated herpesvirus (KSHV)-infected BCBL-1, and administrated to Gulo(-/-) mice, which are incapable of synthesizing vitamin C, with or without influenza A virus/H1N1 infection. Red ginseng and vitamin C increased the expression of CD25 and CD69 of PBMCs and natural killer (NK) cells. Co-treatment of them decreased cell viability and lytic gene expression in BCBL-1. In Gulo(-/-) mice, red ginseng and vitamin C increased the expression of NKp46, a natural cytotoxic receptor of NK cells and interferon (IFN)-γ production. Influenza infection decreased the survival rate, and increased inflammation and viral plaque accumulation in the lungs of vitamin C-depleted Gulo(-/-) mice, which were remarkably reduced by red ginseng and vitamin C supplementation. Administration of red ginseng and vitamin C enhanced the activation of immune cells like T and NK cells, and repressed the progress of viral lytic cycle. It also reduced lung inflammation caused by viral infection, which consequently increased the survival rate. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  14. Evaluation of nucleated red blood cell count by Sysmex XE-2100 in patients with thalassaemia or sickle cell anaemia and in neonates.

    PubMed

    Buoro, Sabrina; Vavassori, Mauro; Pipitone, Silvia; Benegiamo, Anna; Lochis, Eleonora; Fumagalli, Sabina; Falanga, Anna; Marchetti, Marina; Crippa, Alberto; Ottomano, Cosimo; Lippi, Giuseppe

    2015-10-01

    Current haematology analysers have variable sensitivity and accuracy for counting nucleated red blood cells in samples with low values and in all those conditions characterised by altered sensitivity of red blood cells to the lysing process, such as in beta-thalassaemia or sickle-cell diseases and in neonates. The aim of our study was to evaluate the performance of the automated analyser XE-2100 at counting nucleated red blood cells in the above-mentioned three categories of subjects with potentially altered red blood cell lysis sensitivity and yet a need for accurate nucleated red blood cell counts. We measured nucleated red blood cell count by XE-2100 in peripheral blood samples of 187 subjects comprising 55 patients with beta-thalassaemia (40 major and 15 traits), 26 sickle-cell patients, 56 neonates and 50 normal subject. Results were compared with those obtained by optical microscopy. Agreement between average values of the two methods was estimated by means of Pearson's correlation and bias analysis, whereas diagnostic accuracy was estimated by analysis of receiver operating characteristic curves. The comparison between the two methods showed a Pearson's correlation of 0.99 (95% CI; 0.98-0.99; p<0.001) and bias of -0.61 (95% CI, -1.5-0.3). The area under the curve of the nucleated red blood cell count in all samples was 0.98 (95% CI, 0.96-1.00; p<0.001). Sub-analysis revealed an area under curve of 0.99 (95% CI, 0.98-1.00; p<0.001) for patients with thalassaemia, 0.94 (95% CI, 0.85-1.00; p<0.001) for patients with sickle cell anaemia, and 1.00 (95% CI, 1.0-1.0) for neonates. XE-2100 has excellent performance for nucleated red blood cell counting, especially in critical populations such as patients with haemoglobinopathies and neonates.

  15. Previous cryopreservation alters the natural history of the red blood cell storage lesion

    PubMed Central

    Chang, Alex L.; Hoehn, Richard S.; Jernigan, Peter; Cox, Daniel; Schreiber, Martin; Pritts, Timothy A.

    2016-01-01

    Background During storage, packed red blood cells (pRBCs) undergo a number of biochemical, metabolic and morphologic changes, collectively known as the “storage lesion”. We aimed to determine the effect of cryopreservation on the red blood cell storage lesion compared to traditional 4°C storage. Methods Previously cryopreserved human packed red blood cells were compared to age matched never frozen packed red blood cells obtained from the local blood bank. The development of the red cell storage lesion was evaluated after 7, 14, 21, 28, and 42 days of storage at 4°C in AS-3 storage medium. We measured physiological parameters including cell counts, lactic acid and potassium concentrations as well as signs of eryptosis including loss of phosphatidylserine (PS) asymmetry, microparticle production and osmotic fragility in hypotonic saline. Results Compared to controls, previously cryopreserved pRBC at 7 days of storage in AS-3 showed lower red cell counts (3.7 vs 5.3 ×10^6 cells/uL, p(<0.01), hemoglobin (12.0 vs 16.5 g/dL, p<0.01), hematocrit (33.0 vs 46.5%, p<0.01), and pH (6.27 vs 6.72, p<0.01). Over 28 days of storage, storage cryopreserved pRBC developed increased cell free hemoglobin (0.7 vs 0.3 g/dL, p<0.01), greater PS exposure (10.1 vs 3.3%, p<0.01), and microparticle production (30,836 vs 1,802 MP/uL, p<0.01). Previously cryopreserved cells were also less resistant to osmotic stress. Conclusion The red blood cell storage lesion is accelerated in previously cryopreserved pRBC after thawing. Biochemical deterioration of thawed and deglycerolized red cells suggests that storage time prior to transfusion should be limited in order to achieve similar risk profiles as never frozen standard liquid storage pRBC units. PMID:27380532

  16. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.

    PubMed

    Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-09-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.

  17. Blood circulation in the ascidian tunicate Corella inflata (Corellidae)

    PubMed Central

    2016-01-01

    The body of the ascidian tunicate Corella inflata is relatively transparent. Thus, the circulatory system can be visualized by injecting high molecular weight fluorescein labeled dextran into the heart or the large vessels at the ends of the heart without surgery to remove the body wall. In addition, after staining with neutral red, the movement of blood cells can be easily followed to further characterize the circulatory system. The heart is two gently curved concentric tubes extending across the width of the animal. The inner myocardial tube has a partial constriction approximately in the middle. As in other tunicates, the heart is peristaltic and periodically reverses direction. During the branchial phase blood leaves the anterior end of the heart by two asymmetric vessels that connect to the two sides of the branchial basket. Blood then flows in both transverse directions through a complex system of ducts in the basket into large ventral and dorsal vessels which carry blood back to the visceral organs in the posterior of the animal. During the visceral phase blood leaves the posterior end of the heart in two vessels that repeatedly bifurcate and fan into the stomach and gonads. Blood velocity, determined by following individual cells in video frames, is high and pulsatory near the heart. A double peak in velocity at the maximum may be due to the constriction in the middle of the heart tube. Blood velocity progressively decreases with distance from the heart. In peripheral regions with vessels of small diameter blood cells frequently collide with vessel walls and cell motion is erratic. The estimated volume of blood flow during each directional phase is greater than the total volume of the animal. Circulating blood cells are confined to vessels or ducts in the visible parts of the animal and retention of high molecular weight dextran in the vessels is comparable to that seen in vertebrates. These are characteristics of a closed circulatory system. PMID:27994977

  18. Nitric oxide, human diseases and the herbal products that affect the nitric oxide signalling pathway.

    PubMed

    Achike, Francis I; Kwan, Chiu-Yin

    2003-09-01

    1. Nitric oxide (NO) is formed enzymatically from l-arginine in the presence of nitric oxide synthase (NOS). Nitric oxide is generated constitutively in endothelial cells via sheer stress and blood-borne substances. Nitric oxide is also generated constitutively in neuronal cells and serves as a neurotransmitter and neuromodulator in non-adrenergic, non-cholinergic nerve endings. Furthermore, NO can also be formed via enzyme induction in many tissues in the presence of cytokines. 2. The ubiquitous presence of NO in the living body suggests that NO plays an important role in the maintenance of health. Being a free radical with vasodilatory properties, NO exerts dual effects on tissues and cells in various biological systems. At low concentrations, NO can dilate the blood vessels and improve the circulation, but at high concentrations it can cause circulatory shock and induce cell death. Thus, diseases can arise in the presence of the extreme ends of the physiological concentrations of NO. 3. The NO signalling pathway has, in recent years, become a target for new drug development. The high level of flavonoids, catechins, tannins and other polyphenolic compounds present in vegetables, fruits, soy, tea and even red wine (from grapes) is believed to contribute to their beneficial health effects. Some of these compounds induce NO formation from the endothelial cells to improve circulation and some suppress the induction of inducible NOS in inflammation and infection. 4. Many botanical medicinal herbs and drugs derived from these herbs have been shown to have effects on the NO signalling pathway. For example, the saponins from ginseng, ginsenosides, have been shown to relax blood vessels (probably contributing to the antifatigue and blood pressure-lowering effects of ginseng) and corpus cavernosum (thus, for the treatment of men suffering from erectile dysfunction; however, the legendary aphrodisiac effect of ginseng may be an overstatement). Many plant extracts or purified drugs derived from Chinese medicinal herbs with proposed actions on NO pathways are also reviewed.

