Kumar, Nathella Pavan; Moideen, Kadar; Sivakumar, Shanmugam; Menon, Pradeep A; Viswanathan, Vijay; Kornfeld, Hardy; Babu, Subash
2016-01-01
Background Tuberculosis-diabetes co-morbidity (TB-DM) is characterized by increased inflammation with elevated circulating levels of inflammatory cytokines and other factors. Circulating angiogenic factors are intricately involved in the angiogenesis-inflammation nexus. Methods To study the association of angiogenic factors with TB-DM, we examined the systemic levels of VEGF-A, VEGF-C, VEGF-D, VEGF-R1, VEGF-R2, VEGF-R3 in individuals with either TB-DM (n=44) or TB alone (n=44). Results Circulating levels of VEGF-A, C, D, R1, R2 and R3 were significantly higher in TB-DM compared to TB individuals. Moreover, the levels of VEGF-A, C, R2 and/or R3 were significantly higher in TB-DM with bilateral or cavitary disease or with hemoptysis, suggesing an association with both disease severity and adverse clinical presentation. The levels of these factors also exhibited a significant positive relationship with bacterial burdens and HbA1c levels. In addition, VEGF-A, C and R2 levels were signifantly higher (at 2 months of treatment) in culture positive compared to culture negative TB-DM individuals. Finally, the circulating levels of VEGF-A, C, D, R1, R2 and R3 were significantly reduced following successful chemotherapy at 6 months. Conclusion Our data demonstrate that TB-DM is associated with heightened levels of circulating angiogenic factors, possibly reflecting both dysregulated angiogenesis and exaggerated inflammation. PMID:27717783
Chaturvedi, N; Fuller, J H; Pokras, F; Rottiers, R; Papazoglou, N; Aiello, L P
2001-04-01
To determine whether circulating plasma vascular endothelial growth factor (VEGF) is elevated in the presence of diabetic microvascular complications, and whether the impact of angiotensin-converting enzyme (ACE) inhibitors on these complications can be accounted for by changes in circulating VEGF. Samples (299/354 of those with retinal photographs) from the EUCLID placebo-controlled clinical trial of the ACE inhibitor lisinopril in mainly normoalbuminuric non-hypertensive Type 1 diabetic patients were used. Albumin excretion rate (AER) was measured 6 monthly. Geometric mean VEGF levels by baseline retinopathy status, change in retinopathy over 2 years, and by treatment with lisinopril were calculated. No significant correlation was observed between VEGF at baseline and age, diabetes duration, glycaemic control, blood pressure, smoking, fibrinogen and von Willebrand factor. Mean VEGF concentration at baseline was 11.5 (95% confidence interval 6.0--27.9) pg/ml in those without retinopathy, 12.9 (6.0--38.9) pg/ml in those with non-proliferative retinopathy, and 16.1 (8.1--33.5) pg/ml in those with proliferative retinopathy (P = 0.06 for trend). Baseline VEGF was 15.2 pg/ml in those who progressed by at least one level of retinopathy by 2 years compared to 11.8 pg/ml in those who did not (P = 0.3). VEGF levels were not altered by lisinopril treatment. Results were similar for AER. Circulating plasma VEGF concentration is not strongly correlated with risk factor status or microvascular disease in Type 1 diabetes, nor is it affected by ACE inhibition. Changes in circulating VEGF cannot account for the beneficial effect of ACE inhibition on retinopathy.
H pylori status and angiogenesis factors in human gastric carcinoma
Mangia, Anita; Chiriatti, Annalisa; Ranieri, Girolamo; Abbate, Ines; Coviello, Maria; Simone, Giovanni; Zito, Francesco Alfredo; Montemurro, Severino; Rucci, Antonello; Leo, Alfredo Di; Tommasi, Stefania; Berloco, Pasquale; Xu, Jian Ming; Paradiso, Angelo
2006-01-01
AIM: To investigate H pylori expression in gastric cancer patients in relation to primary tumor angiogenic markers, such as microvessel density (MVD), thymidine phosphorylase (TP), vascular endothelial growth factor receptor-1 (VEGF-R1), p53 and circulating VEGF levels. METHODS: Angiogenic markers were analyzed immunohistochemically in 56 primary gastric cancers. H pylori cytotoxin (vacA) and the cytotoxin-associated gene (cagA) amplification were evaluated using PCR assay. Serum H pylori IgG antibodies and serum/plasma circulating VEGF levels were detected in 39 and 38 patients by ELISA, respectively. RESULTS: A total of 69% of patients were positive for circulating IgG antibodies against H pylori. cagA-positive H pylori strains were found in 41% of gastric patients. vacA was found in 50% of patients; s1 strains were more highly expressed among vacA-positive patients. The presence of the s1 strain was significantly associated with cagA (P = 0.0001). MVD was significantly correlated with both tumor VEGF expression (r = 0.361, P = 0.009) and serum VEGF levels (r = -0.347, P = 0.041). Conversely, neither VEGF-R1 expression nor MVD was related to p53 expression. However, H pylori was not related to any angiogenic markers except for the plasma VEGF level (P = 0.026). CONCLUSION: H pylori antigen is related to higher plasma VEGF levels, but not to angiogenic characteristics. It can be hypothesized that the toxic effects of H pylori on angiogenesis occurs in early preclinical disease phase or in long-lasting aggressive infections, but only when high H pylori IgG levels are persistent. PMID:17006982
Benlahfid, Mohammed; Traboulsi, Wael; Sergent, Frederic; Benharouga, Mohamed; Elhattabi, Khalid; Erguibi, Driss; Karkouri, Mehdi; Elattar, Hicham; Fadil, Abdelaziz; Fahmi, Yassine; Aboussaouira, Touria; Alfaidy, Nadia
2018-02-06
The highest risk factor for mortality among malignant tumors is metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor which biological activity is mediated via two G protein-coupled receptors, prokineticin receptor1 (PROKR1) and PROKR2. Recent studies suggested that EG-VEGF expression is deregulated in multiple cancers including colorectal cancer (CRC). Using distinctive CRC and peritoneal carcinomatosis (PC) cohorts and a corresponding control cohort, we determined the circulating levels of EG-VEGF and its in situ expression, and that of its related receptors. Circulating EG-VEGF levels were significantly increased in patients with metastatic PC compared to CRC and control patients (p< 0.05). Furthermore, according to clinicopathologic examinations, local EG-VEGF expression correlated with higher tumor and nodal stages (p< 0.001) of CRC. EG-VEGF and PROKR2 were highly expressed in colorectal primary lesions compared to positive controls. PROKR1 expression was lower and did not change in tumor specimens. Also, EG-VEGF and its receptor PROKR2 were differentially expressed in the colorectal primary lesions and in the control groups. Altogether these findings suggest that EG-VEGF/receptors system might be an important actor in the CRC progression into PC and might be involved in the ability of tumor cells to invade other organs. Circulating EG-VEGF could be proposed as a prognostic marker in human CRC and its progression into PC.
Jalkanen, Juho; Hautero, Olli; Maksimow, Mikael; Jalkanen, Sirpa; Hakovirta, Harri
2018-04-21
The aim of the present study was to assess the circulating levels of vascular endothelial growth factor (VEGF) and other suggested therapeutic growth factors with the degree of ischemia in patients with different clinical manifestations of peripheral arterial disease (PAD) according to the Rutherford grades. The study cohort consists of 226 consecutive patients admitted to a Department of Vascular Surgery for elective invasive procedures. PAD patients were grouped according to the Rutherford grades after a clinical assessment. Ankle-brachial pressure indices (ABI) and absolute toe pressure (TP) values were measured. Serum levels of circulating VEGF, hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF) were measured from serum and analysed against Rutherford grades and peripheral hemodynamic measurements. The levels of VEGF (P = 0.009) and HGF (P < 0.001) increased significantly as the ischaemic burden became more severe according to the Rutherford grades. PDGF behaved in opposite manner and declined along increasing Rutherford grades (P = 0.004). A significant, inverse correlations between Rutherford grades was detected as follows; VEGF (Pearson's correlation = 0.183, P = 0.004), HGF (Pearson's correlation = 0.253, P < 0.001), bFGF (Pearson's correlation = 0.169, P = 0.008) and PDGF (Pearson's correlation = 0.296, P < 0.001). In addition, VEGF had a clear direct negative correlation with ABI (Pearson's correlation -0.19, P = 0.009) and TP (Pearson's correlation -0.20, P = 0.005) measurements. Our present observations show that the circulating levels of VEGF and other suggested therapeutic growth factors are significantly increased along with increasing ischemia. These findings present a new perspective to anticipated positive effects of gene therapies utilizing VEGF, HGF, and bFGF, because the levels of these growth factors are endogenously high in end-stage PAD. Copyright © 2018 Elsevier Ltd. All rights reserved.
Simon, Krzysztof Adam; Pazgan-Simon, Monika
2015-01-01
Aim of the study To determine plausible associations between liver cirrhosis and circulating endothelial cell-derived microparticles (EMPs), vascular endothelial growth factor (VEGF) levels and plasma nitric oxide (NO) metabolites. Material and methods Sixty patients with cirrhosis and 20 healthy control subjects were enrolled in the study. Circulating EMPs from platelet-poor plasma samples were examined by flow cytometry. These microparticles were categorized into endothelial cell-derived activated MPs (EMP-ac) (CD31+ CD42b– AN-V–) and endothelial cell-derived apoptotic MPs (EMP-ap) (CD31+ CD42b– AN-V+). Plasma VEGF levels were measured by enzyme-linked immunosorbent assay. Plasma NO metabolites (NOx–) levels were determined using a Greiss reaction method. Results Compared with the healthy control subjects, the patients with cirrhosis showed a significant increase in plasma levels of both phenotypes of EMPs. When the presence of ascites was considered, the plasma levels of EMP-ap were higher (p < 0.01), as well as NOx– (p < 0.05). EMP-ap positively correlated with VEGF level in all cirrhotic patients and this correlation was stronger in decompensated cirrhotic patients. In multivariate logistic regression analysis, the independent factors associated with the presence of ascites were high EMP-ap levels and elevated VEGF levels. Conclusions Elevated plasma levels of EMP-ap in addition to high levels of VEGF might be considered as valuable parameters for predicting the occurrence of ascites in cirrhotic patients. PMID:28856256
The Clinical Development of Thalildomide as an Angiogenesis Inhibitor Therapy for Prostate Cancer
2005-10-01
regulation of cell adhesion molecules LFA-1 and ICAM-1 after in vitro treatment with the anti- TNF - alpha agent thalidomide . Settles B, Stevenson A...Plasma levels of circulating TNF -α and VEGF measured in 16 thalidomide treated patients seemed to increase after treatment (Table 2). Serum levels of...Logothetis, Christopher J. Page 6 Table 2. Levels of circulating VEGF, bFGF, TNF -α and IL-6 before and after thalidomide treatment. Comparison of
2005-10-01
increase in VEGF- A levels following PDT treatment (Figure 7) of orthotopic prostate tumors. Task 2: Design of optical monitoring tools to detect circulating...in intracellular VEGF- A (Figure 5, B) at 0,5 J/cm 2 (1.6 fold). Surprisingly we did not measure any significant increase in intracellular VEGF- A ... levels at the lower dose (0,25 J/cm 2). VEGF-A is known to be regulated at the transcriptional and post-transcriptional levels. We therefore used primers
Brouillet, S; Murthi, P; Hoffmann, P; Salomon, A; Sergent, F; De Mazancourt, P; Dakouane-Giudicelli, M; Dieudonné, M N; Rozenberg, P; Vaiman, D; Barbaux, S; Benharouga, M; Feige, J-J; Alfaidy, N
2013-02-01
Identifiable causes of fetal growth restriction (FGR) account for 30 % of cases, but the remainders are idiopathic and are frequently associated with placental dysfunction. We have shown that the angiogenic factor endocrine gland-derived VEGF (EG-VEGF) and its receptors, prokineticin receptor 1 (PROKR1) and 2, (1) are abundantly expressed in human placenta, (2) are up-regulated by hypoxia, (3) control trophoblast invasion, and that EG-VEGF circulating levels are the highest during the first trimester of pregnancy, the period of important placental growth. These findings suggest that EG-VEGF/PROKR1 and 2 might be involved in normal and FGR placental development. To test this hypothesis, we used placental explants, primary trophoblast cultures, and placental and serum samples collected from FGR and age-matched control women. Our results show that (1) EG-VEGF increases trophoblast proliferation ([(3)H]-thymidine incorporation and Ki67-staining) via the homeobox-gene, HLX (2) the proliferative effect involves PROKR1 but not PROKR2, (3) EG-VEGF does not affect syncytium formation (measurement of syncytin 1 and 2 and β hCG production) (4) EG-VEGF increases the vascularization of the placental villi and insures their survival, (5) EG-VEGF, PROKR1, and PROKR2 mRNA and protein levels are significantly elevated in FGR placentas, and (6) EG-VEGF circulating levels are significantly higher in FGR patients. Altogether, our results identify EG-VEGF as a new placental growth factor acting during the first trimester of pregnancy, established its mechanism of action, and provide evidence for its deregulation in FGR. We propose that EG-VEGF/PROKR1 and 2 increases occur in FGR as a compensatory mechanism to insure proper pregnancy progress.
Song, Ci; Nutile, Teresa; Vernon Smith, Albert; Concas, Maria Pina; Traglia, Michela; Barbieri, Caterina; Ndiaye, Ndeye Coumba; Stathopoulou, Maria G.; Lagou, Vasiliki; Maestrale, Giovanni Battista; Sala, Cinzia; Debette, Stephanie; Kovacs, Peter; Lind, Lars; Lamont, John; Fitzgerald, Peter; Tönjes, Anke; Gudnason, Vilmundur; Toniolo, Daniela; Pirastu, Mario; Bellenguez, Celine; Vasan, Ramachandran S.; Ingelsson, Erik; Leutenegger, Anne-Louise; Johnson, Andrew D.; DeStefano, Anita L.; Visvikis-Siest, Sophie; Seshadri, Sudha; Ciullo, Marina
2016-01-01
Vascular endothelial growth factor (VEGF) is an angiogenic and neurotrophic factor, secreted by endothelial cells, known to impact various physiological and disease processes from cancer to cardiovascular disease and to be pharmacologically modifiable. We sought to identify novel loci associated with circulating VEGF levels through a genome-wide association meta-analysis combining data from European-ancestry individuals and using a dense variant map from 1000 genomes imputation panel. Six discovery cohorts including 13,312 samples were analyzed, followed by in-silico and de-novo replication studies including an additional 2,800 individuals. A total of 10 genome-wide significant variants were identified at 7 loci. Four were novel loci (5q14.3, 10q21.3, 16q24.2 and 18q22.3) and the leading variants at these loci were rs114694170 (MEF2C, P = 6.79x10-13), rs74506613 (JMJD1C, P = 1.17x10-19), rs4782371 (ZFPM1, P = 1.59x10-9) and rs2639990 (ZADH2, P = 1.72x10-8), respectively. We also identified two new independent variants (rs34528081, VEGFA, P = 1.52x10-18; rs7043199, VLDLR-AS1, P = 5.12x10-14) at the 3 previously identified loci and strengthened the evidence for the four previously identified SNPs (rs6921438, LOC100132354, P = 7.39x10-1467; rs1740073, C6orf223, P = 2.34x10-17; rs6993770, ZFPM2, P = 2.44x10-60; rs2375981, KCNV2, P = 1.48x10-100). These variants collectively explained up to 52% of the VEGF phenotypic variance. We explored biological links between genes in the associated loci using Ingenuity Pathway Analysis that emphasized their roles in embryonic development and function. Gene set enrichment analysis identified the ERK5 pathway as enriched in genes containing VEGF associated variants. eQTL analysis showed, in three of the identified regions, variants acting as both cis and trans eQTLs for multiple genes. Most of these genes, as well as some of those in the associated loci, were involved in platelet biogenesis and functionality, suggesting the importance of this process in regulation of VEGF levels. This work also provided new insights into the involvement of genes implicated in various angiogenesis related pathologies in determining circulating VEGF levels. The understanding of the molecular mechanisms by which the identified genes affect circulating VEGF levels could be important in the development of novel VEGF-related therapies for such diseases. PMID:26910538
Elevated levels of placental growth factor represent an adaptive host response in sepsis.
Yano, Kiichiro; Okada, Yoshiaki; Beldi, Guido; Shih, Shou-Ching; Bodyak, Natalya; Okada, Hitomi; Kang, Peter M; Luscinskas, William; Robson, Simon C; Carmeliet, Peter; Karumanchi, S Ananth; Aird, William C
2008-10-27
Recently, we demonstrated that circulating levels of vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) are increased in sepsis (Yano, K., P.C. Liaw, J.M. Mullington, S.C. Shih, H. Okada, N. Bodyak, P.M. Kang, L. Toltl, B. Belikoff, J. Buras, et al. 2006. J. Exp. Med. 203:1447-1458). Moreover, enhanced VEGF/Flk-1 signaling was shown to contribute to sepsis morbidity and mortality. We tested the hypothesis that PlGF also contributes to sepsis outcome. In mouse models of endotoxemia and cecal ligation puncture, the genetic absence of PlGF or the systemic administration of neutralizing anti-PlGF antibodies resulted in higher mortality compared with wild-type or immunoglobulin G-injected controls, respectively. The increased mortality associated with genetic deficiency of PlGF was reversed by adenovirus (Ad)-mediated overexpression of PlGF. In the endotoxemia model, PlGF deficiency was associated with elevated circulating levels of VEGF, induction of VEGF expression in the liver, impaired cardiac function, and organ-specific accentuation of barrier dysfunction and inflammation. Mortality of endotoxemic PlGF-deficient mice was increased by Ad-mediated overexpression of VEGF and was blocked by expression of soluble Flt-1. Collectively, these data suggest that up-regulation of PlGF in sepsis is an adaptive host response that exerts its benefit, at least in part, by attenuating VEGF signaling.
Martini, Maurizio; de Pascalis, Ivana; D'Alessandris, Quintino Giorgio; Fiorentino, Vincenzo; Pierconti, Francesco; Marei, Hany El-Sayed; Ricci-Vitiani, Lucia; Pallini, Roberto; Larocca, Luigi Maria
2018-05-10
Vascular endothelial growth factor (VEGF) isoforms, particularly the diffusible VEGF-121, could play a major role in the response of recurrent glioblastoma (GB) to anti-angiogenetic treatment with bevacizumab. We hypothesized that circulating VEGF-121 may reduce the amount of bevacizumab available to target the heavier isoforms of VEGF, which are the most clinically relevant. We assessed the plasma level of VEGF-121 in a brain xenograft model, in human healthy controls, and in patients suffering from recurrent GB before and after bevacizumab treatment. Data were matched with patients' clinical outcome. In athymic rats with U87MG brain xenografts, the level of plasma VEGF-121 relates with tumor volume and it significantly decreases after iv infusion of bevacizumab. Patients with recurrent GB show higher plasma VEGF-121 than healthy controls (p = 0.0002) and treatment with bevacizumab remarkably reduced the expression of VEGF-121 in plasma of these patients (p = 0.0002). Higher plasma level of VEGF-121 was significantly associated to worse PFS and OS (p = 0.0295 and p = 0.0246, respectively). Quantitative analysis of VEGF-121 isoform in the plasma of patients with recurrent GB could be a promising predictor of response to anti-angiogenetic treatment.
[THE ROLE OF ANGIOGENIC FACTORS IN THE DIAGNOSTICS OF PREGNANCY COMPLICATED WITH PREECLAMPSIA].
Tagiyeva, I; Aliyeva, S; Bagirova, S; Shamsadinskaya, N; Agaeva, K
2017-01-01
The pathophysiology of preeclampsia remains largely unknown. It has been hypothesized that placental ischemia is an early event, leading to placental production of a soluble factor or factors that cause maternal endothelial dysfunction, resulting in the clinical findings of hypertension, proteinuria, and edema. Here, we confirm that placental soluble fms-like tyrosine kinase 1 (sFlt1), an antagonist of vascular growth factor (VEGF) and placental growth factor (PIGF), is upregulated in preeclampsia, leading to increased systemic levels of sFlt1. Our research demonstrate that increased circulating sFlt1 in III trimester in patients with preeclampsia is associated with decreased circulating levels of free VEGF and PIGF, resulting in endothelial dysfunction, comparing with control group. These observations suggest that excess circulating sFlt1 contributes to the pathogenesis of preeclampsia. 45 pregnant women with preeclampsia of different severity degrees were under observation. Control group included 20 healthy pregnant. Pregnant women with preeclampsia were subdivided into 2 groups. There were 11 (24,4%) pregnant with severe degree of preeclamsia (I group), the II group included 34 pregnant with mild degree of preeclampsia. Increased expression of soluble tyrosine kinase-1 (sFlt-1), together with decreased PIGF and VEGF signaling, were first abnormalities described. Thus, determination of levels angiogenic factors: PIGF, VEGF and sFlt-1 is very important for prediction severity of preeclampsia.
Whole-Body Vibrations Do Not Elevate the Angiogenic Stimulus when Applied during Resistance Exercise
Beijer, Åsa; Rosenberger, André; Bölck, Birgit; Suhr, Frank; Rittweger, Jörn; Bloch, Wilhelm
2013-01-01
Knowledge about biological factors involved in exercise-induced angiogenesis is to date still scanty. The present study aimed to investigate the angiogenic stimulus of resistance exercise with and without superimposed whole-body vibrations. Responses to the exercise regimen before and after a 6-week training intervention were investigated in twenty-six healthy male subjects. Serum was collected at the initial and final exercise sessions and circulating levels of matrix metalloproteinases (MMP) -2 and -9, Vascular Endothelial Growth Factor (VEGF) and endostatin were determined via ELISA. Furthermore, we studied the proliferative effect of serum-treated human umbilical vein endothelial cells in vitro via BrdU-incorporation assay. It was found that circulating MMP-2, MMP-9, VEGF and endostatin levels were significantly elevated (P<0.001) from resting levels after both exercise interventions, with higher post-exercise VEGF concentrations in the resistance exercise (RE) group compared to the resistive vibration exercise (RVE) group. Moreover, RE provoked increased endothelial cell proliferation in vitro and higher post-exercise circulating endostatin concentrations after 6 weeks of training. These effects were elusive in the RVE group. The present findings suggest that resistance exercise leads to a transient rise in circulating angiogenic factors and superimposing vibrations to this exercise type might not further trigger a potential signaling of angiogenic stimulation in skeletal muscle. PMID:24260349
The adaptation of the cerebral circulation to pregnancy: mechanisms and consequences
Cipolla, Marilyn J
2013-01-01
The adaptation of the cerebral circulation to pregnancy is unique from other vascular beds. Most notably, the growth and vasodilatory response to high levels of circulating growth factors and cytokines that promote substantial hemodynamic changes in other vascular beds is limited in the cerebral circulation. This is accomplished through several mechanisms, including downregulation of key receptors and transcription factors, and production of circulating factors that counteract the vasodilatory effects of vascular endothelial growth factor (VEGF) and placental growth factor. Pregnancy both prevents and reverses hypertensive inward remodeling of cerebral arteries, possibly through downregulation of the angiotensin type 1 receptor. The blood–brain barrier (BBB) importantly adapts to pregnancy by preventing the passage of seizure provoking serum into the brain and limiting the permeability effects of VEGF that is more highly expressed in cerebral vasculature during pregnancy. While the adaptation of the cerebral circulation to pregnancy provides for relatively normal cerebral blood flow and BBB properties in the face of substantial cardiovascular changes and high levels of circulating factors, under pathologic conditions, these adaptations appear to promote greater brain injury, including edema formation during acute hypertension, and greater sensitivity to bacterial endotoxin. PMID:23321787
Bansal, Rhea; Ford, Brian; Bhaskaran, Shree; Thum, Meenyau; Bansal, Amolak
2017-01-01
Vascular Endothelial Growth Factor and NK cells have an interrelated role in angiogenesis that is critical for placentation and success of in vitro fertilization. An attempt was made to assess a possible relationship between the two in this study. A case control study was performed comparing the serum levels of VEGF-A and its receptor VEGF-R1 with levels of NK cells, activated NK cells and NK cytotoxicity in 62 women with Repeated Implantation Failure (RIF). The healthy control group consisted of 72 women of similar age, without known issues in achieving pregnancy or evidence of autoimmunity. Levels of VEGF-A and VEGF-R1 were quantified by ELISA methods with standard curve interpolation. NK cell subsets were determined with flow cytometry using fluorescent-tagged anti-CD56, anti-CD16, anti-CD3 and anti-CD69. NK cytotoxicity was performed by incubating peripheral blood mononuclear cells and K562 cultured cells with propidium iodide, steroid, intralipid and intravenous immunoglobulin, using previously described methods. Statistical analysis involved Mann-Whitney-U and Spearman's rank correlation testing with p-values defined as <0.05. It was found that VEGF-A levels were significantly raised in women with RIF compared to healthy controls (362.9 vs . 171.6 pg/ml , p<0.0001), with no difference in VEGF-R1 levels between groups (1499 vs . 1202 pg/ml , p=0.4082). There was no correlation between VEGF-A or VEGF-R1 and the absolute levels of circulating NK cells, CD69 activated NK cells or NK cytotoxicity. The absence of correlation between VEGF-A or VEGF-R1 and NK cells suggests VEGF secretion and regulation is independent of NK cell activity in RIF.
Wu, Florence T. H.; Stefanini, Marianne O.; Mac Gabhann, Feilim; Popel, Aleksander S.
2009-01-01
Vascular endothelial growth factor (VEGF), through its activation of cell surface receptor tyrosine kinases including VEGFR1 and VEGFR2, is a vital regulator of stimulatory and inhibitory processes that keep angiogenesis – new capillary growth from existing microvasculature – at a dynamic balance in normal physiology. Soluble VEGF receptor-1 (sVEGFR1) – a naturally-occurring truncated version of VEGFR1 lacking the transmembrane and intracellular signaling domains – has been postulated to exert inhibitory effects on angiogenic signaling via two mechanisms: direct sequestration of angiogenic ligands such as VEGF; or dominant-negative heterodimerization with surface VEGFRs. In pre-clinical studies, sVEGFR1 gene and protein therapy have demonstrated efficacy in inhibiting tumor angiogenesis; while in clinical studies, sVEGFR1 has shown utility as a diagnostic or prognostic marker in a widening array of angiogenesis–dependent diseases. Here we developed a novel computational multi-tissue model for recapitulating the dynamic systemic distributions of VEGF and sVEGFR1. Model features included: physiologically-based multi-scale compartmentalization of the human body; inter-compartmental macromolecular biotransport processes (vascular permeability, lymphatic drainage); and molecularly-detailed binding interactions between the ligand isoforms VEGF121 and VEGF165, signaling receptors VEGFR1 and VEGFR2, non-signaling co-receptor neuropilin-1 (NRP1), as well as sVEGFR1. The model was parameterized to represent a healthy human subject, whereupon we investigated the effects of sVEGFR1 on the distribution and activation of VEGF ligands and receptors. We assessed the healthy baseline stability of circulating VEGF and sVEGFR1 levels in plasma, as well as their reliability in indicating tissue-level angiogenic signaling potential. Unexpectedly, simulated results showed that sVEGFR1 – acting as a diffusible VEGF sink alone, i.e., without sVEGFR1-VEGFR heterodimerization – did not significantly lower interstitial VEGF, nor inhibit signaling potential in tissues. Additionally, the sensitivity of plasma VEGF and sVEGFR1 to physiological fluctuations in transport rates may partially account for the heterogeneity in clinical measurements of these circulating angiogenic markers, potentially hindering their diagnostic reliability for diseases. PMID:19352513
Alvarez, X Anton; Alvarez, Irene; Aleixandre, Manuel; Linares, Carlos; Muresanu, Dafin; Winter, Stefan; Moessler, Herbert
2018-01-01
Vascular endothelial growth factor (VEGF) is an angioneurin involved in the regulation of vascular and neural functions relevant for the pathophysiology of Alzheimer's disease (AD), but the influence of AD severity and ApoE4 status on circulating VEGF and its relationship with cognition has not been investigated. We assessed serum VEGF levels and cognitive performance in AD, amnestic mild cognitive impairment (MCI), and control subjects. VEGF levels were higher in AD patients than in MCI cases and controls (p < 0.05) and showed a progressive increase with clinical severity in the whole study population (p < 0.01). Among AD patients, severity-related VEGF elevations were significant in ApoE4 carriers (p < 0.05), but not in non-carriers. Increased VEGF levels were associated with disease severity and showed mild correlations with cognitive impairment that were only consistent for the ADAS-cog+ items remembering test instructions (memory) and maze task (executive functions) in the group of AD patients (p < 0.05). On the other hand, higher VEGF values were related to better memory and language performance in ApoE4 carriers with moderately-severe AD. According to these results showing severity- and ApoE4-related differences in serum VEGF and its cognitive correlates, it is suggested that increases in VEGF levels might represent an endogenous response driven by pathological factors and could entail cognitive benefits in AD patients, particularly in ApoE4 carriers. Our findings support the notion that VEGF constitutes a relevant molecular target to be further explored in AD pathology and therapy.
The role of vascular endothelial growth factor-B in metabolic homoeostasis: current evidence.
Zafar, Mohammad Ishraq; Zheng, Juan; Kong, Wen; Ye, Xiaofeng; Gou, Luoning; Regmi, Anita; Chen, Lu-Lu
2017-08-31
It has been shown that adipose tissue and skeletal muscles in lean individuals respond to meal-induced hyperinsulinemia by increase in perfusion, the effect not observed in patients with metabolic syndrome. In conditions of hyperglycaemia and hypertriglyceridemia, this insufficient vascularization leads to the liberation of reactive oxygen species (ROS), and disruption of nitric oxide (NO) synthesis and endothelial signalling responsible for the uptake of circulating fatty acids (FAs), whose accumulation in skeletal muscles and adipose tissue is widely associated with the impairment of insulin signalling. While the angiogenic role of VEGF-A and its increased circulating concentrations in obesity have been widely confirmed, the data related to the metabolic role of VEGF-B are diverse. However, recent discoveries indicate that this growth factor may be a promising therapeutic agent in patients with metabolic syndrome. Preclinical studies agree over two crucial metabolic effects of VEGF-B: (i) regulation of FAs uptake and (ii) regulation of tissue perfusion via activation of VEGF-A/vascular endothelial growth factor receptor (VEGFR) 2 (VEGFR2) pathway. While in some preclinical high-fat diet studies, VEGF-B overexpression reverted glucose intolerance and stimulated fat burning, in others it further promoted accumulation of lipids and lipotoxicity. Data from clinical studies point out the changes in circulating or tissue expression levels of VEGF-B in obese compared with lean patients. Potentially beneficial effects of VEGF-B, achieved through enhanced blood flow (increased availability of insulin and glucose uptake in target organs) and decreased FAs uptake (prevention of lipotoxicity and improved insulin signalling), and its safety for clinical use, remain to be clarified through future translational research. © 2017 The Author(s).
Huang, Chung-Ying; Lien, Reyin; Wang, Nan-Kai; Chao, An-Ning; Chen, Kuan-Jen; Chen, Tun-Lu; Hwang, Yih-Shiou; Lai, Chi-Chun; Wu, Wei-Chi
2018-03-01
To investigate the levels of VEGF in the systemic circulation of patients with type 1 ROP who received intravitreal injections of 1 mg (0.025 mL) aflibercept (IVA) or 0.625 mg (0.025 mL) bevacizumab (IVB). Patients who had type 1 ROP and received either IVA or IVB were enrolled in this prospective study. Serum and plasma samples were collected prior to and up to 12 weeks after IVB or IVA treatment. The serum and plasma VEGF levels were measured using enzyme-linked immunosorbent assays (ELISAs), and the platelet levels in the blood were also quantified. The serum and plasma levels of VEGF, as well as the ratio of VEGF to platelet count (VEGF/PLT) were measured prior to and up to 12 weeks after anti-VEGF treatment. In total, 14 patients with type 1 ROP were enrolled in this study; five patients received IVA, and nine patients received IVB. Following either IVA or IVB treatment, all the eyes (100%) showed complete resolution of ROP-induced abnormal neovascularization and presented continued vascularization toward the peripheral retina. Compared to baseline, the serum VEGF levels were significantly reduced in the ROP patients up to 12 weeks after either IVA or IVB treatments (all P < 0.05). At 2, 4, and 8 weeks after intravitreal injection, the serum VEGF levels were more suppressed in the IVB group than in the IVA group (P = 0.039, P = 0.004, and P = 0.003, respectively). The serum VEGF/PLT ratio after IVA or IVB showed similar reductions and trends as the serum VEGF data. Changes in the plasma VEGF levels could not be properly assessed because some of the samples had VEGF levels below the detection limit of the ELISA. Serum VEGF levels and the VEGF/PLT ratio in patients with type 1 ROP were suppressed for 3 months after treatment with either IVA or IVB, but the suppression of systemic VEGF was more pronounced in patients treated with IVB than those treated with IVA.
Gu, Wenyu; Sun, Wei; Guo, Changcheng; Yan, Yang; Liu, Min; Yao, Xudong; Yang, Bin; Zheng, Junhua
2015-07-01
Although emerging evidence demonstrates increased circulating endothelial progenitor cells in patients with solid tumors, to our knowledge it is still unknown whether such cells can be cultured from patients with highly angiogenic renal cell carcinoma. We cultured and characterized circulating endothelial progenitor cells from patients with renal cell carcinoma. The circulating endothelial progenitor cell level (percent of CD45(-)CD34(+) VEGF-R2(+) cells in total peripheral blood mononuclear cells) was quantified in 47 patients with renal cell carcinoma and 40 healthy controls. Peripheral blood mononuclear cells were then isolated from 33 patients with renal cell carcinoma and 30 healthy controls to culture and characterize circulating endothelial progenitor cells. The circulating endothelial progenitor cell level was significantly higher in patients with renal cell carcinoma than in healthy controls (0.276% vs 0.086%, p <0.001). A colony of circulating endothelial progenitor cells first emerged significantly earlier in patient than in control preparations (6.72 vs 14.67 days, p <0.001). The culture success rate (87.8% vs 40.0% of participants) and the number of colonies (10.06 vs 1.83) were significantly greater for patients than for controls (each p <0.001). The circulating endothelial progenitor cell level correlated positively with the number of patient colonies (r = 0.762, p <0.001). Cells cultured from patients and controls showed a similar growth pattern, immunophenotype, ability to uptake Ac-LDL and bind lectin, and form capillary tubes in vitro. However, significantly more VEGF-R2(+) circulating endothelial progenitor cells were found in preparations from patients with renal cell carcinoma than from healthy controls (21.1% vs 13.4%, p <0.001). Earlier emergence of circulating endothelial progenitor cell colonies, a higher cell culture success rate and more colonies were found for patients with renal cell carcinoma than for healthy controls. Results indicate the important significance of VEGF-R2(+) circulating endothelial progenitors in patients with renal cell carcinoma. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Serum vascular endothelial growth factor in dogs with soft tissue sarcomas.
de Queiroz, G Fernandes; Dagli, M Lúcia Zaidan; Meira, S Aparecida; Matera, J Maria
2013-09-01
This work aimed to evaluate serum vascular endothelial growth factor (VEGF) in 25 dogs with soft tissue sarcoma, and in 30 healthy dogs. Blood was collected once time from the control animals and three times, in the same way, from animals with sarcoma. Blood count was performed in the blood collected, and serum VEGF was measured by enzyme-linked immunosorbent assay quantitative method. Serum VEGF in control animals was similar to patients with soft tissue sarcoma. There was a reduction in serum VEGF after the sarcoma resection. There was positive correlation between serum VEGF and neutrophil counts, and negative between VEGF and hemoglobin content in animals with sarcoma. Animals with hemangiopericytoma showed higher serum VEGF levels compared to the patients with malignant peripheral nerve sheath. Circulating blood cells can contribute to elevate VEGF serum concentrations in dogs with soft tissue sarcomas and a possible role of VEGF in the angiogenesis of these tumors. © 2012 John Wiley & Sons Ltd.
Siavashi, Vahid; Asadian, Simin; Taheri-Asl, Masoud; Keshavarz, Samaneh; Zamani-Ahmadmahmudi, Mohamad; Nassiri, Seyed Mahdi
2017-10-01
Microvascular dysfunction plays a key role in the pathology of sepsis, leading to multi-organ failure, and death. Circulating endothelial progenitor cells (cEPCs) are critically involved in the maintenance of the vascular homeostasis in both physiological and pathological contexts. In this study, concentration of cEPCs in preterm infants with sepsis was determined to recognize whether the EPC mobilization would affect the clinical outcome of infantile sepsis. One hundred and thirty-three preterm infants (81 with sepsis and 52 without sepsis) were enrolled in this study. The release of EPCs in circulation was first quantified. Thereafter, these cells were cultivated and biological features of these cells such as, proliferation and colony forming efficiency were analyzed. The levels of chemoattractant cytokines were also measured in infants. In mouse models of sepsis, effects of VEGF and SDF-1 as well as anti-VEGF and anti-SDF-1 were evaluated in order to shed light upon the role which the EPC mobilization plays in the overall survival of septic animals. Circulating EPCs were significantly higher in preterm infants with sepsis than in the non-sepsis group. Serum levels of VEGF, SDF-1, and Angiopoietin-2 were also higher in preterm infants with sepsis than in control non-sepsis. In the animal experiments, injection of VEGF and SDF-1 prompted the mobilization of EPCs, leading to an improvement in survival whereas injection of anti-VEGF and anti-SDF-1 was associated with significant deterioration of survival. Overall, our results demonstrated the beneficial effects of EPC release in preterm infants with sepsis, with increased mobilization of these cells was associated with improved survival. J. Cell. Biochem. 118: 3299-3307, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Role of EG-VEGF in human placentation: Physiological and pathological implications.
Hoffmann, Pascale; Saoudi, Yasmina; Benharouga, Mohamed; Graham, Charles H; Schaal, Jean-Patrick; Mazouni, Chafika; Feige, Jean-Jacques; Alfaidy, Nadia
2009-08-01
Pre-eclampsia (PE), the major cause of maternal morbidity and mortality, is thought to be caused by shallow invasion of the maternal decidua by extravillous trophoblasts (EVT). Data suggest that a fine balance between the expressions of pro- and anti-invasive factors might regulate EVT invasiveness. Recently, we showed that the expression of the new growth factor endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is high in early pregnancy but falls after 11 weeks, suggesting an essential role for this factor in early pregnancy. Using human villous explants and HTR-8/SVneo, a first trimester extravillous trophoblast cell line, we showed differential expression of EG-VEGF receptors, PKR1 and PKR2, in the placenta and demonstrated that EG-VEGF inhibits EVT migration, invasion and tube-like organisation. EG-VEGF inhibitory effect on invasion was supported by a decrease in matrix metalloproteinase (MMP)-2 and MMP-9 production. Interference with PKR2 expression, using specific siRNAs, reversed the EG-VEGF-induced inhibitory effects. Furthermore, we determined EG-VEGF circulating levels in normal and PE patients. Our results showed that EG-VEGF levels were highest during the first trimester of pregnancy and decreased thereafter to non-pregnant levels. More important, EG-VEGF levels were significantly elevated in PE patients compared with age-matched controls. These findings identify EG-VEGF as a novel paracrine regulator of trophoblast invasion. We speculate that a failure to correctly down-regulate placental expression of EG-VEGF at the end of the first trimester of pregnancy might lead to PE.
Circulating endothelial cells are increased in chronic myeloid leukemia blast crisis.
Godoy, C R T; Levy, D; Giampaoli, V; Chamone, D A F; Bydlowski, S P; Pereira, J
2015-06-01
We measured circulating endothelial precursor cells (EPCs), activated circulating endothelial cells (aCECs), and mature circulating endothelial cells (mCECs) using four-color multiparametric flow cytometry in the peripheral blood of 84 chronic myeloid leukemia (CML) patients and 65 healthy controls; and vascular endothelial growth factor (VEGF) by quantitative real-time PCR in 50 CML patients and 32 healthy controls. Because of an increase in mCECs, the median percentage of CECs in CML blast crisis (0.0146%) was significantly higher than in healthy subjects (0.0059%, P<0.01) and in the accelerated phase (0.0059%, P=0.01). There were no significant differences in the percentages of CECs in chronic- or active-phase patients and healthy subjects (P>0.05). In addition, VEGF gene expression was significantly higher in all phases of CML: 0.245 in blast crisis, 0.320 in the active phase, and 0.330 in chronic phase patients than it was in healthy subjects (0.145). In conclusion, CML in blast crisis had increased levels of CECs and VEGF gene expression, which may serve as markers of disease progression and may become targets for the management of CML.
Circulating Endothelial Cells in Patients with Heart Failure and Left Ventricular Dysfunction
Martínez-Sales, Vicenta; Sánchez-Lázaro, Ignacio; Vila, Virtudes; Almenar, Luis; Contreras, Teresa; Reganon, Edelmiro
2011-01-01
Introduction and Aims: Acute and chronic heart failure may manifest different degrees of endothelial damage and angiogenesis. Circulating endothelial cells (CEC) have been identified as marker of vascular damage. The aim of our study was to evaluate the evolution of the CEC at different stages of patients with heart failure. We also investigated a potential correlation between CEC and markers of vascular damage and angiogenesis. Methods: We studied 32 heart failure patients at hospital admission (acute phase) and at revision after 3 months (stable phase) and 32 controls. Circulating markers of endothelial damage (CEC; von Willebrand factor, vWF and soluble E-selectin, sEsel) and angiogenesis (vascular endothelial growth factor, VEGF and thrombospondin-1) were quantified. Results: Levels of CEC, vWF, sEsel and VEGF are significantly higher in heart failure patients than in controls. Levels of CEC (36.9 ± 15.3 vs. 21.5 ± 10.0 cells/ml; p < 0.001), vWF (325 ± 101 vs. 231 ± 82%; p < 0.001) and VEGF (26.3 ± 15.2 vs. 21.9 ± 11.9 ng/ml; p < 0.001) are significantly higher in the acute phase than in the stable phase of heart failure. CEC levels correlate with vWF and VEGF. Results show than 100% of patients in acute phase and 37.5% in stable phase have levels of CEC higher than the 99th percentile of the distribution of controls (16 cells/ml). Therefore, increases in CEC represent a relative risk of 9.5 for heart failure patients suffering from acute phase. Conclusions: CEC, in addition to being elevated in heart failure, correlate with vWF levels, providing further support for CEC as markers of endothelial damage. Levels of CEC are associated with the acute phase of heart failure and could be used as a marker of the worsening in heart failure. PMID:21897001
Farace, F; Gross-Goupil, M; Tournay, E; Taylor, M; Vimond, N; Jacques, N; Billiot, F; Mauguen, A; Hill, C; Escudier, B
2011-01-01
Background: Predicting the efficacy of antiangiogenic therapy would be of clinical value in patients (pts) with metastatic renal cell carcinoma (mRCC). We tested the hypothesis that circulating endothelial cell (CEC), bone marrow-derived CD45dimCD34+VEGFR2+ progenitor cell or plasma angiogenic factor levels are associated with clinical outcome in mRCC pts undergoing treatment with tyrosine kinase inhibitors (TKI). Methods: Fifty-five mRCC pts were prospectively monitored at baseline (day 1) and day 14 during treatment (46 pts received sunitinib and 9 pts received sorafenib). Circulating endothelial cells (CD45−CD31+CD146+7-amino-actinomycin (7AAD)− cells) were measured in 1 ml whole blood using four-color flow cytometry (FCM). Circulating CD45dimCD34+VEGFR2+7AAD− progenitor cells were measured in progenitor-enriched fractions by four-color FCM. Plasma VEGF, sVEGFR2, SDF-1α and sVCAM-1 levels were determined by ELISA. Correlations between baseline CEC, CD45dimCD34+VEGFR2+7AAD− progenitor cells, plasma factors, as well as day 1–day 14 changes in CEC, CD45dimCD34+VEGFR2+7AAD− progenitor, plasma factor levels, and response to TKI, progression-free survival (PFS) and overall survival (OS) were examined. Results: No significant correlation between markers and response to TKI was observed. No association between baseline CEC, plasma VEGF, sVEGFR-2, SDF-1α, sVCAM-1 levels with PFS and OS was observed. However, baseline CD45dimCD34+VEGFR2+7AAD− progenitor cell levels were associated with PFS (P=0.01) and OS (P=0.006). Changes in this population and in SDF-1α levels between day 1 and day 14 were associated with PFS (P=0.03, P=0.002). Changes in VEGF and SDF-1α levels were associated with OS (P=0.02, P=0.007). Conclusion: Monitoring CD45dimCD34+VEGFR2+ progenitor cells, plasma VEGF and SDF-1α levels could be of clinical interest in TKI-treated mRCC pts to predict outcome. PMID:21386843
[Circulating endothelial progenitor cell levels in treated hypertensive patients].
Maroun-Eid, C; Ortega-Hernández, A; Abad, M; García-Donaire, J A; Barbero, A; Reinares, L; Martell-Claros, N; Gómez-Garre, D
2015-01-01
Most optimally treated hypertensive patients still have an around 50% increased risk of any cardiovascular event, suggesting the possible existence of unidentified risk factors. In the last years there has been evidence of the essential role of circulating endothelial progenitor cells (EPCs) in the maintenance of endothelial integrity and function, increasing the interest in their involvement in cardiovascular disease. In this study, the circulating levels of EPCs and vascular endothelial growth factor (VEGF) are investigated in treated hypertensive patients with adequate control of blood pressure (BP). Blood samples were collected from treated hypertensive patients with controlled BP. Plasma levels of EPCs CD34+/KDR+ and CD34+/VE-cadherin+ were quantified by flow cytometry. Plasma concentration of VEGF was determined by ELISA. A group of healthy subjects without cardiovascular risk factors was included as controls. A total of 108 hypertensive patients were included (61±12 years, 47.2% men) of which 82.4% showed BP<140/90 mmHg, 91.7% and 81.5% controlled diabetes (HbA1c <7%) and cLDL (<130 or 100 mg/dL), respectively, and 85.2% were non-smokers. Around 45% of them were obese. Although patients had cardiovascular parameters within normal ranges, they showed significantly lower levels of CD34+/KDR+ and CD34+/VE-cadherin+ compared with healthy control group, although plasma VEGF concentration was higher in patients than in controls. Despite an optimal treatment, hypertensive patients show a decreased number of circulating EPCs that could be, at least in part, responsible for their residual cardiovascular risk, suggesting that these cells could be a therapeutic target. Copyright © 2015 SEHLELHA. Published by Elsevier España, S.L.U. All rights reserved.
Traboulsi, Wael; Sergent, Frédéric; Boufettal, Houssine; Brouillet, Sophie; Slim, Rima; Hoffmann, Pascale; Benlahfid, Mohammed; Zhou, Qun Y; Balboni, Gianfranco; Onnis, Valentina; Bolze, Pierre A; Salomon, Aude; Sauthier, Philippe; Mallet, François; Aboussaouira, Touria; Feige, Jean J; Benharouga, Mohamed; Alfaidy, Nadia
2017-11-15
Purpose: Choriocarcinoma (CC) is the most malignant gestational trophoblastic disease that often develops from complete hydatidiform moles (CHM). Neither the mechanism of CC development nor its progression is yet characterized. We recently identified endocrine gland-derived vascular endothelial growth factor (EG-VEGF) as a novel key placental growth factor that controls trophoblast proliferation and invasion. EG-VEGF acts via two receptors, PROKR1 and PROKR2. Here, we demonstrate that EG-VEGF receptors can be targeted for CC therapy. Experimental Design: Three approaches were used: (i) a clinical investigation comparing circulating EG-VEGF in control ( n = 20) and in distinctive CHM ( n = 38) and CC ( n = 9) cohorts, (ii) an in vitro study investigating EG-VEGF effects on the CC cell line JEG3, and (iii) an in vivo study including the development of a novel CC mouse model, through a direct injection of JEG3-luciferase into the placenta of gravid SCID-mice. Results: Both placental and circulating EG-VEGF levels were increased in CHM and CC (×5) patients. EG-VEGF increased JEG3 proliferation, migration, and invasion in two-dimensional (2D) and three-dimensional (3D) culture systems. JEG3 injection in the placenta caused CC development with large metastases compared with their injection into the uterine horn. Treatment of the animal model with EG-VEGF receptor's antagonists significantly reduced tumor development and progression and preserved pregnancy. Antibody-array and immunohistological analyses further deciphered the mechanism of the antagonist's actions. Conclusions: Our work describes a novel preclinical animal model of CC and presents evidence that EG-VEGF receptors can be targeted for CC therapy. This may provide safe and less toxic therapeutic options compared with the currently used multi-agent chemotherapies. Clin Cancer Res; 23(22); 7130-40. ©2017 AACR . ©2017 American Association for Cancer Research.
Wentink, Madelon Q; Broxterman, Henk J; Lam, Siu W; Boven, Epie; Walraven, Maudy; Griffioen, Arjan W; Pili, Roberto; van der Vliet, Hans J; de Gruijl, Tanja D; Verheul, Henk M W
2016-10-11
Only a small proportion of patients respond to anti-VEGF therapy, pressing the need for a reliable biomarker that can identify patients who will benefit. We studied the biological activity of anti-VEGF antibodies in patients' blood during anti-VEGF therapy by using the Ba/F3-VEGFR2 cell line, which is dependent on VEGF for its growth. Serum samples from 22 patients with cancer before and during treatment with bevacizumab were tested for their effect on proliferation of Ba/F3-VEGFR2 cells. Vascular endothelial growth factor as well as bevacizumab concentrations in serum samples from these patients were determined by enzyme linked immunosorbent assay (ELISA). The hVEGF-driven cell proliferation was effectively blocked by bevacizumab (IC 50 3.7 μg ml -1 ; 95% CI 1.7-8.3 μg ml -1 ). Cell proliferation was significantly reduced when patients' serum during treatment with bevacizumab was added (22-103% inhibition compared with pre-treatment). Although bevacizumab levels were not related, on-treatment serum VEGF levels were correlated with Ba/F3-VEGFR2 cell proliferation. We found that the neutralising effect of anti-VEGF antibody therapy on the biological activity of circulating VEGF can be accurately determined with a Ba/F3-VEGFR2 bioassay. The value of this bioassay to predict clinical benefit of anti-VEGF antibody therapy needs further clinical evaluation in a larger randomised cohort.
Brook, Robert D.; Bard, Robert L.; Kaplan, Mariana J.; Yalavarthi, Srilakshmi; Morishita, Masako; Dvonch, J. Timothy; Wang, Lu; Yang, Hui-yu; Spino, Catherine; Mukherjee, Bhramar; Oral, Elif A.; Sun, Qinghua; Brook, Jeffrey R.; Harkema, Jack; Rajagopalan, Sanjay
2015-01-01
Context Fine particulate matter (PM) air pollution has been associated with alterations in circulating endothelial progenitor cell (EPC) levels, which may be one mechanism whereby exposures promote cardiovascular diseases. However, the impact of coarse PM on EPCs is unknown. Objective We aimed to determine the effect of acute exposure to coarse concentrated ambient particles (CAP) on circulating EPC levels. Methods Thirty-two adults (25.9±6.6 years) were exposed to coarse CAP (76.2±51.5 μgm−3) in a rural location and filtered air (FA) for 2 h in a randomized double-blind crossover study. Peripheral venous blood was collected 2 and 20 h post-exposures for circulating EPC (n=21), white blood cell (n=24) and vascular endothelial growth factor (VEGF) (n=16–19) levels. The changes between exposures were compared by matched Wilcoxon signed-rank tests. Results Circulating EPC levels were elevated 2 [108.29 (6.24–249.71) EPC mL−1; median (25th–75th percentiles), p=0.052] and 20 h [106.86 (52.91–278.35) EPC mL−1, p=0.008] post-CAP exposure compared to the same time points following FA [38.47 (0.00–84.83) and 50.16 (0.00–104.79) EPC mL−1]. VEGF and white blood cell (WBC) levels did not differ between exposures. Conclusions Brief inhalation of coarse PM from a rural location elicited an increase in EPCs that persisted for at least 20 h. The underlying mechanism responsible may reflect a systemic reaction to an acute “endothelial injury” and/or a circulating EPC response to sympathetic nervous system activation. PMID:23919441
Bhaskari, J; Premalata, C S; Shilpa, V; Rahul, B; Pallavi, V R; Ramesh, G; Krishnamoorthy, Lakshmi
2016-01-01
In this study, we have analyzed six genetic polymorphisms of the VEGF-A gene and correlated the genetic data with plasma and tissue expression of VEGF-A in epithelial ovarian carcinomas. A total of 130 cases including 95 malignant carcinomas, 17 low malignant potential and 18 benign tumours were studied. rs699947, rs833061, rs1570360, rs2010963, rs1413711 and rs3025039 were studied by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Plasma levels of VEGF-A were estimated by enzyme-linked immunosorbent assay (ELISA) and tissue expression of VEGF-A by immunohistochemistry (IHC). Four polymorphisms of the above excluding rs699947 and rs3025039 showed significant association with malignancy, and we observed the presence of positive correlation between haplotype CCGGCC and increased expression of VEGF-A in both plasma and tissues which also correlated with poor prognosis and recurrence suggesting a probable increase in resistance to treatment in such carriers. Highly upregulated tissue expression of VEGF-A was seen in all epithelial ovarian carcinomas with intensity of expression increasing from benign to malignant cases. ELISA data from our study showed an increase in circulating levels of VEGF-A in malignancies. VEGF-A plasma levels can be employed as a biomarker for high-grade malignancy in epithelial ovarian cancers alongside tissue expression and CA-125 levels. This study is unique due to the fact that a simultaneous analysis of plasma and tissue expression has been demonstrated and is a first such study in epithelial ovarian cancers and representing the Indian population (South-east Asian) synchronized with genetic polymorphism data as well.
Pikula, Aleksandra; Beiser, Alexa S.; Chen, Tai C.; Preis, Sarah R.; Vorgias, Demetrios; DeCarli, Charles; Au, Rhoda; Kelly-Hayes, Margaret; Kase, Carlos S.; Wolf, Philip A.; Vasan, Ramachandran S.; Seshadri, Sudha
2013-01-01
Background and Purpose BDNF, a major neurotrophin and VEGF, an endothelial growth factor have a documented role in neurogenesis, angiogenesis and neuronal survival. In animal experiments they impact infarct size and functional motor recovery after an ischemic brain lesion. We sought to examine the association of serum BDNF and VEGF with the risk of clinical stroke or subclinical vascular brain injury in a community-based sample. Methods In 3440 stroke/TIA-free FHS participants (mean age 65±11yrs, 56%W), we related baseline BDNF and logVEGF to risk of incident stroke/TIA. In a subsample with brain MRI and with neuropsychological (NP) tests available (N=1863 and 2104, respectively; mean age 61±9yrs, 55%W, in each) we related baseline BDNF and logVEGF to log-white matter hyperintensity volume (lWMHV) on brain MRI, and to visuospatial memory and executive function tests. Results During a median follow-up of 10 years, 193 participants experienced incident stroke/TIA. In multivariable analyses adjusted for age-, sex- and traditional stroke risk factors, lower BDNF and higher logVEGF levels were associated with an increased risk of incident stroke/TIA (HR comparing BDNF Q1 versus Q2–4:1.47, 95%CI:1.09–2.00, p=0.012; and HR/SD increase in logVEGF:1.21, 95%CI:1.04–1.40, p=0.012). Persons with higher BDNF levels had less lWMHV (β±SE=−0.05±0.02; p=0.025), and better visual memory (β±SE=0.18±0.07; p=0.005). Conclusions Lower serum BDNF and higher VEGF concentrations were associated with increased risk of incident stroke/TIA. Higher levels of BDNF were also associated with less white matter hyperintensity and better visual memory. Our findings suggest that circulating BDNF and VEGF levels modify risk of clinical and subclinical vascular brain injury. PMID:23929745
Jonsdottir, Ingibjörg H.; Hägg, Daniel A.; Glise, Kristina; Ekman, Rolf
2009-01-01
Background Psychosocial stress is becoming a major contributor to increased mental ill-health and sick leave in many countries. Valid markers of chronic stress would be valuable for diagnostic and prognostic purposes. A recent study suggested monocyte chemotactic protein-1 (MCP-1), epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) as markers of chronic stress. We aimed to confirm these potential biomarkers of prolonged psychosocial stress in female patients. Methodology/Principal Findings Circulating levels of MCP-1, EGF and VEGF, along with several other cytokines, were measured in plasma from 42 female patients suffering from exhaustion due to prolonged psychosocial stress and 42 control subjects, using a protein biochip immunoassay. There were no significant differences between patients and controls in any of the cytokines or growth factors analyzed. Furthermore, when using a different protein bioassay and reanalyzing MCP-1 and VEGF in the same samples, markedly different levels were obtained. To further explore if inflammation is present in patients with exhaustion, the classical inflammatory marker C-reactive protein (CRP) was measured in another group of patients (n = 89) and controls (n = 88) showing a small but significant increase of CRP levels in the patients. Conclusions/Significance MCP-1, EGF and VEGF may not be suitable markers of prolonged psychosocial stress as previously suggested. Furthermore, significant differences were obtained when using two different protein assays measuring the same samples, indicating that comparing studies where different analytic techniques have been used might be difficult. Increased levels of CRP indicate that low-grade inflammation might be present in patients with exhaustion due to prolonged stress exposure but this inflammation does not seem to be reflected by increase in circulating MCP-1 or other cytokines measured. PMID:19888340
Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors.
Brouillet, S; Hoffmann, P; Chauvet, S; Salomon, A; Chamboredon, S; Sergent, F; Benharouga, M; Feige, J J; Alfaidy, N
2012-05-01
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.
Nourshahi, Maryam; Hedayati, Mehdi; Ranjbar, Kamal
2012-01-10
The effect of leptin as stimulant angiogenic factor has been studied. But the association of leptin levels and exercise-induced angiogenesis has not been studied. Accordingly, the researchers investigated whether there were any differences in circulating serum VEGF, MMP-2 and MMP-9 among high and low resting leptin individuals at rest or in response to submaximal exercise. For this purpose the researchers defined two groups with high and low resting leptin levels. Fifteen subjects with high resting leptin (23.57±9.14ng/ml and Vo(2) max=29.46±3.62ml/kg.min) and fifteen subjects with low resting leptin level (1.04±0.49ng/ml and Vo(2) max=37.99±4.63ml/kgmin) exercised for 1h (1h) at 70% of Vo(2) max. Antecubital vein blood was collected at rest, immediately and 2h post exercise. Serum VEGF, MMP-2 and MMP-9 was measured by ELISA method. Results of the study showed that the resting serum levels of VEGF, MMP-2 and MMP-9 didn't have any correlation with basic levels of leptin. In low leptin group the levels of VEGF and MMP-2 in immediately post exercise decreased significantly, but in high leptin group, only VEGF decreased significantly. 2h post exercise; the VEGF level in the low resting leptin group was significantly lower than that of its basal level. Beside, MMP-2 in the high and low basic levels of leptin groups were significantly increased compared to that of immediately post exercise. But the amount of MMP-9 did not change significantly in response to exercise in two groups. There were not any differences in the changes of VEGF, MMP-2 and MMP-9 in response to exercise between two groups. Furthermore, resting leptin had a significant correlation with V0(2) max. The obtained results showed that the serum VEGF, MMP-2 and MMP-9 did not have any correlation with basic levels of leptin. In addition, it was concluded that levels of different resting leptin is ineffective on serum levels of VEGF, MMP-2 and MMP-9 at rest and in response to exercise in normal healthy subjects. Copyright © 2011 Elsevier B.V. All rights reserved.
2011-01-01
Background Several proteins that promote angiogenesis are overexpressed in hepatocellular carcinoma (HCC) and have been implicated in disease pathogenesis. Sunitinib has antiangiogenic activity and is an oral multitargeted inhibitor of vascular endothelial growth factor receptors (VEGFRs)-1, -2, and -3, platelet-derived growth factor receptors (PDGFRs)-α and -β, stem-cell factor receptor (KIT), and other tyrosine kinases. In a phase II study of sunitinib in advanced HCC, we evaluated the plasma pharmacodynamics of five proteins related to the mechanism of action of sunitinib and explored potential correlations with clinical outcome. Methods Patients with advanced HCC received a starting dose of sunitinib 50 mg/day administered orally for 4 weeks on treatment, followed by 2 weeks off treatment. Plasma samples from 37 patients were obtained at baseline and during treatment and were analyzed for vascular endothelial growth factor (VEGF)-A, VEGF-C, soluble VEGFR-2 (sVEGFR-2), soluble VEGFR-3 (sVEGFR-3), and soluble KIT (sKIT). Results At the end of the first sunitinib treatment cycle, plasma VEGF-A levels were significantly increased relative to baseline, while levels of plasma VEGF-C, sVEGFR-2, sVEGFR-3, and sKIT were significantly decreased. Changes from baseline in VEGF-A, sVEGFR-2, and sVEGFR-3, but not VEGF-C or sKIT, were partially or completely reversed during the first 2-week off-treatment period. High levels of VEGF-C at baseline were significantly associated with Response Evaluation Criteria in Solid Tumors (RECIST)-defined disease control, prolonged time to tumor progression (TTP), and prolonged overall survival (OS). Baseline VEGF-C levels were an independent predictor of TTP by multivariate analysis. Changes from baseline in VEGF-A and sKIT at cycle 1 day 14 or cycle 2 day 28, and change in VEGF-C at the end of the first off-treatment period, were significantly associated with both TTP and OS, while change in sVEGFR-2 at cycle 1 day 28 was an independent predictor of OS. Conclusions Baseline plasma VEGF-C levels predicted disease control (based on RECIST) and were positively associated with both TTP and OS in this exploratory analysis, suggesting that this VEGF family member may have utility in predicting clinical outcome in patients with HCC who receive sunitinib. Trial registration ClinicalTrials.gov: NCT00247676 PMID:21787417
Vascular endothelial growth factor (VEGF) inhibition--a critical review.
Moreira, Irina Sousa; Fernandes, Pedro Alexandrino; Ramos, Maria João
2007-03-01
Angiogenesis, or formation of new blood capillaries from preexisting vessels, plays both beneficial and damaging roles in the organism. It is a result of a complex balance of positive and negative regulators, and vascular endothelial growth factor (VEGF) is one of the most important pro-angiogenic factors involved in tumor angiogenesis. VEGF increases vascular permeability, which might facilitate tumor dissemination via the circulation causing a greater delivery of oxygen and nutrients; it recruits circulating endothelial precursor cells, and acts as a survival factor for immature tumor blood vessels. The endotheliotropic activities of VEGF are mediated through the VEGF-specific tyrosine-kinase receptors: VEGFR-1, VEGFR-2 and VEGFR-3. VEGF and its receptors play a central role in tumor angiogenesis, and therefore the blockade of this pathway is a promising therapeutic strategy for inhibiting angiogenesis and tumor growth. A number of different strategies to inhibit VEGF signal transduction are in development and they include the development of humanized neutralizing anti-VEGF monoclonal antibodies, receptor antagonists, soluble receptors, antagonistic VEGF mutants, and inhibitors of VEGF receptor function. These agents can be divided in two broad classes, namely agents designed to target the VEGF activity and agents designed to target the surface receptor function. The main purpose of this review is to summarize all the available information regarding the importance of the pro-angiogenic factor VEGF in cancer therapy. After an overview of the VEGF family and their respective receptors, we shall focus our attention on the different VEGF-inhibitors existent nowadays. Agents based upon anti-VEGF therapy have provided solid proofs about their success, and therefore we believe that a critical review is of the utmost importance to help researchers in their future work.
Intravitreally Injected Anti-VEGF Antibody Reduces Brown Fat in Neonatal Mice.
Jo, Dong Hyun; Park, Sung Wook; Cho, Chang Sik; Powner, Michael B; Kim, Jin Hyoung; Fruttiger, Marcus; Kim, Jeong Hun
2015-01-01
Anti-vascular endothelial growth factor (VEGF) agents are the mainstay treatment for various angiogenesis-related retinal diseases. Currently, bevacizumab, a recombinant humanized anti-VEGF antibody, is trailed in retinopathy of prematurity, a vasoproliferative retinal disorder in premature infants. However, the risks of systemic complications after intravitreal injection of anti-VEGF antibody in infants are not well understood. In this study, we show that intravitreally injected anti-VEGF antibody is transported into the systemic circulation into the periphery where it reduces brown fat in neonatal C57BL/6 mice. A considerable amount of anti-VEGF antibody was detected in serum after intravitreal injection. Furthermore, in interscapular brown adipose tissue, we found lipid droplet accumulation, decreased VEGF levels, loss of vascular network, and decreased expression of mitochondria-related genes, Ppargc1a and Ucp1, all of which are characteristics of "whitening" of brown fat. With increasing age and body weight, brown fat restored its morphology and vascularity. Our results show that there is a transient, but significant impact of intravitreally administered anti-VEGF antibody on brown adipose tissue in neonatal mice. We suggest that more attention should be focused on the metabolic and developmental significance of brown adipose tissue in bevacizumab treated retinopathy of prematurity infants.
Intravitreally Injected Anti-VEGF Antibody Reduces Brown Fat in Neonatal Mice
Powner, Michael B.; Kim, Jin Hyoung; Fruttiger, Marcus; Kim, Jeong Hun
2015-01-01
Anti-vascular endothelial growth factor (VEGF) agents are the mainstay treatment for various angiogenesis-related retinal diseases. Currently, bevacizumab, a recombinant humanized anti-VEGF antibody, is trailed in retinopathy of prematurity, a vasoproliferative retinal disorder in premature infants. However, the risks of systemic complications after intravitreal injection of anti-VEGF antibody in infants are not well understood. In this study, we show that intravitreally injected anti-VEGF antibody is transported into the systemic circulation into the periphery where it reduces brown fat in neonatal C57BL/6 mice. A considerable amount of anti-VEGF antibody was detected in serum after intravitreal injection. Furthermore, in interscapular brown adipose tissue, we found lipid droplet accumulation, decreased VEGF levels, loss of vascular network, and decreased expression of mitochondria-related genes, Ppargc1a and Ucp1, all of which are characteristics of “whitening” of brown fat. With increasing age and body weight, brown fat restored its morphology and vascularity. Our results show that there is a transient, but significant impact of intravitreally administered anti-VEGF antibody on brown adipose tissue in neonatal mice. We suggest that more attention should be focused on the metabolic and developmental significance of brown adipose tissue in bevacizumab treated retinopathy of prematurity infants. PMID:26226015
Effect of Vandetanib on Andes virus survival in the hamster model of Hantavirus pulmonary syndrome.
Bird, Brian H; Shrivastava-Ranjan, Punya; Dodd, Kimberly A; Erickson, Bobbie R; Spiropoulou, Christina F
2016-08-01
Hantavirus pulmonary syndrome (HPS) is a severe disease caused by hantavirus infection of pulmonary microvascular endothelial cells leading to microvascular leakage, pulmonary edema, pleural effusion and high case fatality. Previously, we demonstrated that Andes virus (ANDV) infection caused up-regulation of vascular endothelial growth factor (VEGF) and concomitant downregulation of the cellular adhesion molecule VE-cadherin leading to increased permeability. Analyses of human HPS-patient sera have further demonstrated increased circulating levels of VEGF. Here we investigate the impact of a small molecule antagonist of the VEGF receptor 2 (VEGFR-2) activation in vitro, and overall impact on survival in the Syrian hamster model of HPS. Copyright © 2016. Published by Elsevier B.V.
Young, R J; Tin, A W; Brown, N J; Jitlal, M; Lee, S M; Woll, P J
2012-01-01
Background: Thalidomide has potent anti-inflammatory and anti-angiogenic properties. It was evaluated in combination with chemotherapy in two randomised placebo-controlled trials in patients with small cell lung cancer (SCLC, n=724) and advanced non-small cell lung cancer (NSCLC, n=722). Neither study demonstrated an improvement in overall survival with the addition of thalidomide to chemotherapy. This study investigated circulating angiogenic biomarkers in a subset of these patients. Methods: Serial plasma samples were collected in a cohort of patients enrolled in these two trials (n=95). Vascular endothelial growth factor (VEGF), soluble truncated form of VEGF receptor-2 (sVEGFR-2), interleukin-8 (IL-8), tumour necrosis factor-α (TNF-α), basic fibroblast growth factor (bFGF) and soluble intercellular adhesion molecule-1 (sICAM-1) levels were measured by enzyme-linked immunosorbent assays. Results were correlated with patient clinical data including stage, response rate and progression-free survival (PFS). Results: Baseline biomarker levels were not significantly different between SCLC and NSCLC. For pooled treatment groups, limited stage SCLC was associated with lower baseline VEGF (P=0.046), sICAM-1 (P=0.008) and IL-8 (P=0.070) than extensive stage disease. Low baseline IL-8 was associated with a significantly improved PFS in both SCLC and NSCLC (P=0.028), and a greater reduction in IL-8 was associated with a significantly improved tumour response (P=0.035). Baseline angiogenic factor levels, however, did not predict response to thalidomide. Conclusion: Circulating angiogenic biomarkers did not identify patients who benefited from thalidomide treatment. PMID:22353811
Hattori, Koichi; Dias, Sergio; Heissig, Beate; Hackett, Neil R.; Lyden, David; Tateno, Masatoshi; Hicklin, Daniel J.; Zhu, Zhenping; Witte, Larry; Crystal, Ronald G.; Moore, Malcolm A.S.; Rafii, Shahin
2001-01-01
Tyrosine kinase receptors for angiogenic factors vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) are expressed not only by endothelial cells but also by subsets of hematopoietic stem cells (HSCs). To further define their role in the regulation of postnatal hematopoiesis and vasculogenesis, VEGF and Ang-1 plasma levels were elevated by injecting recombinant protein or adenoviral vectors expressing soluble VEGF165, matrix-bound VEGF189, or Ang-1 into mice. VEGF165, but not VEGF189, induced a rapid mobilization of HSCs and VEGF receptor (VEGFR)2+ circulating endothelial precursor cells (CEPs). In contrast, Ang-1 induced delayed mobilization of CEPs and HSCs. Combined sustained elevation of Ang-1 and VEGF165 was associated with an induction of hematopoiesis and increased marrow cellularity followed by proliferation of capillaries and expansion of sinusoidal space. Concomitant to this vascular remodeling, there was a transient depletion of hematopoietic activity in the marrow, which was compensated by an increase in mobilization and recruitment of HSCs and CEPs to the spleen resulting in splenomegaly. Neutralizing monoclonal antibody to VEGFR2 completely inhibited VEGF165, but not Ang-1–induced mobilization and splenomegaly. These data suggest that temporal and regional activation of VEGF/VEGFR2 and Ang-1/Tie-2 signaling pathways are critical for mobilization and recruitment of HSCs and CEPs and may play a role in the physiology of postnatal angiogenesis and hematopoiesis. PMID:11342585
Pathophysiological consequences of VEGF-induced vascular permeability
NASA Astrophysics Data System (ADS)
Weis, Sara M.; Cheresh, David A.
2005-09-01
Although vascular endothelial growth factor (VEGF) induces angiogenesis, it also disrupts vascular barrier function in diseased tissues. Accordingly, VEGF expression in cancer and ischaemic disease has unexpected pathophysiological consequences. By uncoupling endothelial cell-cell junctions VEGF causes vascular permeability and oedema, resulting in extensive injury to ischaemic tissues after stroke or myocardial infarction. In cancer, VEGF-mediated disruption of the vascular barrier may potentiate tumour cell extravasation, leading to widespread metastatic disease. Therefore, by blocking the vascular permeability promoting effects of VEGF it may be feasible to reduce tissue injury after ischaemic disease and minimize the invasive properties of circulating tumour cells.
Guzmán-Guzmán, Iris Paola; Zaragoza-García, Oscar; Vences-Velázquez, Amalia; Castro-Alarcón, Natividad; Muñoz-Valle, José Francisco; Parra-Rojas, Isela
2016-11-18
Inflammation and endothelial dysfunction are considered the primary manifestations of the cardiovascular disease. Studies have established a relationship among components of metabolic syndrome (MetS) with inflammatory markers and the loss of permeability, vasoconstriction and vasodilatation endothelial. To determine the relationship among the concentrations of soluble endothelial dysfunction molecules and inflammation cytokines and components of the metabolic syndrome in young population. A study was performed in 240 young adult students ages 18-28 years. To define the presence of clinical and metabolic alterations and MetS the modified ATP-III criteria was considered. In all subjects were determined sociodemographic characteristics, anthropometric measures and the metabolic profile. Circulating levels of MCP-1, VEGF-A, sICAM-1, sVCAM-1, sE-selectin and sVE-cadherin were determined by ELISA immunoassay (Bioscience). Statistical analysis was performed using STATA statistical software v. 9.2. From all the participants, 44.6% had obesity, 59.9% had abdominal obesity, 49.6% low HDL-c and 16.7% high levels triglycerids. The 16.25% of the population showed 3 or more components of the MetS. Elevated MCP-1, sICAM-1 and sE-selectin levels were linked to the presence of obesity. In a model adjusted by age-gender, high soluble levels of MCP-1 and VEGF-A were linked with abdominal obesity (OR=1.83; 1.02-3.28 and OR=2.03; 1.15-3.56, respectively), as well as to the presence of the 2 components of MetS. sVCAM-1 levels were associated with impaired glucose (OR=4.74; 1.32-17.0); sE-selectin with low HDL-c (OR=1.99; 1.05-3.75), although sICAM-1 and sVE-cadherin were associated with impaired systolic blood pressure (OR=4.04; 1.24-13.1 and OR=6.28; 1.90-20.7, respectively). Levels of circulating MCP-1 and VEGF-A were associated with adiposity, levels of sVCAM-1 with the presence of impaired glucose, sE-selectin with low HDL-c, while the levels of sICAM-1 and sVE-cadherin were associated with impaired systolic blood pressure in young adults independently of other traditional risk factors. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Taylor, Melissa; Rössler, Jochen; Geoerger, Birgit; Laplanche, Agnès; Hartmann, Olivier; Vassal, Gilles; Farace, Françoise
2009-07-15
Pediatric solid malignancies display important angiogenic potential, and blocking tumor angiogenesis represents a new therapeutic approach for these patients. Recent studies have evidenced rare circulating cells with endothelial features contributing to tumor neovascularization and have shown the pivotal role of bone marrow-derived (BMD) progenitor cells in metastatic disease progression. We measured these cells in patients with pediatric solid malignancies as a prerequisite to clinical trials with antiangiogenic therapy. Peripheral blood was drawn from 45 patients with localized (n = 23) or metastatic (n = 22) disease, and 20 healthy subjects. Subsets of circulating vascular endothelial growth factor receptor (VEGFR)2+-BMD progenitor cells, defined as CD45-CD34+VEGFR2(KDR)+7AAD- and CD45(dim)CD34+VEGFR2+7AAD- events, were measured in progenitor-enriched fractions by flow cytometry. Mature circulating endothelial cells (CEC) were measured in whole blood as CD31+CD146+CD45-7AAD- viable events. Data were correlated with VEGF and sVEGFR2 plasma levels. The CD45-CD34+VEGFR2(KDR)+7AAD- subset represented <0.003% of circulating BMD progenitor cells (< or =0.05 cells/mL). However, the median level (range) of the CD45(dim)CD34+VEGFR2+7AAD- subset was higher in patients compared with healthy subjects, 1.5% (0%-10.3%) versus 0.3% (0%-1.6%) of circulating BMD progenitors (P < 0.0001), and differed significantly between patients with localized and metastatic disease, 0.7% (0%-8.6%) versus 2.9% (0.6%-10.3%) of circulating BMD progenitors (P < 0.001). Median CEC value was 7 cells/mL (0-152 cells/mL) and similar in all groups. Unlike VEGFR2+-BMD progenitors, neither CECs, VEGF, or sVEGFR2 plasma levels correlated with disease status. High levels of circulating VEGFR2+-BMD progenitor cells correlated with metastatic disease. Our study provides novel insights for angiogenesis mechanisms in pediatric solid malignancies for which antiangiogenic targeting of VEGFR2+-BMD progenitors could be of interest.
Tracking Normalization of Brain Tumor Vasculature by Magnetic Imaging and Proangiogenic Biomarkers
Hormigo, Adília; Gutin, Philip H.; Rafii, Shahin
2010-01-01
Clinical assessment of the response to antiangiogenic therapy has been cumbersome. A study in this issue of Cancer Cell demonstrates that a combination of magnetic resonance imaging (MRI) for quantification of normalized vessels with measurements of circulating levels of proangiogenic factors, including FGF2, SDF1, and viable circulating endothelial cells, provides an effective means to evaluate the response of recurrent glioblastoma to a prototypical pan-VEGF receptor tyrosine kinase inhibitor, AZD2171. PMID:17222788
Kovács, Péter; Rab, Attila; Szentpéteri, Imre; Joó, József Gábor; Kornya, László
2017-04-01
Placental vascular endothelial growth factor A (VEGF-A) gene and endoglin gene are both overexpressed in placental samples obtained from pregnancies with intrauterine growth restriction compared to normal pregnancies. In the background of these changes a mechanism can be supposed, in which the increased endoglin activity in intrauterine growth restriction (IUGR) leads to impaired placental circulation through an antioangiogenetic effect. This results in the development of placental vascular dysfunction and chronic fetal hypoxia. It is chronic hypoxia that turns on VEGF-A as a compensatory mechanism to improve fetal vascular blood supply by promoting placental blood vessel formation. Although the maternal serum placental growth factor (PlGF) level is a potential predictor for both IUGR and praeeclampsia, placental PlGF gene activity may be less of an active in the regulation of placental circulation in IUGR pregnancies during the later stages of gestation. Orv. Hetil., 2017, 158(16), 612-617.
Fei, Yu; Hou, Jianhua; Xuan, Wei; Zhang, Chenghua; Meng, Xiuping
2018-06-02
Although angiogenesis plays an important role in coronary collateral circulation (CCC) formation and there are many determinants of coronary angiogenesis, they cannot fully explain the mechanism of CCC formation or as potent biomarker for CCC status. Therefore, there is of great clinical significance to identify the novel molecules associated with CCC. Previously, miR-503 exerts anti-angiogenesis effect via inhibition of VEGF-A and its expression is associated with many angiogenesis-related factors. Thus, we aimed to investigate the relationship of plasma miR-503 with CCC formation as well as its predictive power for CCC status in patients with coronary artery disease. Among patients who underwent coronary angiography with coronary artery disease and a stenosis of ≥90% were included in our study. Collateral degree was graded according to Rentrop Cohen classification. The patients were divided to good CCC group (grade 2 or 3) and poor CCC group (grade 0 or 1) according to Rentrop grade. We investigated the plasma levels of miR-503 and VEGF-A by ELISA or q RT-PCR, respectively. In addition, we assayed the correlations of plasma miR-503 with VEGF-A or Rentrop grade using the spearman correlation test and its predictive power by receiver operating characteristic (ROC) and binary logistical regression analysis. Our data showed that plasma VEGF-A was significantly higher in good CCC group than that in poor group. Plasma miR-503 was lower in CAD patients with good CCC or poor CCC compared with control subjects and lowest in good CCC group. In addition, miR-503 negatively correlated with VEGF-A and Rentrop grade, respectively. Moreover, miR-503 displayed more potent predictive power for CCC status than VEGF-A, but its sensitivity and specificity for CCC status were only 72.4 or 60.9%, respectively. Lower plasma miR-503 level was related to better CCC formation, accompanied by up-regulation of VEGF-A. In addition, miR-503 displayed potent predictive power for CCC status, but its sensitivity and specificity were not high enough, indicating that miR-503 might be as an additional prognosis biomarker for CCC. Copyright © 2017. Published by Elsevier Inc.
Dunand, C; Hoffmann, P; Sapin, V; Blanchon, L; Salomon, A; Sergent, F; Benharouga, M; Sabra, S; Guibourdenche, J; Lye, S J; Feige, J J; Alfaidy, N
2014-09-01
EG-VEGF is an angiogenic factor that we identified as a new placental growth factor during human pregnancy. EG-VEGF is also expressed in the mouse fetal membrane (FM) by the end of gestation, suggesting a local role for this protein in the mechanism of parturition. However, injection of EG-VEGF to gravid mice did not induce labor, suggesting a different role for EG-VEGF in parturition. Here, we searched for its role in the FM in relation to human parturition. Human pregnant sera and total FM, chorion, and amnion were collected during the second and third trimesters from preterm no labor, term no labor, and term labor patients. Primary human chorion trophoblast and FM explants cultures were also used. We demonstrate that circulating EG-VEGF increased toward term and significantly decreased at the time of labor. EG-VEGF production was higher in the FM compared to placentas matched for gestational age. Within the FM, the chorion was the main source of EG-VEGF. EG-VEGF receptors, PROKR1 and PROKR2, were differentially expressed within the FM with increased expression toward term and an abrupt decrease with the onset of labor. In chorion trophoblast and FM explants collected from nonlaboring patients, EG-VEGF decreased metalloproteinase-2 and -9 activities and increased PGDH (prostaglandin-metabolizing enzyme) expression. Altogether these data demonstrate that EG-VEGF is a new cytokine that acts locally to ensure FM protection in late pregnancy. Its fine contribution to the initiation of human labor is exhibited by the abrupt decrease in its levels as well as a reduction in its receptors. © 2014 by the Society for the Study of Reproduction, Inc.
Yang, Dong; Zhou, Huifang; Zhang, Jianning; Liu, Li
2015-06-01
The vascular endothelial growth factor (VEGF)-mediated mechanism of endothelial progenitor cell (EPC) mobilization, migration, and differentiation may occur in response to noise-induced acoustic trauma of the cochlea, leading to the protection of cochlear function. The purpose of this study was to analyze changes in the cochlear vessel under an intensive noise environment. Sixty male Sprague-Dawley rats were randomly divided into six groups. Acoustic trauma was induced by 120 dB SPL white noise for 4 h. Auditory function was evaluated by the auditory brainstem response threshold. Morphological changes of the cochleae, the expression of VEGF, and the circulation of EPCs in the peripheral blood were studied by immunohistochemistry, Western blotting analysis, scanning electron microscopy, and flow cytometry. Vascular recovery of the cochlea began after noise exposure. The change in the number of EPCs was consistent with the expression of VEGF at different time points after noise exposure. We propose that VEGF evokes specific permeable and chemotactic effects on the vascular endothelial cells. These effects can mobilize EPCs into the peripheral blood, leading the EPCs to target damaged sites and to exert a neoangiogenic effect.
Rimassa, Lorenza; Abbadessa, Giovanni; Personeni, Nicola; Porta, Camillo; Borbath, Ivan; Daniele, Bruno; Salvagni, Stefania; Van Laethem, Jean-Luc; Van Vlierberghe, Hans; Trojan, Jörg; De Toni, Enrico N.; Weiss, Alan; Miles, Steven; Gasbarrini, Antonio; Lencioni, Monica; Lamar, Maria E.; Wang, Yunxia; Shuster, Dale; Schwartz, Brian E.; Santoro, Armando
2016-01-01
ARQ 197-215 was a randomized placebo-controlled phase II study testing the MET inhibitor tivantinib in second-line hepatocellular carcinoma (HCC) patients. It identified tumor MET as a key biomarker in HCC. Aim of this research was to study the prognostic and predictive value of tumor (MET, the receptor tyrosine kinase encoded by the homonymous MNNG-HOS transforming gene) and circulating (MET, hepatocyte growth factor [HGF], alpha-fetoprotein [AFP], vascular endothelial growth factor [VEGF]) biomarkers in second-line HCC. Tumor MET-High status was centrally assessed by immunohistochemistry. Circulating biomarkers were centrally analyzed on serum samples collected at baseline and every 4-8 weeks, using medians as cut-off to determine High/Low status. Tumor MET, tested in 77 patients, was more frequently High after (82%) versus before (40%) sorafenib. A significant interaction (p = 0.04) between tivantinib and baseline tumor MET in terms of survival was observed. Baseline circulating MET and HGF (102 patients) High status correlated with shorter survival (HR 0.61, p = 0.03, and HR 0.60, p = 0.02, respectively), while the association between AFP (104 patients) or VEGF (103 patients) status and survival was non-significant. Conclusions: Tumor MET levels were higher in patients treated with sorafenib. Circulating biomarkers such as MET and HGF may be prognostic in second-line HCC. These results need to be confirmed in larger randomized clinical trials. PMID:27579536
Martynova, Ekaterina V; Valiullina, Aygul H; Gusev, Oleg A; Davidyuk, Yuriy N; Garanina, Ekaterina E; Shakirova, Venera G; Khaertynova, Ilsiyar; Anokhin, Vladimir A; Rizvanov, Albert A; Khaiboullina, Svetlana F
2016-01-01
Nephropathia epidemica (NE) is a mild form of hemorrhagic fever with renal syndrome. Several reports have demonstrated a severe alteration in lipoprotein metabolism. However, little is known about changes in circulating lipids in NE. The objectives of this study were to evaluate changes in serum total cholesterol, high density cholesterol (HDCL), and triglycerides. In addition to evaluation of serum cytokine activation associations, changes in lipid profile and cytokine activation were determined for gender, thrombocyte counts, and VEGF. Elevated levels of triglycerides and decreased HDCL were observed in NE, while total cholesterol did not differ from controls. High triglycerides were associated with both the lowest thrombocyte counts and high serum VEGF, as well as a high severity score. Additionally, there were higher levels of triglycerides in male than female NE patients. Low triglycerides were associated with upregulation of IFN- γ and IL-12, suggesting activation of Th1 helper cells. Furthermore, levels of IFN- γ and IL-12 were increased in patients with lower severity scores, suggesting that a Th1 type immune response is playing protective role in NE. These combined data advance the understanding of NE pathogenesis and indicate a role for high triglycerides in disease severity.
Valiullina, Aygul H.; Gusev, Oleg A.; Davidyuk, Yuriy N.; Garanina, Ekaterina E.; Shakirova, Venera G.; Khaertynova, Ilsiyar
2016-01-01
Nephropathia epidemica (NE) is a mild form of hemorrhagic fever with renal syndrome. Several reports have demonstrated a severe alteration in lipoprotein metabolism. However, little is known about changes in circulating lipids in NE. The objectives of this study were to evaluate changes in serum total cholesterol, high density cholesterol (HDCL), and triglycerides. In addition to evaluation of serum cytokine activation associations, changes in lipid profile and cytokine activation were determined for gender, thrombocyte counts, and VEGF. Elevated levels of triglycerides and decreased HDCL were observed in NE, while total cholesterol did not differ from controls. High triglycerides were associated with both the lowest thrombocyte counts and high serum VEGF, as well as a high severity score. Additionally, there were higher levels of triglycerides in male than female NE patients. Low triglycerides were associated with upregulation of IFN-γ and IL-12, suggesting activation of Th1 helper cells. Furthermore, levels of IFN-γ and IL-12 were increased in patients with lower severity scores, suggesting that a Th1 type immune response is playing protective role in NE. These combined data advance the understanding of NE pathogenesis and indicate a role for high triglycerides in disease severity. PMID:28053993
Mehta, Vedanta; Abi-Nader, Khalil N; Shangaris, Panicos; Shaw, S W Steven; Filippi, Elisa; Benjamin, Elizabeth; Boyd, Michael; Peebles, Donald M; Martin, John; Zachary, Ian; David, Anna L
2014-01-01
The normal development of the uteroplacental circulation in pregnancy depends on angiogenic and vasodilatory factors such as vascular endothelial growth factor (VEGF). Reduced uterine artery blood flow (UABF) is a common cause of fetal growth restriction; abnormalities in angiogenic factors are implicated. Previously we showed that adenovirus (Ad)-mediated VEGF-A165 expression in the pregnant sheep uterine artery (UtA) increased nitric oxide synthase (NOS) expression, altered vascular reactivity and increased UABF. VEGF-D is a VEGF family member that promotes angiogenesis and vasodilatation but, in contrast to VEGF-A, does not increase vascular permeability. Here we examined the effect of Ad.VEGF-DΔNΔC vector encoding a fully processed form of VEGF-D, on the uteroplacental circulation. UtA transit-time flow probes and carotid artery catheters were implanted in mid-gestation pregnant sheep (n = 5) to measure baseline UABF and maternal haemodynamics respectively. 7-14 days later, after injection of Ad.VEGF-DΔNΔC vector (5×10(11) particles) into one UtA and an Ad vector encoding β-galactosidase (Ad.LacZ) contralaterally, UABF was measured daily until scheduled post-mortem examination at term. UtAs were assessed for vascular reactivity, NOS expression and endothelial cell proliferation; NOS expression was studied in ex vivo transduced UtA endothelial cells (UAECs). At 4 weeks post-injection, Ad.VEGF-DΔNΔC treated UtAs showed significantly lesser vasoconstriction (Emax144.0 v/s 184.2, p = 0.002). There was a tendency to higher UABF in Ad.VEGF-DΔNΔC compared to Ad.LacZ transduced UtAs (50.58% v/s 26.94%, p = 0.152). There was no significant effect on maternal haemodynamics. An increased number of proliferating endothelial cells and adventitial blood vessels were observed in immunohistochemistry. Ad.VEGF-DΔNΔC expression in cultured UAECs upregulated eNOS and iNOS expression. Local over-expression of VEGF-DΔNΔC in the UtAs of pregnant mid-gestation sheep reduced vasoconstriction, promoted endothelial cell proliferation and showed a trend towards increased UABF. Studies in cultured UAECs indicate that VEGF-DΔNΔC may act in part through upregulation of eNOS and iNOS.
Zhu, Andrew X; Finn, Richard S; Mulcahy, Mary; Gurtler, Jayne; Sun, Weijing; Schwartz, Jonathan D; Dalal, Rita P; Joshi, Adarsh; Hozak, Rebecca R; Xu, Yihuan; Ancukiewicz, Marek; Jain, Rakesh K; Nugent, Francis W; Duda, Dan G; Stuart, Keith
2013-12-01
To assess the efficacy and safety of the anti-VEGF receptor-2 (VEGFR-2) antibody ramucirumab as first-line therapy in patients with advanced hepatocellular carcinoma and explore potential circulating biomarkers. Adults with advanced hepatocellular carcinoma and no prior systemic treatment received ramucirumab 8 mg/kg every two weeks until disease progression or limiting toxicity. The primary endpoint was progression-free survival (PFS); secondary endpoints included objective response rate (ORR) and overall survival (OS). Circulating biomarkers were evaluated before and after ramucirumab treatment in a subset of patients. Forty-two patients received ramucirumab. Median PFS was 4.0 months [95% confidence interval (CI), 2.6-5.7], ORR was 9.5% (95% CI, 2.7-22.6; 4/42 patients had a partial response), and median OS was 12.0 months (95% CI, 6.1-19.7). For patients with Barcelona Clinic Liver Cancer (BCLC) stage C disease, median OS was 4.4 months (95% CI, 0.5-9.0) for patients with Child-Pugh B cirrhosis versus 18.0 months (95% CI, 6.1-23.5) for patients with Child-Pugh A cirrhosis. Treatment-related grade ≥ 3 toxicities included hypertension (14%), gastrointestinal hemorrhage and infusion-related reactions (7% each), and fatigue (5%). There was one treatment-related death (gastrointestinal hemorrhage). After treatment with ramucirumab, there was an increase in serum VEGF and placental growth factor (PlGF) and a transient decrease in soluble VEGFR-2. Ramucirumab monotherapy may confer anticancer activity in advanced hepatocellular carcinoma with an acceptable safety profile. Exploratory biomarker studies showed changes in circulating VEGF, PlGF, and sVEGFR-2 that are consistent with those seen with other anti-VEGF agents. ©2013 AACR.
Liu, Lixin; Marti, Guy P.; Wei, Xiaofei; Zhang, Xianjie; Zhang, Huafeng; Liu, Ye V.; Nastai, Manuel; Semenza, Gregg L.; Harmon, John W.
2009-01-01
Wound healing is impaired in elderly patients with diabetes mellitus. We hypothesized that age-dependent impairment of cutaneous wound healing in db/db diabetic mice: (a) would correlate with reduced expression of the transcription factor hypoxia-inducible factor 1α (HIF-1α) as well as its downstream target genes; and (b) could be overcome by HIF-1α replacement therapy. Wound closure, angiogenesis, and mRNA expression in excisional skin wounds were analyzed and circulating angiogenic cells were quantified in db/db mice that were untreated or received electroporation-facilitated HIF-1α gene therapy. HIF-1α mRNA levels in wound tissue were significantly reduced in older (4–6 months) as compared to younger (1.5–2 months) db/db mice. Expression of mRNAs encoding the angiogenic cytokines vascular endothelial growth factor (VEGF), angiopoietin 1 (ANGPT1), ANGPT2, platelet derived growth factor B (PDGF-B), and placental growth factor (PLGF) was also impaired in wounds of older db/db mice. Intradermal injection of plasmid gWIZ-CA5, which encodes a constitutively active form of HIF-1α, followed by electroporation, induced increased levels of HIF-1α mRNA at the injection site on day 3 and increased levels of VEGF, PLGF, PDGF-B, and ANGPT2 mRNA on day 7. Circulating angiogenic cells in peripheral blood increased 10-fold in mice treated with gWIZ-CA5. Wound closure was significantly accelerated in db/db mice treated with gWIZ-CA5 as compared to mice treated with empty vector. Thus, HIF-1α gene therapy corrects the age-dependent impairment of HIF-1α expression, angiogenic cytokine expression, and circulating angiogenic cells that contribute to the age-dependent impairment of wound healing in db/db mice. PMID:18506785
VEGF Promotes Malaria-Associated Acute Lung Injury in Mice
Carapau, Daniel; Pena, Ana C.; Ataíde, Ricardo; Monteiro, Carla A. A.; Félix, Nuno; Costa-Silva, Artur; Marinho, Claudio R. F.; Dias, Sérgio; Mota, Maria M.
2010-01-01
The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies. PMID:20502682
Heritability of circulating growth factors involved in the angiogenesis in healthy human population.
Pantsulaia, I; Trofimov, S; Kobyliansky, E; Livshits, G
2004-09-21
The present study examined the extent of genetic and environmental influences on the populational variation of circulating growth factors (VEGF, EGF) involved in angiogenesis in healthy and ethnically homogeneous Caucasian families. The plasma levels of each of the studied biochemical indices were determined by enzyme-linked immunoassay in 478 healthy individuals aged 18-75 years. Quantitative genetic analysis showed that the VEGF and EGF variation was appreciably attributable to genetic effects, with heritability estimates of 79.9% and 48.4%, respectively. Yet, common environmental factors, shared by members of the same household, also played a significant role (P < 0.01) and explained between 20.1% and 32.6% of the variation. The present study additionally examined the covariations between these molecules and either transforming growth factor-beta 1 (TGF-beta 1) or tissue inhibitors of matrix metalloproteinases 1 (TIMP-1), likewise relevant for angiogenesis. Bivariate analysis revealed significant phenotypic correlations (P < 0.002) between all pairs of variables, thus indicating the possible existence of common genetic and environmental factors. The analysis suggested that the pleiotropic genetic effects were consistently the primary (or even the sole) source of correlation between all pairs of studied molecules. The results of our study affirm the existence of specific and common genetic pathways that commonly determine the greater part of the circulating variation of these molecules.
Pountos, Ippokratis; Georgouli, Theodora; Henshaw, Karen; Bird, Howard; Giannoudis, Peter V
2013-02-01
The systemic response after fracture is regulated by a complex mechanism involving numerous growth factors. In this study, we analyzed the kinetics of key growth factors following lower-limb long bone fracture. Human serum was isolated from 15 patients suffering from lower-limb long bone fracture (tibia/femur) requiring surgical fixation. The levels of platelet-derived growth factor (PDGF-BB), vascular edothelial growth factor (VEGF), insulin growth factor-I (IGF-I), and transforming growth factor β1 (TGF-β1) were assayed by colorimetric ELISA at different time points during the first week after fracture. 10 healthy volunteers made up the control group of the study. Serum levels of the growth factors measured were compared to age, sex, and injury severity score. We found that there was a decline in the levels of PDGF-BB, IGF-I and TGF-β1 during the first 3 days after fracture. However, VEGF levels remained unchanged. The levels of all the growth factors studied then increased, with the highest concentrations noted at day 7 after surgery. No correlation was found between circulating levels of growth factors and age, injury severity score (ISS), blood loss, or fluid administration. There are systemic mitogenic and osteogenic signals after fracture. Important growth factors are released into the peripheral circulation, but early after surgery it appears that serum levels of key growth factors fall. By 7 days postoperatively, the levels had increased considerably. Our findings should be considered in cases where autologous serum is used for ex vivo expansion of mesenchymal stem cells. There should be further evaluation of the use of these molecules as biomarkers of bone union.
Duggan, Catherine; Tapsoba, Jean de Dieu; Wang, Ching-Yun; McTiernan, Anne
2016-07-15
Obese and sedentary persons have an increased risk for cancer, but underlying mechanisms are poorly understood. Angiogenesis is common to adipose tissue formation and remodeling, and to tumor vascularization. A total of 439 overweight/obese, healthy, postmenopausal women [body mass index (BMI) > 25 kg/m(2)] ages 50-75 years, recruited between 2005 and 2008 were randomized to a 4-arm 12-month randomized controlled trial, comparing a caloric restriction diet arm (goal: 10% weight loss, N = 118), aerobic exercise arm (225 minutes/week of moderate-to-vigorous activity, N = 117), a combined diet + exercise arm (N = 117), or control (N = 87) on circulating levels of angiogenic biomarkers. VEGF, plasminogen activator inhibitor-1 (PAI-1), and pigment epithelium-derived factor (PEDF) were measured by immunoassay at baseline and 12 months. Changes were compared using generalized estimating equations, adjusting for baseline BMI, age, and race/ethnicity. Participants randomized to the diet + exercise arms had statistically significantly greater reductions in PAI-1 at 12 months compared with controls (-19.3% vs. +3.48%, respectively, P < 0.0001). Participants randomized to the diet and diet + exercise arms had statistically significantly greater reductions in PEDF (-9.20%, -9.90%, respectively, both P < 0.0001) and VEGF (-8.25%, P = 0.0005; -9.98%, P < 0.0001, respectively) compared with controls. There were no differences in any of the analytes in participants randomized to the exercise arm compared with controls. Increasing weight loss was statistically significantly associated with linear trends of greater reductions in PAI-1, PEDF, and VEGF. Weight loss is significantly associated with reduced circulating VEGF, PEDF, and PAI-1, and could provide incentive for reducing weight as a cancer prevention method in overweight and obese individuals. Cancer Res; 76(14); 4226-35. ©2016 AACR. ©2016 American Association for Cancer Research.