  19. Quantitative studies of bone using (18)F-fluoride and (99m)Tc-methylene diphosphonate: evaluation of renal and whole-blood kinetics.

    PubMed

    Park-Holohan, S J; Blake, G M; Fogelman, I

    2001-09-01

    We report a study of the renal and whole-blood kinetics of (18)F-fluoride and (99m)Tc-methylene diphosphonate ((99m)Tc-MDP) and their effect on the evaluation of the skeletal kinetics of the two bone tracers. Data were obtained during an investigation of postmenopausal women taking hormone replacement therapy who were compared with untreated, age-matched controls. After intravenous injection of 18F-fluoride (1 MBq), (99m)Tc-MDP (1 MBq), (51)Cr-ethylenediaminetetraacetic acid (51Cr-EDTA) (3 MBq) and (125)I-human serum albumin ((125)I-HSA) (0.25 MBq), multiple blood samples and urine collections were taken between 0 and 4 h after injection. (51)Cr-EDTA data were used to evaluate the glomerular filtration rate (GFR) and the completeness of each timed urine collection. (125)I-HSA data were used to evaluate the plasma volume and the red cell uptake of the other three tracers. At 4 h, the cumulative urine excretions (and standard deviations, SDs) were: (99m)Tc-MDP, 58.2% (4.8%); (18)F-fluoride, 36.1% (5.7%); (51)Cr-EDTA, 81.5% (4.5%). Plots of the renal clearance of (18)F-fluoride against urine volume showed that urine flow rates greater than 5 ml.min-1 were necessary to ensure a constant renal clearance of (18)F and hence stable conditions for the evaluation of bone tracer kinetics. In contrast, a low urine flow rate had no effect on the renal kinetics of (99m)Tc-MDP. For MDP, the evaluation of skeletal kinetics requires data on protein binding so that calculations can be performed for free MDP. In the present study, protein binding of MDP was evaluated from the ratio of total (99m)Tc-MDP renal clearance to GFR based on the principle that free (99m)Tc-MDP is a GFR tracer. Between 0 and 4 h after injection, the fractional protein binding of MDP increased linearly with time, changing from 21+/-5% immediately after injection to 58+/-5% at 4 h. Although red cell uptake of (99m)Tc-MDP was negligible, for (18)F-fluoride around 30% of circulating tracer was transported in red cells. In view of the data showing the rapid transport of (18)F-fluoride across the red cell membrane, bone kinetic data for (18)F are more accurately reported as whole-blood clearance rather than plasma clearance.

  20. Red Cell Distribution Width and Serum BNP Level Correlation in Diabetic Patients with Cardiac Failure: A Cross - Sectional Study.

    PubMed

    A R, Subhashree

    2014-06-01

    Red cell distribution width (RDW) is a red cell measurement given by fully automated hematology analyzers. It is a measure of heterogeneity in the size of circulating erythrocytes. Studies have shown that it is a prognostic marker in non - anemic diabetic patients with symptomatic cardiovascular disease but its correlation with cardiac failure in diabetics has not been studied so far. Moreover, studies have also shown that a higher RDW may reflect an underlying inflammatory state. Since Diabetes is a pro inflammatory state there is a possibility that it might have an influence on the RDW values even when there is no cardiac failure, but research data on this aspect is lacking. B-type natriuretic peptide (BNP) is a proven marker for cardiac failure whose values are comparable with echo cardio graphic findings in assessing the left ventricular dysfunction. This study aimed to find out the correlation between RDW% and serum BNP levels in Diabetics with heart failure (cases) when compared to those without failure (controls). Further, we compared the RDW % values of the cases with controls. Settings and Design : The study was approved by institutional ethical and research committee. A cross-sectional study was conducted with patients attending the Diabetes clinic of a tertiary care hospital in Chennai, India, during the period of October to December 2013. Hundred known cases of type II Diabetes mellitus attending Diabetes centre of the Hospital, with clinical and Echo cardio graphic features of cardiac failure were included as cases. Hundred age and gender matched diabetics with negative history of cardiovascular disease and with normal Echo cardio graphic features were included as controls. Informed consent was obtained from all the cases and controls. Demographic data and clinical history were gathered from all the cases and controls by using a standardized self - administered questionnaire. Biochemical and hematological parameters which included Fasting and Postprandial blood sugar, Glycosylated hemoglobin, Complete Blood count including RDW and serum BNP were performed for all the cases and controls. RESULTS were tabulated and analysed using SPSS 20.0 version A statistically significant correlation (p<.001) was found between Red cell Distribution Width % and Serum B type Natriuretic Peptide values in the cases. Further, RDW% showed a statistically significant difference between cases and controls. RDW% can be used as a screening parameter to identify cardiac failure in Diabetic patients similar to non-diabetic cardiac failure. RDW% values are significantly higher in cases of Diabetes with failure in comparison to uncomplicated Diabetes.

  1. Blood and Diversity

    MedlinePlus

    ... blood. About Sickle Cell Disease Sickle cell disease is a common, inherited red blood disorder. Throughout their lives, sickle cell disease patients ... more time, consider a Power Red donation . Power Red is similar to a whole blood donation, except a special machine is used to ...

  2. Protein-enriched diet, with the use of lean red meat, combined with progressive resistance training enhances lean tissue mass and muscle strength and reduces circulating IL-6 concentrations in elderly women: a cluster randomized controlled trial.

    PubMed

    Daly, Robin M; O'Connell, Stella L; Mundell, Niamh L; Grimes, Carley A; Dunstan, David W; Nowson, Caryl A

    2014-04-01

    Physical inactivity, inadequate dietary protein, and low-grade systemic inflammation contribute to age-related muscle loss, impaired function, and disability. We assessed the effects of progressive resistance training (PRT) combined with a protein-enriched diet facilitated through lean red meat on lean tissue mass (LTM), muscle size, strength and function, circulating inflammatory markers, blood pressure, and lipids in elderly women. In a 4-mo cluster randomized controlled trial, 100 women aged 60-90 y who were residing in 15 retirement villages were allocated to receive PRT with lean red meat (∼160 g cooked) to be consumed 6 d/wk [resistance training plus lean red meat (RT+Meat) group; n = 53] or control PRT [1 serving pasta or rice/d; control resistance training (CRT) group; n = 47)]. All women undertook PRT 2 times/wk and received 1000 IU vitamin D3/d. The mean (± SD) protein intake was greater in the RT+Meat group than in the CRT group throughout the study (1.3 ± 0.3 compared with 1.1 ± 0.3 g · kg⁻¹ · d⁻¹, respectively; P < 0.05). The RT+Meat group experienced greater gains in total body LTM (0.45 kg; 95% CI: 0.07, 0.84 kg), leg LTM (0.22 kg; 95% CI: 0.02, 0.42 kg), and muscle strength (18%; 95% CI: 0.03, 0.34) than did the CRT group (all P < 0.05). The RT+Meat group also experienced a 10% greater increase in serum insulin-like growth factor I (P < 0.05) and a 16% greater reduction in the proinflammatory marker interleukin-6 (IL-6) (P < 0.05) after 4 mo. There were no between-group differences for the change in blood lipids or blood pressure. A protein-enriched diet equivalent to ∼1.3 g · kg⁻¹ · d⁻¹ achieved through lean red meat is safe and effective for enhancing the effects of PRT on LTM and muscle strength and reducing circulating IL-6 concentrations in elderly women. This trial was registered at the Australian Clinical Trials Registry as ACTRN12609000223235.

  3. 21 CFR 640.15 - Segments for testing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... cells. (c) All segments accompanying a unit of Red Blood Cells shall be filled at the time the blood is... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.15 Segments for testing... provided with each unit of Whole Blood or Red Blood Cells when issued or reissued. (b) Before they are...

  4. 21 CFR 660.36 - Samples and protocols.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., whenever a new donor is used, a sample of red blood cells from each new donor used in a cell panel intended... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.36 Samples... distribution of each lot of Reagent Red Blood Cells for detection or identification of unexpected antibodies...

  5. 21 CFR 660.36 - Samples and protocols.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., whenever a new donor is used, a sample of red blood cells from each new donor used in a cell panel intended... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.36 Samples... distribution of each lot of Reagent Red Blood Cells for detection or identification of unexpected antibodies...

  6. 21 CFR 640.15 - Segments for testing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cells. (c) All segments accompanying a unit of Red Blood Cells shall be filled at the time the blood is... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.15 Segments for testing... provided with each unit of Whole Blood or Red Blood Cells when issued or reissued. (b) Before they are...

  7. 21 CFR 660.36 - Samples and protocols.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., whenever a new donor is used, a sample of red blood cells from each new donor used in a cell panel intended... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.36 Samples... distribution of each lot of Reagent Red Blood Cells for detection or identification of unexpected antibodies...

  8. 21 CFR 640.15 - Segments for testing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... cells. (c) All segments accompanying a unit of Red Blood Cells shall be filled at the time the blood is... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.15 Segments for testing... provided with each unit of Whole Blood or Red Blood Cells when issued or reissued. (b) Before they are...

  9. 21 CFR 640.15 - Segments for testing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... cells. (c) All segments accompanying a unit of Red Blood Cells shall be filled at the time the blood is... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.15 Segments for testing... provided with each unit of Whole Blood or Red Blood Cells when issued or reissued. (b) Before they are...

  10. 21 CFR 640.15 - Segments for testing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.15 Segments for testing... provided with each unit of Whole Blood or Red Blood Cells when issued or reissued. (b) Before they are... cells. (c) All segments accompanying a unit of Red Blood Cells shall be filled at the time the blood is...

  11. Impact of variations of gravitational acceleration on the general circulation of the planetary atmosphere

    NASA Astrophysics Data System (ADS)

    Kilic, Cevahir; Raible, Christoph C.; Stocker, Thomas F.; Kirk, Edilbert

    2017-01-01

    Fundamental to the redistribution of energy in a planetary atmosphere is the general circulation and its meridional structure. We use a general circulation model of the atmosphere in an aquaplanet configuration with prescribed sea surface temperature and investigate the influence of the gravitational acceleration g on the structure of the circulation. For g =g0 = 9.81 ms-2 , three meridional cells exist in each hemisphere. Up to about g /g0 = 1.4 all cells increase in strength. Further increasing this ratio results in a weakening of the thermally indirect cell, such that a two- and finally a one-cell structure of the meridional circulation develops in each hemisphere. This transition is explained by the primary driver of the thermally direct Hadley cell: the diabatic heating at the equator which is proportional to g. The analysis of the energetics of the atmospheric circulation based on the Lorenz energy cycle supports this finding. For Earth-like gravitational accelerations transient eddies are primarily responsible for the meridional heat flux. For large gravitational accelerations, the direct zonal mean conversion of energy dominates the meridional heat flux.

  12. Temporal changes in nutritional state affect hypothalamic POMC peptide levels independently of leptin in adult male mice.

    PubMed

    Mercer, Aaron J; Stuart, Ronald C; Attard, Courtney A; Otero-Corchon, Veronica; Nillni, Eduardo A; Low, Malcolm J

    2014-04-15

    Hypothalamic proopiomelanocortin (POMC) neurons constitute a critical anorexigenic node in the central nervous system (CNS) for maintaining energy balance. These neurons directly affect energy expenditure and feeding behavior by releasing bioactive neuropeptides but are also subject to signals directly related to nutritional state such as the adipokine leptin. To further investigate the interaction of diet and leptin on hypothalamic POMC peptide levels, we exposed 8- to 10-wk-old male POMC-Discosoma red fluorescent protein (DsRed) transgenic reporter mice to either 24-48 h (acute) or 2 wk (chronic) food restriction, high-fat diet (HFD), or leptin treatment. Using semiquantitative immunofluorescence and radioimmunoassays, we discovered that acute fasting and chronic food restriction decreased the levels of adrenocorticotropic hormone (ACTH), α-melanocyte-stimulating hormone (α-MSH), and β-endorphin in the hypothalamus, together with decreased DsRed fluorescence, compared with control ad libitum-fed mice. Furthermore, acute but not chronic HFD or leptin administration selectively increased α-MSH levels in POMC fibers and increased DsRed fluorescence in POMC cell bodies. HFD and leptin treatments comparably increased circulating leptin levels at both time points, suggesting that transcription of Pomc and synthesis of POMC peptide products are not modified in direct relation to the concentration of plasma leptin. Our findings indicate that negative energy balance persistently downregulated POMC peptide levels, and this phenomenon may be partially explained by decreased leptin levels, since these changes were blocked in fasted mice treated with leptin. In contrast, sustained elevation of plasma leptin by HFD or hormone supplementation did not significantly alter POMC peptide levels, indicating that enhanced leptin signaling does not chronically increase Pomc transcription and peptide synthesis.

  13. Intravenous immunoglobulins reverse acute vaso-occlusive crises in sickle cell mice through rapid inhibition of neutrophil adhesion

    PubMed Central

    Chang, Jungshan; Shi, Patricia A.; Chiang, Elaine Y.

    2008-01-01

    Previous studies using intravital microscopy in a sickle cell disease (SCD) mouse model suggest that adherent white blood cells (WBCs) play a key role in vaso-occlusion by capturing circulating red blood cells (RBCs) in venules. Commercial intravenous immunoglobulin (IVIG) given before the inflammatory stimuli increased microcirculatory blood flow and survival. To mimic the clinical situation in which SCD patients seek medical attention after the onset of symptoms, we developed an in vivo model in which the therapeutic intervention (eg, IVIG) was administered after in the inflammatory challenge. In this setting, IVIG rapidly (< 10 minutes) reduced adherent leukocyte numbers and dramatically inhibited interactions between RBCs and WBCs, resulting in improved microcirculatory blood flow and survival of sickle cell “Berkeley” mice. Longer survival correlated positively with blood flow (P = .001) and negatively with the number of adherent leukocytes (P = .001) and RBC-WBC interactions (P = .002). Using multichannel digital fluorescence videomicroscopy, we found that IVIG affected specifically the recruitment of neutrophils. Moreover, further analyses of leukocyte behavior revealed that IVIG significantly increased rolling velocities, indicating that it alters adhesion pathways involved in slow rolling. These data suggest that the potential therapeutic benefits of IVIG in SCD crises should be evaluated in a clinical trial. PMID:17932253

  14. Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease.