Prognostic value of serum angiogenic activity in colorectal cancer patients
Gonzalez, Francisco-Jesus; Quesada, Ana-Rodriguez; Sevilla, Isabel; Baca, Juan-Javier; Medina, Miguel-Angel; Amores, Jose; Diaz, Juan Miguel; Rius-Diaz, Francisca; Marques, Eduardo; Alba, Emilio
2007-01-01
Abstract Angiogenesis, resulting from an imbalance between angiogenic activator factors and inhibitors, is required for tumour growth and metastasis. The determination of the circulating concentration of all angiogenic factors (activators and inhibitors) is not feasible at present. We have evaluated diagnostic and prognostic values of the measurement of serum angiogenic activity in colorectal carcinoma (CRC) patients. Serum proliferative activity (PA) on human umbilical vein endothelial cells (HUVEC) in vitro, and serum vascular endothelial growth factor (VEGF) levels were determined by ELISA in 53 patients with primary CRC, 16 subjects with non-neoplastic gastrointestinal disease (SC) and 34 healthy individuals. Data were compared with clinical outcome of the patients. Although serum from CRC patients significantly increased the PA of HUVEC, compared to culture control (HUVEC in medium + 10% foetal bovine serum (FBS); P < 0.001); our results indicate that serum PA in CRC patients was similar to that of SC or healthy individuals. There was no correlation between serum PA and circulating VEGF concentrations. Surgery produced a decrease of PA at 8 hrs after tumour resection in CRC patients compared to pre-surgery values (186 ± 47 versus 213 ± 41, P < 0.001). However, an increase in serum VEGF values was observed after surgery (280 [176–450] versus 251 [160–357] pg/ml, P = 0.004). Patients with lower PA values after surgery showed a worse outcome that those with higher PA values. Therefore, this study does not support a diagnostic value for serum angiogenic activity measured by proliferative activity on HUVEC but suggests it could have a prognostic value in CRC patients. PMID:17367506
Biomarkers of response and resistance to antiangiogenic therapy
Jain, Rakesh K.; Duda, Dan G.; Willett, Christopher G.; Sahani, Dushyant V.; Zhu, Andrew X.; Loeffler, Jay S.; Batchelor, Tracy T.; Sorensen, A. Gregory
2011-01-01
No validated biological markers (or biomarkers) currently exist for appropriately selecting patients with cancer for antiangiogenic therapy. Nor are there biomarkers identifying escape pathways that should be targeted after tumors develop resistance to a given antiangiogenic agent. A number of potential systemic, circulating, tissue and imaging biomarkers have emerged from recently completed phase I–III studies. Some of these are measured at baseline (for example VEGF polymorphisms), others are measured during treatment (such as hypertension, MRI-measured Ktrans, circulating angiogenic molecules or collagen IV), and all are mechanistically based. Some of these biomarkers might be pharmacodynamic (for example, increase in circulating VEGF, placental growth factor) while others have potential for predicting clinical benefit or identifying the escape pathways (for example, stromal-cell-derived factor 1α, interleukin-6). Most biomarkers are disease and/or agent specific and all of them need to be validated prospectively. We discuss the current challenges in establishing biomarkers of antiangiogenic therapy, define systemic, circulating, tissue and imaging biomarkers and their advantages and disadvantages, and comment on the future opportunities for validating biomarkers of antiangiogenic therapy. PMID:19483739
2016-03-01
increase in certain circulating cytokines reflected tumors that progress. This study’s cytokine assay employed the MilliPlex map Human Cytokine...receptors were assayed using MILLIPLEX MAP Human Soluble Cytokine Receptor Panel (cat# HSCRMAG-32K) and included: sCD30, sgp130, sIL-1RI, sIL-1RII, sIL-2Rα...sIL-4R, sIL-6R, sRAGE, sTNFRI, sTNFRII, sVEGF-R1, sVEGF-R2, sVEGF-R3. Separately were run TGF β 1, TGF β 2, and TGF β 3 using the MILLIPLEX MAP
Yang, Peng-Yuan; Rui, Yao-Cheng; Jin, You-Xin; Li, Tie-Jun; Qiu, Yan; Zhang, Li; Wang, Jie-Song
2003-06-01
To study the expression of vascular endothelial growth factor (VEGF) induced by oxidized low density liporotein (ox-LDL) and the inhibitory effects of antisense oligodeoxynucleotide (asODN) on the levels of VEGF protein and mRNA in the U937 foam cells. U937 cells were incubated with ox-LDL 80 mg/L for 48 h, then, the foam cells were treated with asODN (0, 5, 10, and 20 micromol/L). The VEGF concentration in the media was determined by ELISA. The VEGF protein expression level in cells was measured by immuohistochemistry; the positive ratio detected by a morphometrical analysis system was used as the amount of the VEGF expression level. The VEGF mRNA level was examined by Northern blotting. After U937 cells were incubated with ox-LDL, VEGF expression level increased greatly both in the cells and in the media. asODN markedly inhibited the increase of VEGF. After treatment with asODN 20 micromol/L, the VEGF protein concentration in the media decreased by 45.0%, the VEGF positive ratio detected by immuohistochemistry in cells decreased by 64.9%, and the VEGF mRNA level decreased by 47.1%. The expression of VEGF in U937 foam cells was strong. asODN inhibited VEGF expression significantly in U937 foam cells in vitro.
Regression of Pathological Cardiac Hypertrophy: Signaling Pathways and Therapeutic Targets
Hou, Jianglong; Kang, Y. James
2012-01-01
Pathological cardiac hypertrophy is a key risk factor for heart failure. It is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. The progression of pathological cardiac hypertrophy has long been considered as irreversible. However, recent clinical observations and experimental studies have produced evidence showing the reversal of pathological cardiac hypertrophy. Left ventricle assist devices used in heart failure patients for bridging to transplantation not only improve peripheral circulation but also often cause reverse remodeling of the geometry and recovery of the function of the heart. Dietary supplementation with physiologically relevant levels of copper can reverse pathological cardiac hypertrophy in mice. Angiogenesis is essential and vascular endothelial growth factor (VEGF) is a constitutive factor for the regression. The action of VEGF is mediated by VEGF receptor-1, whose activation is linked to cyclic GMP-dependent protein kinase-1 (PKG-1) signaling pathways, and inhibition of cyclic GMP degradation leads to regression of pathological cardiac hypertrophy. Most of these pathways are regulated by hypoxia-inducible factor. Potential therapeutic targets for promoting the regression include: promotion of angiogenesis, selective enhancement of VEGF receptor-1 signaling pathways, stimulation of PKG-1 pathways, and sustention of hypoxia-inducible factor transcriptional activity. More exciting insights into the regression of pathological cardiac hypertrophy are emerging. The time of translating the concept of regression of pathological cardiac hypertrophy to clinical practice is coming. PMID:22750195
NASA Astrophysics Data System (ADS)
Beijer, Åsa; Degens, Hans; May, Francisca; Bloch, Wilhelm; Rittweger, Joern; Rosenberger, Andre
2012-07-01
Both Resistance Exercise and Whole-Body-Vibration training are currently considered as countermeasures against microgravity-induced physiological deconditioning. Here we investigated the effects of whole-body vibration superimposed upon resistance exercise. Within this context, the present study focuses on changes in circulating angiogenic factors as indicators of skeletal muscle adaption. Methods: Twenty-six healthy male subjects (25.2 ± 4.2 yr) were included in this two-group parallel-designed study and randomly assigned to one of the training interventions: either resistance exercise (RE) or resistance vibration exercise (RVE). Participants trained 2-3 times per week for 6 weeks (completing 16 training sessions), where one session took 9 ± 1 min. Participants trained with weights on a guided barbell. The individual training load was set at 80% of their 1-Repetition-Maximum. Each training session consisted of three sets with 8 squats and 12 heel raises, following an incremental training design with regards to weight (RE and RVE) and vibration frequency (RVE only). The vibration frequency was increased from 20 Hz in the first week till 40 Hz during the last two weeks with 5-Hz weekly increments. At the first and 16 ^{th} training session, six blood samples (pre training and 2 min, 5 min, 15 min, 35 min and 75 min post training) were taken. Circulating levels of vascular endothelial growth factor (VEGF), Endostatin and Matrix Metalloproteinases -2 and -9 (MMPs) were determined in serum using Enzyme-linked Immunosorbent Assays. Results: MMP-2 levels increased by 7.0% (SE = 2.7%, P < 0.001) within two minutes after the exercise bout and then decreased to 5.7% below baseline (SE = 2.4%, P < 0.001) between 15 and 75 minutes post exercise. This response was comparable before and after the training programs (P = 0.70) and also between the two intervention groups (P = 0.42). Preliminary analyses indicate that a similar pattern applies to circulating MMP-9, VEGF and Endostatin levels. Conclusion: The present findings suggest 1) that resistance exercise, both with and without superimposed vibration, leads to a transient rise in circulating angiogenic factors, 2) which is not altered after a period of resistance exercise with or without vibration.
Chang, Ching-Chih; Wang, Sun-Sang; Huang, Hui-Chun; Lee, Fa-Yauh; Lin, Han-Chieh; Lee, Jing-Yi; Chen, Yi-Chou; Lee, Shou-Dong
2009-05-01
Arginine vasopressin (AVP) controls gastroesophageal variceal bleeding, partly due to its vasoconstrictive effect on portal-systemic collaterals. It has been shown that chronic thalidomide treatment decreases portal pressure, attenuates hyperdynamic circulation and inhibits vascular endothelial growth factor (VEGF) and tumor necrosis factor (TNF)-alpha in partially portal vein-ligated rats. This study investigated the effects of chronic thalidomide treatment on portal-systemic collateral vascular responsiveness to AVP in common bile duct-ligated (CBDL) cirrhotic rats. In the first series, CBDL-induced cirrhotic rats received thalidomide (50 mg/kg/day orally) or distilled water (control) from the 35th to 42nd day after ligation. On the 43rd day after ligation, the body weight, mean arterial pressure, portal pressure, and heart rate were measured. An in situ collateral vascular perfusion model was used to obtain the cumulative concentration-response curves of collateral vessels to AVP (10(-10) to 3 x 10(-7) M). Plasma levels of VEGF and TNF-alpha were measured, and expressions of VEGF and TNF-alpha mRNA in the left adrenal veins were also determined. In the second series, the cumulative concentration-response curves of collateral vessels to AVP in CBDL rats with or without thalidomide (10(-5) M) preincubation in the perfusate were obtained. The thalidomide and control groups were not significantly different in terms of heart rate, mean arterial pressure and portal pressure (p > 0.05). The collateral vascular perfusion pressure change to AVP was significantly enhanced at 10(-8) M after thalidomide treatment (p = 0.041). Compared with the control group, thalidomide-treated rats had significantly lower plasma VEGF levels (p < 0.001), accompanied by an insignificant reduction in plasma TNF-alpha levels (p > 0.05). The expressions of VEGF and TNF-alpha mRNA in the left adrenal veins of thalidomide-treated CBDL rats were not significantly changed compared with those of the control group. In addition, thalidomide did not significantly elicit changes in vascular responsiveness to AVP in collateral vessels of CBDL rats when it was added into the perfusate. In cirrhotic rats, chronic thalidomide treatment improves the portal-systemic collateral vascular responsiveness to AVP, which was partly related to VEGF inhibition.
Pietrowski, D; Szabo, L; Sator, M; Just, A; Egarter, C
2012-01-01
Ovarian hyperstimulation syndrome (OHSS) is a potentially life-threatening condition associated with increased vascular permeability. The vascular endothelial growth factor (VEGF) system and its receptors have been identified as the main angiogenic factors responsible for increased capillary permeability and are therefore discussed as crucial for the occurrence of OHSS. Recently, a number of soluble receptors for the VEGFs have been detected (sVEGF-Rs) and it has been shown that these sVEGF-Rs compete with the membrane-standing VEGF-R to bind VEGFs. We analyzed the serum levels of soluble VEGF-R1, -R2 and -R3 in 34 patients suffering from OHSS and in 34 controls without this disease. In a subgroup analysis, we correlated the severity of the OHSS with the detected amounts of VEGF-R1, -R2 and -R3. In addition, we determined the amount of total VEGF-A in the samples. All the three soluble VEGF receptors tended to be higher in the control group compared with that in the OHSS group but this difference only reached significance for sVEGF-R2 (mean ± SEM: 15.5 ± 0.6 versus 13.8 ± 0.5 ng/ml, respectively, P< 0.05). In the subgroup analysis, sVEGF-R2 levels decreased as the severity of OHSS increased (OHSS-I: 16.8 ± 1.9 ng/ml and OHSS-III: 12.7 ± 1.0 ng/ml, P< 0.05) Moreover, the serum levels of total VEGF-A were higher in the OHSS group than those in the controls (537.7 ± 38.9 versus 351 ± 53.4 pg/ml, respectively P< 0.05). We propose that VEGF-A plays a role in the occurrence of OHSS, that the amount of biologically available VEGF-A is modulated by sVEGF-Rs and that different combinations of VEGF-A and sVEGF-R levels might contribute to the severity of OHSS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanagawa, Takashi, E-mail: tyanagaw@med.gunma-u.ac.jp; Shinozaki, Tetsuya; Watanabe, Hideomi
2012-04-15
Studies on lymph node metastasis of soft tissue sarcomas are insufficient because of its rarity. In this study, we examined the expressions of vascular endothelial growth factor (VEGF)-C and VEGF-D in soft tissue sarcomas metastasized to lymph nodes. In addition, the effects of the two molecules on the barrier function of a lymphatic endothelial cell monolayer against sarcoma cells were analyzed. We examined 7 patients who had soft tissue sarcomas with lymph node metastases and who had undergone neither chemotherapy nor radiotherapy before lymphadenectomy. Immunohistochemistry revealed that 2 of 7 sarcomas that metastasized to lymph nodes expressed VEGF-C both inmore » primary and metastatic lesions. On the other hand, VEGF-D expression was detected in 4 of 7 primary and 7 of 7 metastatic lesions, respectively. Interestingly, 3 cases that showed no VEGF-D expression at primary sites expressed VEGF-D in metastatic lesions. Recombinant VEGF-C at 10{sup -8} and VEGF-D at 10{sup -7}and 10{sup -8} g/ml significantly increased the random motility of lymphatic endothelial cells compared with controls. VEGF-D significantly increased the migration of sarcoma cells through lymphatic endothelial monolayers. The fact that VEGF-D induced the migration of fibrosarcomas through the lymphatic endothelial monolayer is the probable reason for the strong relationship between VEGF-D expression and lymph node metastasis in soft tissue sarcomas. The important propensities of this molecule for the increase of lymph node metastases are not only lymphangiogenesis but also down-regulation of the barrier function of lymphatic endothelial monolayers, which facilitates sarcoma cells entering the lymphatic circulation.« less
Fan, Xiaohong; Wu, Qunhong; Li, Yuan; Hao, Yanhua; Ning, Ning; Kang, Zheng; Cui, Yu; Liu, Ruohong; Han, Liyuan
2014-01-01
Vascular endothelial growth factor (VEGF) is a major mediator of angiogenesis, and plays a key role in the pathogenesis of diabetic retinopathy (DR). This study was designed to identify the possible role of VEGF gene polymorphisms in the development of DR in type 2 diabetic patients in Chinese and clarify the relationship between VEGF serum levels and the risk of DR. This cross-sectional study included 1 040 Chinese subjects with type 2 diabetes mellitus. There were 372 patients diagnosed with DR in the case group and 668 patients without DR in the control group. DNA from each patient was analyzed for VEGF polymorphisms of -2578A/C (rs699947), -1154G/A (rs1570360), -460C/T (rs833061), +405C/G (rs2010963), and +936C/T (rs3025039) using MassARRAY compact analyzer. The VEGF serum levels were quantified by enzyme-linked immunosorbent assay (ELISA). No evidence of association was observed between -2578 A/C (rs699947), +405C/G (rs2010963), +936C/T (rs3025039), and DR risk under stringent Bonferroni's correction. However, VEGF serum levels were significantly higher in DR patients than those of control group. The genetic variation of VEGF polymorphisms influenced VEGF serum levels; subjects carrying the VEGF -2578 C/C (rs699947) genotype had greater VEGF serum levels than those carrying the C/A genotype and VEGF serum levels were significantly higher in CC genotype of the +405C/G (rs2010963) compared with those of the other genotypes. The data did not suggest significant association between the VEGF polymorphisms and DR risk under stringent Bonferroni's correction. However, our study indicated that DR patients have higher VEGF levels than diabetic patients without retinopathy, and -2578A/C (rs699947) and +405C/G (rs2010963) may be important factors in determining serum VEGF levels.
Hernández, Cristina; Zapata, Miguel A; Losada, Eladio; Villarroel, Marta; García-Ramírez, Marta; García-Arumí, José; Simó, Rafael
2010-07-01
To evaluate whether intensive insulin therapy leads to changes in macular biometrics (volume and thickness) in newly diagnosed diabetic patients with acute hyperglycaemia and its relationship with serum levels of vascular endothelial growth factor (VEGF) and its soluble receptor (sFlt-1). Twenty-six newly diagnosed diabetic patients admitted to our hospital to initiate intensive insulin treatment were prospectively recruited. Examinations were performed on admission (day 1) and during follow-up (days 3, 10 and 21) and included a questionnaire regarding the presence of blurred vision, standardized refraction measurements and optical coherence tomography. Plasma VEGF and sFlt-1 were assessed by ELISA at baseline and during follow-up. At study entry seven patients (26.9%) complained of blurred vision and five (19.2%) developed burred vision during follow-up. Macular volume and thickness increased significantly (p = 0.008 and p = 0.04, respectively) in the group with blurred vision at day 3 and returned to the baseline value at 10 days. This pattern was present in 18 out of the 24 eyes from patients with blurred vision. By contrast, macular biometrics remained unchanged in the group without blurred vision. We did not detect any significant changes in VEGF levels during follow-up. By contrast, a significant reduction of sFlt-1 was observed in those patients with blurred vision at day 3 (p = 0.03) with normalization by day 10. Diabetic patients with blurred vision after starting insulin therapy present a significant transient increase in macular biometrics which is associated with a decrease in circulating sFlt-1. Copyright (c) 2010 John Wiley & Sons, Ltd.
Nayak, Lakshmi; de Groot, John; Wefel, Jeffrey S; Cloughesy, Timothy F; Lieberman, Frank; Chang, Susan M; Omuro, Antonio; Drappatz, Jan; Batchelor, Tracy T; DeAngelis, Lisa M; Gilbert, Mark R; Aldape, Kenneth D; Yung, Alfred WK; Fisher, Joy; Ye, Xiaobu; Chen, Alice; Grossman, Stuart; Prados, Michael; Wen, Patrick Y
2017-01-01
Background Anti-vascular endothelial growth factor (VEGF) therapy has shown promise in the treatment of high-grade gliomas (HGG). Aflibercept is a recombinant human fusion protein that acts as a soluble decoy receptor for VEGF-A, VEGF-B and placental growth factor (PlGF), depleting circulating levels of these growth factors. Methods The Adult Brain Tumor Consortium (ABTC) conducted a phase I trial of aflibercept and temozolomide (TMZ) in patients with newly diagnosed high-grade gliomas (HGG) with 2 dose levels and a 3+3 design. Three arms using aflibercept were examined; with radiation and concomitant temozolomide; with adjuvant temozolomide using the 5/28 regimen; and with adjuvant temozolomide using the 21/28 day regimen. Results Fifty-nine patients were enrolled, 21 in arm 1, 20 in arm 2 and 18 in arm 3. Median age was 56 years (24-69); median KPS 90 (60-100). The maximum tolerated dose (MTD) of aflibercept for all 3 arms was 4mg/kg every 2 weeks. Dose limiting toxicities (DLTs) at the MTD were: Arm 1: 0/21 patients; Arm 2: 2/20 patients (G3 deep vein thrombosis, G4 neutropenia; Arm 3: 3/18 patients (G4 biopsy-confirmed thrombotic microangiopathy, G3 rash, G4 thrombocytopenia). The median number of cycles of aflibercept was 5 (range, 1-16). All patients stopped treatment; 28 (47%) for disease progression, 21 (36%) for toxicities, 8 (14%) for other reasons, and 2 (3%) patients completed the full treatment course. Conclusions This study met its primary endpoint and the MTD of aflibercept with radiation and concomitant and adjuvant temozolomide is 4mg/kg every 2 weeks. PMID:28116649
Nayak, Lakshmi; de Groot, John; Wefel, Jeffrey S; Cloughesy, Timothy F; Lieberman, Frank; Chang, Susan M; Omuro, Antonio; Drappatz, Jan; Batchelor, Tracy T; DeAngelis, Lisa M; Gilbert, Mark R; Aldape, Kenneth D; Yung, Alfred W K; Fisher, Joy; Ye, Xiaobu; Chen, Alice; Grossman, Stuart; Prados, Michael; Wen, Patrick Y
2017-03-01
Anti-vascular endothelial growth factor (VEGF) therapy has shown promise in the treatment of high-grade gliomas (HGG). Aflibercept is a recombinant human fusion protein that acts as a soluble decoy receptor for VEGF-A, VEGF-B and placental growth factor, depleting circulating levels of these growth factors. The Adult Brain Tumor Consortium conducted a phase I trial of aflibercept and temozolomide (TMZ) in patients with newly diagnosed HGG with 2 dose levels and a 3+3 design. Three arms using aflibercept were examined; with radiation and concomitant temozolomide; with adjuvant temozolomide using the 5/28 regimen; and with adjuvant temozolomide using the 21/28 day regimen. Fifty-nine patients were enrolled, 21 in arm 1, 20 in arm 2 and 18 in arm 3. Median age was 56 years (24-69); median KPS 90 (60-100). The maximum tolerated dose (MTD) of aflibercept for all 3 arms was 4 mg/kg every 2 weeks. Dose limiting toxicities at the MTD were: Arm 1: 0/21 patients; Arm 2: 2/20 patients (G3 deep vein thrombosis, G4 neutropenia; Arm 3: 3/18 patients) (G4 biopsy-confirmed thrombotic microangiopathy, G3 rash, G4 thrombocytopenia). The median number of cycles of aflibercept was 5 (range, 1-16). All patients stopped treatment; 28 (47%) for disease progression, 21 (36%) for toxicities, 8 (14%) for other reasons, and 2 (3%) patients completed the full treatment course. This study met its primary endpoint and the MTD of aflibercept with radiation and concomitant and adjuvant temozolomide is 4 mg/kg every 2 weeks.
Obuchowicz, Ewa; Nowacka, Marta; Paul-Samojedny, Monika; Bielecka-Wajdman, Anna M; Małecki, Andrzej
2017-02-01
The present study was designed to evaluate, for the first time, the potential sex differences in BDNF and VEGF systems under normal conditions and in response to IL-1β given ip. Peripheral overproduction of this cytokine mediates the pathophysiology of various acute neuroinflammatory states. Until now, the effect of IL-1β on VEGF expression in rat brain structures and its serum level has not been examined. In male and female rats, the BDNF and VEGF mRNA expression, and BDNF level were evaluated in the amygdala, hippocampus, hypothalamus and pituitary gland. The VEGF levels were determined in the pituitary. Serum BDNF and VEGF levels were also measured. The pituitary BDNF mRNA, and BDNF and VEGF levels were higher in females than in male rats whereas in males, the BDNF levels were higher in the other brain structures. The serum BDNF concentration was similar in both groups but VEGF levels were enhanced in females. Following IL-1β (50μg/kg ip.) administration, a higher serum IL-1β level was detected in females than in males. In male rats, IL-1β decreased BDNF mRNA in all the brain structures, except for the pituitary, and VEGF mRNA in the amygdala. In opposite, IL-1β challenge in females increased the pituitary VEGF mRNA and serum BDNF and VEGF levels. These results suggest that in females BDNF and VEGF may play a more important role in the pituitary function. In males, amygdala trophic system seems to be especially sensitive to the enhanced peripheral IL-1β production. Our findings point to the need to consider sex-related differences to be able to draw reliable conclusions about changes in BDNF and VEGF levels during inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Catena, Raul; Muniz-Medina, Vanessa; Moralejo, Beatriz; Javierre, Biola; Best, Carolyn J M; Emmert-Buck, Michael R; Green, Jeffrey E; Baker, Carl C; Calvo, Alfonso
2007-05-15
Vascular endothelial growth factor (VEGF) is a proangiogenic factor upregulated in many tumors. The alternative splicing of VEGF mRNA renders 3 major isoforms of 121, 165 and 189 amino-acids in humans (1 less amino-acid for each mouse VEGF isoform). We have designed isoform specific real time QRT-PCR assays to quantitate VEGF transcripts in mouse and human normal and malignant prostates. In the human normal prostate, VEGF(165) was the predominant isoform (62.8% +/- 5.2%), followed by VEGF(121) (22.5% +/- 6.3%) and VEGF(189) (p < 0.001) (14.6% +/- 2.1%). Prostate tumors showed a significant increase in the percentage of VEGF(121) and decreases in VEGF(165) (p < 0.01) and VEGF(189) (p < 0.05). However, the amount of total VEGF mRNA was similar between normal and malignant prostates. VEGF(164) was the transcript with the highest expression in the mouse normal prostate. Unlike human prostate cancer, tumors from TRAMP mice demonstrated a significant increase in total VEGF mRNA levels and in each of the VEGF isoforms, without changes in the relative isoform ratios. Morpholino phosphorodiamide antisense oligonucleotide technology was used to increase the relative amount of VEGF(121) while proportionally decreasing VEGF(165) and VEGF(189) levels in human prostate cell lines, through the modification of alternative splicing, without changing transcription levels and total amount of VEGF. The increase in the VEGF(121)/VEGF(165-189) ratio in PC3 cells resulted in a dramatic increase in prostate tumor angiogenesis in vivo. Our results underscore the importance of VEGF(121) in human prostate carcinoma and demonstrate that the relative expression of the different VEGF isoforms has an impact on prostate carcinogenesis. (c) 2007 Wiley-Liss, Inc.
Batchelor, Tracy T.; Sorensen, A. Gregory; di Tomaso, Emmanuelle; Zhang, Wei-Ting; Duda, Dan G.; Cohen, Kenneth S.; Kozak, Kevin R.; Cahill, Daniel P.; Chen, Poe-Jou; Zhu, Mingwang; Ancukiewicz, Marek; Mrugala, Maciej M.; Plotkin, Scott; Drappatz, Jan; Louis, David N.; Ivy, Percy; Scadden, David T.; Benner, Thomas; Loeffler, Jay S.; Wen, Patrick Y.; Jain, Rakesh K.
2009-01-01
SUMMARY Using MRI techniques, we show here that normalization of tumor vessels in recurrent glioblastoma patients by daily administration of AZD2171—an oral tyrosine kinase inhibitor of VEGF receptors—has rapid onset, is prolonged but reversible, and has the significant clinical benefit of alleviating edema. Reversal of normalization began by 28 days, though some features persisted for as long as four months. Basic FGF, SDF1α, and viable circulating endothelial cells (CECs) increased when tumors escaped treatment, and circulating progenitor cells (CPCs) increased when tumors progressed after drug interruption. Our study provides insight into different mechanisms of action of this class of drugs in recurrent glioblastoma patients and suggests that the timing of combination therapy may be critical for optimizing activity against this tumor. PMID:17222792
Fischer, Richard; Scharr, Dirk; Büchert, Martin; Stern, Angelika; Gille, Hendrik; Audoly, Laurent P.; Scheulen, Max E.
2013-01-01
Background To report the nonrandomized first-in-human phase I trial of PRS-050, a novel, rationally engineered Anticalin based on human tear lipocalin that targets and antagonizes vascular endothelial growth factor A (VEGF-A). Methods Patients with advanced solid tumors received PRS-050 at 0.1 mg/kg to 10 mg/kg by IV in successive dosing cohorts according to the 3+3 escalation scheme. The primary end point was safety. Results Twenty-six patients were enrolled; 25 were evaluable. Two patients experienced dose-limiting toxicity, comprising grade (G) 3 hypertension and G3 pyrexia, respectively. The maximum tolerated dose was not reached. Most commonly reported treatment-emergent adverse events (AEs) included chills (52%; G3, 4%), fatigue (52%; G3, 4%), hypertension (44%; G3, 16%), and nausea (40%, all G1/2). No anti–PRS-050 antibodies following multiple administration of the drug were detected. PRS-050 showed dose-proportional pharmacokinetics (PK), with a terminal half-life of approximately 6 days. Free VEGF-A was detectable at baseline in 9/25 patients, becoming rapidly undetectable after PRS-050 infusion for up to 3 weeks. VEGF-A/PRS-050 complex was detectable for up to 3 weeks at all dose levels, including in patients without detectable baseline-free VEGF-A. We also detected a significant reduction in circulating matrix metalloproteinase 2, suggesting this end point could be a pharmacodynamic (PD) marker of the drug’s activity. Conclusions PRS-050, a novel Anticalin with high affinity for VEGF-A, was well-tolerated when administered at the highest dose tested, 10 mg/kg. Based on target engagement and PK/PD data, the recommended phase II dose is 5 mg/kg every 2 weeks administered as a 120-minute infusion. Trial Registration ClinicalTrials.gov NCT01141257 http://clinicaltrials.gov/ct2/show/NCT01141257 PMID:24349470
Swanson, Anna M; Rossi, Carlo A; Ofir, Keren; Mehta, Vedanta; Boyd, Michael; Barker, Hannah; Ledwozyw, Agata; Vaughan, Owen; Martin, John; Zachary, Ian; Sebire, Neil; Peebles, Donald M; David, Anna L
2016-12-01
In a model of growth-restricted sheep pregnancy, it was previously demonstrated that transient uterine artery VEGF overexpression can improve fetal growth. This approach was tested in guinea-pig pregnancies, where placental physiology is more similar to humans. Fetal growth restriction (FGR) was attained through peri-conceptual nutrient restriction in virgin guinea pigs. Ad.VEGF-A 165 or Ad.LacZ (1 × 10 10 vp) was applied at mid-gestation via laparotomy, delivered externally to the uterine circulation with thermosensitive gel. At short-term (3-8 days post surgery) or at term gestation, pups were weighed, and tissues were sampled for vector spread analysis, VEGF expression, and its downstream effects. Fetal weight at term was increased (88.01 ± 13.36 g; n = 26) in Ad.VEGF-A 165 -treated animals compared with Ad.LacZ-treated animals (85.52 ± 13.00 g; n = 19; p = 0.028). The brain, liver, and lung weight and crown rump length were significantly larger in short-term analyses, as well as VEGF expression in transduced tissues. At term, molecular analyses confirmed the presence of VEGF transgene in target tissues but not in fetal samples. Tissue histology analysis and blood biochemistry/hematological examination were comparable with controls. Uterine artery relaxation in Ad.VEGF-A 165 -treated dams was higher compared with Ad.LacZ-treated dams. Maternal uterine artery Ad.VEGF-A 165 increases fetal growth velocity and term fetal weight in growth-restricted guinea-pig pregnancy.
Cheng, Feifei; Zhao, Lu; Wu, Yuanyuan; Huang, Tiantian; Yang, Gangyi; Zhang, Zhanyu; Wu, Yijia; Jia, Fang; Wu, Jinlin; Chen, Chen; Liu, Dongfang
2016-03-01
To determine serum vascular endothelial growth factor B (VEGF-B) levels in polycystic ovary syndrome, their association with insulin resistance and β-cell dysfunction, and the effect of metformin on serum VEGF-B levels. A cross-sectional, interventional study. We recruited 103 women with polycystic ovary syndrome and 96 age-matched healthy controls. Serum VEGF-B levels were determined in all participants, and 44 polycystic ovary syndrome patients randomly received metformin. We measured VEGF-B levels in healthy controls and women with polycystic ovary syndrome before and after metformin treatment. Women with polycystic ovary syndrome had higher serum VEGF-B levels, which decreased with metformin treatment. In the lean and overweight/obese groups, patients with polycystic ovary syndrome had higher plasma VEGF-B levels than did healthy controls (P < 0·05). VEGF-B levels were correlated with body mass index, body fat percentage, M values, homeostasis model assessment of insulin resistance and β-cell function indices. A multiple linear regression analysis showed that VEGF-B level was associated with M values after adjusting for age, body mass index, serum sex hormones and serum lipids in women with polycystic ovary syndrome. Serum VEGF-B is significantly higher in women with polycystic ovary syndrome and is closely and positively related to insulin resistance. Metformin treatment reduces VEGF-B levels and ameliorates insulin resistance. © 2015 John Wiley & Sons Ltd.
Sakamoto, Minami; Miyagaki, Tomomitsu; Kamijo, Hiroaki; Oka, Tomonori; Takahashi, Naomi; Suga, Hiraku; Yoshizaki, Ayumi; Asano, Yoshihide; Sugaya, Makoto; Sato, Shinichi
2018-01-01
Angiogenesis is an important step to support progression of malignancies, including mycosis fungoides (MF) and Sézary syndrome (SS). Vascular endothelial growth factor (VEGF)-A, a key player in angiogenesis, is secreted by tumor cells of MF/SS and its expression levels in lesional skin correlated with disease severity. In this study, we examined serum VEGF-A levels in MF/SS patients. Serum VEGF-A levels were elevated in patients with erythrodermic MF/SS and the levels decreased after treatment. Importantly, serum VEGF-A levels positively correlated with markers for pruritus. We also found that VEGF-A upregulated mRNA expression of thymic stromal lymphopoietin by keratinocytes. Taken together, our study suggests that VEGF-A can promote progression and pruritus in MF/SS. Inhibition of VEGF-A signaling can be a therapeutic strategy for patients with erythrodermic MF/SS. © 2017 Japanese Dermatological Association.
Hypoxia-Induced Expression of VEGF Splice Variants and Protein in Four Retinal Cell Types
Watkins, William M.; McCollum, Gary W.; Savage, Sara R.; Capozzi, Megan E.; Penn, John S.; Morrison, David G.
2014-01-01
The purpose of this study was to investigate the hypoxia-induced Vegf120, Vegf164 and Vegf188 mRNA expression profiles in rat Müller cells (MC), astrocytes, retinal pigmented epithelial cells (RPE) and retinal microvascular endothelial cells (RMEC) and correlate these findings to VEGF secreted protein. Cultured cells were exposed to normoxia or hypoxia. Total RNA was isolated from cell lysates and Vegf splice variant mRNA copy numbers were assayed by a validated qRT-PCR external calibration curve method. mRNA copy numbers were normalized to input total RNA. Conditioned medium was collected from cells and assayed for total VEGF protein by ELISA. Hypoxia increased total Vegf mRNA and secreted protein in all the retinal cell types, with the highest levels observed in MC and astrocytes ranking second. Total Vegf mRNA levels in hypoxic RPE and RMEC were comparable; however, the greatest hypoxic induction of each Vegf splice variant mRNA was observed in RMEC. RPE and RMEC ranked 3rd and 4th respectively, in terms of secreted total VEGF protein in hypoxia. The Vegf120, Vegf164 and Vegf188 mRNA splice variants were all increased in hypoxic cells compared to normoxic controls. In normoxia, the relative Vegf splice variant mRNA levels ranked from highest to lowest for each cell type were Vegf164>Vegf120>Vegf188. Hypoxic induction did not alter this ranking, although it did favor an increased stoichiometry of Vegf164 mRNA over the other two splice variants. MC and astrocytes are likely to be the major sources of total Vegf, and Vegf164 splice variant mRNAs, and VEGF protein in retinal hypoxia. PMID:24076411
2017-08-30
stained cells in five randomly selected fields for each slide. ELISA Conditioned media from cell lines or mice sera diluted in carbonate coating buffer... ELISA . Our results showed that Pter/SAHA combination treat- ment was more effective in suppressing VEGF- c and IL- 1β circulating levels compared to...3) SAHA (50 mg/kg; n = 5), and (4) Pter + SAHA (10 mg/kg and 50 mg/kg; n = 7) by i.p. injections for 10 weeks were quantitatively analyzed by ELISA
2009-01-01
Background The detection of circulating tumor cells (CTC) is considered a promising tool for improving risk stratification in patients with solid tumors. We investigated on whether the expression of CTC related genes adds any prognostic power to the TNM staging system in patients with gastric carcinoma. Methods Seventy patients with TNM stage I to IV gastric carcinoma were retrospectively enrolled. Peripheral blood samples were tested by means of quantitative real time PCR (qrtPCR) for the expression of four CTC related genes: carcinoembryonic antigen (CEA), cytokeratin-19 (CK19), vascular endothelial growth factor (VEGF) and Survivin (BIRC5). Results Gene expression of Survivin, CK19, CEA and VEGF was higher than in normal controls in 98.6%, 97.1%, 42.9% and 38.6% of cases, respectively, suggesting a potential diagnostic value of both Survivin and CK19. At multivariable survival analysis, TNM staging and Survivin mRNA levels were retained as independent prognostic factors, demonstrating that Survivin expression in the peripheral blood adds prognostic information to the TNM system. In contrast with previously published data, the transcript abundance of CEA, CK19 and VEGF was not associated with patients' clinical outcome. Conclusions Gene expression levels of Survivin add significant prognostic value to the current TNM staging system. The validation of these findings in larger prospective and multicentric series might lead to the implementation of this biomarker in the routine clinical setting in order to optimize risk stratification and ultimately personalize the therapeutic management of these patients. PMID:20028510
Merentie, Mari; Rissanen, Riina; Lottonen-Raikaslehto, Line; Huusko, Jenni; Gurzeler, Erika; Turunen, Mikko P; Holappa, Lari; Mäkinen, Petri; Ylä-Herttuala, Seppo
2018-01-01
Vascular endothelial growth factor-A (VEGF-A) is the master regulator of angiogenesis, vascular permeability and growth. However, its role in mature blood vessels is still not well understood. To better understand the role of VEGF-A in the adult vasculature, we generated a VEGF-A knockdown mouse model carrying a doxycycline (dox)-regulatable short hairpin RNA (shRNA) transgene, which silences VEGF-A. The aim was to find the critical level of VEGF-A reduction for vascular well-being in vivo. In vitro, the dox-inducible lentiviral shRNA vector decreased VEGF-A expression efficiently and dose-dependently in mouse endothelial cells and cardiomyocytes. In the generated transgenic mice plasma VEGF-A levels decreased shortly after the dox treatment but returned back to normal after two weeks. VEGF-A expression decreased shortly after the dox treatment only in some tissues. Surprisingly, increasing the dox exposure time and dose led to elevated VEGF-A expression in some tissues of both wildtype and knockdown mice, suggesting that dox itself has an effect on VEGF-A expression. When the effect of dox on VEGF-A levels was further tested in naïve/non-transduced cells, the dox administration led to a decreased VEGF-A expression in endothelial cells but to an increased expression in cardiomyocytes. In conclusion, the VEGF-A knockdown was achieved in a dox-regulatable fashion with a VEGF-A shRNA vector in vitro, but not in the knockdown mouse model in vivo. Dox itself was found to regulate VEGF-A expression explaining the unexpected results in mice. The effect of dox on VEGF-A levels might at least partly explain its previously reported beneficial effects on myocardial and brain ischemia. Also, this effect on VEGF-A should be taken into account in all studies using dox-regulated vectors.
Boltin, Doron; Kamenetsky, Zvi; Perets, Tsachi Tsadok; Snir, Yifat; Sapoznikov, Boris; Schmilovitz-Weiss, Hemda; Ablin, Jacob Nadav; Dickman, Ram; Niv, Yaron
2017-03-01
Circulating endothelial progenitor cells (EPCs) are bone marrow-derived stem cells able to migrate to sites of damaged endothelium and differentiate into endothelial cells. Altered EPC level and function have been described in various inflammatory diseases and have been shown to augment vasculogenesis in murine models. Previous studies of EPC in the context of Crohn's disease (CD) have yielded conflicting results. To determine whether the circulating levels of EPCs are changed in the context of CD. CD patients and healthy controls were recruited. Disease activity was assessed by CDAI. Peripheral blood mononuclear cells were isolated and EPC numbers evaluated by FACS analysis using anti-CD34, anti-VEGF receptor-2, anti-CD133, and anti-CD45 markers. Eighty-three subjects, including 32 CD patients and 51 controls were recruited, including 19 (59.4 %) and 23 (45 %) males (p = 0.26), aged 34.8 ± 14.9 and 43.3 ± 18.5 years (p = 0.64), in cases and controls, respectively. Mean CDAI was 147 ± 97, disease duration was 12.7 ± 11.1 years, and 28 (87.5 %) were receiving biologics for a mean duration of 21.7 ± 16.8 months. The mean level of peripheral EPCs in CD patients was 0.050 ± 0.086 percent and 0.007 ± 0.013 % in controls (p < 0.01). There was no significant correlation between EPC levels and age (r = -0.13, p = 0.47), CDAI (r = -0.26, p = 0.15), disease duration (r = -0.04, p = 0.84), or duration of treatment with biologics (r = 0.004, p = 0.99). EPCs are elevated in patients with CD. Further studies are needed to examine the function of EPCs and their possible role as a marker of disease severity or therapeutic response.
Carilho, Rita; de Carvalho, Mamede; Swash, Michael; Pinto, Susana; Pinto, Anabela; Costa, Júlia
2014-04-01
We evaluated plasma vascular endothelial growth factor (VEGF) levels in patients with amyotrophic lateral sclerosis (ALS) with reference to the effects of respiratory failure, noninvasive ventilation (NIV), and exercise. We studied plasma VEGF levels in 83 ALS patients, 20 healthy controls, and 10 patients with other disorders. There were 4 groups of ALS patients: G1, 27 patients without respiratory problems; G2, 14 patients stabilized on nocturnal NIV; G3, 30 patients presenting with respiratory failure; G4, 12 patients on an aerobic exercise protocol. VEGF plasma levels did not differ significantly between ALS patients and controls, or between ALS groups. In G3, the mean VEGF levels increased 75% during NIV. In G4, the mean VEGF level increased by 300% during the exercise program. VEGF levels did not change during the course of the disease. VEGF levels in ALS depend on changes in ventilation and exercise but are probably not affected by the disease process itself. Copyright © 2013 Wiley Periodicals, Inc.
Pro- and antiangiogenic VEGF and its receptor status for the severity of diabetic retinopathy
Mondal, Lakshmi K.; Borah, Prasanta K.; Bhattacharya, Chandra K.; Mahanta, Jagadish
2017-01-01
Purpose Alteration of pro- and antiangiogenic homeostasis of vascular endothelial growth factor (VEGF) isoforms in patients with hyperglycemia seems crucial but substantially unexplored at least quantitatively for diabetic retinopathy (DR). Therefore, in the present study we aimed to estimate the difference between the pro- (VEGF165a) and antiangiogenic (VEGF165b) VEGF isoforms and its soluble receptors for severity of DR. Methods The study included 123 participants (diabetic retinopathy: 81, diabetic control: 20, non-diabetic control: 22) from the Regional Institute of Ophthalmology, Kolkata. The protein levels of VEGF165a (proangiogenic), VEGF165b (antiangiogenic), VEGF receptor 1 (VEGFR1), VEGFR2, and VEGFR3 in plasma were determined with enzyme-linked immunosorbent assay (ELISA). Results An imbalance in VEGF homeostasis, a statistically significant concomitant increase (p<0.0001) in the level of VEGF165a and a decrease in the level of VEGF165b, was observed with the severity of the disease. Increased differences between VEGF165a and VEGF165b i.e. VEGF165a-b concomitantly increased statistically significantly with the severity of the disease (p<0.0001), patients with diffuse diabetic macular edema (DME) with proliferative DR (PDR) had the highest imbalance. The plasma soluble form of VEGFR2 concentration consistently increased statistically significantly with the severity of the disease (p<0.0001). Conclusions The increased difference or imbalance between the pro- (VEGF165a) and antiangiogenic (VEGF165b) homeostasis of the VEGF isoforms, seems crucial for an adverse prognosis of DR and may be a better explanatory marker compared with either VEGF isoform. PMID:28680264
Serum VEGF levels in the early diagnosis and severity assessment of non-small cell lung cancer
Lai, Yanzhen; Wang, Xueping; Zeng, Tao; Xing, Shan; Dai, Shuqin; Wang, Junye; Chen, Shulin; Li, Xiaohui; Xie, Ying; Zhu, Yuanying; Liu, Wanli
2018-01-01
Background: Effective biomarkers are essential to the differential diagnosis and severity assessment of non-small cell lung cancer (NSCLC). This study explored the use of the serum vascular endothelial growth factor (VEGF) levels as a biomarker with the aim of achieving better management of NSCLC. Methods: Serum VEGF levels were assayed via enzyme-linked immunosorbent assay in 180 patients with NSCLC, 136 patients with benign pulmonary nodules, and 119 healthy controls. We additionally detected the serum concentration of three traditional biomarkers—carcinoembryonic antigen (CEA), cancer antigen (CA)-125, and cytokeratin 19 fragments (Cyfra 21-1)—to comparatively evaluate the efficiency and diagnostic value of VEGF in patients with NSCLC. We further evaluated the relationship between serum VEGF levels and clinicopathologic parameters. VEGF levels were compared between pro- and post-surgical patients using the Wilcoxon matched-pairs signed-rank test. DNA was isolated from the primary tumors. EGFR mutations were detected by Scorpions amplification refractory mutation system (ARMS). Results: Patients with NSCLC had significantly higher serum concentration of VEGF, compared to those with benign pulmonary nodules and healthy controls (P <0.0001). As a diagnostic biomarker of NSCLC, VEGF had area under the curve values of 0.824 and 0.839, sensitivities of 75.0% and 75.0%, and specificities of 93.3% and 95.6% when compared with healthy people and patients with benign pulmonary nodules, respectively; notably, these values were greater than those of CA125, Cyfra 21-1 and CEA. Furthermore, a model in which VEGF was combined with CEA, CA125, and Cyfra 21-1 was more effective for NSCLC diagnosis than VEGF alone (sensitivity, 85.0% and 84.4; specificity, 90.0% and 91.9% vs. healthy controls and patients with benign pulmonary nodules, respectively). When use to identify early-stage NSCLC, VEGF showed a better diagnostic efficacy than other biomarkers. The pro-surgical VEGF levels were significantly higher than those measured 25-30 days after surgery. Moreover, VEGF concentration differed significantly among cases according to TNM stages and malignant grades (P <0.0001). EGFR mutations and the size of benign pulmonary nodules did not affect the level of serum VEGF significantly. Conclusion: The serum VEGF levels exhibited relatively high sensitivity and specificity for NSCLC, and may therefore be a useful diagnostic biomarker. Furthermore, the serum VEGF levels could be used to assess prognosis and curative effects. PMID:29760791
Poimenidi, Evangelia; Theodoropoulou, Christina; Koutsioumpa, Marina; Skondra, Lamprini; Droggiti, Eirini; van den Broek, Marloes; Koolwijk, Pieter; Papadimitriou, Evangelia
2016-05-01
Vascular endothelial growth factor A (VEGF-A) is a key molecule in angiogenesis acting through VEGF receptors (VEGFRs), ανβ3 integrin, receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and cell surface nucleolin (NCL). Pleiotrophin (PTN) stimulates endothelial cell migration and limits the angiogenic effects of VEGF-A165 to the levels of its own effect, possibly acting as a VEGF-A165 modifier. Since PTN and VEGF-A165 share receptors and actions on endothelial cells, in the present work we studied whether and how VEGF-A165 affects PTN expression or secretion. VEGF-A165 decreased PTN mRNA and protein levels acting at the transcriptional level. Bevacizumab, a selective VEGFR2 tyrosine kinase inhibitor and down-regulation of VEGFR2 expression by siRNA did not affect this decrease, suggesting that it is VEGFR-independent. VEGF-A121 also decreased PTN mRNA and protein levels, suggesting that heparin binding of VEGF-A165 is not involved. Blockage of cell surface NCL, lack of expression or mutation of β3 integrin and down-regulation of RPTPβ/ζ abolished the inhibitory effect of VEGF-A165 on PTN expression and secretion. Down-regulation of endogenous PTN in endothelial cells enhanced VEGF-A165-induced increase in migration and tube formation on matrigel. Collectively, these data suggest that VEGF-A down-regulates PTN expression and secretion through the RPTPβ/ζ-ανβ3-NCL axis to enhance its own effect on cell migration and further highlight the role of RPTPβ/ζ in VEGF-A actions. Copyright © 2016 Elsevier Inc. All rights reserved.
Na, Yong-Jin; Yang, Seung-Hong; Baek, Dae-Won; Lee, Dong-Hyung; Kim, Ki-Hyung; Choi, Young-Min; Oh, Sung-Tack; Hong, Young-Seoub; Kwak, Jong-Young; Lee, Kyu-Sup
2006-07-01
An increase in the level of the vascular endothelial growth factor (VEGF) production has been reported in the peritoneal fluid (PF) of endometriosis patients. This suggests that changes in the vascular permeability and angiogenesis play an important role in the pathophysiology of this disease. This study examined the effects of the PF obtained from endometriosis patients on the release of VEGF by neutrophils and monocytes. Neutrophils and monocytes were obtained from young healthy volunteers and cultured with the PF obtained from either endometriosis patients (EPF) (n=18) or a control group (CPF) (n=4). A human monocyte/macrophage cell line, THP-1, was cultured with either 10% EPF or 10% CPF. The PF and culture supernatants were assayed for VEGF using ELISA. Real-time PCR and Western blotting were used to measure the VEGF mRNA and protein expression level, respectively. The VEGF levels were higher in the EPF than in the CPF (591+/-75 versus 185+/-31 pg/ml, P<0.05). However, the level of VEGF released by THP-1 cells in CPF and EPF was similar. The EPF induced the release of VEGF by neutrophils, but no VEGF was released by monocytes. The VEGF mRNA expression levels in the neutrophils were higher in the EPF, which was abrogated by cycloheximide, suggesting that the EPF induces the production of VEGF in neutrophils. Neutralizing antibodies against IL-8 and TNF-alpha did not completely prevent the EPF-induced release of VEGF by the neutrophils, even though these growth factors stimulated the release of VEGF by neutrophils. There was a positive correlation between the VEGF and IL-10 concentrations in the EPF (correlation coefficient=0.549, P=0.012, n=18), but the neutralizing antibody of IL-10 did not affect the release of VEGF by the EPF-treated neutrophils. The EPF induced the production and release of VEGF by neutrophils, suggesting that neutrophils may be a source of peritoneal VEGF. In addition, neutrophil-derived VEGF might be a marker for diagnosing endometriosis.
Pulsed electromagnetic field improves cardiac function in response to myocardial infarction.
Hao, Chang-Ning; Huang, Jing-Juan; Shi, Yi-Qin; Cheng, Xian-Wu; Li, Hao-Yun; Zhou, Lin; Guo, Xin-Gui; Li, Rui-Lin; Lu, Wei; Zhu, Yi-Zhun; Duan, Jun-Li
2014-01-01
Extracorporeal pulsed electromagnetic field (PEMF) has been shown the ability to improve regeneration in various ischemic episodes. Here, we examined whether PEMF therapy facilitate cardiac recovery in rat myocardial infarction (MI), and the cellular/molecular mechanisms underlying PEMF-related therapy was further investigated. The MI rats were exposed to active PEMF for 4 cycles per day (8 minutes/cycle, 30 ± 3 Hz, 5 mT) after MI induction. The data demonstrated that PEMF treatment significantly inhibited cardiac apoptosis and improved cardiac systolic function. Moreover, PEMF treatment increased capillary density, the levels of vascular endothelial growth factor (VEGF) and hypoxic inducible factor-1α in infarct border zone. Furthermore, the number and function of circulating endothelial progenitor cells were advanced in PEMF treating rats. In vitro, PEMF induced the degree of human umbilical venous endothelial cells tubulization and increased soluble pro-angiogenic factor secretion (VEGF and nitric oxide). In conclusion, PEMF therapy preserves cardiac systolic function, inhibits apoptosis and trigger postnatal neovascularization in ischemic myocardium.
Zitouni, Karima; Tinworth, Lorna; Earle, Kenneth Anthony
2017-06-29
There are marked ethnic differences in the susceptibility to the long-term diabetic vascular complications including sensory neuropathy. The vascular endothelial growth factor (VEGF) +405 (C/G) and -460 (T/C) polymorphisms are associated with retinopathy and possibly with nephropathy, however no information is available on their relationship with peripheral neuropathy. Therefore, we examined the prevalence of these VEGF genotypes in a multi-ethnic cohort of patients with diabetes and their relationship with evident peripheral diabetic neuropathy. In the current investigation, we studied 313 patients with diabetes mellitus of African-Caribbean, Indo-Asian and Caucasian ethnic origin residing in an inner-city community in London, United Kingdom attending a single secondary care centre. Genotyping was performed for the VEGF +405 and VEGF -460 polymorphisms using a pyrosequencing technique. Forty-nine patients (15.6%) had clinical evidence of peripheral neuropathy. Compared to Caucasian patients, African-Caribbean and Indo-Asian patients had lower incidence of neuropathy (24.6%, 14.28%, 6.7%, respectively; P = 0.04). The frequency of the VEGF +405 GG genotype was more common in Indo-Asian patients compared to African-Caribbean and Caucasian patients (67.5%, 45.3%, 38.4%, respectively; p ≤ 0.02). The G allele was more common in patients with type 2 diabetes of Indo-Asian origin compared to African-Caribbean and Caucasian origin (p ≤ 0.02). There was no difference between the ethnic groups in VEGF -460 genotypes. The distributions of the VEGF +405 and VEGF -460 genotypes were similar between the diabetic patients with and without neuropathy. In this cohort of patients, VEGF +405 and VEGF -460 polymorphisms were not associated with evident diabetic peripheral neuropathy, however an association was found between VEGF +405 genotypes and Indo-Asian which might have relevance to their lower rates of ulceration and amputation. This finding highlights the need for further investigation of any possible relationship between VEGF genotype, circulating VEGF concentrations and differential vulnerability to peripheral neuropathy amongst diabetic patients of different ethnic backgrounds.
Yang, Jun; Dombrowski, Stephen M; Krishnan, Chandra; Krajcir, Natalie; Deshpande, Abhishek; El-Khoury, Serge; Guruprakash, Deepti Kamasamudram; Luciano, Mark G
2013-09-01
The aim of this study was to examine lumbar CSF-VEGF levels from elderly patients with ventriculomegaly to evaluate the possible circadian or periodic concentration profile and relevance to the prediction of drainage response. Lumbar CSF samples were collected in 1-h interval over 35 h from 22 patients with ventriculomegaly. CSF-VEGF levels were measured to elucidate the possible circadian or periodic concentration profiles. These VEGF levels were evaluated for correlations with clinical response to CSF drainage, ventricle size and other clinical information. The 35-h CSF-VEGF levels demonstrated a periodic concentration pattern with significant episodic fluctuation with 3-5h intervals. CSF-VEGF levels in non-responder group in which patients did not show clinical improvement with CSF drainage were significantly higher than these in responder group. VEGF variation in hydrocephalus patients suggests its possible pathophysiological role in hydrocephalus. The periodic concentration pattern of CSF-VEGF must be considered when choosing the most appropriate time for sample collection or clinical manipulation. Increased VEGF level in patients who showed no improvement with CSF drainage suggests that a possible greater ischemic or vascular injury may play a role in these patients. Pending further studies, these results suggest that high VEGF levels have a potential application in predicting non-responder patients with CSF drainage and so reducing the morbidity and cost of drainage and shunting in these patients. Copyright © 2013. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
Previously, Melengestrol Acetate (MGA) fed for 14 d (0.5mg/cow/d; < 1 ng/ml P4) resulted in persistent follicles with increased size, decreased number of GC/follicular fluid (FF) volume, and less fertile oocytes. An experiment was conducted to determine effects of circulating P4 on amount of mRNA fo...
Cathcart, Mary Clare; Gately, Kathy; Cummins, Robert; Drakeford, Clive; Kay, Elaine W; O'Byrne, Kenneth J; Pidgeon, Graham P
2014-05-01
Thromboxane synthase (TXS) metabolizes prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with angiogenesis and poor outcome. TXS has been identified as a potential therapeutic target in NSCLC. This study examines a link between TXS expression, angiogenesis, and survival in NSCLC. TXS and VEGF metabolite levels were measured in NSCLC serum samples (n=46) by EIA. TXB2 levels were correlated with VEGF. A 204-patient TMA was stained for TXS, VEGF, and CD-31 expression. Expression was correlated with a range of clinical parameters, including overall survival. TXS expression was correlated with VEGF and CD-31. Stable TXS clones were generated and the effect of overexpression on tumor growth and angiogenesis markers was examined in-vitro and in-vivo (xenograft mouse model). Serum TXB2 levels were correlated with VEGF (p<0.05). TXS and VEGF were expressed to a varying degree in NSCLC tissue. TXS was associated with VEGF (p<0.0001) and microvessel density (CD-31; p<0.05). TXS and VEGF expression levels were higher in adenocarcinoma (p<0.0001) and female patients (p<0.05). Stable overexpression of TXS increased VEGF secretion in-vitro. While no significant association with patient survival was observed for either TXS or VEGF in our patient cohort, TXS overexpression significantly (p<0.05) increased tumor growth in-vivo. TXS overexpression was also associated with higher levels of VEGF, microvessel density, and reduced apoptosis in xenograft tumors. TXS promotes tumor growth in-vivo in NSCLC, an effect which is at least partly mediated through increased tumor angiogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.
Nadar, S K; Blann, A D; Lip, G Y H
2004-10-01
Platelets carry angiogenic growth factors vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1). Although platelet-derived growth factors are important in the pathogenesis and metastasis of malignancy, their role in the pathogenesis of complications and the response to treatment in hypertension is less known. To test the hypotheses that there are differences in VEGF and Ang-1 in the plasma and within platelets from patients with hypertension, and that levels change with successful treatment. We recruited 42 previously untreated patients with hypertension (25 male; mean age 53 years) and 30 age- and sex-matched controls. Plasma VEGF, Ang-1 and soluble P-selectin (sPsel, an index of platelet activation), and total platelet [platelet VEGF (pVEGF) and platelet Ang-1 (pAng-1)] were measured by ELISA. The patients were then treated for 6 months with amlodipine-based antihypertensive therapy, achieving a mean blood pressure below 140/80 mmHg. Patients with hypertension had significantly higher levels of plasma sPsel (P =0.01), VEGF (P < 0.001) and Ang-1 (P = 0.01), as well as pVEGF (P < 0.001) and pAng-1 (P =0.02). The levels of plasma and platelet angiogenic growth factors were significantly reduced after antihypertensive treatment (VEGF, P = 0.01; pVEGF, P < 0.001; Ang-1, P < 0.001; pAng-1, P = 0.04). There were no correlations with blood pressure or the levels of sPsel. Levels of plasma and intra-platelet VEGF and Ang-1 are increased in hypertension and are decreased with treatment. Platelet levels of VEGF and Ang-1 may be related to platelet activation but may also involve other mechanisms (for example, the general vascular and haemodynamic changes) that are seen in hypertension.
Day, Yuan-Ji
2016-01-01
We examined the role of tissue plasminogen activator- (tPA-) matrix metalloproteinase- (MMP-) 9 in mobilizing endothelial progenitor cells (EPCs) from bone marrow to circulation and critical limb ischemia (CLI) region. Male C57BL/6J mice having been irradiated were categorized into wild-type mice (WT) receiving WT bone marrow cell (BMC) transfusion (group 1), WT mice receiving MMP-9 knockout (MMP-9−/−) BMC (group 2), MMP-9−/− receiving MMP-9−/− BMC (group 3), and MMP-9−/− receiving WT BMC (group 4), each of which was subdivided into sham control (SC), CLI, SC-tPA, and CLI-tPA. In groups 1 and 4, by post-CLI 18 h and day 14, circulating EPC (C-kit+/CD31+, Sca-1+/KDR+) levels were highest in CLI-tPA subgroup. In groups 2 and 3, EPC levels did not differ among all subgroups. The EPC levels in bone marrow were higher in groups 2 and 3 than those in groups 1 and 4. By day 14, in animals with CLI, expression levels of proangiogenic factors (CXCR4, SDF-1α, and VEGF) showed similar trends as circulating EPC levels. Moreover, the number of infiltrated neutrophils and macrophages in quadriceps was higher in groups 1 and 4 than groups in 2 and 3. In conclusion, tPA-MMP-9 axis plays a crucial role in EPC mobilization and angiogenesis in experimental CLI. PMID:27610138
Ghazali, Wan Syamimee Wan; Iberahim, Rahimah; Ashari, Noor Suryani Mohd
2017-10-01
Previous studies have shown that serum VEGF levels were elevated in patients with active systemic lupus erythematosus (SLE), especially in those with lupus nephritis (LN). In this case control study, we aimed to compare serum levels of VEGF in SLE patients between LN, non-LN and healthy participants to determine the association between serum VEGF levels and the activity and histological classes of lupus nephritis. Blood samples were obtained from 92 SLE patients (46 LN and 46 non-LN) and 26 controls. Data were collected from medical records. Serum VEGF assays were performed by specific, enzyme-linked immunosorbent assay kits (ELISA). Laboratory investigations included urinalysis, urine protein-creatinine ratio, serum creatinine, albumin and VEGF levels. Blood pressure, renal biopsy result and treatment were recorded. LN activity was evaluated using the renal subscale of the British Isles Lupus Assessment Group (rBILAG, 2004). The rBILAG measures blood pressure (diastolic and systolic), urine protein, serum creatinine, calculated glomerular filtration rate (GFR), presence of active urinary sediments and histological evidence of active nephritis. Serum VEGF was elevated in SLE patients with LN compared with the non-LN group and healthy controls. The levels found were significantly higher in the sera of patients with active nephritis compared to those with quiescent nephritis ( P = 0.024). The study did not find a statistically significant relationship between serum VEGF levels and histological classes of LN. There was no significant difference of serum VEGF level between LN and non-LN SLE groups and between the non-LN group and healthy controls. However, there were increased levels of serum VEGF in the LN group, especially in patients with active nephritis as compared to quiescent nephritis group. This reflects the role of VEGF in the pathogenesis of lupus nephritis, however the clinical potential of this biomarker needs further study.
Zhu, Kathy Q; Engrav, Loren H; Armendariz, Rebecca; Muangman, Pornprom; Klein, Matthew B; Carrougher, Gretchen J; Deubner, Heike; Gibran, Nicole S
2005-02-01
Despite decades of research, our understanding of human hypertrophic scar is limited. A reliable animal model could significantly increase our understanding. We previously confirmed similarities between scarring in the female, red, Duroc pig and human hypertrophic scarring. The purpose of this study was to: (1) measure vascular endothelial growth factor (VEGF) and nitric oxide (NO) levels in wounds on the female Duroc; and (2) to compare the NO levels to those reported for human hypertrophic scar. Shallow and deep wounds were created on four female Durocs. VEGF levels were measured using ELISA and NO levels with the Griess reagent. VEGF and NO levels were increased in deep wounds at 10 days when compared to shallow wounds (p < 0.05). At 15 weeks, VEGF and NO levels had returned to the level of shallow wounds. At 21 weeks, VEGF and NO levels had declined below baseline levels in deep wounds and the NO levels were significantly lower (p < 0.01). We found that VEGF and NO exhibit two distinctly different temporal patterns in shallow and deep wounds on the female Durocs. Furthermore, NO is decreased in female, Duroc scar as it is in human, hypertrophic scar further validating the usefulness of the model.
The involvement of endothelial mediators in leprosy.
Nogueira, Maria Renata Sales; Latini, Ana Carla Pereira; Nogueira, Maria Esther Salles
2016-10-01
Leprosy is a chronic infectious disease that requires better understanding since it continues to be a significant health problem in many parts of the world. Leprosy reactions are acute inflammatory episodes regarded as the central etiology of nerve damage in the disease. The activation of endothelium is a relevant phenomenon to be investigated in leprosy reactions. The present study evaluated the expression of endothelial factors in skin lesions and serum samples of leprosy patients. Immunohistochemical analysis of skin samples and serum measurements of VCAM-1, VEGF, tissue factor and thrombomodulin were performed in 77 leprosy patients and 12 controls. We observed significant increase of VCAM-1 circulating levels in non-reactional leprosy (p = 0.0009). The immunostaining of VEGF and tissue factor was higher in endothelium of non-reactional leprosy (p = 0.02 for both) than healthy controls. Patients with type 1 reaction presented increased thrombomodulin serum levels, compared with non-reactional leprosy (p = 0.02). In type 2 reaction, no significant modifications were observed for the endothelial factors investigated. The anti-inflammatory and antimicrobial activities of the endotfhelial factors may play key-roles in the pathogenesis of leprosy and should be enrolled in studies focusing on alternative targets to improve the management of leprosy and its reactions.
Pichiule, P; Chávez, J C; Xu, K; LaManna, J C
1999-12-10
This study examined vascular endothelial growth factor (VEGF) expression in rat brain after reversible global cerebral ischemia produced by cardiac arrest and resuscitation. Three alternative splicing forms, VEGF(188), VEGF(164) and VEGF(120), were observed in cortex, hippocampus and brainstem by RT-PCR analysis. After 24 h of recovery from cardiac arrest, mRNA levels corresponding to VEGF(188) and VEGF(164) were significantly increased by about double in all the regions analyzed. These mRNA levels remained elevated at 24 and 48 h of recovery but returned to basal expression after 7 days of recovery. Changes in VEGF(120) expression after cardiac arrest did not reach statistical significance. VEGF protein expression measured by Western blot was also increased by about double at 24 and 48 h of recovery but returned to control levels after 7 days of recovery. VEGF immunohistochemistry localized this increased expression mostly associated with astrocytes. Considering its biological activity, VEGF induction after cardiac arrest and resuscitation may be responsible for the increased vascular permeability and the resultant vasogenic edema, found 24-48 h after reversible global ischemia.
ErŽen, Barbara; Šilar, Mira; Šabovič, Mišo
2014-11-22
The role of vascular endothelial growth factor (VEGF) in patients in the stable phase after myocardial infarction (MI) has not yet been explored. Therefore, we compared the values of VEGF in post-MI patients with those obtained in healthy controls. Furthermore, we investigated whether the values of VEGF correlate to either inflammation markers or the atherosclerotic burden. 41 male patients (on average 44 years old) in the stable phase after MI (on average 20.5 months after MI) were recruited, while 25 healthy age-matched males served as controls. Plasma levels of VEGF and several markers of inflammation were measured by standard procedures. The atherosclerotic burden was determined by the angiographic severity of coronary atherosclerosis, endothelial dysfunction (measured by ultrasound measurement of the flow mediated dilation of the brachial artery), the intima-media thickness of the common carotid artery and the ankle-brachial pressure index. VEGF values were significantly elevated in post-MI patients compared to the controls (53.8 ± 42.7 pg/ml vs. 36.3 ± 8.9 pg/ml, p = 0.014). The elevated VEGF values significantly correlated to the (increased) values of the inflammatory molecules interleukin 6 and 8 (r = 0.37, p = 0.017; and r = 0.45, p = 0.003; respectively). In contrast, no correlation was found between VEGF and the parameters of the atherosclerotic burden, although FMD and IMT were significantly impaired in patients. We found that plasma levels of VEGF are increased in the stable phase after MI and correlate with inflammation cytokines, but not with the atherosclerotic burden. Thus, this suggests that increased levels of VEGF are a part of ongoing inflammatory activity. Since VEGF in these patients stimulates neovascularization of inflamed plaques and induces their destabilization, the VEGF level can have an important negative prognostic value. Clearly, further studies are needed to clarify the role of VEGF as a prognostic marker.
Sivaprasad, Siddapuram; Govardhan, Bale; Harithakrishna, Ramanujam; Venkat Rao, Guduru; Pradeep, Rebala; Kunal, Bharadhwaj; Ramakrishna, Nalla; Anuradha, Shekaran; Reddy, Duvvuru Nageshwar
2013-01-01
BACKGROUND &AIM: Pancreatic cancer is related to high mortality rate. The vascular endothelial growth factor (VEGF) has a strong influence in tumor-related angiogenesis having association with the grade of angiogenesis and the prognosis of different solid tumors including pancreatic cancer. The present study was aimed to analyze the genotype and haplotype distribution of VEGF gene single nucleotide polymorphisms (SNPs), -460T/C, +405G/C, +936C/T, in patients with pancreatic adenocarcinoma from South India, and the effect of these SNPs on serum VEGF level. Total 80 patients with pancreatic adenocarcinoma and 87 controls were recruited. The genotype of VEGF gene polymorphisms was determined in both patients and controls using polymerase chain reaction-restriction fragment length polymorphism method. The serum VEGF protein was estimated by standard enzyme-linked immunosorbent assay. The genotype, +405G/G of VEGF gene showed a significant association with the patients with pancreatic adenocarcinoma (P = 0.012, Odds ratio: 2.133), whereas no significant difference was found in the genotype distribution of SNPs, -460C/T and +936C/T between patient and control groups (P > 0.05). Serum VEGF level was found to be significantly high in patients (1315.10 pg/Ml, SD ± 230.79) when compared to controls (591.35 pg/mL, SD ± 92.48) (P < 0.0001), which showed a strong genotype-phenotype correlation between genotype +405G/G and serum VEGF level. Further, the haplotype C-G-T showed a strong association with the disease, and no specific haplotype was associated with increased serum VEGF level. The polymorphism, +405G/C but not -460T/C and +936C/T, of VEGF gene is strongly associated with pancreatic adenocarcinoma, and this SNP has significant influence on serum VEGF level. Copyright © 2013 IAP and EPC. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, A.; Chatterji, U., E-mail: urmichatterji@gmail.com
2011-12-15
Background and purpose: Arsenic exposure frequently leads to reproductive failures by disrupting the rat uterine histology, hormonal integrity and estrogen signaling components of the rat uterus, possibly by generating reactive oxygen species. All-trans retinoic acid (ATRA) was assessed as a prospective therapeutic agent for reversing reproductive disorders. Experimental approach: Rats exposed to arsenic for 28 days were allowed to either recover naturally or were treated simultaneously with ATRA for 28 days or treatment continued up to 56 days. Hematoxylin-eosin double staining was used to evaluate changes in the uterine histology. Serum gonadotropins and estradiol were assayed by ELISA. Expression ofmore » the estrogen receptor (ER{alpha}), an estrogen responsive gene vascular endothelial growth factor (VEGF), and cell cycle regulatory proteins, cyclin D1 and CDK4, was assessed by RT-PCR, immunohistochemistry and western blot analysis. Key results: ATRA ameliorated sodium arsenite-induced decrease in circulating estradiol and gonadotropin levels in a dose- and time-dependent manner, along with recovery of luminal epithelial cells and endometrial glands. Concomitant up regulation of ER{alpha}, VEGF, cyclin D1, CDK4 and Ki-67 was also observed to be more prominent for ATRA-treated rats as compared to the rats that were allowed to recover naturally for 56 days. Conclusions and implications: Collectively, the results reveal that ATRA reverses arsenic-induced disruption of the circulating levels of gonadotropins and estradiol, and degeneration of luminal epithelial cells and endometrial glands of the rat uterus, indicating resumption of their functional status. Since structural and functional maintenance of the pubertal uterus is under the influence of estradiol, ATRA consequently up regulated the estrogen receptor and resumed cellular proliferation, possibly by an antioxidant therapeutic approach against arsenic toxicity. Highlights: Black-Right-Pointing-Pointer Arsenic disrupts the uterine histology and estrogen signaling components in rats. Black-Right-Pointing-Pointer Decrease in estradiol and gonadotropin levels, ER{alpha}, VEGF and cell cycle proteins. Black-Right-Pointing-Pointer Arsenic disrupts the above components by inhibiting antioxidant defense mechanism. Black-Right-Pointing-Pointer ATRA treatment led to recovery of uterine histology and ER{alpha} signaling components. Black-Right-Pointing-Pointer Vitamin A in diet is a promising cure for arsenic-induced reproductive failures.« less
Raghunathachar Sahana, Kabbathi; Akila, Prashant; Prashant, Vishwanath; Sharath Chandra, Bellekere; Nataraj Suma, Maduvanahalli
2017-10-01
Determination of the impact of angiogenesis on tumor development and progression is essential. This study aimed to determine the serum levels of Vascular endothelial growth factor (VEGF) and Interleukin 6 (IL-6) in breast carcinoma, and to correlate them with tumor size, lymph node involvement, and cancer stage. Under aseptic precautions 5 ml of venous blood was collected from 37 breast cancer patients and 20 healthy females after obtaining due consent and ethical committee clearance. Serum levels of VEGF and IL-6 were determined by enzyme-linked immunosorbent assay (ELISA). Serum IL-6 and VEGF levels were both significantly greater in patients than controls (P = 0.001, P = 0.001, respectively). The serum IL-6 and VEGF levels also significantly correlated with TNM staging (P = 0.001, P = 0.001). Serum IL-6 and VEGF positively correlated with each other (r 2 = 0.668, P = 0.01). Serum IL-6 and VEGF levels did not correlate with tumor size (P = 0.45, P = 0.17) or lymph node metastasis (P = 0.95, P = 0.68). Serum IL-6 and VEGF were greater in breast cancer patients than controls. The levels increased with advanced tumor, nodes, metastasis (TNM) staging, thus correlating with the patients' prognoses. Serum IL-6 and VEGF levels can be used as diagnostic tools and prognostic factors in breast cancer.
Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H
2010-09-01
Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point after transfection. In addition, human VEGF gene transfection increased osteoblast cell proliferation after 3 days. These in vitro results suggest that cell-based human VEGF gene therapy is not only effective at causing human VEGF expression, but also enhances endogenous rat VEGF mRNA expression in both fibroblasts and osteoblasts, particularly the rat VEGF164 isoform.
Nadar, S K; Blann, A; Beevers, D G; Lip, G Y H
2005-10-01
The increased risk of target organ damage (TOD) in hypertension may be related to a prothrombotic or hypercoagulable state, with abnormalities in platelet activation. Altered angiogenesis, possibly related to increased plasma vascular endothelial growth factor (VEGF) is also a feature of hypertension. We hypothesized a link between altered angiogenesis and TOD in hypertension. Accordingly, the angiogenic growth factors VEGF, angiopoietin 1 and 2 (Ang 1 & 2) and soluble angiopoietin receptor Tie-2 in plasma and in platelets were assessed in terms of the presence or absence of hypertensive TOD. We studied 199 patients (75% men; mean age 68 years) with hypertension. Of these, 125 had evidence of hypertensive TOD (stroke, previous myocardial infarction, angina, left ventricular hypertrophy and mild renal failure). Patients were compared with 74 healthy normotensive controls (69% men; mean age 68 years). Plasma VEGF, Ang 1 & 2 and Tie-2, and total platelet levels of VEGF and Ang-1 (obtained by lysing a known number of platelets with 0.5% Tween) were measured by an enzyme-linked immunosorbent assay. Hypertensive patients had higher levels of plasma VEGF, Ang-1, Ang-2, Tie-2 and platelet VEGF (all P
VEGF: A critical driver for angiogenesis and subsequent tumor growth: An IHC study
Kapoor, Prakhar; Deshmukh, RS
2012-01-01
Background: Tumors require blood supply for their growth and dissemination. It is a well accepted paradigm that tumors recruit new blood vessels from the existing circulation (angiogenesis) and this participates in tumor invasion and metastasis. Studies in the literature provide evidence for expression of Vascular Endothelial Growth Factor (VEGF) by the tumor for neo-angiogenesis, which is not only required for the tumor growth but also its metastasis. Based on the literary evidences we carried out an Immuno-Histochemical (IHC) study for VEGF in Oral Squamous Cell Carcinoma (OSCC) tissues to provide a strong link between the factor and oral cancer. Aim: To analyze the expression of VEGF in OSCC tissues of different histological grades, clinical sizes and lymph node status and to use this as an indicator for disease progression by helping in delineating a risk population, that may benefit from an attractive adjuvant therapeutic strategy for OSCC. Settings and Design: Studies published from 1990 till 2010 have only seen the association of VEGF with tumor angiogenesis and its possible role in metastasis. This is the first study that takes into account the clinical status of the lymph nodes and VEGF expressivity in a sample size of 30 cases. Materials and Methods: 30 oral squamous cell carcinoma tissue slides were stained using Hematoxylin and Eosin stain (to confirm the diagnosis) and immunohistochemically using VEGF antibody. IHC stained slides were thereafter evaluated for the positivity and intensity. Statistical Analysis: The result was subjected to statistical analysis using Chi-square test Results and Conclusion: VEGF positivity was seen in approximately. 90% of cases which was independent of histological grade of OSCC. However the intensity increased with the clinical size of cancer and from palpable lymph node to a tender and hard lymph node. PMID:23248460
High VEGF-D and Low MMP-2 Serum Levels Predict Nodal-Positive Disease in Invasive Bladder Cancer
Benoit, Tobias; Keller, Etienne X.; Wolfsgruber, Pirmin; Hermanns, Thomas; Günthart, Michele; Banzola, Irina; Sulser, Tullio; Provenzano, Maurizio; Poyet, Cédric
2015-01-01
Background To investigate stromal variables including angiogenesis, lymphangiogenesis, and matrix metalloproteinase (MMP) in the serum of patients with urothelial carcinoma of the bladder (UCB) and to evaluate their association with histopathological characteristics and clinical outcome. Material/Methods Protein levels of vascular endothelial growth factors-A, -C, -D (VEGF-A/-C/-D), their receptors- VEGF-R2 and -R3 (VEGF-R2/-R3), and matrix metalloproteinases 2, -3, and -7 (MMP-2, MMP-3, MMP-7) were quantified in the blood serum samples of 71 patients with UCB before radical cystectomy (RC). Samples of patients with non-invasive UCB or no history of UCB were investigated as controls (n=20). Protein levels in the serum were measured using a flow cytometric cytokine assay. Results A positive association for VEGF-D (p<0.001) and an inverse association for MMP-2 (p=0.017) were observed in patients with positive lymph node (LN) status at the time of RC. VEGF-A (p<0.001), VEGF-C (p<0.001), MMP-2 (p<0.001), and MMP-7 (p=0.005) serum levels were different in serum of patients with invasive UCB compared with non-invasive UCB or healthy individuals. None of the serum markers were associated with disease progression. Conclusions High VEGF-D and low MMP-2 serum levels predict LN metastasis in patients with UCB at the time of RC. VEGF-A, VEGF-C, MMP-2, and MMP-7 serum levels varied significantly between invasive and non-invasive disease as well as in comparison with healthy individuals. Clinical implementation of these marker serum measurements may be valuable to select high-risk patients with more invasive or nodal-positive disease. PMID:26241709
Kilian, Yvonne; Wehmeier, Udo F; Wahl, Patrick; Mester, Joachim; Hilberg, Thomas; Sperlich, Billy
2016-01-01
The aim of the present study was to analyze the response of vascular circulating microRNAs (miRNAs; miR-16, miR-21, miR-126) and the VEGF mRNA following an acute bout of HIIT and HVT in children. Twelve healthy competitive young male cyclists (14.4 ± 0.8 years; 57.9 ± 9.4 ml·min(-1)·kg(-1) peak oxygen uptake) performed one session of high intensity 4 × 4 min intervals (HIIT) at 90-95% peak power output (PPO), each interval separated by 3 min of active recovery, and one high volume session (HVT) consisting of a constant load exercise for 90 min at 60% PPO. Capillary blood from the earlobe was collected under resting conditions, during exercise (d1 = 20 min, d2 = 30 min, d3 = 60 min), and 0, 30, 60, 180 min after the exercise to determine miR-16, -21, -126, and VEGF mRNA. HVT significantly increased miR-16 and miR-126 during and after the exercise compared to pre-values, whereas HIIT showed no significant influence on the miRNAs compared to pre-values. VEGF mRNA significantly increased during and after HIIT (d1, 30', 60', 180') and HVT (d3, 0', 60'). RESULTS of the present investigation suggest a volume dependent exercise regulation of vascular regulating miRNAs (miR-16, miR-21, miR-126) in children. In line with previous data, our data show that acute exercise can alter circulating miRNAs profiles that might be used as novel biomarkers to monitor acute and chronic changes due to exercise in various tissues.
Campioni, Diana; Lo Monaco, Andrea; Lanza, Francesco; Moretti, Sabrina; Ferrari, Luisa; Fotinidi, Maria; La Corte, Renato; Cuneo, Antonio; Trotta, Francesco
2008-08-01
There is still controversy regarding the role of circulating endothelial and progenitor cells (CECs/CEPs) in the pathogenesis of systemic sclerosis (SSc). Using a sequential Boolean gating strategy based on a 4-color flow cytometric protocol, an increased number of CD31(pos)/CD184(pos)(CXCR4)/CD34(pos)/CD45(pos) and CD31(pos)/CD117(pos) (c-kit-R) /CD34(pos)/ CD45(pos) hematopoietic circulating progenitor cells (HCPCs) was detected in SSc patients compared with healthy subjects. In SSc, no circulating mature and progenitor endothelial cells were observed, while an enhanced generation of erythroid progenitor cells was found to be correlated with the presence of CD117+ HCPCs. The presence of freshly detected CXCR4posHCPC was correlated either to the in vitro cultured spindle-shaped endothelial like cells (SELC) with an endo/myelomonocytic profile or to SDF-1 and VEGF serum level. These data are related to more fibrotic clinical features of the disease, thus supporting a possible role of these cells in fibrosis.
Vascular endothelial growth factor levels and rheumatic diseases of the elderly.
Smets, Perrine; Devauchelle-Pensec, Valérie; Rouzaire, Paul-Olivier; Pereira, Bruno; Andre, Marc; Soubrier, Martin
2016-12-01
Increasing vascular endothelial growth factor (VEGF) has been reported in remitting symmetrical seronegative synovitis with pitting edema (RS3PE) syndrome, rheumatoid arthritis (RA), polymyalgia rheumatica (PMR) and giant cell arteritis (GCA). The aim of this study was to compare VEGF levels in patients over 60 years of age who have RS3PE, RA, PMR or GCA so as to determine whether elevated VEGF is specific for a rheumatic disease, the inflammation or edema that occurs with these pathological conditions. In this retrospective, multicentric study we assessed serum and plasma levels of VEGF in patients over 60 years of age with rheumatic diseases that were either de novo or of recent onset according to the initial clinical presentation, and we compared these patients with a control group. Serum and plasma VEGF levels were determined in 80 patients (5 with RS3PE, 13 with RA, 44 with PMR, and 18 with GCA) and 37 controls. Edema occurred in five patients with RS3PE, four with RA, and one with PMR, but not patients with GCA. Serum VEGF levels were significantly higher in individuals with rheumatic diseases (849 (405.5-1235.5) pg/ml) relative to the controls (484 (302-555) pg/ml) (p < 0.001). There were no significant differences between patients with RS3PE, RA, PMR, or GCA in terms of the VEGF serum levels (p = 0.60) or plasma levels (p = 0.57). Similarly, the occurrence of edema did not correlate with VEGF levels. VEGF increases in rheumatic diseases compared to a control group. This was not associated with specific rheumatic diseases or with edematous rheumatic diseases.
Zhen, Xiaoyue; Zheng, Yu; Hong, Xunning; Chen, Yan; Gu, Ping; Tang, Jinrong; Cheng, Hong; Yuan, Ti-Fei; Lu, Xiao
2016-01-01
To observe the effectiveness and mechanisms of physiological ischemic training (PIT) on brain cerebral collateral formation and functional recovery in patients with acute cerebral infarction. 20 eligible patients with acute cerebral infarction were randomly assigned to either PIT group ( n = 10) or Control group ( n = 10). Both groups received 4 weeks of routine rehabilitation therapy, while an additional session of PIT, which consisted of 10 times of maximal voluntary isometric handgrip for 1 min followed by 1 min rest, was prescribed for patients in the PIT groups. Each patient was trained with four sections a day and 5 days a week for 4 weeks. The Fugl-Meyer Assessment (FMA), the Modified Barthel Index (MBI), and the short-form 36-item health survey questionnaire (SF-36) were applied for the evaluation of motor impairment, activity of daily living, and quality of life at the baseline and endpoint. MRI was applied to detect the collateral formation in the brain. The concentration of vascular endothelial growth factor (VEGF) and endothelial progenitor cells (EPCs) number in plasma were also tested at the endpoint. Demographic data were consistent between experimental groups. At the endpoint, the scores of the FMA, MBI, and SF-36 were significantly higher than that at baseline. As compared to the Control group, the score of FMA and SF-36 in PIT group was significantly higher, while no significant difference was detected between groups in terms of MBI. Both groups had significantly higher cerebral blood flow (CBF) level at endpoint as compared to that at baseline. Moreover, the CBF level was even higher in the PIT group as compared to that in the Control group after 4 weeks of training. The same situations were also found in the plasma VEGF and EPCs assessment. In addition, positive correlations were found between FMA score and CBF level ( r = 0.686, p < 0.01), CBF level and VEGF concentration ( r = 0.675, p < 0.01), and VEGF concentration and EPC number ( r = 0.722, p < 0.01). PIT may be effective in increasing the expression of VEGF and recruitment of EPCs and in turn promote the formation of brain collateral circulation. The positive correlations may demonstrate a potential association between biological and functional parameters, and PIT may be able to improve the motor function, activity of daily living, and quality of life in patients with stroke.
NORMALIZATION OF THE VASCULATURE FOR TREATMENT OF CANCER AND OTHER DISEASES
Goel, Shom; Duda, Dan G.; Xu, Lei; Munn, Lance L.; Boucher, Yves; Fukumura, Dai; Jain, Rakesh K.
2012-01-01
New vessel formation (angiogenesis) is an essential physiological process for embryologic development, normal growth, and tissue repair. Angiogenesis is tightly regulated at the molecular level. Dysregulation of angiogenesis occurs in various pathologies and is one of the hallmarks of cancer. The imbalance of pro- and anti-angiogenic signaling within tumors creates an abnormal vascular network that is characterized by dilated, tortuous, and hyperpermeable vessels. The physiological consequences of these vascular abnormalities include temporal and spatial heterogeneity in tumor blood flow and oxygenation and increased tumor interstitial fluid pressure. These abnormalities and the resultant microenvironment fuel tumor progression, and also lead to a reduction in the efficacy of chemotherapy, radiotherapy, and immunotherapy. With the discovery of vascular endothelial growth factor (VEGF) as a major driver of tumor angiogenesis, efforts have focused on novel therapeutics aimed at inhibiting VEGF activity, with the goal of regressing tumors by starvation. Unfortunately, clinical trials of anti-VEGF monotherapy in patients with solid tumors have been largely negative. Intriguingly, the combination of anti-VEGF therapy with conventional chemotherapy has improved survival in cancer patients compared with chemotherapy alone. These seemingly paradoxical results could be explained by a “normalization” of the tumor vasculature by anti-VEGF therapy. Preclinical studies have shown that anti-VEGF therapy changes tumor vasculature towards a more “mature” or “normal” phenotype. This “vascular normalization” is characterized by attenuation of hyperpermeability, increased vascular pericyte coverage, a more normal basement membrane, and a resultant reduction in tumor hypoxia and interstitial fluid pressure. These in turn can lead to an improvement in the metabolic profile of the tumor microenvironment, the delivery and efficacy of exogenously administered therapeutics, the efficacy of radiotherapy and of effector immune cells, and a reduction in number of metastatic cells shed by tumors into circulation in mice. These findings are consistent with data from clinical trials of anti-VEGF agents in patients with various solid tumors. More recently, genetic and pharmacological approaches have begun to unravel some other key regulators of vascular normalization such as proteins that regulate tissue oxygen sensing (PHD2) and vessel maturation (PDGFRβ, RGS5, Ang1/2, TGF-β). Here, we review the pathophysiology of tumor angiogenesis, the molecular underpinnings and functional consequences of vascular normalization, and the implications for treatment of cancer and nonmalignant diseases. PMID:21742796
A, Yanni; Li, Ying; Zhao, Shuping
2018-01-01
The present study aimed to investigate the expression and roles of deleted in pancreatic carcinoma locus 4 (DPC4) and vascular endothelial growth factor (VEGF) in the development of cervical carcinoma. A total of 115 patients aged between 25 and 60 years were involved, including 19 cervical inflammation, 35 cervical intraepithelial neoplasia (CIN), and 61 cervical squamous-cell carcinoma (CSCC). The protein expression rates of DPC4 and VEGF in all samples were detected using immunohistochemistry. The protein levels of DPC4 and VEGF in CSCC samples were measured using ELISA. Microvessel density (MVD) of each CSCC sample was measured according to the Winder method. Association analysis between DPC4, VEGF and thrombospondin-1 (TSP-1) was conducted using Spearman's correlations. The negative expression rate of DPC4 [DPC4 (−)] and positive expression rate of VEGF [VEGF (+)] of the CSCC group were significantly higher compared with that in the cervical inflammation and CIN groups (P<0.05). In the CSCC group, the protein level of DPC4 decreased, while the VEGF level increased significantly compared with the healthy control group (P<0.05). The MVD in the DPC4 (−), VEGF (+) and TSP-1 (−) groups was significantly increased compared with that of the DPC4 (+), VEGF (−), and TSP-1 (+) groups (P<0.05). The expression of DPC4 was negatively associated with VEGF and TSP-1 (P<0.01). These results suggest that DPC4, VEGF and TSP-1 are involved in the carcinogenesis of cervical carcinoma by inducing angiogenesis. In addition, the loss of DPC4 induces angiogenesis through increasing VEGF. Thus, VEGF may be a target gene regulated by DPC4. PMID:29434970
A, Yanni; Li, Ying; Zhao, Shuping
2018-02-01
The present study aimed to investigate the expression and roles of deleted in pancreatic carcinoma locus 4 (DPC4) and vascular endothelial growth factor (VEGF) in the development of cervical carcinoma. A total of 115 patients aged between 25 and 60 years were involved, including 19 cervical inflammation, 35 cervical intraepithelial neoplasia (CIN), and 61 cervical squamous-cell carcinoma (CSCC). The protein expression rates of DPC4 and VEGF in all samples were detected using immunohistochemistry. The protein levels of DPC4 and VEGF in CSCC samples were measured using ELISA. Microvessel density (MVD) of each CSCC sample was measured according to the Winder method. Association analysis between DPC4, VEGF and thrombospondin-1 (TSP-1) was conducted using Spearman's correlations. The negative expression rate of DPC4 [DPC4 (-)] and positive expression rate of VEGF [VEGF (+)] of the CSCC group were significantly higher compared with that in the cervical inflammation and CIN groups (P<0.05). In the CSCC group, the protein level of DPC4 decreased, while the VEGF level increased significantly compared with the healthy control group (P<0.05). The MVD in the DPC4 (-), VEGF (+) and TSP-1 (-) groups was significantly increased compared with that of the DPC4 (+), VEGF (-), and TSP-1 (+) groups (P<0.05). The expression of DPC4 was negatively associated with VEGF and TSP-1 (P<0.01). These results suggest that DPC4, VEGF and TSP-1 are involved in the carcinogenesis of cervical carcinoma by inducing angiogenesis. In addition, the loss of DPC4 induces angiogenesis through increasing VEGF. Thus, VEGF may be a target gene regulated by DPC4.
Nadar, Sunil; Blann, Andrew D; Lip, Gregory Y H
2006-09-01
Although aspirin is useful in reducing platelet activation and cardiovascular events, its effects on platelet levels of angiogenic factors, such as vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1), and markers of platelet activation in hypertension are unknown. The aim of this study was to study the effects of aspirin on the platelet morphology, plasma and platelet levels of VEGF (sVEGF and pVEGF respectively), Ang-1 (sAng-1 and pAng-1 respectively), and P-selectin (sPsel and pPsel respectively) in patients with well controlled hypertension. A total of 35 aspirin-naive, hypertensive patients (29 male and six female; mean age 64 years) were compared with 30 (23 male, seven female, mean age 59 years) normotensive control subjects. Blood was collected for plasma VEGF, P-selectin, and Ang-1 (enzyme-linked immunoassay), intra-platelet levels of VEGF, Ang-1, and P-selectin, and platelet volume and mass. Research indices in hypertensive patients were studied before and after 3 months treatment with aspirin 75 mg daily. Hypertensive patients had significantly higher plasma levels of VEGF (P=.04), Ang-1 (P<.001), as well as pVEGF (P=.008), pAng-1(P=.001), sPsel (P=.02), pPsel (P<.001), and mean platelet mass (P=.01) when compared with control subjects. After treatment with aspirin for 3 months, there were significant reductions in plasma VEGF (P=.01), pAng-1 (P=.04), sPsel (P=.001), and pPsel (P<.001) levels, but not levels of platelet VEGF and plasma Ang-1. Neither pVEGF nor pAng-1 correlated with blood pressure or with their respective plasma levels. The use of aspirin in high-risk hypertensive patients leads to a reduction in intra-platelet angiogenic growth factors and platelet activation. This may have implications for the use of aspirin in conditions (such as vascular disease) that have been associated with an increase in angiogenesis and platelet activation.
Simvastatin reduces vaso-occlusive pain in sickle cell anaemia: a pilot efficacy trial.
Hoppe, Carolyn; Jacob, Eufemia; Styles, Lori; Kuypers, Frans; Larkin, Sandra; Vichinsky, Elliott
2017-05-01
Sickle cell anaemia (SCA) is a progressive vascular disease characterized by episodic vaso-occlusive pain. Despite the broad impact of inflammation on acute and chronic clinical manifestations of SCA, no directed anti-inflammatory therapies currently exist. Statins are cholesterol-lowering agents shown to confer protection from vascular injury by suppressing inflammation. We previously documented a reduction in soluble biomarkers of inflammation in patients with sickle cell disease treated with simvastatin. To determine the potential clinical efficacy of simvastatin, we treated 19 SCA patients with single daily dose simvastatin for 3 months and assessed changes from baseline in the frequency and intensity of diary-reported pain and levels of circulating nitric oxide metabolites (NOx), high sensitivity C-reactive protein (hs-CRP), vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), ICAM-3, E-selectin, and vascular endothelial growth factor (VEGF). Treatment with simvastatin resulted in a significant reduction in the frequency of pain (P = 0·0003), oral analgesic use (P = 0·003) and circulating hs-CRP (P = 0·003), soluble (s)E-selectin (P = 0·01), sICAM-1 (P = 0·02), sICAM-3 (P = 0·02) and sVEGF (P = 0·01). Simvastatin had no effect on pain intensity or levels of NOx, sP-selectin and sVCAM-1. The observed reductions in pain rate and markers of inflammation were greatest in subjects receiving hydroxycarbamide (HC), suggesting a synergistic effect of simvastatin. These results provide preliminary clinical data to support a larger trial of simvastatin in SCA. © 2017 John Wiley & Sons Ltd.
Capture of endothelial cells under flow using immobilized vascular endothelial growth factor
Smith, Randall J.; Koobatian, Maxwell T.; Shahini, Aref; Swartz, Daniel D.; Andreadis, Stelios T.
2015-01-01
We demonstrate the ability of immobilized vascular endothelial growth factor (VEGF) to capture endothelial cells (EC) with high specificity under fluid flow. To this end, we engineered a surface consisting of heparin bound to poly-L-lysine to permit immobilization of VEGF through the C-terminal heparin-binding domain. The immobilized growth factor retained its biological activity as shown by proliferation of EC and prolonged activation of KDR signaling. Using a microfluidic device we assessed the ability to capture EC under a range of shear stresses from low (0.5 dyne/cm2) to physiological (15 dyne/cm2). Capture was significant for all shear stresses tested. Immobilized VEGF was highly selective for EC as evidenced by significant capture of human umbilical vein and ovine pulmonary artery EC but no capture of human dermal fibroblasts, human hair follicle derived mesenchymal stem cells, or mouse fibroblasts. Further, VEGF could capture EC from mixtures with non-EC under low and high shear conditions as well as from complex fluids like whole human blood under high shear. Our findings may have far reaching implications, as they suggest that VEGF could be used to promote endothelialization of vascular grafts or neovascularization of implanted tissues by rare but continuously circulating EC. PMID:25771020
The Angio-Fibrotic Switch of VEGF and CTGF in Proliferative Diabetic Retinopathy
Kuiper, Esther J.; Van Nieuwenhoven, Frans A.; de Smet, Marc D.; van Meurs, Jan C.; Tanck, Michael W.; Oliver, Noelynn; Klaassen, Ingeborg; Van Noorden, Cornelis J. F.; Goldschmeding, Roel; Schlingemann, Reinier O.