    PubMed

    Vinchi, Francesca; Costa da Silva, Milene; Ingoglia, Giada; Petrillo, Sara; Brinkman, Nathan; Zuercher, Adrian; Cerwenka, Adelheid; Tolosano, Emanuela; Muckenthaler, Martina U

    2016-01-28

    Hemolytic diseases, such as sickle cell anemia and thalassemia, are characterized by enhanced release of hemoglobin and heme into the circulation, heme-iron loading of reticulo-endothelial system macrophages, and chronic inflammation. Here we show that in addition to activating the vascular endothelium, hemoglobin and heme excess alters the macrophage phenotype in sickle cell disease. We demonstrate that exposure of cultured macrophages to hemolytic aged red blood cells, heme, or iron causes their functional phenotypic change toward a proinflammatory state. In addition, hemolysis and macrophage heme/iron accumulation in a mouse model of sickle disease trigger similar proinflammatory phenotypic alterations in hepatic macrophages. On the mechanistic level, this critically depends on reactive oxygen species production and activation of the Toll-like receptor 4 signaling pathway. We further demonstrate that the heme scavenger hemopexin protects reticulo-endothelial macrophages from heme overload in heme-loaded Hx-null mice and reduces production of cytokines and reactive oxygen species. Importantly, in sickle mice, the administration of human exogenous hemopexin attenuates the inflammatory phenotype of macrophages. Taken together, our data suggest that therapeutic administration of hemopexin is beneficial to counteract heme-driven macrophage-mediated inflammation and its pathophysiologic consequences in sickle cell disease. © 2016 by The American Society of Hematology.

  15. Serum free hemoglobin test

    MedlinePlus

    ... the red blood cells. Most of the hemoglobin is found inside the red blood cells, not in the serum. Hemoglobin carries oxygen ... Hemoglobin (Hb) is the main component of red blood cells. It is a ... oxygen. This test is done to diagnose or monitor how severe ...

  16. Research opportunities in loss of red blood cell mass in space flight

    NASA Technical Reports Server (NTRS)

    Talbot, J. M.; Fisher, K. D.

    1985-01-01

    Decreases of red blood cell mass and plasma volume have been observed consistently following manned space flights. Losses of red cell mass by United States astronauts have averaged 10 to 15% (range: 2 to 21%). Based on postflight estimates of total hemoglobin, Soviet cosmonauts engaged in space missions lasting from 1 to 7 months have exhibited somewhat greater losses. Restoration of red cell mass requires from 4 to 6 weeks following return to Earth, regardless of the duration of space flight.

  17. The Effect of Polymeric Nanoparticles on Biocompatibility of Carrier Red Blood Cells

    PubMed Central

    Pan, Daniel; Vargas-Morales, Omayra; Zern, Blaine; Anselmo, Aaron C.; Gupta, Vivek; Zakrewsky, Michael; Mitragotri, Samir; Muzykantov, Vladimir

    2016-01-01

    Red blood cells (RBCs) can be used for vascular delivery of encapsulated or surface-bound drugs and carriers. Coupling to RBC prolongs circulation of nanoparticles (NP, 200 nm spheres, a conventional model of polymeric drug delivery carrier) enabling their transfer to the pulmonary vasculature without provoking overt RBC elimination. However, little is known about more subtle and potentially harmful effects of drugs and drug carriers on RBCs. Here we devised high-throughput in vitro assays to determine the sensitivity of loaded RBCs to osmotic stress and other damaging insults that they may encounter in vivo (e.g. mechanical, oxidative and complement insults). Sensitivity of these tests is inversely proportional to RBC concentration in suspension and our results suggest that mouse RBCs are more sensitive to damaging factors than human RBCs. Loading RBCs by NP at 1:50 ratio did not affect RBCs, while 10–50 fold higher NP load accentuated RBC damage by mechanical, osmotic and oxidative stress. This extensive loading of RBC by NP also leads to RBCs agglutination in buffer; however, addition of albumin diminished this effect. These results provide a template for analyses of the effects of diverse cargoes loaded on carrier RBCs and indicate that: i) RBCs can tolerate carriage of NP at doses providing loading of millions of nanoparticles per microliter of blood; ii) tests using protein-free buffers and mouse RBCs may overestimate adversity that may be encountered in humans. PMID:27003833

  18. ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice.

    PubMed

    Stocker, Jonathan W; De Franceschi, Lucia; McNaughton-Smith, Grant A; Corrocher, Roberto; Beuzard, Yves; Brugnara, Carlo

    2003-03-15

    A prominent feature of sickle cell anemia is the presence of dehydrated red blood cells (RBCs) in circulation. Loss of potassium (K(+)), chloride (Cl(-)), and water from RBCs is thought to contribute to the production of these dehydrated cells. One main route of K(+) loss in the RBC is the Gardos channel, a calcium (Ca(2+))-activated K(+) channel. Clotrimazole (CLT), an inhibitor of the Gardos channel, has been shown to reduce RBC dehydration in vitro and in vivo. We have developed a chemically novel compound, ICA-17043, that has greater potency and selectivity than CLT in inhibiting the Gardos channel. ICA-17043 blocked Ca(2+)-induced rubidium flux from human RBCs with an IC(50) value of 11 +/- 2 nM (CLT IC(50) = 100 +/- 12 nM) and inhibited RBC dehydration with an IC(50) of 30 +/- 20 nM. In a transgenic mouse model of sickle cell disease (SAD), treatment with ICA-17043 (10 mg/kg orally, twice a day) for 21 days showed a marked and constant inhibition of the Gardos channel activity (with an average inhibition of 90% +/- 27%, P <.005), an increase in RBC K(+) content (from 392 +/- 19.9 to 479.2 +/- 40 mmol/kg hemoglobin [Hb], P <.005), a significant increase in hematocrit (Hct) (from 0.435 +/- 0.007 to 0.509 +/- 0.022 [43.5% +/- 0.7% to 50.9% +/- 2.2%], P <.005), a decrease in mean corpuscular hemoglobin concentration (MCHC) (from 340 +/- 9.0 to 300 +/- 15 g/L [34.0 +/- 0.9 to 30 +/- 1.5 g/dL], P <.05), and a left-shift in RBC density curves. These data indicate that ICA-17043 is a potent inhibitor of the Gardos channel and ameliorates RBC dehydration in the SAD mouse.

  19. Nutraceutical augmentation of circulating endothelial progenitor cells and hematopoietic stem cells in human subjects.

    PubMed

    Mikirova, Nina A; Jackson, James A; Hunninghake, Ron; Kenyon, Julian; Chan, Kyle W H; Swindlehurst, Cathy A; Minev, Boris; Patel, Amit N; Murphy, Michael P; Smith, Leonard; Ramos, Famela; Ichim, Thomas E; Riordan, Neil H

    2010-04-08

    The medical significance of circulating endothelial or hematopoietic progenitors is becoming increasing recognized. While therapeutic augmentation of circulating progenitor cells using G-CSF has resulted in promising preclinical and early clinical data for several degenerative conditions, this approach is limited by cost and inability to perform chronic administration. Stem-Kine is a food supplement that was previously reported to augment circulating EPC in a pilot study. Here we report a trial in 18 healthy volunteers administered Stem-Kine twice daily for a 2 week period. Significant increases in circulating CD133 and CD34 cells were observed at days 1, 2, 7, and 14 subsequent to initiation of administration, which correlated with increased hematopoietic progenitors as detected by the HALO assay. Augmentation of EPC numbers in circulation was detected by KDR-1/CD34 staining and colony forming assays. These data suggest Stem-Kine supplementation may be useful as a stimulator of reparative processes associated with mobilization of hematopoietic and endothelial progenitors.

  20. Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles.