2008-01-01
Background In proliferative diabetic retinopathy (PDR), vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) cause blindness by neovascularization and subsequent fibrosis, but their relative contribution to both processes is unknown. We hypothesize that the balance between levels of pro-angiogenic VEGF and pro-fibrotic CTGF regulates angiogenesis, the angio-fibrotic switch, and the resulting fibrosis and scarring. Methods/Principal Findings VEGF and CTGF were measured by ELISA in 68 vitreous samples of patients with proliferative DR (PDR, N = 32), macular hole (N = 13) or macular pucker (N = 23) and were related to clinical data, including degree of intra-ocular neovascularization and fibrosis. In addition, clinical cases of PDR (n = 4) were studied before and after pan-retinal photocoagulation and intra-vitreal injections with bevacizumab, an antibody against VEGF. Neovascularization and fibrosis in various degrees occurred almost exclusively in PDR patients. In PDR patients, vitreous CTGF levels were significantly associated with degree of fibrosis and with VEGF levels, but not with neovascularization, whereas VEGF levels were associated only with neovascularization. The ratio of CTGF and VEGF was the strongest predictor of degree of fibrosis. As predicted by these findings, patients with PDR demonstrated a temporary increase in intra-ocular fibrosis after anti-VEGF treatment or laser treatment. Conclusions/Significance CTGF is primarily a pro-fibrotic factor in the eye, and a shift in the balance between CTGF and VEGF is associated with the switch from angiogenesis to fibrosis in proliferative retinopathy. PMID:18628999
Taiana, Michela M.; Lombardi, Raffaella; Porretta-Serapiglia, Carla; Ciusani, Emilio; Oggioni, Norberto; Sassone, Jenny; Bianchi, Roberto; Lauria, Giuseppe
2014-01-01
The pathogenetic role of vascular endothelial growth factor (VEGF) in long-term retinal and kidney complications of diabetes has been demonstrated. Conversely, little is known in diabetic neuropathy. We examined the modulation of VEGF pathway at mRNA and protein level on dorsal root ganglion (DRG) neurons and Schwann cells (SC) induced by hyperglycaemia. Moreover, we studied the effects of VEGF neutralization on hyperglycemic DRG neurons and streptozotocin-induced diabetic neuropathy. Our findings demonstrated that DRG neurons were not affected by the direct exposition to hyperglycaemia, whereas showed an impairment of neurite outgrowth ability when exposed to the medium of SC cultured in hyperglycaemia. This was mediated by an altered regulation of VEGF and FLT-1 receptors. Hyperglycaemia increased VEGF and FLT-1 mRNA without changing their intracellular protein levels in DRG neurons, decreased intracellular and secreted protein levels without changing mRNA level in SC, while reduced the expression of the soluble receptor sFLT-1 both in DRG neurons and SC. Bevacizumab, a molecule that inhibits VEGF activity preventing the interaction with its receptors, restored neurite outgrowth and normalized FLT-1 mRNA and protein levels in co-cultures. In diabetic rats, it both prevented and restored nerve conduction velocity and nociceptive thresholds. We demonstrated that hyperglycaemia early affected neurite outgrowth through the impairment of SC-derived VEGF/FLT-1 signaling and that the neutralization of SC-secreted VEGF was protective both in vitro and in vivo models of diabetic neuropathy. PMID:25268360
Serum levels of vascular endothelial growth factor in chronic obstructive pulmonary disease.
Farid Hosseini, Reza; Jabbari Azad, Farahzad; Yousefzadeh, Hadis; Rafatpanah, Houshang; Hafizi, Saeed; Tehrani, Homan; Khani, Masoud
2014-01-01
Chronic obstructive pulmonary disease (COPD) is a third leading cause of death. In this case control study, we prepared 5 cc bloods from the antecubital vein of 100 COPD patients and 40 healthy individuals as control group. Vascular endothelial growth factor (VEGF) expression protein level was measured by ELISA in both groups. We found that concentration of VEGF in blood serum of patients with COPD (189.9±16pg/ml) was significantly higher than the control group (16.4±3.48pg/ml) (p<0.001). While VEGF serum level in emphysematous patients wasn't significantly different with control group (p=0.07). Furthermore VEGF serum level in COPD patients was proportionally increased with severity of disease (p<0.001). Besides all COPD patients, regardless of their smoking status, were experienced significantly higher levels of VEGF than healthy ones (p=0.001; z=4.3). Our results suggest VEGF serum concentration as the sensitive index for severity and activity of COPD and its prognosis.
Addison, Christina L; Ding, Keyue; Seymour, Lesley; Zhao, Huijun; Laurie, Scott A; Shepherd, Frances A; Goss, Glenwood D; Bradbury, Penelope A
2015-11-01
Prognostic and predictive ability of circulating vascular endothelial growth factor (VEGF), stromal derived factor (SDF)-1α and soluble VEGF receptors (sVEGFR) 2 and 3, were evaluated in non-small cell lung cancer (NSCLC) patients enrolled in NCIC Clinical Trials Group BR. 24 comparing chemotherapy with or without cediranib. Biomarker levels were assessed by ELISA in serum from 149/296 enrolled patients at baseline and 146/149 patients after one treatment cycle. Experimental cut-offs for baseline measures determined using a graphic method were: < or ≥1 ng/ml, SDF-1α: ≤ or >3.5 ng/ml, sVEGFR2: < or ≥11 ng/ml and sVEGFR3: < or ≥35.5 ng/ml. Changes in markers from baseline to on-treatment were predefined as increased ≥10%, stable within 10% or decreased ≥10%. Cox regression models were used to correlate biomarkers with patient characteristics and outcomes including progression-free survival (PFS) and overall survival (OS). No baseline biomarker was prognostic for OS, however, high baseline sVEGFR2 was prognostic for better PFS (p=0.0008) in the chemotherapy alone arm. Low baseline sVEGFR2 or sVEGFR3 were predictive of PFS benefit from cediranib (interaction p=0.06 and p=0.05, respectively). While on treatment, VEGF-A increases were associated with better PFS (p=0.02) and OS (p=0.01) for cediranib treated patients. Decreases in sVEGFR2 (p=0.01) or sVEGFR3 (p=0.02) were also predictive of better OS in cediranib treated patients. Low baseline sVEGFR2 and sVEGFR3 were predictive for PFS benefit from cediranib, whereas increases in VEGF-A and decreases in sVEGFR2 or sVEGFR3 levels from baseline to on-treatment were predictive of an OS benefit from cediranib in chemotherapy treated NSCLC patients. Validation of these results is warranted. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Plasma markers of angiogenesis in pregnancy induced hypertension.
Nadar, Sunil K; Karalis, Ioannis; Al Yemeni, Eman; Blann, Andrew D; Lip, Gregory Y H
2005-11-01
This study tests the hypothesis that abnormalities in plasma indices of angiogenesis, such as Vascular Endothelial Growth Factor (VEGF) and angiopoietins (Ang-1, Ang-2), as well as their soluble receptors Flt-1 (sFlt-1) and Tie 2 (sTie-2) respectively, are present in women with in pregnancy-induced hypertension (PIH). We also measured platelet levels of VEGF and Ang-1 (pVEGF and pAng-1 respectively). We studied 69 consecutive women with PIH (34 without proteinuria, and 35 with proteinuria, i.e. preeclampsia) who were compared to 64 consecutive women with normotensive pregnancies and 30 normotensive non-pregnant women, in a cross-sectional study. Using ELISA, we measured levels of plasma VEGF, Ang-1 & 2, Tie-2 and sFlt-1, and also the levels of angiogenic markers within the platelet [platelet VEGF (pVEGF) and platelet Ang-1 (pAng1)] by lysing a fixed number of platelets with 0.5% tween. Results show that levels of plasma VEGF, Ang-1, Ang2, sFlt-1 and Tie-2 were significantly different between the study groups. Post hoc analyses revealed plasma Ang-1 was highest in the preeclampsia group (p<0.001), whilst Ang-2 was highest in the normotensive pregnant group (p-=0.018). Plasma Tie-2 was highest in the PIH group. VEGF levels were significantly different between the preeclampsia group and the PIH group (p<0.05). Platelet VEGF levels were higher in the non-pregnant group than in the pregnant group, but there were no significant differences in the platelet levels of Ang-1 between the different groups. Ang-2, sFlt-1 and Tie-2 were undetectable in the platelet lysate in any of the patient groups or controls. Blood pressure was a major determinant of the different angiogenic factors studied. Abnormal indices of angiogenesis are evident in PIH and preeclampsia, with higher levels of sFlt-1 and lower levels of VEGF; in PIH, increased levels of Ang-1 and Tie-2, but reduced Ang-2, are evident compared to normal pregnancy. These abnormalities may have implications for the pathogenesis of PIH and preeclampsia.
Szubert, Sebastian; Moszynski, Rafal; Michalak, Slawomir; Nowicki, Michal; Sajdak, Stefan; Szpurek, Dariusz
2016-09-01
To investigate whether serum levels of VEGF, bFGF and endoglin correlate with tumor VEGF and bFGF expression or microvessel density (MVD) in ovarian cancer. Forty five patients with epithelial ovarian cancers (EOCs) and 38 patients with benign ovarian tumors (BOTs) were included into the study. Serum levels of VEGF, bFGF and endoglin were assessed using ELISA. The expression of VEGF and bFGF in tumor samples were evaluated using ELISA of supernatants obtained from tumor homogenization. MVD was analyzed using immunohistochemistry with antibodies against CD31, CD34 and CD105. Serum VEGF levels were significantly higher in EOCs than in BOTs (436.6pg/ml [19.67-2860] vs 295.5pg/ml [123-539], P=0.025). Serum endoglin levels were lowered in the group EOCs when compared to BOTs (33,720g/ml [12,220-73,940] vs 42,390pg/ml [19,380-56,910], P=0.015). There were no differences in bFGF levels between studied groups. EOCs have significantly higher CD105 MVD (25 vessels/mm2 [0-57] vs 6 vessels/mm2 [0-70], P<0.001) and tumor VEGF (405.9pg/mg protein [0-3000] vs 2.225 [0-634.7], P<0.001) expression than BOTs, while, bFGF expression was higher in BOTs than in EOCs (2076pg/mg protein [668.1-8718] vs 847.3pg/mg protein [188.9-8333], P=0.003). In patients with EOCs we have observed negative correlation between serum VEGF concentration and its tissue expression (r Spearman=-0.571, P=0.0261), and serum VEGF concentration correlated positively with CD34-MVD (r Spearman=0.545, P=0.0289). In a multiple regression analysis we have observed only the negative correlation between serum VEGF and CD105-MVD (r=-0.5288, P=0.0427). Serum VEGF is a useful marker for prediction of ovarian cancer MVD and tumor VEGF expression. Copyright © 2016 Elsevier Inc. All rights reserved.
Vascularized bone transplant chimerism mediated by vascular endothelial growth factor.
Willems, Wouter F; Larsen, Mikko; Friedrich, Patricia F; Bishop, Allen T
2015-01-01
Vascular endothelial growth factor (VEGF) induces angiogenesis and osteogenesis in bone allotransplants. We aim to determine whether bone remodeling in VEGF-treated bone allotransplants results from repopulation with circulation-derived autogenous cells or survival of allogenic transplant-derived cells. Vascularized femoral bone transplants were transplanted from female Dark Agouti rats (DA;RT1(a) ) to male Piebald Viral Glaxo (PVG;RT1(c) ). Arteriovenous bundle implantation and short-term immunosuppression were used to maintain cellular viability. VEGF was encapsulated in biodegradable microspheres and delivered intramedullary in the experimental group (n = 22). In the control group (n = 22), no VEGF was delivered. Rats were sacrificed at 4 or 18 weeks. Laser capture microdissection of bone remodeling areas was performed at the inner and outer cortex. Sex-mismatched genes were quantified with reverse transcription-polymerase chain reaction to determine the amount of male cells to total cells, defined as the relative expression ratio (rER). At 4 weeks, rER was significantly higher at the inner cortex in VEGF-treated transplants as compared to untreated transplants (0.622 ± 0.225 vs. 0.362 ± 0.081, P = 0.043). At 4 weeks, the outer cortex in the control group had a significantly higher rER (P = 0.038), whereas in the VEGF group, the inner cortex had a higher rER (P = 0.015). Over time, in the outer cortex the rER significantly increased to 0.634 ± 0.106 at 18 weeks in VEGF-treated rats (P = 0.049). At 18 weeks, the rER was >0.5 at all cortical areas in both groups. These in vivo findings suggest a chemotactic effect of intramedullary applied VEGF on recipient-derived bone and could imply that more rapid angiogenesis of vascularized allotransplants can be established with microencapsulated VEGF. © 2014 Wiley Periodicals, Inc.
The SK3 channel promotes placental vascularization by enhancing secretion of angiogenic factors.
Rada, Cara C; Murray, Grace; England, Sarah K
2014-11-15
Proper placental perfusion is essential for fetal exchange of oxygen, nutrients, and waste with the maternal circulation. Impairment of uteroplacental vascular function can lead to pregnancy complications, including preeclampsia and intrauterine growth restriction (IUGR). Potassium channels have been recognized as regulators of vascular proliferation, angiogenesis, and secretion of vasoactive factors, and their dysfunction may underlie pregnancy-related vascular diseases. Overexpression of one channel in particular, the small-conductance calcium-activated potassium channel 3 (SK3), is known to increase vascularization in mice, and mice overexpressing the SK3 channel (SK3(T/T) mice) have a high rate of fetal demise and IUGR. Here, we show that overexpression of SK3 causes fetal loss through abnormal placental vascularization. We previously reported that, at pregnancy day 14, placentas isolated from SK3(T/T) mice are smaller than those obtained from wild-type mice. In this study, histological analysis reveals that SK3(T/-) placentas at this stage have abnormal placental morphology, and microcomputed tomography shows that these placentas have significantly larger and more blood vessels than those from wild-type mice. To identify the mechanism by which these vascularization defects occur, we measured levels of vascular endothelial growth factor (VEGF), placental growth factor, and the soluble form of VEGF receptor 1 (sFlt-1), which must be tightly regulated to ensure proper placental development. Our data reveal that overexpression of SK3 alters systemic and placental ratios of the angiogenic factor VEGF to antiangiogenic factor sFlt-1 throughout pregnancy. Additionally, we observe increased expression of hypoxia-inducing factor 2α in SK3(T/-) placentas. We conclude that the SK3 channel modulates placental vascular development and fetal health by altering VEGF signaling. Copyright © 2014 the American Physiological Society.
Yueniwati, Yuyun; Darmiastini, Ni Komang; Arisetijono, Eko
2016-01-01
Atherosclerosis causes reduction of the oxygen supply to structures in the far arterial wall, provoking the release of factors that drive angiogenesis of vasa vasorum, including VEGF. Other studies have revealed the inflammatory response in atherosclerosis and the role of platelet factor 4 (PF4) as an anti-angiogenic chemokine through the inhibition of VEGF. This cross-sectional study aims at measuring the effect of atherosclerosis assessed through carotid intima-media thickness (CIMT) against plasma VEGF levels in patients with post-acute thrombotic stroke. CIMT was assessed sonographically using GE Logiq S6 with 13 MHz frequency linear probe. VEGF-A plasma levels were measured using enzyme-linked immunosorbent assay (ELISA) method. Differences among variables were compared statistically. The data were analyzed using Pearson correlation. A total of 25 patients with post-acute thrombotic stroke were identified in days 7 to 90. CIMT thickening was indicated in 88% of patients (1.202 ± 0.312 mm), while an increase in plasma VEGF was identified in all patients (178.28 ± 93.96 ng/mL). There was no significant correlation between CIMT and plasma VEGF levels in patients with post-acute thrombotic stroke ( p =0.741). A significant correlation was recognized between CIMT and total cholesterol ( p =0.029) and low-density lipoprotein ( p =0.018). There were no significant correlations between CIMT and plasma VEGF levels in patients with post-acute thrombotic stroke. However, plasma VEGF increased in patients with thrombotic stroke. CIMT measurement is a promising noninvasive modality to assess the vascular condition of patients with stroke and diabetes, while plasma VEGF cannot specifically assess vascular condition as it can be triggered by ischemic conditions in tissues of the whole body.
Endogenous Antiangiogenic Factors in Chronic Kidney Disease: Potential Biomarkers of Progression.
Tanabe, Katsuyuki; Sato, Yasufumi; Wada, Jun
2018-06-24
Chronic kidney disease (CKD) is a major global health problem. Unless intensive intervention is initiated, some patients can rapidly progress to end-stage kidney disease. However, it is often difficult to predict renal outcomes using conventional laboratory tests in individuals with CKD. Therefore, many researchers have been searching for novel biomarkers to predict the progression of CKD. Angiogenesis is involved in physiological and pathological processes in the kidney and is regulated by the balance between a proangiogenic factor, vascular endothelial growth factor (VEGF)-A, and various endogenous antiangiogenic factors. In recent reports using genetically engineered mice, the roles of these antiangiogenic factors in the pathogenesis of kidney disease have become increasingly clear. In addition, recent clinical studies have demonstrated associations between circulating levels of antiangiogenic factors and renal dysfunction in CKD patients. In this review, we summarize recent advances in the study of representative endogenous antiangiogenic factors, including soluble fms-related tyrosine kinase 1, soluble endoglin, pigment epithelium-derived factor, VEGF-A 165 b, endostatin, and vasohibin-1, in associations with kidney diseases and discuss their predictive potentials as biomarkers of progression of CKD.
Kim, Hak-Ryul; Kim, Byoung-Ryun; Park, Rae-Kil; Yoon, Kwon-Ha; Jeong, Eun-Taik; Hwang, Ki-Eun
2017-06-01
Malignancy and tuberculosis are common causes of lymphocytic exudative pleural effusion. However, it is occasionally difficult to differentiate malignant pleural effusion from tuberculous pleural effusion. Vascular endothelial growth factor (VEGF) is a critical cytokine in the pathogenesis of malignant pleural effusion. Endocan is a dermatan sulfate proteoglycan that is secreted by endothelial cells. Importantly, endocan mediates the vascular growth-promoting action of VEGF. The aim of this study was to evaluate the diagnostic significance of VEGF and endocan in pleural effusion. We thus measured the levels of VEGF and endocan in the pleural effusion and serum samples of patients with lung cancer (n = 59) and those with tuberculosis (n = 32) by enzyme-linked immunosorbent assay. Lung cancer included 40 cases of adenocarcinoma, 13 of squamous cell carcinoma, and 6 of small cell carcinoma. Pleural effusion VEGF levels were significantly higher in the malignant group than in the tuberculosis group (2,091.47 ± 1,624.80 pg/mL vs. 1,291.05 ± 1,100.53 pg/mL, P < 0.05), whereas pleural effusion endocan levels were similar between the two groups (1.22 ± 0.74 ng/mL vs. 0.87 ± 0.53 ng/mL). The areas under the curve of VEGF and endocan were 0.73 and 0.52, respectively. Notably, the VEGF levels were similar in malignant pleural effusion, irrespective of the histological type of lung cancer. Moreover, no significant difference was found in the serum VEGF and endocan levels between patients with lung cancer and those with tuberculosis. In conclusion, high VEGF levels in pleural effusion are suggestive of malignant pleural effusion.
Chen, Yujuan; Liu, Ya; Wang, Yu; Li, Wen; Wang, Xiaolu; Liu, Xuejuan; Chen, Yao; Ouyang, Chibin; Wang, Jing
2017-01-01
Abstract Background: Axillary lymph node metastasis is associated with increased risk of regional recurrence, distant metastasis, and poor survival in breast malignant neoplasm. Expression of signal transducer and activator of transcription 3 (STAT3) is significantly associated with tumor formation, migration, and invasion in various cancers. In addition, vascular endothelial growth factor (VEGF) expression could promote angiogenesis and increase the risk of tumorigenesis. To determine correlations among STAT3 expression, VEGF, and clinicopathological data on lymph node involvement in breast cancer patients after surgery. Methods: The mRNA expression levels of STAT3 and VEGFs were measured in 45 breast invasive ductal carcinoma tissues, 45 peritumoral tissues, and 45 adjacent nontumor tissues by real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR). Postoperative pathological examination revealed explicit axillary lymph node involvement in all patients. Results: Average mRNA levels of STAT3 and VEGFs were the highest in breast invasive ductal carcinoma tissues, followed by peritumoral tissues. High expression of STAT3 showed significant positive correlation with high axillary lymph node involvement and progesterone receptor (PR), VEGF-C, VEGF-D, and vascular endothelial growth factor receptor (VEGFR)-3 expression. The expression levels of STAT3, VEGF-C, and VEGFR-3 were significantly higher in the tumor tissues of patients with axillary lymph node metastasis than in those of patients without the metastasis. Expression levels of VEGF-C and VEGFR-3 were also significantly higher in peritumoral tissues of patients with axillary lymph node metastasis. Positive correlations were found between STAT3 and VEGF-C/-D mRNA levels. Conclusion: These data suggest that STAT3/VEGF-C/VEGFR-3 signaling pathway plays an important role in carcinogenesis and lymph-angiogenesis. Our findings suggest that STAT3 may be a potential molecular biomarker for predicting the involvement of axillary lymph nodes in breast cancer, and therapies targeting STAT3 may be important for preventing breast cancer metastasis. PMID:29137038
Wang, Qi; Wang, Shuai; Sun, Si-Qiao; Cheng, Zhi-Hua; Zhang, Yang; Chen, Guang; Gu, Meng; Yao, Hai-Jun; Wang, Zhong; Zhou, Juan; Peng, Yu-Bing; Xu, Ming-Xi; Zhang, Ke; Sun, Xi-Wei
2016-01-01
This study was to explore the effects of RNA interference mediated vascular endothelial growth factor (VEGF) gene silencing on biological behavior of renal cell carcinoma (RCC), transplanted renal tumor and angiogenesis in nude mice. The specific siRNA sequence targeting VEGF were designed and synthesized to construct hVEGF-siRNA plasmid which was transfected into RCC 786-O cells. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used for the detection of VEGF gene expression and western blot was adopted for the examination of VEGF protein expression. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell growth as well as cell migration and invasion. The transplanted renal tumor models in nude mice were established, and the growth condition of nude mice, and VEGF protein expression in transplanted tumor slices and the microvessel density (MVD) were detected. The expression level of VEGF mRNA in VEGF-siRNA group was significant lower than that in the control group and negative group, suggesting that establishment of plasmid specifically inhibited the expression of VEGF gene The expression level of VEGF protein in VEGF-siRNA group was significant lower than that in the control group and negative group. VEGF gene silencing has the significant inhibition effects on proliferation, migration and invasion of RCC 786-O cells. The tumor weight, VEGF protein positive rate and MVD in VEGF-siRNA group were significant lower than those in negative group and blank group. The VEGF gene silencing could inhibit the cell proliferation, migration and invasion of RCC 786-O cells; inhibition of VEGF protein expression could prevent transplanted RCC growth and tumor angiogenesis.
Saraswat, Deepika; Nehra, Sarita; Chaudhary, Kamal; CVS, Siva Prasad
2015-05-01
Vascular endothelial growth factor (VEGF) is an important cerebral angiogenic and permeability factor under hypoxia. There is a need to find effective molecules that may ameliorate hypoxia-induced cerebral oedema. In silico identification of novel candidate molecules that block VEGF-A site were identified and validated with a Ramachandran plot. The active site residues of VEGF-A were detected by Pocketfinder, CASTp, and DogSiteScorer. Based on in silico data, three VEGF-A blocker (VAB) candidate molecules (VAB1, VAB2, and VAB3) were checked for improvement in cellular viability and regulation of VEGF levels in N2a cells under hypoxia (0.5% O2 ). Additionally, the best candidate molecule's efficacy was assessed in male Sprague-Dawley rats for its ameliorative effect on cerebral oedema and vascular leakage under hypobaric hypoxia 7260 m. All experimental results were compared with the commercially available VEGF blocker sunitinib. Vascular endothelial growth factor-A blocker 1 was found most effective in increasing cellular viability and maintaining normal VEGF levels under hypoxia (0.5% oxygen) in N2a cells. Vascular endothelial growth factor-A blocker 1 effectively restored VEGF levels, decreased cerebral oedema, and reduced vascular leakage under hypobaric hypoxia when compared to sunitinib-treated rats. Vascular endothelial growth factor-A blocker 1 may be a promising candidate molecule for ameliorating hypobaric hypoxia-induced vasogenic oedema by regulating VEGF levels. © 2015 Wiley Publishing Asia Pty Ltd.
Gonçalves-Rizzi, Victor Hugo; Possomato-Vieira, Jose Sergio; Sales Graça, Tamiris Uracs; Nascimento, Regina Aparecida; Dias-Junior, Carlos A
2016-07-01
Preeclampsia is a pregnancy-associated disorder characterized by hypertension with uncertain pathogenesis. Increases in antiangiogenic soluble fms-like tyrosine kinase-1 (sFlt-1) and reductions in nitric oxide (NO) bioavailability have been observed in preeclamptic women. However, the specific mechanisms linking these detrimental changes to the hypertension-in-pregnancy are not clearly understood. In this regard, while recent findings have suggested that nitrite-derived NO formation exerts antihypertensive and antioxidant effects, no previous study has examined these responses to orally administered nitrite in hypertension-in-pregnancy. We then hypothesized restoring NO bioavailability with sodium nitrite in pregnant rats upon NO synthesis inhibition with N(omega)-nitro-l-arginine methyl ester (L-NAME) attenuates hypertension and high circulating levels of sFlt-1. Number and weight of pups and placentae were recorded to assess maternal-fetal interface. Plasma sFlt-1, vascular endothelial growth factor (VEGF) and biochemical determinants of NO formation and of antioxidant function were measured. We found that sodium nitrite blunts the hypertension-in-pregnancy and restores the NO bioavailability, and concomitantly prevents the L-NAME-induced high circulating sFlt-1 and VEGF levels. Also, our results suggest that nitrite-derived NO protected against reductions in litter size and placental weight caused by L-NAME, improving number of viable and resorbed fetuses and antioxidant function. Therefore, the present findings are consistent with the hypothesis that nitrite-derived NO may possibly be the driving force behind the maternal and fetal beneficial effects observed with sodium nitrite during hypertension-in-pregnancy. Certainly further investigations are required in preeclampsia, since counteracting the damages to the mother and fetal sides resulting from hypertension and elevated sFlt-1 levels may provide a great benefit in this gestational hypertensive disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Archontogeorgis, Kostas; Nena, Evangelia; Papanas, Nikolaos; Xanthoudaki, Maria; Hatzizisi, Olga; Kyriazis, Georgios; Tsara, Venetia; Maltezos, Efstratios; Froudarakis, Marios; Steiropoulos, Paschalis
2015-01-01
Background and Aim: Hypoxia, a major feature of obstructive sleep apnea (OSA), modifies Vascular Endothelial Growth Factor (VEGF) and Insulin-like Growth Factor Binding Protein-3 (IGFBP-3) levels, which contribute to atherogenesis and occurrence of cardiovascular (CV) events. We assessed and compared serum levels of VEGF and IGFBP-3 in newly diagnosed OSA patients and controls, to explore associations with anthropometric and sleep parameters and to study the effect of continuous positive airway pressure (CPAP) treatment on these levels. Materials and Methods: Serum levels of VEGF and IGFBP-3 were measured in 65 OSA patients and 31 age- and body mass index- matched controls. In OSA patients, measurements were repeated after 6 months of CPAP therapy. All participants were non-smokers, without any comorbidities or systemic medication use. Results: At baseline, serum VEGF levels in OSA patients were higher compared with controls (p<0.001), while IGFBP-3 levels were lower (1.41±0.56 vs. 1.61±0.38 μg/ml, p=0.039). VEGF levels correlated with apnea-hypopnea index (r=0.336, p=0.001) and oxygen desaturation index (r=0.282, p=0.007). After 6 months on CPAP treatment, VEGF levels decreased in OSA patients (p<0.001), while IGFBP-3 levels increased (p<0.001). Conclusion: In newly diagnosed OSA patients, serum levels of VEGF are elevated, while IGFBP-3 levels are low. After 6 months of CPAP treatment these levels change. These results may reflect an increased CV risk in untreated OSA patients, which is ameliorated after CPAP therapy. PMID:27006717
Jampol, Lee M; Glassman, Adam R; Liu, Danni; Aiello, Lloyd Paul; Bressler, Neil M; Duh, Elia J; Quaggin, Susan; Wells, John A; Wykoff, Charles C
2018-07-01
To assess systemic vascular endothelial growth factor (VEGF)-A levels after treatment with intravitreous aflibercept, bevacizumab, or ranibizumab. Comparative-effectiveness trial with participants randomly assigned to 2 mg aflibercept, 1.25 mg bevacizumab, or 0.3 mg ranibizumab after a re-treatment algorithm. Participants with available plasma samples (N = 436). Plasma samples were collected before injections at baseline and 4-week, 52-week, and 104-week visits. In a preplanned secondary analysis, systemic-free VEGF levels from an enzyme-linked immunosorbent assay were compared across anti-VEGF agents and correlated with systemic side effects. Changes in the natural log (ln) of plasma VEGF levels. Baseline free VEGF levels were similar across all 3 groups. At 4 weeks, mean ln(VEGF) changes were -0.30±0.61 pg/ml, -0.31±0.54 pg/ml, and -0.02±0.44 pg/ml for the aflibercept, bevacizumab, and ranibizumab groups, respectively. The adjusted differences between treatment groups (adjusted confidence interval [CI]; P value) were -0.01 (-0.12 to +0.10; P = 0.89), -0.31 (-0.44 to -0.18; P < 0.001), and -0.30 (-0.43 to -0.18; P < 0.001) for aflibercept-bevacizumab, aflibercept-ranibizumab, and bevacizumab-ranibizumab, respectively. At 52 weeks, a difference in mean VEGF changes between bevacizumab and ranibizumab persisted (-0.23 [-0.38 to -0.09]; P < 0.001); the difference between aflibercept and ranibizumab was -0.12 (P = 0.07) and between aflibercept and bevacizumab was +0.11 (P = 0.07). Treatment group differences at 2 years were similar to 1 year. No apparent treatment differences were detected at 52 or 104 weeks in the cohort of participants not receiving injections within 1 or 2 months before plasma collection. Participants with (N = 9) and without (N = 251) a heart attack or stroke had VEGF levels that appeared similar. These data suggest that decreases in plasma free-VEGF levels are greater after treatment with aflibercept or bevacizumab compared with ranibizumab at 4 weeks. At 52 and 104 weeks, a greater decrease was observed in bevacizumab versus ranibizumab. Results from 2 subgroups of participants who did not receive injections within at least 1 month and 2 months before collection suggest similar changes in VEGF levels after stopping injections. It is unknown whether VEGF levels return to normal as the drug is cleared from the system or whether the presence of the drug affects the assay's ability to accurately measure free VEGF. No significant associations between VEGF concentration and systemic factors were noted. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Inverse Relationship between Serum VEGF Levels and Late In-Stent Restenosis of Drug-Eluting Stents
Shen, Li; Ji, Meng; Cai, Sishi; Chen, Jiahui; Yao, Zhifeng
2017-01-01
Late in-stent restenosis (ISR) has raised concerns regarding the long-term efficacy of drug-eluting stents (DES). The role of vascular endothelial growth factor (VEGF) in the pathological process of ISR is controversial. This retrospective study aimed to investigate the relationship between serum VEGF levels and late ISR in patients with DES implantation. A total of 158 patients who underwent angiography follow-up beyond 1 year after intervention were included. The study population was classified into ISR and non-ISR groups. The ISR group was further divided according to follow-up duration and Mehran classification. VEGF levels were significantly lower in the ISR group than in the non-ISR group [96.34 (48.18, 174.14) versus 179.14 (93.59, 307.74) pg/mL, p < 0.0001]. Multivariate regression revealed that VEGF level, procedure age, and low-density lipoprotein cholesterol were independent risk factors for late ISR formation. Subgroup analysis demonstrated that VEGF levels were even lower in the very late (≥5 years) and diffuse ISR group (Mehran patterns II, III, and IV) than in the late ISR group (1–4 years) and the focal ISR group (Mehran pattern I), respectively. Furthermore, significant difference was found between diffuse and focal ISR groups. Serum VEGF levels were inversely associated with late ISR after DES implantation. PMID:28373989
Leite, Elaine A; Souza, Cristina M; Carvalho-Júnior, Alvaro D; Coelho, Luiz G V; Lana, Angela M Q; Cassali, Geovanni D; Oliveira, Mônica C
2012-01-01
Cisplatin (CDDP) is one of the most effective and potent anticancer drugs used as first-line chemotherapy against several solid tumors. However, the severe side effects and its tendency to provoke chemoresistance often limit CDDP therapy. To avoid these inconveniences, the present study's research group developed long-circulating and pH-sensitive liposomes containing CDDP (SpHL-CDDP). The present study aimed to evaluate the antitumor effect and toxicity of SpHL-CDDP, as compared with that of free CDDP, and long-circulating and non- pH-sensitive liposomes containing CDDP (NSpHL-CDDP), after their intravenous administration in solid Ehrlich tumor-bearing mice. Antitumor activity was evaluated by analysis of tumor volume and growth inhibition ratio, serum vascular endothelial growth factor (VEGF) levels, and histomorphometric and immunohistochemical studies. Body weight variation and the histological examination of bone marrow and kidneys were used as toxicity indicators. A significant reduction in the tumor volume and a higher tumor growth inhibition ratio was observed after SpHL-CDDP treatment, compared with free CDDP and NSpHL-CDDP treatments. In addition, complete remission of the tumor was detected in 18.2% of the mice treated with SpHL- CDDP (16 mg/kg). As such, the administration of SpHL-CDDP, as compared with free CDDP and NSpHL-CDDP, led to a decrease in the area of necrosis and in the percentage of positive CDC 47 tumor cells. A significant reduction in the VEGF serum level was also observed after SpHL-CDDP treatment, as compared with free-CDDP treatment. SpHL-CDDP administered in a two-fold higher dose than that of free CDDP presented a loss in body weight and changes in the hematopoietic tissue morphology, which proved to be similar to that of free CDDP. No changes could be verified in the renal tissue after any formulations containing CDDP had been administered. These findings showed that SpHL-CDDP allowed for the administration of higher doses of CDDP, significantly improving its antitumor effect.
Nagano, Hideki; Goi, Takanori; Koneri, Kenji; Hirono, Yasuo; Katayama, Kanji; Yamaguchi, Akio
2007-12-01
Vascular endothelial growth factor (VEGF) is known as an important factor in the growth and metastasis of cancer cells. In 2001, a novel angiogenesis factor, endocrine gland-derived vascular endothelial growth factor (EG-VEGF), was cloned. In this study, we investigated the expression of EG-VEGF in colorectal cancer, the relationship between its expression and clinicopathological factors, and the in vitro activity of EG-VEGF transfectants. We determined expression levels of EG-VEGF in 113 advanced colorectal cancers resected in our hospital by quantitative PCR, and compared the expression levels and clinicopathological findings by multivariate analyses. The expression of EG-VEGF mRNA was positive in 31 cancers and negative in 82 cancers. We found that compared with the negative expression of the EG-VEGF gene, its positive expression was more frequently associated with hematogenous metastasis, and was associated with a poorer survival rate. In addition, EG-VEGF transfectants showed a higher degree of in vitro tubular formation than control cells. We speculate that, in colorectal cancers, the EG-VEGF gene functions as an important factor in angiogenesis in primary and metastatic lesions, and consider that it is useful as a novel prognostic factor. EG-VEGF molecule-targeted therapy has the potential for improving survival rates.
Sun, Dong; Matsune, Shoji; Ohori, Junichiro; Fukuiwa, Tatsuya; Ushikai, Masato; Kurono, Yuichi
2005-09-01
Vascular endothelial growth factor (VEGF) promotes angiogenesis and is associated with the invasion and metastasis of malignant tumors. It enhances vascular permeability and is expressed in inflammatory nasal as well as middle-ear mucosa. As the mechanism of VEGF induction during chronic inflammation, such as chronic paranasal sinusitis (CPS) remains to be clarified, we studied the factors regulating the production of VEGF in cultured human nasal fibroblasts and discussed the role of VEGF in the pathogenesis of CPS. We used ELISA to quantify VEGF levels in paranasal sinus effusions, nasal secretions, and serum from patients with CPS. In addition, we cultured human nasal fibroblasts isolated from nasal polyps of CPS patients and studied the effects of hypoxia, TNF-alpha, and endotoxin on their production of VEGF using ELISA and PCR. The VEGF concentration was significantly higher in paranasal sinus effusions than in nasal secretions and serum. Nasal fibroblasts produced high levels of VEGF, when cultured under hypoxic condition and this production was remarkably enhanced in the presence of TNF-alpha or endotoxin. VEGF is locally produced in paranasal sinuses as well as nasal mucosa and its production is increased in patients with CPS. Hypoxia is associated with the production of VEGF by nasal fibroblasts and TNF-alpha and endotoxin may act synergistically to enhance VEGF production in paranasal sinuses under hypoxic condition.
López-Cancio, Elena; Ricciardi, Ana Clara; Sobrino, Tomás; Cortés, Jordi; de la Ossa, Natalia Pérez; Millán, Mónica; Hernández-Pérez, María; Gomis, Meritxell; Dorado, Laura; Muñoz-Narbona, Lucía; Campos, Francisco; Arenillas, Juan F; Dávalos, Antoni
2017-02-01
Physical activity (PhA) prior to stroke has been associated with good outcomes after the ischemic insult, but there is scarce data on the involved molecular mechanisms. We studied consecutive acute ischemic stroke patients admitted to a single tertiary stroke center. Prestroke PhA was evaluated with the International Physical Activity Questionnaire (metabolic equivalent of minutes/week). We studied several circulating angiogenic and neurogenic factors at different time points: vascular endothelial growth factor (VEGF), granulocyte colony-stimulating factor (G-CSF), and brain-derived neurotrophic factor (BDNF) at admission, day 7, and at 3 months. We considered good functional outcome at 3 months (modified Rankin scale ≤ 2) as primary end point, and final infarct volume as secondary outcome. We studied 83 patients with at least 2 time point serum determinations (mean age 69.6 years, median National Institutes of Health Stroke Scale 17 at admission). Patients more physically active before stroke had a significantly higher increment of serum VEGF on the seventh day when compared to less active patients. This increment was an independent predictor of good functional outcome at 3 months and was associated with smaller infarct volume in multivariate analyses adjusted for relevant covariates. We did not find independent associations of G-CSF or BDNF levels neither with level of prestroke PhA nor with stroke outcomes. Although there are probably more molecular mechanisms by which PhA exerts its beneficial effects in stroke outcomes, our observation regarding the potential role of VEGF is plausible and in line with previous experimental studies. Further research in this field is needed. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Panteli, Katerina; Bai, Maria; Hatzimichael, Eleftheria; Zagorianakou, Nektaria; Agnantis, Niki John; Bourantas, Konstantinos
2007-12-01
Current data suggest that angiogenesis plays a significant role in the pathogenesis and progression of chronic myeloproliferative diseases (cMPDs). In the present study, we evaluated serum levels of vascular endothelial growth factor (VEGF) in 83 patients with cMPDs [myelofibrosis with myeloid metaplasia (MMM, n = 25), essential thrombocythaemia (ET, n = 40), polycythaemia vera (PV, n = 8) and chronic myeloid leukemia (CML, n = 10)] and in 27 healthy individuals. Serum VEGF levels were significantly increased in patients with cMPDs compared to healthy individuals (all p values were < or = 0.05) and were significantly correlated with bone marrow microvessel density (MVD) (p = 0.0013). In addition, the immunohistochemical expression of VEGF protein in bone marrow biopsy specimens were analyzed in 61 patients with cMPDs, (ET, n = 36 and MMM, n = 25) and in 27 healthy individuals. The cellular distribution of VEGF expression was similar in bone marrow specimens of patients and healthy individuals. VEGF protein was detected mainly in erythroid cells, whereas myeloid cells and megakaryocytes exhibited a variable expression of the protein. The percentage of bone marrow VEGF positive cells was positively correlated with serum levels of VEGF (p = 0.001). The results of the present study suggest that, VEGF is a major angiogenetic factor in patients with cMPDs and contributes to the pathogenesis of these diseases.
The perinatal implications of angiogenic factors.
Smith, Gordon C S; Wear, Helen
2009-04-01
To summarize recent findings relating maternal circulating levels of proteins associated with angiogenesis and the outcome of pregnancy. In preeclampsia, levels of placental growth factor (PlGF) become abnormal prior to soluble fms-like tyrosine kinase 1 (sFlt-1). Longitudinal measurement of changes in protein level are better predictors of disease than measurement at a single time point in pregnancy and also appear to be more strongly associated with early-onset disease. The levels of angiogenic proteins provide additional predictive information over abnormal uteroplacental Doppler. The preeclampsia-like phenotype of rats overexpressing sFlt-1 can be ameliorated by administration of a protein which binds and inactivates sFlt-1. Animal models demonstrate that uteroplacental ischemia leads to elevated maternal serum levels of sFlt-1 and decreased PlGF. Similarly, studies of human trophoblast cells demonstrate that hypoxia stimulates release of sFlt-1. Autocrine vascular endothelial growth factor (VEGF) has a trophic effect on the endothelium, distinct from its control of angiogenesis. By blocking this effect, elevated sFlt-1 could lead to systemic endothelial cell dysfunction, one of the key features of preeclampsia. Low levels of PlGF are associated with intrauterine growth restriction. However, in the first trimester of pregnancy, high levels of sFlt-1 were associated with reduced rates of growth restriction, preterm birth and stillbirth. Regulators of the VEGF system may have a causal role in the sequence of events leading to preeclampsia and may be targets for novel therapies. However, better knowledge of the biology is required prior to clinical trials of interventions.
Calvo, Paula M; de la Cruz, Rosa R; Pastor, Angel M
2018-06-01
Vascular endothelial growth factor (VEGF), also known as VEGF-A, was discovered due to its vasculogenic and angiogenic activity, but a neuroprotective role for VEGF was later proven for lesions and disorders. In different models of motoneuronal degeneration, VEGF administration leads to a significant reduction of motoneuronal death. However, there is no information about the physiological state of spared motoneurons. We examined the trophic role of VEGF on axotomized motoneurons with recordings in alert animals using the oculomotor system as the experimental model, complemented with a synaptic study at the confocal microscopy level. Axotomy leads to drastic alterations in the discharge characteristics of abducens motoneurons, as well as to a substantial loss of their synaptic inputs. Retrograde delivery of VEGF completely restored the discharge activity and synaptically-driven signals in injured motoneurons, as demonstrated by correlating motoneuronal firing rate with motor performance. Moreover, VEGF-treated motoneurons recovered a normal density of synaptic boutons around motoneuronal somata and in the neuropil, in contrast to the low levels of synaptic terminals found after axotomy. VEGF also reduced the astrogliosis induced by axotomy in the abducens nucleus to control values. The administration of VEGF-B produced results similar to those of VEGF. This is the first work demonstrating that VEGF and VEGF-B restore the normal operating mode and synaptic inputs on injured motoneurons. Altogether these data indicate that these molecules are relevant synaptotrophic factors for motoneurons and support their clinical potential for the treatment of motoneuronal disorders. Copyright © 2018 Elsevier Inc. All rights reserved.
Schulz, Elizabeth V; Cruze, Lori; Wei, Wei; Gehris, John; Wagner, Carol L
2017-10-01
Maternal circulating 25-hydroxyvitamin D [25(OH)D] has been shown to optimize production of 1,25-dihydroxyvitamin D [1,25(OH) 2 D] during pregnancy at approximately 100nmoles/L, which has pronounced effects on fetal health outcomes. Additionally, associations are noted between low maternal 25(OH)D concentrations and vascular pregnancy complications, such as preeclampsia. To further elucidate the effects of vitamin D activity in pregnancy, we investigated the role of maternal 25(OH)D, the nutritional indicator of vitamin D status, in relation to placental maintenance and, specifically, expression of placental gene targets related to angiogenesis and vitamin D metabolism. A focused analysis of placental mRNA expression related to angiogenesis, pregnancy maintenance, and vitamin D metabolism was conducted in placentas from 43 subjects enrolled in a randomized controlled trial supplementing 400IU or 4400IU of vitamin D 3 per day during pregnancy. Placental mRNA was isolated from biopsies within one hour of delivery, followed by quantitative PCR. We classified pregnant women with circulating concentrations of <100nmoles/L as deficient and those with ≥100nmoles/L as sufficient. The value of each gene's change in the PCR cycle threshold (ΔCT), which is a relative measure of target concentration, was compared with maternal 25(OH)D concentrations <100nmoles/L and ≥100nmoles/L based on a two-sample Wilcoxon test. Soluble FMS-like tyrosine kinase 1 (sFlt-1) and vascular endothelial growth factor (VEGF) gene expression was significantly downregulated in the maternal subgroup with circulating 25(OH)D ≥100ng/mL compared to the subgroup <100ng/mL. Here, we report a significant association between maternal vitamin D status and the expression of sFlt-1 and VEGF at the mRNA level. Achieving maternal circulating 25(OH)D ≥100nmoles/L suggests the impact of maternal vitamin D 3 supplementation on gene transcription in the placenta, thereby potentially decreasing antiangiogenic factors that may contribute to vascular pregnancy complications. Published by Elsevier Ltd.
del Peso, G; Selgas, R; Bajo, M A; Fernández de Castro, M; Aguilera, A; Cirugeda, A; Jiménez, C
2000-01-01
Some patients on long-term peritoneal dialysis (PD) develop a hyperpermeability state, owing to peritoneal neoangiogenesis. Vascular endothelial growth factor (VEGF), a potent mitogen for endothelial cells, has been implicated in most diseases characterized by microvascular neoformation. Erythropoietin (EPO) is able to induce endothelial proliferation in vitro. Our aim was to elucidate whether VEGF serum levels are influenced by EPO treatment, and whether VEGF serum level maintains a relationship with peritoneal transport data. We analyzed serum levels of VEGF in 35 PD patients (18 males, 17 females). Mean age was 58 years, with a mean time on PD of 98 +/- 75 months. Of the 35 patients, 19 were on automated peritoneal dialysis, and 16 were on continuous ambulatory peritoneal dialysis. Seven patients had diabetes. Peritoneal transport parameters were: urea mass transfer coefficient (MTC), 19.5 +/- 6.6 mL/min; creatinine MTC, 9.9 +/- 4.7 mL/min; net ultrafiltration, 491 +/- 166 mL per 4-hour dwell. Twenty seven patients were under therapy with recombinant human erythropoietin (rHuEPO). Mean serum VEGF levels were 347 +/- 203 pg/mL (range 66-857 pg/mL), with most patients in the normal range (60-700 pg/mL). VEGF levels did not correlate with age, sex, primary renal disease, diabetes, type of PD, time on PD, peritonitis, and cumulative glucose load. We found no correlation with urea MTC, creatinine MTC, ultrafiltration rate, or protein effluent levels. However, a significant negative correlation with residual renal function was seen (r = -0.39, p < 0.05). Patients treated with rHuEPO showed significantly higher serum levels of VEGF than non treated patients (375 +/- 220 pg/mL vs 251 +/- 75 pg/mL, p < 0.05), although they had similar residual renal function. We conclude that increased serum VEGF levels are associated with EPO treatment. Consequently, VEGF might have a role in the EPO effects found in PD patients. Whether both agents are related to peritoneal neoangiogenesis requires further research.
Pasquali, Daniela; Rossi, Valentina; Staibano, Stefania; De Rosa, Gaetano; Chieffi, Paolo; Prezioso, Domenico; Mirone, Vincenzo; Mascolo, Massimo; Tramontano, Donatella; Bellastella, Antonio; Sinisi, Antonio Agostino
2006-09-01
A new family of angiogenic factors named endocrine-gland-derived vascular endothelial growth factors (EG-VEGF)/prokineticins (PK) have been recently described as predominantly expressed in steroidogenic tissues. Whether the normal and malignant epithelial prostate cells and tissues express EG-VEGF/PK1 and PK2 and their receptors is still unknown. We studied the expression of EG-VEGF/PK1 and PK2 and their receptors (PK-R1 and PK-R2) in human prostate and their involvement in cancer. Using immunohistochemistry, Western blot, and RT-PCR, we determined the expression of EG-VEGF/PK1 in normal prostate (NP) and malignant prostate tissues (PCa), in epithelial cell primary cultures from normal prostate (NPEC) and malignant prostate (CPEC) and in a panel of prostate cell lines. In NPEC, CPEC, and in EPN, a nontransformed human prostate epithelial cell line, EG-VEGF/PK1, PK2, PK-R1, and PK-R2 mRNA levels were evaluated by quantitative RT-PCR. EG-VEGF/PK1 transcript was found in PCa, in CPEC, in EPN, and in LNCaP, whereas it was detected at low level in NP and in NPEC. EG-VEGF/PK1 was absent in androgen-independent PC3 and DU-145 cell lines. Immunochemistry confirmed that EG-VEGF/PK1 protein expression was restricted to hyperplastic and malignant prostate tissues, localized in the glandular epithelial cells, and progressively increased with the prostate cancer Gleason score advancement. EG-VEGF/PK1 and PK2 were weakly expressed in NPEC and EPN. On the other hand, their transcripts were highly detected in CPEC. PK-R1 and PK-R2 were found in NPEC, EPN, and CPEC. Interestingly, CPEC showed a significantly (P < 0.05) higher expression of EG-VEGF/PK1, PK2, PK-R1, and PK-R2 compared with NPEC and EPN. We demonstrated that PKs and their receptors are expressed in human prostate and that their levels increased with prostate malignancy. It may imply that EG-VEGF/PK1 could be involved in prostate carcinogenesis, probably regulating angiogenesis. Thus, the level of EG-VEGF/PK1 could be useful for prostate cancer outcome evaluation and as a target for prostate cancer treatment in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saygili, Erol, E-mail: erol.saygili@med.uni-duesseldorf.de; Noor-Ebad, Fawad; Schröder, Jörg W.
2015-09-11
Background: Autoantibodies have been identified as major predisposing factors for dilated cardiomyopathy (DCM). Patients with DCM show elevated serum levels of vascular endothelial growth factor (VEGF) whose source is unknown. Besides its well-investigated effects on angiogenesis, evidence is present that VEGF signaling is additionally involved in fibroblast proliferation and cardiomyocyte hypertrophy, hence in cardiac remodeling. Whether autoimmune effects in DCM impact cardiac VEGF signaling needs to be elucidated. Methods: Five DCM patients were treated by the immunoadsorption (IA) therapy on five consecutive days. The eluents from the IA columns were collected and prepared for cell culture. Cardiomyocytes from neonatal ratsmore » (NRCM) were incubated with increasing DCM-immunoglobulin-G (IgG) concentrations for 48 h. Polyclonal IgG (Venimmun N), which was used to restore IgG plasma levels in DCM patients after the IA therapy was additionally used for control cell culture purposes. Results: Elevated serum levels of VEGF decreased significantly after IA (Serum VEGF (ng/ml); DCM pre-IA: 45 ± 9.1 vs. DCM post–IA: 29 ± 6.7; P < 0.05). In cell culture, pretreatment of NRCM by DCM-IgG induced VEGF expression in a time and dose dependent manner. Biologically active VEGF that was secreted by NRCM significantly increased BNP mRNA levels in control cardiomyocytes and induced cell-proliferation of cultured cardiac fibroblast (Fibroblast proliferation; NRCM medium/HC-IgG: 1 ± 0.0 vs. NRCM medium/DCM-IgG 100 ng/ml: 5.6 ± 0.9; P < 0.05). Conclusion: The present study extends the knowledge about the possible link between autoimmune signaling in DCM and VEGF induction. Whether this observation plays a considerable role in cardiac remodeling during DCM development needs to be further elucidated. - Highlights: • Mechanisms of remodeling in dilated cardiomyopathy (DCM) are not fully understood. • Autoantibodies have been identified as major predisposing factors for DCM. • DCM patients show high serum levels of VEGF. • Recent data indicate that VEGF is involved in cardiac remodeling processes. • Whether autoimmune processes in DCM are involved in VEGF signaling are unclear.« less
Vascular Endothelial Growth Factor and Angiopoietin are Required for Prostate Regeneration.
Wang, Gui-min; Kovalenko, Bruce; Huang, Yili; Moscatelli, David
2007-01-01
BACKGROUND The regulation of the prostate size by androgens may be partly the result of androgen effects on the prostatic vasculature. We examined the effect of changes in androgen levels on the expression of a variety of angiogenic factors in the mouse prostate and determined if vascular endothelial growth factor (VEGF)-A and the angiopoietins are involved in the vascular response to androgens. METHODS Expression of angiogenic factors in prostate was quantitated using real-time PCR at different times after castration and after administration of testosterone to castrated mice. Angiopoietins were localized in prostate by immunohistochemistry and in situ hybridization. The roles of VEGF and the angiopoietins in regeneration of the prostate were examined in mice inoculated with cells expressing soluble VEGF receptor-2 or soluble Tie-2. RESULTS Castration resulted in a decrease in VEGF-A, VEGF-B, VEGF-C, placenta growth factor, FGF-2, and FGF-8 expression after one day. In contrast, VEGF-D mRNA levels increased. No changes in angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), hepatocyte growth factor, VEGF receptor-1, VEGF receptor-2 or tie-2 mRNA levels were observed. Administration of testosterone to castrated mice had the opposite effect on expression of these angiogenic factors. Ang-2 was expressed predominately in prostate epithelial cells whereas Ang-1 was expressed in epithelium and smooth muscle. Inoculation of mice with cells expressing soluble VEGF receptor-2 or Tie-2 blocked the increase in vascular density normally observed after administration of testosterone to castrated mice. The soluble receptors also blocked the increase in prostate weight and proliferation of prostatic epithelial cells. CONCLUSION VEGF-A and angiopoietins are required for the vascular response to androgens and for the ability of the prostate to regenerate in response to androgens. PMID:17221843
VEGF-A/VEGFR-2 signaling plays an important role for the motility of pancreas cancer cells.
Doi, Yosuke; Yashiro, Masakazu; Yamada, Nobuya; Amano, Ryosuke; Noda, Satoru; Hirakawa, Kosei
2012-08-01
Pancreatic cancer is one of the most lethal solid tumors. Vascular endothelial growth factor receptors (VEGFRs) are expressed not only by endothelial cells but also by pancreatic cancer cells. VEGFRs might play an important role for the development of pancreatic cancer cells. The purpose of this study was to evaluate the efficacy of VEGF/VEGFR-2-targeted therapy in pancreatic carcinoma. Five pancreatic carcinoma cell lines were used. The expression level of VEGFR-2 of cancer cells was examined by RT-PCR and Western blot. The effects of VEGFs, bevacizumab as an anti-VEGF antibody, sunitinib as a tyrosine kinase inhibitor against VEGFRs, and VEGF-R2 siRNA on the motility activity of pancreatic cancer cells were examined by invasion assay and wound healing assay. The effect of VEGF, bevacizumab, and sunitinib on the phosphorylation of VEGFR-2 and downstream effecter molecules, MAPK and PI3K, was examined by western blot. Pancreatic cancer cell lines expressed VEGFR-2. VEGF-A significantly increased the motility of pancreas cancer cells, which was inhibited by VEGFR-2 siRNA. Conditioned medium from pancreas cancer cells significantly stimulated the motility of pancreas cancer cells. VEGF/VEGFR inhibitors, bevacizumab and sunitinib, significantly decreased the motility of pancreas cancer cells. VEGFR-2 phosphorylation level of pancreas cancer cells was increased by VEGF-A. Bevacizumab and sunitinib decreased the level of VEGFR-2 phosphorylation, p-ERK, and p-Akt expression. VEGF-A decreased zonula occludens (ZO-1) or ZO-2 expression in pancreas cancer cells. VEGF-A/VEGFR-2 signaling plays an important role in inducing invasion and migration of pancreatic cancer cells.
Serum VEGF-C levels as a candidate biomarker of hypervolemia in chronic kidney disease
Sahutoglu, Tuncay; Sakaci, Tamer; Hasbal, Nuri B.; Ahbap, Elbis; Kara, Ekrem; Sumerkan, Mutlu C.; Sevinc, Mustafa; Akgol, Cuneyt; Koc, Yener; Basturk, Taner; Unsal, Abdulkadir
2017-01-01
Abstract Attaining and maintaining optimal “dry weight” is one of the principal goals during maintenance hemodialysis (MHD). Recent studies have shown a close relationship between Na+ load and serum vascular endothelial growth factor-C (VEGF-C) levels; thus, we aimed to investigate the role of VEGF-C as a candidate biomarker of hypervolemia. Physical examination, basic laboratory tests, N-terminal pro b-type natriuretic peptide (NT-ProBNP), echocardiography, and bioimpedance spectroscopy data of 3 groups of study subjects (euvolemic MHD patients, healthy controls, and hypervolemic chronic kidney disease [CKD] patients) were analyzed. Research data for MHD patients were obtained both before the first and after the last hemodialysis (HD) sessions of the week. Data of 10 subjects from each study groups were included in the analysis. Serum VEGF-C levels were significantly higher in hypervolemic CKD versus in MHD patients both before the first and after the last HD sessions (P = .004 and P = .000, respectively). Healthy controls had serum VEGF-C levels similar to and higher than MHD patients before the first and after the last HD sessions of the week (P = .327 and P = .021, respectively). VEGF-C levels were correlated with bioimpedance spectroscopy results (r2 0.659, P = .000) and edema (r2 0.494, P =0.006), but not with ejection fraction (EF) (r2 −0.251, P = .134), blood pressures (systolic r2 0.037, P = 0.824, diastolic r2 −0.067, P = .691), and NT-ProBNP (r2 −0.047, P = .773). These findings suggest that serum VEGF-C levels could be a potential new biomarker of hypervolemia. The lack of correlation between VEGF-C and EF may hold a promise to eliminate this common confounder. Further studies are needed to define the clinical utility of VEGF-C in volume management. PMID:28471955
Spirina, L V; Usynin, Y A; Yurmazov, Z A; Slonimskaya, E M; Kolegova, E S; Kondakova, I V
2017-01-01
Here, we have investigated the participation of nuclear factors NF-kB, HIF-1 and HIF-2, VEGF, VEGFR2, and carboanhydrase IX in clear-cell renal cancer. We have determined the expression and protein level of transcription factors, VEGF, VEGFR2, and carboanhydrase IX in tumor and normal tissues of 30 patients with kidney cancer. The Real-Time PCR and ELISA were used in the study. The low levels of HIF-1 mRNA expression associated with high levels of HIF-1 protein were also associated with metastasis. The expression levels of VEGF, VEGFR2, and their protein levels are increased in primary tumors of patients with disseminated kidney cancer compared to nonmetastatic cancer. No correlation was revealed between the content of mRNA and encoded proteins in the kidney cancer tissues. The changes in the ratios of mRNA levels and the respective proteins (HIF-1α, HIF-2, NF-kB, VEGF, VEGFR2, and carboanhydrase IX) may contribute to kidney-cancer metastasis.
Significance of CEA and VEGF as Diagnostic Markers of Colorectal Cancer in Lebanese Patients.
Dbouk, Hashem A; Tawil, Ayman; Nasr, Fahd; Kandakarjian, Loucine; Abou-Merhi, Raghida
2007-11-08
Carcinoembryonic antigen and vascular endothelial growth factors are among the most important prognostic markers of colorectal cancer. Testing for these markers independently has been of limited value in screening for this tumor. The aim of this study is to determine the importance of simultaneous blood CEA and VEGF level determinations in diagnosis of colorectal cancer. Thirty-six patients diagnosed with colorectal cancer along with eight healthy controls were tested by ELISA for CEA and VEGF levels in serum and plasma, respectively. The positive predictive value of these markers was 95.4% for CEA and 89.5% for VEGF, and for combined CEA and VEGF was also high at 88%. Combined CEA and VEGF blood level assay constitutes a useful panel in detecting patients with colorectal cancer. Positive results allow selection of a subgroup of patients with a high tumor risk; therefore, such tests comprise valuable tumor diagnostic tests to add to current detection methods.
Endothelial precursor cells promote angiogenesis in hepatocellular carcinoma.
Sun, Xi-Tai; Yuan, Xian-Wen; Zhu, Hai-Tao; Deng, Zheng-Ming; Yu, De-Cai; Zhou, Xiang; Ding, Yi-Tao
2012-09-21
To investigate the role of bone marrow-derived endothelial progenitor cells (EPCs) in the angiogenesis of hepatocellular carcinoma (HCC). The bone marrow of HCC mice was reconstructed by transplanting green fluorescent protein (GFP) + bone marrow cells. The concentration of circulating EPCs was determined by colony-forming assays and fluorescence-activated cell sorting. Serum and tissue levels of vascular endothelial growth factor (VEGF) and colony-stimulating factor (CSF) were quantified by enzyme-linked immunosorbent assay. The distribution of EPCs in tumor and tumor-free tissues was detected by immunohistochemistry and real-time polymerase chain reaction. The incorporation of EPCs into hepatic vessels was examined by immunofluorescence and immunohistochemistry. The proportion of EPCs in vessels was then calculated. The HCC model was successful established. The flow cytometry analysis showed the mean percentage of CD133CD34 and CD133VEGFR2 double positive cells in HCC mice was 0.45% ± 0.16% and 0.20% ± 0.09% respectively. These values are much higher than in the sham-operation group (0.11% ± 0.13%, 0.05% ± 0.11%, n = 9) at 14 d after modeling. At 21 d, the mean percentage of circulating CD133CD34 and CD133VEGFR2 cells is 0.23% ± 0.19%, 0.25% ± 0.15% in HCC model vs 0.05% ± 0.04%, 0.12% ± 0.11% in control. Compared to the transient increase observed in controls, the higher level of circulating EPCs were induced by HCC. In addition, the level of serum VEGF and CSF increased gradually in HCC, reaching its peak 14 d after modeling, then slowly decreased. Consecutive sections stained for the CD133 and CD34 antigens showed that the CD133+ and CD34+ VEGFR2 cells were mostly recruited to HCC tissue and concentrated in tumor microvessels. Under fluorescence microscopy, the bone-marrow (BM)-derived cells labeled with GFP were concentrated in the same area. The relative levels of CD133 and CD34 gene expression were elevated in tumors, around 5.0 and 3.8 times that of the tumor free area. In frozen liver sections from HCC mice, cells co-expressing CD133 and VEGFR2 were identified by immunohistochemical staining using anti-CD133 and VEGFR2 antibodies. In tumor tissue, the double-positive cells were incorporated into vessel walls. In immunofluorescent staining. These CD31 and GFP double positive cells are direct evidence that tumor vascular endothelial cells (VECs) come partly from BM-derived EPCs. The proportion of GFP CD31 double positive VECs (out of all VECs) on day 21 was around 35.3% ± 21.2%. This is much higher than the value recorded on day 7 group (17.1% ± 8.9%). The expression of intercellular adhesion molecule 1, vascular adhesion molecule 1, and VEGF was higher in tumor areas than in tumor-free tissues. Mobilized EPCs were found to participate in tumor vasculogenesis of HCC. Inhibiting EPC mobilization or recruitment to tumor tissue may be an efficient strategy for treating HCC.
Tumor surrogate blood vessel subtypes exhibit differential susceptibility to anti-VEGF therapy
Sitohy, Basel; Nagy, Janice A.; Shih, Shou-Ching; Dvorak, Harold F.
2011-01-01
Anti-vascular therapy directed against VEGF or its receptors has been successful when administered at early stages of tumor vessel growth, but is less effective when administered later. Tumor blood vessels are heterogeneous, so vessel subpopulations may differ in their requirements for tumor cell-secreted VEGF and in their susceptibility to anti-VEGF/VEGFR therapy. Human cancers contain several distinct blood vessel types, including mother vessels (MV), glomeruloid microvascular proliferations (GMP), vascular malformations (VM), feeding arteries (FA) and draining veins (DV), all of which can be generated in mice in the absence of tumor cells using expression vectors for VEGF-A164. In this study, we investigated the sensitivity of each of these vessel types to anti-VEGF therapy with aflibercept ® (VEGF Trap), a potent inhibitor of VEGF-A164. Administering VEGF Trap treatment before or shortly after injection of a recombinant VEGF-A164 expressing adenovirus could prevent or regress tumor-free neovasculature, but it was progressively less effective if initiated at later times. Early-forming MVs and GMPs in which the lining endothelial cells expressed high levels of VEGFR-2 were highly susceptible to blockade by VEGF Trap. In contrast, late-forming VMs, FAs, and DVs that expressed low levels of VEGFR-2 were largely resistant. Together, our findings define the susceptibility of different blood vessel subtypes to anti-VEGF therapy, offering a possible explanation for the limited effectiveness of anti-VEGF-A/VEGFR treatment of human cancers, which are typically present for months to years before discovery and are largely populated by late-forming blood vessels. PMID:21937680
Takahashi, Susumu; Nakamura, Yutaka; Nishijima, Tsuguo; Sakurai, Shigeru; Inoue, Hiroshi
2005-09-01
Hypoxia-induced endothelial cell dysfunction has been implicated in increased cardiovascular disease associated with obstructive sleep apnea syndrome (OSAS). OSAS mediates hypertension by stimulating angiotensin II (Ang II) production. Hypoxia and Ang II are the major stimuli of vascular endothelial growth factor (VEGF), which is a potent angiogenic cytokine and also contributes to the atherogenic process itself. We observed serum Ang II and VEGF levels and peripheral blood mononuclear cell (PBMC) and neutrophil VEGF expression. Compared to controls, subjects with OSAS had significantly increased levels of serum Ang II and VEGF and VEGF mRNA expression in their leukocytes. To examine whether Ang II stimulates VEGF expression in OSAS, we treated PBMCs obtained from control subjects with Ang II and with an Ang II receptor type 1 (AT(1)) blocker, olmesartan. We observed an increased expression of VEGF in the Ang II-stimulated PBMCs and decreased in VEGF mRNA and protein expression in the PBMCs treated with olmesartan. These findings suggest that the Ang II-AT(1) receptors pathway potentially are involved in OSAS and VEGF-induced vascularity and that endothelial dysfunction might be linked to this change in Ang II activity within leukocytes of OSAS patients.
Vascular endothelial growth factor levels in tears of patients with retinal vein occlusion.
Kasza, M; Balogh, Z; Biro, L; Ujhelyi, B; Damjanovich, J; Csutak, A; Várdai, J; Berta, A; Nagy, V
2015-09-01
We measured vascular endothelial growth factor (VEGF) levels in tear fluid and serum in patients with retinal vein occlusion (RVO). Eight patients with RVO due to secondary macular oedema were examined. VEGF levels were measured by enzyme-linked immunosorbent assay. All patients had a full ophthalmic examination (visual acuity, slit lamp biomicroscopy, perimetry, and fluorescein angiography). Central retinal thickness (CRT) was examined using optical coherence tomography (OCT). Tear and serum samples were collected and examinations were performed at diagnosis and 1 and 4 weeks later. VEGF levels in the tears of RVO eyes were significantly higher than in fellow eyes at diagnosis and after both 1 and 4 weeks (paired t test, p1 = 0.01, p2 = 0.02, p3 = 0.006). We found a weak but significant positive correlation between VEGF levels in tear fluid and serum of patients with RVO (r = 0.21), while this correlation tended to be stronger between the fellow eyes and serum levels (r = 0.33). To the best of our knowledge, we are the first to report an increased level of VEGF in the tear fluid of patients with RVO. Alterations of VEGF levels in tears may be useful for determining stages of RVO. This non-invasive and objective method may also be helpful for estimating the severity of macular oedema and efficacy of treatment.
Sert, Tuba; Kırzıoğlu, F Yeşim; Fentoğlu, Ozlem; Aylak, Firdevs; Mungan, Tamer
2011-12-01
The aim of this study is the evaluation of levels of serum interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), placental growth factor (PIGF), and soluble VEGF receptor (sVEGFR)-1 and -2 in the association between periodontal disease and adverse pregnancy outcomes. One hundred and nine mothers, who recently gave birth, and 51 women who were not recently pregnant, aged 18 to 35 years, were included in this study. The mothers were classified as term birth, preterm birth (PTB), and preterm low birth weight (PLBW) in respect to their gestational age and baby's birth weight. The birth mothers were grouped as having gingivitis or periodontitis. The non-pregnant group also included periodontally healthy patients. Venous blood samples were collected to evaluate serum IL-1β, IL-6, IL-10, TNF-α, VEGF, PIGF, and sVEGFR-1 and -2 levels. Mother's weight, education, and income level were significantly associated with pregnancy outcomes. Serum levels of IL-1β, TNF-α, IL-6, VEGF, and sVEGFR-1 and -2 showed an increase in significance when related to pregnancy. Whereas in the PLBW group IL-1β, VEGF, and sVEGFR-2 levels were increased, in the PTB group sVEGFR-1 levels were increased. Additionally, the patients in the PLBW group with periodontitis had higher serum levels of IL-1β, VEGF, sVEGFR-2, and IL-1β/IL-10. The serum levels of IL-1β, VEGF, and sVEGFR-1 and -2 may have a potential effect on the mechanism of the association between periodontal disease and adverse pregnancy outcomes.
Hoffmann, P; Feige, J-J; Alfaidy, N
2007-10-01
Compelling evidence indicates that vascular endothelial growth factor (VEGF) is an important mediator of placental angiogenesis and appears to be disregulated in pre-eclampsia (PE). Recently, we characterised the expression of EG-VEGF (endocrine gland-derived vascular endothelial growth factor), also known as prokineticin 1 (PK1) in human placenta during the first trimester of pregnancy and showed that this factor is likely to play an important role in human placentation. However, because it is impossible to prospectively study placentation in humans, it has been impossible to further characterise EG-VEGF expression throughout complete gestation and especially at critical gestational ages for PE development. In the present study, we used mouse placenta to further characterise EG-VEGF expression throughout gestation. We investigated the pattern of expression of EG-VEGF and its receptors, PKR1 and PKR2 at the mRNA and protein levels. Our results show that EG-VEGF and VEGF exhibit different patterns of expression and different localisations in the mouse placenta. EG-VEGF was mainly localised in the labyrinth whereas VEGF was mainly present in glycogen and giant cells. EG-VEGF mRNA and protein levels were highest before 10.5days post coitus (dpc) whereas those of VEGF showed stable expression throughout gestation. PKR1 protein was localised to the labyrinth layer and showed the same pattern of expression as EG-VEGF whereas PKR2 expression was maintained over 10.5dpc with both trophoblastic and endothelial cell localisations. Altogether these findings suggest that EG-VEGF may have a direct effect on both endothelial and trophoblastic cells and is likely to play an important role in mouse placentation.
Gorman, Jennifer L.; Liu, Sammy T. K.; Slopack, Dara; Shariati, Khashayar; Hasanee, Adam; Olenich, Sara; Olfert, I. Mark; Haas, Tara L.
2014-01-01
Skeletal muscle overload induces the expression of angiogenic factors such as vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2, leading to new capillary growth. We found that the overload-induced increase in angiogenesis, as well as increases in VEGF, MMP-2 and MT1-MMP transcripts were abrogated in muscle VEGF KO mice, highlighting the critical role of myocyte-derived VEGF in controlling this process. The upstream mediators that contribute to overload-induced expression of VEGF have yet to be ascertained. We found that muscle overload increased angiotensinogen expression, a precursor of angiotensin (Ang) II, and that Ang II signaling played an important role in basal VEGF production in C2C12 cells. Furthermore, matrix-bound VEGF released from myoblasts induced the activation of endothelial cells, as evidenced by elevated endothelial cell phospho-p38 levels. We also found that exogenous Ang II elevates VEGF expression, as well as MMP-2 transcript levels in C2C12 myotubes. Interestingly, these responses also were observed in skeletal muscle endothelial cells in response to Ang II treatment, indicating that these cells also can respond directly to the stimulus. The involvement of Ang II in muscle overload-induced angiogenesis was assessed. We found that blockade of AT1R-dependent Ang II signaling using losartan did not attenuate capillary growth. Surprisingly, increased levels of VEGF protein were detected in overloaded muscle from losartan-treated rats. Similarly, we observed elevated VEGF production in cultured endothelial cells treated with losartan alone or in combination with Ang II. These studies conclusively establish the requirement for muscle derived VEGF in overload-induced angiogenesis and highlight a role for Ang II in basal VEGF production in skeletal muscle. However, while Ang II signaling is activated following overload and plays a role in muscle VEGF production, inhibition of this pathway is not sufficient to halt overload-induced angiogenesis, indicating that AT1-independent signals maintain VEGF production in losartan-treated muscle. PMID:24416421
Dhole, Bodhana; Gupta, Surabhi; Venugopal, Senthil Kumar; Kumar, Anand
2018-06-01
Leydig cells are the principal steroidogenic cells of the testis. Leydig cells also secrete a number of growth factors including vascular endothelial growth factor (VEGF) which has been shown to regulate both testicular steroidogenesis and spermatogenesis. The thyroid hormone, T 3, is known to stimulate steroidogenesis in Leydig cells. T 3 has also been shown to stimulate VEGF production in a variety of cell lines. However, studies regarding the effect of T 3 on VEGF synthesis and secretion by the Leydig cells were lacking. Therefore, we investigated the effect of T 3 on VEGF synthesis and secretion in a mouse Leydig tumour cell line, MLTC-1. The effect of T 3 was compared with that of LH/cAMP and hypoxia, two known stimulators of Leydig cell functions. The cells were treated with T 3 , 8-Br-cAMP (a cAMP analogue), or CoCl 2 (a hypoxia mimetic) and VEGF secreted in the cell supernatant was measured using ELISA. The mRNA levels of VEGF were measured by quantitative RT-PCR. In the MLTC-1 cells, T 3 , 8-Br-cAMP, and CoCl 2 stimulated VEGF mRNA levels and the protein secretion. T 3 also increased steroid secretion as well as HIF-1α protein levels, two well-established upstream regulators of VEGF. Inhibitors of steroidogenesis as well as HIF-1α resulted in inhibition of T 3 -stimulated VEGF secretion by the MLTC-1 cells. This suggested a mediatory role of steroids and HIF-1α protein in T 3 -stimulated VEGF secretion by MLTC-1 cells. The mediation by steroids and HIF-1α were independent of each other. 8-Br-cAMP: 8-bromo - 3', 5' cyclic adenosine monophosphate; CoCl 2 : cobalt chloride; HIF-1α: hypoxia inducible factor -1α; LH: luteinizing hormone; T 3 : 3, 5, 3'-L-triiodothyronine; VEGF: vascular endothelial growth factor.
Woliński, Kosma; Stangierski, Adam; Szczepanek-Parulska, Ewelina; Gurgul, Edyta; Budny, Bartłomiej; Wrotkowska, Elzbieta; Biczysko, Maciej; Ruchala, Marek
2016-01-01
Introduction Thyroid nodular goiter is one of the most common medical conditions affecting even over a half of adult population. The risk of malignancy is rather small but noticeable–estimated by numerous studies to be about 3–10%. The definite differentiation between benign and malignant ones is a vital issue in endocrine practice. The aim of the current study was to assess the expression of vascular endothelial growth factor A (VEGF-A) and VEGF-C on the mRNA level in FNAB washouts in case of benign and malignant thyroid nodules and to evaluate the diagnostic value of these markers of malignancy. Materials and Methods Patients undergoing fine-needle aspiration biopsy (FNAB) in our department between January 2013 and May 2014 were included. In case of all patients who gave the written consent, after ultrasonography (US) and fine-needle aspiration biopsy (FNAB) performed as routine medical procedure the needle was flushed with RNA Later solution, the washouts were frozen in -80 Celsius degrees. Expression of VEGF-A and VEGF-C and GADPH (reference gene) was assessed in washouts on the mRNA level using the real-time PCR technique. Probes of patients who underwent subsequent thyroidectomy and were diagnosed with differentiated thyroid cancer (DTC; proved by post-surgical histopathology) were analyzed. Similar number of patients with benign cytology were randomly selected to be a control group. Results Thirty one DTCs and 28 benign thyroid lesions were analyzed. Expression of VEGF-A was insignificantly higher in patients with DTCs (p = 0.13). Expression of VEGF-C was significantly higher in patients with DTC. The relative expression of VEGF-C (in comparison with GAPDH) was 0.0049 for DTCs and 0.00070 for benign lesions, medians – 0.0036 and 0.000024 respectively (p<0.0001). Conclusions Measurement of expression VEGF-C on the mRNA level in washouts from FNAB is more useful than more commonly investigated VEGF-A. Measurement of VEGF-C in FNAB washouts do not allow for fully reliable differentiation of benign and malignant thyroid nodules and should be interpreted carefully. Further studies on larger groups are indicated. However, measurement of VEGF-C on mRNA level can bring important information without exposing patient for additional risk and invasive procedures. PMID:26900960
Zhou, Fang; Du, Jin; Wang, Jianjun
2017-04-01
Albendazole (ABZ) has an anti-tumor ability and inhibits HIF-1α activity. HIF-1α is associated with glycolysis and vascular endothelial cell growth factor (VEGF) expression, which plays an important role in cancer progression. These clues indicate that ABZ exerts an anti-cancer effect by regulating glycolysis and VEGF expression. The aim of this study is to clarify the effects of ABZ on non-small cell lung cancer (NSCLC) cells and explore the underlying molecular mechanisms. The expression levels of HIF-1α and VEGF were detected using western blot analysis, and the effect of ABZ on glycolysis was evaluated by measuring the relative activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) and detecting the production of lactate in A549 and H1299 cells. The results showed that ABZ decreased the expression levels of HIF-1α and VEGF and suppressed glycolysis in under hypoxia, but not normoxic condition. Inhibiting HIF-1α also suppressed glycolysis and VEGF expression. Additionally, ABZ inhibited the volume and weight, decreased the relative activities of HK, PK, and LDH, and reduced the levels of HIF-1α and VEGF of A549 xenografts in mouse models. In conclusion, ABZ inhibited growth of NSCLC cells by suppressing HIF-1α-dependent glycolysis and VEGF expression.
Abnormalities in the Regulators of Angiogenesis in Patients with Scleroderma
HUMMERS, LAURA K.; HALL, AMY; WIGLEY, FREDRICK M.; SIMONS, MICHAEL
2014-01-01
Objective To determine plasma levels of regulators of angiogenesis in patients with scleroderma and to correlate those levels with manifestations of scleroderma-related vascular disease. Methods Plasma levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), fibroblast growth factor-2 (FGF-2), matrix metalloproteinase-9 (MMP-9), endostatin, pro-MMP-1, hepatocyte growth factor (HGF), placental growth factor (PlGF), and FGF-4 were examined by ELISA in a cross-sectional study of 113 patients with scleroderma and 27 healthy controls. Simple and multivariate regression models were used to look for associations between factor levels and clinical disease characteristics. Results There were marked differences in the levels of pro-angiogenic growth factors between patients with scleroderma and controls, with significant elevations of VEGF, PDGF, FGF-2, and PlGF among patients with scleroderma (p < 0.0001). Levels of MMP were also higher in scleroderma patients compared to controls (MMP-9 and pro-MMP-1) (p < 0.0001). Levels of the pro-angiogenic and anti-fibrotic factor, HGF, were noted to be lower in patients with scleroderma, but had a positive correlation with right ventricular systolic pressure (RVSP) as measured by echocardiogram (p < 0.0001) and the Raynaud Severity Score (p = 0.05). Endostatin (an anti-angiogenic factor) was notably higher in patients with scleroderma (p < 0.0001) and also correlated positively with RVSP (p = 0.023). Conclusion These results demonstrate striking abnormalities in the circulating regulators of angiogenesis in patients with scleroderma. The levels of some factors correlate with measures of vascular disease among patients with scleroderma. Dysregulated angiogenesis may play a role in the development of scleroderma vascular disease. PMID:19228661
Yoo, Young; Choi, Ic Sun; Byeon, Jung Hye; Lee, Seung Min; La, Kyong Suk; Choi, Byung Min; Park, Sang Hee; Choung, Ji Tae
2010-01-01
Airway hyperresponsiveness, which is a characteristic feature of asthma, is usually measured by means of bronchial challenge with direct or indirect stimuli. Vascular endothelial growth factor (VEGF) increases vascular permeability and angiogenesis, leads to mucosal edema, narrows the airway diameter, and reduces airway flow. To examine the relationships between serum VEGF level and airway responsiveness to methacholine and adenosine monophosphate (AMP) in children with asthma. Peripheral blood eosinophil counts, serum eosinophil cationic protein (ECP) concentrations, and serum VEGF concentrations were measured in 31 asthmatic children and 26 control subjects. Methacholine and AMP bronchial challenges were performed on children with asthma. Children with asthma had a significantly higher mean (SD) level of VEGF than controls (361.2 [212.0] vs 102.7 [50.0] pg/mL; P < .001). Blood eosinophil counts and serum ECP levels significantly correlated inversely with AMP provocation concentration that caused a decrease in forced expiratory volume in 1 second of 20% (PC20) (r = -0.474, P =.01; r = -0.442, P =.03, respectively), but not with methacholine PC20 (r = -0.228, P = .26; r = -0.338, P =.10, respectively). Serum VEGF levels significantly correlated with airway responsiveness to AMP (r = -0.462; P = .009) but not to methacholine (r = -0.243; P = .19). Serum VEGF levels were increased in children with asthma and were related to airway responsiveness to AMP but not to methacholine. Increased VEGF levels in asthmatic children may result in increased airway responsiveness by mechanisms related to airway inflammation or increased permeability of airway vasculature.
Tual-Chalot, Simon; Gagnadoux, Frédéric; Trzepizur, Wojciech; Priou, Pascaline; Andriantsitohaina, Ramaroson; Martinez, M Carmen
2014-02-01
Microparticles are deemed true biomarkers and vectors of biological information between cells. Depending on their origin, the composition of microparticles varies and the subsequent message transported by them, such as proteins, mRNA, or miRNA, can differ. In obstructive sleep apnea syndrome (OSAS), circulating microparticles are associated with endothelial dysfunction by reducing endothelial-derived nitric oxide production. Here, we have analyzed the potential role of circulating microparticles from OSAS patients on the regulation of angiogenesis and the involved pathway. VEGF content carried by circulating microparticles from OSAS patients was increased when compared with microparticles from non-OSAS patients. Circulating microparticles from OSAS patients induced an increase of angiogenesis that was abolished in the presence of the antagonist of endothelin-1 receptor type B. In addition, endothelin-1 secretion was increased in human endothelial cells treated by OSAS microparticles. We highlight that circulating microparticles from OSAS patients can modify the secretome of endothelial cells leading to angiogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.
Pardanaud, Luc; Eichmann, Anne
2006-07-01
Using quail-chick parabiosis and QH1 monoclonal antibody analysis, we have identified circulating endothelial cells and/or progenitors in the embryo. These cells were already present early in ontogeny, before the third embryonic day. Under normal conditions, they integrated into most tissues but remained scarce. When experimental angiogenic responses were induced by wounding or grafts onto the chorioallantoic membrane, circulating endothelial cells were rapidly mobilized and selectively integrated sites of neoangiogenesis. Their mobilization was not dependent on the presence of the bone marrow as it was effective before its differentiation. Surprisingly, mobilization was not effective during sprouting angiogenesis following VEGF treatment of chorioallantoic membrane. Thus, embryonic circulating endothelial cells were efficiently mobilized during the establishment of an initial vascular supply to ischemic tissues following wounding or grafting, but were not involved during classical sprouting angiogenesis.
Fan, Minhao; Zhang, Jian; Wang, Zhonghua; Wang, Biyun; Zhang, Qunlin; Zheng, Chunlei; Li, Ting; Ni, Chen; Wu, Zhenhua; Shao, Zhimin; Hu, Xichun
2014-01-01
The efficacy of anti-VEGF agents probably lies on VEGF-dependency. Apatinib, a specific tyrosine kinase inhibitor that targets VEGF receptor 2, was assessed in patients with advanced breast cancer (ABC) (ClinicalTrials.gov NCT01176669 and NCT01653561). This substudy was to explore the potential biomarkers for VEGF-dependency in apatinib-treated breast cancer. Eighty pretreated patients received apatinib 750 or 500 mg/day orally in 4-week cycles. Circulating biomarkers were measured using a multiplex assay, and tissue biomarkers were identified with immunostaining. Baseline characteristics and adverse events (AEs) were included in the analysis. Statistical confirmation of independent predictive factors for anti-tumor efficacy was performed using Cox and Logistic regression models. Median progression-free survival (PFS) was 3.8 months, and overall survival (OS) was 10.6 months, with 17.5 % of objective response rate. Prominent AEs (≥60 %) were hypertension, hand-foot skin reaction (HFSR), and proteinuria. Higher tumor phosphorylated VEGFR2 (p-VEGFR2) expressions (P = 0.001), higher baseline serum soluble VEGFR2 (P = 0.031), hypertension (P = 0.011), and HFSR (P = 0.018) were significantly related to longer PFS, whereas hypertension (P = 0.002) and HFSR (P = 0.001) were also related to OS. Based on multivariate analysis, only p-VEGFR2 (adjusted HR, 0.40; P = 0.013) and hypertension (adjusted HR, 0.58; P = 0.038) were independent predictive factors for both PFS and clinical benefit rate. Apatinib had substantial antitumor activity in ABC and manageable toxicity. p-VEGFR2 and hypertension may be surrogate predictors of VEGF-dependency of breast cancer, which may identify an anti-angiogenesis sensitive population.
Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; D'Amore, Simona; Gnoni, Antonio; Pellegrino, Mariangela; Storelli, Carlo; De Caterina, Raffaele; Palasciano, Giuseppe; Carluccio, Maria Annunziata
2016-02-01
Previous studies have shown the antiinflammatory, antioxidant and antiangiogenic properties by pure olive oil polyphenols; however, the effects of olive oil phenolic fraction on the inflammatory angiogenesis are unknown. In this study, we investigated the effects of the phenolic fraction (olive oil polyphenolic extract, OOPE) from extra virgin olive oil and related circulating metabolites on the VEGF-induced angiogenic responses and NADPH oxidase activity and expression in human cultured endothelial cells. We found that OOPE (1-10 μg/ml), at concentrations achievable nutritionally, significantly reduced, in a concentration-dependent manner, the VEGF-induced cell migration, invasiveness and tube-like structure formation through the inhibition of MMP-2 and MMP-9. OOPE significantly (P<0.05) reduced VEGF-induced intracellular reactive oxygen species by modulating NADPH oxidase activity, p47phox membrane translocation and the expression of Nox2 and Nox4. Moreover, the treatment of endothelial cells with serum obtained 4 h after acute intake of extra virgin olive oil, with high polyphenol content, decreased VEGF-induced NADPH oxidase activity and Nox4 expression, as well as, MMP-9 expression, as compared with fasting control serum. Overall, native polyphenols and serum metabolites of extra virgin olive oil rich in polyphenols are able to lower the VEGF-induced angiogenic responses by preventing endothelial NADPH oxidase activity and decreasing the expression of selective NADPH oxidase subunits. Our results provide an alternative mechanism by which the consumption of olive oil rich in polyphenols may account for a reduction of oxidative stress inflammatory-related sequelae associated with chronic degenerative diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Patel, Jeetesh V; Lim, Hoong Sern; Nadar, Sunil; Tayebjee, Muzahir; Hughes, Elizabeth A; Lip, Gregory Yh
2006-01-01
Abnormal inflammation, platelets and angiogenesis are involved in the pathophysiology of cardiovascular disease (CVD). To test the hypothesis that concentrations of high sensitive C-reactive protein (CRP, an index of inflammation) and soluble CD40 ligand (sCD40L, an index of platelet activation) would be abnormal in hypertension, and in turn, be related to plasma indices of angiogenesis, the angiopoietins-1 and -2, and vascular endothelial growth factor (VEGF), in addition to the presence or absence of CVD. Using a cross-sectional approach, we measured plasma concentrations of CRP, sCD40L, VEGF, and angiopoietins-1 and -2 in 147 patients with hypertension (85 with a history of CVD event/s, 62 CVD event-free) and 68 age- and sex-matched healthy controls. Concentrations of sCD40L (P = 0.039), CRP (P < 0.001), angiopoietin-1 (P < 0.001), angiopoietin-2 (P = 0.003) and VEGF (P < 0.001) were all greater amongst hypertensive patients than in controls. There were no significant differences in sCD40L and VEGF concentrations between hypertensive individuals with and without CVD events, but CRP and angiopoietin-1 concentrations were significantly greater amongst those with CVD events. On multiple regression analysis, sCD40L was associated with angiopoietin-2 (P = 0.01) and VEGF (P = 0.007) in hypertensive individuals, but no such associations were found within the healthy control group. In patients with hypertension, sCD40L was associated with increased circulating markers of abnormal angiogenesis (angiopoietin-2, VEGF). The interaction between sCD40L and angiogenesis may contribute to the pathophysiology of CVD in hypertension.
Wang, Zhiwei; Li, Shihao; Li, Fuhua; Yang, Hui; Yang, Fusheng; Xiang, Jianhai
2015-12-01
Vascular endothelial growth factors (VEGFs) are important signaling proteins in VEGF signaling pathway which play key roles in inducing endothelial cell proliferation, migration, angiogenesis, vascular permeability, inhibition of apoptosis and virus infection. In the present study, we isolated and characterized two VEGF genes, LvVEGF1 and LvVEGF2 from Litopenaeus vannamei. The deduced amino acid sequences of both LvVEGF1 and LvVEGF2 contained a signal peptide, a typical PDGF/VEGF domain and a cysteine knot motif (CXCXC). Tissue distribution analysis showed that LvVEGF1 was predominantly expressed in lymphoid organ (Oka) while LvVEGF2 was mainly detected in gill and hemocytes. The transcriptional levels of LvVEGF1 in Oka and LvVEGF2 in gill or hemocytes were apparently up-regulated during WSSV infection. Double-stranded RNA interference was used for further functional studies. The data showed that silencing of LvVEGF1 and LvVEGF2 caused a decrease of the copy numbers of the virus in WSSV infected shrimp and a reduction of the cumulative mortality rate of shrimp during WSSV infection. The present study indicated that LvVEGF1 and LvVEGF2 might facilitate WSSV infection, which provided new evidence to understand the function of VEGF signaling pathway during WSSV infection in shrimp. Copyright © 2015 Elsevier Ltd. All rights reserved.
Study of endothelin-1 and vascular endothelial growth factor in patients with cancer colon.
Abdel-Gawad, Iman A; Hassanein, Hala M R; Bahgat, Nahla A; Abdel Sattar, Mona A; El-Sissy, Azza H; Altaweel, Maha A; Helal, Amany M
2008-09-01
The levels of endothelin-1 and VEGF were evaluated in the sera of newly diagnosed patients with cancer colon and were compared with the routinely used tumor markers; CEA and CA19.9. Their relations with some prognostic factors of cancer colon were also investigated. The study included 48 patients with cancer colon and 20 apparently healthy volunteers as a control group. Patients were 23 males and 25 females with age range from 18 to 71 years (mean = 47 +/- 1.8). Both serum and plasma samples were obtained from patients and controls. Six percent of patients had grade 1 tumors, 77 % had grade 2 and 17 % had grade 3 disease. As regard to the stage, 52 % of patients were stage II, 35.5 % were stage III, while 12.5 % were stage IV. Liver metastasis was present in 12.5 %, while 35 % showed lymph node metastasis. The VEGF, endothelin-1, CA19.9 and CEA were significantly higher in the cancer colon patients than in control groups (p-value < 0.001,0.006, < 0.001 and <0.001; respectively). Plasma level of endothelin-1 and serum level of VEGF showed significantly higher levels in advanced stages of the disease (p value < 0.001) and in presence of liver metastasis (p value <0.00l and 0.002 respectively), while VEGF showed significant result when compared with the grade (p value = 0.032). In this study, when comparing the levels of plasma endothelin-1 and serum VEGF between the metastatic, non-metastatic liver patients of the cancer colon group and the control group, the comparison was statistically significant for both markers (p < 0.001). Endothelin-1 and VEGF showed significant positive correlation (r=0.77 and p-value < 0.0001). Serum VEGF and CA19.9 showed good sensitivities which were not different (97.9 % and 87.5 % ,respectively), while there was no significant difference between VEGF, CA19.9 and CEA with respect to specificities (100 %, 90 % and 100 % respectively). Both endothelin-1 and VEGF may be used for early detection of liver metastasis in cancer colon and VEGF may be used as a potential new marker for the diagnosis of cancer colon. Further studies with larger number of patients are recommended to establish the value of VEGF and endothelin- 1 as potential diagnostic and prognostic markers for cancer colon. Cancer colon - VEGF - Endothelin-1 - Angiogenesis.
Kristensen, Peter Lommer; Høi-Hansen, Thomas; Boomsma, Frans; Pedersen-Bjergaard, Ulrik; Thorsteinsson, Birger
2009-10-01
In healthy adults, levels of vascular endothelial growth factor (VEGF) increase in response to mild hypoglycemia. VEGF is implicated in glucose transport over the blood-brain barrier, and the increase during hypoglycemia has been positively correlated with preservation of cognitive function during hypoglycemia. High activity in the renin-angiotensin system (RAS) is associated with an increased risk of severe hypoglycemia in patients with type 1 diabetes mellitus. Renin-angiotensin system possibly exerts its mechanism in hypoglycemia via VEGF. We studied the impact of mild hypoglycemia on plasma VEGF in patients with type 1 diabetes mellitus and high or low RAS activity and analyzed associations between VEGF levels and cognitive function during hypoglycemia. Eighteen patients with type 1 diabetes mellitus-9 with high and 9 with low RAS activity-underwent a single-blinded, placebo-controlled, crossover study with either mild hypoglycemia or stable glycemia. Cognitive function was assessed by the California Cognitive Assessment Package and the Alzheimer Quick Test. Nadir plasma glucose was 2.2 (0.3) mmol/L. During the control study, plasma VEGF did not change. During hypoglycemia, plasma VEGF increased from 39 to 58 pg/L in the high-RAS group (P = .004) and from 76 to 109 pg/L in the low-RAS group (P = .01), with no difference between RAS groups (P = .9). A weak association between reduced preservation of cognitive function during hypoglycemia and low VEGF response was observed. Plasma VEGF levels increase during mild, short-term hypoglycemia in patients with type 1 diabetes mellitus. The VEGF response is not dependent on RAS activity and only weakly associated with preservation of cognitive function during hypoglycemia. Thus, the previously described association between low RAS activity and better cognitive performance during hypoglycemia does not seem to be mediated by VEGF.
Li, Jun-Hui; Wu, Ya-Ling; Ye, Jian-Hong; Ning, Ya-Gong; Yu, Hai-Ying; Peng, Zhong-Jie; Luan, Xiao-Wen
2009-09-01
To observe the promoting effects of blood-activating and stasis-removing Chinese drugs combined with vascular endothelial growth factor (VEGF) gene transfer on angiogenesis in ischemic necrosis of the femoral head. Forty Japanese giant-ear rabbits were randomly divided into a control group, a model group, a Chinese drug group, a gene group, and a combined group. After 8 weeks of treatment, the rate of VEGF positive cell expression in the synovium of the femoral head was measured using the immunohistochemical method, and the number of blood vessels in the femoral head was measured by digital subtraction angiography. The rate of VEGF positive cell expression in the model group was significantly lower than that in the Chinese drug group (P < 0.05) and very significantly lower than those in other groups (P < 0.01); but in the combined group it was significantly higher than in the Chinese drug group (P < 0.05). The differences in the number of blood vessels in area A between the model group and other groups were not statistically significant. However, in area B, the number of blood vessels significantly increased in the control group, the gene group and the combined group as compared with the model group (P < 0.05), and in the combined group the number of blood vessels was significantly more than in the gene group (P < 0.05); but in the Chinese drug group it was not significantly different than the model group (P > 0.05). Either the blood-activating and stasis-removing Chinese drugs or VEGF gene transfer can promote the angiogenesis and building of collateral circulation for femoral head ischemic necrosis, and the combined therapy with Chinese drugs or VEGF gene transfer may show a better therapeutic effect. The present study provides an experimental basis for clinical application of the combined therapy with the blood-activating and stasis-removing Chinese drugs and VEGF gene transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.
2012-11-01
Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a highmore » VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black-Right-Pointing-Pointer Endothelial VEGFR levels are modulated during this response. Black-Right-Pointing-Pointer The cell regulates VEGF-A bioavailability and cell survival. Black-Right-Pointing-Pointer This may partly underlie endothelial dysfunction seen in many pathologies.« less
Zhang, Yu; Yu, Li-Ke; Xia, Ning
2012-03-01
To evaluate the diagnostic value of endostatin (ES), vascular endothelial growth factor (VEGF) and carcinoembryonic antigen (CEA) in both serum and pleural effusion of lung cancer patients. Levels of ES, VEGF and CEA in 52 malignant pleural effusion due to lung cancer and 50 patients with non-malignant disease were measured by using sandwich enzyme-linked immunosorbent assay and microparticle enzyme immunoassay. The ES, VEGF and CEA levels in pleural effusion and serum, and their ratio (F/S) were higher in lung cancer group than that in benign group, and the differences were statistically significant (P<0.05). The diagnostic efficiency of ES+VEGF for lung cancer was superior to either single detection. The diagnostic efficiency of ES+VEGF+CEA was superior to either ES+VEGF or ES+CEA. The results suggest that ES, VEGF and CEA might be useful in the differentiation between benign and malignant pleural effusion due to lung cancer. In comparison with either single determination of concentration in serum or pleural fluid, the combined detection of two or three markers is of important clinical significance in the diagnosis of lung cancer. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Aschbacher, Kirstin; Derakhshandeh, Ronak; Flores, Abdiel J; Narayan, Shilpa; Mendes, Wendy Berry; Springer, Matthew L
2016-05-01
Psychological stress and glucocorticoids are associated with heightened cardiovascular disease risk. We investigated whether stress or cortisol would be associated with reduced circulating angiogenic cell (CAC) function, an index of impaired vascular repair. We hypothesized that minority-race individuals who experience threat in interracial interactions would exhibit reduced CAC function, and that this link might be explained by cortisol. To test this experimentally, we recruited 106 African American participants for a laboratory interracial interaction task, in which they received socially evaluative feedback from Caucasian confederates. On a separate day, a subset of 32 participants (mean age=26years, 47% female) enrolled in a separate biological substudy and provided blood samples for CAC isolation and salivary samples to quantify the morning peak in cortisol (the cortisol awakening response, CAR). CAC function was quantified using cell culture assays of migration to vascular endothelial growth factor (VEGF) and secretion of VEGF into the culture medium. Heightened threat in response to an interracial interaction and trait anxiety in vivo were both associated with poorer CAC migratory function in vitro. Further, threat and poorer sustained attention during the interracial interaction were associated with a higher CAR, which in turn, was related to lower CAC sensitivity to glucocorticoids. In vitro, higher doses of cortisol impaired CAC migratory function and VEGF protein secretion. The glucocorticoid receptor antagonist RU486 reversed this functional impairment. These data identify a novel, neuroendocrine pathway by which psychological stress may reduce CAC function, with potential implications for cardiovascular health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aschbacher, Kirstin; Derakhshandeh, Ronak; Flores, Abdiel J.; Narayan, Shilpa; Mendes, Wendy Berry; Springer, Matthew L.