    PubMed

    Ergen, Can; Heymann, Felix; Al Rawashdeh, Wa'el; Gremse, Felix; Bartneck, Matthias; Panzer, Ulf; Pola, Robert; Pechar, Michal; Storm, Gert; Mohr, Nicole; Barz, Matthias; Zentel, Rudolf; Kiessling, Fabian; Trautwein, Christian; Lammers, Twan; Tacke, Frank

    2017-01-01

    Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes and poly(butyl cyanoacrylate) microbubbles in mice, using whole-body imaging (computed tomography - fluorescence-mediated tomography), intra-organ imaging (intravital multi-photon microscopy) and cellular analysis (flow cytometry of blood, liver, spleen, lung and kidney). While the three carrier materials shared accumulation in tissue macrophages in liver and spleen, they notably differed in uptake by other myeloid subsets. Kupffer cells and splenic red pulp macrophages rapidly take up microbubbles. Liposomes efficiently reach dendritic cells in liver, lung and kidney. Polymers exhibit the longest circulation half-life and target endothelial cells in the liver, neutrophils and alveolar macrophages. The identification of such previously unrecognized target cell populations might open up new avenues for more efficient drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Reflectance confocal microscopy of red blood cells: simulation and experiment (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zeidan, Adel; Yeheskely-Hayon, Daniella; Minai, Limor; Yelin, Dvir

    2016-03-01

    The properties of red blood cells are a remarkable indicator of the body's physiological condition; their density could indicate anemia or polycythemia, their absorption spectrum correlates with blood oxygenation, and their morphology is highly sensitive to various pathologic states including iron deficiency, ovalocytosis, and sickle cell disease. Therefore, measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient's health. In this work, we simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the cells' morphological parameters and the resulting characteristic interference patterns. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry (SEFC) that imaged the cells during linear flow and without artificial staining. By matching the simulated patterns to the SEFC images of the cells, the cells' three-dimensional shapes were evaluated and their volumes were calculated. Potential applications include measurement of the mean corpuscular volume, cell morphological abnormalities, cell stiffness under mechanical stimuli, and the detection of various hematological diseases.

  2. Bio-inspired Cryo-ink Preserves Red Blood Cell Phenotype and Function during Nanoliter Vitrification

    PubMed Central

    Assal, Rami El; Guven, Sinan; Gurkan, Umut Atakan; Gozen, Irep; Shafiee, Hadi; Dalbeyber, Sedef; Abdalla, Noor; Thomas, Gawain; Fuld, Wendy; Illigens, Ben M.W.; Estanislau, Jessica; Khoory, Joseph; Kaufman, Richard; Zylberberg, Claudia; Lindeman, Neal; Wen, Qi; Ghiran, Ionita; Demirci, Utkan

    2014-01-01

    Current red blood cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red blood cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bio-printing approach. PMID:25047246

  3. Association of white cell and red cell antibodies in human sera

    PubMed Central

    Ross, Jill M.; James, D. C. O.

    1973-01-01

    Five hundred and eighteen human sera containing known red cell antibodies were tested for lymphocytotoxic antibodies and 81 sera were found to contain them. Thirty-nine antibodies were fully characterized. The frequencies of anti-I, K, Vw, and Wra were significantly greater in those of the 518 sera which also contained white cell antibodies. Four hundred and ninety-four of the 518 sera containing red cell antibodies contained anti-Rh and anti-Kell. The frequency of white cell antibodies in this group was 15% compared with a frequency of 12% in a series of 923 antenatal samples not containing anti-Rh or anti-Kell. The frequencies of different anti-HL-A specificities were compared in the two groups with or without anti-Rh and anti-Kell antibodies. Anti-HL-A 1, 7, and 8 occurred more frequently in the absence of these red cell antibodies and anti-HL-A 12 occurred more frequently in their presence. No correlation was found between particular red cell and white cell antibodies. PMID:4197543

  4. Simultaneous detection of circulating immunological parameters and tumor biomarkers in early stage breast cancer patients during adjuvant chemotherapy.

    PubMed

    Rovati, B; Mariucci, S; Delfanti, S; Grasso, D; Tinelli, C; Torre, C; De Amici, M; Pedrazzoli, P

    2016-06-01

    Chemotherapy-induced immune suppression has mainly been studied in patients with advanced cancer, but the influence of chemotherapy on the immune system in early stage cancer patients has so far not been studied systematically. The aim of the present study was to monitor the immune system during anthracycline- and taxane-based adjuvant chemotherapy in early stage breast cancer patients, to assess the impact of circulating tumor cells on selected immune parameters and to reveal putative angiogenic effects of circulating endothelial cells. Peripheral blood samples from 20 early stage breast cancer patients were analyzed using a flow cytometric multi-color of antibodies to enumerate lymphocyte and dendritic cell subsets, as well as endothelial and tumor cells. An enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of various serological factors. During chemotherapy, all immunological parameters and angiogenesis surrogate biomarkers showed significant decreases. The numbers of circulating tumor cells showed significant inverse correlations with the numbers of T helper cells, a lymphocyte subset directly related to effective anti-tumor responses. Reduced T helper cell numbers may contribute to systemic immunosuppression and, as such, the activation of dormant tumor cells. From our results we conclude that adjuvant chemotherapy suppresses immune function in early stage breast cancer patients. In addition, we conclude that the presence of circulating tumor cells, defined as pan-cytokeratin(+), CD326(+), CD45(-) cells, may serve as an important indicator of a patient's immune status. Further investigations are needed to firmly define circulating tumor cells as a predictor for the success of breast cancer adjuvant chemotherapy.

  5. Fluorescent porphyrin with an increased uptake in peripheral blood cell subpopulations from colon cancer patients.

    PubMed

    Constantin, Carolina; Neagu, Monica

    2015-01-01

    The intrinsic fluorescence of synthetic or natural porphyrins is regarded as an attractive characteristic exploited for assisting early cancer diagnosis and/or tumor localization. Single tumor cells circulating in the blood stream can be considered a major step in depicting dissemination of primary tumors, an event of clinical relevance for prognosis, staging or therapy monitoring of cancer. The third leading cause of cancer death in men is colorectal cancer and the hematogenous spreading of primary tumor cells is one of the main events in metastasis of this type of cancer. Hidden in the myriad of circulating blood cells, tumor cells need both a sensitive and affordable detection technique. 5- (3-methoxy)-4-methoxycarbonylphenyl)-10, 15, 20-tris-(4- methoxycarbonylphenyl) - 21, 23-H porphyne is a synthetic porphyrin with a noticeable preference of accumulation in peripheral blood mononuclear cells isolated from cancer patients as assessed by flow cytometry analysis. In addition, we found distinct accumulation of porphyrin depending on cancer type (cutaneous melanoma versus colorectal cancer). These data lead to the possibility of identifying circulating cells based on preferential accumulation of this new porphyrin in circulating tumor cells because, even accumulated in low percentage of cells the registered intensity of fluorescence was high. Selecting the genetic markers for circulating tumor cells is an option, but high costs and high level of know-how can be somewhat a hurdle for a rapid evaluation. Thus our approach with a new porphyrin can be developed in an accurate and innovative fast tracking method for circulating cancer cells, at least in colorectal cancer patients.

  6. A Novel Strategy for Detection and Enumeration of Circulating Rare Cell Populations in Metastatic Cancer Patients Using Automated Microfluidic Filtration and Multiplex Immunoassay.