2016-01-01
Psychological stress and glucocorticoids are associated with heightened cardiovascular disease risk. We investigated whether stress or cortisol would be associated with reduced circulating angiogenic cell (CAC) function, an index of impaired vascular repair. We hypothesized that minority-race individuals who experience threat in interracial interactions would exhibit reduced CAC function, and that this link might be explained by cortisol. To test this experimentally, we recruited 106 African American participants for a laboratory interracial interaction task, in which they received socially evaluative feedback from Caucasian confederates. On a separate day, a subset of 32 participants (mean age = 26 years, 47% female) enrolled in a separate biological substudy and provided blood samples for CAC isolation and salivary samples to quantify the morning peak in cortisol (the cortisol awakening response, CAR). CAC function was quantified using cell culture assays of migration to vascular endothelial growth factor (VEGF) and secretion of VEGF into the culture medium. Heightened threat in response to an interracial interaction and trait anxiety in vivo were both associated with poorer CAC migratory function in vitro. Further, threat and poorer sustained attention during the interracial interaction were associated with a higher CAR, which in turn, was related to lower CAC sensitivity to glucocorticoids. In vitro, higher doses of cortisol impaired CAC migratory function and VEGF protein secretion. The glucocorticoid receptor antagonist RU486 reversed this functional impairment. These data identify a novel, neuroendocrine pathway by which psychological stress may reduce CAC function, with potential implications for cardiovascular health. PMID:26925833
Whiteman, Andrew; Young, Daniel E.; He, Xuemei; Chen, Tai C.; Wagenaar, Robert C.; Stern, Chantal; Schon, Karin
2013-01-01
Convergent evidence from human and non-human animal studies suggests aerobic exercise and increased aerobic capacity may be beneficial for brain health and cognition. It is thought growth factors may mediate this putative relationship, particularly by augmenting plasticity mechanisms in the hippocampus, a brain region critical for learning and memory. Among these factors, glucocorticoids, brain derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF), hormones that have considerable and diverse physiological importance, are thought to effect normal and exercise-induced hippocampal plasticity. Despite these predictions, relatively few published human studies have tested hypotheses that relate exercise and fitness to the hippocampus, and none have considered the potential links to all of these hormonal components. Here we present cross-sectional data from a study of recognition memory; serum BDNF, cortisol, IGF-1, and VEGF levels; and aerobic capacity in healthy young adults. We measured circulating levels of these hormones together with performance on a recognition memory task, and a standard graded treadmill test of aerobic fitness. Regression analyses demonstrated BDNF and aerobic fitness predict recognition memory in an interactive manner. In addition, IGF-1 was positively associated with aerobic fitness, but not with recognition memory. Our results may suggest an exercise adaptation-related change in the BDNF dose-response curve that relates to hippocampal memory. PMID:24269495
Tang, Hong-Bo; Ren, Yu-Ping; Zhang, Jun; Ma, Shi-Hui; Gao, Feng; Wu, Yi-Ping
2007-11-01
Insulin-like growth factors (IGFs) play important roles in the development and progression of tumors. But the mechanism of tumorigenesis in relation to IGF-1 is unclear yet. This study was to explore the correlation of circulating IGF-1 level to the angiogenesis of breast cancer in IGF-1-deficient mice. The liver-specific IGF-1-deficient (LID) mice and control mice were injected with 7,12-dimethybenz(a)anthracene (DMBA) to develop breast cancer. Ginsenoside Rg3 was used to intervene tumor growth. The occurrence rates of breast cancer were compared. The expression of vascular endothelial growth factor (VEGF) and microvessel density (MVD) was detected by immunohistochemistry. The occurrence rate of breast cancer was 66.67% in untreated control mice, 33.33% in untreated LID mice, 36.00% in Rg3-treated control mice, and 12.00% in Rg3-treated LID mice. The tumor size was (0.79+/-0.20) cm in untreated control mice, (0.37+/-0.08) cm in untreated LID mice, (0.32+/-0.08) cm in Rg3-treated control mice, and (0.15+/-0.05) cm in Rg3-treated LID mice. The average light density and positive rate of VEGF were the highest in untreated control mice (0.34+/-0.10 and 0.04+/-0.02, P<0.05), and the lowest in Rg3-treated LID mice (0.13+/-0.03 and 0.01+/-0.00, P<0.05). The MVD was 31.9+/-5.3 in untreated control mice, 26.8+/-4.9 in untreated LID mice, 20.1+/-4.9 in Rg3-treated control mice, and 14.4+/-4.9 in Rg3-treated LID mice. Circulating IGF-1 plays a role in the onset and development of breast cancer. Degrading serum IGF-1 level could inhibit angiogenesis and growth of breast cancer. Rg3 could promote this effect.
Developmental Regulation of NO-Mediated VEGF-Induced Effects in the Lung
Bhandari, Vineet; Choo-Wing, Rayman; Lee, Chun G.; Yusuf, Kamran; Nedrelow, Jonathan H.; Ambalavanan, Namasivayam; Malkus, Herbert; Homer, Robert J.; Elias, Jack A.
2008-01-01
Vascular endothelial growth factor (VEGF) is known to have a pivotal role in lung development and in a variety of pathologic conditions in the adult lung. Our earlier studies have shown that NO is a critical mediator of VEGF-induced vascular and extravascular effects in the adult murine lung. As significant differences have been reported in the cytokine responses in the adult versus the neonatal lung, we hypothesized that there may be significant differences in VEGF-induced alterations in the developing as opposed to the mature lung. Furthermore, nitric oxide (NO) mediation of these VEGF-induced effects may be developmentally regulated. Using a novel externally regulatable lung-targeted transgenic murine model, we found that VEGF-induced pulmonary hemorrhage was mediated by NO-dependent mechanisms in adults and newborns. VEGF enhanced surfactant production in adults as well as increased surfactant and lung development in newborns, via an NO-independent mechanism. While the enhanced survival in hyperoxia in the adult was partly NO-dependent, there was enhanced hyperoxia-induced lung injury in the newborn. In addition, human amniotic fluid VEGF levels correlated positively with surfactant phospholipids. Tracheal aspirate VEGF levels had an initial spike, followed by a decline, and then a subsequent rise, in human neonates with an outcome of bronchopulmonary dysplasia or death. Our data show that VEGF can have injurious as well as potentially beneficial developmental effects, of which some are NO dependent, others NO independent. This opens up the possibility of selective manipulation of any VEGF-based intervention using NO inhibitors for maximal potential clinical benefit. PMID:18441284
Developmental regulation of NO-mediated VEGF-induced effects in the lung.
Bhandari, Vineet; Choo-Wing, Rayman; Lee, Chun G; Yusuf, Kamran; Nedrelow, Jonathan H; Ambalavanan, Namasivayam; Malkus, Herbert; Homer, Robert J; Elias, Jack A
2008-10-01
Vascular endothelial growth factor (VEGF) is known to have a pivotal role in lung development and in a variety of pathologic conditions in the adult lung. Our earlier studies have shown that NO is a critical mediator of VEGF-induced vascular and extravascular effects in the adult murine lung. As significant differences have been reported in the cytokine responses in the adult versus the neonatal lung, we hypothesized that there may be significant differences in VEGF-induced alterations in the developing as opposed to the mature lung. Furthermore, nitric oxide (NO) mediation of these VEGF-induced effects may be developmentally regulated. Using a novel externally regulatable lung-targeted transgenic murine model, we found that VEGF-induced pulmonary hemorrhage was mediated by NO-dependent mechanisms in adults and newborns. VEGF enhanced surfactant production in adults as well as increased surfactant and lung development in newborns, via an NO-independent mechanism. While the enhanced survival in hyperoxia in the adult was partly NO-dependent, there was enhanced hyperoxia-induced lung injury in the newborn. In addition, human amniotic fluid VEGF levels correlated positively with surfactant phospholipids. Tracheal aspirate VEGF levels had an initial spike, followed by a decline, and then a subsequent rise, in human neonates with an outcome of bronchopulmonary dysplasia or death. Our data show that VEGF can have injurious as well as potentially beneficial developmental effects, of which some are NO dependent, others NO independent. This opens up the possibility of selective manipulation of any VEGF-based intervention using NO inhibitors for maximal potential clinical benefit.
The Janus Face of VEGF in Stroke
Geiseler, Samuel J.; Morland, Cecilie
2018-01-01
The family of vascular endothelial growth factors (VEGFs) are known for their regulation of vascularization. In the brain, VEGFs are important regulators of angiogenesis, neuroprotection and neurogenesis. Dysregulation of VEGFs is involved in a large number of neurodegenerative diseases and acute neurological insults, including stroke. Stroke is the main cause of acquired disabilities, and normally results from an occlusion of a cerebral artery or a hemorrhage, both leading to focal ischemia. Neurons in the ischemic core rapidly undergo necrosis. Cells in the penumbra are exposed to ischemia, but may be rescued if adequate perfusion is restored in time. The neuroprotective and angiogenic effects of VEGFs would theoretically make VEGFs ideal candidates for drug therapy in stroke. However, contradictory to what one might expect, endogenously upregulated levels of VEGF as well as the administration of exogenous VEGF is detrimental in acute stroke. This is probably due to VEGF-mediated blood–brain-barrier breakdown and vascular leakage, leading to edema and increased intracranial pressure as well as neuroinflammation. The key to understanding this Janus face of VEGF function in stroke may lie in the timing; the harmful effect of VEGFs on vessel integrity is transient, as both VEGF preconditioning and increased VEGF after the acute phase has a neuroprotective effect. The present review discusses the multifaceted action of VEGFs in stroke prevention and therapy. PMID:29734653
Vural, Fisun; Vural, Birol; Doğer, Emek; Çakıroğlu, Yiğit; Çekmen, Mustafa
2016-10-01
The aim of this study is to investigate the association of perifollicular blood flow (PFBF) with follicular fluid EG-VEGF, inhibin-a, and insulin-like growth factor-1 (IGF-1) concentrations, endometrial vascularity, and IVF outcomes. Forty women with tubal factor infertility were included in a prospective cohort study. Each woman underwent IVF/ICSI procedure. Individual follicles of ≥16 mm (n = 156) were evaluated by power Doppler analysis and categorized as well-vascularized follicles (WVFs) or poorly vascularized follicles (PVFs). WVFs referred to those with perifollicular vascularity of 51-100 %. Each follicular fluid (FF) was individually aspirated and FF/serum EG-VEGF, inhibin-a, and FF IGF-1 levels were evaluated. Zones III-IV endometrial vascularity was classified as a well-vascularized endometrium (WVE). The presence of a WVE and mature oocytes, in addition to the embryo quality and clinical pregnancy rate (CPR), were recorded for each follicle. The main outcome measures were FF serum EG-VEGF, inhibin-a, IGF-1 levels, and WVE and IVF outcome per PFBF. For WVFs, the level of FF EG-VEGF (p = 0.008), oocyte quality (p = 0.001), embryo quality (p = 0.002), a WVE (p = 0.001), and CPR (p = 0.04) increased significantly. The pregnant group was characterized by increased numbers of WVFs (p = 0.044), a WVE (p = 0.022), and increased levels of FF IGF-1 (p = 0.001) and serum EG-VEGF (p = 0.03). FF IGF-1 >50 ng/mL (AUC 0.72) had 75 % sensitivity and 64 % specificity for predicting CPR. WVFs yield high-quality oocytes and embryos, a WVE, increased FF EG-VEGF levels, and increased CPRs.
DECREASED LEVEL OF CORD BLOOD CIRCULATING ENDOTHELIAL COLONY-FORMING CELLS IN PREECLAMPSIA
Muñoz-Hernandez, Rocio; Miranda, Maria L.; Stiefel, Pablo; Lin, Ruei-Zeng; Praena-Fernández, Juan M.; Dominguez-Simeon, Maria J.; Villar, Jose; Moreno-Luna, Rafael; Melero-Martin, Juan M.
2014-01-01
Preeclampsia is a pregnancy-related disorder associated with increased cardiovascular risk for the offspring. Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that participate in the formation of vasculature during development. However, the effect of preeclampsia on fetal levels of ECFCs is largely unknown. In this study, we sought to determine whether cord blood ECFC abundance and function are altered in preeclampsia. We conducted a prospective cohort study that included women with normal (n=35) and preeclamptic (n=15) pregnancies. We measured ECFC levels in the umbilical cord blood of neonates and characterized ECFC phenotype, cloning-forming ability, proliferation and migration towards VEGF-A and FGF-2, in vitro formation of capillary-like structures, and in vivo vasculogenic ability in immunodeficient mice. We found that the level of cord blood ECFCs was statistically lower in preeclampsia than in control pregnancies (P = .04), a reduction that was independent of other obstetric factors. In addition, cord blood ECFCs from preeclamptic pregnancies required more time to emerge in culture than control ECFCs. However, once derived in culture, ECFC function was deemed normal and highly similar between preeclampsia and control, including the ability to form vascular networks in vivo. This study demonstrates that preeclampsia affects ECFC abundance in neonates. A reduced level of ECFCs during preeclamptic pregnancies may contribute to an increased risk of developing future cardiovascular events. PMID:24752434
Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia.
Hulse, R P; Beazley-Long, N; Hua, J; Kennedy, H; Prager, J; Bevan, H; Qiu, Y; Fernandes, E S; Gammons, M V; Ballmer-Hofer, K; Gittenberger de Groot, A C; Churchill, A J; Harper, S J; Brain, S D; Bates, D O; Donaldson, L F
2014-11-01
Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform. We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking the proximal splicing event - leading to the preferential expression of VEGF-A165b over VEGF165a - prevents pain in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a. After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicing mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain. We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic strategy. Copyright © 2014. Published by Elsevier Inc.
Yang, L-C; Tsai, C-H; Huang, F-M; Su, Y-F; Lai, C-C; Liu, C-M; Chang, Y-C
2004-09-01
To investigate the effect of black-pigmented Bacteroides on the expression of vascular endothelial growth factor (VEGF) gene in human pulp fibroblasts. The supernatants of Porphyromonas endodontalis, Porphyromonas gingivalis and Prevotella intermedia were used to evaluate VEGF gene expression in human pulp fibroblasts. The levels of mRNAs were measured by the quantitative reverse-transcriptase polymerase chain reaction analysis. Black-pigmented Bacteroides induced significantly high levels of VEGF mRNA gene expression in human pulp fibroblasts (P < 0.05). In addition, the expression of VEGF depended on the bacteria tested. Black-pigmented Bacteroides may be involved in developing pulpal disease through the stimulation of VEGF production that would lead to the expansion of the vascular network coincident to progression of the inflammation.
Cao, Chao; Sun, Shi-Fang; Lv, Dan; Chen, Zhong-Bo; Ding, Qun-Li; Deng, Zai-Chun
2013-01-01
Published data have shown that the levels of vascular endothelial growth factor (VEGF) and soluble VEGF receptor-1 (sVEGFR-1) in plasma and pleural effusion might be usefulness for lung cancer diagnosis. Here, we performed a prospective study to investigate the utility of VEGF and sVEGFR-1 in bronchoalveolar lavage fluid (BALF) for differential diagnosis of primary lung cancer. A total of 56 patients with solitary pulmonary massed by chest radiograph or CT screening were enrolled in this study. BALF and plasma samples were obtained from all patients and analyzed for VEGF and sVEGFR-1 using a commercially available sandwich ELISA kit. The results showed that the levels of VEGF in BALF were significantly higher in patients with a malignant pulmonary mass compared with patients with a benign mass (P < 0.001). However, no significant difference of sVEGFR-1 in BALF was found between malignant and non-malignant groups (P = 0.43). With a cut-off value of 214 pg/ml, VEGF showed a sensitivity and specificity of 81.8% and 84.2%, respectively, in predicting the malignant nature of a solitary pulmonary mass. Our study suggests that VEGF is significantly increased in BALF among patients with lung cancer than in benign diseases. Measurement of VEGF in BALF might be helpful for differential diagnosis of primary lung cancer.
Busceti, Carla L.; Marchitti, Simona; Bianchi, Franca; Di Pietro, Paola; Riozzi, Barbara; Stanzione, Rosita; Cannella, Milena; Battaglia, Giuseppe; Bruno, Valeria; Volpe, Massimo; Fornai, Francesco; Nicoletti, Ferdinando; Rubattu, Speranza
2017-01-01
Dkk-3 is a member of the dickkopf protein family of secreted inhibitors of the Wnt pathway, which has been shown to enhance angiogenesis. The mechanism underlying this effect is currently unknown. Here, we used cultured HUVECs to study the involvement of the TGF-β and VEGF on the angiogenic effect of Dkk-3. Addition of hrDkk-3 peptide (1 or 10 ng/ml) to HUVECs for 6 or 12 h enhanced the intracellular and extracellular VEGF protein levels, as assessed by RTPCR, immunoblotting, immunocytochemistry and ELISA. The increase in the extracellular VEGF levels was associated to the VEGFR2 activation. Pharmacological blockade of VEGFR2 abrogated Dkk-3-induced endothelial cell tubes formation, indicating that VEGF is a molecular player of the angiogenic effects of Dkk-3. Moreover, Dkk-3 enhanced Smad1/5/8 phosphorylation and recruited Smad4 to the VEGF gene promoter, suggesting that Dkk-3 activated ALK1 receptor leading to a transcriptional activation of VEGF. This mechanism was instrumental to the increased VEGF expression and endothelial cell tubes formation mediated by Dkk-3, because both effects were abolished by siRNA-mediated ALK1 knockdown. In summary, we have found that Dkk-3 activates ALK1 to stimulate VEGF production and induce angiogenesis in HUVECs. PMID:28352232
Lungu, Gina F; Stoica, George; Wong, Paul K Y
2008-05-01
Moloney murine leukemia virus-temperature sensitive (MoMuLV-ts1)-mediated neuronal death is a result of both loss of glial support and release of cytokines and neurotoxins from ts1-infected glial cells. Here the authors propose vascular endothelial growth factor (VEGF) down-regulation as another contributory factor in neuronal degeneration induced by ts1 infection. To determine how ts1 affects VEGF expression in ts1-infected brain, the authors examined the expression of several proteins that are important in regulating the expression of VEGF. The authors found significant decreases in Jun-activating domain-binding protein 1 (Jab1), hypoxia-inducible factor (HIF)-1alpha, and VEGF levels and increases in p53 protein levels in ts1-infected brains compared to noninfected control brains. The authors suggest that a decrease Jab1 expression in ts1 infection leads to accumulation of p53, which binds to HIF-1alpha to accelerate its degradation. A rapid degradation of HIF-1alpha leads to decreased VEGF production and secretion. Considering that endothelial cells are the most conspicuous in virus replication and production in ts1 infection, but are not killed by the infection, the authors examined the expression of these proteins using infected and noninfected mouse cerebrovascular endothelial (CVE) cells. The ts1- infected CVE cells showed decreased Jab1, HIF-1alpha, and VEGF mRNA and protein levels and increased p53 protein levels compared with noninfected cells, consistent with the results found in vivo. These results confirm that ts1 infection results in insufficient secretion of VEGF from endothelial cells and may result in decreased neuroprotection. This study suggested that ts1-mediated neuropathology in mice may result from changes in expression and activity of Jab1, p53, and HIF-1alpha, with a final target on VEGF expression and neuronal degeneration.
Li, Chung-Pin; Lee, Fa-Yauh; Hwang, Shinn-Jang; Lu, Rei-Hwa; Lee, Wei-Ping; Chao, Yee; Wang, Sung-Sang; Chang, Full-Young; Whang-Peng, Jacqueline; Lee, Shou-Dong
2003-01-01
AIM: To investigate whether vascular endothelial growth factor (VEGF) and basic fibroblastic growth factor (bFGF) are associated with spider angiomas in patients with liver cirrhosis. METHODS: Eighty-six patients with liver cirrhosis were enrolled and the number and size of the spider angiomas were recorded. Fifty-three healthy subjects were selected as controls. Plasma levels of VEGF and bFGF were measured in both the cirrhotics and the controls. RESULTS: Plasma VEGF and bFGF were increased in cirrhotics compared with controls (122 ± 13 vs. 71 ± 11 pg/mL, P = 0.003 for VEGF; 5.1 ± 0.5 vs. 3.4 ± 0.5 pg/mL, P = 0.022 for bFGF). In cirrhotics, plasma VEGF and bFGF were also higher in patients with spider angiomas compared with patients without spider angiomas (185 ± 28 vs. 90 ± 10 pg/mL, P = 0.003 for VEGF; 6.8 ± 1.0 vs. 4.1 ± 0.5 pg/mL, P = 0.017 for bFGF). Multivariate logistic regression showed that young age and increased plasma levels of VEGF and bFGF were the most significant predictors for the presence of spider angiomas in cirrhotic patients (odds ratio [OR] = 6.64, 95% confidence interval [CI] = 2.02-21.79, P = 0.002; OR = 4.35, 95%CI = 1.35-14.01, P = 0.014; OR = 5.66, 95%CI = 1.72-18.63, P = 0.004, respectively). CONCLUSION: Plasma VEGF and bFGF are elevated in patients with liver cirrhosis. Age as well as plasma levels of VEGF and bFGF are significant predictors for spider angiomas in cirrhotic patients. PMID:14669345
Economou, Mario A; Wu, Jiangmei; Vasilcanu, Daiana; Rosengren, Linda; All-Ericsson, Charlotta; van der Ploeg, Ingeborg; Menu, Eline; Girnita, Leonard; Axelson, Magnus; Larsson, Olle; Seregard, Stefan; Kvanta, Anders
2008-11-01
Choroidal neovascularization (CNV) is a debilitating complication of age-related macular degeneration (AMD) and a leading cause of vision loss. Along with other angiogenic factors like vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-1) and its receptor, IGF-1R, have been implicated in CNV. We have previously shown that the cyclolignan picropodophyllin (PPP) efficiently blocks the insulin-like growth factor-1 receptor (IGF-1R) activity and causes cell death in uveal melanoma cell lines and in an in-vivo model. In this study we investigated the effect of PPP on VEGF expression both in vitro and in vivo and whether this effect has anti-angiogenic consequences in a murine CNV model. C57BL/6J mice with laser-induced CNVs were treated with PPP. Effects on CNV area were assayed by image analysis. VEGF levels in choroids and retinal pigment epithelial cells (APRE-19) were measured by Western blot or ELISA. Transcriptional activation of the VEGF promoter was determined by luciferase reporter gene assay. Mice treated with PPP, administered intraperitoneally or orally, showed 22-32% (p = 0.002) decrease in CNV area. Furthermore, VEGF levels in the choroids were significantly reduced. In cultured APRE-19 cells, IGF-1 was shown to increase VEGF secretion. This increase was completely blocked by PPP. We could confirm that PPP reduced the level of transcriptional activity of VEGF promoter. PPP reduces IGF-1 dependent VEGF expression and CNV in vivo. Accordingly, IGF-1R inhibitors may be useful tools in the therapy of conditions associated with CNV including neovascular AMD.
Economou, Mario A; Wu, Jiangmei; Vasilcanu, Daiana; Rosengren, Linda; All-Ericsson, Charlotta; van der Ploeg, Ingeborg; Menu, Eline; Girnita, Leonard; Axelson, Magnus; Larsson, Olle; Seregard, Stefan; Kvanta, Anders
2008-06-01
Choroidal neovascularization (CNV) is a debilitating complication of age-related macular degeneration (AMD) and a leading cause of vision loss. Along with other angiogenic factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF)-1 and its receptor, IGF-1R, have been implicated in CNV. A prior study has shown that the cyclolignan picropodophyllin (PPP) efficiently blocks the insulin-like growth factor-1 receptor (IGF-1R) activity and causes cell death in uveal melanoma cell lines and in an in vivo model. In this study we investigated the effect of PPP on VEGF expression, both in vitro and in vivo, and whether this effect has antiangiogenic consequences in a murine CNV model. C57BL/6J mice with laser-induced CNVs were treated with PPP. Effects on CNV area were assayed by image analysis. VEGF levels in the choroid and retinal pigment epithelial cells (ARPE-19) were measured by Western blot or ELISA. Transcriptional activation of the VEGF promoter was determined by luciferase reporter gene assay. Mice treated with PPP, administered intraperitoneally or orally, showed a 22% to 32% (P = 0.002) decrease in CNV area. Furthermore, VEGF levels in the choroid were significantly reduced. In cultured ARPE-19 cells, IGF-1 was shown to increase VEGF secretion. This increase was completely blocked by PPP. PPP reduced the level of transcriptional activity of the VEGF promoter. PPP reduces IGF-1-dependent VEGF expression and CNV in vivo. Accordingly, IGF-1R inhibitors may be useful tools in the treatment of conditions associated with CNV, including neovascular AMD.
Vasodilator factors in the systemic and local adaptations to pregnancy
Valdes, Gloria; Kaufmann, Peter; Corthorn, Jenny; Erices, Rafaela; Brosnihan, K Bridget; Joyner-Grantham, JaNae
2009-01-01
We postulate that an orchestrated network composed of various vasodilatory systems participates in the systemic and local hemodynamic adaptations in pregnancy. The temporal patterns of increase in the circulating and urinary levels of five vasodilator factors/systems, prostacyclin, nitric oxide, kallikrein, angiotensin-(1–7) and VEGF, in normal pregnant women and animals, as well as the changes observed in preeclamptic pregnancies support their functional role in maintaining normotension by opposing the vasoconstrictor systems. In addition, the expression of these vasodilators in the different trophoblastic subtypes in various species supports their role in the transformation of the uterine arteries. Moreover, their expression in the fetal endothelium and in the syncytiotrophoblast in humans, rats and guinea-pigs, favour their participation in maintaining the uteroplacental circulation. The findings that sustain the functional associations of the various vasodilators, and their participation by endocrine, paracrine and autocrine regulation of the systemic and local vasoactive changes of pregnancy are abundant and compelling. However, further elucidation of the role of the various players is hampered by methodological problems. Among these difficulties is the complexity of the interactions between the different factors, the likelihood that experimental alterations induced in one system may be compensated by the other players of the network, and the possibility that data obtained by manipulating single factors in vitro or in animal studies may be difficult to translate to the human. In addition, the impossibility of sampling the uteroplacental interface along normal pregnancy precludes obtaining longitudinal profiles of the various players. Nevertheless, the possibility of improving maternal blood pressure regulation, trophoblast invasion and uteroplacental flow by enhancing vasodilation (e.g. L-arginine, NO donors, VEGF transfection) deserves unravelling the intricate association of vasoactive factors and the systemic and local adaptations to pregnancy. PMID:19646248
Han, Xiaopeng; Li, Hongtao; Su, Lin; Zhu, Wankun; Xu, Wei; Li, Kun; Zhao, Qingchuan; Yang, Hua; Liu, Hongbin
2014-03-01
Elevated serum levels of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) are associated with poor prognosis in patients with gastric cancer. Little is known regarding the clinical benefits of combining celecoxib, a selective inhibitor of COX-2, with standard chemotherapy regimens for the treatment of gastric cancer patients. In this study, we investigated the effect of the combinatorial use of celecoxib with standard chemotherapy on the serum levels of VEGF and COX-2 in patients with gastric cancer. In our study, 80 patients with gastric cancer who underwent laparoscopic radical surgery were randomized into two groups, the combination [celecoxib plus standard oxaliplatin, leucovorin and 5-fluorouracil (FOLFOX4) chemotherapy, n=40] and the FOLFOX4 alone (n=40) groups. In the combination group, celecoxib was orally administered to the patients (400 mg, twice daily). The serum levels of VEGF and COX-2 were measured by ELISA prior to and following surgery. We detected no significant difference in the serum levels of VEGF and COX-2 between the combination and FOLFOX4 alone groups prior to chemotherapy (P>0.05). However, after 6 cycles of chemotherapy, there was a greater decrease in the serum levels of VEGF and COX-2 in the combination group compared to those in the FOLFOX4 group (P<0.01). In addition, the serum levels of VEGF and COX-2 were closely correlated in patients with gastric adenocarcinoma prior to treatment. Our data indicated that, when combined with standard chemotherapy, celecoxib may reduce the serum levels of VEGF and COX-2, suggesting that COX-2 inhibitors may be of therapeutic value through the inhibition of tumor angiogenesis and the prevention of recurrence or metastasis. Thus, celecoxib may be a useful adjuvant agent to standard chemotherapy in patients with advanced gastric cancer.
Chung, Chi-Li; Hsiao, Shih-Hsin; Hsiao, George; Sheu, Joen-Rong; Chen, Wei-Lin; Chang, Shi-Chuan
2013-01-01
Objective To investigate the relationship among angiogenic cytokines, fibrinolytic activity and effusion size in parapneumonic effusion (PPE) and their clinical importance. Methods From January 2008 through December 2010, 26 uncomplicated (UPPE) and 38 complicated (CPPE) PPE were studied. Based on chest ultrasonography, there were non-loculated in 30, uni-loculated in 12, and multi-loculated effusions in 22 patients. The effusion size radiological scores, and effusion vascular endothelial growth factor (VEGF), interleukin (IL)-8, plasminogen activator inhibitor type-1 (PAI-1) and tissue type plasminogen activator (tPA) were measured on admission. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT), were assessed at 6-month follow-up. Results The effusion size and effusion VEGF, IL-8 and PAI-1/tPA ratio were significantly higher in CPPE than in UPPE, and significantly higher in multi-loculated PPE than in non-locualted and uni-loculated PPE, respectively. VEGF (cutoff value 1975 pg/ml) and IL-8 (cutoff value 1937 pg/ml) seemed best to discriminate between UPPE and CPPE. VEGF, IL-8 and effusion size correlated positively with PAI-1/tPA ratio in both UPPE and CPPE. Moreover, the level of VEGF, but not IL-8, correlated positively with effusion size in all patients (r = 0.79, p<0.001) and in UPPE (r = 0.64, p<0.001) and CPPE (r = 0.71, p<0.001) groups. The patients with higher VEGF or greater effusion were prone to have medical treatment failure (n = 10; VEGF, odds ratio 1.01, p = 0.02; effusion size, odds ratio 1.26, p = 0.01). Additionally, ten patients with RPT had larger effusion size and higher levels of VEGF and PAI-1/tPA ratio than did those without. Conclusions In PPE, VEGF and IL-8 levels are valuable to identify CPPE, and higher VEGF level or larger effusion is associated with decreased fibrinolytic activity, development of pleural loculation and fibrosis, and higher risk of medical treatment failure. PMID:23308155
Differential regulation of ANG2 and VEGF-A in human granulosa lutein cells by choriogonadotropin.
Pietrowski, D; Keck, C
2004-04-01
The growth and development of the corpus luteum after rupture of the follicle is a highly regulated process characterised by a rapid vascularization of the follicle surrounding granulosa cells. Vascularization is regulated by a large number of growth factors and cytokines whereas members of the angiopoietin family and VEGF-A are reported to play a principal role. The gonadotropic hormones luteinizing hormone and choriogonadotropin are reported to be essential for corpus luteum formation. In this study we investigated by RT PCR if the growth factors PGF, PDGF-A, PDGF-B, VEGF-A, VEGF-B, VEGF-C, VEGF-D, ANG1, ANG2, ANG3 and ANG4 are expressed in granulosa cells. We show the expression of VEGF-A, VEGF-B, PDGF-A, ANG1 and ANG2 in granulosa cells. Using RT-PCR and Real-Time PCR we demonstrate that angiopoietin 2 is downregulated in human granulosa cells in vitro after choriogonadotropin treatment whereas the expression of angiopoietin 1 is not significantly altered. The expression of VEGF on the RNA- and on the protein level was determined. It was shown that in granulosa cells VEGF is upregulated after choriogonadotropin treatment on the RNA level and that increasing concentrations of choriogonadotropin from 0 to 10 U/ml leads to an increasing amount of VEGF in the cell culture supernatants. The amount of VEGF in the supernatants reaches a plateau at 0.5 U/ml and is increased only slightly and not significantly after treatment of the cells with 10 U/ml choriogonadotropin compared to 0.5 U/ml. In total these findings suggests that in granulosa cells the mRNA of various growth factors is detectable by RT-PCR and that VEGF-A and ANG2 is regulated by the gonadotropic hormone choriogonadotropin. These findings may add impact on the hypothesis of choriogonadotropin as a novel angiogenic factor.
The contribution of skin glycosaminoglycans to the regulation of sodium homeostasis in rats.
Sugár, D; Agócs, R; Tatár, E; Tóth, G; Horváth, P; Sulyok, E; Szabó, A J
2017-08-07
The glycosaminoglycan (GAG) molecules are a group of high molecular weight, negatively charged polysaccharides present abundantly in the mammalian organism. By their virtue of ion and water binding capacity, they may affect the redistribution of body fluids and ultimately the blood pressure. Data from the literature suggests that the mitogens Vascular Endothelial Growth Factor (VEGF)-A and VEGF-C are able to regulate the amount and charge density of GAGs and their detachment from the cell surface. Based on these findings we investigated the relationship between the level of dietary sodium intake, the expression levels of VEGF-A and VEGF-C, and the amount of the skin GAGs hyaluronic acid and chondroitin sulphate in an in vivo rat model. Significant correlation between dietary sodium intake, skin sodium levels and GAG content was found. We confirmed the GAG synthesizing role of VEGF-C but failed to prove that GAGs are degraded by VEGF-A. No significant difference in blood pressure was registered between the different dietary groups. A quotient calculated form the ion and water content of the skin tissue samples suggests that - in contrast to previous findings - the osmotically inactive ions and bound water fractions are proportional.
Li, Jianchang; Qiu, Mingning; Chen, Lieqian; Liu, Lei; Tan, Guobin; Liu, Jianjun
2017-02-01
The aim of the present study was to investigate the effect of resveratrol on renal carcinoma cells and explore possible renin-angiotensin system-associated mechanisms. Subsequent to resveratrol treatment, the cell viability, apoptosis rate, cytotoxicity levels, caspase 3/7 activity and the levels of angiotensin II (AngII), AngII type 1 receptor (AT1R), vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) were evaluated in renal carcinoma cells. The effects of AngII, AT1R, VEGF and COX-2 on resveratrol-induced cell growth inhibition and apoptosis were also examined. The results indicated that resveratrol treatment may suppress growth, induce apoptosis, and decrease AngII, AT1R, VEGF and COX-2 levels in renal carcinoma ACHN and A498 cells. In addition, resveratrol-induced cell growth suppression and apoptosis were reversed when co-culturing with AT1R or VEGF. Thus, resveratrol may suppress renal carcinoma cell proliferation and induce apoptosis via an AT1R/VEGF pathway.
Partners in crime: VEGF and IL-4 conscript tumour-promoting macrophages.
De Palma, Michele
2012-05-01
Tumour-associated macrophages (TAMs) foster tumour progression by several mechanisms, including the promotion of angiogenesis, tissue remodelling, and immunosuppression. Such pro-tumoural activities are thought to be executed by TAM subtypes that harbour features of alternatively activated (or M2-polarized) macrophages. However, the molecular signals in tumours that induce recruitment and differentiation of M2-like macrophages are not fully defined. In this issue of The Journal of Pathology, Linde et al investigate the role of the tumour-derived cytokines, VEGF and IL-4, in the recruitment and polarization of macrophages in a mouse model of skin cancer. The authors report that while VEGF-A recruits monocytes from the peripheral circulation, IL-4 induces their differentiation into tumour-promoting, M2-like macrophages. IL-4 signalling blockade was sufficient to reprogram TAMs away from the M2-like phenotype and inhibited tumour angiogenesis and growth. This study attests to the potential of reprogramming TAMs to abate their pro-angiogenic and pro-tumoural functions in tumours. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
[Pathogenetic and Prognostic Role of Growth Factors in the Development of Chronic Heart Failure].
Teplyakov, A T; Berezikova, E N; Shilov, S N; Efremova, A V; Pustovetova, M G; Popova, A A; Grakova, E V; Torim, Y Y; Safronov, I D; Andriyanova, A V
2017-10-01
To study the role of growth factors ((vascular endothelial growth factor (VEGF), platelet derived growth factor AB (PDGF-AB) and basic fibroblast growth factor (FGF-basic)) in the development and progression of chronic heart failure (CHF) in patients with ishcemic heart disease (IHD). We included in this study 94 patients with CHF. The control group comprised 32 persons. Blood serum levels of growth factors were determined at baseline and after 12 months of observation by enzyme-linked immunosorbent assay. VEGF, PDGF-AB and FGF-basic play an important role in the pathogenesis and progression of heart failure in patients with IHD, determining the increased risk of adverse cardiovascular events in this pathology. Serum activity of growth factors characterizes the severity and course of CHF: with disease progression levels of VEGF and FGF-basic decrease and PDGF-AB concentration increases. Initial low level of VEGF expression regardless of the sex of the patient's sex, significantly low level of FGF-basic and significantly high PDGF-AB in men characterizes unfavorable course of CHF. A correlation has been established between blood serum levels of VEGF, PDGF-AB and FGF-basic and severity and course of CHF.
Ruffinatti, Federico Alessandro; Poletto, Valentina; Massa, Margherita; Tancredi, Richard; Zuccolo, Estella; Khdar, Dlzar Alì; Riccardi, Alberto; Biggiogera, Marco; Rosti, Vittorio; Guerra, Germano; Moccia, Francesco
2017-01-01
Endothelial colony forming cells (ECFCs) represent a population of truly endothelial precursors that promote the angiogenic switch in solid tumors, such as breast cancer (BC). The intracellular Ca2+ toolkit, which drives the pro-angiogenic response to VEGF, is remodelled in tumor-associated ECFCs such that they are seemingly insensitive to this growth factor. This feature could underlie the relative failure of anti-VEGF therapies in cancer patients. Herein, we investigated whether and how VEGF uses Ca2+ signalling to control angiogenesis in BC-derived ECFCs (BC-ECFCs). Although VEGFR-2 was normally expressed, VEGF failed to induce proliferation and in vitro tubulogenesis in BC-ECFCs. Likewise, VEGF did not trigger robust Ca2+ oscillations in these cells. Similar to normal cells, VEGF-induced intracellular Ca2+ oscillations were triggered by inositol-1,4,5-trisphosphate-dependent Ca2+ release from the endoplasmic reticulum (ER) and maintained by store-operated Ca2+ entry (SOCE). However, InsP3-dependent Ca2+ release was significantly lower in BC-ECFCs due to the down-regulation of ER Ca2+ levels, while there was no remarkable difference in the amplitude, pharmacological profile and molecular composition of SOCE. Thus, the attenuation of the pro-angiogenic Ca2+ response to VEGF was seemingly due to the reduction in ER Ca2+ concentration, which prevents VEGF from triggering robust intracellular Ca2+ oscillations. However, the pharmacological inhibition of SOCE prevented BC-ECFC proliferation and in vitro tubulogenesis. These findings demonstrate for the first time that BC-ECFCs are insensitive to VEGF, which might explain at cellular and molecular levels the failure of anti-VEGF therapies in BC patients, and hint at SOCE as a novel molecular target for this disease. PMID:29221123
Procopciuc, Lucia Maria; Caracostea, Gabriela; Zaharie, Gabriela; Stamatian, Florin
2014-11-01
To analyze the influence of maternal/newborn vascular endothelial growth factor (VEGF)-CT936 interaction as a modulating factor in preeclampsia as well as its influence on the maternal angiogenic balance. Seventy pairs of preeclamptic women/newborns and 94 pairs of normal pregnant mothers/newborns were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Serum VEGF and soluble VEGF receptor-1 (sVEGFR-1) levels were measured using ELISA. The risk to develop mild (odds ratio; OR: 3.79, p = 0.008) and severe (OR: 2.94, p = 0.037) preeclampsia being increased in association with the CT936-VEGF genotype and increased in severe preeclampsia to 6.07 (p = 0.03) if the women were carriers of the homozygous TT936-VEGF genotype. The presence of the VEGF-T936 allele in both the mother and the newborn significantly increases the risk of pregnancy-induced hypertension (PIH), mild and severe preeclampsia. If both the mothers and newborns were carriers of the VEGF-T936 allele, significantly lower VEGF and higher sVEGFR-1 levels were observed for all types of preeclampsia. Pregnant women with PIH and severe preeclampsia delivered at a significantly earlier gestational age neonates with a significantly lower birth weight if both the preeclamptic mothers and their newborns were carriers of the VEGF-T936 allele. Our study suggests the role of maternal/fetal VEGF-CT936 polymorphism as a modulating factor in preeclampsia, which affects the angiogenic balance in preeclamptic mothers, as well as their pregnancy outcome.
BOTTOMLEY, MJ; WEBB, NJA; WATSON, CJ; HOLT, PJL; FREEMONT, AJ; BRENCHLEY, PEC
1999-01-01
This study was designed to investigate VEGF production from peripheral blood mononuclear cells (PBMC) from patients with rheumatoid arthritis (RA) compared with healthy controls and to identify the predominant cellular source in PBMC isolated from RA patients. The regulation of PBMC VEGF production by cytokines and synovial fluid (SF) was studied. PBMC were isolated from RA patients and healthy controls and stimulated with lipopolysaccharide (LPS), IL-1β, IL-4, IL-6, IL-8, IL-10, TNF-α and transforming growth factor-beta (TGF-β) isoforms for varying time points up to 72 h at 37°C/5% CO2. The effect of SF on VEGF secretion by PBMC was also studied. Supernatant VEGF levels were measured using a flt-1 receptor capture ELISA. RA patients had significantly higher spontaneous production of VEGF compared with controls, and monocytes were identified as the predominant cellular source. RA PBMC VEGF production was up-regulated by TGF-β isoforms and TNF-α and down-regulated by IL-4 and IL-10, with no effect observed with IL-1β, IL-6 and IL-8. Antibody blocking experiments confirmed that TNF-α and not TGF-β isoforms in SF increased VEGF secretion by RA PBMC. These results emphasize the importance of monocytes as a source of VEGF in the pathophysiology of RA. Several cytokines known to be present in SF can modulate the level of VEGF secretion, but the predominant effect of SF in VEGF up-regulation is shown to be dependent on TNF-α. PMID:10403932
Ray, Alpana; Alalem, Mohamed; Ray, Bimal K
2013-09-20
Vascular endothelial growth factor (VEGF) is recognized as an important angiogenic factor that promotes angiogenesis in a series of pathological conditions, including cancer, inflammation, and ischemic disorders. We have recently shown that the inflammatory transcription factor SAF-1 is, at least in part, responsible for the marked increase of VEGF levels in breast cancer. Here, we show that SAF-1-mediated induction of VEGF is repressed by KLF-4 transcription factor. KLF-4 is abundantly present in normal breast epithelial cells, but its level is considerably reduced in breast cancer cells and clinical cancer tissues. In the human VEGF promoter, SAF-1- and KLF-4-binding elements are overlapping, whereas SAF-1 induces and KLF-4 suppresses VEGF expression. Ectopic overexpression of KLF-4 and RNAi-mediated inhibition of endogenous KLF-4 supported the role of KLF-4 as a transcriptional repressor of VEGF and an inhibitor of angiogenesis in breast cancer cells. We show that KLF-4 recruits histone deacetylases (HDACs) -2 and -3 at the VEGF promoter. Chronological ChIP assays demonstrated the occupancy of KLF-4, HDAC2, and HDAC3 in the VEGF promoter in normal MCF-10A cells but not in MDA-MB-231 cancer cells. Co-transfection of KLF-4 and HDAC expression plasmids in breast cancer cells results in synergistic repression of VEGF expression and inhibition of angiogenic potential of these carcinoma cells. Together these results identify a new mechanism of VEGF up-regulation in cancer that involves concomitant loss of KLF-4-HDAC-mediated transcriptional repression and active recruitment of SAF-1-mediated transcriptional activation.
Feng, Qi; Guo, Peng; Wang, Jin; Zhang, Xiaoyu; Yang, Hui-Chai; Feng, Jian-Gang
2018-03-01
Stromal cell-derived factor-1 (SDF-1) predicts poor clinical outcomes of certain types of cancer. Furthermore, vascular endothelial growth factor (VEGF) promotes the growth and metastasis of solid tumors. The aim of the present study was to examine the expression of SDF-1 and VEGF in patients with synovial sarcoma and to determine their expression is correlated with unfavorable outcomes. Levels of SDF-1 and VEGF proteins were evaluated in 54 patients with synovial sarcoma using immunohistochemical and immunofluorescence staining. Potential associations between the expression of SDF-1 and VEGF and various clinical parameters were analyzed using Pearson's χ 2 test and the Spearman-rho test. Additionally, univariate and multivariate Cox regression analyses were used to identify potential prognostic factors, and the Kaplan-Meier method was used to analyze the overall survival rates of patients. Low SDF-1 and VEGF expression was detected in 20.4% (11/54) and 22.2% (12/54) of patients with synovial sarcoma; moderate expression was detected in 35.2% (19/54) and 37.0% (20/54) of patients and high expression was detected in 44.4% (24 of 54) and 40.7% (22 of 54) of patients, respectively. Levels of SDF-1 and VEGF proteins were significantly associated with histological grade (P<0.05), metastasis (P<0.05) and American Joint Committee on Cancer staging (P<0.05). In addition, levels of SDF-1 and VEGF expression were positively correlated with each other (P<0.001). Univariate analysis also indicated that VEGF expression was associated with shorter overall survival rates in (P<0.05), whereas multivariate analysis demonstrated that SDF-1 expression was associated with shorter patient survival rates (P<0.05). Finally, both SDF-1 and VEGF expression were associated with various characteristics of synovial sarcoma. Therefore, SDF-1 expression may be a potential independent prognostic indicator in patients with synovial sarcomas.
Poynter, Jeffrey A; Manukyan, Mariuxi C; Wang, Yue; Brewster, Benjamin D; Herrmann, Jeremy L; Weil, Brent R; Abarbanell, Aaron M; Meldrum, Daniel R
2011-08-01
Stem cells protect the heart from ischemic damage in part by the release of cytoprotective growth factors, particularly vascular endothelial growth factor (VEGF). Production of VEGF is regulated in part by levels of the transcription factor hypoxia inducible factor 1-α (HIF-1α). Dimethyloxalylglycine (DMOG) prevents the deactivation of HIF-1α and increases VEGF production. However, the effects of systemic DMOG treatment on myocardial tolerance for ischemia are unknown. We hypothesized that systemic pretreatment with DMOG would improve myocardial ischemic tolerance. To study this hypothesis, adult male rats were randomly given an intraperitoneal injection of DMOG (40 mg/kg in 1 mL saline, n = 5) or saline (1 mL, n = 6) 24 h before cardiectomy and isolated heart perfusion. All hearts were subjected to 15 min equilibration, 25 min ischemia and 40 min reperfusion. Myocardial function was continuously monitored. Following reperfusion, myocardial homogenates were analyzed for HIF-1α and VEGF production. We observed that hearts in the DMOG group exhibited greater recovery of left ventricular developed pressure LVDP, +dP/dt and -dP/dt. Myocardial HIF-1α and VEGF levels were increased by DMOG therapy. In conclusion, systemic pretreatment with DMOG augments post-ischemic myocardial functional recovery through increased HIF-1α levels and greater VEGF production. Copyright © 2011 Mosby, Inc. All rights reserved.
Kang, Seungbum; Choi, Hyunsu; Rho, Chang Rae
2016-12-01
This study compared the effects of 3 antivascular endothelial growth factor (VEGF) agents (bevacizumab, ranibizumab, and aflibercept) on corneal epithelial cell viability and wound healing using human corneal epithelial cells (HCECs). To determine the cytotoxic effects of anti-VEGF agents on HCECs, HCEC viability was determined at various concentrations of these agents. An in vitro migration assay was used to investigate the migration of HCECs treated with 3 anti-VEGF agents. The protein level of extracellular signal-regulated kinase was used to evaluate the effect of anti-VEGF treatment on cell proliferation. The protein levels of p38 mitogen-activated protein kinase (MAPK) were analyzed by Western blotting to investigate cell migration. After 24 or 48 h of exposure, aflibercept treatment showed no apparent effect on cell viability; however, bevacizumab and ranibizumab treatment decreased cell viability at high concentrations (1 and 2 mg/mL). A migration assay showed that HCEC migration was different among the 3 anti-VEGF treatment groups. Bevacizumab significantly delayed HCEC migration. Western blotting showed that bevacizumab treatment decreased the expression levels of phosphorylated p38 MAPK. Bevacizumab, the most widely used and investigated anti-VEGF agent, decreased epithelial cell migration and viability. Anti-VEGF agents other than bevacizumab might therefore be better for treating corneal neovascularization complicated with epithelial defects.
Neelam, Sudha; Brooks, Morgan M; Cammarata, Patrick R
2013-01-01
The prosurvival signaling cascades that mediate the unique ability of human lens epithelial cells to survive in their naturally hypoxic environment are not well defined. Hypoxia induces the synthesis of the hypoxia inducible factor HIF-1α that in turn, plays a crucial role in modulating a downstream survival scheme, where vascular endothelial growth factor (VEGF) also plays a major role. To date, no published reports in the lens literature attest to the expression and functionality of HIF-2α and the role it might play in regulating VEGF expression. The aim of this study was to identify the functional expression of the hypoxia inducible factors HIF-1α and HIF-2α and establish their role in regulating VEGF expression. Furthermore, we demonstrate a link between sustained VEGF expression and the ability of the hypoxic human lens epithelial cell to thrive in low oxygen conditions and resist mitochondrial membrane permeability transition (also referred to as lenticular cytoprotection). Hypoxia inducible factor translation inhibitors were used to demonstrate the role of HIF-1α and HIF-2α and the simultaneous expression of both hypoxic inducible factors to determine their role in regulating VEGF expression. Axitinib, which inhibits lenticular cell autophosphorylation of its VEGF receptor, was employed to demonstrate a role for the VEGF-VEGFR2 receptor complex in regulating Bcl-2 expression. Specific antisera and western blot analysis were used to detect the protein levels of HIF-1α and HIF-2α, as well as the proapoptotic protein, BAX and the prosurvival protein, Bcl-2. VEGF levels were analyzed with enzyme-linked immunosorbent assay (ELISA). The potentiometric dye, 5,5',6,6'-tetrachloro1,1',3,3'-tetraethyl-benzimidazolylcarbocyanine iodide, was used to determine the effect of the inhibitors on mitochondrial membrane permeability transition. Cultured human lens epithelial cells (HLE-B3) maintained under hypoxic condition (1% oxygen) displayed consistent accumulation of VEGF throughout the 72 h incubation period. Using hypoxia inducible factor translation inhibitors targeting HIF-1α or HIF-2α, the specific inhibition of each protein did not diminish VEGF synthesis. The combined inhibition of HIF-1α and HIF-2α expression, using a double hypoxia inducible factor translation inhibitor, markedly decreased the level of VEGF. The inhibition of VEGF synthesis was associated with a profound deficiency in the level of the prosurvival protein, Bcl-2. Axitinib also prevented the VEGF-mediated expression of Bcl-2. The loss of VEGF coupled with the decrease in intracellular Bcl-2 correlated with marked mitochondrial depolarization, an early predictor of cellular apoptosis. Our data support a model in which the sustained synthesis of VEGF in human lens epithelial cells, maintained under hypoxic condition, is regulated by a compensatory inter-relationship between HIF-1α and HIF-2α. VEGF acts as a prosurvival factor in hypoxic lens epithelial cells by maintaining consistent expression of the prosurvival protein Bcl-2, which likely prevents the translocation of cytosolic BAX to the outer mitochondrial membrane, thus preventing the initiation of mitochondrial depolarization.
Vumbaca, Frank; Phoenix, Kathryn N.; Rodriguez-Pinto, Daniel; Han, David K.; Claffey, Kevin P.
2008-01-01
Vascular endothelial growth factor (VEGF) is a key angiogenic factor expressed under restricted nutrient and oxygen conditions in most solid tumors. The expression of VEGF under hypoxic conditions requires transcription through activated hypoxia-inducible factor 1 (HIF-1), increased mRNA stability, and facilitated translation. This study identified double-stranded RNA-binding protein 76/NF90 (DRBP76/NF90), a specific isoform of the DRBP family, as a VEGF mRNA-binding protein which plays a key role in VEGF mRNA stability and protein synthesis under hypoxia. The DRBP76/NF90 protein binds to a human VEGF 3′ untranslated mRNA stability element. RNA interference targeting the DRBP76/NF90 isoform limited hypoxia-inducible VEGF mRNA and protein expression with no change in HIF-1-dependent transcriptional activity. Stable repression of DRBP76/NF90 in MDA-MB-435 breast cancer cells demonstrated reduced polysome-associated VEGF mRNA levels under hypoxic conditions and reduced mRNA stability. Transient overexpression of the DRBP76/NF90 protein increased both VEGF mRNA and protein levels synthesized under normoxic and hypoxic conditions. Cells with stable repression of the DRBP76/NF90 isoform showed reduced tumorigenic and angiogenic potential in an orthotopic breast tumor model. These data demonstrate that the DRBP76/NF90 isoform facilitates VEGF expression by promoting VEGF mRNA loading onto polysomes and translation under hypoxic conditions, thus promoting breast cancer growth and angiogenesis in vivo. PMID:18039850
Serum levels of vascular endothelial growth factor in preeclamptic and normotensive pregnancy.
Hunter, A; Aitkenhead, M; Caldwell, C; McCracken, G; Wilson, D; McClure, N
2000-12-01
The purpose of these studies was first to determine if vascular endothelial growth factor (VEGF), a vascular permeability agent, is increased in the serum of women with preclinical and clinical preclampsia (PE), and second to determine how these levels change after delivery. Twenty preeclamptic and 25 normotensive women at term consented to have blood taken pre- and post-delivery. Ten preeclamptic, 10 gestational hypertensive, and 28 normotensive women had blood collected respectively at 12, 20, and 30 weeks gestation and predelivery. Serum was extracted from all samples, and VEGF concentrations were determined by radioimmunoassay. Predelivery, the median serum VEGF concentration in the preeclamptic group was 51.7 ng/mL, and in the control group the concentration was 13.9 ng/mL (P<0.0001). Serum VEGF concentrations fell within 24 hours of delivery in both groups, which resulted in median values of 3.8 ng/mL and 3.2 ng/mL respectively (P<0.3). At 12 and 20 weeks, there was no significant difference between the serum VEGF concentrations in the 3 groups (P<0.3, 0.052 respectively). At 30 weeks, prior to the onset of clinical PE, the serum VEGF levels in the eventual preeclamptic group were elevated significantly compared with the gestational hypertensive and normotensive groups (P<0.001). Predelivery serum VEGF concentrations were significantly elevated in the preeclamptic group and were similar to those in the first study (P<0.0001). These findings suggest that VEGF may be important in the pathophysiology of PE and has the potential to act as a preclinical marker for the condition.
Ketorolac inhibits choroidal neovascularization by suppression of retinal VEGF
Kim, Stephen J.; Toma, Hassanain S.; Barnett, Joshua M.; Penn, John S.
2011-01-01
We assessed the effect of topical ketorolac on laser-induced choroidal neovascularization (CNV), measured retinal PGE2 and VEGF levels after laser treatment, and determined the effect of ketorolac on PGE2 and VEGF production. Six laser burns were placed in eyes of rats which then received topical ketorolac 0.4% or artificial tears four times daily until sacrifice. Fluorescein angiography (FA) was performed at 2 and 3 weeks and retinal pigment epithelium-choroid-sclera flat mounts were prepared. The retina and vitreous were isolated at 1, 3, 5, 7, and 14 days after laser treatment and tested for VEGF and PGE2. Additional animals were lasered and treated with topical ketorolac or artificial tears and tested at 3 and 7 days for retinal and vitreous VEGF and PGE2. Ketorolac reduced CNV on FA by 27% at 2 weeks (P < 0.001) and 25% at 3 weeks (P < 0.001). Baseline retina and vitreous PGE2 levels were 29.4 μg/g and 16.5 μg/g respectively, and reached 51.2 μg/g and 26.9 μg/g respectively, 24 h after laser treatment (P < 0.05). Retinal VEGF level was 781 pg/g 24 h after laser treatment and reached 931 pg/g by 7 days (P < 0.01). Ketorolac reduced retinal PGE2 by 35% at 3 days (P < 0.05) and 29% at 7 days (P < 0.001) and retinal VEGF by 31% at 3 days (P = 0.10) and 19% at 7 days (P < 0.001). Topical ketorolac inhibited CNV and suppressed retinal PGE2 and VEGF production. PMID:20659449
Malik, Manzoor Ahmad; Shukla, Swati; Azad, Shorya Vardhan; Kaur, Jasbir
2014-01-01
Purpose Vascular endothelial growth factor polymorphism (VEGF-634G/C, rs 2010963) has been considered a risk factor for the development of retinopathy of prematurity (ROP). However, the results remain controversial. Therefore, the aim of the present meta-analysis was to determine the association between VEGF-634G/C polymorphism and ROP risk. Methods Published literature from PubMed and other databases were retrieved. All studies evaluating the association between VEGF-634G/C polymorphism and ROP risk were included. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using random or fixed effects model. A total of six case-control studies including 355 cases and 471 controls were included. Results By pooling all the studies, we found that VEGF-634G/C polymorphism was not associated with ROP risk at co-dominant and allele levels and no association was also found in dominant and recessive models. While stratifying on ethnicity level no association was observed in Caucasian and Asian population. Discussion This meta-analysis suggests that VEGF-634G/C polymorphism may not be associated with ROP risk, the association between single VEGF-634G/C polymorphism and ROP risk awaits further investigation. PMID:25473347
Haghi, Alireza Rastgoo; Vahedi, Amir; Shekarchi, Ali Akbar; Kamran, Aziz
2017-01-01
Breast cancer is the most common cancer among women. There are several prognostic factors for this disease. The aim of this article is to explore the correlation of serum level of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM1) with tumor, node, metastasis staging and grading of breast cancer. Serum samples of 51 patients with breast cancer were assessed with enzyme-linked immunosorbent assay for the level of VEGF and ICAM1 preoperatively. After the operation, histopathologic specimens stained with hematoxylin and eosin were evaluated for tumor size, histopathologic subtype, grade, lymph node, vascular and lymphatic involvement. Then, the correlation of tumor stage and grade and serum level of markers was analyzed. There was no significant correlation between serum level of markers with vascular invasions, lymph node involvement, and menstruation. There was a weak correlation between tumor size and serum level of ICAM1 with Pearson score correlation, but there was no significant correlation with VEGF. There was no significant correlation between tumor grading and staging with the level of markers. There was a significant correlation between the level of VEGF and ICAM1 and histologic type of tumors in invasive through in situ tumors. Levels of VEGF and ICAM1 can be used as a predictor of tumor invasion and also for target therapy.
VanderVeen, Deborah K; Melia, Michele; Yang, Michael B; Hutchinson, Amy K; Wilson, Lorri B; Lambert, Scott R
2017-05-01
To review the available evidence on the ocular safety and efficacy of anti-vascular endothelial growth factor (VEGF) agents for the treatment of retinopathy of prematurity (ROP) compared with laser photocoagulation therapy. A literature search of the PubMed and Cochrane Library databases was conducted last on September 6, 2016, with no date restrictions and limited to articles published in English. This search yielded 311 citations, of which 37 were deemed clinically relevant for full-text review. Thirteen of these were selected for inclusion in this assessment. The panel methodologist assigned ratings to the selected articles according to the level of evidence. Of the 13 citations, 6 articles on 5 randomized clinical trials provided level II evidence supporting the use of anti-VEGF agents, either as monotherapy or in combination with laser therapy. The primary outcome for these articles included recurrence of ROP and the need for retreatment (3 articles), retinal structure (2 articles), and refractive outcome (1 article). Seven articles were comparative case series that provided level III evidence. The primary outcomes included the effects of anti-VEGF treatment on development of peripheral retinal vessels (1 article), refractive outcomes (1 article), or both structural and refractive or visual outcomes (5 articles). Current level II and III evidence indicates that intravitreal anti-VEGF therapy is as effective as laser photocoagulation for achieving regression of acute ROP. Although there are distinct ocular advantages to anti-VEGF pharmacotherapy for some cases (such as eyes with zone I disease or aggressive posterior ROP), the disadvantages are that the ROP recurrence rate is higher, and vigilant and extended follow-up is needed because retinal vascularization is usually incomplete. After intravitreal injection, bevacizumab can be detected in serum within 1 day, and serum VEGF levels are suppressed for at least 8 to 12 weeks. The effects of lowering systemic VEGF levels on the developing organ systems of premature infants are unknown, and there are limited long-term data on potential systemic and neurodevelopmental effects after anti-VEGF use for ROP treatment. Anti-VEGF agents should be used judiciously and with awareness of the known and unknown or potential side effects. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Senra, Hugo; Balaskas, Konstantinos; Mahmoodi, Neda; Aslam, Tariq
2017-05-01
To investigate detailed patient experiences specific to receiving vascular endothelial growth factor inhibitors (anti-VEGF) for wet age-related macular degeneration (wAMD), and to acquire a snapshot of the frequency of clinically significant levels of depression, anxiety, and posttraumatic stress among patients and levels of burden in patients' carers. Observational cross-sectional mixed-methods study. Three hundred patients with wAMD receiving anti-VEGF treatment and 100 patient carers were recruited. Qualitative data on patients' experience of treatment were collected using a structured survey. Standardized validated questionnaires were used to quantify clinically significant levels of anxiety, depression, and posttraumatic stress, as well as cognitive function and carers' burden. Qualitative data showed that 56% of patients (n = 132) reported anxiety related to anti-VEGF treatment. The main sources of anxiety were fear of going blind owing to intravitreal injections and concerns about treatment effectiveness, rather than around pain. From validated questionnaires, 17% of patients (n = 52) showed clinical levels of anxiety and 12% (n = 36) showed clinical levels of depression. Depression levels, but not anxiety, were significantly higher in patients who received up to 3 injections compared with patients who received from 4 to 12 injections (analysis of variance [ANOVA] P = .027) and compared with patients who received more than 12 injections (ANOVA P = .001). Anti-VEGF treatment is often experienced with some anxiety related to treatment, regardless of the number of injections received. Clinical levels of depression seem to be more frequent in patients at early stages of anti-VEGF treatment. Strategies to improve patient experience of treatment and minimize morbidity are suggested. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Masood, Rizwan; Cesarman, Ethel; Smith, D. Lynne; Gill, Parkash S.; Flore, Ornella
2002-01-01
Kaposi’s sarcoma is a vascular tumor commonly associated with human immunodeficiency virus (HIV)-1 and human herpesvirus (HHV-8) also known as Kaposi’s sarcoma-associated herpesvirus. The principal features of this tumor are abnormal proliferation of vascular structures lined with spindle-shaped endothelial cells. HHV-8 may transform a subpopulation of endothelial cells in vitro via viral and cellular gene expression. We hypothesized that among the cellular genes, vascular endothelial growth factors (VEGFs) and their cognate receptors may be involved in viral-mediated transformation. We have shown that HHV-8-transformed endothelial cells (EC-HHV-8) express higher levels of VEGF, VEGF-C, VEGF-D, and PlGF in addition to VEGF receptors-1, -2, and -3. Furthermore, antibodies to VEGF receptor-2 inhibited cell proliferation and viability. Similarly, inhibition of VEGF gene expression with antisense oligonucleotides inhibited EC-HHV-8 cell proliferation/viability. The growth and viability of primary endothelial cells and a fibroblast cell line however were unaffected by either the VEGF receptor-2 antibody or the VEGF antisense oligodeoxynucleotides. VEGF and VEGF receptors are thus induced in EC-HHV-8 and participate in the transformation. Inhibitors of VEGF may thus modulate the disease process during development and progression. PMID:11786394
Tan, Q; Li, G P; Wang, Q S; Zheng, C H; Zhang, S Y
2017-07-25
Objective: To explore whether diabetes mellitus (DM) impairs functions of bone marrow-derived endothelial progenitor cells (BM-EPC) and circulating EPC. Methods: Diabetic model of rabbit was induced by Alloxan injection and the rabbits were then randomly divided into three groups: BM-EPC group, circulating EPC group, and DM group, with six rabbits in each group. Another 6 normal rabbits were enrolled as normal control group as well. 8 weeks later, BM-EPC and circulating EPC from diabetic and healthy rabbits were isolated and cultured. Colony number, proliferation, adhesion and tube formation function were detected. Exogenous diabetic BM-EPC and circulating EPC were analyzed for therapeutic efficacy in acute ischemia model of diabetic rabbits. Left ventricular (LV) function was assessed using Echocardiography. Capillary density and fibrosis area were evaluated by confocal laser scanning microscope (CLSM) and Masson-trichrome staining. The mRNA expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) was analyzed using real-time quantitive PCR. Results: Colony number, proliferation, adhesion and tube formation function of diabetic circulating EPC were significantly reduced compared with healthy rabbits. DM impaired tube-forming ability of BM-EPC, but did not influence colony number, proliferation and adhesion function. Compared with circulating EPC and control group, BM-EPC group had fewer fibrosis area (6.98%±0.94% vs 13.03%±2.97% and 15.84%±4.74%, both P =0.001), higher capillary density [(792±87) vs (528±71) and (372±77) vessels/mm(2,) both P <0.001], higher mRNA expression of VEGF (6.25±2.33 vs 2.19±1.01 and 1.55±0.52, both P <0.001) and bFGF (6.38±2.65 vs 1.24±0.76 and 1.18±0.82, both P <0.001), higher left ventricular ejection fraction (LVEF) (61%±4% vs 47%±5% and 50%±10%, both P <0.05). Conclusions: DM not only impaired functions of circulating EPC, but also influenced tube formation function of BM-EPC. Auto transplantation of BM-EPC may rescue the ischemic myocardium by neovascularization and paracrine effect in diabetic rabbits.
Sharma, Ajaykumar N.; da Costa e Silva, Bruno Fernando Borges; Soares, Jair C.; Carvalho, André F.; Quevedo, Joao
2016-01-01
Rationale The neurotrophin hypothesis of major depressive disorder (MDD) postulates that this illness results from aberrant neurogenesis in brain regions that regulates emotion and memory. Notwithstanding this theory has primarily implicated BDNF in the neurobiology of MDD. Recent evidence suggests that other trophic factors namely GDNF, VEGF and IGF-1 may also be involved. Purpose The present review aimed to critically summarize evidence regarding changes in GDNF, IGF-1 and VEGF in individuals with MDD compared to healthy controls. In addition, we also evaluated the role of these mediators as potential treatment response biomarkers for MDD. Methods A comprehensive review of original studies studies measuring peripheral, central or mRNA levels of GDNF, IGF-1 or VEGF in patients with MDD was conducted. The PubMed/MEDLINE database was searched for peer-reviewed studies published in English through June 2nd, 2015. Results Most studies reported a reduction in peripheral GDNF and its mRNA levels in MDD patients versus controls. In contrast, IGF-1 levels in MDD patients compared to controls were discrepant across studies. Finally, most studies reported high peripheral VEGF levels and mRNA expression in MDD patients compared to healthy controls. Conclusions GDNF, IGF-1 and VEGF levels and their mRNA expression appear to be differentially altered in MDD patients compared to healthy individuals, indicating that these molecules might play an important role in the pathophysiology of depression and antidepressant action of therapeutic interventions. PMID:26956384
Yano, Seiji; Shinohara, Hisashi; Herbst, Roy S.; Kuniyasu, Hiroki; Bucana, Corazon D.; Ellis, Lee M.; Fidler, Isaiah J.
2000-01-01
We determined the molecular mechanisms that regulate the pathogenesis of malignant pleural effusion (PE) associated with advanced stage of human, non-small-cell lung cancer. Intravenous injection of human PC14 and PC14PE6 (adenocarcinoma) or H226 (squamous cell carcinoma) cells into nude mice yielded numerous lung lesions. PC14 and PC14PE6 lung lesions invaded the pleura and produced PE containing a high level of vascular endothelial growth factor (VEGF)-localized vascular hyperpermeability. Lung lesions produced by H226 cells were confined to the lung parenchyma with no PE. The level of expression of VEGF mRNA and protein by the cell lines directly correlated with extent of PE formation. Transfection of PC14PE6 cells with antisense VEGF165 gene did not inhibit invasion into the pleural space but reduced PE formation. H226 cells transfected with either sense VEGF 165 or sense VEGF 121 genes induced localized vascular hyperpermeability and produced PE only after direct implantation into the thoracic cavity. The production of PE was thus associated with the ability of tumor cells to invade the pleura, a property associated with expression of high levels of urokinase-type plasminogen activator and low levels of TIMP-2. Collectively, the data demonstrate that the production of malignant PE requires tumor cells to invade the pleura and express high levels of VEGF/VPF. PMID:11106562
Proangiogenic and Profibrotic Markers in Pulmonary Sarcoidosis.
Tuleta, I; Biener, L; Pizarro, C; Nickenig, G; Skowasch, D
2018-04-21
The aim of our study was to determine the blood levels of vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β1, fibroblast growth factor (FGF)-2, and platelet-derived growth factor (PDGF)-AB in different stages of pulmonary sarcoidosis. There were 92 patients in sarcoidosis stages I + II, III, and IV enrolled into the study. All the patients underwent lung diffusing capacity and blood sampling. We found that VEGF levels differed significantly between the stage groups with the peak VEGF concentrations in stage III. TGF-β1 levels were similar in stages I + II and III, and tended to be lower in stage IV. The analysis of the subgroups showed increased VEGF and FGF-2, and reduced TGF-β1 concentration in stages I + II patients with relevantly reduced lung diffusing capacity or increased sarcoidosis activity compared to patients with normal lung diffusing capacity or inactive sarcoidosis. A tendency towards increased VEGF, PDGF-AB and TGF-β1 levels was observed in the analogical subgroup analysis within the stage III. We conclude that proangiogenic VEGF, and profibrotic FGF-2 and PDGF-AB may contribute to the progression of sarcoidosis, whereas TGF-β1, with its dual anti-inflammatory and profibrotic actions, may play a dichotomous protective or deleterious role. Reduced diffusing capacity and active sarcoidosis are associated with an unfavorable constellation of the markers studied, which predicts a progressive disease course.
Long-Term Effects of Weight Loss and Exercise on Biomarkers Associated with Angiogenesis.
Duggan, Catherine; Tapsoba, Jean de Dieu; Wang, Ching-Yun; Schubert, Karen E Foster; McTiernan, Anne
2017-12-01
Background: We tested the effect of weight loss on circulating levels of the angiogenic factors VEGF and pigment epithelium-derived factor (PEDF) in postmenopausal overweight/obese women, 18 months after completing a year-long 4-arm randomized controlled trial of behavioral weight loss and/or exercise versus control (i.e., 30 months postrandomization). Methods: The 439 overweight/obese, postmenopausal women, ages 50 to 75 years, were randomized to: diet (goal: 10% weight loss, N = 118), exercise (225 min/wk moderate-to-vigorous activity, N = 117), diet + exercise ( N = 117), or control ( N = 87). At 12 months, 399 women gave a blood sample; 156 returned at 30 months. Biomarkers were measured by immunoassay. Changes were compared using generalized estimating equations, adjusting for baseline BMI, age, and race/ethnicity. Results: Participants randomized to diet, exercise, and diet + exercise arms had greater reductions in VEGF at 30 months (-14.1% P = 0.02; -19.7% P = 0.003; -14.5% P = 0.002, respectively) versus controls (-4.5%). There were no statistically significant changes in PEDF in any intervention arm. Participants maintaining ≥10% of baseline weight loss at 30 months had greater reductions in VEGF versus those who gained weight/had no weight change (-22.3% vs. -10.2% respectively, P = 0.002). Participants maintaining any weight loss had significantly lower levels of PEDF at 30 months versus those who gained weight/no weight change. Conclusions: Sustained weight loss via diet and/or exercise results in reductions in angiogenic factors, and can be maintained up to 30-month follow-up. Limitations include relatively small numbers, and possible bias toward more successful weight loss among women who returned at 30 months. Impact: Maintaining weight loss can achieve long-term reductions in biomarkers of angiogenesis that can persist up to 18 months after completion of a weight loss intervention. Cancer Epidemiol Biomarkers Prev; 26(12); 1788-94. ©2017 AACR . ©2017 American Association for Cancer Research.
Li, Xiaolei
2018-06-01
The purpose of the present study was to investigate distribution of monocyte chemoattractant protein-1 (MCP-1) -2518A/G and vascular endothelial growth factor (VEGF) -634G/C polymorphisms in type 2 diabetes melitus patients (T2DM) presenting diabetic foot ulcer (DFU). Additionally, we evaluated the effects of these 2 polymorphisms on serum levels of MCP-1 and VEGF in the study population.Patients diagnosed with T2DM without or with DFU were recruited in the study. The distribution of MCP-1 -2518A/G and VEGF -634G/C polymorphisms was investigated by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Enzyme-linked immunosorbent assay (ELISA) was applied to detect the protein levels of MCP-1 and VEGF. The comparisons of protein levels in DFU patients were performed by student t test according to their genotypes.The frequencies of GG genotype and G allele of MCP-1 -2518A/G was increased in DFU patients, compared with T2DM patients (odds ratio [OR] = 2.60, 95% confidence interval [CI] = 1.23-5.50, P = .011 and OR = 1.72, 95% CI = 1.18-2.50, P = .005, respectively). Moreover, the increased frequency of GG was significantly associated with up-regulated MCP-1 level in DFU patients (P < .001). Analysis for VEGF -634G/C polymorphisms indicated that the prevalence of CC genotype and C allele of the polymorphisms was decreased in DFU patients, compared with T2DM patients (OR = 0.36, 95% CI = 0.17-0.77, P = .008 and OR = 0.63, 95% CI = 0.43-0.91, P = .015, respectively). DFU patients carrying CC genotype had a higher level of VEGF than those with other genotypes (P = .007).MCP-1 -2518A/G and VEGF -634G/C polymorphisms may involve in occurrence and progress of DFU through regulating transcription activity of the genes.
Arsenic abrogates the estrogen-signaling pathway in the rat uterus
2010-01-01
Background Arsenic, a major pollutant of water as well as soil, is a known endocrine disruptor, and shows adverse effects on the female reproductive physiology. However, the exact molecular events leading to reproductive dysfunctions as a result of arsenic exposure are yet to be ascertained. This report evaluates the effect and mode of action of chronic oral arsenic exposure on the uterine physiology of mature female albino rats. Methods The effect of chronic oral exposure to arsenic at the dose of 4 microg/ml for 28 days was evaluated on adult female albino rats. Hematoxylin-eosin double staining method evaluated the changes in the histological architecture of the uterus. Circulating levels of gonadotropins and estradiol were assayed by enzyme-linked immunosorbent assay. Expression of the estrogen receptor and estrogen-induced genes was studied at the mRNA level by RT-PCR and at the protein level by immunohistochemistry and western blot analysis. Results Sodium arsenite treatment decreased circulating levels of estradiol in a dose and time-dependent manner, along with decrease in the levels of both LH and FSH. Histological evaluation revealed degeneration of luminal epithelial cells and endometrial glands in response to arsenic treatment, along with reduction in thickness of the longitudinal muscle layer. Concomitantly, downregulation of estrogen receptor (ER alpha), the estrogen-responsive gene - vascular endothelial growth factor (VEGF), and G1 cell cycle proteins, cyclin D1 and CDK4, was also observed. Conclusion Together, the results indicate that arsenic disrupted the circulating levels of gonadotropins and estradiol, led to degeneration of luminal epithelial, stromal and myometrial cells of the rat uterus and downregulated the downstream components of the estrogen signaling pathway. Since development and functional maintenance of the uterus is under the influence of estradiol, arsenic-induced structural degeneration may be attributed to the reduction in circulating estradiol levels. Downregulation of the estrogen receptor and estrogen-responsive genes in response to arsenic indicates a mechanism of suppression of female reproductive functions by an environmental toxicant that is contra-mechanistic to that of estrogen. PMID:20598115
Li, Xiao-Hui; Tang, Liang; Liu, Dong; Sun, Hong-Mei; Zhou, Cai-Cun; Tan, Li-Song; Wang, Li-Ping; Zhang, Pei-De; Zhang, Shang-Quan
2006-10-01
Angiogenesis plays an important role in growth and metastasis of tumors. Vascular endothelial growth factor (VEGF) is considered as a fundamental regulator for angiogenesis. This study was to construct a recombinant T7 phage vaccine expressing xenogenic VEGF on the capsid, and test its inhibitory effect on Lewis lung cancer cells in mice. VEGF gene was cloned by reverse transcription-polymerase chain reaction (RT-PCR) from human lung cancer tissues, and inserted into phage using T7 Select10-3b kit to construct T7 Select10-3b_VEGF vaccine. The titer of prepared phage reached 1x10(13) pfu/ml. C57BL/6J mice were randomly divided into 3 groups: T7 Select10-3b_VEGF vaccine group (T7-VEGF), T7 phage (T7) group, normal saline (NS) group (10 mice/group). Each mouse was injected with Freundos adjuvant mixed with 1x10(12) pfu/200 microl T7 Select10-3b_VEGF, or T7, or normal saline once a week for 4 weeks. Lewis lung carcinoma model (LL/2) was established in C57BL/6J mice after 4-week immunization. Tumor growth and mouse's physical status were observed during immunization. Tumor weight and serum level of specific anti-VEGF antibody were measured by enzyme-linked immunosorbent assay (ELISA). Microvessel density (MVD) of tumors was detected by immunohistochemistry 14 days after the inoculation of tumor cells. Tumor weight of T7-VEGF vaccine group,T7 group, and NS group were (0.543+/-0.259)g, (0.982+/-0.359)g, (1.169+/-0.460)g, respectively. Tumor weight of T7-VEGF vaccine group was significantly lower than that of NS group (P<0.01). Serum anti-VEGF antibody level in T7-VEGF vaccine group was 1:1,000. MVD was significantly lower in T7-VEGF vaccine group than in NS group (8.5+/-0.8 vs 18.5+/-1.6, P<0.05). MVD in T7 group was 16.4+/-1.3. Recombinant T7 phage vaccine expressing xenogenic VEGF can break immunologic tolerance against self-VEGF and inhibit the growth of Lewis lung cancer cells.
Ławicki, Sławomir; Zajkowska, Monika; Głażewska, Edyta Katarzyna; Będkowska, Grażyna Ewa; Szmitkowski, Maciej
2017-03-01
We investigated plasma levels and diagnostic utility of vascular endothelial growth factor VEGF, matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinase-2 (TIMP-2) in comparison to cancer antigen 15-3 (CA 15-3). Plasma levels of tested parameters were determined using enzyme-linked immunosorbent assay (ELISA) while CA 15-3 with chemiluminescent microparticle immunoassay (CMIA). The plasma levels of VEGF, TIMP-2 showed significantly higher than CA 15-3 values of the diagnostic sensitivity, the predictive values of positive and negative test results (PPV, NPV) and the area under the receiver-operating characteristics (ROC) curve (AUC) in early stages of breast cancer (BC). The combined use of the tested parameters with CA 15-3 resulted in the increase in sensitivity, NPV and AUC, especially in the combination with VEGF (83%; 72%; 0.888) and TIMP-2 (83%; 72%; 0.894). The highest values were obtained for combination of all three parameters (93%; 85%; 0.923). These findings suggest the usefulness of the tested parameters in the diagnosis of BC, especially VEGF and TIMP-2 with CA 15-3 in early stages of BC, which could be a new diagnostic panel.
Lasalandra, Carla; Coviello, Maria; Falco, Gaetano; Divella, Rosa; Trojano, Giuseppe; Laterza, Anna Maria; Quero, Carmela; Pepe, Vito; Zito, Francesco Alfredo; Quaranta, Michele
2010-05-01
One of the most specific and critical regulators of angiogenesis is vascular endothelial growth factor (VEGF), which regulates endothelial proliferation, permeability, and survival. Vascular endothelial growth factor is an angiogenic mediator in tumors and has been implicated in the pathogenesis and progression of cancer. Adipose tissue is a major endocrine and it secretes hormones termed adipokines. These factors are derived from adipocytes and include proteins and metabolites such as adiponectin. Recently, adiponectin was also shown to modulate angiogenesis. This study was designed to determine the serum VEGF and adiponectin levels in patients with benign and malignant gynecological diseases and if there was a correlation between serum VEGF and adiponectin. Serum samples, collected fasting before surgery or intervention, were available for total of 114 female patients recorded between October 2006 and December 2008. Diagnosis of benign and malignant gynaecological diseases was established by biopsy. Serum levels VEGF and adiponectin were using commercially available enzyme linked immunosorbent assay (R&D Systems Inc, Minneapolis, MN), respectively. Statistical analysis was performed by using the SPSS 9.0 software package (SPSS, Inc, Chicago, IL). The correlation between serum VEGF and serum Adiponectin was calculated using the Pearson correlation coefficient. P values of < 0.05 were considered statistically significant. Our results were analyzed on the basis of 2 different parameters: age and benign and malignant gynecological diseases of the patient. Only for serum VEGF levels was a significant difference observed (P = 0.004) between patients with benign and malignant gynecological diseases. A significantly inverse correlation between serum VEGF and adiponectin levels among patients with benign and malignant gynecological diseases was found. Adiponectin level is not correlated with body mass index. This is one of the first report on adiponectin in benign and malignant gynecological diseases. Future studies are needed to address the clinical potential role of adiponectin in cancer.
Lin, Yang; Liu, Fangfang; Fan, Yu; Qian, Xiaolong; Lang, Ronggang; Gu, Feng; Gu, Jun; Fu, Li
2015-01-01
Pyruvate kinase M2 (PKM2) and vascular endothelial growth factor-C (VEGF-C) have been known to play an important role in tumorigenesis and tumor progression in breast cancer. However, the association between PKM2 and VEGF-C in breast cancer remains unclear. In the present study, a total of 218 specimens from breast cancer patients and 26 paired breast tumors with adjacent normal tissues as well as two breast cancer cell lines were enrolled to investigate the correlation between PKM2 and VEGF-C. We found that PKM2 and VEGF-C mRNA levels were both significantly increasing in breast tumors compared with adjacent normal tissues. Knockdown of PKM2 mRNA expression resulted in VEGF-C mRNA and protein down-regulated as well as cell proliferation inhibited. A positive correlation between PKM2 and VEGF-C expression was identified by immunohistochemical analyses of 218 specimens of patients with breast cancer (P=0.023). PKM2 high expression was significantly correlated with histological grade (P=0.030), lymph node stage (P=0.001), besides VEGF-C high expression was significantly associated with lymphovascular invasion (P=0.012). While combined high expression of PKM2 and VEGF-C was found to be associated with worse histological grade, more lymph node metastasis, more lymphovascular invasion, shorter progression free survival (PFS), and poorer overall survival (OS) in human breast cancer. The results of the present study suggested that PKM2 expression was correlated with VEGF-C expression, and combination of PKM2 and VEGF-C levels had the better prognostic significance in predicting the poor outcome of patients with breast cancer.
Di, Yu; Nie, Qing-Zhu; Chen, Xiao-Long
2016-01-01
To investigate the signal transduction mechanism of matrix metalloproteinase-9 (MMP-9) mediated- vascular endothelial growth factor (VEGF) expression and retinal neovascularization (RNV) in oxygen-induced retinopathy (OIR) model. C57BL/6J mice were divided into four groups: control group, OIR group, OIR control group (phosphate-buffered saline by intravitreal injection) and treated group [tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) by intravitreal injection]. OIR model was established in C57BL/6J mice exposed to 75%±2% oxygen for 5d. mRNA level and protein expression of MMP-9, TIMP-1 and VEGF were measured by real-time polymerase chain reaction and Western blotting, and located by immunohistochemistry. Levels of MMP-9 and VEGF in retina were significantly increased in animals with OIR and OIR control group. Levels of TIMP-1 in retina was significantly reduced in animals with OIR and OIR control group. Furthermore, a significant correlation was found between MMP-9 and VEGF. Intravitreal injection of TIMP-1 significantly reduced MMP-9 and VEGF expression of the OIR mouse model (all P<0.05). These results demonstrate that MMP-9-mediated up-regulation of VEGF promotes RNV in retinopathy of prematurity (ROP). TIMP-1 may be a potential target for the prevention and treatment of ROP.
Chauvet, Sylvain; Traboulsi, Wael; Thevenon, Laura; Kouadri, Amal; Feige, Jean-Jacques; Camara, Boubou; Alfaidy, Nadia; Benharouga, Mohamed
2015-08-01
Enhanced lung angiogenesis has been reported in cystic fibrosis (CF). Recently, two highly homologous ligands, endocrine gland vascular endothelial growth factor (EG-VEGF) and mammalian Bv8, have been described as new angiogenic factors. Both ligands bind and activate two closely related G protein-coupled receptors, the prokineticin receptor (PROKR) 1 and 2. Yet, the expression, regulation, and potential role of EG-VEGF, BV8, and their receptors in normal and CF lung are still unknown. The expression of the receptors and their ligands was examined using molecular, biochemical, and immunocytochemistry analyses in lungs obtained from CF patients vs. control and in normal and CF bronchial epithelial cells. Cystic fibrosis transmembrane conductance regulator (CFTR) activity was evaluated in relation to both ligands, and concentrations of EG-VEGF were measured by ELISA. At the mRNA level, EG-VEGF, BV8, and PROKR2 gene expression was, respectively, approximately five, four, and two times higher in CF lungs compared with the controls. At the cellular level, both the ligands and their receptors showed elevated expressions in the CF condition. Similar results were observed at the protein level. The EG-VEGF secretion was apical and was approximately two times higher in CF compared with the normal epithelial cells. This secretion was increased following the inhibition of CFTR chloride channel activity. More importantly, EG-VEGF and BV8 increased the intracellular concentration of Ca(2+) and cAMP and stimulated CFTR-chloride channel activity. Altogether, these data suggest local roles for epithelial BV8 and EG-VEGF in the CF airway peribronchial vascular remodeling and highlighted the role of CFTR activity in both ligand biosynthesis and secretion. Copyright © 2015 the American Physiological Society.
Xu, Li-Zhen; Gao, Min-Zhi; Yao, Li-Hua; Liang, A-Juan; Zhao, Xiao-Ming; Sun, Zhao-Gui
2015-01-01
Objective: To investigate the effect of ovarian stimulation on the expression of EG-VEGF mRNA and protein in peri-implantation endometrium in women undergoing IVF and its relation with endometrial receptivity (ER). Design: Prospective laboratory study. Setting: University hospital. Patients: Eighteen women in stimulated cycles (SC) as study subjects and 18 women in natural cycles (NC) as controls. Women in SC group were classified with two subgroups, high ovarian response (SC1, n=9) with peak serum E2>5,000 pg/mL and moderate ovarian response (SC2, n=9) with peak serum E2 1,000-5,000 pg/mL. Intervention(s): Endometrial biopsies were collected 6 days after ovulation in NC or after oocyte retrieval in SC. Main outcome measure(s): Endometrium histological dating was observed with HE staining. EG-VEGF mRNA expression levels determined by real-time polymerase chain reaction analysis, and protein levels by immunohistochemistry. Results: All endometrial samples were in the secretory phase. The endometrial development in SC1 was 1 to 2 days advanced to NC, and with dyssynchrony between glandular and stromal tissue. Immunohistochemistry analysis showed that EG-VEGF protein was predominantly expressed in the glandular epithelial cells and endothelial cells of vessels, and also presented in the stroma. The image analysis confirmed that both the gland and stroma of endometrium in SC1 had a significantly lower EG-VEGF protein expression than that in SC2 and NC endometrium. Moreover, EG-VEGF mRNA levels were significantly lower in SC1 than in NC. Both EG-VEGF protein and mRNA levels had no significant difference between SC2 and NC. Conclusion: Decreased expression of EG-VEGF in the peri-implantation is associated with high ovarian response, which may account for the impaired ER and lower implantation rate in IVF cycles. PMID:26464631
Xu, Li-Zhen; Gao, Min-Zhi; Yao, Li-Hua; Liang, A-Juan; Zhao, Xiao-Ming; Sun, Zhao-Gui
2015-01-01
To investigate the effect of ovarian stimulation on the expression of EG-VEGF mRNA and protein in peri-implantation endometrium in women undergoing IVF and its relation with endometrial receptivity (ER). Prospective laboratory study. University hospital. Eighteen women in stimulated cycles (SC) as study subjects and 18 women in natural cycles (NC) as controls. Women in SC group were classified with two subgroups, high ovarian response (SC1, n=9) with peak serum E2>5,000 pg/mL and moderate ovarian response (SC2, n=9) with peak serum E2 1,000-5,000 pg/mL. Endometrial biopsies were collected 6 days after ovulation in NC or after oocyte retrieval in SC. Endometrium histological dating was observed with HE staining. EG-VEGF mRNA expression levels determined by real-time polymerase chain reaction analysis, and protein levels by immunohistochemistry. All endometrial samples were in the secretory phase. The endometrial development in SC1 was 1 to 2 days advanced to NC, and with dyssynchrony between glandular and stromal tissue. Immunohistochemistry analysis showed that EG-VEGF protein was predominantly expressed in the glandular epithelial cells and endothelial cells of vessels, and also presented in the stroma. The image analysis confirmed that both the gland and stroma of endometrium in SC1 had a significantly lower EG-VEGF protein expression than that in SC2 and NC endometrium. Moreover, EG-VEGF mRNA levels were significantly lower in SC1 than in NC. Both EG-VEGF protein and mRNA levels had no significant difference between SC2 and NC. Decreased expression of EG-VEGF in the peri-implantation is associated with high ovarian response, which may account for the impaired ER and lower implantation rate in IVF cycles.
Tabone, Marie-Dominique; Brugières, Laurence; Piperno-Neumann, Sophie; Selva, Marie-Ange; Marec-Bérard, Perrine; Pacquement, Hélène; Lervat, Cyril; Corradini, Nadège; Gentet, Jean-Claude; Couderc, Rémy; Chevance, Aurélie; Mahier-Ait Oukhatar, Céline; Entz-Werle, Natacha; Blay, Jean-Yves; Le Deley, Marie-Cecile
2017-06-15
Angiogenesis is essential for the progression and metastatic spread of solid tumours. Expression of vascular endothelial growth factor (VEGF) has been linked to poor survival among osteosarcoma patients but the clinical relevance of monitoring blood and urine angiogenic factors is uncertain. The aim of this study was to determine the prognostic significance of blood VEGF and blood and urinary basic fibroblast growth factor (bFGF) levels in osteosarcoma patients, both at diagnosis and during treatment. Patients with localised or metastatic osteosarcoma enrolled in OS2005 and OS2006 studies between 2005 and 2011 were prospectively included in this study. VEGF and bFGF levels in serum and plasma and bFGF levels in urine were measured by ELISA at diagnosis, before surgery, and at the end of treatment. Endpoints considered for the prognostic analysis were histological response, progression-free and overall survival. Kruskal-Wallis tests were used to compare the distribution of baseline biomarker values across the different subgroups, and paired sample Wilcoxon rank tests were used to analyze changes over time. Association between biomarker levels and outcomes were assessed in multivariable models (logistic regression for histologic response, and Cox models for survival). Samples were available at diagnosis for 269 patients (54% males; age ≤ 18 years: 73%; localised disease in 68%, doubtful lung lesions in 17%, and metastases in 15%). High serum VEGF and bFGF levels were observed in respectively 61% and 51% of patients. Serum and plasma VEGF values were not strongly correlated with one another (r = 0.53). High serum and plasma VEGF levels were significantly more frequent in patients with large tumours (≥10 cm; p = 0.003 and p = 0.02, respectively). VEGF levels fell significantly during pre-operative chemotherapy (p < 0.0001). No significant correlation was found between this variation and either the histological response, progression-free survival or overall survival (p = 0.26, p = 0.67, and p = 0.87, respectively). No significant association was found between blood or urinary bFGF levels and clinical characteristics, histological response, or survival. Levels of VEGF and bFGF angiogenic factors are high in most osteosarcoma patients, but have no significant impact on response to chemotherapy or outcome in this large prospective series. OS 2006 TRIAL REGISTRATION NUMBER: clinicaltrials.gov NCT00470223; date of registration: May 3th 2007.
Ma, Ji; Matsusaka, Taiji; Yang, Hai-Chun; Zhong, Jianyong; Takagi, Nobuaki; Fogo, Agnes B; Kon, Valentina; Ichikawa, Iekuni
2011-07-01
Our previous studies using puromycin aminonucleoside (PAN) established that podocyte damage leads to glomerular growth arrest during development and glomerulosclerosis later in life. This study examined the potential benefit of maintaining podocyte-derived VEGF in podocyte defense and survival after PAN injury using conditional transgenic podocytes and mice, in which human VEGF-A (hVEGF) transgene expression is controlled by tetracycline responsive element (TRE) promoter and reverse tetracycline transactivator (rtTA) in podocytes. In vitro experiments used primary cultured podocytes harvested from mice carrying podocin-rtTA and TRE-hVEGF transgenes, in which hVEGF can be induced selectively. Induction of VEGF in PAN-exposed podocytes resulted in preservation of intrinsic VEGF, α-actinin-4 and synaptopodin, antiapoptotic marker Bcl-xL/Bax, as well as attenuation in apoptotic marker cleaved/total caspase-3. In vivo, compared with genotype controls, PAN-sensitive neonatal mice with physiologically relevant levels of podocyte-derived VEGF showed significantly larger glomeruli. Furthermore, PAN-induced up-regulation of desmin, down-regulation of synaptopodin and nephrin, and disruption of glomerular morphology were significantly attenuated in VEGF-induced transgenic mice. Our data indicate that podocyte-derived VEGF provides self-preservation functions, which can rescue the cell after injury and preempt subsequent deterioration of the glomerulus in developing mice.
Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma.
Peng, Hong; Zhang, Qiuyang; Li, Jiali; Zhang, Ning; Hua, Yunpeng; Xu, Lixia; Deng, Yubin; Lai, Jiaming; Peng, Zhenwei; Peng, Baogang; Chen, Minhu; Peng, Sui; Kuang, Ming
2016-03-29
Tumor cells co-express vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) that interact each other to support a self-sustainable cell growth. So far, this autocrine VEGF loop is not reported in human intrahepatic cholangiocarcinoma (ICC). Apatinib is a highly selective VEGFR2 inhibitor, but its effects on ICC have not been investigated. In this study, we reported that VEGF and phosphorylated VEGFR2 were expressed at a significantly high level in ICC patient tissues (P<0.05). In vitro, treating ICC cell lines RBE and SSP25 with recombinant human VEGF (rhVEGF) induced phosphorylation of VEGFR1 (pVEGFR1) and VEGFR2 (pVEGFR2); however, only the VEGFR2 played a role in the anti-apoptotic cell growth through activating a PI3K-AKT-mTOR anti-apoptotic signaling pathway which generated more VEGF to enter this autocrine loop. Apatinib inhibited the anti-apoptosis induced by VEGF signaling, and promoted cell death in vitro. In addition, Apatinib treatment delayed xenograft tumor growth in vivo. In conclusion, the autocrine VEGF/VEGFR2 signaling promotes ICC cell survival. Apatinib inhibits anti-apoptotic cell growth through suppressing the autocrine VEGF signaling, supporting a potential role for using Apatinib in the treatment of ICC.
Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma
Zhang, Ning; Hua, Yunpeng; Xu, Lixia; Deng, Yubin; Lai, Jiaming; Peng, Zhenwei; Peng, Baogang; Chen, Minhu; Peng, Sui; Kuang, Ming
2016-01-01
Tumor cells co-express vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) that interact each other to support a self-sustainable cell growth. So far, this autocrine VEGF loop is not reported in human intrahepatic cholangiocarcinoma (ICC). Apatinib is a highly selective VEGFR2 inhibitor, but its effects on ICC have not been investigated. In this study, we reported that VEGF and phosphorylated VEGFR2 were expressed at a significantly high level in ICC patient tissues (P<0.05). In vitro, treating ICC cell lines RBE and SSP25 with recombinant human VEGF (rhVEGF) induced phosphorylation of VEGFR1 (pVEGFR1) and VEGFR2 (pVEGFR2); however, only the VEGFR2 played a role in the anti-apoptotic cell growth through activating a PI3K-AKT-mTOR anti-apoptotic signaling pathway which generated more VEGF to enter this autocrine loop. Apatinib inhibited the anti-apoptosis induced by VEGF signaling, and promoted cell death in vitro. In addition, Apatinib treatment delayed xenograft tumor growth in vivo. In conclusion, the autocrine VEGF/VEGFR2 signaling promotes ICC cell survival. Apatinib inhibits anti-apoptotic cell growth through suppressing the autocrine VEGF signaling, supporting a potential role for using Apatinib in the treatment of ICC. PMID:26967384
Qi, Jia-Chao; Zhang, LiangJi; Li, Hao; Zeng, Huixue; Ye, Yuming; Wang, Tiezhu; Wu, Qiyin; Chen, Lida; Xu, Qiaozhen; Zheng, Yifeng; Huang, Yaping; Lin, Li
2018-04-18
Cumulative evidence supports the clear relationship of obstructive sleep apnea (OSA) with cardiovascular disease (CVD). And, adherence to continuous positive airway pressure (CPAP) treatment alleviates the risk of CVD in subjects with OSA. Vascular endothelial growth factor (VEGF), a potent angiogenic cytokine regulated by hypoxia-inducible factor, stimulates the progression of CVD. Thus, whether treatment with CPAP can actually decrease VEGF in patients with OSA remains inconclusive. The purpose of the present study was to quantitatively evaluate the impact of CPAP therapy on VEGF levels in OSA patients. We systematically searched Web of Science, Cochrane Library, PubMed, and Embase databases that examined the impact of CPAP on VEGF levels in OSA patients prior to May 1, 2017. Related searching terms were "sleep apnea, obstructive," "sleep disordered breathing," "continuous positive airway pressure," "positive airway pressure," and "vascular endothelial growth factor." We used standardized mean difference (SMD) to analyze the summary estimates for CPAP therapy. Six studies involving 392 patients were eligible for the meta-analysis. Meta-analysis of the pooled effect showed that levels of VEGF were significantly decreased in patients with OSA before and after CPAP treatment (SMD = - 0.440, 95% confidence interval (CI) = - 0.684 to - 0.196, z = 3.53, p = 0.000). Further, results demonstrated that differences in age, body mass index, apnea-hypopnea index, CPAP therapy duration, sample size, and racial differences also affected CPAP efficacy. Improved endothelial function measured by VEGF may be associated with CPAP therapy in OSA patients. The use of VEGF levels may be clinically important in evaluating CVD for OSA patients. Further large-scale, well-designed long-term interventional investigations are needed to clarify this issue.