    PubMed

    Magbanua, Mark Jesus M; Pugia, Michael; Lee, Jin Sun; Jabon, Marc; Wang, Victoria; Gubens, Matthew; Marfurt, Karen; Pence, Julia; Sidhu, Harwinder; Uzgiris, Arejas; Rugo, Hope S; Park, John W

    2015-01-01

    Size selection via filtration offers an antigen-independent approach for the enrichment of rare cell populations in blood of cancer patients. We evaluated the performance of a novel approach for multiplex rare cell detection in blood samples from metastatic breast (n = 19) and lung cancer patients (n = 21), and healthy controls (n = 30) using an automated microfluidic filtration and multiplex immunoassay strategy. Captured cells were enumerated after sequential staining for specific markers to identify circulating tumor cells (CTCs), circulating mesenchymal cells (CMCs), putative circulating stem cells (CSCs), and circulating endothelial cells (CECs). Preclinical validation experiments using cancer cells spiked into healthy blood demonstrated high recovery rate (mean = 85%) and reproducibility of the assay. In clinical studies, CTCs and CMCs were detected in 35% and 58% of cancer patients, respectively, and were largely absent from healthy controls (3%, p = 0.001). Mean levels of CTCs were significantly higher in breast than in lung cancer patients (p = 0.03). Fifty-three percent (53%) of cancer patients harbored putative CSCs, while none were detectable in healthy controls (p<0.0001). In contrast, CECs were observed in both cancer and control groups. Direct comparison of CellSearch® vs. our microfluidic filter method revealed moderate correlation (R2 = 0.46, kappa = 0.47). Serial blood analysis in breast cancer patients demonstrated the feasibility of monitoring circulating rare cell populations over time. Simultaneous assessment of CTCs, CMCs, CSCs and CECs may provide new tools to study mechanisms of disease progression and treatment response/resistance.

  7. A Novel Strategy for Detection and Enumeration of Circulating Rare Cell Populations in Metastatic Cancer Patients Using Automated Microfluidic Filtration and Multiplex Immunoassay

    PubMed Central

    Lee, Jin Sun; Jabon, Marc; Wang, Victoria; Gubens, Matthew; Marfurt, Karen; Pence, Julia; Sidhu, Harwinder; Uzgiris, Arejas; Rugo, Hope S.; Park, John W.

    2015-01-01

    Size selection via filtration offers an antigen-independent approach for the enrichment of rare cell populations in blood of cancer patients. We evaluated the performance of a novel approach for multiplex rare cell detection in blood samples from metastatic breast (n = 19) and lung cancer patients (n = 21), and healthy controls (n = 30) using an automated microfluidic filtration and multiplex immunoassay strategy. Captured cells were enumerated after sequential staining for specific markers to identify circulating tumor cells (CTCs), circulating mesenchymal cells (CMCs), putative circulating stem cells (CSCs), and circulating endothelial cells (CECs). Preclinical validation experiments using cancer cells spiked into healthy blood demonstrated high recovery rate (mean = 85%) and reproducibility of the assay. In clinical studies, CTCs and CMCs were detected in 35% and 58% of cancer patients, respectively, and were largely absent from healthy controls (3%, p = 0.001). Mean levels of CTCs were significantly higher in breast than in lung cancer patients (p = 0.03). Fifty-three percent (53%) of cancer patients harbored putative CSCs, while none were detectable in healthy controls (p<0.0001). In contrast, CECs were observed in both cancer and control groups. Direct comparison of CellSearch® vs. our microfluidic filter method revealed moderate correlation (R2 = 0.46, kappa = 0.47). Serial blood analysis in breast cancer patients demonstrated the feasibility of monitoring circulating rare cell populations over time. Simultaneous assessment of CTCs, CMCs, CSCs and CECs may provide new tools to study mechanisms of disease progression and treatment response/resistance. PMID:26496203

  8. Cation Homeostasis in Red Cells From Patients With Sickle Cell Disease Heterologous for HbS and HbC (HbSC Genotype)

    PubMed Central

    Hannemann, A.; Rees, D.C.; Tewari, S.; Gibson, J.S.

    2015-01-01

    Sickle cell disease (SCD) in patients of HbSC genotype is considered similar, albeit milder, to that in homozygous HbSS individuals — but with little justification. In SCD, elevated red cell cation permeability is critical as increased solute loss causes dehydration and encourages sickling. Recently, we showed that the KCl cotransporter (KCC) activity in red cells from HbSC patients correlated significantly with disease severity, but that in HbSS patients did not. Two transporters involved in red cell dehydration, the conductive channels Psickle and the Gardos channel, behaved similarly in red cells from the two genotypes, but were significantly less active in HbSC patients. By contrast, KCC activity was quantitatively greater in HbSC red cells. Results suggest that KCC is likely to have greater involvement in red cell dehydration in HbSC patients, which could explain its association with disease severity in this genotype. This work supports the hypothesis that SCD in HbSC patients is a distinct disease entity to that in HbSS patients. Results suggest the possibility of designing specific treatments of particular benefit to HbSC patients and a rationale for the development of prognostic markers, to inform early treatment of children likely to develop more severe complications of the disease. PMID:26870793

  9. Reduction in unnecessary red blood cell folate testing by restricting computerized physician order entry in the electronic health record.

    PubMed

    MacMillan, Thomas E; Gudgeon, Patrick; Yip, Paul M; Cavalcanti, Rodrigo B

    2018-05-02

    Red blood cell folate is a laboratory test with limited clinical utility. Previous attempts to reduce physician ordering of unnecessary laboratory tests, including folate, have resulted in only modest success. The objective of this study was to assess the effectiveness and impacts of restricting red blood cell folate ordering in the electronic health record. This was a retrospective observational study from January 2010 to December 2016 at a large academic healthcare network in Toronto, Canada. All inpatients and outpatients who underwent at least 1 red blood cell folate or vitamin B12 test during the study period were included. Red blood cell folate ordering was restricted to clincians in gastroenterology and hematology and was removed from other physicians' computerized order entry screen in the electronic health record in June 2013. Red blood cell folate testing decreased by 94.4% during the study, from a mean of 493.0 (SD 48.0) tests/month before intervention to 27.6 (SD 10.3) tests/month after intervention (P<.001). Restricting red blood cell folate ordering in the electronic health record resulted in a large and sustained reduction in red blood cell folate testing. Significant cost savings estimated at over a quarter-million dollars (CAD) over three years were achieved. There was no significant clinical impact of the intervention on the diagnosis of folate deficiency. Copyright © 2018. Published by Elsevier Inc.

  10. The morphological classification of normal and abnormal red blood cell using Self Organizing Map

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Wulandari, F. S.; Faza, S.; Muchtar, M. A.; Siregar, I.

    2018-02-01

    Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used self-organizing map method to classify the normal and abnormal form of red blood cells in the digital image. The use of self-organizing map neural network method can be implemented to classify the normal and abnormal form of red blood cells in the input image with 93,78% accuracy testing.

  11. Experiment M115: Special hematologic effects: Dynamic changes in red cell shape in response to the space-flight environment

    NASA Technical Reports Server (NTRS)

    Kimzey, S. L.; Burns, L. C.; Fischer, C. L.

    1974-01-01

    The significance of the transformations in red cell shape observed during the Skylab study must be considered relative to the limitation of man's participation in extended space flight missions. The results of this one study are not conclusive with respect to this question. Based on these examinations of red cells in normal, healthy men and based on other Skylab experiment data relative to the functional capacity of the red cells in vitro and the performance capacity of man as an integrated system, the changes observed would not appear to be the limiting factor in determining man's stay in space. However, the results of this experiment and the documented red cell mass loss during space flight raise serious questions at this time relative to the selection criteria utilized for passengers and crews of future space flights. Until the specific cause and impact of the red cell shape change on cell survival in vivo can be resolved, individuals with diagnosed hematologic abnormalities should not be considered as prime candidates for missions, especially those of longer duration.

  12. Advanced glycation end products, carotid atherosclerosis, and circulating endothelial progenitor cells in patients with end-stage renal disease.

    PubMed

    Ueno, Hiroki; Koyama, Hidenori; Fukumoto, Shinya; Tanaka, Shinji; Shoji, Takuhito; Shoji, Tetsuo; Emoto, Masanori; Tahara, Hideki; Inaba, Masaaki; Kakiya, Ryusuke; Tabata, Tsutomu; Miyata, Toshio; Nishizawa, Yoshiki

    2011-04-01

    Numbers of endothelial progenitor cells (EPCs) have been shown to be decreased in subjects with end-stage renal disease (ESRD), the mechanism of which remained poorly understood. In this study, mutual association among circulating EPC levels, carotid atherosclerosis, serum pentosidine, and skin autofluorescence, a recently established noninvasive measure of advanced glycation end products accumulation, was examined in 212 ESRD subjects undergoing hemodialysis. Numbers of circulating EPCs were measured as CD34+ CD133+ CD45(low) VEGFR2+ cells and progenitor cells as CD34+ CD133+ CD45(low) fraction by flow cytometry. Skin autofluorescence was assessed by the autofluorescence reader; and serum pentosidine, by enzyme-linked immunosorbent assay. Carotid atherosclerosis was determined as intimal-medial thickness (IMT) measured by ultrasound. Circulating EPCs were significantly and inversely correlated with skin autofluorescence in ESRD subjects (R = -0.216, P = .002), but not with serum pentosidine (R = -0.079, P = .25). Circulating EPCs tended to be inversely associated with IMT (R = -0.125, P = .069). Intimal-medial thickness was also tended to be correlated positively with skin autofluorescence (R = 0.133, P = .054) and significantly with serum pentosidine (R = 0.159, P = .019). Stepwise multiple regression analyses reveal that skin autofluorescence, but not serum pentosidine and IMT, was independently associated with low circulating EPCs. Of note, skin autofluorescence was also inversely and independently associated with circulating progenitor cells. Thus, tissue accumulated, but not circulating, advanced glycation end products may be a determinant of a decrease in circulating EPCs in ESRD subjects. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. High levels of circulating VEGFR2+ Bone marrow-derived progenitor cells correlate with metastatic disease in patients with pediatric solid malignancies.

    PubMed

    Taylor, Melissa; Rössler, Jochen; Geoerger, Birgit; Laplanche, Agnès; Hartmann, Olivier; Vassal, Gilles; Farace, Françoise

    2009-07-15

    Pediatric solid malignancies display important angiogenic potential, and blocking tumor angiogenesis represents a new therapeutic approach for these patients. Recent studies have evidenced rare circulating cells with endothelial features contributing to tumor neovascularization and have shown the pivotal role of bone marrow-derived (BMD) progenitor cells in metastatic disease progression. We measured these cells in patients with pediatric solid malignancies as a prerequisite to clinical trials with antiangiogenic therapy. Peripheral blood was drawn from 45 patients with localized (n = 23) or metastatic (n = 22) disease, and 20 healthy subjects. Subsets of circulating vascular endothelial growth factor receptor (VEGFR)2+-BMD progenitor cells, defined as CD45-CD34+VEGFR2(KDR)+7AAD- and CD45(dim)CD34+VEGFR2+7AAD- events, were measured in progenitor-enriched fractions by flow cytometry. Mature circulating endothelial cells (CEC) were measured in whole blood as CD31+CD146+CD45-7AAD- viable events. Data were correlated with VEGF and sVEGFR2 plasma levels. The CD45-CD34+VEGFR2(KDR)+7AAD- subset represented <0.003% of circulating BMD progenitor cells (< or =0.05 cells/mL). However, the median level (range) of the CD45(dim)CD34+VEGFR2+7AAD- subset was higher in patients compared with healthy subjects, 1.5% (0%-10.3%) versus 0.3% (0%-1.6%) of circulating BMD progenitors (P < 0.0001), and differed significantly between patients with localized and metastatic disease, 0.7% (0%-8.6%) versus 2.9% (0.6%-10.3%) of circulating BMD progenitors (P < 0.001). Median CEC value was 7 cells/mL (0-152 cells/mL) and similar in all groups. Unlike VEGFR2+-BMD progenitors, neither CECs, VEGF, or sVEGFR2 plasma levels correlated with disease status. High levels of circulating VEGFR2+-BMD progenitor cells correlated with metastatic disease. Our study provides novel insights for angiogenesis mechanisms in pediatric solid malignancies for which antiangiogenic targeting of VEGFR2+-BMD progenitors could be of interest.

  14. The use of enzymopathic human red cells in the study of malarial parasite glucose metabolism.

    PubMed

    Roth, E; Joulin, V; Miwa, S; Yoshida, A; Akatsuka, J; Cohen-Solal, M; Rosa, R

    1988-05-01

    The in vitro growth of Plasmodium falciparum malaria parasites was assayed in mutant red cells deficient in either diphosphoglycerate mutase (DPGM) or phosphoglycerate kinase (PGK). In addition, cDNA probes developed for human DNA sequences coding for these enzymes were used to examine the parasite genome by means of restriction endonuclease digestion and Southern blot analysis of parasite DNA. In both types of enzymopathic red cells, parasite growth was normal. In infected DPGM deficient red cells, no DPGM activity could be detected, and in normal red cells, DPGM activity declined slightly in a manner suggestive of parasite catabolism of host protein. However, in infected PGK deficient red cells, there was a 100-fold increase in PGK activity, and in normal red cells, a threefold increase in PGK activity was observed. Parasite PGK could be recovered from isolated parasites, and a marked increase in heat instability of parasite PGK as compared with the host cell enzyme was noted. Neither cDNA probe was found to cross-react with DNA sequences in the parasite genome. It is concluded that the parasite has no requirement for DPGM, and probably has no gene for this enzyme. On the other hand, the parasite does require PGK, (an adenosine triphosphate [ATP] generating enzyme) and synthesizes its own enzyme, which must have been encoded in the parasite genome. The parasite PGK gene most likely lacks sufficient homology to be detected by a human cDNA probe. Enzymopathic red cells are useful tools for elucidating the glycolytic enzymology of parasites and their co-evolution with their human hosts.

  15. Red cell density is sex and race dependent in the adult.

    PubMed

    Blumenfeld, N; Fabry, M E; Thysen, B; Nagel, R L

    1988-09-01

    Using a highly sensitive method for the determination of red cell densities (Percoll-Stractan continuous isopyknic gradients), we find that, in adults, this parameter varies with sex and race. Whites have red cell densities (expressed as mean corpuscular hemoglobin concentration [MCHC]) that are, on the average, 0.7 gm/dl higher than those in blacks (the difference of the means has p less than 2 x 10(-7]. White men have, on the average, 0.6 gm/dl higher MCHC than white women (the difference of the means has p less than 6 x 10(-5]. We find a strong correlation between all red cell densities and intracellular K+ and a slightly weaker correlation between red cell density and intracellular Na+ + K+. Men have an average intraerythrocytic K+ that is approximately 4.5 mmol/L of red cells less than that of women among whites as well as blacks (p less than 10(-5) and p less than 9 x 10(-4), respectively). Blacks have significantly higher plasma ferritin levels than do whites (in addition to the sex difference). Future work will have to dissect the possible causes of these differences, which include the high incidence of deletional alpha-thalassemia (-a/aa) among blacks, menstruation, hormonal effects, and the red cell transport and volume regulation differences between sexes and races. Whatever the cause of the sex and racial differences reported here, they are bound to affect the pathophysiologic expression of genetic red cell diseases that are particularly sensitive to the MCHC, such as the sickle cell syndromes.