Kim, Hyun Ah; Lim, Soyeon; Moon, Hyung-Ho; Kim, Sung Wan; Hwang, Ki-Chul; Lee, Minhyung; Kim, Sun Hwa; Choi, Donghoon
2010-10-01
A hypoxia-inducible VEGF expression system with the oxygen-dependent degradation (ODD) domain was constructed and tested to be used in gene therapy for ischemic myocardial disease. Luciferase and VEGF expression vector systems were constructed with or without the ODD domain: pEpo-SV-Luc (or pEpo-SV-VEGF) and pEpo-SV-Luc-ODD (or pEpo-SV-VEGF-ODD). In vitro gene expression efficiency of each vector type was evaluated in HEK 293 cells under both hypoxic and normoxic conditions. The amount of VEGF protein was estimated by ELISA. The VEGF expression vectors with or without the ODD domain were injected into ischemic rat myocardium. Fibrosis, neovascularization, and cardiomyocyte apoptosis were assessed using Masson's trichrome staining, α-smooth muscle actin (α-SMA) immunostaining, and the TUNEL assay, respectively. The plasmid vectors containing ODD significantly improved the expression level of VEGF protein in hypoxic conditions. The enhancement of VEGF protein production was attributed to increased protein stability due to oxygen deficiency. In a rat model of myocardial ischemia, the pEpo-SV-VEGF-ODD group exhibited less myocardial fibrosis, higher microvessel density, and less cardiomyocyte apoptosis compared to the control groups (saline and pEpo-SV-VEGF treatments). An ODD-mediated VEGF expression system that facilitates VEGF-production under hypoxia may be useful in the treatment of ischemic heart disease.
Ambreen, Fareeha; Ismail, Muhammad; Qureshi, Irfan Zia
2015-01-01
To study the association of serum levels of inflammatory mediators and angiogenic factors with genetic polymorphism in Pakistani age-related macular degeneration (AMD) patients. This was a cross-sectional and case-control study that included 90 AMD patients diagnosed through slit-lamp examination, fundoscopy, and ocular coherence tomography. For reference and comparison purposes, 100 healthy age-matched subjects (controls) were also recruited. IL-6, IL-8, VEGF, and CRP levels were estimated in the serum samples of patients and control subjects. Using restriction fragment length polymorphism, single nucleotide polymorphisms were studied in IL-6 (rs1800795, rs1800796, rs1800797), IL-8 (rs4073, rs2227306, rs2227543), VEGF (rs3025039, rs699947), and CRP genes (rs1205, rs1130864). Since the data were obtained from a sample population, the Box-Cox transformation algorithm was applied to reduce heterogeneity of error. Multivariate analyses of variance (M-ANOVA) were applied on the transformed data to investigate the association of serum levels of IL-6, IL-8, VEGF, and CRP with AMD. Genotype and allele frequencies were compared through χ(2) tests applying Hardy-Weinberg equilibrium. The serum concentrations of IL-6 and IL-8, VEGF, and CRP between homozygotes and heterozygotes were compared through one-way ANOVA. Significance level was p<0.05. Compared to control subjects, serum IL-6 (p<0.0001), IL-8 (p<0.0001), VEGF (p<0.0001), and CRP (p<0.0001) levels were significantly elevated in the AMD patients. For rs1800795, patients with the GG genotype showed significantly raised levels of IL-6 compared to those with GC and CC genotypes (p<0.0001). Serum IL-8 levels were significantly higher in patients with the GG genotype compared to the GC and CC genotypes for the single nucleotide polymorphism (SNP) rs2227543 (p<0.002). Similarly, significantly higher VEGF levels were detected for genotype TT for rs3025039 SNP (p<0.038). However, no significant alteration in serum CRP levels was detected in hetero- or homozygotes for rs1205 and rs1130864 SNPs. Serum IL-6, IL-8, and VEGF levels are substantially increased in AMD, and the levels coincide with polymorphism in the respective gene. No such relationship appears to exist with regard to SNPs of CRP.
Moreno-Carranza, Bibiana; Goya-Arce, Maite; Vega, Claudia; Adán, Norma; Triebel, Jakob; López-Barrera, Fernando; Quintanar-Stéphano, Andrés; Binart, Nadine; Martínez de la Escalera, Gonzalo; Clapp, Carmen
2013-10-01
Prolactin (PRL) is a potent liver mitogen and proangiogenic hormone. Here, we used hyperprolactinemic rats and PRL receptor-null mice (PRLR(-/-)) to study the effect of PRL on liver growth and angiogenesis before and after partial hepatectomy (PH). Liver-to-body weight ratio (LBW), hepatocyte and sinusoidal endothelial cell (SEC) proliferation, and hepatic expression of VEGF were measured before and after PH in hyperprolactinemic rats, generated by placing two anterior pituitary glands (AP) under the kidney capsule. Also, LBW and hepatic expression of IL-6, as well as suppressor of cytokine signaling-3 (SOCS-3), were evaluated in wild-type and PRLR(-/-) mice before and after PH. Hyperprolactinemia increased the LBW, the proliferation of hepatocytes and SECs, and VEGF hepatic expression. Also, liver regeneration was increased in AP-grafted rats and was accompanied by elevated hepatocyte and SEC proliferation, and VEGF expression compared with nongrafted controls. Lowering circulating PRL levels with CB-154, an inhibitor of AP PRL secretion, prevented AP-induced stimulation of liver growth. Relative to wild-type animals, PRLR(-/-) mice had smaller livers, and soon after PH, they displayed an approximately twofold increased mortality and elevated and reduced hepatic IL-6 and SOCS-3 expression, respectively. However, liver regeneration was improved in surviving PRLR(-/-) mice. PRL stimulates normal liver growth, promotes survival, and regulates liver regeneration by mechanisms that may include hepatic downregulation of IL-6 and upregulation of SOCS-3, increased hepatocyte proliferation, and angiogenesis. PRL contributes to physiological liver growth and has potential clinical utility for ensuring survival and regulating liver mass in diseases, injuries, or surgery of the liver.
He, Shuang; Zhao, Tiechan; Guo, Hao; Meng, Yanzhi; Qin, Gangjian; Goukassian, David A.; Han, Jihong; Gao, Xuimei; Zhu, Yan
2016-01-01
Diabetic mellitus (DM) patients are at an increased risk of developing peripheral arterial disease (PAD). Danhong injection (DHI) is a Chinese patent medicine widely used for several cardiovascular indications but the mechanism of action is not well-understood. We investigated the therapeutic potential of DHI on experimental PAD in mice with chemically induced as well as genetic (KKAy) type 2 DM and the overlapping signaling pathways regulating both therapeutic angiogenesis and glucose homeostasis. Compared with normal genetic background wild type (WT) mice, both DM mice showed impaired perfusion recovery in hind-limb ischemia (HLI) model. DHI treatment significantly accelerated perfusion recovery, lowered blood glucose and improved glucose tolerance in both DM models. Bioluminescent imaging demonstrated a continuous ischemia-induced vascular endothelial growth factor receptor 2 (VEGFR-2) gene expressions with a peak time coincident with the maximal DHI stimulation. Flow cytometry analysis showed a DHI-mediated increase in endothelial progenitor cell (EPC) mobilization from bone marrow to circulating peripheral blood. DHI administration upregulated the expression of vascular endothelial growth factor A (VEGF-A) and VEGF receptor-2 (VEGFR-2) in ischemic muscle. A cross talk between ischemia-induced angiogenesis and glucose tolerance pathways was analyzed by Ingenuity Pathway Analysis (IPA) which suggested an interaction of VEGF-A/VEGFR-2 and peroxisome proliferator-activated receptor δ (PPARδ)/peroxisome proliferator-activated receptor γ (PPARγ) genes. We confirmed that upregulation of VEGF-A/VEGFR-2 by DHI promoted PPARδ gene expression in both type 2 diabetic mice. Our findings demonstrated that a multi-component Chinese medicine DHI effectively increased blood flow recovery after tissue ischemia in diabetic mice by promoting angiogenesis and improving glucose tolerance through a concomitant activation of VEGF-A/VEGFR-2 and PPARδ signaling pathways. PMID:27930695
He, Shuang; Zhao, Tiechan; Guo, Hao; Meng, Yanzhi; Qin, Gangjian; Goukassian, David A; Han, Jihong; Gao, Xuimei; Zhu, Yan
2016-01-01
Diabetic mellitus (DM) patients are at an increased risk of developing peripheral arterial disease (PAD). Danhong injection (DHI) is a Chinese patent medicine widely used for several cardiovascular indications but the mechanism of action is not well-understood. We investigated the therapeutic potential of DHI on experimental PAD in mice with chemically induced as well as genetic (KKAy) type 2 DM and the overlapping signaling pathways regulating both therapeutic angiogenesis and glucose homeostasis. Compared with normal genetic background wild type (WT) mice, both DM mice showed impaired perfusion recovery in hind-limb ischemia (HLI) model. DHI treatment significantly accelerated perfusion recovery, lowered blood glucose and improved glucose tolerance in both DM models. Bioluminescent imaging demonstrated a continuous ischemia-induced vascular endothelial growth factor receptor 2 (VEGFR-2) gene expressions with a peak time coincident with the maximal DHI stimulation. Flow cytometry analysis showed a DHI-mediated increase in endothelial progenitor cell (EPC) mobilization from bone marrow to circulating peripheral blood. DHI administration upregulated the expression of vascular endothelial growth factor A (VEGF-A) and VEGF receptor-2 (VEGFR-2) in ischemic muscle. A cross talk between ischemia-induced angiogenesis and glucose tolerance pathways was analyzed by Ingenuity Pathway Analysis (IPA) which suggested an interaction of VEGF-A/VEGFR-2 and peroxisome proliferator-activated receptor δ (PPARδ)/peroxisome proliferator-activated receptor γ (PPARγ) genes. We confirmed that upregulation of VEGF-A/VEGFR-2 by DHI promoted PPARδ gene expression in both type 2 diabetic mice. Our findings demonstrated that a multi-component Chinese medicine DHI effectively increased blood flow recovery after tissue ischemia in diabetic mice by promoting angiogenesis and improving glucose tolerance through a concomitant activation of VEGF-A/VEGFR-2 and PPARδ signaling pathways.
Expression pattern of vascular endothelial growth factor 2 during sea urchin development.
Kipryushina, Yulia O; Yakovlev, Konstantin V; Kulakova, Milana A; Odintsova, Nelly A
2013-12-01
The VEGF family in the sea urchin is comprised of three members designated Vegf1 through Vegf3. In this study, we found a high level of similarity between the PDGF/VEGF domain of the predicted gene Sp-Vegf2 in the sea urchin Strongylocentrotus purpuratus and the same domain of a gene that we found in a closely related sea urchin, Strongylocentrotus intermedius. The sequence of the Si-Vegf2 cDNA was determined, and the expression of the Si-Vegf2 mRNA throughout early sea urchin development was studied by RT-PCR and in situ hybridization. Also we analyzed phylogenetic relationships of Si-Vegf2 and other members of the PDGF and VEGF families. We have found that the Si-Vegf2 present during the time span from the egg to the 4-arm pluteus stage. This mRNA is uniformly distributed in eggs, cleaving embryos and early blastulae. At the gastrula stage, the Si-Vegf2 transcripts are localized in the ventrolateral clusters of primary mesenchyme cells, and later, at the prism stage, they are detected in the forming apex. At the early pluteus stage, Si-Vegf2 mRNAs are found in two groups of mesenchyme cells in the scheitel region on the apical pole. We have determined that Si-Vegf2 is a mesenchyme-expressed factor but its developmental function is unknown. Copyright © 2013 Elsevier B.V. All rights reserved.
Mirkeshavarz, M; Ganjibakhsh, M; Aminishakib, P; Farzaneh, P; Mahdavi, N; Vakhshiteh, F; Karimi, A; Gohari, N S; Kamali, F; Kharazifard, M J; Shahzadeh Fazeli, S A; Nasimian, A
2017-10-31
Oral cancer represents the sixth most common cancer type worldwide. Patients with oral cancer express high levels of IL-6 which is associated with very poor prognosis. Previous studies illustrated that IL-6 cytokine induces angiogenesis. It has also been reported that the presence of Cancer- Associated Fibroblasts (CAFs) is essential for angiogenesis. In this study, we examined the correlation between IL-6 and CAF and the role of this correlation on VEGF production. In this study, quantitative expression level of IL-6 and VEGF in CAF and Oral Cancer Cells (OCCs) examined through Real Time PCR and ELISA and western blot analysis. In addition, maintenance and retention of IL-6 and VEGF checked out in co-culture experiment of CAF and OCC cells. These experiments demonstrated that in oral cancer, CAF cell line secretes significantly more IL-6 than OCC. Also IL-6 is a factor that causes VEGF secretion in CAF cell line. CAF is the basic and the most essential source for producing IL-6 in patients with oral cancer. Secreted IL-6 is able to induce VEGF production in both CAF and OCCs. Correlation between CAF, IL-6 and VEGF could be considered as an approach for cancer therapy.
Plasma levels of hypoxia-regulated factors in patients with age-related macular degeneration.
Ioanna, Zygoula; Christian, Schori; Christian, Grimm; Daniel, Barthelmes
2018-02-01
Various hypoxia-related proteins are differentially expressed in the retina and secreted to the vitreous and/or aqueous humor of patients affected by dry or neovascular age-related macular degeneration (nAMD). To determine whether these conditions alter concentrations of cytokines also in the systemic circulation, we measured plasma levels of six hypoxia-related proteins. Plasma was prepared from EDTA blood that was collected from patients affected by dry AMD (n = 5), nAMD (n = 11), proliferative diabetic retinopathy (PDR; n = 9), and patients with an epiretinal membrane (ERM; n = 11). ERM samples served as negative controls, PDR samples as positive controls. Protein concentrations of vascular endothelial growth factor (VEGF), erythropoietin (EPO), angiopoietin-like 4 (ANGPTL4), placental growth factor (PlGF), tumor necrosis factor alpha (TNF-α), and pigment epithelium-derived factor (PEDF) were determined by enzyme-linked immunosorbent assay (ELISA). The concentration of PlGF was significantly increased in plasma of patients affected by nAMD. Although no statistically significant differences were found for EPO, ANGPTL4, PlGF, TNF-α, and PEDF, the mean concentration of VEGF was lowest in the nAMD group. Plasma concentrations of the six factors did not correlate with gender or age of patients. nAMD may increase plasma concentrations of PlGF, making it a candidate as a biomarker for the neovascular form of AMD. Other factors, however, were not differentially regulated, suggesting that their systemic concentrations are not generally increased in hypoxia-related retinal diseases.
Uysal, Nazan; Sisman, Ali Riza; Dayi, Ayfer; Aksu, Ilkay; Cetin, Ferihan; Gencoglu, Celal; Tas, Aysegul; Buyuk, Erkan
2011-11-21
Maternal deprivation (MD) may cause neuropsychiatric disorders such as anxiety disorder by negatively affecting the cognitive functions and behavior in pups. The aim of this study is to investigate whether maternal exercise during pregnancy has beneficial effects on anxiety that increases with MD, and on the levels of VEGF and BDNF which have anxiolytic effects on the prefrontal cortex, the anxiety-related region of the brain. The anxiety level in the deprivation group was greater than the control group and found more in male than female pups. The prefrontal cortex VEGF and BDNF levels were decreased in the deprivation group compared to control group while serum corticosterone levels were increased in the deprivation group. Anxiety and serum corticosterone levels were decreased in maternally exercised female and male pups, while the prefrontal cortex VEGF and BDNF levels were increased, compared to sedentary mother's pups. These results indicate that maternal exercise may attenuate the negative effect of stresses such as maternal deprivation that can be encountered early in life. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Calreticulin Regulates VEGF-A in Neuroblastoma Cells.
Weng, Wen-Chin; Lin, Kuan-Hung; Wu, Pei-Yi; Lu, Yi-Chien; Weng, Yi-Cheng; Wang, Bo-Jeng; Liao, Yung-Feng; Hsu, Wen-Ming; Lee, Wang-Tso; Lee, Hsinyu
2015-08-01
Calreticulin (CRT) has been previously correlated with the differentiation of neuroblastoma (NB), implying a favorable prognostic factor. Vascular endothelial growth factor (VEGF) has been reported to participate in the behavior of NB. This study investigated the association of CRT and VEGF-A in NB cells. The expressions of VEGF-A and HIF-1α, with overexpression or knockdown of CRT, were measured in three NB cells (SH-SY5Y, SK-N-DZ, and stNB-V1). An inducible CRT NB cell line and knockdown CRT stable cell lines were also established. The impacts of CRT overexpression on NB cell apoptosis, proliferation, and differentiation were also evaluated. We further examined the role of VEGF-A in the NB cell differentiation via VEGF receptor blockade. Constitutive overexpression of CRT led to NB cell differentiation without proliferation. Thus, an inducible CRT stNB-V1 cell line was generated by a tetracycline-regulated gene system. CRT overexpression increased VEGF-A and HIF-1α messenger RNA (mRNA) expressions in SH-SY5Y, SK-N-DZ, and stNB-V1 cells. CRT overexpression also enhanced VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. Knockdown of CRT decreased VEGF-A and HIF-1α mRNA expressions and lowered VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. We further demonstrated that NB cell apoptosis was not affected by CRT overexpression in stNB-V1 cells. Nevertheless, overexpression of CRT suppressed cell proliferation and enhanced cell differentiation in stNB-V1 cells, whereas blockage of VEGFR-1 markedly suppressed the expression of neuron-specific markers including GAP43, NSE2, and NFH, as well as TrkA, a molecular marker indicative of NB cell differentiation. Our findings suggest that VEGF-A is involved in CRT-related neuronal differentiation in NB. Our work may provide important information for developing a new therapeutic strategy to improve the outcome of NB patients.
Irani, Mohamad; Seifer, David B; Grazi, Richard V; Irani, Sara; Rosenwaks, Zev; Tal, Reshef
2017-03-28
Vascular endothelial growth factor (VEGF) has been suggested to play a role in the pathophysiology of polycystic ovary syndrome (PCOS) and may contribute to increased risk of ovarian hyperstimulation syndrome (OHSS) in affected individuals. Vitamin D (VitD) supplementation improves multiple clinical parameters in VitD-deficient women with PCOS and decreases VEGF levels in several other pathologic conditions. Unveiling the basic mechanisms underlying the beneficial effects of vitamin D on PCOS may enhance our understanding of the pathophysiology of this syndrome. It may also suggest a new treatment for PCOS that can improve it through the same mechanism as vitamin D and can be given regardless of vitamin D levels. Therefore, we aimed to explore the effect of VitD supplementation on serum VEGF levels and assess whether changes in VEGF correlate with an improvement in characteristic clinical abnormalities of PCOS. This is a randomized placebo-controlled trial conducted between October 2013 and March 2015. Sixty-eight VitD-deficient women with PCOS were recruited. Women received either 50,000 IU of oral VitD3 or placebo once weekly for 8 weeks. There was a significant decrease in serum VEGF levels (1106.4 ± 36.5 to 965.3 ± 42.7 pg·mL -1 ; p < 0.001) in the VitD group. Previously reported findings of this trial demonstrated a significant decrease in the intermenstrual intervals, Ferriman-Gallwey hirsutism score, and triglycerides following VitD supplementation. Interestingly, ∆VEGF was positively correlated with ∆triglycerides ( R ² = 0.22; p = 0.02) following VitD supplementation. In conclusion, VitD replacement significantly decreases serum VEGF levels correlating with a decrease in triglycerides in women with PCOS. This is a novel molecular explanation for the beneficial effects of VitD treatment. It also suggests the need to investigate a potential role of VitD treatment in reducing the incidence or severity of OHSS in VitD-deficient women with PCOS.
The adapter protein, Grb10, is a positive regulator of vascular endothelial growth factor signaling.
Giorgetti-Peraldi, S; Murdaca, J; Mas, J C; Van Obberghen, E
2001-07-05
Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis and angiogenesis. Activation of VEGF receptors leads to the recruitment of SH2 containing proteins which link the receptors to the activation of signaling pathways. Here we report that Grb10, an adapter protein of which the biological role remains unknown, is tyrosine phosphorylated in response to VEGF in endothelial cells (HUVEC) and in 293 cells expressing the VEGF receptor KDR. An intact SH2 domain is required for Grb10 tyrosine phosphorylation in response to VEGF, and this phosphorylation is mediated in part through the activation of Src. In HUVEC, VEGF increases Grb10 mRNA level. Expression of Grb10 in HUVEC or in KDR expressing 293 cells results in an increase in the amount and in the tyrosine phosphorylation of KDR. In 293 cells, this is correlated with the activation of signaling molecules, such as MAP kinase. By expressing mutants of Grb10, we found that the positive action of Grb10 is independent of its SH2 domain. Moreover, these Grb10 effects on KDR seem to be specific since Grb10 has no effect on the insulin receptor, and Grb2, another adapter protein, does not mimic the effect of Grb10 on KDR. In conclusion, we propose that VEGF up-regulates Grb10 level, which in turn increases KDR molecules, suggesting that Grb10 could be involved in a positive feedback loop in VEGF signaling.
Smad4 Inhibits VEGF-A and VEGF-C Expressions via Enhancing Smad3 Phosphorylation in Colon Cancer.
Li, Xuemei; Li, Xinlei; Lv, Xiaohong; Xiao, Jianbing; Liu, Baoquan; Zhang, Yafang
2017-09-01
Smad4 is a critical factor in the TGF-β pathway and is involved in tumor progression and metastasis, but the role of Smad4 in colon cancer cells is unclear. The aim of this study is to explore the effect and the underlying mechanism of Smad4 on the growth, migration and apoptosis of colon cancer cells as well as vascular endothelial growth factor (VEGF)-A and VEGF-C secreted by these cells. In this study, we showed that Smad4, VEGF-A, and VEGF-C are independent prognostic factors of colon cancer, and Smad4 expression was negatively correlated with VEGF-A and -C in samples. We found that Smad4 mRNA and protein levels in colon cancer cells, particularly in HCT-116 cells, were significantly lower than those in the human intestinal epithelial cell line (HIEC). Smad4 overexpression promoted tumor cell apoptosis, inhibited VEGF-A and -C expression in vitro and in vivo, but had no effect on cell proliferation and migration. Tail vein injection of the virus inhibited xenograft growth in nude mice. Importantly, we also demonstrated that Smad4 could increase the phosphorylation level of Smad3, but not Smad2, which may be one of the mechanisms underlying these effects of Smad4 in colon cancer. Therefore, Smad4 may be a new target for the treatment of colon cancer. Anat Rec, 300:1560-1569, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
2009-01-01
Background Along with the development of new cancer therapeutics, more effective tools for the estimation of response to therapy and prediction of disease progression are required for the better management of inoperable cancer patients. Methods We studied 134 newly diagnosed and primarily untreated advanced non-small cell lung cancer patients and 100 controls. Forty two patients received platinum-based chemotherapy. Plasma VEGF levels were quantified in all samples at baseline and also before second and third chemotherapy cycle in 42 patients and correlated with response to therapy as assessed by computed tomography after the third chemotherapy cycle. Results We observed that, patients who went into remission had significantly lower baseline VEGF levels before second and third cycles of chemotherapy when compared with patients with no change and progression. Plasma VEGF levels showed a greater decrease from cycle 1 to 2 and from cycle 1 to 3 in patients who showed remission in comparison to those with no change or progression. Plasma VEGF levels before the second cycle detected poor response to therapy with a sensitivity and specificity of 76.9% and 75.0%, respectively (area under the ROC curve = 0.724). Early prediction of disease progression was achieved with a sensitivity and specificity of 71.4% for plasma VEGF before cycle 2 (area under the ROC curve = 0.805). The kinetics of VEGF form cycle 1 to 2 and cycle 1 to 3 also gave significant information for predicting disease progression as well as insufficient therapy response. Conclusion Monitoring of plasma VEGF levels during the course of first-line chemotherapy could identify patients who are likely to have insufficient response to therapy and disease progression at an early stage. This may help in individualizing treatment and could lead to better management of the advanced stage lung cancer. PMID:19958548
Neelam, Sudha; Brooks, Morgan M.
2013-01-01
Purpose The prosurvival signaling cascades that mediate the unique ability of human lens epithelial cells to survive in their naturally hypoxic environment are not well defined. Hypoxia induces the synthesis of the hypoxia inducible factor HIF-1α that in turn, plays a crucial role in modulating a downstream survival scheme, where vascular endothelial growth factor (VEGF) also plays a major role. To date, no published reports in the lens literature attest to the expression and functionality of HIF-2α and the role it might play in regulating VEGF expression. The aim of this study was to identify the functional expression of the hypoxia inducible factors HIF-1α and HIF-2α and establish their role in regulating VEGF expression. Furthermore, we demonstrate a link between sustained VEGF expression and the ability of the hypoxic human lens epithelial cell to thrive in low oxygen conditions and resist mitochondrial membrane permeability transition (also referred to as lenticular cytoprotection). Methods Hypoxia inducible factor translation inhibitors were used to demonstrate the role of HIF-1α and HIF-2α and the simultaneous expression of both hypoxic inducible factors to determine their role in regulating VEGF expression. Axitinib, which inhibits lenticular cell autophosphorylation of its VEGF receptor, was employed to demonstrate a role for the VEGF–VEGFR2 receptor complex in regulating Bcl-2 expression. Specific antisera and western blot analysis were used to detect the protein levels of HIF-1α and HIF-2α, as well as the proapoptotic protein, BAX and the prosurvival protein, Bcl-2. VEGF levels were analyzed with enzyme-linked immunosorbent assay (ELISA). The potentiometric dye, 5,5′,6,6′-tetrachloro1,1′,3,3′-tetraethyl-benzimidazolylcarbocyanine iodide, was used to determine the effect of the inhibitors on mitochondrial membrane permeability transition. Results Cultured human lens epithelial cells (HLE-B3) maintained under hypoxic condition (1% oxygen) displayed consistent accumulation of VEGF throughout the 72 h incubation period. Using hypoxia inducible factor translation inhibitors targeting HIF-1α or HIF-2α, the specific inhibition of each protein did not diminish VEGF synthesis. The combined inhibition of HIF-1α and HIF-2α expression, using a double hypoxia inducible factor translation inhibitor, markedly decreased the level of VEGF. The inhibition of VEGF synthesis was associated with a profound deficiency in the level of the prosurvival protein, Bcl-2. Axitinib also prevented the VEGF-mediated expression of Bcl-2. The loss of VEGF coupled with the decrease in intracellular Bcl-2 correlated with marked mitochondrial depolarization, an early predictor of cellular apoptosis. Conclusions Our data support a model in which the sustained synthesis of VEGF in human lens epithelial cells, maintained under hypoxic condition, is regulated by a compensatory inter-relationship between HIF-1α and HIF-2α. VEGF acts as a prosurvival factor in hypoxic lens epithelial cells by maintaining consistent expression of the prosurvival protein Bcl-2, which likely prevents the translocation of cytosolic BAX to the outer mitochondrial membrane, thus preventing the initiation of mitochondrial depolarization. PMID:23335846
Yan, Youyou; Song, Dandan; Liu, Lulu; Meng, Xiuping; Qi, Chao; Wang, Junnan
2017-11-15
Previously, decoy receptor 3 (DcR3) was found to be a potential angiogenetic factor, while the relationship of DcR3 with coronary collateral circulation formation has not been investigated. In this study, we aimed to investigate whether plasma decoy receptor 3 levels was associated with CCC formation and evaluate its predictive power for CCC status in patients with coronary artery disease. Among patients who underwent coronary angiography with coronary artery disease and had a stenosis of ≥90% were included in our study. Collateral degree was graded according to Rentrope Cohen classification. Patients with grade 2 or 3 collateral degree were enrolled in good CCC group and patients with grade 0 or 1 collateral degree were enrolled in poor CCC group. Plasma DcR3 level was significantly higher in good CCC group (328.00±230.82 vs 194.84±130.63ng/l, p<0.01) and positively correlated with Rentrope grade (p<0.01). In addition, plasma DcR3 was also positively correlated with VEGF-A. Both ROC (receiver operating characteristic curve) and multinomial logistical regression analysis showed that plasma DcR3 displayed potent predictive power for CCC status. Higher plasma DcR3 level was related to better CCC formation and displayed potent predictive power for CCC status. Copyright © 2017. Published by Elsevier Inc.
Diabetic retinopathy: could the alpha-1 antitrypsin be a therapeutic option?
Ortiz, Gustavo; Salica, Juan P; Chuluyan, Eduardo H; Gallo, Juan E
2014-11-18
Diabetic retinopathy is one of the most important causes of blindness. The underlying mechanisms of this disease include inflammatory changes and remodeling processes of the extracellular-matrix (ECM) leading to pericyte and vascular endothelial cell damage that affects the retinal circulation. In turn, this causes hypoxia leading to release of vascular endothelial growth factor (VEGF) to induce the angiogenesis process. Alpha-1 antitrypsin (AAT) is the most important circulating inhibitor of serine proteases (SERPIN). Its targets include elastase, plasmin, thrombin, trypsin, chymotrypsin, proteinase 3 (PR-3) and plasminogen activator (PAI). AAT modulates the effect of protease-activated receptors (PARs) during inflammatory responses. Plasma levels of AAT can increase 4-fold during acute inflammation then is so-called acute phase protein (APPs). Individuals with low serum levels of AAT could develop disease in lung, liver and pancreas. AAT is involved in extracellular matrix remodeling and inflammation, particularly migration and chemotaxis of neutrophils. It can also suppress nitric oxide (NO) by nitric oxide sintase (NOS) inhibition. AAT binds their targets in an irreversible way resulting in product degradation. The aim of this review is to focus on the points of contact between multiple factors involved in diabetic retinopathy and AAT resembling pleiotropic effects that might be beneficial.
Williams, John D; Topley, Nicholas; Craig, Kathrine J; Mackenzie, Ruth K; Pischetsrieder, Monika; Lage, Cristina; Passlick-Deetjen, Jutta
2004-07-01
Although peritoneal dialysis (PD) is a widely accepted form of renal replacement therapy (RRT), concerns remain regarding the bioincompatible nature of standard PD fluid. In order to evaluate whether a newly formulated fluid of neutral pH, and containing low levels of glucose degradation products (GDP), resulted in improved in vivo biocompatibility, it was compared in a clinical study to a standard PD fluid. In a multicenter, open, randomized, prospective study with a crossover design and parallel arms, a conventional, acidic, lactate-buffered fluid (SPDF) was compared with a pH neutral, lactate-buffered, low GDP fluid (balance). Overnight effluent was collected and assayed for cancer antigen 125 (CA125), hyaluronic acid (HA), procollagen peptide (PICP), vascular endothelial growth factor (VEGF), and tumor necrosis factor alpha (TNFalpha). Serum samples were assayed for circulating advanced glycosylation end products (AGE), N(epsilon)-(carboxymethyl)lysine (CML), and imidazolone. Clinical end points were residual renal function (RRF), adequacy of dialysis, ultrafiltration, and peritoneal membrane function. Eighty-six patients were randomized to either group I starting with SPDF for 12 weeks (Phase I), then switching to "balance" for 12 weeks (Phase II), or group II, which was treated vice versa. Seventy-one patients completed the study with data suitable for entry into the per protocol analysis. Effluent and serum samples, together with peritoneal function tests and adequacy measurements, were undertaken at study centers on three occasions during the study: after the four-week run-in period, after Phase I, and again after Phase II. In patients treated with balance there were significantly higher effluent levels of CA125 and PICP in both arms of the study. Conversely, levels of HA were lower in patients exposed to balance, while there was no change in the levels of either VEGF or TNFalpha. Serum CML and imidazolone levels fell significantly in balance-treated patients. Renal urea and creatinine clearances were higher in both treatment arms after patients were exposed to balance. Urine volume was higher in patients exposed to balance. In contrast, peritoneal ultrafiltration was higher in patients on SPDF. When anuric patients were analyzed as a subgroup, there was no significant difference in peritoneal transport characteristics or in ultrafiltration on either fluid. There were no changes in peritonitis incidence on either solution. This study indicates that the use of balance, a neutral pH, low GDP fluid, is accompanied by a significant improvement in effluent markers of peritoneal membrane integrity and significantly decreased circulating AGE levels. Clinical parameters suggest an improvement in residual renal function on balance, with an accompanying decrease in peritoneal ultrafiltration. It would appear that balance solution results in an improvement in local peritoneal homeostasis, as well as having a positive impact on systemic parameters, including circulating AGE and residual renal function.
Patruno, R; Arpaia, N; Gadaleta, CD; Passantino, L; Zizzo, N; Misino, A; Lucarelli, NM; Catino, A; Valerio, P; Ribatti, D; Ranieri, G
2009-01-01
Abstract Canine cutaneous mast cell tumour (CMCT) is a common cutaneous tumour in dog, with a higher incidence than in human. CMCT is classified in three subgroups, well and intermediately differentiated (G1 and G2), corresponding to a benign disease, and poorly differentiated (G3), corresponding to a malignant disease, which metastasize to lymph nodes, liver, spleen and bone marrow. In this study, we have evaluated serum (S), platelet-poor plasma (P-PP), plasma-activated platelet rich (P-APR) and cytosol vascular endothelial growth factor (VEGF) concentrations, microvascular density (MVD) and mast cell density (MCD) in a series of 86 CMCTs and we have correlated these parameters with each other, by means of ELISA detection of VEGF and immunohistochemistry. Results show that VEGF level from cytosol P-APR and MVD were significantly higher in G3 CMCTs as compared to G1 or G2 subgroups. Moreover, a significantly strong correlation among VEGF levels from P-PAR and cytosol, MVD and MCD was found in G3 subgroup. Because VEGF levels from P-APR well correlated with MVD and malignancy grade in CMCT, we suggest that VEGF might be secreted from MCs and it may be a suitable surrogate inter-species angiogenetic markers of tumour progression in CMCT. Finally, CMCT seems to be a useful model to study the role of MCs in tumour angiogenesis and inhibition of MCs degranulation or activation might be a new anti-angiogenic strategy worthy to further investigations. PMID:18429933
Effect of estradiol on the expression of angiogenic factors in epithelial ovarian cancer.
Valladares, Macarena; Plaza-Parrochia, Francisca; Lépez, Macarena; López, Daniela; Gabler, Fernando; Gayan, Patricio; Selman, Alberto; Vega, Margarita; Romero, Carmen
2017-11-01
Ovarian cancer presents a high angiogenesis (formation of new blood vessels) regulated by pro-angiogenic factors, mainly vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). An association between endogenous levels of estrogen and increased risk of developing ovarian cancer has been reported. Estrogen action is mediated by the binding to its specific receptors (ERα and ERβ), altered ERα/ERβ ratio may constitute a marker of ovarian carcinogenesis progression. To determine the effect of estradiol through ERα on the expression of NGF and VEGF in epithelial ovarian cancer (EOC). Levels of phosphorylated estrogen receptor alpha (pERα) were evaluated in well, moderate and poorly differentiated EOC samples (EOC-I, EOC-II, EOC-III). Additionally, ovarian cancer explants were stimulated with NGF (0, 10 and 100 ng/ml) and ERα, ERβ and pERα levels were detected. Finally, human ovarian surface epithelial (HOSE) and epithelial ovarian cancer (A2780) cell lines were stimulated with estradiol, where NGF and VEGF protein levels were evaluated. In tissues, ERs were detected being pERα levels significantly increased in EOC-III samples compared with EOC-I (p<0.05). Additionally, ovarian explants treated with NGF increased pERα levels meanwhile total ERα and ERβ levels did not change. Cell lines stimulated with estradiol revealed an increase of NGF and VEGF protein levels (p<0.05). Estradiol has a positive effect on pro-angiogenic factors such as NGF and VEGF expression in EOC, probably through the activation of ERα; generating a positive loop induced by NGF increasing pERα levels in epithelial ovarian cells.
Placental stress and pre-eclampsia: a revised view.
Redman, C W G; Sargent, I L
2009-03-01
In pre-eclampsia, poor placentation causes both oxidative and endoplasmic reticulum stress of the placenta. It is believed placental hypoxia stimulates excessive production of soluble fms-like tyrosine kinase 1 (sFlt-1), which binds and deactivates circulating vascular endothelial growth factor (VEGF). When maternal endothelium is deprived of VEGF it becomes dysfunctional hence leading to the clinical syndrome of the mother. In this paper the previous claim that poor placentation may predispose more to placental oxidative stress than hypoxia is reiterated. We show why pre-eclampsia is not only an endothelial disease, but also a disorder of systemic inflammation. We question that hypoxia is the only or indeed the main stimulus to release of sFlt-1; and emphasise the role of inflammatory mechanisms. Hypoxia cannot be assumed simply because hypoxia-inducible transcription factors (HIF) are upregulated. Concurrent assessments of nuclear factor-kappaB (NF-kappaB), a transcription factor for inflammatory responses are desirable to obtain a more complete picture. We point out that the pre-eclampsia placenta is the source of bioactive circulating factors other than sFlt-1 in concentrations that are much higher than in normal pregnancy. These may also contribute to the final inflammatory syndrome. We propose a modified version of the two-stage model for pre-eclampsia.
Amirkhosravi, A; Amaya, M; Siddiqui, F; Biggerstaff, J P; Meyer, T V; Francis, J L
1999-01-01
Evidence that platelets play a role in tumor metastasis includes the observation of circulating tumor cell-platelet aggregates and the anti-metastatic effect of thrombocytopenia and anti-platelet drugs. Platelets have recently been shown to contain vascular endothelial growth factor (VEGF) which is released during clotting. We therefore studied the effects of (1) tumor cell-platelet adherence and tumor cell TF activity on platelet VEGF release; and (2) the effects of GpIIb/IIIa blockade on tumor cell-induced platelet VEGF release, tumor cell-induced thrombocytopenia and experimental metastasis. Adherent A375 human melanoma cells (TF+) and KG1 myeloid leukemia (TF-) cells were cultured in RPMI containing 10% fetal bovine serum. Platelet-rich plasma was obtained from normal citrated whole blood and the presence of VEGF (34 and 44 kDa isoforms) confirmed by immunoblotting. Platelet-rich plasma with or without anti-GpIIb/IIIa (Abciximab) was added to A375 monolayers and supernatant VEGF measured by ELISA. Tumor cell-induced platelet activation and release were determined by CD62P expression and serotonin release respectively. In vitro, tumor cell-platelet adherence was evaluated by flow cytometry. In vivo, thrombocytopenia and lung seeding were assessed 30 min and 18 days, respectively, after i.v. injection of Lewis Lung carcinoma (LL2) cells into control or murine 7E3 F(ab')(2) (6 mg/ kg) athymic rats. Maximal in vitro platelet activation (72% serotonin release) occurred 30 min after adding platelets to tumor cells. At this time, 87% of the A375 cells had adhered to platelets. Abciximab significantly (P<0.05) reduced platelet adherence to tumor cells as evidenced by flow cytometry. Incubation of A375 cells with platelets induced VEGF release in a time-dependent manner. This release was significantly inhibited by Abciximab (81% at 30 min; P<0.05). In the presence of fibrinogen and FII, VEGF release induced by A375 (TF+) cells was significantly higher than that induced by KG1 (TF-) cells (105.5+/-24 vs. 42+/-7 pg/ml; P<0.001). Omitting fibrinogen or FII from the reaction mixture markedly decreased VEGF release. In vivo, GpIIb/IIIa blockade with murine 7E3 F(ab')(2) reduced LL2 tumor cell-induced thrombocytopenia by 90% (P<0.001) and lung seeding by 82% (P<0.05). We conclude that TF-bearing tumor cells can activate platelets largely via thrombin generation, and that such activation is associated with release of VEGF. This may enhance metastasis, possibly by increasing extravasation at points of adhesion to vascular endothelium.
Ma, Ji; Matsusaka, Taiji; Yang, Hai-Chun; Zhong, Jianyong; Takagi, Nobuaki; Fogo, Agnes B.; Kon, Valentina; Ichikawa, Iekuni
2011-01-01
Our previous studies using puromycin aminonucleoside (PAN) established that podocyte damage leads to glomerular growth arrest during development and glomerulosclerosis later in life. The present study examined the potential benefit of maintaining podocyte-derived vascular endothelial growth factor (VEGF) in podocyte defense and survival following PAN injury using conditional transgenic podocytes and mice, in which human VEGF-A (hVEGF) transgene expression is controlled by tetracycline responsive element (TRE) promoter and reverse tetracycline transactivator (rtTA) in podocytes. In vitro experiments used primary cultured podocytes harvested from mice carrying podocin-rtTA and TRE-hVEGF transgenes, in which hVEGF can be induced selectively. Induction of VEGF in PAN-exposed podocytes resulted in preservation of intrinsic VEGF, α-actinin-4 and synaptopodin, anti-apoptotic marker Bcl-xL/Bax, as well as attenuation in apoptotic marker cleaved/total caspase-3. In vivo, compared with genotype controls, PAN-sensitive neonatal mice with physiologically relevant levels of podocyte-derived VEGF showed significantly larger glomeruli. Further, PAN-induced up-regulation of desmin, down-regulation of synaptopodin and nephrin, and disruption of glomerular morphology was significantly attenuated in VEGF-induced transgenic mice. Our data indicate that podocyte-derived VEGF provides self-preservation functions, which can rescue the cell following injury and preempt subsequent deterioration of the glomerulus in developing mice. PMID:21451433
Huang, Chien-Hao; Huang, Chin-Shiu; Hu, Miao-Lin; Chuang, Cheng-Hung
2018-01-01
Carotenoids have been shown to exhibit antiangiogenic activities. Several studies have indicated that carotenoids used in combination were more effective on antioxidation and anticancer actions than carotenoids used singly. However, it is unclear whether multi-carotenoids have antiangiogenic effects. We investigated the effects of multi-carotenoids at physiological plasma levels of Taiwanese (abbreviated as MCT, with a total of 1.4 μM) and Americans (abbreviated as MCA, with a total of 1.8 μM), and of post-supplemental plasma levels (abbreviated as HMC with a total of 3.55 μM) on vascular endothelial growth factor (VEGF)-induced tube formation in human umbilical vein endothelial cells (HUVECs) and rat aortic rings. MCT, MCA, and HMC inhibited VEGF-induced migration, invasion, and tube formation of HUVECs as well as new vessels formation in rat aortic rings. MCT, MCA, and HMC inhibited activities o\\f matrix metalloproteinase (MMP)-2, urokinase plasminogen activator, and phosphorylation of VEGF receptor 2 induced by VEGF. Moreover, MCT, MCA, and HMC significantly upregulated protein expression of tissue inhibitors of MMP-2 and plasminogen activator inhibitor-1. These results demonstrate the antiangiogenic effect of multi-carotenoids both in vitro and ex vivo with possible mechanistic actions involving attenuation of VEGF receptor 2 phosphorylation and extracellular matrix degradation.
Cheng, Yang; Jiang, Shuyi; Yuan, Jin; Liu, Junxiu; Simoncini, Tommaso
2018-04-16
Vascular endothelial growth factor C (VEGF-C) accelerates cervical cancer metastasis, while the detailed mechanism remains largely unknown. Recent evidence indicates that microRNA play a crucial role in controlling cancer cell invasiveness. In the present study, we investigated the role of miR-326 in VEGF-C-induced cervical cancer cell invasion. VEGF-C expression was higher and miR-326 was much lower in primary cervical cancer specimens than that in non-cancerous specimens, and a negative correlation between VEGF-C and miR-326 was found. On cervical carcinoma cell line SiHa cells, treatment with VEGF-C downregulated miR-326 level and increased cortactin protein expression. Transfection with miR-326 mimic reversed cortactin expression induced by VEGF-C, suggesting that VEGF-C increased cortactin via downregulation of miR-326. VEGF-C activated c-Src and c-Src inhibitor PP2 abolished VEGF-C effect on miR-326 and cortactin expression, implying that VEGF-C regulated miR-326/cortactin via c-Src signaling. VEGF-C promoted SiHa cell invasion index, which was largely inhibited by transfection with miR-326 antagonist or by siRNA against cortactin. In conclusion, our findings implied that VEGF-C reduced miR-326 expression and increased cortactin expression through c-Src signaling, leading to enhanced cervical cancer invasiveness. This may shed light on potential therapeutic strategies for cervical cancer therapy.
Wieczór, Radosław; Gadomska, Grażyna; Ruszkowska-Ciastek, Barbara; Stankowska, Katarzyna; Budzyński, Jacek; Fabisiak, Jacek; Suppan, Karol; Pulkowski, Grzegorz; Rość, Danuta
2015-11-01
Type 2 diabetes coexistent with lower extremity artery disease (peripheral arterial disease (PAD)) can be observed in numerous patients. The mechanism compensating for ischemia and contributing to healing is angiogenesis-the process of forming new blood vessels. The purpose of this study was to assess the likely impact of type 2 diabetes on the plasma levels of proangiogenic factor (vascular endothelial growth factor A (VEGF-A)) and angiogenesis inhibitors (soluble VEGF receptors type 1 and type 2 (sVEGFR-1 and sVEGFR-2)) in patients with PAD. Among 46 patients with PAD under pharmacological therapy (non-invasive), we identified, based on medical history, a subgroup with coexistent type 2 diabetes (PAD-DM2+, n=15) and without diabetes (PAD-DM2-, n=31). The control group consisted of 30 healthy subjects. Plasma levels of VEGF-A, sVEGFR-1, and sVEGFR-2 were measured using the enzyme-linked immunosorbent assay (ELISA) method. The subgroups of PAD-DM2+ and PAD-DM2- revealed significantly higher concentrations of VEGF-A (P=0.000 007 and P=0.000 000 1, respectively) and significantly lower sVEGFR-2 levels (P=0.02 and P=0.000 01, respectively), when compared with the control group. Patients with PAD and coexistent diabetes tended to have a lower level of VEGF-A and higher levels of sVEGFR-1 and sVEGFR-2 comparable with non-diabetic patients. The coexistence of type 2 diabetes and PAD is demonstrated by a tendency to a lower plasma level of proangiogenic factor (VEGF-A) and higher levels of angiogenesis inhibitors (sVEGFR-1 and sVEGFR-2) at the same time. Regardless of the coexistence of type 2 diabetes, hypoxia appears to be a crucial factor stimulating the processes of angiogenesis in PAD patients comparable with healthy individuals, whereas hyperglycemia may have a negative impact on angiogenesis in lower limbs.
Howell, Kristy R; Kutiyanawalla, Ammar; Pillai, Anilkumar
2011-01-01
Stress and increased glucocorticoid levels are associated with many neuropsychiatric disorders including schizophrenia and depression. Recently, the role of vascular endothelial factor receptor-2 (VEGFR2/Flk1) signaling has been implicated in stress-mediated neuroplasticity. However, the mechanism of regulation of VEGF/Flk1 signaling under long-term continuous glucocorticoid exposure has not been elucidated. We examined the possible effects of long-term continuous glucocorticoid exposure on VEGF/Flk1 signaling in cultured cortical neurons in vitro, mouse frontal cortex in vivo, and in post mortem human prefrontal cortex of both control and schizophrenia subjects. We found that long-term continuous exposure to corticosterone (CORT, a natural glucocorticoid) reduced Flk1 protein levels both in vitro and in vivo. CORT treatment resulted in alterations in signaling molecules downstream to Flk1 such as PTEN, Akt and mTOR. We demonstrated that CORT-induced changes in Flk1 levels are mediated through glucocorticoid receptor (GR) and calcium. A significant reduction in Flk1-GR interaction was observed following CORT exposure. Interestingly, VEGF levels were increased in cortex, but decreased in serum following CORT treatment. Moreover, significant reductions in Flk1 and GR protein levels were found in postmortem prefrontal cortex samples from schizophrenia subjects. The alterations in VEGF/Flk1 signaling following long-term continuous CORT exposure represents a molecular mechanism of the neurobiological effects of chronic stress.
Watanabe, Kae; Karimpour-Fard, Anis; Michael, Alix; Miyamoto, Shelley D; Nakano, Stephanie J
2018-04-30
Cardiac allograft vasculopathy (CAV) is a leading cause of retransplantation and death in pediatric heart transplant recipients. Our aim was to evaluate the association between serum vascular endothelial growth factor-A (VEGF) and CAV development in the pediatric heart transplant population. In this retrospective study performed at a university hospital, VEGF concentrations were measured by enzyme-linked immunosorbent assay in banked serum from pediatric heart transplant recipients undergoing routine cardiac catheterization. In subjects with CAV (n = 29), samples were obtained at 2 time-points: before CAV diagnosis (pre-CAV) and at the time of initial CAV diagnosis (CAV). In subjects without CAV (no-CAV, n = 16), only 1 time-point was used. VEGF concentrations (n = 74) were assayed in duplicate. Serum VEGF is elevated in pediatric heart transplant recipients before catheter-based diagnosis of CAV (no-CAV mean: 144.0 ± 89.05 pg/ml; pre-CAV mean: 316.2 ± 118.3 pg/ml; p = 0.0002). Receiver-operating characteristic curve analysis of pre-CAV VEGF levels demonstrated an area under the curve of 87.7% (p = 0.0002), with a VEGF level of 226.3 pg/ml predicting CAV development with 77.8% sensitivity and 91.7% specificity. VEGF is similarly elevated in subjects with angiographically diagnosed CAV and in those with normal angiography but intravascular ultrasound (IVUS) evidence of CAV. The increase in serum VEGF before onset of detectable CAV is fundamental to its utility as a predictive biomarker and suggests further investigations of VEGF in the pathogenesis of CAV are warranted in the pediatric heart transplant population. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Höper, M M; Voelkel, N F; Bates, T O; Allard, J D; Horan, M; Shepherd, D; Tuder, R M
1997-12-01
Prostaglandins have emerged as a therapeutic option for patients with peripheral vascular disease as well as pulmonary hypertension as a means to increase blood flow. We tested the hypothesis that prostaglandins regulate vascular endothelial growth factor (VEGF) expression in the human monocytic THP-1 cell line and in isolated perfused rat lungs. Our data show that the stable PGI2-analogue iloprost induces VEGF gene expression (predominantly VEGF121, but also VEGF165 isoforms) and VEGF protein synthesis in THP-1 cells. This effect is abolished by dexamethasone and by Rp-cAMP, a specific inhibitor of cAMP-dependent protein kinase (PKA) activation. The calcium channel blocker diltiazem has no effect on the iloprost-induced VEGF gene expression, and depletion of intracellular Ca2+ stores by long-term exposure (16 h) of THP-1 cells to thapsigargin does not inhibit iloprost-induced VEGF gene expression, suggesting that an increase in intracellular Ca2+ is not essential for VEGF gene induction by iloprost. However, an increase of intracellular Ca2+ by a short-term (2 h) exposure of THP-1 cells to thapsigargin or to the calcium-ionophore A23187 increases VEGF mRNA levels, indicating that a change in intracellular Ca2+ by itself can alter VEGF gene expression. The effects of thapsigargin or A23187 on VEGF gene expression are also mediated via cAMP-PKA since they are inhibited by Rp-cAMP. In isolated perfused rat lungs, PGI2 and PGE2 increases VEGF mRNA abundance whereas Rp-cAMP inhibits the prostaglandin-induced VEGF gene activation. Thus, our data suggest that prostaglandins stimulate VEGF gene expression in monocytic cells and in rat lungs via a cAMP-dependent mechanism.
Tang Wang Ming Mu Granule Attenuates Diabetic Retinopathy in Type 2 Diabetes Rats.
Chen, Mingxia; Lv, Haibo; Gan, Jiakuan; Ren, Junguo; Liu, Jianxun
2017-01-01
Aims: This study aimed to determine the influence of Tang Wang Ming Mu granule (TWMM) on the diabetic retinopathy of diabetic rats. Methods: Male Wistar rats were divided into seven groups: normal control, diabetes model(DM), diabetes with TWMM (3.6, 7.2, and 14.4 g/kg) treatment, the positive control treatment groups of Qi Ming granules and Calcium dobesilate capsules. All rats were treated for 8 weeks. The levels of body weight, fasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c) in blood were measured to evaluate the antihyperglycemic activity of TWMM. Furthermore, malondialdehyde (MDA), intracellular adhesion molecule-1 (ICAM-1) and vascular endothelial growth factor (VEGF) in serum were measured to study effects of TWMM on oxidative stress and inflammatory in DM2 rats. VEGF, JAK/STAT signaling pathway and SOCS3 in retina was detected by immunohistochemistry. Results: TWMM and the positive control drugs Qi Ming and Calcium dobesilate showed a remarkable suppression of retinal neovascularization and amelioration of retinal internal limiting membrane morphology. Moreover, TWMM significantly decreased HbA1c, MDA, ICAM-1, and VEGF levels in serum of diabetic rats. However, Qi Ming granules showed significantly reduced MDA and VEGF levels ( P < 0.01, and P < 0.05, respectively), Calcium dobesilate showed significantly reduced MDA and ICAM-1levels ( P < 0.01 and P < 0.05, respectively) in serum. All drug- treated DM2 rats showed significantly lower levels of VEGF, JAK2, P-JAK2, STAT3, and P-STAT3 in retina than DM group, while TWMM and Calcium dobesilate significantly increased SOCS3 in retina. Conclusion: Our data suggest that the diabetic retina protective effect of TWMM might be related to antiinflammatory, antioxidative, upregulation of SOCS3 expression, inhibition of the JAK/STAT/VEGF signaling pathway.
Şahin, Nur; Apaydın, Nesin; Töz, Emrah; Sivrikoz, Oya Nermin; Genç, Mine; Turan, Gülüzar Arzu; Cengiz, Hakan; Eskicioğlu, Fatma
2016-05-01
To evaluate the effects of letrozole and cabergoline in a rat model of ovarian hyperstimulation syndrome (OHSS). In this prospective, controlled experimental study, the 28 female Wistar rats were divided into four subgroups (one non-stimulated control and three OHSS-positive groups: placebo, letrozole, and cabergoline). To induce OHSS, rats were injected with 10 IU of pregnant mare serum gonadotropin from day 29 to day 32 of life, followed by subcutaneous injection of 30 IU hCG on day 33. Letrozole rats received with a single dose of 0.1 mg/kg letrozole via oral gavage, on the hCG day. Cabergoline rats received with a single dose of 100 µg/kg cabergoline via oral gavage, on the hCG day. All animals were compared in terms of body weight, vascular permeability (VP), ovarian diameter, ovarian tissue VEGF expression (assessed via immunohistochemical staining), and blood pigment epithelium-derived growth factor (PEDF) levels. The OHSS-positive placebo group (group 2) exhibited the highest VP, ovarian diameter, extent of VEGF staining, and lowest PEDF level, as expected. No significant difference was evident between the letrozole and cabergoline groups in terms of any of body weight; VP; PEDF level; ovarian diameter; or the staining intensity of, or percentage staining for, VEGF in ovarian tissues. Letrozole and cabergoline were equally effective to prevent OHSS, reducing the ovarian diameter, VP, and PEDF and VEGF levels to similar extents.
VEGF is a Promising Therapeutic Target for the Treatment of Clear Cell Carcinoma of the Ovary
Mabuchi, Seiji; Kawase, Chiaki; Altomare, Deborah A.; Morishige, Kenichirou; Hayashi, Masami; Sawada, Kenjiro; Ito, Kimihiko; Terai, Yoshito; Nishio, Yukihiro; Klein-Szanto, Andres J.; Burger, Robert A.; Ohmichi, Masahide; Testa, Joseph R.; Kimura, Tadashi
2010-01-01
This study examined the role of VEGF as a therapeutic target in clear cell carcinoma (CCC) of the ovary, which has been regarded as a chemoresistant histological subtype. Immunohistochemical analysis using tissue microarrays of 98 primary ovarian cancers revealed that VEGF was strongly expressed both in early stage and advanced stage CCC of the ovary. In early stage CCCs, patients who had tumors with high levels of VEGF had significantly shorter survival than those with low levels of VEGF. In vitro experiments revealed that VEGF expression was significantly higher in cisplatin-refractory human clear cell carcinoma cells (RMG1-CR and KOC7C-CR), compared to the respective parental cells (RMG1 and KOC7C) in the presence of cisplatin. In vivo treatment with bevacizumab markedly inhibited the growth of both parental CCC cells-derived (RMG1 and KOC7C) and cisplatin-refractory CCC cells-derived (RMG1-CR and KOC7C-CR) tumors as a result of inhibition of tumor angiogenesis. The results of the current study indicate that VEGF is frequently expressed and can be a promising therapeutic target in the management of CCC. Bevacizumab may be efficacious not only as a first-line treatment but also as a second-line treatment of recurrent disease in patients previously treated with cisplatin. PMID:20663925
Ruan, Qiongfang; Zhao, Chaoli; Ye, Ziqing; Ruan, Jingjing; Xie, Qionghui; Xie, Weiguo
2015-06-01
One of the major obstacles in the treatment of severe electrical burns is properly handling the resulting uncontrolled inflammation. Such inflammation often causes secondary injury and necrosis, thus complicating patient outcomes. Vascular endothelial grow factor (VEGF) has emerged as an important mediator for the recruitment of monocytes to the site inflammation. This study was designed to explore the effects and possible mechanism of VEGF on monocyte-endothelial cellular adhesion. To do so, we used a cultured human monocytic cell line (THP-1) that was stimulated with serum derived from rats that had received electrical burns. Serum was obtained from rats that had received electrical burns. Both the VEGF and soluble flt-1 (sflt-1) concentrations of the serum were determined by double-antibody sandwich ELISA. The concentrations of VEGF, sflt-1, and TNF-α obtained from the cell-free cultured supernatant of THP-1 cells that had been exposed to the serum were then determined by double-antibody sandwich ELISA. Serum-stimulated THP-1 cells were added to wells with a monolayer of endothelial cells to detect the level of monocyte-endothelial cells adhesion. Finally, the state of phosphorylation of AKT was determined by Western blotting. Both in vivo and in vitro studies showed that compared to controls, the levels of VEGF were significantly increased after electrical burns. This increased was accompanied by a reduction of sflt-1 levels. Furthermore, the serum of rats that had received electrical burns was able to both activate monocytes to secrete TNF-α and enhance monocyte-endothelial cell adhesion. Treatment with the serum also resulted in an up-regulation of the phosphorylation of AKT, but had no effect on the total levels of AKT. Phosphatidylinositide 3-kinases (PI3K) inhibition decreased the number of THP-1 cells that were adhered to endothelial cells. Finally, sequestering VEGF with sflt-1 was able to reduce the effect on monocyte-endothelial cells adhesion by blocking the PI3K signaling pathway. Our results indicate that VEGF is implicated in the pathogenesis of inflammation after electrical burns. Inhibition of VEGF activity could attenuate monocyte-endothelial cells adhesion by suppressing the state of phosphorylation of AKT, which is downstream of the PI3K signaling pathway. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
The effect of platelet rich fibrin on growth factor levels in urethral repair.
Soyer, Tutku; Ayva, Şebnem; Boybeyi, Özlem; Aslan, Mustafa Kemal; Çakmak, Murat
2013-12-01
Platelet rich fibrin (PRF) is an autologous source of growth factors and promotes wound healing. An experimental study was performed to evaluate the effect of PRF on growth factor levels in urethral repair. Eighteen Wistar albino rats were included in the study. Rats were allocated in three groups (n:6): control (CG), sham (SG), and PRF (PRFG). In SG, a 5 mm vertical incision was performed in the penile urethra and repaired with 10/0 Vicryl® under a microscope. In PRFG, during the urethral repair as described in SG, 1 cc of blood was sampled from each rat and centrifuged for 10 minutes at 2400 rpm. PRF obtained from the centrifugation was placed on the repair site during closure. Penile urethras were sampled 24 hours after PRF application in PRFG and after urethral repair in SG. Transforming growth factor beta receptor (TGF-β-R-CD105), vascular endothelial growth factor (VEGF) and its receptor (VEGF-R), as well as endothelial growth factor receptor (EGFR), were evaluated in subepithelia of the penile skin and urethra. Groups were compared for growth factor levels and growth factor receptor expression with the Kruskal Wallis test. TGF-β-R levels were significantly decreased in SG when compared to CG (p<0.05). In PRFG, TGF-β-R was increased in both subepithelia of penile skin and urethra with respect to SG (p<0.05). When VEGF levels and its receptor expression were compared between SG and PRFG, VEGF levels were found to be increased in penile skin subepithelium, whereas VEGF-R expressions were decreased in urethral subepithelia in PRFG (p<0.05). There was no difference between groups for EGFR levels (p>0.05). Use of PRF after urethral repair increases TGF-β-R and VEGF expressions in urethral tissue. PRF can be considered as an alternative measure to improve the success of urethral repair. © 2013.
Aydoğan, Semih; Celiker, Ulkü; Türkçüoğlu, Peykan; Ilhan, Nevin; Akpolat, Nusret
2008-03-01
To evaluate the effects of thalidomide treatment on the temporal course of TNF-alpha, VEGF production and the histopathological changes in ischemia/reperfusion (I/R) injured guinea pigs retina. Control, ischemia, and thalidomide/ischemia groups including seven animals each were formed. Retinal ischemia was induced in male guinea pigs by cannulating anterior chambers and lifting the bottle to a height of 205 cm for 90 min in the ischemia and thalidomide/ischemia groups. The thalidomide/ischemia group received thalidomide (300 mg/kg/day) via nasogastric tube 24 h before ischemia and during 7 days of reperfusion. Guinea pigs were sacrificed for histopathological examination to evaluate the mean thickness of the inner plexiform layer (IPL), polymorphonuclear leukocyte (PMNL) infiltration, and biochemical analysis of retinal VEGF and TNF-alpha levels by ELISA. The mean retinal VEGF and TNF-alpha levels of the control, ischemia, and thalidomide/ischemia groups were 10.22 +/- 2.58 and 270.41 +/- 69.77 pg/ml; 35.80 +/- 5.97 and 629.93 +/- 146.41 pg/ml; 19.01 +/- 3.01 and 340.93 +/- 158.26 pg/ml, respectively. The retinal VEGF levels were significantly higher in I/R injured groups. The thalidomide/ischemia group retinal VEGF level was significantly lower versus the ischemia group. The retinal TNF-alpha levels were significantly elevated in the ischemia group, but no difference was observed between the thalidomide/ischemia and control groups. Also, the retinal TNF-alpha level was significantly lower in the thalidomide/ischemia group versus the ischemia group. The mean thickness of IPL and PMNL infiltration showed no difference between the control and thalidomide/ischemia groups. However, there was a significant difference between the control and ischemia groups. Thalidomide treatment decreases PMNL infiltration, retinal edema, VEGF, and TNF-alpha synthesis following I/R injury to the guinea pig retina.
Komori, Kazuhiko; Tsujimura, Akira; Takao, Tetsuya; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Takada, Shingo; Nonomura, Norio; Okuyama, Akihiko
2008-07-01
Vascular smooth muscle cells express endothelial nitric oxide synthase (eNOS) and produce nitric oxide (NO). Recently, increased NO production has been reported to induce the synthesis and secretion of vascular endothelial growth factor (VEGF) via the NO/cyclic guanosine 3',5'-monophosphate (cGMP) pathway. L-arginine (L-arg), the precursor of NO, and selective phosphodiesterase type 5 (PDE-5) inhibitors that increase levels of intracellular cGMP may complementarily enhance VEGF synthesis in corpus cavernosal smooth muscle cells (CCSMCs), and may consequently restore impaired endothelial function. Expression of eNOS in corpus cavernosal smooth muscle has also been reported. However, it is unclear whether CCSMCs can generate NO. To elucidate whether CCSMCs can synthesize NO and whether NO synthesis enhances VEGF synthesis via the NO/cGMP pathway. Corpus cavernosal cells were cultured and characterized by immunocytochemistry and immunoblotting. CCSMCs were treated with L-arg. CCSMCs were also incubated with L-arg and with vardenafil, an inhibitor of PDE-5. Release of NO from cells was confirmed by assay of NO metabolites (NOx). Intracellular cGMP concentration and VEGF concentration in the medium were measured. Isolated cells were determined to be CCSMCs. The expression of eNOS by CCSMCs was also identified. NOx and cGMP levels in the L-arg-treated group were significantly greater than those in the control group. VEGF and cGMP levels in the L-arg-treated group were also significantly greater than those in the control group. VEGF and cGMP levels in the L-arg + vardenafil-treated group were significantly greater than those in the L-arg-treated group and the control group. CCSMCs express eNOS and synthesize NO. NO synthesis leads to enhancement of VEGF synthesis via the NO/cGMP pathway. Combined L-arg and vardenafil treatment, which can enhance VEGF production, may provide a novel therapeutic strategy for the treatment of erectile dysfunction as well as endothelial dysfunction in general.
Mu, Jie; Abe, Yoshiko; Tsutsui, Tateki; Yamamoto, Norihiko; Tai, Xu‐Guang; Niwa, Ohtsura; Tsujimura, Takahiro; Sato, Bunzo; Terano, Hiroshi; Hamaoka, Toshiyuki
1996-01-01
The present study investigates the relationship between in vivo growth/metastasis of tumor cells and their capacity to produce the vascular endothelial growth factor (VEGF), as well as the regulation of tumor growth/metastasis using an angiogenesis‐inhibitory drug. Two cloned tumor cell lines designated OV‐LM and OV‐HM were isolated from a murine ovarian carcinoma OV2944. OV‐LM and OV‐HM cells grew in cultures at comparable rates. However, when transplanted s.c. into syngeneic mice, OV‐HM exhibited a faster growth rate and a much higher incidence of metastasis to lymph nodes and lung. Histologically, intense neovascularization was detected in sections of OV‐HM but not of OV‐LM tumor. OV‐HM and OV‐LM tumor cells obtained from in vitro cultures expressed high and low levels of VEGF mRNA, respectively. A difference in VEGF mRNA expression was much more clearly observed between RNAs prepared from fresh OV‐HM and OV‐LM tumor masses: RNA from OV‐HM contained larger amounts of VEGF mRNA, whereas RNA from OV‐LM exhibited only marginal levels of VEGF mRNA. An angiogenesis‐inhibitory drug, FR118487 inhibited the VEGF‐mediated in vitro growth of endothelial cells but did not affect the expression in vitro of VEGF mRNA by OV‐HM tumor cells. Intraperitoneal injections of FR118487 into mice bearing OV‐HM tumors resulted in: (i) a subsequent growth inhibition of primary tumors; (ii) a marked decrease in neovascularization inside tumor masses expressing comparable levels of VEGF mRNA to those detected in control OV‐HM masses; and (iii) almost complete inhibition of metastasis to lymph nodes and lung. These results indicate that growth/metastasis of tumor cells correlates with their VEGF‐producing capacity and that an angiogenesis inhibitor, FR118487, inhibits tumor growth and metastasis through mechanism(s) including the suppression of VEGF function in vivo. PMID:8878460
Davydova, Natalia; Harris, Nicole C.; Roufail, Sally; Paquet-Fifield, Sophie; Ishaq, Musarat; Streltsov, Victor A.; Williams, Steven P.; Karnezis, Tara; Stacker, Steven A.; Achen, Marc G.
2016-01-01
VEGF-C and VEGF-D are secreted glycoproteins that induce angiogenesis and lymphangiogenesis in cancer, thereby promoting tumor growth and spread. They exhibit structural homology and activate VEGFR-2 and VEGFR-3, receptors on endothelial cells that signal for growth of blood vessels and lymphatics. VEGF-C and VEGF-D were thought to exhibit similar bioactivities, yet recent studies indicated distinct signaling mechanisms (e.g. tumor-derived VEGF-C promoted expression of the prostaglandin biosynthetic enzyme COX-2 in lymphatics, a response thought to facilitate metastasis via the lymphatic vasculature, whereas VEGF-D did not). Here we explore the basis of the distinct bioactivities of VEGF-D using a neutralizing antibody, peptide mapping, and mutagenesis to demonstrate that the N-terminal α-helix of mature VEGF-D (Phe93–Arg108) is critical for binding VEGFR-2 and VEGFR-3. Importantly, the N-terminal part of this α-helix, from Phe93 to Thr98, is required for binding VEGFR-3 but not VEGFR-2. Surprisingly, the corresponding part of the α-helix in mature VEGF-C did not influence binding to either VEGFR-2 or VEGFR-3, indicating distinct determinants of receptor binding by these growth factors. A variant of mature VEGF-D harboring a mutation in the N-terminal α-helix, D103A, exhibited enhanced potency for activating VEGFR-3, was able to promote increased COX-2 mRNA levels in lymphatic endothelial cells, and had enhanced capacity to induce lymphatic sprouting in vivo. This mutant may be useful for developing protein-based therapeutics to drive lymphangiogenesis in clinical settings, such as lymphedema. Our studies shed light on the VEGF-D structure/function relationship and provide a basis for understanding functional differences compared with VEGF-C. PMID:27852824
Daft, Paul G; Yang, Yang; Napierala, Dobrawa; Zayzafoon, Majd
2015-01-01
Osteosarcoma (OS) is a hyperproliferative malignant tumor that requires a high vascular density to maintain its large volume. Vascular Endothelial Growth Factor (VEGF) plays a crucial role in angiogenesis and acts as a paracrine and autocrine agent affecting both endothelial and tumor cells. The alpha-Ca2+/Calmodulin kinase two (α-CaMKII) protein is an important regulator of OS growth. Here, we investigate the role of α-CaMKII-induced VEGF in the growth and tumorigenicity of OS. We show that the pharmacologic and genetic inhibition of α-CaMKII results in decreases in VEGF gene expression (50%) and protein secretion (55%), while α- CaMKII overexpression increases VEGF gene expression (250%) and protein secretion (1,200%). We show that aggressive OS cells (143B) express high levels of VEGF receptor 2 (VEGFR-2) and respond to exogenous VEGF (100nm) by increasing intracellular calcium (30%). This response is ameliorated by the VEGFR inhibitor CBO-P11, suggesting that secreted VEGF results in autocrine stimulated α-CaMKII activation. Furthermore, we show that VEGF and α-CaMKII inhibition decreases the transactivation of the HIF-1α and AP-1 reporter constructs. Additionally, chromatin immunoprecipitation assay shows significantly decreased binding of HIF-1α and AP-1 to their responsive elements in the VEGF promoter. These data suggest that α-CaMKII regulates VEGF transcription by controlling HIF-1α and AP-1 transcriptional activities. Finally, CBO-P11, KN-93 (CaMKII inhibitor) and combination therapy significantly reduced tumor burden in vivo. Our results suggest that VEGF-induced OS tumor growth is controlled by CaMKII and dual therapy by CaMKII and VEGF inhibitors could be a promising therapy against this devastating adolescent disease.
Daft, Paul G.; Yang, Yang; Napierala, Dobrawa; Zayzafoon, Majd
2015-01-01
Osteosarcoma (OS) is a hyperproliferative malignant tumor that requires a high vascular density to maintain its large volume. Vascular Endothelial Growth Factor (VEGF) plays a crucial role in angiogenesis and acts as a paracrine and autocrine agent affecting both endothelial and tumor cells. The alpha-Ca2+/Calmodulin kinase two (α-CaMKII) protein is an important regulator of OS growth. Here, we investigate the role of α-CaMKII-induced VEGF in the growth and tumorigenicity of OS. We show that the pharmacologic and genetic inhibition of α-CaMKII results in decreases in VEGF gene expression (50%) and protein secretion (55%), while α- CaMKII overexpression increases VEGF gene expression (250%) and protein secretion (1,200%). We show that aggressive OS cells (143B) express high levels of VEGF receptor 2 (VEGFR-2) and respond to exogenous VEGF (100nm) by increasing intracellular calcium (30%). This response is ameliorated by the VEGFR inhibitor CBO-P11, suggesting that secreted VEGF results in autocrine stimulated α-CaMKII activation. Furthermore, we show that VEGF and α-CaMKII inhibition decreases the transactivation of the HIF-1α and AP-1 reporter constructs. Additionally, chromatin immunoprecipitation assay shows significantly decreased binding of HIF-1α and AP-1 to their responsive elements in the VEGF promoter. These data suggest that α-CaMKII regulates VEGF transcription by controlling HIF-1α and AP-1 transcriptional activities. Finally, CBO-P11, KN-93 (CaMKII inhibitor) and combination therapy significantly reduced tumor burden in vivo. Our results suggest that VEGF-induced OS tumor growth is controlled by CaMKII and dual therapy by CaMKII and VEGF inhibitors could be a promising therapy against this devastating adolescent disease. PMID:25860662
Zhang, Hao-Xuan; Zhang, Xiu-Ping; Xiao, Gui-Yong; Hou, Yong; Cheng, Lei; Si, Meng; Wang, Shuai-Shuai; Li, Yu-Hua; Nie, Lin
2016-03-01
Avascular necrosis of the femoral head (ANFH) is difficult to treat due to high pressure and hypoxia, and reduced levels of growth factors such as bone morphogenetic protein (BMP), and vascular endothelial growth factor (VEGF). We generated a novel calcium phosphate (CPC) composite scaffold, which contains BMP-VEGF-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (BMP-VEGF-PLGA-CPC). The BMP-VEGF-loaded microspheres have an encapsulation efficiency of 89.15% for BMP, and 78.55% for VEGF. The BMP-VEGF-PLGA-CPC scaffold also demonstrated a porosity of 62% with interconnected porous structures, and pore sizes of 219 μm and compressive strength of 6.60 MPa. Additionally, bone marrow mesenchymal stem cells (BMSCs) were seeded on scaffolds in vitro. Further characterization showed that the BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. Using a rabbit model of ANFH, BMP-VEGF-PLGA-CPC scaffolds were implanted into the bone tunnels of core decompression in the femoral head for 6 and 12 weeks. Radiographic and histological analysis demonstrated that the BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. These results indicate that the BMP-VEGF-PLGA-CPC scaffold may improve the therapeutic effect of core decompression surgery and be used as a treatment for ANFH. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Marti, Hugo H.; Risau, Werner
1998-12-01
Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia. VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression. Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus. Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver. VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia. Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.
Ding, Qingfeng; Sun, Peng; Zhou, Hao; Wan, Bowen; Yin, Jian; Huang, Yao; Li, Qingqing; Yin, Guoyong; Fan, Jin
2018-07-01
Intermittent low‑dose injections of parathyroid hormone (PTH) have been reported to exert bone anabolic effects and to promote fracture healing. As an important proangiogenic cytokine, vascular endothelial growth factor (VEGF) is secreted by bone marrow mesenchymal stem cells (BMSCs) and osteoblasts, and serves a crucial regulatory role in the process of vascular development and regeneration. To investigate whether lack of endogenous PTH causes reduced angiogenic capacity and thereby delays the process of fracture healing by downregulating the VEGF signaling pathway, a PTH knockout (PTHKO) mouse fracture model was generated. Fracture healing was observed using X‑ray and micro‑computerized tomography. Bone anabolic and angiogenic markers were analyzed by immunohistochemistry and western blot analysis. The expression levels of VEGF and associated signaling pathways in murine BMSC‑derived osteoblasts were measured by quantitative polymerase chain reaction and western blot analysis. The expression levels of protein kinase A (PKA), phosphorylated‑serine/threonine protein kinase (pAKT), hypoxia‑inducible factor‑1α (HIF1α) and VEGF were significantly decreased in BMSC‑derived osteoblasts from PTHKO mice. In addition, positive platelet endothelial cell adhesion molecule staining was reduced in PTHKO mice, as determined by immunohistochemistry. The expression levels of HIF1α, VEGF, runt‑related transcription factor 2, osteocalcin and alkaline phosphatase were also decreased in PTHKO mice, and fracture healing was delayed. In conclusion, lack of endogenous PTH may reduce VEGF expression in BMSC‑derived osteoblasts by downregulating the activity of the PKA/pAKT/HIF1α/VEGF pathway, thus affecting endochondral bone formation by causing a reduction in angiogenesis and osteogenesis, ultimately leading to delayed fracture healing.
The impact of KRAS mutations on VEGF-A production and tumour vascular network
2013-01-01
Background The malignant potential of tumour cells may be influenced by the molecular nature of KRAS mutations being codon 13 mutations less aggressive than codon 12 ones. Their metabolic profile is also different, with an increased anaerobic glycolytic metabolism in cells harbouring codon 12 KRAS mutations compared with cells containing codon 13 mutations. We hypothesized that this distinct metabolic behaviour could be associated with different HIF-1α expression and a distinct angiogenic profile. Methods Codon13 KRAS mutation (ASP13) or codon12 KRAS mutation (CYS12) NIH3T3 transfectants were analyzed in vitro and in vivo. Expression of HIF-1α, and VEGF-A was studied at RNA and protein levels. Regulation of VEGF-A promoter activity was assessed by means of luciferase assays using different plasmid constructs. Vascular network was assessed in tumors growing after subcutaneous inoculation. Non parametric statistics were used for analysis of results. Results Our results show that in normoxic conditions ASP13 transfectants exhibited less HIF-1α protein levels and activity than CYS12. In contrast, codon 13 transfectants exhibited higher VEGF-A mRNA and protein levels and enhanced VEGF-A promoter activity. These differences were due to a differential activation of Sp1/AP2 transcription elements of the VEGF-A promoter associated with increased ERKs signalling in ASP13 transfectants. Subcutaneous CYS12 tumours expressed less VEGF-A and showed a higher microvessel density (MVD) than ASP13 tumours. In contrast, prominent vessels were only observed in the latter. Conclusion Subtle changes in the molecular nature of KRAS oncogene activating mutations occurring in tumour cells have a major impact on the vascular strategy devised providing with new insights on the role of KRAS mutations on angiogenesis. PMID:23506169
Simultaneous EGFR and VEGF Alterations in Non-Small Cell Lung Carcinoma Based on Tissue Microarrays
Tsiambas, Evangelos; Stamatelopoulos, Athanasios; Karameris, Andreas; Panagiotou, Ioannis; Rigopoulos, Dimitrios; Chatzimichalis, Antonios; Bouros, Demosthenes; Patsouris, Efstratios
2007-01-01
Background: Epidermal growth factor receptor (EGFR) overexpression is observed in significant proportions of non-small cell lung carcinomas (NSCLC). Furthermore, overactivation of vascular endothelial growth factor (VEGF) leads to increased angiogenesis implicated as an important factor in vascularization of those tumors. Patients and Methods: Using tissue microarray technology, forty-paraffin (n = 40) embedded, histologically confirmed primary NSCLCs were cored and re-embedded into a recipient block. Immunohistochemistry was performed for the determination of EGFR and VEGF protein levels which were evaluated by the performance of computerized image analysis. EGFR gene amplification was studied by chromogenic in situ hybridization based on the use of EGFR gene and chromosome 7 centromeric probes. Results: EGFR overexpression was observed in 23/40 (57.5%) cases and was correlated to the stage of the tumors (p = 0.001), whereas VEGF was overexpressed in 35/40 (87.5%) cases and was correlated to the stage of the tumors (p = 0.005) and to the smoking history of the patients (p = 0.016). Statistical significance was assessed comparing the protein levels of EGFR and VEGF (p = 0.043, k = 0.846). EGFR gene amplification was identified in 2/40 (5%) cases demonstrating no association to its overall protein levels (p = 0.241), whereas chromosome 7 aneuploidy was detected in 7/40 (17.5%) cases correlating to smoking history of the patients (p = 0.013). Conclusions: A significant subset of NSCLC is characterized by EGFR and VEGF simultaneous overexpression and maybe this is the eligible target group for the application of combined anti-EGFR/VEGF targeted therapies at the basis of genetic deregulation (especially gene amplification for EGFR). PMID:19455247
Willmann, Jürgen K; Chen, Kai; Wang, Hui; Paulmurugan, Ramasamy; Rollins, Mark; Cai, Weibo; Wang, David S; Chen, Ian Y; Gheysens, Olivier; Rodriguez-Porcel, Martin; Chen, Xiaoyuan; Gambhir, Sanjiv S
2008-02-19
Vascular endothelial growth factor-121 (VEGF121), an angiogenic protein secreted in response to hypoxic stress, binds to VEGF receptors (VEGFRs) overexpressed on vessels of ischemic tissue. The purpose of this study was to evaluate 64Cu-VEGF121 positron emission tomography for noninvasive spatial, temporal, and quantitative monitoring of VEGFR2 expression in a murine model of hindlimb ischemia with and without treadmill exercise training. 64Cu-labeled VEGF121 and a VEGF mutant were tested for VEGFR2 binding specificity in cell culture. Mice (n=58) underwent unilateral ligation of the femoral artery, and postoperative tissue ischemia was assessed with laser Doppler imaging. Longitudinal VEGFR2 expression in exercised and nonexercised mice was quantified with 64Cu-VEGF121 positron emission tomography at postoperative day 8, 15, 22, and 29 and correlated with postmortem gamma-counting. Hindlimbs were excised for immunohistochemistry, Western blotting, and microvessel density measurements. Compared with the VEGF mutant, VEGF121 showed specific binding to VEGFR2. Perfusion in ischemic hindlimbs fell to 9% of contralateral hindlimb on postoperative day 1 and recovered to 82% on day 29. 64Cu-VEGF121 uptake in ischemic hindlimbs increased significantly (P < 0.001) from a control level of 0.61+/-0.17% ID/g (percentage of injected dose per gram) to 1.62+/-0.35% ID/g at postoperative day 8, gradually decreased over the following 3 weeks (0.59+/-0.14% ID/g at day 29), and correlated with gamma-counting (R2 = 0.99). Compared with nonexercised mice, 64Cu-VEGF121 uptake was increased significantly (P < or = 0.0001) in exercised mice (at day 15, 22, and 29) and correlated with VEGFR2 levels as obtained by Western blotting (R2 = 0.76). Ischemic hindlimb tissue stained positively for VEGFR2. In exercised mice, microvessel density was increased significantly (P<0.001) compared with nonexercised mice. 64Cu-VEGF121 positron emission tomography allows longitudinal spatial and quantitative monitoring of VEGFR2 expression in murine hindlimb ischemia and indirectly visualizes enhanced angiogenesis stimulated by treadmill exercise training.
Is VEGF under-expressed in Indian children with Perthes disease?
Tiwari, V; Poudel, R R; Khan, S A; Mehra, S; Chauhan, S S; Raje, A
2018-04-01
The role of vascular endothelial growth factor (VEGF) after ischaemic necrosis of the femoral head in Legg-Calve-Perthes disease (LCPD) has not been adequately studied in humans, especially in Indian population. Therefore, we aimed to evaluate the serum levels of VEGF-A in Indian children with various stages of LCPD and compare them with those of an age- and sex-matched control group of healthy children. In this case-control study, we enrolled 42 children (below 14 years age) suffering from LCPD and 21 age- and sex-matched healthy controls. Patients were classified radiographically according to Waldenstrom's classification. Serum VEGF-A was estimated by sandwich enzyme-linked immunosorbent assay technique. The serum values were compared between the patient group and the control group, as well as between the Waldenstrom subgroups. Results were expressed as means with ranges or median with interquartile range. The mean age in the patient as well as the control group was 9 years (range 4-13 years). The median value (interquartile range) of serum VEGF-A was 162.5 pg/ml (673.75 pg/ml) in the patient group and 652 pg/ml (190.5 pg/ml) in the control group (p = 0.013). When compared between lower Waldenstrom stages (initial stage + stage of fragmentation) and higher Waldenstrom stages (re-ossification stage + stage of healing), the mean values of serum VEGF-A were 464.7 pg/ml (range 0-2211 pg/ml) and 301.1 pg/ml (range 0-1910 pg/ml), respectively (p = 0.305). VEGF is under-expressed in Indian children suffering from LCPD. As VEGF acts as a key regulator of endochondral ossification, our finding may open new therapeutic approaches to the disease. Also, serum VEGF may act as a valuable marker for the follow-up of the disease. Our study also provides baseline data about serum VEGF-A levels in Indian cohort of LCPD patients. Future multi-centre studies are warranted with a larger sample size to fully appreciate the patho-physiological changes in VEGF occurring in LCPD.
Fernández, Jaime G; Rodríguez, Diego A; Valenzuela, Manuel; Calderon, Claudia; Urzúa, Ulises; Munroe, David; Rosas, Carlos; Lemus, David; Díaz, Natalia; Wright, Mathew C; Leyton, Lisette; Tapia, Julio C; Quest, Andrew Fg
2014-09-09
Early in cancer development, tumour cells express vascular endothelial growth factor (VEGF), a secreted molecule that is important in all stages of angiogenesis, an essential process that provides nutrients and oxygen to the nascent tumor and thereby enhances tumor-cell survival and facilitates growth. Survivin, another protein involved in angiogenesis, is strongly expressed in most human cancers, where it promotes tumor survival by reducing apoptosis as well as favoring endothelial cell proliferation and migration. The mechanisms by which cancer cells induce VEGF expression and angiogenesis upon survivin up-regulation remain to be fully established. Since the PI3K/Akt signalling and β-catenin-Tcf/Lef dependent transcription have been implicated in the expression of many cancer-related genes, including survivin and VEGF, we evaluated whether survivin may favor VEGF expression, release from tumor cells and induction of angiogenesis in a PI3K/Akt-β-catenin-Tcf/Lef-dependent manner. Here, we provide evidence linking survivin expression in tumor cells to increased β-catenin protein levels, β-catenin-Tcf/Lef transcriptional activity and expression of several target genes of this pathway, including survivin and VEGF, which accumulates in the culture medium. Alternatively, survivin downregulation reduced β-catenin protein levels and β-catenin-Tcf/Lef transcriptional activity. Also, using inhibitors of PI3K and the expression of dominant negative Akt, we show that survivin acts upstream in an amplification loop to promote VEGF expression. Moreover, survivin knock-down in B16F10 murine melanoma cells diminished the number of blood vessels and reduced VEGF expression in tumors formed in C57BL/6 mice. Finally, in the chick chorioallantoid membrane assay, survivin expression in tumor cells enhanced VEGF liberation and blood vessel formation. Importantly, the presence of neutralizing anti-VEGF antibodies precluded survivin-enhanced angiogenesis in this assay. These findings provide evidence for the existance of a posititve feedback loop connecting survivin expression in tumor cells to PI3K/Akt enhanced β-catenin-Tcf/Lef-dependent transcription followed by secretion of VEGF and angiogenesis.
Zhou, Zhanmei
2014-01-01
In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin was administered in 12 week-old streptozotocin-induced male Sprague Dawley rats. The levels of VEGF-A, AKT, phosphorylated Ser473-AKT, phosphorylated Thr308-AKT, nephrin, angiotensin II (Ang II), angiotensin type II receptor 1 (ATR1) were examined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemistry. Interactions between phosphorylated Thr308-AKT and either nephrin in podocytes or Ang II in renal tubules were studied, respectively, using confocal immunofluorescence microscopy and immunoprecipitation. Silencing VEGF-A in podocytes upregulated phosphorylated Thr308-AKT and nephrin. Silencing VEGF-A in NRK-52E cells upregulated phosphorylated Thr308-AKT while downregulated Ang II and ATR1. MK-2206 enhanced VEGF-A expression in both podocytes and NRK-52E cells by inhibiting AKT activities. In diabetic rat kidneys, VEGF-A was upregulated and phosphorylated Thr308-AKT colocalized with either nephrin in podocytes or Ang II in renal tubules. With the endostatin treatment, the level of VEGF-A decreased while phosphorylated Thr308-AKT increased in both glomeruli and renal tubules. Treatment with endostatin upregulated nephrin in podocytes while downregulated Ang II and AT1R in renal tubules. Glomerular mesangial expansion was attenuated by the endostatin treatment, however, differences did not reach statistical significance. Endostatin ameliorated the interstitial fibrosis, urine albumin excretion rate (UAER) and albumin to creatinine ratio. We conclude that phosphorylated Thr308-AKT regulates VEGF-A expression by interacting with either nephrin in glomeruli or Ang II in renal tubules. Antiangiogenic treatment improves renal injury and function in early experimental diabetes. PMID:24759991
Bauer, Andrew J; Patel, Aneeta; Terrell, Richard; Doniparthi, Krishna; Saji, Motoyasu; Ringel, Matthew; Tuttle, R Michael; Francis, Gary L
2003-01-01
Papillary thyroid carcinomas (PTC) are the most common thyroid cancers in children. Most are successfully treated with surgery and radioactive iodine, but some persist. PTC express high levels of vascular endothelial growth factor (VEGF) and VEGF receptor (Flt-1). PTC with the most intense expression of VEGF have the greatest recurrence risk. We hypothesized that blockade of VEGF would inhibit PTC growth. To test this, we used systemic VEGF monoclonal antibody (VEGF-MAb) to treat PTC xenografts in nude mice. Treated animals (n = 9) received 200 microg VEGF-MAb by daily i.p. injection for 10 wk, while control animals (n = 9) received vehicle alone. Tumor size was significantly reduced in the treatment group (0.28 +/- 0.06 vs 1.05 +/- 0.25 g, p = 0.008). VEGF immunostaining was more intense (2.57 +/- 0.30 vs 1.75 +/- 0.25, p = 0.06) and the number of p53 positive cells was increased (1.66 +/- 0.24 vs 0.83 +/- 0.31, p = 0.048) in treated tumors. Animal weight was similar in both groups (29.1 +/- 1.1 vs 27.4 +/- 1.1 g, p = 0.30). In conclusion, systemic VEGF-MAb significantly reduced the growth of PTC, suggesting that VEGF-MAb might be useful for treatment of resistant PTC.
Ciołkiewicz, Mariusz; Kuryliszyn-Moskal, Anna; Klimiuk, Piotr Adrian
2010-02-01
The aim of the study was to evaluate the correlation between selected serum endothelial cell activation markers such as vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), soluble thrombomodulin (sTM), soluble E-selectin (sE-selectin), disease activity, and microvascular changes determined by nailfold capillaroscopy in patients with systemic lupus erythematosus (SLE). Serum levels of VEGF, ET-1, sTM, and sE-selectin were determined by an enzyme-linked immunosorbent assay in 80 SLE patients. The disease activity was measured with Systemic Lupus Erythematosus Disease Activity Index score. Nailfold capillaroscopy was performed in all patients. Positive correlation was found between VEGF and both ET-1 (r = 0.294, p < 0.01) and sE-selectin (r = 0.274, p < 0.05) serum levels as well as between sTM and ET-1 (r = 0.273, p < 0.05) serum concentrations. We noticed also positive correlation between VEGF (r = 0.224, p < 0.05) and ET-1 (r = 0.471, p < 0.001) serum levels and disease activity, and also between VEGF serum concentration and grade of morphological changes observed by nailfold capillaroscopy (r = 0.458, p < 0.001). There was also positive correlation between capillaroscopic score and disease activity (r = 0.339, p < 0.01). Our data suggest that correlation between VEGF and both ET-1 and E-selectin serum levels as well as between sTM and ET-1 serum concentrations may reflect their participation in the pathogenesis of SLE. VEGF seems to reflect changes in microcirculation in the course of SLE, visualised by nailfold capillaroscopy. The relationship between changes in nailfold capillaroscopy, endothelial cell activation markers, and the clinical activity of SLE points to an important role of microvascular abnormalities in the clinical manifestation of the disease.
Ahmadi, Alireza; Gharipour, Mojgan; Arabzadeh, Gholamreza; Moin, Payam; Hashemipour, Mahin; Kelishadi, Roya
2014-01-01
The present study aims to explore the effects of vitamin E and omega-3 on endothelial function indicators among adolescents with metabolic syndrome. In a randomized, double blind, and placebo-controlled trial, 90 young individuals, aged 10 to 18 years, with metabolic syndrome were randomly assigned to receive either vitamin E tablets (400 IU/day) or omega-3 tablets (2.4 gr/day) or placebo. For assessing endothelial functional state, the serum level of vascular endothelial growth factor (VEGF) was measured by ELISA test. The use of omega-3 supplementation for eight weeks led to significant increase in serum HDL level compared with the group treated with vitamin E or placebo group. In this regard, no significant correlations were found between the change in VEGF and baseline levels of other markers including anthropometric indices and serum lipids. Omega-3 could significantly reduce VEGF with the presence of other baseline variables (Beta = -12.55; P = 0.012). The administration of omega-3 can effectively improve endothelial function in adolescents with metabolic syndrome by reducing the level of serum VEGF, as a major index for atherosclerosis progression and endothelial destabilization. Omega-3 can be proposed as a VEGF antagonist for improving endothelial function in metabolic syndrome. The clinical implications of our findings should be assessed in future studies.
Xiao, Chao-Wu; Wood, Carla M; Swist, Eleonora; Nagasaka, Reiko; Sarafin, Kurtis; Gagnon, Claude; Fernandez, Lois; Faucher, Sylvie; Wu, Hong-Xing; Kenney, Laura; Ratnayake, Walisundera M N
2016-01-01
This study compared cardio-metabolic disease risk factors and their associations with serum vitamin D and omega-3 status in South Asian (SAC) and White Canadians (WC) living in Canada's capital region. Fasting blood samples were taken from 235 SAC and 279 WC aged 20 to 79 years in Ottawa, and 22 risk factors were measured. SAC men and women had significantly higher fasting glucose, insulin, homeostasis model assessment for insulin resistance (HOMA-IR), apolipoprotein B (ApoB), ratios of total (TC) to HDL cholesterol (HDLC) and ApoB to ApoA1, leptin, E-selectin, P-selectin, ICAM-1 and omega-3 (p < 0.05), but lower HDLC, ApoA1, vitamin D levels than WC (p < 0.05). SAC women had higher CRP and VEGF than WC women. Adequate (50-74.9 nmol/L) or optimal (≥ 75 nmol/L) levels of 25(OH)D were associated with lower BMI, glucose, insulin, HOMA-IR, TG, TC, low density lipoprotein cholesterol (LDLC), ApoB/ApoA1 ratio, CRP, leptin, and higher HDLC, ApoA1, omega-3 index, L-selectin levels in WC, but not in SAC. Intermediate (>4%-<8%) or high (≥ 8%) levels of omega-3 indices were related to lower E-selectin, P-selectin, ICAM-1 and higher HDLC, 25(OH)D levels in WC, but not in SAC. The BMIs of ≤ 25 kg/m2 were related to lower LDLC, ApoB, VEGF, creatinine and higher 25(OH)D in WC, but not in SAC. The associations of vitamin D, omega-3 status, BMI and risk factors were more profound in the WC than SAC. Compared to WC, vitamin D status and omega-3 index may not be good predictive risk factors for the prevalence of CVD and diabetes in SAC.
Xiao, Chao-Wu; Wood, Carla M.; Swist, Eleonora; Nagasaka, Reiko; Sarafin, Kurtis; Gagnon, Claude; Fernandez, Lois; Faucher, Sylvie; Wu, Hong-Xing; Kenney, Laura; Ratnayake, Walisundera M. N.
2016-01-01
Objectives This study compared cardio-metabolic disease risk factors and their associations with serum vitamin D and omega-3 status in South Asian (SAC) and White Canadians (WC) living in Canada’s capital region. Methods Fasting blood samples were taken from 235 SAC and 279 WC aged 20 to 79 years in Ottawa, and 22 risk factors were measured. Results SAC men and women had significantly higher fasting glucose, insulin, homeostasis model assessment for insulin resistance (HOMA-IR), apolipoprotein B (ApoB), ratios of total (TC) to HDL cholesterol (HDLC) and ApoB to ApoA1, leptin, E-selectin, P-selectin, ICAM-1 and omega-3 (p < 0.05), but lower HDLC, ApoA1, vitamin D levels than WC (p < 0.05). SAC women had higher CRP and VEGF than WC women. Adequate (50–74.9 nmol/L) or optimal (≥ 75 nmol/L) levels of 25(OH)D were associated with lower BMI, glucose, insulin, HOMA-IR, TG, TC, low density lipoprotein cholesterol (LDLC), ApoB/ApoA1 ratio, CRP, leptin, and higher HDLC, ApoA1, omega-3 index, L-selectin levels in WC, but not in SAC. Intermediate (>4%-<8%) or high (≥ 8%) levels of omega-3 indices were related to lower E-selectin, P-selectin, ICAM-1 and higher HDLC, 25(OH)D levels in WC, but not in SAC. The BMIs of ≤ 25 kg/m2 were related to lower LDLC, ApoB, VEGF, creatinine and higher 25(OH)D in WC, but not in SAC. Conclusions The associations of vitamin D, omega-3 status, BMI and risk factors were more profound in the WC than SAC. Compared to WC, vitamin D status and omega-3 index may not be good predictive risk factors for the prevalence of CVD and diabetes in SAC. PMID:26809065
Increased expression of EMMPRIN and VEGF in the rat brain after gamma irradiation.
Wei, Ming; Li, Hong; Huang, Huiling; Xu, Desheng; Zhi, Dashi; Liu, Dong; Zhang, Yipei
2012-03-01
The extracellular matrix metalloproteinase inducer (EMMPRIN) has been known to play a key regulatory role in pathological angiogenesis. A elevated activation of vascular endothelial growth factor (VEGF) following radiation injury has been shown to mediate blood-brain barrier (BBB) breakdown. However, the roles of EMMPRIN and VEGF in radiation-induced brain injury after gamma knife surgery (GKS) are not clearly understood. In this study, we investigated EMMPRIN changes in a rat model of radiation injury following GKS and examined potential associations between EMMPRIN and VEGF expression. Adult male rats were subjected to cerebral radiation injury by GKS under anesthesia. We found that EMMPRIN and VEGF expression were markedly upregulated in the target area at 8-12 weeks after GKS compared with the control group by western blot, immunohistochemistry, and RT-PCR analysis. Immunofluorescent double staining demonstrated that EMMPRIN signals colocalized with caspase-3 and VEGF-positive cells. Our data also demonstrated that increased EMMPRIN expression was correlated with increased VEGF levels in a temporal manner. This is the first study to show that EMMPRIN and VEGF may play a role in radiation injuries of the central nervous system after GKS.
Kannan, Ram; Zhang, Ning; Sreekumar, Parameswaran G; Spee, Christine K; Rodriguez, Anthony; Barron, Ernesto; Hinton, David R
2006-12-22
To investigate whether oxidative stress modulates vascular endothelial growth factor (VEGF)-A and VEGF-C expression and polarized secretion in a human retinal pigment epithelium cell line (ARPE-19). Long-term culture of ARPE-19 cells in Dulbecco's modified Eagle medium (DMEM)/F12 containing 1% fetal bovine serum (FBS) on transwell filters (12 mm or 6 mm, pore size 0.4 microm) was performed to produce polarized retinal pigment epithelium (RPE) monolayers. The integrity of polarized monolayer was established by measurement of transepithelial resistance (TER) and presence of tight junctions assessed by zonula occludens (ZO-1) and occludin expression and apical Na/K ATPase localization. Paracellular permeability was studied using radiolabeled mannitol. Confluent cells were treated with tertiary butyl hydrogen peroxide (tBH) for varying durations (0-5 h) and doses (50-200 microM). VEGF-A and -C expression was evaluated by western blot and quantitative RT-PCR, while secretion to the apical and basolateral surfaces was quantitated by ELISA. Polarity of ARPE-19 cells was verified by the localization of tight junction proteins, ZO-1 and its binding partner occludin by confocal microscopy as well as by localization of Na,K-ATPase at the apical surface. The TER in confluent ARPE-19 cells averaged 48.7+/-2.1 Omega. cm(2) and tBH treatment (0-5 h) did not alter TER significantly (46.9+/-1.9 Omega. cm(2); p>0.05 versus controls) or ZO-1 expression. Whole cell mRNA in nonpolarized ARPE-19 increased with tBH at 5 h both for VEGF-A and VEGF-C and the increase was significant (p<0.05 vs controls). A similar, maximal increase at 5 h tBH treatment was also observed for VEGF-A and VEGF-C cellular protein levels. The secretion of VEGF-A and VEGF-C in nonpolarized ARPE showed an increase with tBH exposure. The levels of secretion of VEGF-A and -C were significantly higher in polarized monolayers and were stimulated significantly with tBH at both apical and basolateral domains. The secretion of VEGF-A increased with 150 microM of tBH treatment as a function of time (1-5 h) with maximal increases at 5 h from 410 to 2080 pg/10(6) cells on the apical and 290 to 1680 pg/10(6) cells on basolateral domains. The pattern of VEGF-C secretion was similar. VEGF-A secretion was dose-dependent for the tBH range of 50-200 microM and apical secretion tended to be higher than basolateral secretion. Our data show that oxidative stress to RPE from tBH upregulates secretion of both VEGF-A and C. The secretion to the apical side was higher than that of basolateral side for VEGF-A and C. Given the role of VEGF in choroidal neovascularization, these data may be of value in understanding pathogenic mechanisms and designing antiangiogenic therapies.
Ghorbanzadeh, V; Mohammadi, M; Dariushnejad, H; Chodari, L; Mohaddes, G
2016-10-01
Hyperglycemia is the main risk factor for microvascular complications in type 2 diabetes. Crocin and voluntary exercise have anti-hyperglycemic effects in diabetes. In this research, we evaluated the effects of crocin and voluntary exercise alone or combined on glycemia control and heart level of VEGF-A. Animals were divided into eight groups as: control (con), diabetes (Dia), crocin (Cro), voluntary exercise (Exe), crocin and voluntary exercise (Cro-Exe), diabetic-crocin (Dia-Cro), diabetic-voluntary exercise (Dia-Exe), diabetic-crocin-voluntary exercise (Dia-Cro-Exe). Type 2 diabetes was induced by a high-fat diet (4 weeks) and injection of streptozotocin (STZ) (i.p, 35 mg/kg). Animals received oral administration of crocin (50 mg/kg) or performed voluntary exercise alone or together for 8 weeks. Oral glucose tolerance test (OGTT) was performed on overnight fasted control, diabetic and treated rats after 8 weeks of treatment. Then, serum insulin and heart VEGF-A protein levels were measured. Crocin combined with voluntary exercise significantly decreased blood glucose levels (p < 0.001) and insulin resistance (HOMA-IR) (p < 0.001) compared to diabetic group. VEGF-A level was significantly (p < 0.01) lower in Dia group compared to control group. The combination of crocin and voluntary exercise significantly enhanced VEGF-A protein levels in Dia-Cro-Exe and Cro-Exe group compared to diabetic and control groups, respectively; p < 0.001 and p < 0.05. Crocin combined with voluntary exercise improved insulin resistance (HOMA-IR) and reduced glucose levels in diabetic rats. Since both crocin and voluntary exercise can increase VEGF-A protein expression in heart tissue, they probably are able to increase angiogenesis in diabetic animals.
Dagher, Adelle; Curatolo, Adam; Sachdev, Monisha; Stephens, Alisa J; Mullins, Chris; Landis, J Richard; van Bokhoven, Adrie; El-Hayek, Andrew; Froehlich, John W; Briscoe, Andrew C; Roy, Roopali; Yang, Jiang; Pontari, Michel A; Zurakowski, David; Lee, Richard S; Moses, Marsha A
2017-07-01
To examine a series of candidate markers for urological chronic pelvic pain syndrome (UCPPS), selected based on their proposed involvement in underlying biological processes so as to provide new insights into pathophysiology and suggest targets for expanded clinical and mechanistic studies. Baseline urine samples from Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network study participants with UCPPS (n = 259), positive controls (PCs; chronic pain without pelvic pain, n = 107) and healthy controls (HCs, n = 125) were analysed for the presence of proteins that are suggested in the literature to be associated with UCPPS. Matrix metalloproteinase (MMP)-2, MMP-9, MMP-9/neutrophil gelatinase-associated lipocalin (NGAL) complex (also known as Lipocalin 2), vascular endothelial growth factor (VEGF), VEGF receptor 1 (VEGF-R1) and NGAL were assayed and quantitated using mono-specific enzyme-linked immunosorbent assays for each protein. Log-transformed concentration (pg/mL or ng/mL) and concentration normalized to total protein (pg/μg) values were compared among the UCPPS, PC and HC groups within sex using the Student's t-test, with P values adjusted for multiple comparisons. Multivariable logistic regression and receiver-operating characteristic curves assessed the utility of the biomarkers in distinguishing participants with UCPPS and control participants. Associations of protein with symptom severity were assessed by linear regression. Significantly higher normalized concentrations (pg/μg) of VEGF, VEGF-R1 and MMP-9 in men and VEGF concentration (pg/mL) in women were associated with UCPPS vs HC. These proteins provided only marginal discrimination between UCPPS participants and HCs. In men with UCCPS, pain severity was significantly positively associated with concentrations of MMP-9 and MMP-9/NGAL complex, and urinary severity was significantly positively associated with MMP-9, MMP-9/NGAL complex and VEGF-R1. In women with UCPPS, pain and urinary symptom severity were associated with increased normalized concentrations of MMP-9/NGAL complex, while pain severity alone was associated with increased normalized concentrations of VEGF, and urinary severity alone was associated with increased normalized concentrations of MMP-2. Pain severity in women with UCPPS was significantly positively associated with concentrations of all biomarkers except NGAL, and urinary severity with all concentrations except VEGF-R1. Altered levels of MMP-9, MMP-9/NGAL complex and VEGF-R1 in men, and all biomarkers in women, were associated with clinical symptoms of UCPPS. None of the evaluated candidate markers usefully discriminated UCPPS patients from controls. Elevated VEGF, MMP-9 and VEGF-R1 levels in men and VEGF levels in women may provide potential new insights into the pathophysiology of UCPPS. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.
Abu El-Asrar, Ahmed M; Ahmad, Ajmal; Alam, Kaiser; Siddiquei, Mohammad Mairaj; Mohammad, Ghulam; Hertogh, Gert De; Mousa, Ahmed; Opdenakker, Ghislain
2017-11-01
Extracellular matrix metalloproteinase inducer (EMMPRIN) promotes angiogenesis through matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) production. We investigated the expression levels of EMMPRIN and correlated these levels with VEGF, MMP-1 and MMP-9 in proliferative diabetic retinopathy (PDR). In addition, we examined the expression of EMMPRIN in the retinas of diabetic rats and the effect of EMMPRIN on the induction of angiogenesis regulatory factors in human retinal microvascular endothelial cells (HRMECs). Vitreous samples from 40 PDR and 19 non-diabetic patients, epiretinal membranes from 12 patients with PDR, retinas of rats and HRMECs were studied by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, Western blot analysis, zymography analysis and RT-PCR. We showed a significant increase in the expression of EMMPRIN, VEGF, MMP-1 and MMP-9 in vitreous samples from PDR patients compared with non-diabetic controls (p < 0.0001; p = 0.001; p = 0.009; p < 0.0001, respectively). Significant positive correlations were found between the levels of EMMPRIN and the levels of VEGF (r = 0.38; p = 0.003), MMP-1 (r = 0.36; p = 0.005) and MMP-9 (r = 0.46; p = 0.003). In epiretinal membranes, EMMPRIN was expressed in vascular endothelial cells and stromal cells. Significant increase of EMMPRIN mRNA was detected in rat retinas after induction of diabetes. EMMPRIN induced hypoxia-inducible factor-1α, VEGF and MMP-1 expression in HRMEC. These results suggest that EMMPRIN/MMPs/VEGF pathway is involved in PDR angiogenesis. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Maybin, Jacqueline A.; Hirani, Nikhil; Brown, Pamela; Jabbour, Henry N.
2011-01-01
Context: The human endometrium has an exceptional capacity for repeated repair after menses, but its regulation remains undefined. Premenstrually, progesterone levels fall and prostaglandin (PG) F2α synthesis increases, causing spiral arteriole constriction. We hypothesized that progesterone withdrawal, PGF2α, and hypoxia increase vascular endothelial growth factor (VEGF), an endometrial repair factor. Design and Results: Endometrial biopsies were collected (n = 47) with ethical approval and consent. VEGF mRNA, quantified by quantitative RT-PCR, was increased during menstruation (P < 0.01).VEGF protein was maximally secreted from proliferative endometrial explants. Treatment of an endometrial epithelial cell line and primary human endometrial stromal cells with 100 nm PGF2α or hypoxia (0.5% O2) resulted in significant increases in VEGF mRNA and protein. VEGF was maximal when cells were cotreated with PGF2α and hypoxia simultaneously (P < 0.05–0.001). Secretory-phase endometrial explants also showed an increase in VEGF with cotreatment (P < 0.05). However, proliferative-phase explants showed no increase in VEGF on treatment with PGF2α and/or hypoxia. Proliferative tissue was induced to increase VEGF mRNA expression when exposed to progesterone and its withdrawal in vitro but only in the presence of hypoxia and PG. Hypoxia-inducible factor-1α (HIF-1α) silencing with RNA interference suppressed hypoxia-induced VEGF expression in endometrial cells but did not alter PGF2α-induced VEGF expression. Conclusions: Endometrial VEGF is increased at the time of endometrial repair. Progesterone withdrawal, PGF2α, and hypoxia are necessary for this perimenstrual VEGF expression. Hypoxia acts via HIF-1α to increase VEGF, whereas PGF2α acts in a HIF-1α-independent manner. Hence, two pathways regulate the expression of VEGF during endometrial repair. PMID:21677035
Detection of VEGF-A(xxx)b isoforms in human tissues.
Bates, David O; Mavrou, Athina; Qiu, Yan; Carter, James G; Hamdollah-Zadeh, Maryam; Barratt, Shaney; Gammons, Melissa V; Millar, Ann B; Salmon, Andrew H J; Oltean, Sebastian; Harper, Steven J
2013-01-01
Vascular Endothelial Growth Factor-A (VEGF-A) can be generated as multiple isoforms by alternative splicing. Two families of isoforms have been described in humans, pro-angiogenic isoforms typified by VEGF-A165a, and anti-angiogenic isoforms typified by VEGF-A165b. The practical determination of expression levels of alternative isoforms of the same gene may be complicated by experimental protocols that favour one isoform over another, and the use of specific positive and negative controls is essential for the interpretation of findings on expression of the isoforms. Here we address some of the difficulties in experimental design when investigating alternative splicing of VEGF isoforms, and discuss the use of appropriate control paradigms. We demonstrate why use of specific control experiments can prevent assumptions that VEGF-A165b is not present, when in fact it is. We reiterate, and confirm previously published experimental design protocols that demonstrate the importance of using positive controls. These include using known target sequences to show that the experimental conditions are suitable for PCR amplification of VEGF-A165b mRNA for both q-PCR and RT-PCR and to ensure that mispriming does not occur. We also provide evidence that demonstrates that detection of VEGF-A165b protein in mice needs to be tightly controlled to prevent detection of mouse IgG by a secondary antibody. We also show that human VEGF165b protein can be immunoprecipitated from cultured human cells and that immunoprecipitating VEGF-A results in protein that is detected by VEGF-A165b antibody. These findings support the conclusion that more information on the biology of VEGF-A165b isoforms is required, and confirm the importance of the experimental design in such investigations, including the use of specific positive and negative controls.
Identification and characterization of VEGF and FGF from Hydra.
Krishnapati, Lakshmi-Surekha; Ghaskadbi, Surendra
2013-01-01
Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) play important roles in the formation of the blood vascular system and in axon guidance, nervous system development and function. Here, we report isolation and characterization of VEGF and FGF homologues from Hydra vulgaris Ind-Pune, a Cnidarian which exhibits an organized nervous system and primitive epithelio-muscular cells. VEGF expression was prominent in the endoderm of the peduncle region and tentacles, as evident from in situ hybridization of whole polyps and its transverse sections. High levels of FGF were detected in the ectoderm of the budding region. The expression of VEGF in endodermal and FGF in interstitial cells was confirmed using sf-1 hydra, a temperature-sensitive mutant strain of Hydra magnipapillata. Tissue-specific expression of VEGF and FGF was confirmed by semi quantitative RT-PCR for ectodermal and endodermal tissues in H. vulgaris Ind-Pune. Treatment with SU5416, a specific inhibitor of the VEGF receptor, did not affect the whole polyp, but did delay both budding and head regeneration, suggesting a possible role of VEGF in nerve cell development, tube formation and/or in branching. FGF expression in the ectoderm of budding region, where the majority of interstitial stem cells reside suggests its role in interstitial stem cell maintenance. Further, activation of canonical Wnt signalling with the glycogen synthase kinase-3β (GSK-3β) inhibitor alsterpaullone caused down-regulation of VEGF and FGF, suggesting an antagonistic relationship between the Wnt and VEGF/FGF pathways. Our results indicate that VEGF and FGF evolved early in evolution, before the development of the blood vascular system, and open up the possibility of elucidating the evolutionarily ancient functions of VEGF and FGF.
Boige, Valérie; Malka, David; Bourredjem, Abderrahmane; Dromain, Clarisse; Baey, Charlotte; Jacques, Nathalie; Pignon, Jean-Pierre; Vimond, Nadege; Bouvet-Forteau, Nathalie; De Baere, Thierry; Ducreux, Michel; Farace, Françoise
2012-01-01
Hepatocellular carcinoma (HCC) is a highly vascularized tumor in which neoangiogenesis contributes to growth and metastasis. We assessed the safety, efficacy, and potential biomarkers of activity of bevacizumab in patients with advanced HCC. In this phase II trial, eligible patients received bevacizumab, 5 mg/kg or 10 mg/kg every 2 weeks. The disease-control rate at 16 weeks (16W-DCR) was the primary endpoint. Circulating endothelial cells (CECs) and plasma cytokines and angiogenic factors (CAFs) were measured at baseline and throughout treatment. The 16W-DCR was 42% (95% confidence interval, 27%-57%). Six of the 43 patients who received bevacizumab achieved a partial response (objective response rate [ORR], 14%). Grade 3-4 asthenia, hemorrhage, and aminotransferase elevation occurred in five (12%), three (7%), and three (7%) patients, respectively. During treatment, placental growth factor markedly increased, whereas vascular endothelial growth factor (VEGF)-A dramatically decreased (p < .0001); soluble VEGF receptor-2 (p < .0001) and CECs (p = .03) transiently increased on day 3. High and increased CEC counts at day 15 were associated with the ORR (p = .04) and the 16W-DCR (p = .02), respectively. Lower interleukin (IL)-8 levels at baseline (p = .01) and throughout treatment (p ≤ .04) were associated with the 16W-DCR. High baseline IL-8 and IL-6 levels predicted shorter progression-free and overall survival times (p ≤ .04). Bevacizumab is active and well tolerated in patients with advanced HCC. The clinical value of CECs, IL-6, and IL-8 warrants further investigation.
Malka, David; Bourredjem, Abderrahmane; Dromain, Clarisse; Baey, Charlotte; Jacques, Nathalie; Pignon, Jean-Pierre; Vimond, Nadege; Bouvet-Forteau, Nathalie; De Baere, Thierry; Ducreux, Michel; Farace, Françoise
2012-01-01
Objective. Hepatocellular carcinoma (HCC) is a highly vascularized tumor in which neoangiogenesis contributes to growth and metastasis. We assessed the safety, efficacy, and potential biomarkers of activity of bevacizumab in patients with advanced HCC. Methods. In this phase II trial, eligible patients received bevacizumab, 5 mg/kg or 10 mg/kg every 2 weeks. The disease-control rate at 16 weeks (16W-DCR) was the primary endpoint. Circulating endothelial cells (CECs) and plasma cytokines and angiogenic factors (CAFs) were measured at baseline and throughout treatment. Results. The 16W-DCR was 42% (95% confidence interval, 27%–57%). Six of the 43 patients who received bevacizumab achieved a partial response (objective response rate [ORR], 14%). Grade 3–4 asthenia, hemorrhage, and aminotransferase elevation occurred in five (12%), three (7%), and three (7%) patients, respectively. During treatment, placental growth factor markedly increased, whereas vascular endothelial growth factor (VEGF)-A dramatically decreased (p < .0001); soluble VEGF receptor-2 (p < .0001) and CECs (p = .03) transiently increased on day 3. High and increased CEC counts at day 15 were associated with the ORR (p = .04) and the 16W-DCR (p = .02), respectively. Lower interleukin (IL)-8 levels at baseline (p = .01) and throughout treatment (p ≤ .04) were associated with the 16W-DCR. High baseline IL-8 and IL-6 levels predicted shorter progression-free and overall survival times (p ≤ .04). Conclusion. Bevacizumab is active and well tolerated in patients with advanced HCC. The clinical value of CECs, IL-6, and IL-8 warrants further investigation. PMID:22707516
Patry, Christian; Stamm, Daniela; Betzen, Christian; Tönshoff, Burkhard; Yard, Benito A; Beck, Grietje Ch; Rafat, Neysan
2018-01-01
Endothelial progenitor cell (EPC) numbers are increased in septic patients and correlate with survival. In this study, we investigated, whether surface expression of chemokine receptors and other receptors important for EPC homing is upregulated by EPC from septic patients and if this is associated with clinical outcome. Peripheral blood mononuclear cells from septic patients ( n = 30), ICU control patients ( n = 11) and healthy volunteers ( n = 15) were isolated by Ficoll density gradient centrifugation. FACS-analysis was used to measure the expression of the CXC motif chemokine receptors (CXCR)-2 and - 4, the receptor for advanced glycation endproducts (RAGE) and the stem cell factor receptor c-Kit. Disease severity was assessed via the Simplified Acute Physiology Score (SAPS) II. The serum concentrations of vascular endothelial growth factor (VEGF), stromal cell-derived factor (SDF)-1α and angiopoietin (Ang)-2 were determined with Enzyme linked Immunosorbent Assays. EPC from septic patients expressed significantly more CXCR-4, c-Kit and RAGE compared to controls and were associated with survival-probability. Significantly higher serum concentrations of VEGF, SDF-1α and Ang-2 were found in septic patients. SDF-1α showed a significant association with survival. Our data suggest that SDF-1α and CXCR-4 signaling could play a crucial role in EPC homing in the course of sepsis.
Voller, Stephannie Baehl; Chock, Susanne; Ernst, Linda M.; Su, Emily; Liu, Xin; Farrow, Kathryn N.; Mestan, Karen K.
2014-01-01
Background Preterm infants are at risk for postnatal growth failure (PGF). Identification of biomarkers that are associated with neonatal growth may help reduce PGF and associated long-term morbidity. Objective To investigate the associations between cord blood vascular endothelial growth factor (VEGF) and its soluble receptor (sFlt-1) with birth weight (BW) and postnatal growth in premature infants. Study Design and Methods From an ongoing birth cohort, 123 premature infants from 23 to 36 weeks gestational age (GA) were studied. Cord blood plasma VEGF and sFlt-1 were measured via enzyme-linked immunoassay. Growth parameters and nutritional information were evaluated. Multivariate logistic regression models were constructed to evaluate the associations of VEGF and sFlt-1 on PGF, defined as weight < 10th percentile at 36 weeks corrected age or discharge. Results VEGF was positively correlated, and sFlt-1 was negatively correlated with BW and BW-for-GA percentiles. Higher cord blood VEGF levels were associated with reduced risk of PGF (OR=0.7; 95% CI=0.5–0.9), while higher sFlt-1 levels appeared to increase the risk of PGF (OR=1.6; 95% CI=1.1–2.4). The above biomarker associations were attenuated after adjustment for maternal preeclampsia, fetal growth restriction and related neonatal characteristics, and when taking into account placental vascular pathologies. Longitudinal growth patterns by mean weight and length percentiles were consistently lower among infants with low VEGF/sFlt-1 ratios. Conclusions Our data support that intrauterine regulation of angiogenesis is an important mechanism of fetal and postnatal growth. Cord blood VEGF and sFlt-1 are useful in elucidating how intrauterine processes may have long-standing effects on developing premature infants. PMID:24480606
Yiu, Glenn; Tieu, Eric; Nguyen, Anthony T; Wong, Brittany; Smit-McBride, Zeljka
2016-10-01
To employ type II clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonuclease to suppress ocular angiogenesis by genomic disruption of VEGF-A in human RPE cells. CRISPR sequences targeting exon 1 of human VEGF-A were computationally identified based on predicted Cas9 on- and off-target probabilities. Single guide RNA (gRNA) cassettes with these target sequences were cloned into lentiviral vectors encoding the Streptococcuspyogenes Cas9 endonuclease (SpCas9) gene. The lentiviral vectors were used to infect ARPE-19 cells, a human RPE cell line. Frequency of insertion or deletion (indel) mutations was assessed by T7 endonuclease 1 mismatch detection assay; mRNA levels were assessed with quantitative real-time PCR; and VEGF-A protein levels were determined by ELISA. In vitro angiogenesis was measured using an endothelial cell tube formation assay. Five gRNAs targeting VEGF-A were selected based on the highest predicted on-target probabilities, lowest off-target probabilities, or combined average of both scores. Lentiviral delivery of the top-scoring gRNAs with SpCas9 resulted in indel formation in the VEGF-A gene at frequencies up to 37.0% ± 4.0% with corresponding decreases in secreted VEGF-A protein up to 41.2% ± 7.4% (P < 0.001), and reduction of endothelial tube formation up to 39.4% ± 9.8% (P = 0.02). No significant indel formation in the top three putative off-target sites tested was detected. The CRISPR-Cas9 endonuclease system may reduce VEGF-A secretion from human RPE cells and suppress angiogenesis, supporting the possibility of employing gene editing for antiangiogenesis therapy in ocular diseases.
Li, Guo-Hua; Luo, Bin; Lv, Yan-Xia; Zheng, Fei; Wang, Lu; Wei, Meng-Xi; Li, Xian-Yu; Zhang, Lei; Wang, Jia-Ning; Chen, Shi-You; Tang, Jun-Ming; He, Xiaohua
2016-05-04
To investigate whether vascular endothelial growth factor B (VEGF-B) improves myocardial survival and cardiac stem cell (CSC) function in the ischemia-reperfusion (I/R) heart and promotes CSC mobilization and angiogenesis. One hour after myocardial ischemia and infarction, rats were treated with recombinant human VEGF-B protein following 24 h or 7 days of myocardial reperfusion. Twenty-four hours after myocardial I/R, VEGF-B increased pAkt and Bcl-2 levels, reduced p-p38MAPK, LC3-II/I, beclin-1, CK, CK-MB and cTnt levels, triggered cardiomyocyte protection against I/R-induced autophagy and apoptosis, and contributed to the decrease of infarction size and the improvement of heart function during I/R. Simultaneously, an in vitro hypoxia-reoxygenation (H/R)-induced H9c2 cardiomyocyte injury model was used to mimic I/R injury model in vivo; in this model, VEGF-B decreased LDH release, blocked H/R-induced apoptosis by inhibiting cell autophagy, and these special effects could be abolished by the autophagy inducer, rapamycin. Mechanistically, VEGF-B markedly activated the Akt signaling pathway while slightly inhibiting p38MAPK, leading to the blockade of cell autophagy and thus protecting cardiomyocyte from H/R-induced activation of the intrinsic apoptotic pathway. Seven days after I/R, VEGF-B induced the expression of SDF-1α and HGF, resulting in the massive mobilization and homing of c-Kit positive cells, triggering further angiogenesis and vasculogenesis in the infracted heart and contributing to the improvement of I/R heart function. VEGF-B could contribute to a favorable short- and long-term prognosis for I/R via the dual manipulation of cardiomyocytes and CSCs.
Hata, Masayuki; Yamashiro, Kenji; Ooto, Sotaro; Oishi, Akio; Tamura, Hiroshi; Miyata, Manabu; Ueda-Arakawa, Naoko; Takahashi, Ayako; Tsujikawa, Akitaka; Yoshimura, Nagahisa
2017-01-01
To investigate the difference in intraocular vascular endothelial growth factor (VEGF) concentration between pachychoroid neovasculopathy and neovascular age-related macular degeneration (nAMD) and its associations with responses to three monthly anti-VEGF injections as an initial treatment for the two conditions. This study included nine eyes with treatment-naïve pachychoroid neovasculopathy and 21 eyes with treatment-naïve nAMD. Before the initial intravitreal anti-VEGF injection, aqueous humor samples were collected and the concentration of VEGF was measured using enzyme-linked immunosorbent assay. The concentration was compared between the two conditions, and its associations with responses to anti-VEGF therapy were investigated. The mean VEGF concentration in pachychoroid neovasculopathy was significantly lower than that in nAMD (63.4 ± 17.8 pg/ml and 89.8 ± 45.0 pg/ml, respectively; P = 0.035). The VEGF concentration was associated with the presence or absence of drusen (β = 0.503, P = 0.004). After anti-VEGF therapy, 6 (66.7%) of 9 eyes with pachychoroid neovasculopathy and 17 (81.0%) of 21 eyes with nAMD achieved dry macula (P = 0.640). Dry macula at 3 months and 12 months was significantly associated with a low VEGF concentration in pachychoroid neovasculopathy (P = 0.013 and P = 0.042, respectively), but not in nAMD (P = 0.108 and P = 0.219). The mean VEGF concentration in pachychoroid neovasculopathy was lower than that in nAMD, suggesting that the way in which VEGF is involved in angiogenesis may differ between pachychoroid neovasculopathy and nAMD.
VEGF as a Survival Factor in Ex Vivo Models of Early Diabetic Retinopathy.
Amato, Rosario; Biagioni, Martina; Cammalleri, Maurizio; Dal Monte, Massimo; Casini, Giovanni
2016-06-01
Growing evidence indicates neuroprotection as a therapeutic target in diabetic retinopathy (DR). We tested the hypothesis that VEGF is released and acts as a survival factor in the retina in early DR. Ex vivo mouse retinal explants were exposed to stressors similar to those characterizing DR, that is, high glucose (HG), oxidative stress (OS), or advanced glycation end-products (AGE). Neuroprotection was provided using octreotide (OCT), a somatostatin analog, and pituitary adenylate cyclase activating peptide (PACAP), two well-documented neuroprotectants. Data were obtained with real-time RT-PCR, Western blot, ELISA, and immunohistochemistry. Apoptosis was induced in the retinal explants by HG, OS, or AGE treatments. At the same time, explants also showed increased VEGF expression and release. The data revealed that VEGF is released shortly after exposure of the explants to stressors and before the level of cell death reaches its maximum. Retinal cell apoptosis was inhibited by OCT and PACAP. At the same time, OCT and PACAP also reduced VEGF expression and release. Vascular endothelial growth factor turned out to be a protective factor for the stressed retinal explants, because inhibiting VEGF with a VEGF trap further increased cell death. These data show that protecting retinal neurons from diabetic stress also reduces VEGF expression and release, while inhibiting VEGF leads to exacerbation of apoptosis. These observations suggest that the retina in early DR releases VEGF as a prosurvival factor. Neuroprotective agents may decrease the need of VEGF production by the retina, therefore limiting the risk, in the long term, of pathologic angiogenesis.
Ghelfi, Elisa; Yu, Chen-Wei; Elmasri, Harun; Terwelp, Matthew; Lee, Chun G.; Bhandari, Vineet; Comhair, Suzy A.; Erzurum, Serpil C.; Hotamisligil, Gökhan S.; Elias, Jack A.; Cataltepe, Sule
2014-01-01
Neovascularization of the airways occurs in several inflammatory lung diseases, including asthma. Vascular endothelial growth factor (VEGF) plays an important role in vascular remodeling in the asthmatic airways. Fatty acid binding protein 4 (FABP4 or aP2) is an intracellular lipid chaperone that is induced by VEGF in endothelial cells. FABP4 exhibits a proangiogenic function in vitro, but whether it plays a role in modulation of angiogenesis in vivo is not known. We hypothesized that FABP4 promotes VEGF-induced airway angiogenesis and investigated this hypothesis with the use of a transgenic mouse model with inducible overexpression of VEGF165 under a CC10 promoter [VEGF-TG (transgenic) mice]. We found a significant increase in FABP4 mRNA levels and density of FABP4-expressing vascular endothelial cells in mouse airways with VEGF overexpression. FABP4−/− mouse airways showed a significant decrease in neovessel formation and endothelial cell proliferation in response to VEGF overexpression. These alterations in airway vasculature were accompanied by attenuated expression of proinflammatory mediators. Furthermore, VEGF-TG/FABP4−/− mice showed markedly decreased expression of endothelial nitric oxide synthase, a well-known mediator of VEGF-induced responses, compared with VEGF-TG mice. Finally, the density of FABP4-immunoreactive vessels in endobronchial biopsy specimens was significantly higher in patients with asthma than in control subjects. Taken together, these data unravel FABP4 as a potential target of pathologic airway remodeling in asthma. PMID:23391391
Immunohistochemical expression of vegf and her-2 proteins in osteosarcoma biopsies
Becker, Ricardo Gehrke; Galia, Carlos Roberto; Morini, Sandra; Viana, Cristiano Ribeiro
2013-01-01
OBJECTIVES: To identify the prevalence of erbB-2 and vascular endothelial growth factor (VEGF) in osteosarcoma biopsies and to correlate them with possible prognosis factors. METHODS: Retrospective study conducted at the Hospital do Câncer de Barretos-SP including 27 osteosarcoma biopsies immunohistochemically stained for VEGF and erbB-2. The pathological characteristics were collected from medical records of patients to correlate with markers. RESULTS: In 27 biopsies, four overexpressed VEGF and three overexpressed erbB-2. Two thirds of patients had no metastases. Almost all patients with overexpression of VEGF showed metastases. Overexpression of erbB-2 was inversely related to the presence of metastases. There was no significant association between markers and prognosis. CONCLUSION: We identified a low prevalence of erbB-2 and VEGF in the sample. There was no significant association between overexpression of markers and pathological features. A larger sample and a longer follow-up, in addition to using new laboratory techniques can determine the real expression of VEGF and erbB-2 and its role in osteosarcoma. Level of Evidence III, Case-Control Study. PMID:24453675
Nonaka, Cassiano Francisco Weege; Maia, Alexandre Pinto; Nascimento, George João Ferreira do; de Almeida Freitas, Roseana; Batista de Souza, Lélia; Galvão, Hébel Cavalcanti
2008-12-01
Our aim was to assess and compare the immunoexpression of vascular endothelial growth factor (VEGF) in periapical granulomas (PGs), radicular cysts (RCs), and residual radicular cysts (RRCs), relating it to the angiogenic index and the intensity of the inflammatory infiltrate. Twenty PGs, 20 RCs, and 10 RRCs were evaluated by immunohistochemistry using anti-VEGF antibody. Angiogenic index was determined by microvessel count (MVC) using anti-von Willebrand factor antibody. The PGs and RCs showed higher expression of VEGF than the RRCs. Lesions presenting few inflammatory infiltrate revealed the lowest immunoexpression of VEGF (P < .05). Irrespective of the intensity of the inflammatory infiltrate, most of the RCs and RRCs showed moderate to strong epithelial expression of VEGF. Lesions showing dense inflammatory infiltrate presented higher MVC indices (P < .05). VEGF expression and MVC did not reveal a significant correlation (P > .05). VEGF is present in periapical inflammatory lesions but at a lower level in RRCs. The expression of this proangiogenic factor is closely related to the intensity of the inflammatory infiltrate in these lesions.
The roles of vascular endothelial growth factor in bone repair and regeneration
Hu, Kai; Olsen, Bjorn R.
2016-01-01
Vascular endothelial growth factor-A (VEGF) is one of the most important growth factors for regulation of vascular development and angiogenesis. Since bone is a highly vascularized organ and angiogenesis plays an important role in osteogenesis, VEGF also influences skeletal development and postnatal bone repair. Compromised bone repair and regeneration in many patients can be attributed to impaired blood supply; thus, modulation of VEGF levels in bones represents a potential strategy for treating compromised bone repair and improving bone regeneration. This review (i) summarizes the roles of VEGF at different stages of bone repair, including the phases of inflammation, endochondral ossification, intramembranous ossification during callus formation and bone remodeling; (ii) discusses different mechanisms underlying the effects of VEGF on osteoblast function, including paracrine, autocrine and intracrine signaling during bone repair; (iii) summarizes the role of VEGF in the bone regenerative procedure, distraction osteogenesis; and (iv) reviews evidence for the effects of VEGF in the context of repair and regeneration techniques involving the use of scaffolds, skeletal stem cells and growth factors. PMID:27353702
Avallone, Antonio; Piccirillo, Maria Carmela; Aloj, Luigi; Nasti, Guglielmo; Delrio, Paolo; Izzo, Francesco; Di Gennaro, Elena; Tatangelo, Fabiana; Granata, Vincenza; Cavalcanti, Ernesta; Maiolino, Piera; Bianco, Francesco; Aprea, Pasquale; De Bellis, Mario; Pecori, Biagio; Rosati, Gerardo; Carlomagno, Chiara; Bertolini, Alessandro; Gallo, Ciro; Romano, Carmela; Leone, Alessandra; Caracò, Corradina; de Lutio di Castelguidone, Elisabetta; Daniele, Gennaro; Catalano, Orlando; Botti, Gerardo; Petrillo, Antonella; Romano, Giovanni M; Iaffaioli, Vincenzo R; Lastoria, Secondo; Perrone, Francesco; Budillon, Alfredo
2016-02-08
Despite the improvements in diagnosis and treatment, colorectal cancer (CRC) is the second cause of cancer deaths in both sexes. Therefore, research in this field remains of great interest. The approval of bevacizumab, a humanized anti-vascular endothelial growth factor (VEGF) monoclonal antibody, in combination with a fluoropyrimidine-based chemotherapy in the treatment of metastatic CRC has changed the oncology practice in this disease. However, the efficacy of bevacizumab-based treatment, has thus far been rather modest. Efforts are ongoing to understand the better way to combine bevacizumab and chemotherapy, and to identify valid predictive biomarkers of benefit to avoid unnecessary and costly therapy to nonresponder patients. The BRANCH study in high-risk locally advanced rectal cancer patients showed that varying bevacizumab schedule may impact on the feasibility and efficacy of chemo-radiotherapy. OBELICS is a multicentre, open-label, randomised phase 3 trial comparing in mCRC patients two treatment arms (1:1): standard concomitant administration of bevacizumab with chemotherapy (mFOLFOX/OXXEL regimen) vs experimental sequential bevacizumab given 4 days before chemotherapy, as first or second treatment line. Primary end point is the objective response rate (ORR) measured according to RECIST criteria. A sample size of 230 patients was calculated allowing reliable assessment in all plausible first-second line case-mix conditions, with a 80% statistical power and 2-sided alpha error of 0.05. Secondary endpoints are progression free-survival (PFS), overall survival (OS), toxicity and quality of life. The evaluation of the potential predictive role of several circulating biomarkers (circulating endothelial cells and progenitors, VEGF and VEGF-R SNPs, cytokines, microRNAs, free circulating DNA) as well as the value of the early [(18)F]-Fluorodeoxyglucose positron emission tomography (FDG-PET) response, are the objectives of the traslational project. Overall this study could optimize bevacizumab scheduling in combination with chemotherapy in mCRC patients. Moreover, correlative studies could improve the knowledge of the mechanisms by which bevacizumab enhance chemotherapy effect and could identify early predictors of response. EudraCT Number: 2011-004997-27 TRIAL REGISTRATION: ClinicalTrials.gove number, NCT01718873.
Iunusova, N V; Spirina, L V; Kondakova, L A; Kolomiets, A L; Chernyshova, A L; Koval', V D; Nedosekov, V V; Savenkova, O V
2013-01-01
We have examined for the first time the relationship between the expression of PAPP-A metalloproteinase and insulin-like growth factors (IGF-I, IGF-II, VEGF) and transcription factors (NF-kappaB, HIF-1) playing an important role in pathogenesis of cancer. We also demonstrated a positive association between the level of PAPP-A metalloproteinase and the level of growth (VEGF and IGF-I) and transcription factors (NF-kappaB p50, NF-kappaB p65, HIF-1alpha). The current findings suggest an important role of PAPP-A in regulation of bioavailability of IGF-I, VEGF, activated forms of NF-kappaB, and alpha-subunits of HIF-1 in endometrial tumors.
Song, Hong-Mei; Wei, Ying-Chen; Li, Nan; Wu, Bin; Xie, Na; Zhang, Kun-Mu; Wang, Shi-Zhong; Wang, He-Ming
2015-12-01
The present study aimed to investigate the effects of Wenyangbushen formula on the mRNA and protein expression levels of vascular endothelial growth factor (VEGF), osteoprotegerin (OPG), receptor activator of nuclear factor (NF)‑κβ ligand (RANK), and RANK ligand (RANKL) in a rabbit model of steroid‑induced avascular necrosis of the femoral head (SANFH). The present study also aimed to examine the potential mechanism underlying the effect of this formula on the treatment of SANFH. A total of 136 New Zealand rabbits were randomly divided into five groups: Normal group, model group, and three groups treated with the traditional Chinese medicine (TCM), Wenyangbushen decoction, at a low, moderate and high dose, respectively. The normal group and positive control group were intragastrically administered with saline. The TCM groups were treated with Wenyangbushen decoction at the indicated dosage. Following treatment for 8 weeks, the mRNA and protein expression levels of VEGF, OPG, RANK and RANKL in the femoral head tissues were determined using reverse transcription‑quantitative polymerase chain reaction and western blot analyses, respectively. The data revealed that Wenyangbushen decoction effectively promoted the growth of bone cells, osteoblasts and chondrocytes, and prevented cell apoptosis in the SANFH. The mRNA and protein expression levels of OPG and VEGF were increased, while the levels of RANK and RANKL were reduced in the necrotic tissue of the model group, compared with those in the normal rabbits. Wenyangbushen treatment prevented these changes, manifested by an upregulation in the expression levels of VEGF and OPG, and downregulation in the expression levels of RANK and RANKL in a dose‑dependent manner. It was concluded that treatment with Wenyangbushen formula alleviated necrosis of the femoral head induced by steroids. It was observed to promote bone cell, osteoblast and chondrocyte growth, as well as prevent cell apoptosis. In addition, it upregulated the expression levels of OPG and VEGF, and inhibited the expression levels of RANK and RANKL. These results suggest the potential use of Wenyangbushen formula as a possible approach for the effective treatment of SANFH.
Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications
Fan, Xiujun; Rai, Anshita; Kambham, Neeraja; Sung, Joyce F.; Singh, Nirbhai; Petitt, Matthew; Dhal, Sabita; Agrawal, Rani; Sutton, Richard E.; Druzin, Maurice L.; Gambhir, Sanjiv S.; Ambati, Balamurali K.; Cross, James C.; Nayak, Nihar R.
2014-01-01
There is strong evidence that overproduction of soluble fms-like tyrosine kinase-1 (sFLT1) in the placenta is a major cause of vascular dysfunction in preeclampsia through sFLT1-dependent antagonism of VEGF. However, the cause of placental sFLT1 upregulation is not known. Here we demonstrated that in women with preeclampsia, sFLT1 is upregulated in placental trophoblasts, while VEGF is upregulated in adjacent maternal decidual cells. In response to VEGF, expression of sFlt1 mRNA, but not full-length Flt1 mRNA, increased in cultured murine trophoblast stem cells. We developed a method for transgene expression specifically in mouse endometrium and found that endometrial-specific VEGF overexpression induced placental sFLT1 production and elevated sFLT1 levels in maternal serum. This led to pregnancy losses, placental vascular defects, and preeclampsia-like symptoms, including hypertension, proteinuria, and glomerular endotheliosis in the mother. Knockdown of placental sFlt1 with a trophoblast-specific transgene caused placental vascular changes that were consistent with excess VEGF activity. Moreover, sFlt1 knockdown in VEGF-overexpressing animals enhanced symptoms produced by VEGF overexpression alone. These findings indicate that sFLT1 plays an essential role in maintaining vascular integrity in the placenta by sequestering excess maternal VEGF and suggest that a local increase in VEGF can trigger placental overexpression of sFLT1, potentially contributing to the development of preeclampsia and other pregnancy complications. PMID:25329693
SMC1A recruits tumor-associated-fibroblasts (TAFs) and promotes colorectal cancer metastasis.
Zhou, Pengyang; Xiao, Nan; Wang, Jian; Wang, Zhanhuai; Zheng, Shuchun; Shan, Siyang; Wang, Jianping; Du, Jinlin; Wang, Jianwei
2017-01-28
Tumor-associated-fibroblasts (TAFs) are the most important host cells in the stroma and take part in extracellular matrix construction and cancer colony development. During cancer colonization, seed cells from primary tumor can reconstruct the microenvironment by recruiting circulating cancer cells and TAFs to the metastasis site. Previous studies have established that SMC1A, a subunit of cohesin, is an important trigger signal for liver metastasis in colorectal cancer. We investigated the particular effects as well as the underlying mechanism of SMC1A on TAFs recruitment during liver metastasis of colorectal cancer. Here, We found that: first, the high expression of SMC1A in colorectal cancer cells promotes the invasiveness and the viability of these cells by recruiting circulating TAFs, facilitating early tumor construction and tumorigenesis; second, different expression levels of SMC1A influenced the reformation of fibroblasts, which assisted tumorigenesis, and third, expression of SMC1A stimulated the secretion of the inflammatory mediators of TNF-α and IL-1β, and up-regulated the transcriptional expression of MMP2 and VEGF-β, both of which were involved in the tumor-related gene pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Non-invasive dynamic near-infrared imaging and quantification of vascular leakage in vivo.
Proulx, Steven T; Luciani, Paola; Alitalo, Annamari; Mumprecht, Viviane; Christiansen, Ailsa J; Huggenberger, Reto; Leroux, Jean-Christophe; Detmar, Michael
2013-07-01
Preclinical vascular research has been hindered by a lack of methods that can sensitively image and quantify vascular perfusion and leakage in vivo. In this study, we have developed dynamic near-infrared imaging methods to repeatedly visualize and quantify vascular leakage in mouse skin in vivo, and we have applied these methods to transgenic mice with overexpression of vascular endothelial growth factors VEGF-A or -C. Near-infrared dye conjugates were developed to identify a suitable vascular tracer that had a prolonged circulation lifetime and slow leakage into normal tissue after intravenous injection. Dynamic simultaneous imaging of ear skin and a large blood vessel in the leg enabled determination of the intravascular signal (blood volume fraction) from the tissue signal shortly after injection and quantifications of vascular leakage into the extravascular tissue over time. This method allowed for the sensitive detection of increased blood vascularity and leakage rates in K14-VEGF-A transgenic mice and also reliably measured inflammation-induced changes of vascularity and leakage over time in the same mice. Measurements after injection of recombinant VEGF-A surprisingly revealed increased blood vascular leakage and lymphatic clearance in K14-VEGF-C transgenic mice which have an expanded cutaneous lymphatic vessel network, potentially indicating unanticipated effects of lymphatic drainage on vascular leakage. Increased vascular leakage was also detected in subcutaneous tumors, confirming that the method can also be applied to deeper tissues. This new imaging method might facilitate longitudinal investigations of the in vivo effects of drug candidates, including angiogenesis inhibitors, in preclinical disease models.
Non-invasive dynamic near-infrared imaging and quantification of vascular leakage in vivo
Proulx, Steven T.; Luciani, Paola; Alitalo, Annamari; Mumprecht, Viviane; Christiansen, Ailsa J.; Huggenberger, Reto
2013-01-01
Preclinical vascular research has been hindered by a lack of methods that can sensitively image and quantify vascular perfusion and leakage in vivo. In this study, we have developed dynamic near-infrared imaging methods to repeatedly visualize and quantify vascular leakage in mouse skin in vivo, and we have applied these methods to transgenic mice with overexpression of vascular endothelial growth factors VEGF-A or -C. Near-infrared dye conjugates were developed to identify a suitable vascular tracer that had a prolonged circulation lifetime and slow leakage into normal tissue after intravenous injection. Dynamic simultaneous imaging of ear skin and a large blood vessel in the leg enabled determination of the intravascular signal (blood volume fraction) from the tissue signal shortly after injection and quantifications of vascular leakage into the extravascular tissue over time. This method allowed for the sensitive detection of increased blood vascularity and leakage rates in K14-VEGF-A transgenic mice and also reliably measured inflammation-induced changes of vascularity and leakage over time in the same mice. Measurements after injection of recombinant VEGF-A surprisingly revealed increased blood vascular leakage and lymphatic clearance in K14-VEGF-C transgenic mice which have an expanded cutaneous lymphatic vessel network, potentially indicating unanticipated effects of lymphatic drainage on vascular leakage. Increased vascular leakage was also detected in subcutaneous tumors, confirming that the method can also be applied to deeper tissues. This new imaging method might facilitate longitudinal investigations of the in vivo effects of drug candidates, including angiogenesis inhibitors, in preclinical disease models. PMID:23325334
Ollivier, V; Bentolila, S; Chabbat, J; Hakim, J; de Prost, D
1998-04-15
The transmembrane protein tissue factor (TF) is the cell surface receptor for coagulation factor VII (FVII) and activated factor VII (FVIIa). Recently, TF has been identified as a regulator of angiogenesis, tumor growth, and metastasis. This study was designed to link the binding of FVII(a) to its receptor, TF, with the subsequent triggering of angiogenesis through vascular endothelial growth factor (VEGF) production by human lung fibroblasts. We report that incubation of fibroblasts, which express constitutive surface TF, with FVII(a) induces VEGF synthesis. FVII(a)-induced VEGF secretion, assessed by a specific enzyme-linked immunosorbent assay, was time- and concentration-dependent. VEGF secretion was maximal after 24 hours of incubation of the cells with 100 nmol/L FVII(a) and represented a threefold induction of the basal VEGF level. Reverse transcriptase-polymerase chain reaction analysis of VEGF detected three mRNA species of 180, 312, and 384 bp corresponding, respectively, to VEGF121, VEGF165, and VEGF189. A 2.5- to 3.5-fold increase was observed for the 180- and 312-bp transcripts at 12 and 24 hours, respectively. FVII(a)-dependent VEGF production was inhibited by a pool of antibodies against TF, pointing to the involvement of this receptor. On specific active-site inhibition with dansyl-glutamyl-glycinyl-arginyl chloromethyl ketone, FVIIa lost 70% of its capacity to elicit VEGF production. Consistent with this, the native form (zymogen) of FVII only had a 1.8-fold stimulating effect. Protein tyrosine kinase and protein kinase C are involved in signal transduction leading to VEGF production, as shown by the inhibitory effects of genistein and GF 109203X. The results of this study indicate that TF is essential for VIIa-induced VEGF production by human fibroblasts and that its role is mainly linked to the proteolytic activity of the TF-VIIa complex.
Tang Wang Ming Mu Granule Attenuates Diabetic Retinopathy in Type 2 Diabetes Rats
Chen, Mingxia; Lv, Haibo; Gan, Jiakuan; Ren, Junguo; Liu, Jianxun
2017-01-01
Aims: This study aimed to determine the influence of Tang Wang Ming Mu granule (TWMM) on the diabetic retinopathy of diabetic rats. Methods: Male Wistar rats were divided into seven groups: normal control, diabetes model(DM), diabetes with TWMM (3.6, 7.2, and 14.4 g/kg) treatment, the positive control treatment groups of Qi Ming granules and Calcium dobesilate capsules. All rats were treated for 8 weeks. The levels of body weight, fasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c) in blood were measured to evaluate the antihyperglycemic activity of TWMM. Furthermore, malondialdehyde (MDA), intracellular adhesion molecule-1 (ICAM-1) and vascular endothelial growth factor (VEGF) in serum were measured to study effects of TWMM on oxidative stress and inflammatory in DM2 rats. VEGF, JAK/STAT signaling pathway and SOCS3 in retina was detected by immunohistochemistry. Results: TWMM and the positive control drugs Qi Ming and Calcium dobesilate showed a remarkable suppression of retinal neovascularization and amelioration of retinal internal limiting membrane morphology. Moreover, TWMM significantly decreased HbA1c, MDA, ICAM-1, and VEGF levels in serum of diabetic rats. However, Qi Ming granules showed significantly reduced MDA and VEGF levels (P < 0.01, and P < 0.05, respectively), Calcium dobesilate showed significantly reduced MDA and ICAM-1levels (P < 0.01 and P < 0.05, respectively) in serum. All drug- treated DM2 rats showed significantly lower levels of VEGF, JAK2, P-JAK2, STAT3, and P-STAT3 in retina than DM group, while TWMM and Calcium dobesilate significantly increased SOCS3 in retina. Conclusion: Our data suggest that the diabetic retina protective effect of TWMM might be related to antiinflammatory, antioxidative, upregulation of SOCS3 expression, inhibition of the JAK/STAT/VEGF signaling pathway. PMID:29311988
Lechner, Judith; Chen, Mei; Hogg, Ruth E; Toth, Levente; Silvestri, Giuliana; Chakravarthy, Usha; Xu, Heping
2017-02-23
Infiltrating immune cells including monocytes/macrophages have been implicated in the pathogenesis of neovascular age-related macular degeneration (nAMD). The aim of this study was to investigate the cytokine and chemokine expression and secretion profile of peripheral blood mononuclear cells (PBMCs) from nAMD patients and the relationship between the cytokine/chemokine expression profile and clinical phenotype of nAMD, including macular fibrosis, macular atrophy or the responsiveness to anti-VEGF therapy. One hundred sixty-one nAMD patients and 43 controls were enrolled in this study. nAMD patients were divided into subgroups based on the presence/absence of (1) macular atrophy, (2) macular fibrosis and (3) responsiveness to anti-VEGF therapy; 25-30 ml of peripheral blood were obtained from all participants and 5 ml were used for serum collection, and the remaining were used for PBMC isolation using density gradient centrifugation. Intracellular cytokine expressions by PBMCs following phorbol 12-myristate 13-acetate (PMA) and ionomycin stimulation were examined using flow cytometry. Cytokine productions in lipopolysaccharides (LPS)-or 1% oxygen -treated PBMC were measured using cytometric bead array (CBA) assay. In addition, cytokine and chemokine levels in the serum were also measured by CBA assay. PBMCs from nAMD patients secreted higher levels of IL-8, CCL2 and VEGF, especially following LPS and 1% oxygen stimulation, than those from controls. 60~80% of IL-8 producing cells were CD11b + CD3 - monocytes. The percentage of CD11b + CD3 - IL-8 + was significantly increased in nAMD patients compared to controls. PBMCs from nAMD patients without macular fibrosis produced the highest levels of IL-8 and CCL2, whilst PBMCs from nAMD patients with macular atrophy produced highest levels of VEGF. In addition, PBMCs from patients who partially responded to anti-VEGF produced higher levels of IL-8 compared to the cells from complete responders. Interestingly, serum level of CCL2 was not increased in nAMD patients although there was a trend of increased IL-8 in nAMD patients. PBMCs, in particular monocytes, may contribute to CNV development in nAMD through secreting elevated levels of IL-8, CCL2 and VEGF after they are recruited to the macula. Apart from VEGF, IL-8 and CCL2 may be additional targets for nAMD management.
Farhang Ghahremani, Morvarid; Radaelli, Enrico; Haigh, Katharina; Bartunkova, Sonia; Haenebalcke, Lieven; Marine, Jean-Christophe; Goossens, Steven; Haigh, Jody J
2014-01-01
Malignant transformation of the endothelium is rare, and hemangiosarcomas comprise only 1% of all sarcomas. For this reason and due to the lack of appropriate mouse models, the genetic mechanisms of malignant endothelial transformation are poorly understood. Here, we describe a hemangiosarcoma mouse model generated by deleting p53 specifically in the endothelial and hematopoietic lineages. This strategy led to a high incidence of hemangiosarcoma, with an average latency of 25 weeks. To study the in vivo roles of autocrine or endothelial cell autonomous VEGF signaling in the initiation and/or progression of hemangiosarcomas, we genetically deleted autocrine endothelial sources of VEGF in this mouse model. We found that loss of even a single conditional VEGF allele results in substantial rescue from endothelial cell transformation. These findings highlight the important role of threshold levels of autocrine VEGF signaling in endothelial malignancies and suggest a new approach for hemangiosarcoma treatment using targeted autocrine VEGF inhibition. PMID:24626176
Farhang Ghahremani, Morvarid; Radaelli, Enrico; Haigh, Katharina; Bartunkova, Sonia; Haenebalcke, Lieven; Marine, Jean-Christophe; Goossens, Steven; Haigh, Jody J
2014-01-01
Malignant transformation of the endothelium is rare, and hemangiosarcomas comprise only 1% of all sarcomas. For this reason and due to the lack of appropriate mouse models, the genetic mechanisms of malignant endothelial transformation are poorly understood. Here, we describe a hemangiosarcoma mouse model generated by deleting p53 specifically in the endothelial and hematopoietic lineages. This strategy led to a high incidence of hemangiosarcoma, with an average latency of 25 weeks. To study the in vivo roles of autocrine or endothelial cell autonomous VEGF signaling in the initiation and/or progression of hemangiosarcomas, we genetically deleted autocrine endothelial sources of VEGF in this mouse model. We found that loss of even a single conditional VEGF allele results in substantial rescue from endothelial cell transformation. These findings highlight the important role of threshold levels of autocrine VEGF signaling in endothelial malignancies and suggest a new approach for hemangiosarcoma treatment using targeted autocrine VEGF inhibition.
Falkevall, Annelie; Mehlem, Annika; Palombo, Isolde; Heller Sahlgren, Benjamin; Ebarasi, Lwaki; He, Liqun; Ytterberg, A Jimmy; Olauson, Hannes; Axelsson, Jonas; Sundelin, Birgitta; Patrakka, Jaakko; Scotney, Pierre; Nash, Andrew; Eriksson, Ulf
2017-03-07
Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. Copyright © 2017 Elsevier Inc. All rights reserved.
Shiomitsu, K; Johnson, C L; Malarkey, D E; Pruitt, A F; Thrall, D E
2009-06-01
Epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) signalling pathways play a role in carcinogenesis. Inhibition of EGF receptor (EGFR) and of VEGF is effective in increasing the radiation responsiveness of neoplastic cells both in vitro and in human trials. In this study, immunohistochemical evaluation was employed to determine and characterize the potential protein expression levels and patterns of EGFR and VEGF in a variety of canine malignant epithelial nasal tumours. Of 24 malignant canine nasal tumours, 13 (54.2%) were positive for EGFR staining and 22 (91.7%) were positive for VEGF staining. The intensity and percentage of immunohistochemically positive neoplastic cells for EGFR varied. These findings indicate that EGFR and VEGF proteins were present in some malignant epithelial nasal tumours in the dogs, and therefore, it may be beneficial to treat canine patients with tumours that overexpress EGFR and VEGF with specific inhibitors in conjunction with radiation.
Serum VEGF-A concentrations in patients with central nervous system (CNS) tumors
2018-01-01
Angiogenesis plays an essential role in tumors development. In case of central nervous system tumors, the most important role in this process plays VEGF-A. The purpose of this study was to determine the plasma concentration of this agent in patients treated surgically because of intracranial tumors. The study involved 48 adult patients, both sexes, treated surgically because of a brain tumor. The control group consisted of 50 adult volunteers of both sexes, without cancer diagnosis. Based on the studies, it was found that serum VEGF-A levels before surgery are higher in patients with central nervous system tumors (10.39–150.57 pg/ml, median 41.70 pg/ml) than in non-cancer patients (0.00–130.77 pg/ml, median 22.56 pg/ml). The association between serum VEGF-A level and malignancy and histological type of intracranial tumor has not beed confirmed. The highest average preoperative serum VEGF-A level was found in patients with low grade gliomas, slightly lower (close to each other) in those with high grade gliomas and meningiomas, while the lowest level was characteristic for metastatic tumors. High variation in results was observed in patients with low grade gliomas (52.56 pg/ml)—higher than those reported in patients with high grade gliomas (32.38 pg/ml). In the rest types of tumors the differentiation was similar and oscillated within 23.08–27.50 pg/ml. PMID:29590109
Bai, Xiaoyan; Li, Xiao; Tian, Jianwei; Zhou, Zhanmei
2014-01-01
In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin was administered in 12 week-old streptozotocin-induced male Sprague Dawley rats. The levels of VEGF-A, AKT, phosphorylated Ser⁴⁷³-AKT, phosphorylated Thr³⁰⁸-AKT, nephrin, angiotensin II (Ang II), angiotensin type II receptor 1 (ATR1) were examined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemistry. Interactions between phosphorylated Thr³⁰⁸-AKT and either nephrin in podocytes or Ang II in renal tubules were studied, respectively, using confocal immunofluorescence microscopy and immunoprecipitation. Silencing VEGF-A in podocytes upregulated phosphorylated Thr³⁰⁸-AKT and nephrin. Silencing VEGF-A in NRK-52E cells upregulated phosphorylated Thr³⁰⁸-AKT while downregulated Ang II and ATR1. MK-2206 enhanced VEGF-A expression in both podocytes and NRK-52E cells by inhibiting AKT activities. In diabetic rat kidneys, VEGF-A was upregulated and phosphorylated Thr³⁰⁸-AKT colocalized with either nephrin in podocytes or Ang II in renal tubules. With the endostatin treatment, the level of VEGF-A decreased while phosphorylated Thr³⁰⁸-AKT increased in both glomeruli and renal tubules. Treatment with endostatin upregulated nephrin in podocytes while downregulated Ang II and AT1R in renal tubules. Glomerular mesangial expansion was attenuated by the endostatin treatment, however, differences did not reach statistical significance. Endostatin ameliorated the interstitial fibrosis, urine albumin excretion rate (UAER) and albumin to creatinine ratio. We conclude that phosphorylated Thr³⁰⁸-AKT regulates VEGF-A expression by interacting with either nephrin in glomeruli or Ang II in renal tubules. Antiangiogenic treatment improves renal injury and function in early experimental diabetes.
Su, Chen-Ming; Tang, Chih-Hsin; Chi, Meng-Ju; Lin, Chih-Yang; Fong, Yi-Chin; Liu, Yueh-Ching; Chen, Wei-Cheng; Wang, Shih-Wei
2018-05-03
Chondrosarcoma is a common primary malignant tumor of the bone that can metastasize through the vascular system to other organs. A key step in the metastatic process, lymphangiogenesis, involves vascular endothelial growth factor-C (VEGF-C). However, the effects of lymphangiogenesis in chondrosarcoma metastasis remain to be clarified. Accumulating evidence shows that resistin, a cytokine secreted from adipocytes and monocytes, also promotes tumor pathogenesis. Notably, chondrosarcoma can easily metastasize. In this study, we demonstrate that resistin enhances VEGF-C expression and lymphatic endothelial cells (LECs)-associated lymphangiogenesis in human chondrosarcoma cells. We also show that resistin triggers VEGF-C-dependent lymphangiogenesis via the c-Src signaling pathway and down-regulating micro RNA (miR)-186. Overexpression of resistin in chondrosarcoma cells significantly enhanced VEGF-C production and LECs-associated lymphangiogenesis in vitro and tumor-related lymphangiogenesis in vivo. Resistin levels were positively correlated with VEGF-C-dependent lymphangiogenesis via the down-regulation of miR-186 expression in clinical samples from chondrosarcoma tissue. This study is the first to evaluate the mechanism underlying resistin-induced promotion of LECs-associated lymphangiogenesis via the upregulation of VEGF-C expression in human chondrosarcomas. We suggest that resistin may represent a molecular target in VEGF-C-associated tumor lymphangiogenesis in chondrosarcoma metastasis. Copyright © 2018 Elsevier Inc. All rights reserved.
Oka, Satoko; Ono, Kazuo; Nohgawa, Masaharu
2018-04-01
Although the clinical significance of hypothyroidism in TAFRO syndrome is unknown, vascular endothelial growth factor (VEGF) levels decreased with improvements in the condition of our refractory TAFRO cases after thyroxine supplement therapy. Our results indicate that elevated VEGF levels are a potential factor in the pathogenesis and anasarca of TAFRO syndrome with hypothyroidism.
Bălu, Sevilla; Pirtea, L; Gaje, Puşa; Cîmpean, Anca Maria; Raica, M
2012-01-01
Ovarian cancer-related angiogenesis is a complex process orchestrated by many positive and negative regulators. Many growth factors are involved in the development of the tumor-associated vasculature, and from these, endocrine gland-derived vascular endothelial growth factor (EG-VEGF) seems to play a crucial role. EG-VEGF is the first organ-specific angiogenic factor and its effects are restricted to the endothelial cells of the endocrine glands. Although EG-VEGF was detected in both normal and neoplastic ovaries, its clinical significance remains controversial. In the present study, we analyzed 30 patients with epithelial ovarian cancer, and the immunohistochemical expression of EG-VEGF was compared with the conventional clinico-pathological parameters of prognosis. Neoplastic cells of the ovarian carcinoma expressed EG-VEGF in 73.33% of the cases, as a cytoplasmic granular product of reaction. We found a strong correlation between the expression of EG-VEGF at protein level and tumor stage, grade, and microscopic type. The expression of EG-VEGF was found in patients with stage III and IV, but not in stage II. The majority of serous adenocarcinoma, half of the cases with clear cell carcinoma and two cases with endometrioid carcinoma showed definite expression in tumor cells. No positive reaction was found in the cases with mucinous carcinoma. Our results showed that EG-VEGF expression is an indicator not only of the advanced stage, but also of ovarian cancer progression. Based on these data, we concluded that EG-VEGF expression in tumor cells of the epithelial ovarian cancer is a good marker of unfavorable prognosis and could be an attractive therapeutic target in patients with advanced-stage tumors, refractory conventional chemotherapy.
Abarbanell, Aaron M.; Wang, Yue; Herrmann, Jeremy L.; Weil, Brent R.; Poynter, Jeffrey A.; Manukyan, Mariuxi C.
2010-01-01
Toll-like receptor 2 (TLR2), a key component of the innate immune system, is linked to inflammation and myocardial dysfunction after ischemia-reperfusion injury (I/R). Treatment of the heart with mesenchymal stem cells (MSCs) is known to improve myocardial recovery after I/R in part by paracrine factors such as VEGF. However, it is unknown whether TLR2 activation on the MSCs affects MSC-mediated myocardial recovery and VEGF production. We hypothesized that the knockout of TLR2 on the MSCs (TLR2KO MSCs) would 1) improve MSC-mediated myocardial recovery and 2) increase myocardial and MSC VEGF release. With the isolated heart perfusion system, Sprague-Dawley rat hearts were subjected to I/R and received one of three intracoronary treatments: vehicle, male wild-type MSCs (MWT MSCs), or TL2KO MSCs. All treatments were performed immediately before ischemia, and heart function was measured continuously. Postreperfusion, heart homogenates were analyzed for myocardial VEGF production. Contrary to our hypothesis, only MWT MSC treatment significantly improved the recovery of left ventricular developed pressure and the maximal positive and negative values of the first derivative of pressure. In addition, VEGF production was greatest in hearts treated with MWT MSCs. To investigate MSC production of VEGF, MSCs were activated with TNF in vitro and the supernatants collected for ELISA. In vitro basal levels of MSC VEGF production were similar. However, with TNF activation, MWT MSCs produced significantly more VEGF, whereas activated TLR2KO MSC production of VEGF was unchanged. Finally, we observed that MWT MSCs proliferated more rapidly than TLR2KO MSCs. These data indicate that TLR2 may be essential to MSC-mediated myocardial recovery and VEGF production. PMID:20173040
Anti-Tumor Activity of a Novel HS-Mimetic-Vascular Endothelial Growth Factor Binding Small Molecule
Sugahara, Kazuyuki; Thimmaiah, Kuntebommanahalli N.; Bid, Hemant K.; Houghton, Peter J.; Rangappa, Kanchugarakoppal S.
2012-01-01
The angiogenic process is controlled by variety of factors of which the vascular endothelial growth factor (VEGF) pathway plays a major role. A series of heparan sulfate mimetic small molecules targeting VEGF/VEGFR pathway has been synthesized. Among them, compound 8 (2-butyl-5-chloro-3-(4-nitro-benzyl)-3H-imidazole-4-carbaldehyde) was identified as a significant binding molecule for the heparin-binding domain of VEGF, determined by high-throughput-surface plasmon resonance assay. The data predicted strong binding of compound 8 with VEGF which may prevent the binding of VEGF to its receptor. We compared the structure of compound 8 with heparan sulfate (HS), which have in common the functional ionic groups such as sulfate, nitro and carbaldehyde that can be located in similar positions of the disaccharide structure of HS. Molecular docking studies predicted that compound 8 binds at the heparin binding domain of VEGF through strong hydrogen bonding with Lys-30 and Gln-20 amino acid residues, and consistent with the prediction, compound 8 inhibited binding of VEGF to immobilized heparin. In vitro studies showed that compound 8 inhibits the VEGF-induced proliferation migration and tube formation of mouse vascular endothelial cells, and finally the invasion of a murine osteosarcoma cell line (LM8G7) which secrets high levels of VEGF. In vivo, these effects produce significant decrease of tumor burden in an experimental model of liver metastasis. Collectively, these data indicate that compound 8 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of endothelial cell migration and angiogenesis mediated by VEGF. In conclusion, compound 8 may normalize the tumor vasculature and microenvironment in tumors probably by inhibiting the binding of VEGF to its receptor. PMID:22916091
Wang, Lei; Jiang, Yuquan; Jiang, Zheng; Han, Lizhang
2016-01-01
Latest studies show that low-energy extracorporeal shock wave therapy (ESWT) can upregulate levels of vascular endothelial growth factor (VEGF). VEGF can ease nervous tissue harm after spinal cord injury (SCI). This study aims to explore whether low-energy ESWT can promote expression of VEGF, protect nervous tissue after SCI, and improve motor function. Ninety adult female rats were divided into the following groups: Group A (simple laminectomy), Group B (laminectomy and low-energy ESWT), Group C (spinal cord injury), and Group D (spinal cord injury and low-energy ESWT). Impinger was used to cause thoracic spinal cord injury. Low-energy ESWT was applied as treatment after injury three times a week, for 3 weeks. After SCI, the Basso, Beattie, and Bresnahan (BBB) scale was used to evaluate motor function over a period of 42 days at different time points. Hematoxylin and eosin (HE) staining was used to evaluate nerve tissue injury. Neuronal nuclear antigen (NeuN) staining was also used to evaluate loss of neurons. Polymerase chain reaction was used to detect messenger RNA (mRNA) expression of VEGF and its receptor fms-like tyrosine kinase 1 (Flt-1). Immunostaining was used to evaluate VEGF protein expression level in myeloid tissue. BBB scores of Groups A and B showed no significant result related to dyskinesia. HE and NeuN staining indicated that only using low-energy ESWT could not cause damage of nervous tissue in Group B. Recovery of motor function at 7, 35, and 42 days after SCI in Group D was better than that in Group C (P<0.05). Compared with Group C, number of NeuN-positive cells at 42 days after SCI increased significantly (P<0.05). The mRNA levels of VEGF and Flt-1 and VEGF expression at 7 days after SCI in Group D were significantly higher than those in Group C (P<0.05). Low-energy ESWT promotes expression of VEGF, decreases secondary damage of nerve tissue, and improves recovery of motor function. It can be regarded as one mode of clinical routine adjunctive therapy for spinal injury.
Citirik, Mehmet; Kabatas, Emrah Utku; Batman, Cosar; Akin, Kadir Okhan; Kabatas, Naciye
2012-01-01
To assess vitreous vascular endothelial growth factor (VEGF) concentrations in proliferative diabetic retinopathy (PDR) in comparison to proliferative vitreoretinopathy (PVR). Vitreous samples were collected from 69 eyes of 69 patients with traumatic lens dislocation (n = 10), grade B PVR with rhegmatogenous retinal detachment (n = 13), grade C PVR with rhegmatogenous retinal detachment (n = 14), PDR with vitreous hemorrhage (n = 18), and PDR with vitreous hemorrhage and tractional retinal detachment (n = 14). Vitreous fluid samples were obtained at vitrectomy, and the levels of VEGF were measured by enzyme-linked immunosorbent assay. The mean vitreous level of VEGF was 15.14 ± 5.22 pg/ml in eyes with grade B PVR, 99.15 ± 38.58 pg/ml in eyes with grade C PVR, 4,534.01 ± 1,193.28 pg/ml in eyes with vitreous hemorrhage secondary to PDR, 5,157.29 ± 969.44 pg/ml in eyes with vitreous hemorrhage and tractional retinal detachment secondary to PDR, and 16.19 ± 5.76 pg/ml in eyes of the control group with traumatic lens dislocation. Vitreous VEGF concentrations were significantly higher in the patients with grade C PVR, PDR with vitreous hemorrhage and PDR with vitreous hemorrhage and tractional retinal detachment in comparison to the control patients (p < 0.05). A significant alteration was not observed in patients with grade B PVR (p = 0.55). Vitreous VEGF concentrations are increased in PDR and grade C PVR. The high VEGF concentrations could suggest a possible effect of VEGF on advanced PVR. Copyright © 2011 S. Karger AG, Basel.
Smadja, David M; Levy, Marilyne; Huang, Lan; Rossi, Elisa; Blandinières, Adeline; Israel-Biet, Dominique; Gaussem, Pascale; Bischoff, Joyce
2015-10-01
Pulmonary vasodilators and prostacyclin therapy in particular, have markedly improved the outcome of patients with pulmonary hypertension (PH). Endothelial dysfunction is a key feature of PH, and we previously reported that treprostinil therapy increases number and proliferative potential of endothelial colony forming cells (ECFC) isolated from PH patients' blood. In the present study, the objective was to determine how treprostinil contributes to the proangiogenic functions of ECFC. We examined the effect of treprostinil on ECFC obtained from cord blood in terms of colony numbers, proliferative and clonogenic properties in vitro, as well as in vivo vasculogenic properties. Surprisingly, treprostinil inhibited viability of cultured ECFC but did not modify their clonogenic properties or the endothelial differentiation potential from cord blood stem cells. Treprostinil treatment significantly increased the vessel-forming ability of ECFC combined with mesenchymal stem cells (MSC) in Matrigel implanted in nude mice. In vitro, ECFC proliferation was stimulated by conditioned media from treprostinil-pretreated MSC, and this effect was inhibited either by the use of VEGF-A blocking antibodies or siRNA VEGF-A in MSC. Silencing VEGF-A gene in MSC also blocked the pro-angiogenic effect of treprostinil in vivo. In conclusion, increased VEGF-A produced by MSC can account for the increased vessel formation observed during treprostinil treatment. The clinical relevance of these data was confirmed by the high level of VEGF-A detected in plasma from patients with paediatric PH who had been treated with treprostinil. Moreover, our results suggest that VEGF-A level in patients could be a surrogate biomarker of treprostinil efficacy.
The Quantitative Analysis of bFGF and VEGF by ELISA in Human Meningiomas
Denizot, Yves; De Armas, Rafael; Caire, François; Moreau, Jean Jacques; Pommepuy, Isabelle; Truffinet, Véronique; Labrousse, François
2006-01-01
The quantitative analysis of VEGF using ELISA in various subtypes of grade I meningiomas reported higher VEGF contents in meningothelial (2.38 ± 0.62 pg/μg protein, n = 7), transitional (1.08 ± 0.21 pg/μg protein, n = 13), and microcystic meningiomas (1.98 ± 0.87 pg/μg protein, n = 5) as compared with fibrous ones (0.36 ± 0.09 pg/μg protein, n = 5). In contrast to VEGF, no difference in the concentrations of bFGF was detected. VEGF levels did not correlate with meningioma grade (1.47 ± 0.23 pg/μg versus 2.29 ± 0.58 pg/μg for 32 and 16 grade I and II, resp), vascularisation (1.53 ± 0.41 pg/μg versus 1.96 ± 0.28 pg/μg for 24 low and 24 high vascularisated tumours, resp), and brain invasion (2.32 ± 0.59 pg/μg versus 1.46 ± 0.27 pg/μg for 7 and 41 patients with and without invasion, resp). The ELISA procedure is, thus, an interesting tool to ensure VEGF and bFGF levels in meningiomas and to test putative correlations with clinical parameters. It is, thus, tempting to speculate that ELISA would also be valuable for the quantitative analysis of other angiogenic growth factors and cytokines in intracranial tumours. PMID:17392584
Hillenbrand, Matthias; Holzbach, Thomas; Matiasek, Kaspar; Schlegel, Jürgen; Giunta, Riccardo E
2015-03-01
The treatment of obstetric brachial plexus palsy has been limited to conservative therapies and surgical reconstruction of peripheral nerves. In addition to the damage of the brachial plexus itself, it also leads to a loss of the corresponding motoneurons in the spinal cord, which raises the need for supportive strategies that take the participation of the central nervous system into account. Based on the protective and regenerative effects of VEGF on neural tissue, our aim was to analyse the effect on nerve regeneration by adenoviral gene transfer of vascular endothelial growth factor (VEGF) in postpartum nerve injury of the brachial plexus in rats. In the present study, we induced a selective crush injury to the left spinal roots C5 and C6 in 18 rats within 24 hours after birth and examined the effect of VEGF-gene therapy on nerve regeneration. For gene transduction an adenoviral vector encoding for VEGF165 (AdCMV.VEGF165) was used. In a period of 11 weeks, starting 3 weeks post-operatively, functional regeneration was assessed weekly by behavioural analysis and force measurement of the upper limb. Morphometric evaluation was carried out 8 months post-operatively and consisted of a histological examination of the deltoid muscle and the brachial plexus according to defined criteria of degeneration. In addition, atrophy of the deltoid muscle was evaluated by weight determination comparing the left with the right side. VEGF expression in the brachial plexus was quantified by an enzyme-linked immunosorbent assay (ELISA). Furthermore the motoneurons of the spinal cord segment C5 were counted comparing the left with the right side. On the functional level, VEGF-treated animals showed faster nerve regeneration. It was found less degeneration and smaller mass reduction of the deltoid muscle in VEGF-treated animals. We observed significantly less degeneration of the brachial plexus and a greater number of surviving motoneurons (P < 0·05) in the VEGF group. The results of this study confirmed the positive effect of VEGF-gene therapy on regeneration and survival of nerve cells. We could demonstrate a significant improvement on the motor-functional as well as on the histomorphological level. However, increased vascularization of the nerve tissue caused by VEGF does not seem to be the major reason for these effects. The clinical use of adenoviral VEGF-gene therapy in the newborn cannot be justified so far.
Garnier, Vanessa; Traboulsi, Wael; Salomon, Aude; Brouillet, Sophie; Fournier, Thierry; Winkler, Carine; Desvergne, Beatrice; Hoffmann, Pascale; Zhou, Qun-Yong; Congiu, Cenzo; Onnis, Valentina; Benharouga, Mohamed; Feige, Jean-Jacques; Alfaidy, Nadia
2015-08-15
PPARγ-deficient mice die at E9.5 due to placental abnormalities. The mechanism by which this occurs is unknown. We demonstrated that the new endocrine factor EG-VEGF controls the same processes as those described for PPARγ, suggesting potential regulation of EG-VEGF by PPARγ. EG-VEGF exerts its functions via prokineticin receptor 1 (PROKR1) and 2 (PROKR2). This study sought to investigate whether EG-VEGF mediates part of PPARγ effects on placental development. Three approaches were used: 1) in vitro, using human primary isolated cytotrophoblasts and the extravillous trophoblast cell line (HTR-8/SVneo); 2) ex vivo, using human placental explants (n = 46 placentas); and 3) in vivo, using gravid wild-type PPARγ(+/-) and PPARγ(-/-) mice. Major processes of placental development that are known to be controlled by PPARγ, such as trophoblast proliferation, migration, and invasion, were assessed in the absence or presence of PROKR1 and PROKR2 antagonists. In both human trophoblast cell and placental explants, we demonstrated that rosiglitazone, a PPARγ agonist, 1) increased EG-VEGF secretion, 2) increased EG-VEGF and its receptors mRNA and protein expression, 3) increased placental vascularization via PROKR1 and PROKR2, and 4) inhibited trophoblast migration and invasion via PROKR2. In the PPARγ(-/-) mouse placentas, EG-VEGF levels were significantly decreased, supporting an in vivo control of EG-VEGF/PROKRs system during pregnancy. The present data reveal EG-VEGF as a new mediator of PPARγ effects during pregnancy and bring new insights into the fine mechanism of trophoblast invasion. Copyright © 2015 the American Physiological Society.
VEGF-A is increased in exogenous endophthalmitis.
Seamone, Mark E; Lewis, Darrell R; Haidl, Ian D; Gupta, R Rishi; O' Brien, Daniel M; Dickinson, John; Samad, Arif; Marshall, Jean S; Cruess, Alan F
2017-06-01
Exogenous endophthalmitis is an ophthalmologic emergency defined by panocular inflammation. Vascular endothelial growth factor A (VEGF-A) contributes to inflammation by promoting chemotaxis of monocytes and granulocytes and by increasing vascular permeability. The purpose of this article is to determine if VEGF-A is elevated in the vitreous samples obtained from individuals with exogenous endophthalmitis. Vitreous samples from individuals with exogenous endophthalmitis (n = 18) were analyzed via Luminex assay and enzyme-linked immunosorbent assay for the cytokines VEGF-A, tumor necrosis factor (TNF), interleukin 6 (IL-6), IL-8 (chemokine [CXCL]-8), IL-1β, IL-10, IL-12p70, IL-33, interferon (IFN)-γ, IFN-α, IFN-β, chemokine ligand (CCL)-3, IL-2, IL-5, IL-15, CXCL-10, CCL-2, IL-1Ra, CCL-5, IL-17, and CCL-11. Vitreous samples obtained at the time of macular hole surgery served as controls (n = 8). Concentrations of VEGF-A were significantly elevated in vitreous samples from individuals with exogenous endophthalmitis compared with macular hole (p < 0.001). VEGF-A was significantly upregulated in individuals with exogenous endophthalmitis after cataract surgery (p = 0.001), vitrectomy (p = 0.024), and intravitreal injection (p = 0.012). VEGF-A concentrations were similar in both culture-positive and culture-negative populations (p > 0.05). In a linear regression model, levels of VEGF-A correlated significantly with the chemokine CXCL-8 (p = 0.028). We demonstrate that VEGF-A is potently upregulated in exogenous endophthalmitis. This observation provides a foundation for future studies of targeted VEGF-A blockade in the management of endophthalmitis. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Moreno, Oscar; Lecanda, Jon; Green, Jeffrey E.
2010-02-15
Vascular endothelial growth factor (VEGF) is overexpressed during the transition from prostate intraepithelial neoplasia (PIN) to invasive carcinoma. We have mimicked such a process in vitro using the PIN-like C3(1)/Tag-derived Pr-111 cell line, which expresses low levels of VEGF and exhibits very low tumorigenicity in vivo. Elevated expression of VEGF164 in Pr-111 cells led to a significant increase in tumorigenicity, invasiveness, proliferation rates and angiogenesis. Moreover, VEGF164 induced strong changes in cell morphology and cell transcriptome through an autocrine mechanism, with changes in TGF-beta1- and cytoskeleton-related pathways, among others. Further analysis of VEGF-overexpressing Pr-111 cells or following exogenous addition ofmore » recombinant VEGF shows acquisition of epithelial-mesenchymal transition (EMT) features, with an increased expression of mesenchymal markers, such as N-cadherin, Snail1, Snail2 (Slug) and vimentin, and a decrease in E-cadherin. Administration of VEGF led to changes in TGF-beta1 signaling, including reduction of Smad7 (TGF-beta inhibitory Smad), increase in TGF-betaR-II, and translocation of phospho-Smad3 to the nucleus. Our results suggest that increased expression of VEGF in malignant cells during the transition from PIN to invasive carcinoma leads to EMT through an autocrine loop, which would promote tumor cell invasion and motility. Therapeutic blockade of VEGF/TGF-beta1 in PIN lesions might impair not only tumor angiogenesis, but also the early dissemination of malignant cells outside the epithelial layer.« less
Gökakın, Ali Kağan; Atabey, Mustafa; Deveci, Koksal; Sancakdar, Enver; Tuzcu, Mehmet; Duger, Cevdet; Topcu, Omer
2014-09-01
Severe burn induces systemic inflammation and reactive oxygen species leading to lipid peroxidation which may play role in remote organs injury. Sildenafil is a selective and potent inhibitor of cyclic guanosine monophosphate specific phosphodiesterase-5. Sildenafil reduces oxidative stress and inflammation in distant organs. The aim of the present study was to evaluate the effects of different dosages of sildenafil in remote organs injury. A total of thirty-two rats were randomly divided into four equal groups. The groups were designated as follows: Sham, Control, 10, and T20 mg/kg sildenafil treatment groups. Levels of malondialdehyde (MDA), vascular endothelial growth factor (VEGF), VEGF receptor (Flt-1), activities of glutathione peroxidase (Gpx), levels of total antioxidative capacity (TAC), and total oxidant status (TOS) were measured in both tissues and serum, and a semi-quantitative scoring system was used for the evaluation of histopathological findings. Sildenafil increased levels of Gpx, and Flt-1, and decreased MDA and VEGF levels in tissues. Sildenafil also increased serum levels of TAC and Flt-1 and decreased TOS, OSI, and VEGF. Sildenafil decreased inflammation scores in remote organs in histopathological evaluation. It has protective effects in severe burn-related remote organ injuries by decreasing oxidative stress and inflammation.
Machado, Camila Maria Longo; Andrade, Luciana Nogueira Sousa; Teixeira, Verônica Rodrigues; Costa, Fabrício Falconi; Melo, Camila Morais; dos Santos, Sofia Nascimento; Nonogaki, Suely; Liu, Fu-Tong; Bernardes, Emerson Soares; Camargo, Anamaria Aranha; Chammas, Roger
2014-04-01
In order to study the role of galectin-3 in tumor angiogenesis associated with tumor-associated macrophages (TAM) and tumor parenchyma, the galectin-3 expression was reconstituted in Tm1 melanoma cell line that lacks this protein. Galectin-3-expressing cells (Tm1G3) and mock-vector transfected cells (Tm1N3) were injected into wild-type (WT) and galectin-3 knockout (KO) C57Bl/6 mice. Tumors originated from Tm1G3 were larger in tumor volume with enlarged functional vessels, decreased necrotic areas, and increased vascular endothelial growth factor (VEGF) protein levels. Galectin-3-nonexpressing-cells injected into WT and KO showed increased levels of transforming growth factor beta 1 (TGFβ1) and, in WT animals this feature was also accompanied by increased VEGFR2 expression and its phosphorylation. In KO animals, tumors derived from galectin-3-expressing cells were infiltrated by CD68(+)-cells, whereas in tumors derived from galectin-3-nonexpressing-cells, CD68(+) cells failed to infiltrate tumors and accumulated in the periphery of the tumor mass. In vitro studies showed that Tm1G3 secreted more VEGF than Tm1N3 cells. In the latter case, TGFβ1 induced VEGF production. Basal secretion of VEGF was higher in WT-bone marrow-derived macrophages (BMDM) than in KO-BMDM. TGFβ1 induced secretion of VEGF only in WT-BMDM. Tm1G3-induced tumors had the Arginase I mRNA increased, which upregulated alternative macrophage (M2)/TAM induction. M2 stimuli, such as interleukin-4 (IL4) and TGFβ1, increased Arginase I protein levels and galectin-3 expression in WT- BMDM, but not in cells from KO mice. Hence, we report that galectin-3 disruption in tumor stroma and parenchyma decreases angiogenesis through interfering with the responses of macrophages to the interdependent VEGF and TGFβ1 signaling pathways. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Bărbulescu, Andreea Lili; Vreju, Ananu Florentin; Bugă, Ana Maria; Sandu, Raluca Elena; Criveanu, Cristina; Tudoraşcu, Diana Rodica; Gheonea, Ioana Andreea; Ciurea, Paulina Lucia
2015-01-01
Our study aimed to quantify serum VEGF (vascular endothelial growth factor) and its inter-relation with the severity of microvascular damage, assessed by nailfold capillaroscopy (NC), and to establish the possible relationship with disease activity score. We included 18 patients, diagnosed with systemic lupus erythematosus (SLE) and 17 gender and age-matched control subjects. For determining serum VEGF, we used a Human VEGF Assay kit-IBL. NC was performed, according to the standard method, using a video-capillaroscope Videocap 3.0, DS Medica, by the same examiner, blinded to clinical and laboratory data. Serum VEGF registered a mean value of 68.99±71.06 pg/mL for SLE patients and 31.84±11.74 pg/mL for controls, differences statistically significant; depending on disease activity, we found a mean value of 60.11±57.74 pg/mL, for patients with moderate disease activity vs. 30.96±11.51 pg/mL for the ones with a low activity (p=0.014). We found a moderately positive correlation, statistically significant (p=0.015), between serum level of VEGF and Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). Performing NC, we found changes in 88.88% of the patients; the most frequent were increased tortuosity, dilated capillaries, an increased length and a prominent subpapillary plexus. The presence of nailfold capillaroscopy changes and serum level of VEGF, correlated moderately, positive. Since serum levels of VEGF are higher in SLE patients, compared to controls, significantly different according to disease activity degree, and directly inter-related to abnormal NC patterns and a more active disease, we can include these accessible parameters in the routine evaluation, in order to better quantify the systemic damage, individualize the treatment, improve the outcome and life quality for these patients.
Aronis, K N; Diakopoulos, K N; Fiorenza, C G; Chamberland, J P; Mantzoros, C S
2011-09-01
Leptin has been shown to regulate angiogenesis in animal and in vitro studies by upregulating the production of several pro-angiogenic factors, but its role in regulating angiogenesis has never been studied in humans. The potential angiogenic effect of two doses of metreleptin (50 and 100 ng/ml) was evaluated in vitro, using a novel three-dimensional angiogenesis assay. Fifteen healthy, normoleptinaemic volunteers were administered both a physiological (0.1 mg/kg) and a pharmacological (0.3 mg/kg) single dose of metreleptin, in vivo, on two different inpatient admissions separated by 1-12 weeks. Serum was collected at 0, 6, 12 and 24 h after metreleptin administration. Twenty lean women, with leptin levels <5 ng/ml, were randomised in a 1:1 fashion to receive either physiological replacement doses of metreleptin (0.04-0.12 mg/kg q.d.) or placebo for 32 weeks. Serum was collected at 0, 8, 20 and 32 weeks after randomisation. Proteomic angiogenesis array analysis was performed to screen for angiogenic factors. Circulating concentrations of angiogenin, angiopoietin-1, platelet derived endothelial factor (PDGF)-AA, matrix metalloproteinase (MMP) 8 and 9, endothelial growth factor (EGF) and vascular EGF (VEGF) were also measured. Both metreleptin doses failed to induce angiogenesis in the in vitro model. Although leptin levels increased significantly in response to both short-term and long-term metreleptin administration, circulating concentrations of angiogenesis markers did not change significantly in vivo. This is the first study that examines the effect of metreleptin administration in angiogenesis in humans. Metreleptin administration does not regulate circulating angiogenesis related factors in humans. ClinicalTrials.gov NCT00140205 and NCT00130117. This study was supported by National Institutes of Health-National Center for Research Resources grant M01-RR-01032 (Harvard Clinical and Translational Science Center) and grant number UL1 RR025758. Funding was also received from the National Institute of Diabetes and Digestive and Kidney Diseases grants 58785, 79929 and 81913, and AG032030.
Şimşek, Ece; Aydemir, Esra Arslan; İmir, Nilüfer; Koçak, Orhan; Kuruoğlu, Aykut; Fışkın, Kayahan
2015-10-01
Dimethyl sulfoxide (DMSO) is widely used in biological research as a general solvent. While it has been previously demonstrated that DMSO possesses a wide range of pharmacological effects, there is no published work regarding the effects of DMSO on pro-angiogenic factor levels. This study was designed to investigate the possible effects of DMSO on the levels of three pro-angiogenic factors released from HeLa cells in vitro. Cells were treated with two different and previously determined concentrations of DMSO. The cytotoxic effects of DMSO concentrations on HeLa cells were determined via MTT. Survival rates of DMSO-treated cells were determined by Invitrogen live/dead viability/cytotoxicity kit and trypan blue exclusion assay. Changes in the pro-angiogenic levels in media were evaluated by Cayman's Substance P Enzyme Immunoassay ELISA kit. Vascular endothelial growth factor ELISA kit and interferon gamma ELISA kit for substance P, VEGF and IFNγ respectively. Changes in substance P levels were corrected by standard western blotting. Changes in VEGF and IFNγ levels were corrected both by western blot and real time PCR. Treatment with 1.4 μM DMSO caused a time-dependent inhibition of cell proliferation at 24, 48 and 72 h. 1.4 μM DMSO caused a significant reduction in VEGF levels at 72 h of incubation and sharp increases in IFNγ levels at both 48 and 72 h of incubation. According to real time PCR analyses, DMSO (1.4 μM) exhibited an inhibitory effect on VEGF but acted as an augmenter of IFNγ release on HeLa cells in vitro. This is the first report showing that the general solvent DMSO suppressed HeLa cell proliferation, decreased the levels of two pro-angiogenic factors (substance P and VEGF) and increased the release of an anti-angiogenic factor IFNγ in vitro. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xie, Han; Qiao, Ping; Lu, Yi; Li, Ying; Tang, Yuping; Huang, Yiying; Bao, Yirong; Ying, Hao
2017-12-01
Placenta previa is often associated with preterm delivery, reduced birth weight, a higher frequency of placental accreta and postpartum haemorrhage, and increased likelihood of blood transfusion. The present study aimed to examine the expression of high mobility group box protein 1 (HMGB1) in the placenta of women with or without placenta previa. The study group consisted of placental tissues obtained from women with or without placenta previa. The expression levels of HMGB1 and vascular endothelial growth factor (VEGF) were evaluated in the placental tissues using reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry. The mRNA expression levels of HMGB1 and VEGF were significantly increased in the placenta previa group compared with in the normal group. In addition, the placenta previa group exhibited increased HMGB1 and VEGF staining in vascular endothelial cells and trophoblasts. There were no significant differences in the expression of HMGB1 or VEGF between groups with or without placenta accreta or postpartum haemorrhage. The present study hypothesised that the increased expression of HMGB1 in the placenta may be associated with the pathogenesis of placenta previa by regulating the expression of the proangiogenic factor VEGF.
Liu, Zhuofu; Wang, Jingjing; Wang, Huan; Wang, Dehui; Hu, Li; Liu, Quan; Sun, Xicai
2015-01-01
This work demonstrated that juvenile nasopharyngeal angiofibromas (JNAs) express high levels of hormone receptors and vascular endothelial growth factor (VEGF) compared with normal nasal mucosa. The interaction between hormone receptors and VEGF may be involved in the initiation and growth of JNA. JNA is a rare benign tumor that occurs almost exclusively in male adolescents. Although generally regarded as a hormone-dependent tumor, this has not been proven in previous studies. The aim of this study was to investigate the role of hormone receptors in JNA and the relationship with clinical characteristics. Standard immunohistochemical microarray analysis was performed on 70 JNA samples and 10 turbinate tissue samples. Specific antibodies for androgen receptor (AR), estrogen receptor-α (ER-α), estrogen receptor-β (ER-β), progesterone receptor (PR), and VEGF were examined, and the relationships of receptor expression with age, tumor stage, and bleeding were evaluated. RESULTS showed that JNA expressed ER-α (92.9%), ER-β (91.4%), AR (65.7%), PR (12.8%), and VEGF (95.7%) at different levels. High level of VEGF was linked to elevated ER-α and ER-β. There was no significant relationship between hormonal receptors and age at diagnosis, tumor stage or bleeding. However, overexpression of ER-α was found to be an indicator of poor prognosis (p = 0.031).
Effect of cyclophilin A on gene expression in human pancreatic cancer cells.
Li, Min; Wang, Hao; Li, Fei; Fisher, William E; Chen, Changyi; Yao, Qizhi
2005-11-01
We previously found that cyclophilin A (CypA) is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. In this study, we further investigated the effect of CypA on gene expression of several key molecules that are involved in pancreatic cancer cell proliferation. Human pancreatic cancer cell lines (Panc-1, MIA PaCa-2, and BxPC-3) and human pancreatic ductal epithelial (HPDE) cells were used. The messenger RNA (mRNA) levels of CypA, CypB, CD147, neuropilins (NRPs), vascular endothelial growth factor (VEGF), and VEGF receptors upon the treatment of exogenous recombinant human CypA were determined by real-time reverse-transcription polymerase chain reaction. Exogenous human recombinant CypA reduced the mRNA levels of NRP-1 and VEGF, but not endogenous CypA, CypB, and CD147, in Panc-1, MIA PaCa-2, and BxPC-3 cells. In contrast, HPDE cells showed a decrease of endogenous CypA and CD147 mRNA, but not detectable changes of CypB, NRPs, and VEGF mRNA levels upon exogenous CypA treatment. These data show that exogenous CypA downregulates NRP-1 and VEGF expression in pancreatic cancer cells. This effect is different in normal HPDE cells. Thus, soluble CypA may affect cell growth of pancreatic cancer.
Lin, Chih-Yang; Tzeng, Huey-En; Li, Te-Mao; Chen, Hsien-Te; Lee, Yi; Yang, Yi-Chen; Wang, Shih-Wei; Yang, Wei-Hung; Tang, Chih-Hsin
2017-06-13
Chondrosarcoma is the second most prevalent general primary tumor of bone following osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). VEGF-A level has been recognized as a prognostic marker in angiogenesis. WNT1-inducible signaling pathway protein-3 (WISP)-3/CCN6 belongs to the CCN family and is involved in regulating several cellular functions, including cell proliferation, differentiation, and migration. Nevertheless, the effect of WISP-3 on VEGF-A production and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that WISP-3 promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, WISP-3-enhanced VEGF-A expression and angiogenesis involved the c-Src and p38 signaling pathways, while miR-452 expression was negatively affected by WISP-3 via the c-Src and p38 pathways. Our results illustrate the clinical significance of WISP-3, VEGF-A and miR-452 in human chondrosarcoma patients. WISP-3 may illustrate a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma.