  16. Influence of red blood cell-derived microparticles upon vasoregulation

    PubMed Central

    Said, Ahmed S.; Doctor, Allan

    2017-01-01

    Here we review recent data and the evolving understanding of the role of red blood cell-derived microparticles (RMPs) in normal physiology and in disease progression. Microparticles (MPs) are small membrane vesicles derived from various parent cell types. MPs are produced in response to a variety of stimuli through several cytoskeletal and membrane phospholipid changes. MPs have been investigated as potential biomarkers for multiple disease processes and are thought to have biological effects, most notably in: promotion of coagulation, production and handling of reactive oxygen species, immune modulation, angiogenesis, and in apoptosis. Specifically, RMPs are produced normally during RBC maturation and their production is accelerated during processing and storage for transfusion. Several factors during RBC storage are known to trigger RMP production, including: increased intracellular calcium, increased potassium leakage, and energy failure with ATP depletion. Of note, RMP composition differs from that of intact RBCs, and the nature and composition of RMP components are affected by both storage duration and the character of storage solutions. Recognised RMP bioactivities include: promotion of coagulation, immune modulation, and promotion of endothelial adhesion, as well as influence upon vasoregulation via nitric oxide (NO) scavenging. Of particular relevance, RMPs are more avid NO scavengers than intact RBCs and this feature has been proposed as a mechanism for the impaired oxygen delivery homeostasis that has been observed following transfusion. Preliminary human studies demonstrate that circulating RMP abundance increases with RBC transfusion and is associated with altered plasma vasoactivity and abnormal vasoregulation. In summary, RMPs are submicron particles released from stored RBCs, with demonstrated vasoactive properties that appear to disturb oxygen delivery homeostasis. The clinical impact of RMPs in transfusion recipients is an area of continued investigation. PMID:28686154

  17. Influence of red blood cell-derived microparticles upon vasoregulation.

    PubMed

    Said, Ahmed S; Doctor, Allan

    2017-10-01

    Here we review recent data and the evolving understanding of the role of red blood cell-derived microparticles (RMPs) in normal physiology and in disease progression. Microparticles (MPs) are small membrane vesicles derived from various parent cell types. MPs are produced in response to a variety of stimuli through several cytoskeletal and membrane phospholipid changes. MPs have been investigated as potential biomarkers for multiple disease processes and are thought to have biological effects, most notably in: promotion of coagulation, production and handling of reactive oxygen species, immune modulation, angiogenesis, and in apoptosis. Specifically, RMPs are produced normally during RBC maturation and their production is accelerated during processing and storage for transfusion. Several factors during RBC storage are known to trigger RMP production, including: increased intracellular calcium, increased potassium leakage, and energy failure with ATP depletion. Of note, RMP composition differs from that of intact RBCs, and the nature and composition of RMP components are affected by both storage duration and the character of storage solutions. Recognised RMP bioactivities include: promotion of coagulation, immune modulation, and promotion of endothelial adhesion, as well as influence upon vasoregulation via nitric oxide (NO) scavenging. Of particular relevance, RMPs are more avid NO scavengers than intact RBCs and this feature has been proposed as a mechanism for the impaired oxygen delivery homeostasis that has been observed following transfusion. Preliminary human studies demonstrate that circulating RMP abundance increases with RBC transfusion and is associated with altered plasma vasoactivity and abnormal vasoregulation. In summary, RMPs are submicron particles released from stored RBCs, with demonstrated vasoactive properties that appear to disturb oxygen delivery homeostasis. The clinical impact of RMPs in transfusion recipients is an area of continued investigation.

  18. Propensity of red blood cells to undergo P2X7 receptor-mediated phosphatidylserine exposure does not alter during in vivo or ex vivo aging.

    PubMed

    Sophocleous, Reece A; Mullany, Phillip R F; Winter, Kelly M; Marks, Denese C; Sluyter, Ronald

    2015-08-01

    Phosphatidylserine (PS) exposure facilitates the removal of red blood cells (RBCs) from the circulation, potentially contributing to the loss of stored RBCs after transfusion, as well as senescent RBCs. Activation of the P2X7 receptor by extracellular adenosine 5'-triphosphate (ATP) can induce PS exposure on freshly isolated human RBCs, but whether this process occurs in stored RBCs or changes during RBC aging is unknown. RBCs were processed and stored according to Australian blood banking guidelines. PS exposure was determined by annexin V binding and flow cytometry. Efficacy of P2X antagonists was assessed by flow cytometric measurements of ATP-induced ethidium+ uptake in RPMI 8226 cells. Osmotic fragility was assessed by lysis in hypotonic saline. RBCs were fractionated by discontinuous density centrifugation. ATP (1 mmol/L) induced PS exposure on RBCs stored for less than 1 week. This process was near-completely inhibited by the P2X7 antagonists A438079 and AZ10606120 and the P2X1/P2X7 antagonist MRS2159 but not the P2X1 antagonist NF499. ATP-induced PS exposure on RBCs was not dependent on K+, Na+, or Cl- fluxes. ATP did not alter the osmotic fragility of stored RBCs. ATP-induced PS exposure was similar between RBCs of different densities. ATP-induced PS exposure was also similar between RBCs stored for less than 1 week or for 6 weeks. The propensity of RBCs to undergo P2X7-mediated PS exposure does not alter during in vivo and ex vivo aging. Thus, P2X7 activation is unlikely to be involved in the removal of senescent RBCs or stored RBCs after transfusion. © 2015 AABB.

  19. Red cell distribution width is associated with incident myocardial infarction in a general population: the Tromsø Study.

    PubMed

    Skjelbakken, Tove; Lappegård, Jostein; Ellingsen, Trygve S; Barrett-Connor, Elizabeth; Brox, Jan; Løchen, Maja-Lisa; Njølstad, Inger; Wilsgaard, Tom; Mathiesen, Ellisiv B; Brækkan, Sigrid K; Hansen, John-Bjarne

    2014-08-18

    Red cell distribution width (RDW), a measure of the variability in size of circulating erythrocytes, is associated with mortality and adverse outcome in selected populations with cardiovascular disease. It is scarcely known whether RDW is associated with incident myocardial infarction (MI). We aimed to investigate whether RDW was associated with risk of first-ever MI in a large cohort study with participants recruited from a general population. Baseline characteristics, including RDW, were collected for 25 612 participants in the Tromsø Study in 1994-1995. Incident MI during follow-up was registered from inclusion through December 31, 2010. Cox regression models were used to calculate hazard ratios with 95% confidence intervals for MI, adjusted for age, sex, body mass index, smoking, hemoglobin, white blood cells, platelets, and other traditional cardiovascular risk factors. A total of 1779 participants experienced a first-ever MI during a median follow-up time of 15.8 years. There was a linear association between RDW and risk of MI, for which a 1% increment in RDW was associated with a 13% increased risk (hazard ratio 1.13; 95% CI, 1.07 to 1.19). Participants with RDW above the 95th percentile had 71% higher risk of MI compared with those with RDW in the lowest quintile (hazard ratio 1.71; 95% CI, 1.34 to 2.20). All effect estimates were essentially similar after exclusion of participants with anemia (n=1297) from the analyses. RDW is associated with incident MI in a general population independent of anemia and cardiovascular risk factors. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  20. Circulating rotavirus-specific T cells have a poor functional profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parra, Miguel; Herrera, Daniel; Jácome, María Fernanda

    Frequencies of circulating T cells producing IFN-γ, TNF-α, and IL-2, and percentages of T cells proliferating after stimulation with rotavirus (RV), tetanus toxoid, and influenza were evaluated in PBMC derived from healthy adults and children. In addition, the potential anergic state of RV-specific T cells was analyzed by stimulation of PBMC with RV antigen in the presence of three anergy inhibitors (rIL-2, rIL-12, or DGKα-i). The quality and magnitude of RV-T cell responses were significantly lower than those of tetanus toxoid and influenza antigens. RV-CD4 T cell response was enriched in monofunctional IFN-γ{sup +} cells, while influenza-CD4 and tetanus toxoid-CD4more » T cell responses were enriched in multifunctional T cells. Moreover, rIL-2 – unlike rIL-12 or DGKα-i – increased the frequencies of RV-CD4 TNF-α{sup +}, CD4 IFN-γ{sup +}, and CD8 IFN-γ{sup +} cells. Thus, circulating RV-T cells seem to have a relatively poor functional profile that may be partially reversed in vitro by the addition of rIL-2. - Highlights: • The quality and magnitude of circulating RV-T cell responses are relatively poor. • Circulating RV-CD4 T cells are enriched in monofunctional IFN-γ+ cells. • Treatment with rIL-2 increased the frequencies of cytokine secreting RV-T cells.« less

Top