Ameglio, F; D'Auria, L; Cordiali-Fei, P; Mussi, A; Valenzano, L; D'Agosto, G; Ferraro, C; Bonifati, C; Giacalone, B
1997-01-01
Recently, we reported that soluble E-selectin (sE-selectin), an isoform of the cell membrane E-selectin, an adhesion molecule synthesized only by endothelial cells, is significantly increased in sera of the patients with bullous pemphigoid (PB) or pemphigus vulgaris. A significant correlation was also found between the serum sE-selectin levels and the number of skin lesions, suggesting the possible use of this molecule to gauge disease intensity before therapy. One of the sE-selectin inducers is tumor nerosis factor-alpha (TNF-alpha), that is also able to enhance vascular endothelial growth factor (VEGF), a strong endothelium activator. On the basis of these observations, the present study was conducted to analyze the serum levels of VEGF, sE-selectin, and TNF-alpha in 8 patients with BP (age: 82, range 54-87, 7 males, 1 female) and in 6 patients affected affected with PV (age: 55, range 44-65; 5 males, 1 female) and to verify possible correlations between these variables and the disease activity, In addition, serum sE-selectin levels were measured over time and compared with the serum anti-epithelium antibodies titers. The sE-selectin, VEGF and TNF-alpha levels were measured in the samples by means of commercially available ELISA kit. The same samples were also employed to measure the anti-epithelium antibody titers. Serum VEGF, sE-selectin and TNF-alpha levels were significantly correlated each other (p at least < 0.01). All three variables were also significantly correlated with the number of lesions (p at least < 0.01). Serum VEGF levels were found increased (median = 178 pg/ml, range 37-595) as compared to 28 healthy controls (median = 135 pg/ml, range 18/269, p < 0.05). Also serum TNF-alpha levels were found increased (median = 5.5 pg/ml, range < 0.1-41.0) as compared to 28 healthy controls (median < 0.1 pg/ml, range < 0.1-5.3), p < 0.01). When the patients were observed over time, serum sE-selectin levels highly correlated with the disease intensity in both dermatoses, although with different regression curves. These data further underline the endothelium involvement in these bullous dermatoses and stress the possibility of employing sE-selectin as a non-specific follow-up marker of both BP and PV.
Kim, Ha Na; Kim, Hyemin; Kong, Joo Myung; Bae, Seyeon; Kim, Yong Sung; Lee, Naeun; Cho, Byung Joo; Lee, Seung Koo; Kim, Hang-Rae; Hwang, Young-il; Kang, Jae Seung; Lee, Wang Jae
2011-03-01
It is known that vitamin C induces apoptosis in several kinds of tumor cells, but its effect on the regulation of the angiogenic process of tumors is not completely studied. Vascular endothelial growth factor (VEGF) is the most well-known angiogenic factor, and it has a potent function as a stimulator of endothelial survival, migration, as well as vascular permeability. Therefore, we have investigated whether vitamin C can regulate the angiogenic process through the modulation of VEGF production from B16F10 melanoma cells. VEGF mRNA expression and VEGF production at protein levels were suppressed by vitamin C. In addition, we found that vitamin C suppressed the expression of cyclooxygenase (COX)-2 and that decreased VEGF production by vitamin C was also restored by the administration of prostaglandin E2 which is a product of COX-2. These results suggest that vitamin C suppresses VEGF expression via the regulation of COX-2 expression. Mitogen-activated protein kinases are generally known as key mediators in the signaling pathway for VEGF production. In the presence of vitamin C, the activation of p42/44 MAPK was completely inhibited. Taken together, our data suggest that vitamin C can down-regulate VEGF production via the modulation of COX-2 expression and that p42/44 MAPK acts as an important signaling mediator in this process. Copyright © 2010 Wiley-Liss, Inc.
Stretch-Induced Hypertrophy Activates NFkB-Mediated VEGF Secretion in Adult Cardiomyocytes
Leychenko, Anna; Konorev, Eugene; Jijiwa, Mayumi; Matter, Michelle L.
2011-01-01
Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF), which acts as an angiogenic factor and a modulator of cardiomyocyte function, is regulated by mechanical stretch. Mechanical stretch promotes VEGF secretion in neonatal cardiomyocytes. Whether this effect is retained in adult cells and the molecular mechanism mediating stretch-induced VEGF secretion has not been elucidated. Our objective was to investigate whether cyclic mechanical stretch induces VEGF secretion in adult cardiomyocytes and to identify the molecular mechanism mediating VEGF secretion in these cells. Isolated primary adult rat cardiomyocytes (ARCMs) were subjected to cyclic mechanical stretch at an extension level of 10% at 30 cycles/min that induces hypertrophic responses. Cyclic mechanical stretch induced a 3-fold increase in VEGF secretion in ARCMs compared to non-stretch controls. This increase in stretch-induced VEGF secretion correlated with NFkB activation. Cyclic mechanical stretch-mediated VEGF secretion was blocked by an NFkB peptide inhibitor and expression of a dominant negative mutant IkBα, but not by inhibitors of the MAPK/ERK1/2 or PI3K pathways. Chromatin immunoprecipitation assays demonstrated an interaction of NFkB with the VEGF promoter in stretched primary cardiomyocytes. Moreover, VEGF secretion is increased in the stretched myocardium during pressure overload-induced hypertrophy. These findings are the first to demonstrate that NFkB activation plays a role in mediating VEGF secretion upon cyclic mechanical stretch in adult cardiomyocytes. Signaling by NFkB initiated in response to cyclic mechanical stretch may therefore coordinate the hypertrophic response in adult cardiomyocytes. Elucidation of this novel mechanism may provide a target for developing future pharmacotherapy to treat hypertension and heart disease. PMID:22174951
Sen, Aditi; Paine, Suman Kalyan; Chowdhury, Imran Hussain; Mukherjee, Amrita; Choudhuri, Subhadip; Saha, Avijit; Mandal, Lakshmi Kanta
2011-01-01
Purpose To evaluate the role of interleukin-6 (IL-6) in the inflammatory and proliferative stages of Eales’ disease (ED) and to determine the influence of IL-6–174G/C polymorphism in the IL-6 and IL-6-regulated protein expression, as well as the development of ED. Methods One hundred and twenty-one patients diagnosed with ED, 223 matched healthy controls, and 16 control patients with macular holes were recruited from the eastern Indian population. Serum and vitreous levels of IL-6 and vascular endothelial growth factors (VEGF) were measured by enzyme-linked immunosorbent assay. Serum levels of high-sensitivity C-reactive protein (hsCRP) were measured by enzyme immunoassay. Subjects were genotyped for the IL-6–174G/C polymorphism (rs1800795) by a custom TaqMan single-nucleotide polymorphism (SNP) Genotyping Assays system. Results Serum IL-6 (p<0.0001), hsCRP (p<0.0001), and VEGF (p=0.0031) levels were significantly higher in the inflammatory stage of ED than in healthy controls. Serum IL-6 also significantly correlated with hsCRP (Spearman’s correlation coefficient; r=0.4992, p=0.0009), but not with VEGF in this stage in ED patients. At the proliferative stage of ED, significantly higher levels of vitreous IL-6 (p=<0.0001) and VEGF (p=<0.0001) were found compared with the vitreous of patients with macular holes. A significant correlation was observed between vitreous IL-6 and VEGF in ED patients (Spearman’s correlation coefficient; r=0.5834, p=0.0087). A statistically significant association was found between the −174GG genotype (p=0.006) and occurrence of ED. Mean serum and vitreous concentrations of IL-6 were also higher in the subjects with the GG genotype than in those with the GC or CC genotype in this population. Conclusions IL-6 expression, regulated by the allelic distribution of −174 loci and the enhanced level of IL-6, modulates CRP and VEGF concentration depending respectively on the acute inflammatory stimulation at the initial stage and angiogenic stimulation at the advanced stage of ED. PMID:22025890
Hua, Cong; Feng, Yan; Yuan, Hongyan; Song, Hongmei
2016-01-01
Abstract Chronic subdural hematoma (CSDH) is an inflammatory and angiogenic disease. Vascular endothelial growth factor (VEGF) has an important effect on the pathological progression of CSDH. The matrix metalloproteinases (MMPs) and VEGF also play a significant role in pathological angiogenesis. Our research was to investigate the level of MMPs and VEGF in serum and hematoma fluid. Magnetic Resonance Imaging (MRI) shows the characteristics of different stages of CSDH. We also analyzed the relationship between the level of VEGF in subdural hematoma fluid and the appearances of the patients' MRI. We performed a study comparing serum and hematoma fluid in 37 consecutive patients with primary CSDHs using enzyme-linked immunosorbent assay (ELISA). MMP-2 and MMP-9 activity was assayed by the gelatin zymography method. The patients were divided into five groups according to the appearance of the hematomas on MRI: group 1 (T1-weighted low, T2-weighted low, n=4), group 2 (T1-weighted high, T2-weighted low, n=11), group 3 (T1-weighted mixed, T2-weighted mixed, n=9), group 4 (T1-weighted high, T2-weighted high, n=5), and group 5 (T1-weighted low, T2-weighted high, n=8). Neurological status was assessed by Markwalder score on admission and at follow-up. The mean age, sex, and Markwalder score were not significantly different among groups. The mean concentration of VEGF, MMP-2, and MMP-9 were significantly higher in hematoma fluid than in serum (p<0.01). The level of pro-MMP-2 was higher in hematoma fluid (p<0.01). Measurement of MMP-9 showed both pro and active forms in both groups, but levels were higher in hematoma fluid (p<0.01 and p<0.01, respectively). Mean VEGF concentration was highest in group 1 (21,979.3±1387.3 pg/mL), followed by group 2 (20,060.1±1677.2 pg/mL), group 3 (13,746.5±3529.7 pg/mL), group 4 (7523.2±764.9 pg/mL), and lowest in group 5 (6801.9±618.7 pg/mL). There was a significant correlation between VEGF concentrations and MRI type (r=0.854). The present investigation is the first report showing that the concentrations of MMP-2 and MMP-9 are significantly elevated in hematoma fluid, suggesting that the MMPs/VEGF system may be involved in the angiogenesis of CSDH. We also demonstrate a significant correlation between the concentrations of VEGF and MRI appearance. This finding supports the hypothesis that high VEGF concentration in the hematoma fluid is of major pathophysiological importance in the generation and steady increase of the hematoma volume, as well as the determination of MRI appearance. PMID:25646653
Lang, Zhe; Chen, Gang; Wang, Dong-chang
2012-10-01
This study was designed to evaluate the inhibitory effect of nimesulide in combination with oxaliplatin on tumor growth, expression of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin, and lymphatic metastasis in lung cancer xenograft in nude mice, and to discuss the possible synergistic effect of nimesulide in combination with oxaliplatin. Human lung cancer A549 cells were injected into BALB/c nude mice subcutaneously. Thirty-three healthy male nude mice were randomly divided into 4 groups: the control group, nimesulide group, oxaliplatin group and nimesulide combined with oxaliplatin group. Transplanted tumor tissues were collected and the expressions of COX-2, VEGF-C, VEGFR-3, survivin, β-catenin protein were detected by immunohistochemistry, and RT-PCR assay was used to assess the expression of tumor COX-2, VEGF-C, VEGFR-3, survivin and β-catenin mRNA. SPSS 16.0 was used for statistical analysis. Data were present as (x(-) ± s), and the means were compared by analysis of variance test. Tumor inhibition rates of the nimesulide group, oxaliplatin group and nimesulide + oxaliplatin group were 39.73%, 48.04% and 65.94%, respectively. Immunohistochemical and RT-PCR analysis showed that compared with the control group, the expression levels of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin of the nimesulide group were significantly reduced (all P < 0.05). Compared with the control group, statistical analysis of variance showed that the expression levels of COX-2, VEGF-C and VEGFR-3 of the oxaliplatin group were significantly increased (P < 0.05), the expression levels of survivin and β-catenin protein and mRNA of the oxaliplatin group were significantly reduced (P < 0.05). Compared with the control group, the expression levels of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin of the nimesulide + oxaliplatin group were significantly reduced (all P < 0.05). Both nimesulide alone or in combination with oxaliplatin can significantly inhibit the growth of lung cancer xenografts in nude mice and the expression levels of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin. Oxaliplatin can significantly inhibit the growth of lung cancer xenografts in nude mice, and the expression of survivin and β-catenin. Nimesulide in combination with oxaliplatin enhances the antitumor effect of oxaliplatin.
Zou, Xuan; Dong, Fangtian; Zhang, Shuying; Tian, Rong; Sui, Ruifang
2013-05-01
The familial transthyretin (TTR) amyloidosis (FTA) demonstrates variable penetrance of clinical features associated with mutations in the plasma thyroid hormone-binding protein TTR gene. The purpose of this study was to assess the ocular features, to analyze vitreous and serum vascular endothelial growth factor (VEGF) levels, and to identify the genetic defect in a Chinese family with TTR FTA. The pedigree of interest was a three-generation family with eleven members. The primary ocular signs were vitreous opacities, beginning from the third or fourth decade, accompanied by retinal vasculitis, hemorrhages, and widespread pinpoint deposits in the peripheral retina. Two patients underwent vitrectomy with marked improvement of visual acuity postoperatively. Vitreous and serum samples for VEGF were analyzed with an enzyme-linked immunosorbent assay (ELISA). Forty-eight healthy adult volunteers were enrolled as a control group for the analysis of serum VEGF. Eight subjects who underwent vitrectomy for a macular epiretinal membrane or macular hole were enrolled as control for the analysis of vitreous VEGF. Both serum and vitreous VEGF levels of patients were raised compared to that of controls. Venous blood was collected from family members and the genomic DNA was extracted. All exons and exon-intron boundaries of the TTR gene were sequenced. A previously-described pathogenic transversion in exon 2 (c.G106C, p.Ala36Pro) was identified. Within this family eight individuals were confirmed as affected. In conclusion, a Chinese family with TTR Ala36Pro associated FTA is characterized by early ocular involvement. Widespread pinpoint lesions indicate RPE lesions caused by TTR deposition. FTA is associated with increased VEGF levels, both in serum and vitreous. Copyright © 2013 Elsevier Ltd. All rights reserved.
Comparative Safety and Tolerability of Anti-VEGF therapy in Age-Related Macular Degeneration
Modi, Yasha S.; Tanchon, Carley; Ehlers, Justis P
2015-01-01
Neovascular age-related macular degeneration (NVAMD) is one of the leading causes of blindness. Over the last decade, the treatment of NVAMD has been revolutionized by the development intravitreal anti-vascular endothelial growth factor (VEGF) therapies. Several anti-VEGF medications are used for the treatment of NVAMD. The safety and tolerability of these medications deserve review given the high prevalence of NVAMD and the significant utilization of these medications. Numerous large randomized clinical trials have not shown any definitive differential safety relative to ocular or systemic safety of these medications. Intravitreal anti-VEGF therapy does appear to impact systemic VEGF levels, but the implications of these changes remain unclear. One unique safety concern relates drug compounding and the potential risks of contamination, specifically for bevacizumab. Continued surveillance for systemic safety concerns, particularly for rare events is merited. Overall these medications are well tolerated and effective in the treatment of NVAMD. PMID:25700714
VEGF signaling mediates bladder neuroplasticity and inflammation in response to BCG
2011-01-01
Background This work tests the hypothesis that increased levels of vascular endothelial growth factor (VEGF) observed during bladder inflammation modulates nerve plasticity. Methods Chronic inflammation was induced by intravesical instillations of Bacillus Calmette-Guérin (BCG) into the urinary bladder and the density of nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) or pan-neuronal marker PGP9.5 was used to quantify alterations in peripheral nerve plasticity. Some mice were treated with B20, a VEGF neutralizing antibody to reduce the participation of VEGF. Additional mice were treated systemically with antibodies engineered to specifically block the binding of VEGF to NRP1 (anti-NRP1B) and NRP2 (NRP2B), or the binding of semaphorins to NRP1 (anti-NRP1 A) to diminish activity of axon guidance molecules such as neuropilins (NRPs) and semaphorins (SEMAs). To confirm that VEGF is capable of inducing inflammation and neuronal plasticity, another group of mice was instilled with recombinant VEGF165 or VEGF121 into the urinary bladder. Results The major finding of this work was that chronic BCG instillation resulted in inflammation and an overwhelming increase in both PGP9.5 and TRPV1 immunoreactivity, primarily in the sub-urothelium of the urinary bladder. Treatment of mice with anti-VEGF neutralizing antibody (B20) abolished the effect of BCG on inflammation and nerve density. NRP1A and NRP1B antibodies, known to reduce BCG-induced inflammation, failed to block BCG-induced increase in nerve fibers. However, the NRP2B antibody dramatically potentiated the effects of BCG in increasing PGP9.5-, TRPV1-, substance P (SP)-, and calcitonin gene-related peptide (CGRP)-immunoreactivity (IR). Finally, instillation of VEGF121 or VEGF165 into the mouse bladder recapitulated the effects of BCG and resulted in a significant inflammation and increase in nerve density. Conclusions For the first time, evidence is being presented supporting that chronic BCG instillation into the mouse bladder promotes a significant increase in peripheral nerve density that was mimicked by VEGF instillation. Effects of BCG were abolished by pre-treatment with neutralizing VEGF antibody. The present results implicate the VEGF pathway as a key modulator of inflammation and nerve plasticity, introduces a new animal model for investigation of VEGF-induced nerve plasticity, and suggests putative mechanisms underlying this phenomenon. PMID:22059553
Adamson, Peter; Wilde, Thomas; Dobrzynski, Eric; Sychterz, Caroline; Polsky, Rodd; Kurali, Edit; Haworth, Richard; Tang, Chi-Man; Korczynska, Justyna; Cook, Fiona; Papanicolaou, Irene; Tsikna, Lemy; Roberts, Chris; Hughes-Thomas, Zoe; Walford, James; Gibson, Daniel; Warrack, John; Smal, Jos; Verrijk, Ruud; Miller, Paul E.; Nork, T. Michael; Prusakiewicz, Jeffery; Streit, Timothy; Sorden, Steven; Struble, Craig; Christian, Brian; Catchpole, Ian R.
2017-01-01
A potent anti-vascular endothelial growth factor (VEGF) biologic and a compatible delivery system were co-evaluated for protection against wet age-related macular degeneration (AMD) over a 6month period following a single intravitreal (IVT) injection. The anti-VEGF molecule is dimeric, containing two different anti-VEGF domain antibodies (dAb) attached to a human IgG1 Fc region: a dual dAb. The delivery system is based on microparticles of PolyActive™ hydrogel co-polymer. The molecule was evaluated both in vitro for potency against VEGF and in ocular VEGF-driven efficacy modelsin vivo. The dual dAb is highly potent, showing a lower IC50 than aflibercept in VEGF receptor binding assays (RBAs) and retaining activity upon release from microparticles over 12 months in vitro. Microparticles released functional dual dAb in rabbit and primate eyes over 6 months at sufficient levels to protect Cynomolgus against laser-induced grade IV choroidal neovascularisation (CNV). This demonstrates proof of concept for delivery of an anti-VEGF molecule within a sustained-release system, showing protection in a pre-clinical primate model of wet AMD over 6 months. Polymer breakdown and movement of microparticles in the eye may limit development of particle-based approaches for sustained release after IVT injection. PMID:27810558
Lin, Shu-Min; Chung, Fu-Tsai; Kuo, Chih-Hsi; Chou, Pai-Chien; Wang, Tsai-Yu; Chang, Po-Jui; Lo, Yu-Lun; Huang, Chien-Da; Lin, Horng-Chyuan; Wang, Chun-Hua; Kuo, Han-Pin
2015-01-01
Abstract To determine plasma concentrations of angiopoietin (Ang)-1, Ang-2, Tie-2, and vascular endothelial growth factor (VEGF) in patients with sepsis-induced multiple organ dysfunction syndrome (MODS) and determine their association with mortality. The study prospectively recruited 96 consecutive patients with severe sepsis in a l intensive care unit of a tertiary hospital. Plasma Ang-1, Ang-2, Tie-2, and VEGF levels and MODS were determined in patients on days 1, 3, and 7 of sepsis. Univariate and Cox proportional hazards analysis were performed to develop a prognostic model. Days 1, 3, and 7 plasma Ang-1 concentrations were persistently decreased in MODS patients than in non-MODS patients (day1: 4.0 ± 0.5 vs 8.0 ± 0.5 ng/mL, P < 0.0001; day 3, 3.2 ± 0.6 vs 7.3 ± 0.5 ng/mL, P < 0.0001, day 7, 2.8 ± 0.6 vs 10.4 ± 0.7 ng/mL, P < 0.0001). In patients with resolved MODS on day 7 of sepsis, Ang-1 levels were increased from day 1 (4.7 ± 0.6 ng/mL vs 9.1 ± 1.4 ng/mL, n = 43, P = 0.004). Plasma Ang-1 levels were lower in nonsurvivors than in survivors on days 1 (4.0 ± 0.5 vs 7.1 ± 0.5 ng/mL, P < 0.0001), 3 (3.8 ± 0.6 vs 7.1 ± 0.5 ng/mL, P < 0.0001), and 7 (4.7 ± 0.7 vs 11.0 ± 0.8 ng/mL, P < 0.0001) of severe sepsis. In contrast, plasma Ang-2 levels were higher in nonsurvivors than in survivors only on day 1 (15.8 ± 2.0 vs 9.5 ± 1.2 ng/mL, P = 0.035). VEGF and Tie-2 levels were not associated with MODS and mortality. Ang-1 level less than the median value was the only independent predictor of mortality (hazard ratio, 2.57; 95% CI 1.12–5.90, P = 0.025). Persistently decreased Ang-1 levels are associated with MODS and subsequently, mortality in patients with sepsis. PMID:25997069
Lin, Bin; Hong, Hai-Jie; Zhu, Si-Yuan; Jiang, Lei; Wang, Xiao-Qian; Tang, Nan-Hong; She, Fei-Fei; Chen, Yan-Ling
2018-01-01
Background Tumor necrosis factor alpha (TNF-α) enhances lymphangiogenesis in gallbladder carcinoma (GBC) via activation of nuclear factor (NF-κB)-dependent vascular endothelial growth factor-C (VEGF-C). Receptor-interacting protein 1 (RIP1) is a multifunctional protein in the TNF-α signaling pathway and is highly expressed in GBC. However, whether RIP1 participates in the signaling pathway of TNF-α-mediated VEGF-C expression that enhances lymphangiogenesis in GBC remains unclear. Methods The RIP1 protein levels in the GBC-SD and NOZ cells upon stimulation with increasing concentrations of TNF-α as indicated was examined using Western blot. Lentiviral RIP1 shRNA and siIκBα were constructed and transduced respectively them into NOZ and GBC-SD cells, and then PcDNA3.1-RIP1 vectors was transduced into siRIP1 cell lines to reverse RIP1 expression. The protein expression of RIP1, inhibitor of NF-κB alpha (IκBα), p-IκBα, TAK1, NF-κB essential modulator were examined through immunoblotting or immunoprecipitation. Moreover, VEGF-C mRNA levels were measured by quantitative real-time polymerase chain reaction, VEGF-C protein levels were measured by immunoblotting and enzyme-linked immunosorbent assay, and VEGF-C promoter and NF-κB activities were quantified using a dual luciferase reporter assay. The association of NF-κB with the VEGF-C promoter was analysed by chromatin immunoprecipitation assay. A three-dimensional coculture method and orthotopic transplantation nude mice model were used to evaluate lymphatic tube-forming and metastasis ability in GBC cells. The expression of RIP1 protein, TNF-α protein and lymphatic vessels in human GBC tissues was examined by immunohistochemistry, and the dependence between RIP1 protein with TNF-α protein and lymphatic vessel density was analysed. Results TNF-α dose- and time-dependently increased RIP1 protein expression in the GBC-SD and NOZ cells of GBC, and the strongest effect was observed with a concentration of 50 ng/ml. RIP1 is fundamental for TNF-α-mediated NF-κB activation in GBC cells and can regulate TNF-α-mediated VEGF-C expression at the protein and transcriptional levels through the NF-κB pathway. RIP1 can regulate TNF-α-mediated lymphatic tube formation and metastasis in GBC cells both in vitro and vivo. The average optical density of RIP1 was linearly related to that of TNF-α protein and the lymphatic vessel density in GBC tissues. Conclusion We conclude that RIP1 regulates TNF-α-mediated lymphangiogenesis and lymph node metastasis in GBC by modulating the NF-κB-VEGF-C pathway. PMID:29844685
Li, Cheng-Zong; Jiang, Xiao-Jie; Lin, Bin; Hong, Hai-Jie; Zhu, Si-Yuan; Jiang, Lei; Wang, Xiao-Qian; Tang, Nan-Hong; She, Fei-Fei; Chen, Yan-Ling
2018-01-01
Tumor necrosis factor alpha (TNF-α) enhances lymphangiogenesis in gallbladder carcinoma (GBC) via activation of nuclear factor (NF-κB)-dependent vascular endothelial growth factor-C (VEGF-C). Receptor-interacting protein 1 (RIP1) is a multifunctional protein in the TNF-α signaling pathway and is highly expressed in GBC. However, whether RIP1 participates in the signaling pathway of TNF-α-mediated VEGF-C expression that enhances lymphangiogenesis in GBC remains unclear. The RIP1 protein levels in the GBC-SD and NOZ cells upon stimulation with increasing concentrations of TNF-α as indicated was examined using Western blot. Lentiviral RIP1 shRNA and siIκBα were constructed and transduced respectively them into NOZ and GBC-SD cells, and then PcDNA3.1-RIP1 vectors was transduced into siRIP1 cell lines to reverse RIP1 expression. The protein expression of RIP1, inhibitor of NF-κB alpha (IκBα), p-IκBα, TAK1, NF-κB essential modulator were examined through immunoblotting or immunoprecipitation. Moreover, VEGF-C mRNA levels were measured by quantitative real-time polymerase chain reaction, VEGF-C protein levels were measured by immunoblotting and enzyme-linked immunosorbent assay, and VEGF-C promoter and NF-κB activities were quantified using a dual luciferase reporter assay. The association of NF-κB with the VEGF-C promoter was analysed by chromatin immunoprecipitation assay. A three-dimensional coculture method and orthotopic transplantation nude mice model were used to evaluate lymphatic tube-forming and metastasis ability in GBC cells. The expression of RIP1 protein, TNF-α protein and lymphatic vessels in human GBC tissues was examined by immunohistochemistry, and the dependence between RIP1 protein with TNF-α protein and lymphatic vessel density was analysed. TNF-α dose- and time-dependently increased RIP1 protein expression in the GBC-SD and NOZ cells of GBC, and the strongest effect was observed with a concentration of 50 ng/ml. RIP1 is fundamental for TNF-α-mediated NF-κB activation in GBC cells and can regulate TNF-α-mediated VEGF-C expression at the protein and transcriptional levels through the NF-κB pathway. RIP1 can regulate TNF-α-mediated lymphatic tube formation and metastasis in GBC cells both in vitro and vivo. The average optical density of RIP1 was linearly related to that of TNF-α protein and the lymphatic vessel density in GBC tissues. We conclude that RIP1 regulates TNF-α-mediated lymphangiogenesis and lymph node metastasis in GBC by modulating the NF-κB-VEGF-C pathway.
Huang, Fengying; Cao, Jing; Liu, Qiuhong; Zou, Ying; Li, Hongyun; Yin, Tuanfang
2013-01-01
Objective: Now there are more and more evidences that Cyclooxygenase-2 (COX-2) plays an important role in angiogenesis of endometriosis (EMs). Vascular endothelial growth factor (VEGF) has a potent angiogenic activity. However, it is worth studying about the regulating mechanism of COX-2/COX-1 and VEGF in the development of human endometriosis in vitro. The current study was designed to investigate the effect of 4 cytokines on COX-2/COX-1 expression and the effect of IL-1β on VEGF release in human endometriosis stromal cells (ESC), and to explore the related signaling pathways involved in vitro. Methods: Isolation, culture and identification of ESC. Cells were treated with 4 cytokines, and the inhibitor mitogen-activated protein-Erk (MEK) and the inhibitor p38 mitogen-activated protein kinase (MAPK) prior to adding cytokine IL-1β. COX-2 protein expression was measured by western blot and VEGF secretion was determined by ELISA. Results: Among four kinds of cytokines, IL-1β treatment increased COX-2 protein expression and VEGF release in three ESC, and TNF-α had the same effect on COX-2 protein level as IL-1β only in ectopic and eutopic ESC, and MCSF had only slight effect on ectopic ESC. In contrast, cytokines had no effect on COX-1 expression. We also demonstrated that MAPK reduced the synthesis of COX-2 by IL-1β induced. COX-2 inhibitor reduced VEGF release by IL-1β induced. Conclusions: i) In human ESC in vitro, IL-1β up-regulated the COX-2 expression through the activation of p38 MAPK pathway, and not to COX-1. ii) Up-regulation of VEGF level by IL-1β treatment was found in human endometriosis stromal cell and COX-2 inhibitor was involved in this process. PMID:24133591
Dong, Yoko; Kase, Satoru; Dong, Zhenyu; Fukuhara, Junichi; Tagawa, Yoshiaki; Ishizuka, Erdal Tan; Murata, Miyuki; Shinmei, Yasuhiro; Ohguchi, Takeshi; Kanda, Atsuhiro; Noda, Kousuke; Ishida, Susumu
2016-08-01
Vascular endothelial growth factor C (VEGF-C) plays an important role in the development of a pterygium through lymphangiogenesis. We examined the association between VEGF-C and tumor necrosis factor-α (TNF-α) in the pathogenesis of pterygia. Cultured conjunctival epithelial cells were treated with TNF-α, and the gene expression levels of VEGFC were evaluated by quantitative polymerase chain reaction (qPCR) and VEGF-C protein expression levels were measured using an enzyme-linked immunosorbent assay (ELISA). In addition, using ELISA, we evaluated the VEGF-C protein expression in the supernatants of cultured conjunctival epithelial cells, in which we neutralized TNF-α using anti‑TNF-α antibody. The gene expression of tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A), known as TNF receptor 1 (TNFR1), was confirmed using reverse transcription PCR in cultured conjunctival epithelial cells. Immunofluorescence microscopy was used to examine the localization of VEGF-C and TNFR1 in pterygium tissues and TNFR1 expression in cultured conjunctival epithelial cells. Immunohistochemistry was used to examine the localization of TNFR1 in pterygia and normal conjunctival tissues. VEGFC gene expression increased in cultured conjunctival epithelial cells 24 h after the addition of TNF-α. The secretion of VEGF-C protein was significantly increased 48 h after the stimulation of cultured conjunctival epithelial cells with TNF-α. Increased VEGF-C protein secretion stimulated by TNF-α was significantly reduced by anti-TNF-α neutralizing antibody treatment. In cultured conjunctival epithelial cells, TNFRSF1A and TNFR1 were expressed. TNFR1 was immunolocalized in normal conjunctival tissues and in human pterygium tissues as well as in VEGF‑C‑positive epithelial cells from human pterygia. Our data demonstrate that TNF-α mediates VEGF-C expression, which plays a critical role in the pathogenesis of pterygia.
Guiducci, Serena; Manetti, Mirko; Romano, Eloisa; Mazzanti, Benedetta; Ceccarelli, Claudia; Dal Pozzo, Simone; Milia, Anna Franca; Bellando-Randone, Silvia; Fiori, Ginevra; Conforti, Maria Letizia; Saccardi, Riccardo; Ibba-Manneschi, Lidia; Matucci-Cerinic, Marco
2011-11-01
To characterise bone marrow-derived mesenchymal stem cells (MSCs) from patients with systemic sclerosis (SSc) for the expression of factors implicated in MSC recruitment at sites of injury, angiogenesis and fibrosis. The study also analysed whether the production/release of bioactive mediators by MSCs were affected by stimulation with cytokines found upregulated in SSc serum and tissues, and whether MSCs could modulate dermal microvascular endothelial cell (MVEC) angiogenesis. MSCs obtained from five patients with early severe diffuse SSc (SSc-MSCs) and five healthy donors (H-MSCs) were stimulated with vascular endothelial growth factor (VEGF), transforming growth factor β (TGFβ) or stromal cell-derived factor-1 (SDF-1). Transcript and protein levels of SDF-1 and its receptor CXCR4, VEGF, TGFβ(1) and receptors TβRI and TβRII were evaluated by quantitative real-time PCR, western blotting and confocal microscopy. VEGF, SDF-1 and TGFβ(1) secretion in culture supernatant was measured by ELISA. MVEC capillary morphogenesis was performed on Matrigel with the addition of MSC-conditioned medium. In SSc-MSCs the basal expression of proangiogenic SDF-1/CXCR4 and VEGF was significantly increased compared with H-MSCs. SSc-MSCs constitutively released higher levels of SDF-1 and VEGF. SDF-1/CXCR4 were upregulated after VEGF stimulation and CXCR4 redistributed from the cytoplasm to the cell surface. VEGF was increased by SDF-1 challenge. VEGF, TGFβ and SDF-1 stimulation upregulated TGFβ(1), TβRI and TβRII in SSc-MSCs. TβRII redistributed from the cytoplasm to focal adhesion contacts. SSc-MSC-conditioned medium showed a greater proangiogenic effect on MVECs than H-MSCs. Experiments with blocking antibodies showed that MSC-derived cytokines were responsible for this potent proangiogenic effect. SSc-MSCs constitutively overexpress and release bioactive mediators/proangiogenic factors and potentiate dermal MVEC angiogenesis.
Decreased expression of ADAMTS-1 in human breast tumors stimulates migration and invasion
2013-01-01
Background ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin motifs) is a member of the ADAMTS family of metalloproteases. Here, we investigated mRNA and protein levels of ADAMTS-1 in normal and neoplastic tissues using qPCR, immunohistochemistry and immunoblot analyses, and we addressed the role of ADAMTS-1 in regulating migration, invasion and invadopodia formation in breast tumor cell lines. Results In a series of primary breast tumors, we observed variable levels of ADAMTS-1 mRNA expression but lower levels of ADAMTS-1 protein expression in human breast cancers as compared to normal tissue, with a striking decrease observed in high-malignancy cases (triple-negative for estrogen, progesterone and Her-2). This result prompted us to analyze the effect of ADAMTS-1 knockdown in breast cancer cells in vitro. MDA-MB-231 cells with depleted ADAMTS-1 expression demonstrated increased migration, invasion and invadopodia formation. The regulatory mechanisms underlying the effects of ADAMTS-1 may be related to VEGF, a growth factor involved in migration and invasion. MDA-MB-231 cells with depleted ADAMTS-1 showed increased VEGF concentrations in conditioned medium capable of inducing human endothelial cells (HUVEC) tubulogenesis. Furthermore, expression of the VEGF receptor (VEGFR2) was increased in MDA-MB-231 cells as compared to MCF7 cells. To further determine the relationship between ADAMTS-1 and VEGF regulating breast cancer cells, MDA-MB-231 cells with reduced expression of ADAMTS-1 were pretreated with a function-blocking antibody against VEGF and then tested in migration and invasion assays; both were partially rescued to control levels. Conclusions ADAMTS-1 expression was decreased in human breast tumors, and ADAMTS-1 knockdown stimulated migration, invasion and invadopodia formation in breast cancer cells in vitro. Therefore, this series of experiments suggests that VEGF is involved in the effects mediated by ADAMTS-1 in breast cancer cells. PMID:23289900
Huang, T R; Wang, G C; Zhang, H M; Peng, B
2018-02-14
Prostate cancer (PCa) is one of the most common male malignancies in the world. It was aimed to investigate differential expression of inflammatory and related factors in benign prostatic hyperplasia (BPH), prostate cancer (PCa), histological prostatitis (HP) and explore the role of Inducible nitric oxide synthase (iNOS), (VEGF) Vascular endothelial growth factor, androgen receptor (AR) and IL-2, IL-8 and TNF-α in the occurrence and development of prostate cancer. RT-PCR was used to detect the mRNA expression level of iNOS, VEGF, AR and IL-2, IL-8 and TNF-α in BPH, PCa and BPH+HP. Western blotting and immunohistochemical staining were used to detect the protein levels of various proteins in three diseases. The results showed the mRNA and protein levels of iNOS, VEGF and IL-2, IL-8 and TNF-α were significantly increased in PCa and BPH+HP groups compared with BPH group (p < .05), while the AR was significantly lower than those in PCa and BPH+HP groups (p < .05). There was no significant difference in the mRNA and protein levels of iNOS, VEGF, AR and IL-2, IL-8 and TNF-α between PCa and BPH+HP groups (p > .05). iNOS, VEGF, AR and IL-2, IL-8 and TNF-α are involved in the malignant transformation of prostate tissue and play an important role in the development and progression of Prostate cancer (PCa). © 2018 Blackwell Verlag GmbH.
Ratajczak, Jessica; Hilkens, Petra; Gervois, Pascal; Wolfs, Esther; Jacobs, Reinhilde; Lambrichts, Ivo; Bronckaers, Annelies
2016-01-01
Periodontal ligament stem cells (PDLSCs) represent a good source of multipotent cells for cell-based therapies in regenerative medicine. The success rate of these treatments is severely dependent on the establishment of adequate vasculature in order to provide oxygen and nutrients to the transplanted cells. Pharmacological preconditioning of stem cells has been proposed as a promising method to augment their therapeutic efficacy. In this study, the aim was to improve the intrinsic angiogenic properties of PDLSCs by in vitro pretreatment with deferoxamine (DFX; 100μM), fibroblast growth factor-2 (FGF-2; 10ng/mL) or both substances combined. An antibody array revealed the differential expression of several proteins, including vascular endothelial growth factor (VEGF) and placental growth factor (PlGF). ELISA data confirmed a 1.5 to 1.8-fold increase in VEGF for all tested conditions. Moreover, 48 hours after the removal of DFX, VEGF levels remained elevated (1.8-fold) compared to control conditions. FGF-2 and combination treatment resulted in a 5.4 to 13.1-fold increase in PlGF secretion, whereas DFX treatment had no effect. Furthermore, both PDLSCs as pretreated PDLSCs induced endothelial migration. Despite the significant elevated VEGF levels of pretreated PDLSCs, the induced endothelial migration was not higher by pretreated PDLSCs. We find that the observed induced endothelial cell motility was not dependent on VEGF, since blocking the VEGFR1-3 with Axitinib (0.5nM) did not inhibit endothelial motility towards PDLSCs. Taken together, this study provides evidence that preconditioning with DFX and/or FGF-2 significantly improves the angiogenic secretome of PDLSCs, in particular VEGF and PlGF secretion. However, our data suggest that VEGF is not the only player when it comes to influencing endothelial behavior by the PDLSCs. PMID:27936076
CHIP involves in non-small cell lung cancer prognosis through VEGF pathway.
Tingting, Qian; Jiao, Wang; Qingfeng, Wang; Yancheng, Liu; Shijun, Y U; Zhaoqi, Wang; Dongmei, Sun; ShiLong, Wang
2016-10-01
CHIP (c-terminal Hsp70-interacting protein) is an E3 ligase playing vital roles in various cancers. The VEGF pathway has become an important therapeutic target in non-small cell lung cancer (NSCLC). However, little is known about the role of CHIP and the relationship between CHIP and VEGF-VEGFR2 (VEGF receptor 2) pathway in NSCLC. In this study we aimed to investigate the clinical function of CHIP in NSCLC and explore the relevant regulatory mechanism. QRT-PCR was performed to detect CHIP expression in NSCLC tissues. The association of CHIP expression and clinical parameters was analyzed using the Chi-square test. Kaplan- Meier and Cox analyses were performed to identify the role of CHIP in the prognosis of NSCLC patients. ELISA test was used to detect the VEGF secretion of NSCLC cells and western blot were used to detected the protein expression of VEGFR2 in NSCLC cells. and the results revealed that CHIP expression was decreased in NSCLC tissues and significantly correlated with clinical stages, lymph node metastasis and distant metastasis (P<0.05). Moreover, Kaplan-Meier and Cox regression analyses showed that patients with negative expression of CHIP had a shorter survival time and CHIP could be an independent prognostic biomarker. In addition, ELISA tests showed that CHIP negatively regulated the secretion level of VEGF. Furthermore, western blot assay indicated that the VEGFR2 protein level was reduced after CHIP over-expression. Taken together, our findings demonstrate for the first time that CHIP may serve as a promising prognostic biomarker for NSCLC patients and it may be involved in NSCLC angiogenesis through regulating VEGF secretion and expression of VEGFR2. Copyright © 2016. Published by Elsevier Masson SAS.
Hu, Y; Hu, M-m; Shi, G-L; Han, Y; Li, B-L
2014-09-01
Angiogenesis is regulated by a balance of pro-angiogenic and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) and endostatin respectively represents a frequent component of inducers and inhibitors in the process of angiogenesis. The ratio of VEGF/endostatin may reflect the balance of angiogenic switch. This study aimed to determine whether an imbalance between VEGF/endostatin exists in operable non-small cell lung cancer (NSCLC) patients and to assess the correlation, if any, between the imbalance and the prognosis. Preoperative serum levels of VEGF and endostatin were simultaneously determined by quantitiative enzyme-linked immunosorbent assay (ELISA) and the ratio of them was calculated among 98 NSCLC patients and 51 healthy controls. The relationship between these factors and clinicopathological features, including prognosis, was examined. The ratio of VEGF/endostatin levels was significantly higher in operable NSCLC patients [median, 10.4; interquartile range (IQR), 5.9-19.8] than in normal controls [median, 5.1; IQR, 3.3-9.7] (P = 0.002). While the ratio in patients who were still alive for more than 60 months was 8.3 (IQR, 4.3-17.9), the ratio in those who died was 12.9 (IQR, 8.0-22.1) (p = 0.017). In subgroup analysis of patients with pathological stage N0, there was a statistically significant increase of the survival time in the group with a lower ratio than in the group with a higher ratio (p = 0.032). Multivariate analysis confirmed that the VEGF/endostatin ratio was an independent prognostic factor (p = 0.018). There was an imbalance between VEGF and endostatin in serum of operable NSCLC patients. The imbalance correlated with the prognosis of operable NSCLC. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rahmani, Arshad H; Babiker, Ali Yousif; Alsahli, Mohammed A; Almatroodi, Saleh A; Husain, Nazik Elmalaika O S
2018-02-15
Angiogenesis plays a pivotal role in the progression of tumours through the formation of new blood vessels. Vascular endothelial growth factor (VEGF) is a chief factor responsible for inducing and regulating angiogenesis. Additionally, the human epidermal growth factor receptor family of receptors also plays an important role in the pathogenesis of tumours. This study aimed to examine the association between VEGF and Her-2 protein expression and its correlation with clinic-pathological characteristics; in particular, prognosis. A total of 65 cases of cervical carcinoma and 10 samples of inflammatory lesions were evaluated for VEGF and Her-2 protein expression. Expression of VEGF and Her-2 was detected in 63.07% and 43.07% in cervical carcinoma cases respectively whereas control cases did not show any expression. The difference in the expression pattern of both markers comparing cancer and control cases was statistically significant (p < 0.05). However, no significant difference in the expression pattern of VEGF protein was observed among the different grades and stages of tumours (p > 0.05). Comparing different grades of a tumour, expression of Her-2 was detected in 31.8% of well-differentiated tumours, 36.0 % in moderately differentiated tumours and 66.66 % in poorly differentiated cancers. The expression of Her-2 was increased in high-grade tumours, and the difference of expression level between tumour grades was statistically significant (p < 0.05). The expression level of Her-2 protein was not correlated with the stage of a tumour (p > 0.05). The present study supports earlier findings that over-expression / up-regulation of VEGF and Her - 2 is linked with poor prognosis and may play a vital role in the development and progression of cervical cancer.
Rahmani, Arshad H.; Babiker, Ali Yousif; Alsahli, Mohammed A.; Almatroodi, Saleh A.; Husain, Nazik Elmalaika O. S.
2018-01-01
BACKGROUND: Angiogenesis plays a pivotal role in the progression of tumours through the formation of new blood vessels. Vascular endothelial growth factor (VEGF) is a chief factor responsible for inducing and regulating angiogenesis. Additionally, the human epidermal growth factor receptor family of receptors also plays an important role in the pathogenesis of tumours. AIM: This study aimed to examine the association between VEGF and Her-2 protein expression and its correlation with clinic-pathological characteristics; in particular, prognosis. METHODS: A total of 65 cases of cervical carcinoma and 10 samples of inflammatory lesions were evaluated for VEGF and Her-2 protein expression. RESULTS: Expression of VEGF and Her-2 was detected in 63.07% and 43.07% in cervical carcinoma cases respectively whereas control cases did not show any expression. The difference in the expression pattern of both markers comparing cancer and control cases was statistically significant (p < 0.05). However, no significant difference in the expression pattern of VEGF protein was observed among the different grades and stages of tumours (p > 0.05). Comparing different grades of a tumour, expression of Her-2 was detected in 31.8% of well-differentiated tumours, 36.0 % in moderately differentiated tumours and 66.66 % in poorly differentiated cancers. The expression of Her-2 was increased in high-grade tumours, and the difference of expression level between tumour grades was statistically significant (p < 0.05). The expression level of Her-2 protein was not correlated with the stage of a tumour (p > 0.05). CONCLUSION: The present study supports earlier findings that over-expression / up-regulation of VEGF and Her - 2 is linked with poor prognosis and may play a vital role in the development and progression of cervical cancer. PMID:29531585
Gu, Yan; Zhang, Min; Li, Guo-Hua; Gao, Jun-Zhen; Guo, Liping; Qiao, Xiao-Juan; Wang, Li-Hong; He, Lan; Wang, Mei-Ling; Yan, Li; Fu, Xiu-Hua
2015-02-05
Hydrothorax, as one of the common complications of malignant tumors, still cannot be sensitively detected in clinical practice, thus requiring a sensitive, specific method for diagnosis. The aim of this study was to analyze the correlation between levels of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) in patients with benign and malignant hydrothorax. The contents of VEGF in the pleural effusion and serum of the patients with malignant pleural effusion (n = 35) and benign pleural effusion (n = 30) were detected by double antibody sandwich enzyme linked immunosorbent assay. The gene copy number level of EGFR in pleural effusion was detected by fluorescence in situ hybridization (FISH). The points with the highest sensitivity and specificity were selected as the critical values to calculate the diagnostic value of the VEGF in pleural effusion and serum, and EGFR gene copy number in pleural effusion. The contents of VEGF in pleural effusion and serum of patients with malignant hydrothorax were (384.91 ± 120.18), and (129.62 ± 46.35) ng/L, respectively, which were significantly higher than those of the patients with benign hydrothorax (207.97 ± 64.04), (63.49 ± 24.58) ng/L (P < 0.01). The sensitivity and specificity of detecting VEGF in pleural effusion were 80.0% and 96.7% (the boundary value was 297.06 ng/L), respectively for diagnosing benign and malignant hydrothorax. The sensitivity and specificity of serum were 74.3% and 96.7%, respectively (the boundary value was 99.21 ng/L) for diagnosing benign and malignant hydrothorax. The diagnostic efficiencies of EGFR and VEGF in hydrothorax were similar. There was a significant correlation between EGFR and VEGF in hydrothorax (P < 0.01). VEGF and EGFR play important roles in the formation of pleural effusion. VEGF differed significantly in benign and malignant pleural effusions, which contributed to differential diagnosis results of benign and malignant pleural effusions. It is feasible to detect the gene copy number of the pleural effusion cell mass EGFR by FISH technique. Joint detection can improve the diagnostic sensitivity.
Gu, Yan; Zhang, Min; Li, Guo-Hua; Gao, Jun-Zhen; Guo, Liping; Qiao, Xiao-Juan; Wang, Li-Hong; He, Lan; Wang, Mei-Ling; Yan, Li; Fu, Xiu-Hua
2015-01-01
Background: Hydrothorax, as one of the common complications of malignant tumors, still cannot be sensitively detected in clinical practice, thus requiring a sensitive, specific method for diagnosis. The aim of this study was to analyze the correlation between levels of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) in patients with benign and malignant hydrothorax. Methods: The contents of VEGF in the pleural effusion and serum of the patients with malignant pleural effusion (n = 35) and benign pleural effusion (n = 30) were detected by double antibody sandwich enzyme linked immunosorbent assay. The gene copy number level of EGFR in pleural effusion was detected by fluorescence in situ hybridization (FISH). The points with the highest sensitivity and specificity were selected as the critical values to calculate the diagnostic value of the VEGF in pleural effusion and serum, and EGFR gene copy number in pleural effusion. Results: The contents of VEGF in pleural effusion and serum of patients with malignant hydrothorax were (384.91 ± 120.18), and (129.62 ± 46.35) ng/L, respectively, which were significantly higher than those of the patients with benign hydrothorax (207.97 ± 64.04), (63.49 ± 24.58) ng/L (P < 0.01). The sensitivity and specificity of detecting VEGF in pleural effusion were 80.0% and 96.7% (the boundary value was 297.06 ng/L), respectively for diagnosing benign and malignant hydrothorax. The sensitivity and specificity of serum were 74.3% and 96.7%, respectively (the boundary value was 99.21 ng/L) for diagnosing benign and malignant hydrothorax. The diagnostic efficiencies of EGFR and VEGF in hydrothorax were similar. There was a significant correlation between EGFR and VEGF in hydrothorax (P < 0.01). Conclusions: VEGF and EGFR play important roles in the formation of pleural effusion. VEGF differed significantly in benign and malignant pleural effusions, which contributed to differential diagnosis results of benign and malignant pleural effusions. It is feasible to detect the gene copy number of the pleural effusion cell mass EGFR by FISH technique. Joint detection can improve the diagnostic sensitivity. PMID:25635424
Du, Qiang; Jiang, Lei; Wang, Xiaoqian; Wang, Meiping; She, Feifei; Chen, Yanling
2014-01-01
Vascular endothelial growth factor (VEGF)-C is an important lymphangiogenic factor involved in the lymphangiogenesis of gallbladder carcinoma (GBC) and the lymph node metastasis of the tumor. Tumor necrosis factor (TNF)-α, a key inflammatory cytokine responding to chronic inflammation of GBC, has been reported to stimulate the expression of VEGF-C in some nonneoplastic cells. But whether TNF-α promotes the expression of VEGF-C in GBC has yet to be determined. Therefore, in the present study, the concentration of TNF-α and VEGF-C and the lymphatic vessel density (LVD) in the clinical GBC specimens were analyzed, and a linear correlation was found between the concentration of TNF-α and that of VEGF-C, the lymphatic vessel density (LVD); The transcription and protein level of VEGF-C in NOZ cell line were detected by real-time polymerase chain reaction (PCR) and enzyme linked immunosorbent assay (ELISA), and TNF-α enhanced the expression of VEGF-C in NOZ cell lines in a dose and time-dependent manner. Lymphatic tube formation in vitro was observed in a three-dimensional coculture system consisting of HDLECs and NOZ cell lines, and lymphatic vessels of GBC in nude mice model was detected by immunohistochemistry. TNF-α promoted the tube formation of lymphatic endothelial cells in vitro and the lymphangiogenesis of GBC in nude mice; The nuclear factor (NF)-κB binding site on the VEGF-C promoter was identified using Site-directed mutagenesis, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP). Taken together, TNF-α can upregulate the expression of VEGF-C and promote the lymphangiogenesis of GBC via NF-κB combining with the promoter of VEGF-C. PMID:25154789
Shimoyamada, Hiroaki; Yazawa, Takuya; Sato, Hanako; Okudela, Koji; Ishii, Jun; Sakaeda, Masashi; Kashiwagi, Korehito; Suzuki, Takehisa; Mitsui, Hideaki; Woo, Tetsukan; Tajiri, Michihiko; Ohmori, Takahiro; Ogura, Takashi; Masuda, Munetaka; Oshiro, Hisashi; Kitamura, Hitoshi
2010-01-01
Vascular endothelial growth factor-A (VEGF-A) is crucial for angiogenesis, vascular permeability, and metastasis during tumor development. We demonstrate here that early growth response-1 (EGR-1), which is induced by the extracellular signal–regulated kinase (ERK) pathway activation, activates VEGF-A in lung cancer cells. Increased EGR-1 expression was found in adenocarcinoma cells carrying mutant K-RAS or EGFR genes. Hypoxic culture, siRNA experiment, luciferase assays, chromatin immunoprecipitation, electrophoretic mobility shift assays, and quantitative RT-PCR using EGR-1–inducible lung cancer cells demonstrated that EGR-1 binds to the proximal region of the VEGF-A promoter, activates VEGF-A expression, and enhances hypoxia inducible factor 1α (HIF-1α)-mediated VEGF-A expression. The EGR-1 modulator, NAB-2, was rapidly induced by increased levels of EGR-1. Pathology samples of human lung adenocarcinomas revealed correlations between EGR-1/HIF-1α and VEGF-A expressions and relative elevation of EGR-1 and VEGF-A expression in mutant K-RAS- or EGFR-carrying adenocarcinomas. Both EGR-1 and VEGF-A expression increased as tumors dedifferentiated, whereas HIF-1α expression did not. Although weak correlation was found between EGR-1 and NAB-2 expressions on the whole, NAB-2 expression decreased as tumors dedifferentiated, and inhibition of DNA methyltransferase/histone deacetylase increased NAB-2 expression in lung cancer cells despite no epigenetic alteration in the NAB-2 promoter. These findings suggest that EGR-1 plays important roles on VEGF-A expression in lung cancer cells, and epigenetic silencing of transactivator(s) associated with NAB-2 expression might also contribute to upregulate VEGF-A expression. PMID:20489156
Li, Fang; Cui, Jinquan
2015-07-01
Human papillomavirus (HPV) infection induces chronic and precancerous lesions and results in invasive cervical cancer. Human telomerase as well as inflammatory and angiogenic factors such as telomerase reverse transcriptase (hTERT) or vascular endothelial growth factor (VEGF) could play a role in regulating HPV-induced cervical cancer. This study investigated underlying molecular events in HPV-induced HPV-positive cervical cancer through hTERT and VEGF in vitro. Expressions of hTERT, a rate-limiting subunit of telomerase, and VEGF mRNA and proteins were, respectively, assessed by qRT-PCR, ELISA, and TRAP-ELISA in HPV-positive tissue samples and cervical cancer cell lines. To assess hTERT and VEGF secretion, hTERT overexpression and knockdown were conducted in HPV-18-positive Hela cells by hTERT cDNA and shRNA transfection, respectively. Then, the effect of HPV E6 and E7 on VEGF expressions was assessed in HPV-negative cervical cancer cells. Data have shown that VEGF expression levels are associated with hTERT expressions and telomerase activity in HPV-positive cervical cancer tissues and cells. Knockdown of hTERT expression down-regulated VEGF expressions, whereas overexpression of hTERT up-regulated VEGF expressions in HPV-18-positive Hela cells. Furthermore, HPV E7 oncoprotein was necessary for hTERT to up-regulate VEGF expressions in HPV-negative cervical cancer cells. Data from this current study indicate that HPV oncoproteins up-regulated hTERT and telomerase activity and in turn promoted VEGF expressions, which could be a key mechanism for HPV-induced cervical cancer development and progression.
Morales, Angélica; Vilchis, Felipe; Chávez, Bertha; Chan, Carlos; Robles-Díaz, Guillermo; Díaz-Sánchez, Vicente
2007-10-01
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) was recently identified as the first tissue-specific angiogenic molecule. EG-VEGF (the gene product of PROK-1) appears to be expressed exclusively in steroid-producing organs such as the ovary, testis, adrenals and placenta. Since the human pancreatic cells retain steroidogenic activity, in the present study we ascertained whether this angiogenic factor is expressed in normal pancreas and pancreatic adenocarcinoma. Tissue samples from normal males (n=5), normal females (n=5) and from surgically resected adenocarcinomas (n=2) were processed for RT-PCR and immunohistochemical studies. Results from semi-quantitative analysis by RT-PCR suggest a distinct expression level for EG-VEGF in the different tissue samples. The relative amount of EG-VEGF mRNA in pancreas was more abundant in female adenocarcinoma (0.89) followed by male adenocarcinoma (0.71), than normal female (0.64) and normal male (0.38). The expression of mRNA for EG-VEGF in normal tissue was significantly higher in females than in males. All samples examined showed specific immunostaining for EG-VEGF. In male preparations, the positive labeling was localized predominantly within the pancreatic islets while in female preparations the main staining was detected towards the exocrine portion. Specific immunolabeling was also observed in endothelial cells of pancreatic blood vessels. Our data provide evidence that the human pancreas expresses the EG-VEGF, a highly specific mitogen which regulates proliferation and differentiation of the vascular endothelium. The significance of this finding could be interpreted as either, EG-VEGF is not exclusive of endocrine organs, or the pancreas should be considered as a functional steroidogenic tissue. The extent of the expression of EG-VEGF appears to have a dimorphic pattern in normal and tumoral pancreatic tissue.
Liao, Hongxing; Zhong, Zhixiong; Liu, Zhanliang; Li, Liangping; Ling, Zemin; Zou, Xuenong
2018-01-01
The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo. In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy. PMID:29399103
Liao, Hongxing; Zhong, Zhixiong; Liu, Zhanliang; Li, Liangping; Ling, Zemin; Zou, Xuenong
2018-01-01
The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo . In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy.
Safety profile of topical VEGF neutralization at the cornea.
Bock, Felix; Onderka, Jasmine; Rummelt, Carmen; Dietrich, Tina; Bachmann, Björn; Kruse, Friedrich E; Schlötzer-Schrehardt, Ursula; Cursiefen, Claus
2009-05-01
Bevacizumab eyedrops inhibit corneal neovascularization. The purpose of this study was to analyze the safety profile of VEGF-A neutralization at the ocular surface. Bevacizumab eyedrops (5 mg/mL) and an antimurine VEGF-A antibody (250 microg/mL) were applied to normal murine corneas five times a day for 7 and 14 days. Subsequently, corneas were analyzed for morphologic changes by light and electron microscopy. In a mouse model of corneal epithelial abrasion, the effects of topically applied anti-VEGF antibodies on epithelial wound healing were analyzed: the treatment group received bevacizumab (5 mg/mL) or the antimurine VEGF-A antibody (250 microg/mL) as eyedrops, and the control group received an equal volume of saline solution. After 12, 18, and 24 hours, corneas were photographed in vivo with and without fluorescein staining for morphometry. Afterwards the mice were killed, and eyes were removed for histology, immunohistochemistry with Ki67/DAPI, and electron microscopy. The effect of midterm anti-VEGF therapy on corneal nerve density was assessed by staining corneas treated with an FITC-conjugated anti-neurofilament antibody and morphometric analysis. Murine corneas treated with two different types of anti-VEGF antibody eyedrops did not show obvious corneal morphologic changes at the light and electron microscopic levels. Furthermore, anti-VEGF antibody eyedrops had no significant impact on the wound healing process after corneal epithelial injury or on normal murine corneal nerve fiber density. Topical neutralization of VEGF-A at the corneal surface does not have significant side effects on normal corneal epithelial wound healing, normal corneal integrity, or normal nerve fiber density. Therefore, anti-VEGF eyedrops seem to be a relatively safe option to treat corneal neovascularization.
Volpi, Giorgia; Facchinetti, Fabrizio; Moretto, Nadia; Civelli, Maurizio; Patacchini, Riccardo
2011-01-01
BACKGROUND AND PURPOSE Vascular endothelial growth factor (VEGF) is an angiogenic factor known to be elevated in the sputum of asymptomatic smokers as well as smokers with bronchitis type of chronic obstructive pulmonary disease. The aim of this study was to investigate whether acute exposure to cigarette smoke extract altered VEGF production in lung parenchymal cells. EXPERIMENTAL APPROACH We exposed human airway smooth muscle cells (ASMC), normal human lung fibroblasts (NHLF) and small airways epithelial cells (SAEC) to aqueous cigarette smoke extract (CSE) in order to investigate the effect of cigarette smoke on VEGF expression and release. KEY RESULTS Vascular endothelial growth factor release was elevated by sub-toxic concentrations of CSE in both ASMC and NHLF, but not in SAEC. CSE-evoked VEGF release was mimicked by its component acrolein at concentrations (10–100 µM) found in CSE, and prevented by the antioxidant and α,β-unsaturated aldehyde scavenger, N-acetylcysteine (NAC). Both CSE and acrolein (30 µM) induced VEGF mRNA expression in ASMC cultures, suggesting an effect at transcriptional level. Crotonaldehyde and 4-hydroxy-2-nonenal, an endogenous α,β-unsaturated aldehyde, stimulated VEGF release, as did H2O2. CSE-evoked VEGF release was accompanied by rapid and lasting phosphorylation of p38 MAPK (mitogen-activated protein kinase), which was abolished by NAC and mimicked by acrolein. Both CSE- and acrolein-evoked VEGF release were blocked by selective inhibition of p38 MAPK signalling. CONCLUSIONS AND IMPLICATIONS α,β-Unsaturated aldehydes and possibly reactive oxygen species contained in cigarette smoke stimulate VEGF expression and release from pulmonary cells through p38 MAPK signalling. PMID:21306579
Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells.
Shiratsuki, Shogo; Hara, Tomotaka; Munakata, Yasuhisa; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka
2016-12-05
The present study addresses molecular backgrounds underlying low oxygen induced metabolic changes and 1.2-fold change in bovine granulosa cell (GCs) proliferation. RNA-seq revealed that low oxygen (5%) upregulated genes associated with HIF-1 and glycolysis and downregulated genes associated with mitochondrial respiration than that in high oxygen level (21%). Low oxygen level induced high glycolytic activity and low mitochondrial function and biogenesis. Low oxygen level enhanced GC proliferation with high expression levels of HIF-1, VEGF, AKT, mTOR, and S6RP, whereas addition of anti-VEGF antibody decreased cellular proliferation with low phosphorylated AKT and mTOR expression levels. Low oxygen level reduced SIRT1, whereas activation of SIRT1 by resveratrol increased mitochondrial replication and decreased cellular proliferation with reduction of phosphorylated mTOR. These results suggest that low oxygen level stimulates the HIF1-VEGF-AKT-mTOR pathway and up-regulates glycolysis, which contributes to GC proliferation, and downregulation of SIRT1 contributes to hypoxia-associated reduction of mitochondria and cellular proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Decreased levels of sRAGE in follicular fluid from patients with PCOS.
Wang, BiJun; Li, Jing; Yang, QingLing; Zhang, FuLi; Hao, MengMeng; Guo, YiHong
2017-03-01
This study aimed to explore the association between soluble receptor for advanced glycation end products (sRAGE) levels in follicular fluid and the number of oocytes retrieved and to evaluate the effect of sRAGE on vascular endothelial growth factor (VEGF) in granulosa cells in patients with polycystic ovarian syndrome (PCOS). Two sets of experiments were performed in this study. In part one, sRAGE and VEGF protein levels in follicular fluid samples from 39 patients with PCOS and 35 non-PCOS patients were measured by ELISA. In part two, ovarian granulosa cells were isolated from an additional 10 patients with PCOS and cultured. VEGF and SP1 mRNA and protein levels, as well as pAKT levels, were detected by real-time PCR and Western blotting after cultured cells were treated with different concentrations of sRAGE. Compared with the non-PCOS patients, patients with PCOS had lower sRAGE levels in follicular fluid. Multi-adjusted regression analysis showed that high sRAGE levels in follicular fluid predicted a lower Gn dose, more oocytes retrieved, and a better IVF outcome in the non-PCOS group. Logistic regression analysis showed that higher sRAGE levels predicted favorably IVF outcomes in the non-PCOS group. Multi-adjusted regression analysis also showed that high sRAGE levels in follicular fluid predicted a lower Gn dose in the PCOS group. Treating granulosa cells isolated from patients with PCOS with recombinant sRAGE decreased VEGF and SP1 mRNA and protein expression and pAKT levels in a dose-dependent manner. © 2017 Society for Reproduction and Fertility.
Sahara, Makoto; Hansson, Emil M; Wernet, Oliver; Lui, Kathy O; Später, Daniela; Chien, Kenneth R
2014-01-01
Human pluripotent stem cell (hPSC)-derived endothelial lineage cells constitutes a promising source for therapeutic revascularization, but progress in this arena has been hampered by a lack of clinically-scalable differentiation protocols and inefficient formation of a functional vessel network integrating with the host circulation upon transplantation. Using a human embryonic stem cell reporter cell line, where green fluorescent protein expression is driven by an endothelial cell-specific VE-cadherin (VEC) promoter, we screened for > 60 bioactive small molecules that would promote endothelial differentiation, and found that administration of BMP4 and a GSK-3β inhibitor in an early phase and treatment with VEGF-A and inhibition of the Notch signaling pathway in a later phase led to efficient differentiation of hPSCs to the endothelial lineage within six days. This sequential approach generated > 50% conversion of hPSCs to endothelial cells (ECs), specifically VEC+CD31+CD34+CD14−KDRhigh endothelial progenitors (EPs) that exhibited higher angiogenic and clonogenic proliferation potential among endothelial lineage cells. Pharmaceutical inhibition or genetical knockdown of Notch signaling, in combination with VEGF-A treatment, resulted in efficient formation of EPs via KDR+ mesodermal precursors and blockade of the conversion of EPs to mature ECs. The generated EPs successfully formed functional capillary vessels in vivo with anastomosis to the host vessels when transplanted into immunocompromised mice. Manipulation of this VEGF-A-Notch signaling circuit in our protocol leads to rapid large-scale production of the hPSC-derived EPs by 12- to 20-fold vs current methods, which may serve as an attractive cell population for regenerative vascularization with superior vessel forming capability compared to mature ECs. PMID:24810299
Wu, Hai-Bo; Yang, Shuai; Weng, Hai-Yan; Chen, Qian; Zhao, Xi-Long; Fu, Wen-Juan; Niu, Qin; Ping, Yi-Fang; Wang, Ji Ming; Zhang, Xia; Yao, Xiao-Hong; Bian, Xiu-Wu
2017-09-02
Antiangiogenesis with bevacizumab, an antibody against vascular endothelial growth factor (VEGF), has been used for devascularization to limit the growth of malignant glioma. However, the benefits are transient due to elusive mechanisms underlying resistance to the antiangiogenic therapy. Glioma stem cells (GSCs) are capable of forming vasculogenic mimicry (VM), an alternative microvascular circulation independent of VEGF-driven angiogenesis. Herein, we report that the formation of VM was promoted by bevacizumab-induced macroautophagy/autophagy in GSCs, which was associated with tumor resistance to antiangiogenic therapy. We established a 3-dimensional collagen scaffold to examine the formation of VM and autophagy by GSCs, and found that rapamycin increased the number of VM and enhanced KDR/VEGFR-2 phosphorylation. Treatment with chloroquine, or knockdown of the autophagy gene ATG5, inhibited the formation of VM and KDR phosphorylation in GSCs. Notably, neutralization of GSCs-produced VEGF with bevacizumab failed to recapitulate the effect of chloroquine treatment and ATG5 knockdown, suggesting that autophagy-promoted formation of VM was independent of tumor cell-derived VEGF. ROS was elevated when autophagy was induced in GSCs and activated KDR phosphorylation through the phosphoinositide 3-kinase (PI3K)-AKT pathway. A ROS inhibitor, N-acetylcysteine, abolished KDR phosphorylation and the formation of VM by GSCs. By examination of the specimens from 95 patients with glioblastoma, we found that ATG5 and p-KDR expression was strongly associated with the density of VM in tumors and poor clinical outcome. Our results thus demonstrate a crucial role of autophagy in the formation of VM by GSCs, which may serve as a therapeutic target in drug-resistant glioma.
Henno, Priscilla; Grassin-Delyle, Stanislas; Belle, Emeline; Brollo, Marion; Naline, Emmanuel; Sage, Edouard; Devillier, Philippe; Israël-Biet, Dominique
2017-05-23
Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The Sonic hedgehog (SHH) pathway is involved in vascular physiology. We sought to establish whether the SHH pathway has a role in pulmonary endothelial dysfunction in smokers. The ex vivo endothelium-dependent relaxation of pulmonary artery rings in response to acetylcholine (Ach) was compared in 34 current or ex-smokers and 8 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of SHH inhibitors (GANT61 and cyclopamine), an SHH activator (SAG) and recombinant VEGF on the Ach-induced relaxation. The level of VEGF protein in the pulmonary artery ring was measured in an ELISA. SHH pathway gene expression was quantified in reverse transcriptase-quantitative polymerase chain reactions. Ach-induced relaxation was much less intense in smokers than in never-smokers (respectively 24 ± 6% and 50 ± 7% with 10 -4 M Ach; p = 0.028). All SHH pathway genes were expressed in pulmonary artery rings from smokers. SHH inhibition by GANT61 reduced Ach-induced relaxation and VEGF gene expression in the pulmonary artery ring. Recombinant VEGF restored the ring's endothelial function. VEGF gene and protein expression levels in the pulmonary artery rings were positively correlated with the degree of Ach-induced relaxation and negatively correlated with the number of pack-years. SHH pathway genes and proteins are expressed in pulmonary artery rings from smokers, where they modulate endothelial function through VEGF.
Moritz, Martina; Pfeifer, Sabine; Balmayor, Elizabeth R; Mittermayr, Rainer; Wolbank, Susanne; Redl, Heinz; van Griensven, Martijn
2017-07-01
Skeletal ischaemia-reperfusion (I-R) injury may influence patient outcome after severe vascular trauma or clamping of major vessels. The aim of this study was to observe whether locally applied vascular endothelial growth factor (VEGF) in fibrin could induce the expression of VEGF-receptor-2 (VEGFR-2) and improve the outcome after I-R injury. Transgenic mice expressing VEGFR-2 promoter-controlled luciferase were used for the assessment of VEGFR-2 expression. Ischaemia was induced for 2 h by a tension-controlled tourniquet to the hind limb, followed by 24 h of reperfusion. The animals were locally injected subcutaneously with fibrin sealant containing 20 or 200 ng VEGF; control animals received no treatment or fibrin sealant application. In vivo VEGFR-2 expression was quantified upon administration of luciferin at several observation times. For oedema and inflammation quantification, wet:dry ratio measurements and a myeloperoxidase assay of the muscle tissue were performed. Laser Doppler imaging showed that ischaemia was present and that the blood flow had returned to baseline levels after 24 h of reperfusion. VEGFR-2 expression levels in the fibrin + 200 ng VEGF were significantly higher than in all other groups. Granulocyte infiltration was reduced in both treatment groups, as well as reduced oedema formation. These results showed that VEGF released from fibrin had a positive effect on early I-R outcome in a mouse model, possibly via VEGFR-2. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Haas, Jigal; Bassil, Rawad; Gonen, Noa; Meriano, Jim; Jurisicova, Andrea; Casper, Robert F
2018-05-29
Previous studies have shown that androgens, in addition to serving as precursors for ovarian estrogen synthesis, also have a fundamental role in primate ovarian follicular development by augmentation of FSH receptor expression on granulosa cells. Recent studies have shown that aromatase inhibitor, letrozole, improves ovarian response to FSH in normal and poor responder patients, possibly by increasing intraovarian androgen levels. Studies in mice also showed an effect of letrozole to increase pigment epithelium-derived factor (PEDF) and to lower vascular epithelial growth factor (VEGF), which might be expected to reduce the risk of ovarian hyperstimulation syndrome (OHSS) with stimulation. The aim of this study was to compare the VEGF and PEDF levels in the follicular fluids of normal responders treated with letrozole and gonadotropins during the ovarian stimulation with patients treated with gonadotropins only. A single center, prospective clinical trial. We collected follicular fluid from 26 patients, on a GnRH antagonist protocol, dual triggered with hCG and GnRH agonist. The patients in one group were co-treated with letrozole and gonadotropins during the ovarian stimulation and the patients in the other group were treated with gonadotropins only. VEGF, PEDF, estrogen, progesterone and testosterone levels were measured by ELISA kits. The age of the patients, the total dose of gonadotropins and the number of oocytes were comparable between the two groups. In the follicular fluid, the estrogen levels (2209 nmol/l vs. 3280 nmol/l, p = 0.02) were significantly decreased, and the testosterone levels (246.5 nmol/l vs. 40.7 nmol/l, p < 0.001) were significantly increased in the letrozole group compared to the gonadotropin only group. The progesterone levels (21.4 μmol/l vs. 17.5 p = NS) were comparable between the two groups. The VEGF levels (2992 pg/ml vs. 1812 pg/ml p = 0.02) were significantly increased and the PEDF levels (9.7 ng/ml vs 17.3 ng/ml p < 0.001) were significantly decreased in the letrozole group. Opposite to observations in the mouse, we found that VEGF levels were increased and PEDF levels were decreased in the follicular fluid in patients treated with letrozole during the stimulation cycles. Further investigation is required to determine if patients treated with letrozole during the IVF stimulation protocol are at increased risk for developing OHSS as a result of these findings.
Taurine: a novel tumor marker for enhanced detection of breast cancer among female patients.
El Agouza, I M; Eissa, S S; El Houseini, M M; El-Nashar, Dalia E; Abd El Hameed, O M
2011-09-01
The antioxidant Taurine found to display antineoplastic effect through down regulation of angiogenesis and enhancement of tumor cell apoptosis. It has been found that progressive inhibition of apoptosis and induction of angiogenesis may contribute to tumor initiation, growth and metastasis in the pathogenesis of breast cancer. To correlate taurine level with the levels of some bioomolecules operating in both angiogenesis (VEGF, CD31) and apoptosis (TNF-α and Caspas-3) which could help for breast cancer pronostication and to evaluate a possible role of serum taurine level as an early marker for breast cancer in Egyptian patients. Four groups of a total 85 female candidates were studied in this work. The first group consists of 50 female patients at National Cancer Institute (NCI), Cairo University were diagnosed and undergoing surgery for breast carcinoma. In the second group 10 having benign breast lesions, were included. The third group consists of five cases, with positive family history. Twenty healthy females were also recruited as control. A preoperative blood sample were taken from each patient to measure serum level of VEGF; Taurine; CA15.3 and TNF- α. Sample of fresh tumor and their corresponding safety margins were obtained from the first and second groups, for determination of caspase-3; histopathological examination and immunohistochemical assay of VEGF and CD31. No significant differences in the serum level of CA15.3 between the breast cancer patients, the high risk and the control group. TNF-α (apoptotic biomolecule) level showed a significant difference only between breast cancer group and control group. The VEGF (angiogenic biomarker) showed a highly significant difference between breast cancer patients, the high risk and the control group. Regarding the antioxidant taurine (antiangiogenic biomolecule) serum level in breast cancer group exhibited a value strongly lower than the high risk and control group. Also the correlative ratio between the angiogenic/apoptotic biomarker (VEGF/TNF-α) showed a highly significant difference between the main previous three groups. Same observation were also noticed in the correlation between angiogenic/antiangiogenic (VEGF/taurine) ratio in the same groups. Moreover the enzymatic activities of Casp-3 in the tissue homogenate were statistically higher in adjacent normal tissues than in malignant tissues. The result of immunohistochemical investigation showed a significant increase in the density of intracellular VEGF and microvessel density expressed as CD31 in cancer cases compared to normal adjacent tissue. It is suggested that assessment of taurine level in sera of patients with high risk for breast cancer are of great value in the early diagnosis of malignant changes in the breast.
Sessa, Cristiana; Lorusso, Patricia; Tolcher, Anthony; Farace, Françoise; Lassau, Nathalie; Delmonte, Angelo; Braghetti, Antonio; Bahleda, Rastislav; Cohen, Patrick; Hospitel, Marie; Veyrat-Follet, Christine; Soria, Jean-Charles
2013-09-01
The vascular disrupting agent ombrabulin rapidly reduces tumor blood flow and causes necrosis in vivo. A phase I dose-escalation study was designed to determine the recommended phase II dose (RP2D) of single-agent ombrabulin administered once every three weeks in patients with advanced solid malignancies. Ombrabulin (30-minute infusion) was escalated from 6 to 60 mg/m2, with RP2D cohort expansion. Safety, tumor response, pharmacokinetics, and pharmacodynamic biomarkers were evaluated. Eleven dose levels were evaluated in 105 patients. Two patients had dose-limiting toxicities in cycle 1 during escalation: grade 3 abdominal pain at 50 mg/m2, grade 3 tumor pain/grade 3 hypertension at 60 mg/m2, and the RP2D was 50 mg/m2 (39 patients). Common toxicities were headache, asthenia, abdominal pain, nausea, diarrhea, transient hypertension, anemia, and lymphopenia. No clinically significant QTc prolongations or left ventricular ejection fraction (LVEF) decreases occurred. Ombrabulin was rapidly converted to its active metabolite RPR258063 (half-life 17 minutes and 8.7 hours, respectively), both having dose-proportional exposure. Weak inhibition of CYP2C19-mediated metabolism occurred at the clinical doses used and there was no effect on CYP1A2 and CYP3A4. A patient with rectal cancer had a partial response and eight patients had stable disease lasting four months or more. Circulating endothelial cells (CEC), VEGF, and matrix metalloproteinase (MMP)-9 levels increased significantly six to 10 hours postinfusion in a subset of patients. The recommended schedule for single-agent ombrabulin is 50 mg/m2 every 3 weeks. CECs, VEGF, and MMP-9 are potential biomarkers of ombrabulin activity. ©2013 AACR.
Suhr, Frank; Brixius, Klara; de Marées, Markus; Bölck, Birgit; Kleinöder, Heinz; Achtzehn, Silvia; Bloch, Wilhelm; Mester, Joachim
2007-08-01
This study aimed to investigate the biological response to hypoxia as a stimulus, as well as exercise- and vibration-induced shear stress, which is known to induce angiogenesis. Twelve male cyclists (27.8 +/- 5.4 yr) participated in this study. Each subject completed four cycle training sessions under normal conditions (NC) without vibration, NC with vibration, normobaric hypoxic conditions (HC) without vibration, and HC with vibration. Each session lasted 90 min, and sessions were held at weekly intervals in a randomized order. Five blood samples (pretraining and 0 h post-, 0.5 h post-, 1 h post-, and 4 h posttraining) were taken from each subject at each training session. Hypoxia was induced by a normobaric hypoxic chamber with an altitude of 2,500 m. The mechanical forces (cycling with or without vibration) were induced by a cycling ergometer. The parameters VEGF, endostatin, and matrix metalloproteinases (MMPs) were analyzed using the ELISA method. VEGF showed a significant increase immediately after the exercise only with exogenously induced vibrations, as calculated with separate ANOVA analysis. Endostatin increased after training under all conditions. Western blot analysis was performed for the determination of endostatin corresponding to the 22-kDa cleavage product of collagen XVIII. This demonstrated elevated protein content for endostatin at 0 h postexercise. MMP-2 increased in three of the four training conditions. The exception was NC with vibration. MMP-9 reached its maximum level at 4 h postexercise. In conclusion, the results support the contention that mechanical stimuli differentially influence factors involved in the induction of angiogenesis. These findings may contribute to a broader understanding of angiogenesis.
Angiogenin and vascular endothelial growth factor expression in lungs of lung cancer patients.
Rozman, Ales; Silar, Mira; Kosnik, Mitja
2012-12-01
BACKGROUND.: Lung cancer is the leading cause of cancer deaths. Angiogenesis is crucial process in cancer growth and progression. This prospective study evaluated expression of two central regulatory molecules: angiogenin and vascular endothelial growth factor (VEGF) in patients with lung cancer. PATIENTS AND METHODS.: Clinical data, blood samples and broncho-alveolar lavage (BAL) from 23 patients with primary lung carcinoma were collected. BAL fluid was taken from part of the lung with malignancy, and from corresponding healthy side of the lung. VEGF and angiogenin concentrations were analysed by an enzyme-linked immunosorbent assay. Dilution of bronchial secretions in the BAL fluid was calculated from urea concentration ratio between serum and BAL fluid. RESULTS.: We found no statistical correlation between angiogenin concentrations in serum and in bronchial secretions from both parts of the lung. VEGF concentrations were greater in bronchial secretions in the affected side of the lung than on healthy side. Both concentrations were greater than serum VEGF concentration. VEGF concentration in serum was in positive correlation with tumour size (p = 0,003) and with metastatic stage of disease (p = 0,041). There was correlation between VEGF and angiogenin concentrations in bronchial secretions from healthy side of the lung and between VEGF and angiogenin concentrations in bronchial secretions from part of the lung with malignancy. CONCLUSION.: Angiogenin and VEGF concentrations in systemic, background and local samples of patients with lung cancer are affected by different mechanisms. Pro-angiogenic activity of lung cancer has an important influence on the levels of angiogenin and VEGF.
Angiogenin and vascular endothelial growth factor expression in lungs of lung cancer patients
Rozman, Ales; Silar, Mira; Kosnik, Mitja
2012-01-01
Background. Lung cancer is the leading cause of cancer deaths. Angiogenesis is crucial process in cancer growth and progression. This prospective study evaluated expression of two central regulatory molecules: angiogenin and vascular endothelial growth factor (VEGF) in patients with lung cancer. Patients and methods. Clinical data, blood samples and broncho-alveolar lavage (BAL) from 23 patients with primary lung carcinoma were collected. BAL fluid was taken from part of the lung with malignancy, and from corresponding healthy side of the lung. VEGF and angiogenin concentrations were analysed by an enzyme-linked immunosorbent assay. Dilution of bronchial secretions in the BAL fluid was calculated from urea concentration ratio between serum and BAL fluid. Results. We found no statistical correlation between angiogenin concentrations in serum and in bronchial secretions from both parts of the lung. VEGF concentrations were greater in bronchial secretions in the affected side of the lung than on healthy side. Both concentrations were greater than serum VEGF concentration. VEGF concentration in serum was in positive correlation with tumour size (p = 0,003) and with metastatic stage of disease (p = 0,041). There was correlation between VEGF and angiogenin concentrations in bronchial secretions from healthy side of the lung and between VEGF and angiogenin concentrations in bronchial secretions from part of the lung with malignancy. Conclusion. Angiogenin and VEGF concentrations in systemic, background and local samples of patients with lung cancer are affected by different mechanisms. Pro-angiogenic activity of lung cancer has an important influence on the levels of angiogenin and VEGF. PMID:23412843
Topical Delivery of Anti-VEGF Drugs to the Ocular Posterior Segment Using Cell-Penetrating Peptides.
de Cogan, Felicity; Hill, Lisa J; Lynch, Aisling; Morgan-Warren, Peter J; Lechner, Judith; Berwick, Matthew R; Peacock, Anna F A; Chen, Mei; Scott, Robert A H; Xu, Heping; Logan, Ann
2017-05-01
To evaluate the efficacy of anti-VEGF agents for treating choroidal neovascularization (CNV) when delivered topically using novel cell-penetrating peptides (CPPs) compared with delivery by intravitreal (ivit) injection. CPP toxicity was investigated in cell cultures. Ivit concentrations of ranibizumab and bevacizumab after topical administration were measured using ELISA. The biological efficacy of topical anti-VEGF + CPP complexes was compared with ivit anti-VEGF injections using an established model of CNV. CPPs were nontoxic in vitro. In vivo, after topical eye drop delivery, CPPs were present in the rat anterior chamber within 6 minutes. A single application of CPP + bevacizumab eye drop delivered clinically relevant concentrations of bevacizumab to the posterior chamber of the rat eye in vivo. Similarly, clinically relevant levels of CPP + ranibizumab and CPP + bevacizumab were detected in the porcine vitreous and retina ex vivo. In an established model of CNV, mice treated with either a single ivit injection of anti-VEGF, twice daily CPP + anti-VEGF eye drops or daily dexamethasone gavage for 10 days all had significantly reduced areas of CNV when compared with lasered eyes without treatment. CPPs are nontoxic to ocular cells and can be used to deliver therapeutically relevant doses of ranibizumab and bevacizumab by eye drop to the posterior segment of mouse, rat, and pig eyes. The CPP + anti-VEGF drug complexes were cleared from the retina within 24 hours, suggesting a daily eye drop dosing regimen. Daily, topically delivered anti-VEGF with CPP was as efficacious as a single ivit injection of anti-VEGF in reducing areas of CNV in vivo.
Polypoidal Choroidal Vasculopathy: Definition, Pathogenesis, Diagnosis, and Management.
Cheung, Chui Ming Gemmy; Lai, Timothy Y Y; Ruamviboonsuk, Paisan; Chen, Shih-Jen; Chen, Youxin; Freund, K Bailey; Gomi, Fomi; Koh, Adrian H; Lee, Won-Ki; Wong, Tien Yin
2018-05-01
Polypoidal choroidal vasculopathy (PCV) is an age-related macular degeneration (AMD) subtype and is seen particularly in Asians. Previous studies have suggested disparity in response to intravitreal injections of anti-vascular endothelial growth factor (VEGF) agents between PCV and typical AMD, and thus, the preferred treatment for PCV has remained unclear. Recent research has provided novel insights into the pathogenesis of PCV, and imaging studies based on OCT suggest that PCV belongs to a spectrum of conditions characterized by pachychoroid, in which disturbance in the choroidal circulation seems to be central to its pathogenesis. Advances in imaging, including enhanced depth imaging, swept-source OCT, en face OCT, and OCT angiography, have facilitated the diagnosis of PCV. Importantly, 2 large, multicenter randomized clinical trials evaluating the safety and efficacy of anti-VEGF monotherapy and combination with photodynamic therapy (PDT) recently reported initial first-year outcomes, providing level I evidence to guide clinicians in choosing the most appropriate therapy for PCV. In this review, we summarize the latest updates in the epidemiologic features, pathogenesis, and advances in imaging and treatment trials, with a focus on the most recent key clinical trials. Finally, we propose current management guidelines and recommendations to help clinicians manage patients with PCV. Remaining gaps in current understanding of PCV, such as significance of polyp closure, high recurrence rate, and heterogeneity within PCV, are highlighted where further research is needed. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
VEGF may contribute to macrophage recruitment and M2 polarization in the decidua.
Wheeler, Karen C; Jena, Manoj K; Pradhan, Bhola S; Nayak, Neha; Das, Subhendu; Hsu, Chaur-Dong; Wheeler, David S; Chen, Kang; Nayak, Nihar R
2018-01-01
It is increasingly evident that cytokines and growth factors produced in the decidua play a pivotal role in the regulation of the local immune microenvironment and the establishment of pregnancy. One of the major growth factors produced in the decidua is vascular endothelial growth factor (VEGF), which acts not only on endothelial cells, but also on multiple other cell types, including macrophages. We sought to determine whether decidua-derived VEGF affects macrophage recruitment and polarization using human endometrial/decidual tissue samples, primary human endometrial stromal cells (ESCs), and the human monocyte cell line THP1. In situ hybridization was used for assessment of local VEGF expression and immunohistochemistry was used for identification and localization of CD68-positive endometrial macrophages. Macrophage migration in culture was assessed using a transwell migration assay, and the various M1/M2 phenotypic markers and VEGF expression were assessed using quantitative real-time PCR (qRT-PCR). We found dramatic increases in both VEGF levels and macrophage numbers in the decidua during early pregnancy compared to the secretory phase endometrium (non-pregnant), with a significant increase in M2 macrophage markers, suggesting that M2 is the predominant macrophage phenotype in the decidua. However, decidual samples from preeclamptic pregnancies showed a significant shift in macrophage phenotype markers, with upregulation of M1 and downregulation of M2 markers. In THP1 cultures, VEGF treatment significantly enhanced macrophage migration and induced M1 macrophages to shift to an M2 phenotype. Moreover, treatment with conditioned media from decidualized ESCs induced changes in macrophage migration and polarization similar to that of VEGF treatment. These effects were abrogated by the addition of a potent VEGF inhibitor. Together these results suggest that decidual VEGF plays a significant role in macrophage recruitment and M2 polarization, and that inhibition of VEGF signaling may contribute to the shift in macrophage polarity observed in different pregnancy disorders, including preeclampsia.
VEGF may contribute to macrophage recruitment and M2 polarization in the decidua
Nayak, Neha; Das, Subhendu; Hsu, Chaur-Dong; Wheeler, David S.; Chen, Kang; Nayak, Nihar R.
2018-01-01
It is increasingly evident that cytokines and growth factors produced in the decidua play a pivotal role in the regulation of the local immune microenvironment and the establishment of pregnancy. One of the major growth factors produced in the decidua is vascular endothelial growth factor (VEGF), which acts not only on endothelial cells, but also on multiple other cell types, including macrophages. We sought to determine whether decidua-derived VEGF affects macrophage recruitment and polarization using human endometrial/decidual tissue samples, primary human endometrial stromal cells (ESCs), and the human monocyte cell line THP1. In situ hybridization was used for assessment of local VEGF expression and immunohistochemistry was used for identification and localization of CD68-positive endometrial macrophages. Macrophage migration in culture was assessed using a transwell migration assay, and the various M1/M2 phenotypic markers and VEGF expression were assessed using quantitative real-time PCR (qRT-PCR). We found dramatic increases in both VEGF levels and macrophage numbers in the decidua during early pregnancy compared to the secretory phase endometrium (non-pregnant), with a significant increase in M2 macrophage markers, suggesting that M2 is the predominant macrophage phenotype in the decidua. However, decidual samples from preeclamptic pregnancies showed a significant shift in macrophage phenotype markers, with upregulation of M1 and downregulation of M2 markers. In THP1 cultures, VEGF treatment significantly enhanced macrophage migration and induced M1 macrophages to shift to an M2 phenotype. Moreover, treatment with conditioned media from decidualized ESCs induced changes in macrophage migration and polarization similar to that of VEGF treatment. These effects were abrogated by the addition of a potent VEGF inhibitor. Together these results suggest that decidual VEGF plays a significant role in macrophage recruitment and M2 polarization, and that inhibition of VEGF signaling may contribute to the shift in macrophage polarity observed in different pregnancy disorders, including preeclampsia. PMID:29324807
Igarashi, Tsutomu; Miyake, Noriko; Fujimoto, Chiaki; Yaguchi, Chiemi; Iijima, Osamu; Shimada, Takashi; Takahashi, Hiroshi
2014-01-01
Purpose To assess the feasibility of a gene therapeutic approach to treating choroidal neovascularization (CNV), we generated an adeno-associated virus type 8 vector (AAV2/8) encoding an siRNA targeting vascular endothelial growth factor (VEGF), and determined the AAV2/8 vector’s ability to inhibit angiogenesis. Methods We initially transfected 3T3 cells expressing VEGF with the AAV2/8 plasmid vector psiRNA-VEGF using the H1 promoter and found that VEGF expression was significantly diminished in the transfectants. We next injected 1 μl (3 × 1014 vg/ml) of AAV2/8 vector encoding siRNA targeting VEGF (AAV2/8/SmVEGF-2; n = 12) or control vector encoding green fluorescent protein (GFP) (AAV2/8/GFP; n = 14) into the subretinal space in C57BL/6 mice. One week later, CNV was induced by using a diode laser to make four separate choroidal burns around the optic nerve in each eye. After an additional 2 weeks, the eyes were removed for flat mount analysis of the CNV surface area. Results Subretinal delivery of AAV2/8/SmVEGF-2 significantly diminished CNV at the laser lesions, compared to AAV8/GFP (1597.3±2077.2 versus 5039.5±4055.9 µm2; p<0.05). Using an enzyme-linked immunosorbent assay, we found that VEGF levels were reduced by approximately half in the AAV2/8/SmVEGF-2 treated eyes. Conclusions These results suggest that siRNA-VEGF can be expressed across the retina and that long-term suppression of CNV is possible through the use of stable AAV2/8-mediated siRNA-VEGF expression. In vivo gene therapy may thus be a feasible approach to the clinical management of CNV in conditions such as age-related macular degeneration. PMID:24744609
Morales, Angélica; Morimoto, Sumiko; Díaz, Lorenza; Robles, Guillermo; Díaz-Sánchez, Vicente
2008-05-01
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an endothelial cell mitogen, expressed essentially in steroidogenic cells. Recently, the expression of EG-VEGF in normal human pancreas and pancreatic adenocarcinoma has been demonstrated. Epidemiologically, pancreatic carcinogenesis is more frequent in males than females, and given that androgen receptors and testosterone biotransformation have been described in pancreas, we hypothesized that testosterone could participate in the regulation of EG-VEGF expression. In this study, we investigated the regulation of EG-VEGF gene expression by testosterone in normal rat pancreatic tissue and rat insulinoma cells (RINm5F). Total RNA was extracted from rat pancreas and cultured cells. Gene expression was studied by real-time PCR and protein detection by immunohistochemistry. Serum testosterone was quantified by RIA. Results showed that EG-VEGF is expressed predominantly in pancreatic islets and vascular endothelium, as well as in RINm5F cells. EG-VEGF gene expression was lower in the pancreas of rats with higher testosterone serum levels. A similar effect that was reverted by flutamide was observed in testosterone-treated RINm5F cells. In summary, testosterone down-regulated EG-VEGF gene expression in rat pancreatic tissue and RINm5F cells. This effect could be mediated by the androgen receptor. To our knowledge, this is the first time that a direct effect of testosterone on EG-VEGF gene expression in rat pancreas and RINm5F cells is demonstrated.
Wang, Li; Wang, Haiya; Fang, Ningyuan
2016-06-01
To determine whether algal oligosac- charide~ affects the levels of parathyroid hormone 1-84 (PTH1-84) and vascular endothelial growth fac- tor (VEGF). An osteoporosis rat model was estab- lished via bilateral ovariectomy. The model rats were fed algal oligosaccharides (molecular weights: 600-1, 200 Da) for 4 months. Bone mineral density (BMD) was then measured. MG-63 human osteo- blastic cells were treated with algal oligosaccha- rides. The expression of PTH1-84 and VEGF was then examined. Oligosaccharide-treated cells were transfected with PTH1-84 short hairpin RNA (shR- NA), VEGF shRNA, and PTH1-84-VEGF small interfer- ing RNA (siRNA). The growth rates were then com- pared between transfected and non-transfected Algal oligosaccharides increased the BMD of the osteoporosis rat model compared with untreated controls (P < 0.05). When MG-63 cells were treated with algal oligosaccharides, the growth rate increased by 25% compared with the control group at day 3 (P < 0.05). In addition, the ex- pression of P.TH84 and VEGF was. enhanced. Con- versey w hen tecells were tranfected with PTH84 shRNA, VEGF shRNA, or PTH1-84-VEGF siR- NA, the growth rate was decreased by 17%, 35% and 70%, respectively, compared with controls at day 3 (P < 0.05). Algal oligosaccharides ameliorate osteoporosis via up-regulation of PTH1-84 and VEGF. Algal oligosaccharides should be developed as a potential drug for osteoporosis treatment.
Alfaidy, Nadia
2016-06-01
Prokineticin 1 (PROK1), also called EG-VEGF, is a peptide of 86 amino acids with multiple biological functions. PROK1 acts via two G-protein coupled receptors: PROKR1 PROKR2. PROK1 is highly expressed in the placenta. This article reports the expression and the role of PROK1 during normal and pathological pregnancies: (i) during early pregnancy, PROK1 exhibits a peak of placental expression shortly before the establishment of the feto-maternal circulation; (ii) its receptors, PROKR1 PROKR2 are highly expressed in human placenta; (iii) its expression is increased by hypoxia; (iv) PROK1 inhibits extravillous trophoblasts migration and invasion and increases their proliferation and survival; (v) PROK1 is also a pro-angiogenic placental factor that increases microvascular placental endothelial cells proliferation, migration, invasion, and permeability. Circulating PROK1 levels are five times higher in pregnant women during the first trimester compared to the second and third trimesters. Also, its serum levels are higher in patients with preeclampsia (PE) and in patients with isolated intra-uterine growth restriction (IUGR). In mice, maintaining high level of PROK1 beyond its normal period of production (>10.5dpc) reproduces symptoms of PE. To date, our results demonstrated that PROK1 is a central factor of human placentation with direct roles both in the control of trophoblast invasion and villous growth. Thus, a failure in the expression of PROK1 and/or its receptor during pregnancy may contribute to the development of PE and/or IUGR. Besides theses original findings, we also report a direct role of this factor in parturition. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Castañeda-Cabral, Jose Luis; Beas-Zarate, Carlos; Gudiño-Cabrera, Graciela; Ureña-Guerrero, Monica E
2017-09-01
Vascular endothelial growth factor (VEGF) exerts both neuroprotective and proinflammatory effects in the brain, depending on the VEGF (A-E) and VEGF receptor (VEGFR1-3) types involved. Neonatal monosodium glutamate (MSG) treatment triggers an excitotoxic degenerative process associated with several neuropathological conditions, and VEGF messenger RNA (mRNA) expression is increased at postnatal day (PD) 14 in rat hippocampus (Hp) following the treatment. The aim of this work was to establish the changes in immunoreactivity to VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 proteins induced by neonatal MSG treatment (4 g/kg, subcutaneous, at PD1, 3, 5 and 7) in the cerebral motor cortex (CMC) and Hp. Samples collected from PD2 to PD60 from control and MSG-treated male Wistar rats were assessed by western blotting for each protein. Considering that immunoreactivity measured by western blotting is related to the protein expression level, we found that each protein in each cerebral region has a specific expression profile throughout the studied ages, and all profiles were differentially modified by MSG. Specifically, neonatal MSG treatment significantly increased the immunoreactivity to the following: (1) VEGF-A at PD8-PD10 in the CMC and at PD6-PD8 in the Hp; (2) VEGF-B at PD2, PD6 and PD10 in the CMC and at PD8-PD9 in the Hp; and (3) VEGFR-2 at PD6-PD8 in the CMC and at PD21-PD60 in the Hp. Also, MSG significantly reduced the immunoreactivity to the following: (1) VEGF-B at PD8-PD9 and PD45-PD60 in the CMC; and (2) VEGFR-1 at PD4-PD6 and PD14-PD21 in the CMC and at PD4, PD9-PD10 and PD60 in the Hp. Our results indicate that VEGF-mediated signalling is involved in the excitotoxic process triggered by neonatal MSG treatment and should be further characterized.
Effect of colorectal cancer on the number of normal stem cells circulating in peripheral blood.
Marlicz, Wojciech; Sielatycka, Katarzyna; Serwin, Karol; Kubis, Ewa; Tkacz, Marta; Głuszko, Rafał; Białek, Andrzej; Starzyńska, Teresa; Ratajczak, Mariusz Z
2016-12-01
Bone marrow (BM) residing stem cells are mobilized from their BM niches into peripheral blood (PB) in several pathological situations including tissue organ injury and systemic inflammation. We recently reported that the number of BM-derived stem cells (SCs) increases in patients with pancreatic and stomach cancer. Accordingly, we observed higher numbers of circulating very small embryonic/epiblast‑like stem cells (VSELs) and mesenchymal stem cells (MSCs) that were associated with the activation of pro-mobilizing complement cascade and an elevated level of sphingosine-1 phosphate (S1P) in PB plasma. We wondered if a similar correlation occurs in patients with colorectal cancer (CRC). A total of 46 patients were enrolled in this study: 17 with CRC, 18 with benign colonic adenomas (BCA) and 11 healthy individuals. By employing fluorescence-activated cell sorting (FACS) we evaluated the number of BM-derived SCs circulating in PB: i) CD34+/Lin-/CD45- and CD133-/Lin-/CD45- VSELs; ii) CD45-/CD105+/CD90+/CD29+ MSCs; iii) CD45-/CD34+/CD133+/KDR+ endothelial progenitor cells (EPCs); and iv) CD133+/Lin-/CD45+ or CD34+/Lin-/CD45+ cells enriched for hematopoietic stem/progenitor cells (HSPCs). In parallel, we measured in the PB parameters regulating the egress of SCs from BM into PB. In contrast to pancreatic and gastric cancer patients, CRC subjects presented neither an increase in the number of circulating SCs nor the activation of pro-mobilizing factors such as complement, coagulation and fibrinolytic cascade, circulating stromal derived factor 1 (SDF‑1), vascular endothelial growth factor (VEGF) and intestinal permeability marker (zonulin). In conclusion, mobilization of SCs in cancer patients depends on the type of malignancy and its ability to activate pro-mobilization cascades.
Welsh, Sarah J; Bellamy, William T; Briehl, Margaret M; Powis, Garth
2002-09-01
Hypoxia-inducible factor 1 (HIF-1), a heterodimer of HIF-1alpha and HIF-1beta subunits, is a transcriptional activator central to the cellular response to low oxygen that includes metabolic adaptation, angiogenesis, metastasis, and inhibited apoptosis. Thioredoxin-1 (Trx-1) is a small redox protein overexpressed in a number of human primary tumors. We have examined the effects of Trx-1 on HIF activity and the activation of downstream genes. Stable transfection of human breast carcinoma MCF-7 cells with human Trx-1 caused a significant increase in HIF-1alpha protein levels under both normoxic (20% oxygen) and hypoxic (1% oxygen) conditions. Trx-1 increased hypoxia-induced HIF-1 transactivation activity measured using a luciferase reporter under the control of the hypoxia response element. Changes in HIF-1alpha mRNA levels did not account for the changes observed at the protein level, and HIF-1beta protein levels did not change. Trx-1 transfection also caused a significant increase in the protein products of hypoxia-responsive genes, including vascular endothelial growth factor (VEGF) and nitric oxide synthase 2 in a number of different cell lines (MCF-7 human breast and HT29 human colon carcinomas and WEHI7.2 mouse lymphoma cells) under both normoxic and hypoxic conditions. The pattern of expression of the different isoforms of VEGF was not changed by Trx-1. Transfection of a redox-inactive Trx-1 (C32S/C35S) markedly decreased levels of HIF-1alpha protein, HIF-1 transactivating activity, and VEGF protein in MCF-7 cells compared with empty vector controls. In vivo studies using WEHI7.2 cells transfected with Trx-1 showed significantly increased tumor VEGF and angiogenesis. The results suggest that Trx-1 increases HIF-1alpha protein levels in cancer cells and increases VEGF production and tumor angiogenesis.
Xia, Tian; Li, Shuang; Ma, Ruihong; Guan, Sufen; Li, Jiacui; Li, Hongqin; Zhang, Hexin; Lin, Qiu; Zhao, Zhimei; Wang, Baojuan
2017-06-01
Based on the emotional theory of Traditional Chinese Medicine, and combined with the modern medicine theory of psychological stress, a research model of human uterine leiomyoma cells (ULM) was cultured in vitro to determine the effectiveness of adrenergic receptor (AR) agonists in human ULM cell growth. In addition, we studied the functional influence of "liver depression and psychological stress theory" on fibroid formation by intervening in the AR-cAMP-PKA signaling pathway. The intention was to establish a new method to prevent and cure fibroids through "liver depression and psychological stress theory" and provide an experimental basis for the Traditional Chinese Medicine emotional theory. Primary human ULM cells were enriched by collagenase digestion. Immunohistochemistry and hematoxylin and eosin (HE) staining were used for cytological identification. Using this model, we studied intervention using specific AR agonists on ULM cells to observe the influence of "liver depression and psychological stress theory" on estrogen receptor (ER), progesterone receptor (PR), vascular endothelial growth factor (VEGF) and fibroblast growth factors (FGF). Norepinephrine (NE) and epinephrine (E) are adrenergic receptor agonists. They promoted ULM cell proliferation and increased the levels of ER, PR, VEGF and FGF. In contrast, isoproterenol (ISO) inhibited ULM cell proliferation and decreased the levels of ER, PR, VEGF and FGF. The protein expression of cAMP and PKA in ULM cells was reduced and the levels of ER, PR, VEGF and FGF were increased when co-treatment with the α-AR blocker (phentolamine). The β-AR blocker (metoprolol) displayed an opposite effect. AR agonists modulated ER, PR, VEGF and FGF levels in ULM cells in an AR-cAMP-PKA-dependent signaling pathways to influence fibroid occurrence and development. Copyright © 2017. Published by Elsevier B.V.
Helmrich, Uta; Marsano, Anna; Melly, Ludovic; Wolff, Thomas; Christ, Liliane; Heberer, Michael; Scherberich, Arnaud; Martin, Ivan
2012-01-01
Adult mesenchymal stromal/stem cells (MSCs) are a valuable source of multipotent progenitors for tissue engineering and regenerative medicine, but may require to be genetically modified to widen their efficacy in therapeutic applications. For example, overexpression of the angiogenic factor vascular endothelial growth factor (VEGF) at controlled levels is an attractive strategy to overcome the crucial bottleneck of graft vascularization and to avoid aberrant vascular growth. Since the regenerative potential of MSCs is rapidly lost during in vitro expansion, we sought to develop an optimized technique to achieve high-efficiency retroviral vector transduction of MSCs derived from both adipose tissue (adipose stromal cells, ASCs) or bone marrow (BMSCs) and rapidly select cells expressing desired levels of VEGF with minimal in vitro expansion. The proliferative peak of freshly isolated human ASCs and BMSCs was reached 4 and 6 days after plating, respectively. By performing retroviral vector transduction at this time point, >90% efficiency was routinely achieved before the first passage. MSCs were transduced with vectors expressing rat VEGF164 quantitatively linked to a syngenic cell surface marker (truncated rat CD8). Retroviral transduction and VEGF expression did not affect MSC phenotype nor impair their in vitro proliferation and differentiation potential. Transgene expression was also maintained during in vitro differentiation. Furthermore, three subpopulations of transduced BMSCs homogeneously producing specific low, medium, and high VEGF doses could be prospectively isolated by flow cytometry based on the intensity of their CD8 expression already at the first passage. In conclusion, this optimized platform allowed the generation of populations of genetically modified MSCs, expressing specific levels of a therapeutic transgene, already at the first passage, thereby minimizing in vitro expansion and loss of regenerative potential. PMID:22070632
Hernández Garfella, María Luisa; Palomares Fort, Paula; Román Ivorra, José Andrés; Cervera Taulet, Enrique
2015-01-01
Purpose: To assess changes in aqueous humor levels of different interleukins (IL), tumor necrosis factor (TNF)-α and vascular endothelial growth factor (VEGF) in patients with uveitis treated with adalimumab. Methods: In this study, 24 aqueous humor samples including 12 pre- and post-treatment samples from 6 patients with uveitis treated with subcutaneous adalimumab and 12 samples from patients with cataracts (serving as controls) were evaluated. The levels of IL-1β, IL-2, IL-6, IL-10, TNF-α and VEGF were measured using a Luminex® 200™ flow cytometer (Merckmillipore, Merck KGaA, Darmstadt, Alemania) and a highly sensitive ELISA system. Results: The levels of IL-1β, IL-2, IL-6 and IL-10 in the aqueous humor before and after treatment with adalimumab did not show significant differences. Aqueous VEGF levels significantly reduced after treatment with adalimumab (P = 0.028). Aqueous TNF-α levels did not significantly change after treatment with adalimumab, however the post-treatment level was significantly higher in patients as compared to control subjects (P = 0.032). IL-2 showed significantly higher levels in uveitis patients before treatment as compared to controls (P = 0.024), while its post-treatment levels were almost normalized. Conclusion: Decrease in the aqueous humor levels of VEGF and IL-2 after treatment with systemic adalimumab indicates that anti-TNF-α therapy induces modifications of some inflammatory mediators involved in the pathogenesis of uveitis. Aqueous humor samples may be useful to assess the effect of adalimumab on intraocular inflammation through measurement of cytokines. PMID:26005553
Ho, Ming-Chih; Chen, Chiung-Nien; Lee, Hsinyu; Hsieh, Fon-Jou; Shun, Chia-Tung; Chang, Chi-Lun; Lai, Yeun-Tyng; Lee, Po-Huang
2007-06-08
The purpose of this study was to evaluate the relationship between the expression of PlGF in tumor tissue and clinical outcomes in HCC patients. Tumor PlGF and vascular endothelial growth factor (VEGF)-A and VEGF-C mRNA were analyzed. Results demonstrated that patients with PlGF expression levels higher than median tended to have early recurrence compared to patients with PlGF expression lower than median (P=.031). In patients with AJCC stage II-III disease, this difference was even more significant (P=.002). In contrast, VEGF-A and VEGF-C could not predict early recurrence-free survival. Since PlGF expression correlated with early recurrence of HCC, PlGF may be an important prognostic indicator in HCC.
Ridano, Magali E; Subirada, Paula V; Paz, María C; Lorenc, Valeria E; Stupirski, Juan C; Gramajo, Ana L; Luna, José D; Croci, Diego O; Rabinovich, Gabriel A; Sánchez, María C
2017-05-16
Neovascular retinopathies are leading causes of irreversible blindness. Although vascular endothelial growth factor (VEGF) inhibitors have been established as the mainstay of current treatment, clinical management of these diseases is still limited. As retinal impairment involves abnormal neovascularization and neuronal degeneration, we evaluated here the involvement of galectin-1 in vascular and non-vascular alterations associated with retinopathies, using the oxygen-induced retinopathy (OIR) model. Postnatal day 17 OIR mouse retinas showed the highest neovascular profile and exhibited neuro-glial injury as well as retinal functional loss, which persisted until P26 OIR. Concomitant to VEGF up-regulation, galectin-1 was highly expressed in P17 OIR retinas and it was mainly localized in neovascular tufts. In addition, OIR induced remodelling of cell surface glycophenotype leading to exposure of galectin-1-specific glycan epitopes. Whereas VEGF returned to baseline levels at P26, increased galectin-1 expression persisted until this time period. Remarkably, although anti-VEGF treatment in P17 OIR improved retinal vascularization, neither galectin-1 expression nor non-vascular and functional alterations were attenuated. However, this functional defect was partially prevented in galectin-1-deficient (Lgals1-/-) OIR mice, suggesting the importance of targeting both VEGF and galectin-1 as non-redundant independent pathways. Supporting the clinical relevance of these findings, we found increased levels of galectin-1 in aqueous humor from patients with proliferative diabetic retinopathy and neovascular glaucoma. Thus, using an OIR model and human samples, we identified a role for galectin-1 accompanying vascular and non-vascular retinal alterations in neovascular retinopathies.
Wang, Xin; Zeng, Caiyu; Gong, Huiping; He, Hong; Wang, Mengxin; Hu, Qin; Yang, Falin
2014-10-01
Endothelial progenitor cells (EPCs) are associated with vascular repairing and progression of atherosclerotic lesion. It may lead to coronary artery disease (CAD) if circulating EPCs lose their function. Continuous nitroglycerin (NTG) therapy causes increased vascular oxidative stress and endothelial dysfunction. The aim of this study was to investigate the effects of NTG on the proliferation of human peripheral blood-derived EPCs. EPC cultures, collected from 60 CAD patients and cultured for 7-12 days, were treated with different concentrations of NTG (0.0, 0.3, 1.0, 2.0, 7.5, 15.0, and 20.0 mg/l) for 72 h, respectively. The cell counts and proliferative activities of EPC; the levels of vascular endothelial growth factor-A (VEGF-A), nitric oxide (NO) and peroxynitrite (ONOO(-)) in culture medium; and the level of reactive oxygen species (ROS) in adherent cells were measured. Compared with control (0.0 mg/l NTG), the cell number and proliferative activities of EPCs were increased when treated with 1.0 mg/l NTG and reached maximum level when NTG concentration was 7.5 mg/l. However, there was a significant reduction when treated with higher doses of NTG (≥15.0 mg/l). Meanwhile, VEGF-A expression reached its maximal expression with 7.5 mg/l NTG, but gradually declined by incubation with higher doses of NTG. There was a linear relationship between NO level and NTG concentration, but no changes of ONOO(-) and ROS levels were found when EPCs were incubated with 0.3-7.5 mg/l NTG. However, ONOO(-) and ROS levels were significantly increased when incubated with 15 and 20 mg/l NTG. Our data demonstrated that moderate dose of NTG may stimulate the proliferative activities of EPCs isolated from CAD patients. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.
Hypoxia preconditioning protection of corneal stromal cells requires HIF1alpha but not VEGF.
Xing, Dongmei; Bonanno, Joseph A
2009-05-18
Hypoxia preconditioning protects corneal stromal cells from stress-induced death. This study determined whether the transcription factor HIF-1alpha (Hypoxia Inducible Factor) is responsible and whether this is promulgated by VEGF (Vascular Endothelial Growth Factor). Cultured bovine stromal cells were preconditioned with hypoxia in the presence of cadmium chloride, a chemical inhibitor of HIF-1alpha, and HIF-1alpha siRNA to test if HIF-1alpha activity is needed for hypoxia preconditioning protection from UV-irradiation induced cell death. TUNEL assay was used to detect cell apoptosis after UV-irradiation. RT-PCR and western blot were used to detect the presence of HIF-1alpha and VEGF in transcriptional and translational levels. During hypoxia (0.5% O2), 5 muM cadmium chloride completely inhibited HIF-1alpha expression and reversed the protection by hypoxia preconditioning. HIF-1alpha siRNA (15 nM) reduced HIF-1alpha expression by 90% and produced a complete loss of protection provided by hypoxia preconditioning. Since VEGF is induced by hypoxia, can be HIF-1alpha dependent, and is often protective, we examined the changes in transcription of VEGF and its receptors after 4 h of hypoxia preconditioning. VEGF and its receptors Flt-1 and Flk-1 are up-regulated after hypoxia preconditioning. However, the transcription and translation of VEGF were paradoxically increased by siHIF-1alpha, suggesting that VEGF expression in stromal cells is not down-stream of HIF-1alpha. These findings demonstrate that hypoxia preconditioning protection in corneal stromal cells requires HIF-1alpha, but that VEGF is not a component of the protection.
Minoxidil Induction of VEGF Is Mediated by Inhibition of HIF-Prolyl Hydroxylase
Yum, Soohwan; Jeong, Seongkeun; Kim, Dohoon; Lee, Sunyoung; Kim, Wooseong; Yoo, Jin-Wook; Kwon, Oh Sang; Kim, Dae-Duk; Min, Do Sik; Jung, Yunjin
2017-01-01
The topical application of minoxidil may achieve millimolar concentrations in the skin. We investigated whether millimolar minoxidil could induce vascular endothelial growth factor (VEGF), a possible effector for minoxidil-mediated hair growth, and how it occurred at the molecular level. Cell-based experiments were performed to investigate a molecular mechanism underlying the millimolar minoxidil induction of VEGF. The inhibitory effect of minoxidil on hypoxia-inducible factor (HIF) prolyl hydroxylase-2 (PHD-2) was tested by an in vitro von Hippel–Lindau protein (VHL) binding assay. To examine the angiogenic potential of millimolar minoxidil, a chorioallantoic membrane (CAM) assay was used. In human keratinocytes and dermal papilla cells, millimolar minoxidil increased the secretion of VEGF, which was not attenuated by a specific adenosine receptor antagonist that inhibits the micromolar minoxidil induction of VEGF. Millimolar minoxidil induced hypoxia-inducible factor-1α (HIF-1α), and the induction of VEGF was dependent on HIF-1. Moreover, minoxidil applied to the dorsal area of mice increased HIF-1α and VEGF in the skin. In an in vitro VHL binding assay, minoxidil directly inhibited PHD-2, thus preventing the hydroxylation of cellular HIF-1α and VHL-dependent proteasome degradation and resulting in the stabilization of HIF-1α protein. Minoxidil inhibition of PHD-2 was reversed by ascorbate, a cofactor of PHD-2, and the minoxidil induction of cellular HIF-1α was abrogated by the cofactor. Millimolar minoxidil promoted angiogenesis in the CAM assay, an in vivo angiogenic test, and this was nullified by the specific inhibition of VEGF. Our data demonstrate that PHD may be the molecular target for millimolar minoxidil-mediated VEGF induction via HIF-1. PMID:29295567
Yokomori, Hiroaki; Oda, Masaya; Yoshimura, Kazunori; Nagai, Toshihiro; Ogi, Mariko; Nomura, Masahiko; Ishii, Hiromasa
2003-12-01
Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis and vascular permeability. Hepatic sinusoidal endothelial cells (SECs) possess sieve-like pores that form an anastomosing labyrinth structure by the deeply invaginated plasma membrane. Caveolin is the principal structural protein in caveolae. In this study, we examined the role of VEGF on the fenestration and permeability of SECs and the relation with caveolin-1. SECs isolated from rat livers by collagenase infusion method were cultured for 24 h with (10 or 100 ng/ml) or without VEGF. The cells were then examined by transmission and scanning electron microscopy (EM). The expression of caveolin was investigated by confocal immunofluorescence, immunogold EM, and Western blot. Endocytosis and intracellular traffic was studied using horseradish peroxidase (HRP) reaction as a marker of fluid phase transport in SECs. Both transmission and scanning EM showed an increased number of sinusoidal endothelial fenestrae (SEF) in SECs cultured with VEGF. By confocal immunofluorescence, SECs cultured with VEGF displayed prominent caveolin-l-positive aggregates in the cytoplasm, especially surrounding the nucleus region. Immunogold EM depicted increased caveolin-1 reactivity on vesicles and vacuoles of VEGF-treated SECs compared with VEGF-nontreated cells. However, there was no change in the level of caveolin-1 protein expression on Western blot. After HRP injection, an increase of electron-dense tracer filled the SEF in cells treated with VEGF. Our results suggested that VEGF induced fenestration in SECs, accompanied by an increased number of caveolae-like vesicles. Increased caveolin-1 might be associated with vesicle formation but not with fenestration. Increased fenestration may augment hepatic sinusoidal permeability and transendothelial transport.
Licht, Tamar; Rothe, Gadiel; Kreisel, Tirzah; Wolf, Brachi; Benny, Ofra; Rooney, Alasdair G.; ffrench-Constant, Charles; Enikolopov, Grigori; Keshet, Eli
2016-01-01
Several factors are known to enhance adult hippocampal neurogenesis but a factor capable of inducing a long-lasting neurogenic enhancement that attenuates age-related neurogenic decay has not been described. Here, we studied hippocampal neurogenesis following conditional VEGF induction in the adult brain and showed that a short episode of VEGF exposure withdrawn shortly after the generation of durable new vessels (but not under conditions where newly made vessels failed to persist) is sufficient for neurogenesis to proceed at a markedly elevated level for many months later. Continual neurogenic increase over several months was not accompanied by accelerated exhaustion of the neuronal stem cell (NSC) reserve, thereby allowing neurogenesis to proceed at a markedly elevated rate also in old mice. Neurogenic enhancement by VEGF preconditioning was, in part, attributed to rescue of age-related NSC quiescence. Remarkably, VEGF caused extensive NSC remodelling manifested in transition of the enigmatic NSC terminal arbor onto long cytoplasmic processes engaging with and spreading over even remote blood vessels, a configuration reminiscent of early postnatal “juvenile” NSCs. Together, these findings suggest that VEGF preconditioning might be harnessed for long-term neurogenic enhancement despite continued exposure to an “aged” systemic milieu. PMID:27849577
Portlock, Joylette L; Keravala, Annahita; Bertoni, Carmen; Lee, Solomon; Rando, Thomas A; Calos, Michele P
2006-08-01
Peripheral vascular disease (PVD), characterized by insufficient blood supply to extremities, can be a devastating illness. Although many gene therapy strategies for PVD using vascular endothelial growth factor (VEGF) have resulted in increased blood vessel formation, the vessels are often impermanent and regress after therapy, probably because of the short-lived VEGF expression mediated by gene therapy vectors (14 days or less). phiC31 integrase is a recombinase originally isolated from a bacteriophage of Streptomyces. This integrase performs efficient chromosomal integration of plasmid DNA into mammalian genomes that results in long-term transgene expression. In this study, gene transfer was achieved by intramuscular injection of VEGF and integrase plasmid DNAs into the tibialis anterior muscle in the mouse hindlimb, followed by electroporation of the muscle with needle electrodes. We observed VEGF levels significantly above background 40 days after injection in animals that received phiC31 integrase and the VEGF plasmid. Site-specific integration of plasmid DNA in the chromosomes of muscle tissue was verified by polymerase chain reaction at a common integration site. These results suggest the possible utility of the phiC31 integrase system to treat ischemic disease.
Silva-Hucha, Silvia; Hernández, Rosendo G; Benítez-Temiño, Beatriz; Pastor, Ángel M; de la Cruz, Rosa R; Morcuende, Sara
2017-01-01
Recent studies show a relationship between the deficit of vascular endothelial growth factor (VEGF) and motoneuronal degeneration, such as that occurring in amyotrophic lateral sclerosis (ALS). VEGF delivery protects motoneurons from cell death and delayed neurodegeneration in animal models of ALS. Strikingly, extraocular motoneurons show lesser vulnerability to neurodegeneration in ALS compared to other cranial or spinal motoneurons. Therefore, the present study investigates possible differences in VEGF and its main receptor VEGFR-2 or Flk-1 between extraocular and non-extraocular brainstem motoneurons. We performed immunohistochemistry and Western blot to determine the presence of VEGF and Flk-1 in rat motoneurons located in the three extraocular motor nuclei (abducens, trochlear and oculomotor) and to compare it to that observed in two other brainstem nuclei (hypoglossal and facial) that are vulnerable to degeneration. Extraocular motoneurons presented higher amounts of VEGF and its receptor Flk-1 than other brainstem motoneurons, and thus these molecules could be participating in their higher resistance to neurodegeneration. In conclusion, we hypothesize that differences in VEGF availability and signaling could be a contributing factor to the different susceptibility of extraocular motoneurons, when compared with other motoneurons, in neurodegenerative diseases.
Farkas, Laszlo; Farkas, Daniela; Ask, Kjetil; Möller, Antje; Gauldie, Jack; Margetts, Peter; Inman, Mark; Kolb, Martin
2009-01-01
Idiopathic pulmonary fibrosis (IPF) can lead to the development of secondary pulmonary hypertension (PH) and ultimately death. Despite this known association, the precise mechanism of disease remains unknown. Using a rat model of IPF, we explored the role of the proangiogenic and antiapoptotic growth factor VEGF in the vascular remodeling that underlies PH. In this model, adenoviral delivery of active TGF-β1 induces pulmonary arterial remodeling, loss of the microvasculature in fibrotic areas, and increased pulmonary arterial pressure (PAP). Immunohistochemistry and mRNA analysis revealed decreased levels of VEGF and its receptor, which were inversely correlated with PAP and endothelial cell apoptosis in both the micro- and macrovasculature. Treatment of IPF rats with adenoviral delivery of VEGF resulted in reduced endothelial apoptosis, increased vascularization, and improved PAP due to reduced remodeling but worsened PF. These data show that experimental pulmonary fibrosis (PF) leads to loss of the microvasculature through increased apoptosis and to remodeling of the pulmonary arteries, with both processes resulting in PH. As administration of VEGF ameliorated the PH in this model but concomitantly aggravated the fibrogenic process, VEGF-based therapies should be used with caution. PMID:19381013
Zhao, Jing; Zhao, Le; Chen, Wei; He, Langchong; Li, Xu
2008-01-01
Taspine is an active component isolated from Radix et Rhizoma Leonticis with inhibiting tumor angiogenic properties. The molecular mechanism(s) of taspine on tumor angiogenic inhibition have not been well documented. The aim of this study was to elucidate in detail the effects of taspine on genetic expressions of VEGF in human umbilical vein endothelial cells, and on VEGFR2-mediated intracellular signaling of human umbilical vein endothelial cells. The genetic expression of vascular endothelial growth factor (VEGF) in the human umbilical vein endothelial cells (HUVECs) treated with taspine in vitro was measured by the ELISA and RT-PCR methods. The effects of taspine on cell proliferation of HUVECs and HUVECs induced by VEGF165 were considered by using MTT assay. And also, a western blot was used to detect Akt and Erk1/2 expressions and their phosphorylation levels in HUVECs treated with taspine. Our results show that VEGF protein and mRNA expressions in the cells treated with taspine were significantly decreased. Taspine also significantly inhibited cell proliferation of HUVECs induced by VEGF165. HUVECs treated with taspine showed decreased Akt and Erk1/2 activities.
Cheng, S Y; Huang, H J; Nagane, M; Ji, X D; Wang, D; Shih, C C; Arap, W; Huang, C M; Cavenee, W K
1996-01-01
The development of new capillary networks from the normal microvasculature of the host appears to be required for growth of solid tumors. Tumor cells influence this process by producing both inhibitors and positive effectors of angiogenesis. Among the latter, the vascular endothelial growth factor (VEGF) has assumed prime candidacy as a major positive physiological effector. Here, we have directly tested this hypothesis in the brain tumor, glioblastoma multiforme, one of the most highly vascularized human cancers. We introduced an antisense VEGF expression construct into glioblastoma cells and found that (i) VEGF mRNA and protein levels were markedly reduced, (ii) the modified cells did not secrete sufficient factors so as to be chemoattractive for primary human microvascular endothelial cells, (iii) the modified cells were not able to sustain tumor growth in immunodeficient animals, and (iv) the density of in vivo blood vessel formation was reduced in direct relation to the reduction of VEGF secretion and tumor formation. Moreover, revertant cells that recovered the ability to secrete VEGF regained each of these tumorigenic properties. These results suggest that VEGF plays a major angiogenic role in glioblastoma. Images Fig. 1 Fig. 4 PMID:8710899
Vascular endothelial growth factor-C enhances radiosensitivity of lymphatic endothelial cells
Kesler, Cristina T.; Kuo, Angera; Wong, Hon-Kit; Masuck, David J.; Shah, Jennifer L.; Kozak, Kevin; Held, Kathryn D.; Padera, Timothy P.
2013-01-01
Radiation therapy after lymph node dissection increases the risk of developing painful and incurable lymphedema in breast cancer patients. Lymphedema occurs when lymphatic vessels become unable to maintain proper fluid balance. The sensitivity of lymphatic endothelial cells (LECs) to ionizing radiation has not been reported to date. Here, the radiosensitivity of LECs in vitro has been determined using clonogenic survival assays. The ability of various growth factors to alter LEC radiosensitivity was also examined. Vascular endothelial growth factor (VEGF)-C enhanced radiosensitivity when LECs were treated prior to radiation. VEGF-C-treated LECs exhibited higher levels of entry into the cell cycle at the time of radiation, with a greater number of cells in the S and G2/M phases. These LECs showed higher levels of H2A.X—an indicator of DNA damage—after radiation. VEGF-C did not increase cell death as a result of radiation. Instead, it increased the relative number of quiescent LECs. These data suggest that abundant VEGF-C or lymphangiogenesis may predispose patients to radiation-induced lymphedema by impairing lymphatic vessel repair through induction of LEC quiescence. PMID:24201897
Yalaza, Cem; Ak, Handan; Cagli, Mehmet Sedat; Ozgiray, Erkin; Atay, Sevcan; Aydin, Hikmet Hakan
2017-05-01
Glioblastoma multiforme (GBM) is the most common form of primary brain tumors. Although mutations in isocitrate dehydrogenase-1 (IDH1) have been identified in a number of cancers, their role in tumor development has not been fully elucidated. In this study, we aimed to investigate the association between IDH1 mutations, tumor tissue HIF-1 alpha, and serum VEGF levels in patients with primary GBM for the first time. 32 patients (mean age, years: 58±14.0) diagnosed with primary glioblastoma multiforme were screened for IDH1 mutations (R132H, R132S, R132C and R132L) by direct sequencing. Serum VEGF and tumor tissue HIF1-alpha levels were measured by enzyme-linked immunosorbent assay. Associations between categoric variables were determined using chi-square tests. Differences between two groups were compared with t test for continuous variables. Six percent of patients were found to be heterozygous for R132H mutation. Tumor HIF1-alpha and serum VEGF levels were found to be significantly increased in IDH1 -mutated tumor tissues ( p <0.0001 and p =0.0454, respectively). Our results suggest that mutated IDH1 may contribute to carcinogenesis via induction of HIF-1 alpha pathway in primary GBM. © 2017 by the Association of Clinical Scientists, Inc.
Güç, Esra; Briquez, Priscilla S; Foretay, Didier; Fankhauser, Manuel A; Hubbell, Jeffrey A; Kilarski, Witold W; Swartz, Melody A
2017-07-01
Lymphangiogenesis occurs in inflammation and wound healing, yet its functional roles in these processes are not fully understood. Consequently, clinically relevant strategies for therapeutic lymphangiogenesis remain underdeveloped, particularly using growth factors. To achieve controlled, local capillary lymphangiogenesis with protein engineering and determine its effects on fluid clearance, leukocyte trafficking, and wound healing, we developed a fibrin-binding variant of vascular endothelial growth factor C (FB-VEGF-C) that is slowly released upon demand from infiltrating cells. Using a novel wound healing model, we show that implanted fibrin containing FB-VEGF-C, but not free VEGF-C, could stimulate local lymphangiogenesis in a dose-dependent manner. Importantly, the effects of FB-VEGF-C were restricted to lymphatic capillaries, with no apparent changes to blood vessels and downstream collecting vessels. Leukocyte intravasation and trafficking to lymph nodes were increased in hyperplastic lymphatics, while fluid clearance was maintained at physiological levels. In diabetic wounds, FB-VEGF-C-induced lymphangiogenesis increased extracellular matrix deposition and granulation tissue thickening, indicators of improved wound healing. Together, these results indicate that FB-VEGF-C is a promising strategy for inducing lymphangiogenesis locally, and that such lymphangiogenesis can promote wound healing by enhancing leukocyte trafficking without affecting downstream lymphatic collecting vessels. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Arivazhagan, Arivarasan; Krishna, Soni; Yadav, Shivangi; Shah, Harshit Rajesh; Kumar, Pravir; Ambasta, Rashmi Kumar
2015-07-01
The aim of this study was to investigate the early onset effects of diabetes on pro-angiogenic signaling pathway, total number of bone marrow cells, organs (pancreas and kidney) damage and the reversal effect of diabetes by combinatorial treatment of curcumin and bone marrow transplantation in streptozotocin (STZ) induced diabetic mice. In the present study, Streptozotocin induced diabetic mice were transplanted with bone marrow cells (2 × 10(6) ) followed by the administration of curcumin (80 mg/kg bodyweight). Effect of diabetes on the different organs was studied by H&E, Western blotting and immunofluorescence using vascular endothelial growth factor (VEGF), platelet/endothelial cell adhesion molecule (PECAM), insulin, Caspase-9 and Caspase-3 antibodies. The effect of diabetes results in the reduction of the total cell number and viability of the bone marrow cells, organ degeneration and lower VEGF/PECAM expression. However, transplantation with normal bone marrow cells significantly reduced the blood glucose levels (above normal range) and initiated the organ regeneration via the VEGF/PECAM mediated manner. Curcumin treatment further reduced the blood glucose level (near normal); and accelerated the organ regeneration, enhanced VEGF/PECAM expression and decreased caspase expression level in the organs. Curcumin also had a protective role against the glucotoxicity test performed on the bone marrow cells. This study suggests that bone marrow transplantation and curcumin administration is an effective treatment in reversing the early onset effects of diabetes via the VEGF/PECAM signaling pathway. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
Deficiency of bone marrow beta3-integrin enhances non-functional neovascularization.
Watson, Alan R; Pitchford, Simon C; Reynolds, Louise E; Direkze, Natalie; Brittan, Mairi; Alison, Malcolm R; Rankin, Sara; Wright, Nicholas A; Hodivala-Dilke, Kairbaan M
2010-03-01
beta3-Integrin is a cell surface adhesion and signalling molecule important in the regulation of tumour angiogenesis. Mice with a global deficiency in beta3-integrin show increased pathological angiogenesis, most likely due to increased vascular endothelial growth factor receptor 2 expression on beta3-null endothelial cells. Here we transplanted beta3-null bone marrow (BM) into wild-type (WT) mice to dissect the role of BM beta3-integrin deficiency in pathological angiogenesis. Mice transplanted with beta3-null bone marrow show significantly enhanced angiogenesis in subcutaneous B16F0 melanoma and Lewis lung carcinoma (LLC) cell models and in B16F0 melanoma lung metastasis when compared with tumours grown in mice transplanted with WT bone marrow. The effect of bone marrow beta3-integrin deficiency was also assessed in the RIPTAg mouse model of pancreatic tumour growth. Again, angiogenesis in mice lacking BM beta3-integrin was enhanced. However, tumour weight between the groups was not significantly altered, suggesting that the enhanced blood vessel density in the mice transplanted with beta3-null bone marrow was not functional. Indeed, we demonstrate that in mice transplanted with beta3-null bone marrow a significant proportion of tumour blood vessels are non-functional when compared with tumour blood vessels in WT-transplanted controls. Furthermore, beta3-null-transplanted mice showed an increased angiogenic response to VEGF in vivo when compared with WT-transplanted animals. BM beta3-integrin deficiency affects the mobilization of progenitor cells to the peripheral circulation. We show that VEGF-induced mobilization of endothelial progenitor cells is enhanced in mice transplanted with beta3-null bone marrow when compared with WT-transplanted controls, suggesting a possible mechanism underlying the increased blood vessel density seen in beta3-null-transplanted mice. In conclusion, although BM beta3-integrin is not required for pathological angiogenesis, our studies demonstrate a role for BM beta3-integrin in VEGF-induced mobilization of bone marrow-derived cells to the peripheral circulation and for the functionality of those vessels in which BM-derived cells become incorporated.
Dinc, Erdem; Ayaz, Lokman; Kurt, Akif Hakan
2017-12-01
This study aimed to evaluate the protective effects of caffeic acid phenethyl ester (CAPE) and combined CAPE-bevacizumab against oxidative stress induced by hydrogen peroxide (H 2 O 2 ) in human retinal pigment epithelium. ARPE-19 cells were pretreated with 5, 10, and 30 μM CAPE alone and in combination with bevacizumab for 3 h, then exposed to H 2 O 2 for 16 h. Cell viability was evaluated with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Vascular endothelial growth factor (VEGF) protein levels in the medium were measured using a human VEGF ELISA kit. Total antioxidant status (TAS) and total oxidant status (TOS) were measured in ARPE-19 cells using the test kit from Rel Assay. Expression levels of VEGF, Bax, Bcl-2, cytochrome c, apoptotic protease activating factor-1 (apaf-1), and caspase-3 were determined using reverse transcription polymerase chain reaction. Pretreatment of ARPE-19 cells with 30 μM CAPE and combined CAPE-bevacizumab reduced H 2 O 2 mediated cell death. H 2 O 2 -induced oxidative stress increased TOS and VEGF production, which was significantly inhibited by CAPE and the CAPE-bevacizumab combination. VEGF, Bax, cytochrome c, apaf-1, and caspase-3 gene expressions were significantly decreased in cells pretreated with 5, 10, and 30 μM CAPE and combined CAPE-bevacizumab compared to the H 2 O 2 group. In addition, Bcl-2 expression was significantly increased in both the CAPE and CAPE-bevacizumab combination groups compared to the H 2 O 2 group. CAPE has a protective effect on ARPE-19 cells against oxidative stress, and VEGF protein level and expression can be decreased by incubation with different concentrations of CAPE. These results demonstrate that CAPE suppresses the mitochondria-mediated apoptosis in ARPE-19 cells under oxidative stress. In addition, the use of CAPE in combination with bevacizumab has an additive effect.
Carvalho, Ana Teresa; Souza, Heitor; Carneiro, Antonio Jose; Castelo-Branco, Morgana; Madi, Kalil; Schanaider, Alberto; Silva, Flavia; Pereira Jứnior, Fernando Antonio; Pereira, Márcia G; Tortori, Cláudio; Dines, Ilana; Carvalho, Jane; Rocha, Eduardo; Elia, Celeste
2007-01-01
AIM: To evaluated the therapeutic and prophylactic effect of thalidomide on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Thalidomide has been reported to downregulate the expression of tumor necrosis factor α (TNF-α), IL-12, and vascular endothelial growth factor (VEGF), hallmarks of intestinal inflammation in Crohn’s disease (CD). METHODS: Male Wistar rats were divided in five groups of ten animals each. Four groups received a rectal infusion of TNBS in ethanol. The first group was sacrificed 7 d after colitis induction. The second and third groups received either thalidomide or placebo by gavage and were sacrificed at 14 d. The fourth group received thalidomide 6 h before TNBS administration, and was sacrificed 7 d after induction. The fifth group acted as the control group and colitis was not induced. Histological inflammatory scores of the colon were performed and lamina propria CD4+ T cells, macrophages, and VEGF+ cells were detected by immunohistochemistry. TNF-α and IL-12 were quantified in the supernatant of organ cultures by ELISA. RESULTS: Significant reduction in the inflammatory score and in the percentage of VEGF+ cells was observed in the group treated with thalidomide compared with animals not treated with thalidomide. Both TNF-α and IL-12 levels were significantly reduced among TNBS induced colitis animals treated with thalidomide compared with animals that did not receive thalidomide. TNF-α levels were also significantly reduced among the animals receiving thalidomide prophylaxis compared with untreated animals with TNBS-induced colitis. Intestinal levels of TNF-α and IL-12 were significantly correlated with the inflammatory score and the number of VEGF+ cells. CONCLUSION: Thalidomide significantly attenuates TNBS-induced colitis by inhibiting the intestinal production of TNF-α, IL-12, and VEGF. This effect may support the use of thalidomide as an alternate approach in selected patients with CD. PMID:17465495
Carvalho, Ana Teresa; Souza, Heitor; Carneiro, Antonio Jose; Castelo-Branco, Morgana; Madi, Kalil; Schanaider, Alberto; Silv, Flavia; Pereira Junior, Fernando Antonio; Pereira, Marcia G; Tortori, Claudio; Dines, Ilana; Carvalho, Jane; Rocha, Eduardo; Elia, Celeste
2007-04-21
To evaluated the therapeutic and prophylactic effect of thalidomide on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Thalidomide has been reported to downregulate the expression of tumor necrosis factor alpha (TNF-alpha), IL-12, and vascular endothelial growth factor (VEGF), hallmarks of intestinal inflammation in Crohnos disease (CD). Male Wistar rats were divided in five groups of ten animals each. Four groups received a rectal infusion of TNBS in ethanol. The first group was sacrificed 7 d after colitis induction. The second and third groups received either thalidomide or placebo by gavage and were sacrificed at 14 d. The fourth group received thalidomide 6 h before TNBS administration, and was sacrificed 7 d after induction. The fifth group acted as the control group and colitis was not induced. Histological inflammatory scores of the colon were performed and lamina propria CD4+ T cells, macrophages, and VEGF+ cells were detected by immunohistochemistry. TNF-alpha and IL-12 were quantified in the supernatant of organ cultures by ELISA. Significant reduction in the inflammatory score and in the percentage of VEGF+ cells was observed in the group treated with thalidomide compared with animals not treated with thalidomide. Both TNF-alpha and IL-12 levels were significantly reduced among TNBS induced colitis animals treated with thalidomide compared with animals that did not receive thalidomide. TNF-alpha levels were also significantly reduced among the animals receiving thalidomide prophylaxis compared with untreated animals with TNBS-induced colitis. Intestinal levels of TNF-alpha and IL-12 were significantly correlated with the inflammatory score and the number of VEGF+ cells. Thalidomide significantly attenuates TNBS-induced colitis by inhibiting the intestinal production of TNF-alpha, IL-12, and VEGF. This effect may support the use of thalidomide as an alternate approach in selected patients with CD.
Calvo, Alfonso; Yokoyama, Yumi; Smith, Lois E; Ali, Iqbal; Shih, Shu-Ching; Feldman, Andrew L; Libutti, Steven K; Sundaram, Ramakrishnan; Green, Jeffrey E
2002-09-20
Cancer therapies based on the inhibition of angiogenesis by endostatin have recently been developed. We demonstrate that a mutated form of human endostatin (P125A) can inhibit the angiogenic switch in the C3(1)/Tag mammary cancer model. P125A has a stronger growth-inhibitory effect on endothelial cell proliferation than wild-type endostatin. We characterize the angiogenic switch, which occurs during the transition from preinvasive lesions to invasive carcinoma in this model, and which is accompanied by a significant increase in total protein levels of vascular endothelial growth factor (VEGF) and an invasion of blood vessels. Expression of the VEGF(188) mRNA isoform, however, is suppressed in invasive carcinomas. The VEGF receptors fetal liver kinase-1 (Flk-1) and Fms-like tyrosine kinase-1 (Flt-1) become highly expressed in epithelial tumor and endothelial cells in the mammary carcinomas, suggesting a potential autocrine effect for VEGF on tumor cell growth. Angiopoietin-2 mRNA levels are also increased during tumor progression. CD-31 (platelet-endothelial cell adhesion molecule [PECAM]) staining revealed that blood vessels developed in tumors larger than 1 mm The administration of P125A human endostatin in C3(1)/Tag females resulted in a significant delay in tumor onset, decreased tumor multiplicity and tumor burden and prolonged survival of the animals. Endostatin treatment did not reduce the number of preinvasive lesions, proliferation rates or apoptotic index, compared with controls. However, mRNA levels of a variety of proangiogenic factors (VEGF, VEGF receptors Flk-1 and Flt-1, angiopoietin-2, Tie-1, cadherin-5 and PECAM) were significantly decreased in the endostatin-treated group compared with controls. These results demonstrate that P125A endostatin inhibits the angiogenic switch during mammary gland adenocarcinoma tumor progression in the C3(1)/Tag transgenic model. Copyright 2002 Wiley-Liss, Inc.
Neurobiological markers of exercise-related brain plasticity in older adults
Voss, Michelle W.; Erickson, Kirk I.; Prakash, Ruchika Shaurya; Chaddock, Laura; Kim, Jennifer S.; Alves, Heloisa; Szabo, Amanda; White, Siobhan M.; Wójcicki, Thomas R.; Mailey, Emily L.; Olson, Erin A.; Gothe, Neha; Potter, Vicki V.; Martin, Stephen A.; Pence, Brandt D.; Cook, Marc D.; Woods, Jeffrey A.; McAuley, Edward; Kramer, Arthur F.
2012-01-01
The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined whether (a) change in the concentration of these growth factors was associated with alterations in functional connectivity following exercise, and (b) the extent to which pre-intervention growth factor levels were associated with training-related changes in functional connectivity. In 65 participants (mean age = 66.4), we found that although there were no group-level changes in growth factors as a function of the intervention, increased temporal lobe connectivity between the bilateral parahippocampus and the bilateral middle temporal gyrus was associated with increased BDNF, IGF-1, and VEGF for an aerobic walking group but not for a non-aerobic control group, and greater pre-intervention VEGF was associated with greater training-related increases in this functional connection. Results are consistent with animal models of exercise and the brain, but are the first to show in humans that exercise-induced increases in temporal lobe functional connectivity are associated with changes in growth factors and may be augmented by greater baseline VEGF. PMID:23123199
Tannetta, Dionne S; Dragovic, Rebecca A; Gardiner, Chris; Redman, Christopher W; Sargent, Ian L
2013-01-01
The placental syncytiotrophoblast releases micro and nanovesicles (STBM), into the maternal circulation in normal pregnancy and in increased amounts in pre-eclampsia (PE), which have proinflammatory and antiangiogenic activity and are implicated in PE pathophysiology. Better characterisation of STBM is essential to understand their role in PE. STBM prepared by placental lobe dual perfusion (pSTBM) and mechanical disruption (mSTBM) were analysed by four colour flow cytometry (4CFC), nanoparticle tracking analysis (NTA) and Western blotting to determine vesicle size, purity and Flt-1 and endoglin (Eng) expression. Biological activity of STBM associated Flt-1 and endoglin was assessed by the ability of VEGF, PlGF and TGFβ to bind to mSTBM and inhibit mSTBM induced endothelial monolayer disruption. STBM content was consistently high (~87-95%) across the different preparations. However, surface antigen intensities differed, with significantly lower placental alkaline phosphatase (P<0.05) and Eng (P<0.05) expression on mSTBM, and Flt-1 (P<0.05) expression on pSTBM. For PE placenta derived preparations, pSTBM contained lower Eng positive STBM (P<0.05) and mSTBM Eng expression was increased (P<0.05). Western blotting revealed increased Flt-1/sFlt-1 (P<0.02) and decreased placental alkaline phosphatase (P = 0.0002) content of PE placenta pSTBM. Using NTA, perfused PE placentas released significantly larger MV (P<0.001). Finally, VEGF, PlGF and TGFβ bound to mSTBM at physiologically relevant concentrations and inhibited mSTBM induced endothelial disruption (P<0.05-P<0.001). This study has found differences in physical and antigenic characteristics of normal and PE placenta STBM preparations produced by placental perfusion or mechanical disruption. We have also demonstrated that large quantities of biologically active STBM associated endoglin and Flt-1/sFlt-1 could contribute to the increased circulating levels measured in PE patients and add to the perturbation of the maternal vascular endothelium, normally attributed to non-membrane bound sFlt-1 and sEndoglin.
Perry, Kyle A; Enestvedt, C Kristian; Hosack, Luke W; Pham, Thai H; Diggs, Brian S; Teh, Swee; Orloff, Susan; Winn, Shelly; Hunter, John G; Sheppard, Brett C
2010-05-01
Vascular endothelial growth factor (VEGF) is overexpressed in hepatocellular carcinoma (HCC), and findings have shown that its upregulation in these tumors has an impact on tumor growth. The authors hypothesized that compared with open liver resection, laparoscopic hepatectomy would result in a decreased local angiogenic response in residual tumor cells. Right- and left-lobe hepatomas were induced in Buffalo rats via laparoscopically guided subcapsular injection of Morris hepatoma cells. After 1 week, the animals were randomized to laparoscopic or open left lateral hepatectomy. In 14 days after resection, the rats were killed, the residual right lobe tumors were measured, and tissue was procured for RNA extraction. Transcript levels of VEGF messenger RNA (mRNA) were quantified with reverse transcriptase-polymerase chain reaction (RT-PCR), and VEGF serum levels were measured by enzyme-linked immunoassay (ELISA) both before resection and at the time of tissue harvest. None of the animals had development satellite liver lesions or distant metastases in the abdomen or thorax. The median residual tumor volume was 320 mm(3) in the open group compared with 180 mm(3) in the laparoscopic group (p = 0.164). The animals that underwent open resection had a 1.3-fold increase in VEGF mRNA transcript levels compared with the laparoscopic resection group (p = 0.008). The serum VEGF levels were not significantly different between the laparoscopic and open groups at baseline (open tumor resection [OR], 23.7 +/- 12.0 pg/ml; laparoscopic tumor resection [LR], 30.7 +/- 15.5 pg/ml; p = 0.334) nor at the time of tissue harvest (OR, 19.9 +/- 19.6 pg/ml; LR, 26.9 +/- 34.5 pg/ml; p = 0.549). Laparoscopic hepatic resection produces decreased VEGF mRNA expression in residual hepatoma cells compared with open resection. Decreased stimulation of angiogenesis promoters in the tumor microenvironment after minimally invasive liver resection may contribute to a lower residual disease burden and ultimately lead to a lower recurrence rate.
Zhou, Ai-Yi; Bai, Yu-Jing; Zhao, Min; Yu, Wen-Zhen; Huang, Lv-Zhen; Li, Xiao-Xin
2014-08-01
Clinical trials have revealed that the antivascular endothelial growth factor (VEGF) therapies are effective in retinopathy of prematurity (ROP). But the low level of VEGF was necessary as a survival signal in healthy conditions, and endogenous placental growth factor (PIGF) is redundant for development. The purpose of this study was to elucidate the PIGF expression under hypoxia as well as the influence of anti-VEGF therapy on PIGF. CoCl2-induced hypoxic human umbilical vein endothelial cells (HUVECs) were used for an in vitro study, and oxygen-induced retinopathy (OIR) mice models were used for an in vivo study. The expression patterns of PIGF under hypoxic conditions and the influence of anti-VEGF therapy on PIGF were evaluated by quantitative reverse transcription-polymerase chain reaction (RTPCR). The retinal avascular areas and neovascularization (NV) areas of anti-VEGF, anti-PIGF and combination treatments were calculated. Retina PIGF concentration was evaluated by ELISA after treatment. The vasoactive effects of exogenous PIGF on HUVECs were investigated by proliferation and migration studies. PIGF mRNA expression was reduced by hypoxia in OIR mice, in HUVECs under hypoxia and anti-VEGF treatment. However, PIGF expression was reversed by anti-VEGF therapy in the OIR model and in HUVECs under hypoxia. Exogenous PIGF significantly inhibited HUVECs proliferation and migration under normal conditions, but it stimulated cell proliferation and migration under hypoxia. Anti-PIGF treatment was effective for neovascular tufts in OIR mice (P<0.05). The finding that PIGF expression is iatrogenically up-regulated by anti-VEGF therapy provides a consideration to combine it with anti-PIGF therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Se-Hee; Schmitt, Christopher E.; Woolls, Melissa J.
Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A)more » signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.« less
NASA Astrophysics Data System (ADS)
Jin, Kai; Li, Bo; Lou, Lixia; Xu, Yufeng; Ye, Xin; Yao, Ke; Ye, Juan; Gao, Changyou
2016-01-01
Rapid and adequate vascularization is vital to the long-term success of porous orbital enucleation implants. In this study, porous hydroxyapatite (HA) scaffolds coated with vascular endothelial growth factor (VEGF)-functionalized collagen (COL)/heparin (HEP) multilayers (porosity 75%, pore size 316.8 ± 77.1 μm, VEGF dose 3.39 ng/mm3) were fabricated to enhance vascularization by inducing the differentiation of mesenchymal stem cells (MSCs) to endothelial cells. The in vitro immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting results demonstrated that the expression of the endothelial differentiation markers CD31, Flk-1, and von Willebrand factor (vWF) was significantly increased in the HA/(COL/HEP)5/VEGF/MSCs group compared with the HA/VEGF/MSCs group. Moreover, the HA/(COL/HEP)5 scaffolds showed a better entrapment of the MSCs and accelerated cell proliferation. The in vivo assays showed that the number of newly formed vessels within the constructs after 28 d was significantly higher in the HA/(COL/HEP)5/VEGF/MSCs group (51.9 ± 6.3/mm2) than in the HA (26.7 ± 2.3/mm2) and HA/VEGF/MSCs (38.2 ± 2.4/mm2) groups. The qRT-PCR and western blotting results demonstrated that the HA/(COL/HEP)5/VEGF/MSCs group also had the highest expression of CD31, Flk-1, and vWF at both the mRNA and protein levels.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Wecksler, Aaron T.; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.
2017-05-01
We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies.
Zhang, Hai-Tao; Zhang, Ping; Gao, Yi; Li, Chen-Long; Wang, Hong-Jun; Chen, Ling-Chao; Feng, Yan; Li, Rui-Yan; Li, Yong-Li; Jiang, Chuan-Lu
2017-01-01
Vascular endothelial growth factor (VEGF) inhibition has been demonstrated to be an effective strategy in preserving the integrity of the blood-brain barrier (BBB) in patients with acute ischemic stroke. Loss of the BBB is the key event associated with morbidity and mortality in these patients. However, the underlying mechanisms remain poorly understood. In the present study, the effects of VEGF inhibition and the possible mechanism that underlies acute cerebral ischemia in rats was investigated. Following the induction of transient middle cerebral artery occlusion for a 90‑min period, either an anti‑VEGF neutralizing antibody (RB‑222; 5 or 10 µg), or IgG (control), was administered by intracerebroventricular injection at 1 h following reperfusion. Functional outcomes, BBB leakage, brain edema, microvessel numbers and the relative protein levels of VEGF, matrix metalloproteinase (MMP)-2, MMP-9, occludin and collagen-IV were then determined using neurological assessments, Evans Blue staining, brain water content, CD31 staining and western blotting. Treatment with RB‑222 at a dose of 5 and 10 µg significantly improved neurological functional outcomes and diminished infarct size, BBB leakage and brain edema compared with the MCAO and IgG groups at 24 h following reperfusion; 10 µg RB‑222 was more effective than a 5 µg dose of the antibody. In addition, RB‑222 reduced the number of immature microvessels, which subsequently attenuated BBB permeability. RB‑222 significantly repressed VEGF expression as well as decreased MMP‑2 and MMP‑9 expression. However, it enhanced occludin and collagen‑IV levels in the ischemic rat brain compared with the MCAO and IgG groups. Taken together, the results indicate that early inhibition of VEGF may have significant potential against cerebral ischemia, partly by regulating the expression of MMPs.
TNF-α and LPS activate angiogenesis via VEGF and SIRT1 signalling in human dental pulp cells.
Shin, M R; Kang, S K; Kim, Y S; Lee, S Y; Hong, S C; Kim, E-C
2015-07-01
To assess whether SIRT1 and VEGF are responsible for tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-induced angiogenesis and to examine the molecular mechanism(s) of action in human dental pulp cells (HDPCs). Immortalized HDPCs obtained from Prof. Takashi Takata (Hiroshima University, Japan) were treated with LPS (1 μg mL(-1) ) and TNF-α (10 ng mL(-1) ) for 24 h. mRNA and protein levels were examined by RT-PCR and Western blotting, respectively. Migration and tube formation were examined in human umbilical vein endothelial cells (HUVECs). The data were analysed by one-way anova. Statistical analysis was performed at α = 0.05. LPS and TNF-α upregulated VEGF and SIRT1 mRNA and protein levels. Inhibition of SIRT1 activity by sirtinol and SIRT1 siRNA or inhibition of the VEGF receptor by CBO-P11 significantly attenuated LPS + TNF-α-stimulated MMPs production in HDPCs, as well as migration and tube formation in HUVECs (P < 0.05). Furthermore, sirtinol, SIRT1 siRNA and CBO-P11 attenuated phosphorylation of Akt, extracellular signal-regulated kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) and the nuclear translocation of NF-κB p65. Pre-treatment with inhibitors of p38, ERK, JNK, PI3K and NF-κB decreased LPS + TNF-α-induced VEGF and SIRT1 expression, MMPs activity in HDPCs and angiogenesis (P < 0.05) in HUVECs. TNF-α and LPS led to upregulation of VEGF and SIRT1, and subsequent upregulation of MMP-2 and MMP-9 production, and promote angiogenesis via pathways involving PI3K, p38, ERK, JNK and NF-κB. The results suggest that inhibition of SIRT1 and VEGF might attenuate pro-inflammatory mediator-induced pulpal disease. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Suarez, Sandra; McCollum, Gary W; Bretz, Colin A; Yang, Rong; Capozzi, Megan E; Penn, John S
2014-11-18
Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability contributes to diabetic macular edema (DME), a serious vision-threatening condition. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) antagonist/reverse agonist, GSK0660, inhibits VEGF-induced human retinal microvascular endothelial cell (HRMEC) proliferation, tubulogenesis, and oxygen-induced retinal vasculopathy in newborn rats. These VEGF-induced HRMEC behaviors and VEGF-induced disruption of endothelial cell junctional complexes may well share molecular signaling events. Thus, we sought to examine the role of PPARβ/δ in VEGF-induced retinal hyperpermeability. Transendothelial electrical resistance (TEER) measurements were performed on HRMEC monolayers to assess permeability. Claudin-1/Claudin-5 localization in HRMEC monolayers was determined by immunocytochemistry. Extracellular signal-regulated protein kinases 1 and 2 (Erk 1/2) phosphorylation, VEGF receptor 1 (VEGFR1) and R2 were assayed by Western blot analysis. Expression of VEGFR1 and R2 was measured by quantitative RT-PCR. Last, retinal vascular permeability was assayed in vivo by Evans blue extravasation. Human retinal microvascular endothelial cell monolayers treated with VEGF for 24 hours showed decreased TEER values that were completely reversed by the highest concentration of GSK0660 (10 μM) and PPARβ/δ-directed siRNA (20 μM). In HRMEC treated with VEGF, GSK0660 stabilized tight-junctions as evidenced by Claudin-1 staining, reduced phosphorylation of Erk1/2, and reduced VEGFR1/2 expression. Peroxisome proliferator-activated receptor β/δ siRNA had a similar effect on VEGFR expression and Claudin-1, supporting the specificity of GSK0660 in our experiments. Last, GSK0660 significantly inhibited VEGF-induced retinal vascular permeability and reduced retinal VEGFR1and R2 levels in C57BL/6 mice. These data suggest a protective effect for PPARβ/δ antagonism against VEGF-induced vascular permeability, possibly through reduced VEGFR expression. Therefore, antagonism/reverse agonism of PPARβ/δ siRNA may represent a novel therapeutic methodology against retinal hyperpermeability and is worthy of future investigation. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Suarez, Sandra; McCollum, Gary W.; Bretz, Colin A.; Yang, Rong; Capozzi, Megan E.; Penn, John S.
2014-01-01
Purpose. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability contributes to diabetic macular edema (DME), a serious vision-threatening condition. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) antagonist/reverse agonist, GSK0660, inhibits VEGF-induced human retinal microvascular endothelial cell (HRMEC) proliferation, tubulogenesis, and oxygen-induced retinal vasculopathy in newborn rats. These VEGF-induced HRMEC behaviors and VEGF-induced disruption of endothelial cell junctional complexes may well share molecular signaling events. Thus, we sought to examine the role of PPARβ/δ in VEGF-induced retinal hyperpermeability. Methods. Transendothelial electrical resistance (TEER) measurements were performed on HRMEC monolayers to assess permeability. Claudin-1/Claudin-5 localization in HRMEC monolayers was determined by immunocytochemistry. Extracellular signal-regulated protein kinases 1 and 2 (Erk 1/2) phosphorylation, VEGF receptor 1 (VEGFR1) and R2 were assayed by Western blot analysis. Expression of VEGFR1 and R2 was measured by quantitative RT-PCR. Last, retinal vascular permeability was assayed in vivo by Evans blue extravasation. Results. Human retinal microvascular endothelial cell monolayers treated with VEGF for 24 hours showed decreased TEER values that were completely reversed by the highest concentration of GSK0660 (10 μM) and PPARβ/δ-directed siRNA (20 μM). In HRMEC treated with VEGF, GSK0660 stabilized tight-junctions as evidenced by Claudin-1 staining, reduced phosphorylation of Erk1/2, and reduced VEGFR1/2 expression. Peroxisome proliferator-activated receptor β/δ siRNA had a similar effect on VEGFR expression and Claudin-1, supporting the specificity of GSK0660 in our experiments. Last, GSK0660 significantly inhibited VEGF-induced retinal vascular permeability and reduced retinal VEGFR1and R2 levels in C57BL/6 mice. Conclusions. These data suggest a protective effect for PPARβ/δ antagonism against VEGF-induced vascular permeability, possibly through reduced VEGFR expression. Therefore, antagonism/reverse agonism of PPARβ/δ siRNA may represent a novel therapeutic methodology against retinal hyperpermeability and is worthy of future investigation. PMID:25406289
Lee, Monica Y.; Skoura, Athanasia; Park, Eon Joo; Landskroner-Eiger, Shira; Jozsef, Levente; Luciano, Amelia K.; Murata, Takahisa; Pasula, Satish; Dong, Yunzhou; Bouaouina, Mohamed; Calderwood, David A.; Ferguson, Shawn M.; De Camilli, Pietro; Sessa, William C.
2014-01-01
Here we show that dynamin 2 (Dnm2) is essential for angiogenesis in vitro and in vivo. In cultured endothelial cells lacking Dnm2, vascular endothelial growth factor (VEGF) signaling and receptor levels are augmented whereas cell migration and morphogenesis are impaired. Mechanistically, the loss of Dnm2 increases focal adhesion size and the surface levels of multiple integrins and reduces the activation state of β1 integrin. In vivo, the constitutive or inducible loss of Dnm2 in endothelium impairs branching morphogenesis and promotes the accumulation of β1 integrin at sites of failed angiogenic sprouting. Collectively, our data show that Dnm2 uncouples VEGF signaling from function and coordinates the endocytic turnover of integrins in a manner that is crucially important for angiogenesis in vitro and in vivo. PMID:24598168
Zhang, Peng; Dong, Ling; Yan, Kang; Long, Hua; Yang, Tong-Tao; Dong, Ming-Qing; Zhou, Yong; Fan, Qing-Yu; Ma, Bao-An
2013-10-01
Chemokines and chemokine receptor 4 (CXCR4) play an important role in metastasis. CXCR4 is also expressed in the human osteosarcoma cell line 9607-F5M2 (F5M2), which has a high tumorigenic ability and potential for spontaneous pulmonary metastasis. Mesenchymal stem cells (MSCs) contribute to the formation of the tumor stroma and promote metastasis. However, mechanisms underlying the promotion of osteosarcoma growth and pulmonary metastasis by MSCs are still elusive. Our study co-injected the human MSCs and F5M2 cells into the caudal vein of nude mice. The total number of tumor nodules per lung was significantly increased in the F5M2+MSC group compared to the other groups (control, F5M2 cells alone and MSCs alone) at week six. Moreover, a high number of Dil-labeled MSCs was present also at the osteosarcoma metastasis sites in the lung. Using Transwell assays, we found that F5M2 cells migrate towards MSCs, while the CXCR4 inhibitor AMD3100 decreased the migration potential of F5M2 cells towards MSCs. Furthermore, upon treatment with F5M2-conditioned medium, MSCs expressed and secreted higher levels of VEGF as determined by immunohistochemistry, western blotting and ELISA, respectively. Importantly, co-cultured with F5M2 cells, MSCs expressed and secreted higher VEGF levels, while AMD3100 dramatically decreased the VEGF secretion by MSCs. However, CXCR4 expression on F5M2 cells was not significantly increased in the co-culture system. Additionally, VEGF increased the proliferation of both MSCs and F5M2 cells. These findings suggest that CXCR4-mediated osteosarcoma growth and pulmonary metastasis are promoted by MSCs through VEGF.
Moser, Norman; Goldstein, Jan; Kauffmann, Phillip; Epple, Matthias; Schliephake, Henning
2018-04-01
The aim of the present study was to test the hypothesis that the ratio of angiogenic and osteogenic signaling affects ectopic bone formation when delivered in different amounts. Porous composite PDLLA/CaCO 3 scaffolds were loaded with rhBMP2 and rhVEGF in different dosage combinations and implanted into the gluteal muscles of 120 adult male Wistar rats. Bone formation and expression of alkaline phosphatase and Runx2 were quantified by histomorphometry. Spatial distribution across the scaffolds was assessed by using a grid that discriminated between the periphery and center of the scaffolds. The evaluation showed that the combined delivery of bone morphogenetic protein BMP2 and VEGF in different dosage combinations did not enhance the overall quantity of ectopic bone formation compared to the delivery of BMP2 alone. The addition of VEGF generally upregulated Runx2 after 4 weeks, which may have retarded terminal osteogenic differentiation. However, slow combined delivery of 1.5-2.0 μg BMP2 combined with 50 ng VEGF165 over a period of 5 weeks supported a more even distribution of bone formation across the implanted scaffolds whereas higher amounts of VEGF did not elicit this effect. The findings suggest that structural organization rather than the quantity of ectopic bone formation is affected by the dosage and the ratio of BMP2 and VEGF levels at the observed intervals. The development of carriers for dual growth factor delivery has to take into account the necessity to carefully balance the ratio of growth release.
Role of endogenous insulin gene enhancer protein ISL-1 in angiogenesis
Xiong, Si-qi; Jiang, Hai-bo; Li, Yan-xiu; Li, Hai-bo; Xu, Hui-zhuo; Wu, Zhen-kai; Zheng, Wei
2016-01-01
Objective To elucidate the role of insulin gene enhancer protein ISL-1 (Islet-1) in angiogenesis and regulation of vascular endothelial growth factor (VEGF) expression in vitro and in vivo. Methods siRNA targeting Islet-1 was transfected to human umbilical vein endothelial cell lines (HUVECs). The expression of Islet-1 and VEGF in the cultured cells was measured using real-time PCR and immunoblotting. 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide; thiazolyl blue (MTT) assay was used to analyze the proliferation of HUVECs affected by Islet-1. Wound healing and Transwell assays were conducted to assess the motility of HUVECs. The formation of capillary-like structures was examined using growth factor–reduced Matrigel. siRNA targeting Islet-1 was intravitreally injected into the murine model of oxygen-induced retinopathy (OIR). Retinal neovascularization was evaluated with angiography using fluorescein-labeled dextran and then quantified histologically. Real-time PCR and immunoblotting were used to determine whether local Islet-1 silencing affected the expression of Islet-1 and VEGF in murine retinas. Results The expression of Islet-1 and VEGF in HUVECs was knocked down by siRNA. Reduced endogenous Islet-1 levels in cultured cells greatly inhibited the proliferation, migration, and tube formation in HUVECs in vitro. Retinal neovascularization following injection of Islet-1 siRNA was significantly reduced compared with that of the contralateral control eye. Histological analysis indicated that the neovascular nuclei protruding into the vitreous cavity were decreased. Furthermore, the Islet-1 and VEGF expression levels were downregulated in murine retinas treated with siRNA against Islet-1. Conclusions Reducing the expression of endogenous Islet-1 inhibits proliferation, migration, and tube formation in vascular endothelial cells in vitro and suppresses retinal angiogenesis in vivo. Endogenous Islet-1 regulates angiogenesis via VEGF. PMID:27994436
Fatty Acid Synthase Mediates the Epithelial-Mesenchymal Transition of Breast Cancer Cells
Li, Junqin; Dong, Lihua; Wei, Dapeng; Wang, Xiaodong; Zhang, Shuo; Li, Hua
2014-01-01
This study aimed to investigate the role of fatty acid synthase (FASN) in the epithelial-mesenchymal transition (EMT) of breast cancer cells. MCF-7 cells and MCF-7 cells overexpressing mitogen-activated protein kinase 5 (MCF-7-MEK5) were used in this study. MCF-7-MEK5 cells showed stable EMT characterized by increased vimentin and decreased E-cadherin expression. An In vivo animal model was established using the orthotopic injection of MCF-7 or MCF-7-MEK5 cells. Real-time quantitative PCR and western blotting were used to detect the expression levels of FASN and its downstream proteins liver fatty acid-binding protein (L-FABP) and VEGF/VEGFR-2 in both in vitro and in vivo models (nude mouse tumor tissues). In MCF-7-MEK5 cells, significantly increased expression of FASN was associated with increased levels of L-FABP and VEGF/VEGFR-2. Cerulenin inhibited MCF-7-MEK5 cell migration and EMT, and reduced FASN expression and down-stream proteins L-FABP, VEGF, and VEGFR-2. MCF-7-MEK5 cells showed higher sensitivity to Cerulenin than MCF-7 cells. Immunofluorescence revealed an increase of co-localization of FASN with VEGF on the cell membrane and with L-FABP within MCF-7-MEK5 cells. Immunohistochemistry further showed that increased percentage of FASN-positive cells in the tumor tissue was associated with increased percentages of L-FABP- and VEGF-positive cells and the Cerulenin treatment could reverse the effect. Altogether, our results suggest that FASN is essential to EMT possibly through regulating L-FABP, VEGF and VEGFR-2. This study provides a theoretical basis and potential strategy for effective suppression of malignant cells with EMT. PMID:24520215
Xue, Siliang; He, Lang; Zhang, Xiao; Zhou, Jin; Li, Fanghua; Wang, Xiaoshan
2017-02-01
Jagged1/Notch3 signaling pathway plays a key role in angiogenesis of breast cancer, but little is known in TNBC. This study was designed to investigate the expression of Jagged1/Notch3 mRNA and protein in TNBC, analyze their correlations with clinicopathological characteristics and prognosis. Moreover, the interrelationship among Jagged1/Notch3 and VEGF was initially evaluated. Jagged1/Notch3 mRNA and protein expression levels were determined by Q-RT-PCR and Western blotting. Additionally, Immunohistochemistry for Jagged1/Notch3 was detected by Ventana platform, VEGF and CD34 was performed using the EnVision/HRP technique. mRNA transcriptionof Jagged1/Notch3 was in accord with protein expression. TNBC patients with positive Jagged1 expression had poorer DFS (p = 0.008) and OS (p = 0.004). Jagged1 expression was independent predictors of OS (p = 0.038). The expression of VEGF was positively correlative to MVD (p = 0.018), MVD was significantly associated with Jagged1 (p <0.0001) and Notch3 (p <0.0001). The expression of Jagged1/Notch3 has no correlation with VEGF, only in positive VEGF expression of TNBC patients Jagged1/Notch3 had influence on DFS and OS (p <0.05). Jagged1/Notch3 was -expressed at both the mRNA and protein levels, Jagged1 served as an independent predictor of poor prognosis. We speculate that there is a cross-talk between Jagged1/Notch3 and VEGF in TNBC angiogenesis. Jagged1/Notch3 is expected to be an important signaling pathway for TNBC progression and a potential target for TNBC neovascularization therapy. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.
Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function
Smith, Gina A.; Fearnley, Gareth W.; Abdul-Zani, Izma; Wheatcroft, Stephen B.; Tomlinson, Darren C.; Harrison, Michael A.
2017-01-01
ABSTRACT Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response. PMID:28798148
Induction of cysteine-rich motor neuron 1 mRNA expression in vascular endothelial cells.
Nakashima, Yukiko; Takahashi, Satoru
2014-08-22
Cysteine-rich motor neuron 1 (CRIM1) is expressed in vascular endothelial cells and plays a crucial role in angiogenesis. In this study, we investigated the expression of CRIM1 mRNA in human umbilical vein endothelial cells (HUVECs). CRIM1 mRNA levels were not altered in vascular endothelial growth factor (VEGF)-stimulated monolayer HUVECs or in cells in collagen gels without VEGF. In contrast, the expression of CRIM1 mRNA was elevated in VEGF-stimulated cells in collagen gels. The increase in CRIM1 mRNA expression was observed even at 2h when HUVECs did not form tubular structures in collagen gels. Extracellular signal-regulated kinase (Erk) 1/2, Akt and focal adhesion kinase (FAK) were activated by VEGF in HUVECs. The VEGF-induced expression of CRIM1 mRNA was significantly abrogated by PD98059 or PF562271, but was not affected by LY294002. These results demonstrate that CRIM1 is an early response gene in the presence of both angiogenic stimulation (VEGF) and environmental (extracellular matrix) factors, and Erk and FAK might be involved in the upregulation of CRIM1 mRNA expression in vascular endothelial cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Liu, Ting; Wu, Hai-Jun; Liang, Yu; Liang, Xu-Jun; Huang, Hui-Chao; Zhao, Yan-Zhong; Liao, Qing-Chuan; Chen, Ya-Qi; Leng, Ai-Min; Yuan, Wei-Jian; Zhang, Gui-Ying; Peng, Jie; Chen, Yong-Heng
2016-06-21
To develop a potent and safe gene therapy for esophageal cancer. An expression vector carrying fusion suicide gene (yCDglyTK) and shRNA against vascular endothelial growth factor (VEGF) was constructed and delivered into EC9706 esophageal cancer cells by calcium phosphate nanoparticles (CPNP). To achieve tumor selectivity, expression of the fusion suicide gene was driven by a tumor-specific human telomerase reverse transcriptase (hTERT) promoter. The biologic properties and therapeutic efficiency of the vector, in the presence of prodrug 5-fluorocytosine (5-FC), were evaluated in vitro and in vivo. Both in vitro and in vivo testing showed that the expression vector was efficiently introduced by CPNP into tumor cells, leading to cellular expression of yCDglyTK and decreased VEGF level. With exposure to 5-FC, it exhibited strong anti-tumor effects against esophageal cancer. Combination of VEGF shRNA with the fusion suicide gene demonstrated strong anti-tumor activity. The shVEGF-hTERT-yCDglyTK/5-FC system provided a novel approach for esophageal cancer-targeted gene therapy.
Schmidt, John; Lee, Min Kyung; Ko, Eunkyung; Jeong, Jae Hyun; DiPietro, Luisa A; Kong, Hyunjoon
2016-07-05
Ever since proangiogenic growth factors have been used as a vascular medicine to treat tissue ischemia, efforts have been increasingly made to develop a method to enhance efficacy of growth factors in recreating microvascular networks, especially at low dose. To this end, we hypothesized that polysaccharides substituted with sulfate groups would amplify growth factor receptor activation and stimulate phenotypic activities of endothelial cells involved in neovascularization. We examined this hypothesis by modifying alginate with a controlled number of sulfates and using it to derive a complex with vascular endothelial growth factor (VEGF), as confirmed with fluorescence resonance energy transfer (FRET) assay. Compared with the bare VEGF and with a mixture of VEGF and unmodified alginates, the VEGF complexed with alginate sulfates significantly reduced the dissociation rate with the VEGFR-2, elevated VEGFR-2 phosphorylation level, and increased the number of endothelial sprouts in vitro. Furthermore, the VEGF-alginate sulfate complex improved recovery of perfusion in an ischemic hindlimb of a mouse due to the increase of the capillary density. Overall, this study not only demonstrates an important cofactor of VEGF but also uncovers an underlying mechanism by which the cofactor mitigates the VEGF-induced signaling involved in the binding kinetics and activation of VEGFR. We therefore believe that the results of this study will be highly useful in improving the therapeutic efficacy of various growth factors and expediting their uses in clinical treatments of wounds and tissue defects.
Valproic acid inhibits the angiogenic potential of cervical cancer cells via HIF-1α/VEGF signals.
Zhao, Y; You, W; Zheng, J; Chi, Y; Tang, W; Du, R
2016-11-01
Cervical cancer is one of the most prevalent malignancies in women worldwide. Therefore, the investigation about the molecular pathogenesis and related therapy targets of cervical cancer is an emergency. The objective of the present study is to investigate the effects of valproic acid (VPA), a histone deacetylase inhibitor, on the angiogenesis of cervical cancer. The effects and mechanisms of VPA on in vitro angiogenesis and vascular endothelial growth factor (VEGF) expression of human cervical cancer HeLa and SiHa cells were investigated. Our present study reveals that 1 mM VPA can significantly inhibit the in vitro angiogenic potential and VEGF expression of human cervical cancer HeLa and SiHa cells. Further, the transcription and protein levels of hypoxia inducible factor-1α (HIF-1α), and not HIF-1β, are significantly inhibited in VPA-treated cervical cancer cells. Over expression of HIF-1α can obviously reverse VPA-induced VEGF down regulation. VPA-treatment decreases the activation of Akt and ERK1/2 in both HeLa and SiHa cells in a time-dependent manner. The inhibitor of Akt (LY 294002) or ERK1/2 (PD98059) can inhibit VEGF alone and cooperatively reinforce the suppression effects of VPA on HIF-1α and VEGF expression. Collectively, our data reveal that the inhibition of PI3K/Akt and ERK1/2 signals are involved in VPA-induced HIF-1α and VEGF suppression of cervical cancer cells.
Krzystek-Korpacka, Malgorzata; Diakowska, Dorota; Kapturkiewicz, Bartosz; Bębenek, Marek; Gamian, Andrzej
2013-08-28
Alternate colorectal cancer (CRC) screening and surveillance strategies are needed to pre-select candidates for invasive methods. We compared systemic inflammatory profiles in CRC (n=99), health (n=98), high CRC-risk conditions (n=48) and overt inflammation (n=69) by multiplexed analysis of IL-1β, IL-6, IL-8, FGF-2, G-CSF, GM-CSF, MCP-1, MIP-1α, TNF-α, VEGF-A, and PDGF-B and CEA. Cytokines corresponded with CRC advancement. FGF2, GM-CSF, IL-1β, IL-6, MIP-1α, PDGF-BB, TNF-α, and VEGF-A were higher than in controls already in stage I CRC with FGF2, IL1-β, and MIP-1α higher than in high CRC-risk individuals as well. Cytokine panels devised to differentiate early CRC from controls, adenomas, or inflammatory bowel disease patients (IBD) had good accuracy but only IBD panel had promising specificity at 95% sensitivity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Kwon, Yi-Hong; Jung, Seok-Yun; Kim, Jae-Won; Lee, Sang-Hun; Lee, Jun-Hee; Lee, Boo-Yong; Kwon, Sang-Mo
2012-01-01
Background There is increasing evidence that phloroglucinol, a compound from Ecklonia cava, induces the apoptosis of cancer cells, eventually suppressing tumor angiogenesis. Methodology/Principal Findings This is the first report on phloroglucinol's ability to potentially inhibit the functional bioactivities of endothelial progenitor cells (EPCs) and thereby attenuate tumor growth and angiogenesis in the Lewis lung carcinoma (LLC)-tumor-bearing mouse model. Although Phloroglucinol did not affect their cell toxicity, it specifically inhibited vascular endothelial growth factor (VEGF) dependent migration and capillary-like tube formation of EPCs. Our matrigel plug assay clearly indicated that orally injected phloroglucinol effectively disrupts VEGF-induced neovessel formation. Moreover, we demonstrated that when phloroglucinol is orally administered, it significantly inhibits tumor growth and angiogenesis as well as CD45−/CD34+ progenitor mobilization into peripheral blood in vivo in the LLC-tumor-bearing mouse model. Conclusions/Significance These results suggest a novel role for phloroglucinol: Phloroglucinol might be a modulator of circulating EPC bioactivities, eventually suppressing tumorigenesis. Therefore, phloroglucinol might be a candidate compound for biosafe drugs that target tumor angiogenesis. PMID:22496756
Mehmood, Khalid; Zhang, Hui; Iqbal, Muhammad Kashif; Rehman, Mujeeb Ur; Shahzad, Muhammad; Li, Kun; Huang, Shucheng; Nabi, Fazul; Zhang, Lihong; Li, Jiakui
2017-09-01
Tibial dyschondroplasia (TD) is one of the common skeletal abnormalities in fast-growing birds, and it is characterized by nonvascularized, unmineralized, and nonviable cartilage in the tibial growth plate that fails to form bone. The aim of this study was to check the in vitro effect of apigenin and danshen on heat-shock protein 90 (Hsp90) and vascular endothelial growth factor (VEGF) expressions in avian growth plate cells treated with sublethal concentration of thiram. Initially, chondrocytes from chicken growth plates were isolated on culturx ed medium with and without various concentration of thiram to determine the sublethal dose. Then, to check the effect of apigenin and danshen, the chondrocytes were treated first with a sublethal (2.5 μM) concentration of thiram and then with different doses (10, 20, 40, and 80 μM) of apigenin and danshen. The mRNA expression levels of Hsp90 and VEGF genes were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR). The results showed that the expression levels of Hsp90 and VEGF mRNA transcripts were increased significantly (P < 0.05) in thiram-treated chondrocytes culture medium up to 1.5-fold, whereas apigenin and danshen therapy to chondrocytes in culture medium significantly (P < 0.05) reduced the Hsp90 and VEGF expression levels. In conclusion, up-regulation of both (Hsp90 and VEGF) genes and damage to chondrocytes in culture medium caused by thiram can be restored by using apigenin and danshen. Therefore, apigenin and danshen therapies are suggested and encouraged as a promising approach to control TD in broiler chickens.
Efficient siRNA delivery system using carboxilated single-wall carbon nanotubes in cancer treatment.
Neagoe, Ioana Berindan; Braicu, Cornelia; Matea, Cristian; Bele, Constantin; Florin, Graur; Gabriel, Katona; Veronica, Chedea; Irimie, Alexandru
2012-08-01
Several functionalized carbon nanotubes have been designed and tested for the purpose of nucleic acid delivery. In this study, the capacity of SWNTC-COOH for siRNA deliverey were investigated delivery in parallel with an efficient commercial system. Hep2G cells were reverse-transfected with 50 nM siRNA (p53 siRNA, TNF-alphasiRNA, VEGFsiRNA) using the siPORT NeoFX (Ambion) transfection agent in paralel with SWNTC-COOH, functionalised with siRNA. The highest level of gene inhibition was observed in the cases treated with p53 siRNA gene; in the case of transfection with siPort, the NeoFX value was 33.8%, while in the case of SWNTC-COOH as delivery system for p53 siRNA was 37.5%. The gene silencing capacity for VEGF was 53.7%, respectively for TNF-alpha 56.7% for siPORT NeoFX delivery systems versus 47.7% (VEGF) and 46.5% (TNF-alpha) for SWNTC-COOH delivery system. SWNTC-COOH we have been showed to have to be an efficient carrier system. The results from the inhibition of gene expresion for both transfection systems were confirmed at protein level. Overall, the lowest mRNA expression was confirmed at protein level, especially in the case of p53 siRNA and TNF-alpha siRNA transfection. Less efficient reduction protein expressions were observed in the case of VEGF siRNA, for both transfection systems at 24 h; only at 48 h, there was a statistically significant reduction of VEGF protein expression. SWCNT-COOH determined an efficient delivery of siRNA. SWNTC-COOH, combined with suitable tumor markers like p53 siRNA, TNFalpha siRNA or VEGF siRNA can be used for the efficient delivery of siRNA.
Huang, Feifei; Liu, Yang; Yang, Xia; Che, Di; Qiu, Kaifeng; Hammock, Bruce D; Wang, Jingfeng; Wang, Mong-Heng; Chen, Jie; Huang, Hui
2017-08-01
Therapeutic angiogenesis is a pivotal strategy for ischemic heart disease. The aim of the present study was to determine the effect and molecular mechanism of Shexiang Baoxin pills, a widely-used traditional Chinese medicine for ischemic heart disease, on angiogenesis in a rat model of myocardial infarction (MI). We used the occlusion of left anterior descending coronary artery of Sprague-Dawley rats as a model of MI. The MI rats were treated with distilled water, Shexiang Baoxin pills, or Shexiang Baoxin pills + HET0016 (a selective blocker of the biosynthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) at 10 mg/kg/day), respectively. Sham-operated rats were used as controls. Treatment with Shexiang Baoxin pills increases the level of serum 20-HETE in MI rats, which can be suppressed by HET0016 treatment. Shexiang Baoxin pills shows cardio-protective effects on MI rats, including improving cardiac function, decreasing infarction area, and promoting angiogenesis in peri-infarct area. The protective effects of Shexiang Baoxin pills are partly inhibited by HET0016. Furthermore, Shexiang Baoxin pills enhances the number of circulating endothelial progenitor cells (EPCs) and the expression of the vascular endothelial growth factor (VEGF), based on immunohistochemical analysis, in peri-infarct area of MI rats, which is partly suppressed by HET0016. Shexiang Baoxin pills may partially participate in angiogenesis in MI rats. The protective mechanism of Shexiang Baoxin pills may be mediated via up-regulation of 20-HETE, which promotes EPCs mobilization and VEGF expression. Copyright © 2017 Elsevier B.V. All rights reserved.
The therapeutic effect of negative pressure in treating femoral head necrosis in rabbits.
Zhang, Yin-gang; Wang, Xuezhi; Yang, Zhi; Zhang, Hong; Liu, Miao; Qiu, Yushen; Guo, Xiong
2013-01-01
Because negative pressure can stimulate vascular proliferation, improve blood circulation and promote osteogenic differentiation of bone marrow stromal cells, we investigated the therapeutic effect of negative pressure on femoral head necrosis (FHN) in a rabbit model. Animals were divided into four groups (n = 60/group): [1] model control, [2] core decompression, [3] negative pressure and [4] normal control groups. Histological investigation revealed that at 4 and 8 weeks postoperatively, improvements were observed in trabecular bone shape, empty lacunae and numbers of bone marrow hematopoietic cells and fat cells in the negative pressure group compared to the core decompression group. At week 8, there were no significant differences between the negative pressure and normal control groups. Immunohistochemistry staining revealed higher expression of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) in the femoral heads in the negative pressure group compared with the core decompression group. Transmission electron microscopy revealed that cell organelles were further developed in the negative pressure group compared with the core decompression group. Microvascular ink staining revealed an increased number of bone marrow ink-stained blood vessels, a thicker vascular lumen and increased microvascular density in the negative pressure group relative to the core decompression group. Real-time polymerase chain reaction revealed that expression levels of both VEGF and BMP-2 were higher in the negative pressure group compared with the core decompression group. In summary, negative pressure has a therapeutic effect on FHN. This effect is superior to core decompression, indicating that negative pressure is a potentially valuable method for treating early FHN.
Muñoz-Hernandez, Rocio; Vallejo-Vaz, Antonio J; Sanchez Armengol, Angeles; Moreno-Luna, Rafael; Caballero-Eraso, Candela; Macher, Hada C; Villar, Jose; Merino, Ana M; Castell, Javier; Capote, Francisco; Stiefel, Pablo
2015-01-01
This study tries to assess the endothelial function in vivo using flow-mediated dilatation (FMD) and several biomarkers of endothelium formation/restoration and damage in patients with obstructive sleep apnoea (OSA) syndrome at baseline and after three months with CPAP therapy. Observational study, before and after CPAP therapy. We studied 30 patients with apnoea/hypopnoea index (AHI) >15/h that were compared with themselves after three months of CPAP therapy. FMD was assessed non-invasively in vivo using the Laser-Doppler flowmetry. Circulating cell-free DNA (cf-DNA) and microparticles (MPs) were measured as markers of endothelial damage and the vascular endothelial growth factor (VEGF) was determined as a marker of endothelial restoration process. After three month with CPAP, FMD significantly increased (1072.26 ± 483.21 vs. 1604.38 ± 915.69 PU, p< 0.005) cf-DNA and MPs significantly decreased (187.93 ± 115.81 vs. 121.28 ± 78.98 pg/ml, p<0.01, and 69.60 ± 62.60 vs. 39.82 ± 22.14 U/μL, p<0.05, respectively) and VEGF levels increased (585.02 ± 246.06 vs. 641.11 ± 212.69 pg/ml, p<0.05). These changes were higher in patients with more severe disease. There was a relationship between markers of damage (r = -0.53, p<0.005) but not between markers of damage and restoration, thus suggesting that both types of markers should be measured together. CPAP therapy improves FMD. This improvement may be related to an increase of endothelial restoration process and a decrease of endothelial damage.
The Therapeutic Effect of Negative Pressure in Treating Femoral Head Necrosis in Rabbits
Zhang, Yin-gang; Wang, Xuezhi; Yang, Zhi; Zhang, Hong; Liu, Miao; Qiu, Yushen; Guo, Xiong
2013-01-01
Because negative pressure can stimulate vascular proliferation, improve blood circulation and promote osteogenic differentiation of bone marrow stromal cells, we investigated the therapeutic effect of negative pressure on femoral head necrosis (FHN) in a rabbit model. Animals were divided into four groups (n = 60/group): [1] model control, [2] core decompression, [3] negative pressure and [4] normal control groups. Histological investigation revealed that at 4 and 8 weeks postoperatively, improvements were observed in trabecular bone shape, empty lacunae and numbers of bone marrow hematopoietic cells and fat cells in the negative pressure group compared to the core decompression group. At week 8, there were no significant differences between the negative pressure and normal control groups. Immunohistochemistry staining revealed higher expression of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) in the femoral heads in the negative pressure group compared with the core decompression group. Transmission electron microscopy revealed that cell organelles were further developed in the negative pressure group compared with the core decompression group. Microvascular ink staining revealed an increased number of bone marrow ink-stained blood vessels, a thicker vascular lumen and increased microvascular density in the negative pressure group relative to the core decompression group. Real-time polymerase chain reaction revealed that expression levels of both VEGF and BMP-2 were higher in the negative pressure group compared with the core decompression group. In summary, negative pressure has a therapeutic effect on FHN. This effect is superior to core decompression, indicating that negative pressure is a potentially valuable method for treating early FHN. PMID:23383276
[Expressions of VEGF/VEGFRs and activation of STATs in ovarian carcinoma].
Chen, Bing-Ya; Ye, Da-Feng; Xie, Xing; Chen, Huai-Zeng; Lü, Wei-Guo
2005-01-01
To study the expressions of VEGF/VEGFRs and activation of STATs in ovarian epithelial carcinoma, and to elucidate direct effect of VEGF on ovarian carcinoma cells. Tissue samples from 42 women with primary ovarian epithelial carcinoma (OVCA), 29 with begnin ovarian tumor (OVBT) and 11 with normal ovarian tissue (NOV) were collected. LSAB immunohistochemical staining was used to determine the expression of VEGF, VEGFR1, VEGFR2 and activated STATS (P-STAT1, P-STAT3, P-STAT5, P-STAT6) proteins. (1) Semi-quantitative scoring showed that VEGF expression in OVCA was significantly higher than that in OVBT and NOV (P < 0.01). Expressions of VEGFR1 and VEGFR2 were significantly elevated in OVCA, including tumor cells and stromal vascular endothelial cells (P < 0.01, compared with OVBT and NOV). There was no difference in VEGFRs expressions between OVBT and NOV. (2) In OVCA, tumor cells and endothelial cells expressed P-STAT3 and P-STAT5 at significantly higher levels than those in OVBT and NOV (P = 0.000). The staining of P-STAT1 and P-STAT6 was weak with no significant differences among OVCA, OVBT and NOV. (3) Expressions of VEGFR1 and VEGFR2 in endothelial cells were significantly correlated with P-STAT5 and P-STAT3, respectively (P = 0.006 and 0.001). In cancer cells, VEGF, VEGFR1 and VEGFR2 were all significantly correlated with P-STAT3 and P-STAT5 (P = 0.000), but not with P-STAT1 or P-STAT6. VEGF affects ovarian carcinoma cells via VEGFRs, and STATs probably participate in intracellular signaling of VEGF.
Fu, Chenglai; Tyagi, Richa; Chin, Alfred C; Rojas, Tomas; Li, Ruo-Jing; Guha, Prasun; Bernstein, Isaac A; Rao, Feng; Xu, Risheng; Cha, Jiyoung Y; Xu, Jing; Snowman, Adele M; Semenza, Gregg L; Snyder, Solomon H
2018-02-02
Inositol polyphosphate multikinase (IPMK) and its major product inositol pentakisphosphate (IP5) regulate a variety of cellular functions, but their role in vascular biology remains unexplored. We have investigated the role of IPMK in regulating angiogenesis. Deletion of IPMK in fibroblasts induces angiogenesis in both in vitro and in vivo models. IPMK deletion elicits a substantial increase of VEGF (vascular endothelial growth factor), which mediates the regulation of angiogenesis by IPMK. The regulation of VEGF by IPMK requires its catalytic activity. IPMK is predominantly nuclear and regulates gene transcription. However, IPMK does not apparently serve as a transcription factor for VEGF. HIF (hypoxia-inducible factor)-1α is a major determinant of angiogenesis and induces VEGF transcription. IPMK deletion elicits a major enrichment of HIF-1α protein and thus VEGF. HIF-1α is constitutively ubiquitinated by pVHL (von Hippel-Lindau protein) followed by proteasomal degradation under normal conditions. However, HIF-1α is not recognized and ubiquitinated by pVHL in IPMK KO (knockout) cells. IP5 reinstates the interaction of HIF-1α and pVHL. HIF-1α prolyl hydroxylation, which is prerequisite for pVHL recognition, is interrupted in IPMK-deleted cells. IP5 promotes HIF-1α prolyl hydroxylation and thus pVHL-dependent degradation of HIF-1α. Deletion of IPMK in mouse brain increases HIF-1α/VEGF levels and vascularization. The increased VEGF in IPMK KO disrupts blood-brain barrier and enhances brain blood vessel permeability. IPMK, via its product IP5, negatively regulates angiogenesis by inhibiting VEGF expression. IP5 acts by enhancing HIF-1α hydroxylation and thus pVHL-dependent degradation of HIF-1α. © 2017 American Heart Association, Inc.
Davies, Christine Ann; Jeziorska, Maria; Freemont, Anthony J; Herrick, Ariane L
2006-02-01
Our aim was to evaluate (a) whether there is differential expression of the endothelial regulator vascular endothelial growth factor (VEGF), its receptor (VEGFR-2), and the hypoxia-associated glucose transporter molecule, GLUT-1, in skin biopsies from different disease subtypes of systemic sclerosis (SSc) and (b) whether they associate with dermal calcinosis, a significant complication of SSc. Skin punch biopsies were taken from the forearms of 66 SSc patients including 18 with limited cutaneous disease without calcinosis (lcSSc), 23 with calcinosis (lcSSc/cal), and 25 with diffuse cutaneous disease (dcSSc) and from 12 healthy control subjects. The histological appearance of the skin was graded as G0 (normal), G1 (dermal edema), or G2 or G3 (increasing fibrotic changes). Immunohistochemistry was performed with antibodies to VEGF, VEGFR-2, and GLUT-1. Staining was assessed in the epidermis, microvessels, and fibroblasts. The Kruskal-Wallis 1-way analysis of variance was used to compare the data between disease groups. VEGF protein was located in the epidermis and in dermal endothelial cells, pericytes, fibroblasts, and inflammatory cells. In dcSSc only, there was a significant increase in VEGF staining intensity in the keratinocytes and pericytes and the lowest percentage of microvessels with VEGF-positive endothelial cells. GLUT-1 protein was located in the epidermis, erythrocytes, and perineurium. In both lcSSc/cal and dcSSC, but not lcSSc, there were significant increases in GLUT-1 staining intensity of keratinocytes. We propose that in patients with dcSSc, there is a net increase in unbound VEGF in skin that may account for the raised levels of VEGF in serum reported by others. Increased GLUT-1 expression in lcSSc/cal and dcSSc indicates that hypoxia is an associated factor.
Iyer, Rohin K.; Odedra, Devang; Chiu, Loraine L.Y.; Vunjak-Novakovic, Gordana
2012-01-01
We previously showed that the sequential, but not simultaneous, culture of endothelial cells (ECs), fibroblasts (FBs), and cardiomyocytes (CMs) resulted in elongated, beating cardiac organoids. We hypothesized that the expression of Cx43 and contractile function are mediated by vascular endothelial growth factor (VEGF) released by nonmyocytes during the preculture period. Cardiac organoids (∼200 μm diameter) were cultivated in microchannels to enable rapid screening. Three experimental groups were formed: (i) Simultaneous Preculture (ECs+FBs for 48 h, followed by CMs), (ii) Sequential Preculture (ECs for 24 h, FBs for 24 h, followed by CMs), and (iii) Simultaneous Triculture (ECs+FBs+CMs). Controls included CMs only, FBs only, and ECs only groups, and preculture with ECs only or FBs only. The highest VEGF levels were found in the Preculture groups [Simultaneous Preculture, 8.9±2.7 ng/(mL·h−1); Sequential Preculture, 16.6±3.4 ng/(mL·h−1)], as compared with Simultaneous Triculture where VEGF was not detectable, as shown by enzyme-linked immunosorbent assay. Analytical flow cytometry showed that VEGFR2 was expressed by ECs (86%±2 VEGFR2+), FBs (44%±1 VEGFR2+), and CMs (49%±2 VEGFR2+), showing that all three cell types were capable of responding to changes in VEGF. Addition of anti-VEGF neutralizing IgG (0.4 μg/mL) to Simultaneous Preculture resulted in 3-fold decrease in Cx43 mRNA and 1.5-fold decrease in Cx43 protein, while Simultaneous Triculture supplemented with VEGF ligand (30 ng/mL) had a threefold increase in Cx43 mRNA and a twofold increase in Cx43 protein. Addition of a small molecule inhibitor of the VEGFR2 receptor (19.4 nM) to Sequential Preculture caused a 1.4-fold decrease in Cx43 mRNA and a 4.1-fold decrease in Cx43 protein. Cx43 was localized within CMs, and not within FBs or ECs. Enriched CM organoids and Sequential Preculture organoids grown in the presence of VEGFR2 inhibitor displayed low levels of Cx43 and poor functional properties. Taken together, these results suggest that endogenous VEGF-VEGFR2 signaling enhanced Cx43 expression and cardiac function in engineered cardiac organoids. PMID:22519405
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, Amrita; Jones, Michael K.; Department of Medicine, University of California, Irvine, CA
2013-08-09
Highlights: •Malignant colonic epithelial cells express VEGF and its receptors. •Cultured colon cancer cells secrete VEGF into the medium. •Inhibition of VEGF receptor significantly decreases colon cancer cell proliferation. •VEGF is critical for colon cancer cell growth. -- Abstract: Vascular endothelial growth factor A (referred to as VEGF) is implicated in colon cancer growth. Currently, the main accepted mechanism by which VEGF promotes colon cancer growth is via the stimulation of angiogenesis, which was originally postulated by late Judah Folkman. However, the cellular source of VEGF in colon cancer tissue; and, the expression of VEGF and its receptors VEGF-R1 andmore » VEGF-R2 in colon cancer cells are not fully known and are subjects of controversy. Material and methods: We examined and quantified expression of VEGF, VEGF-R1 and VEGF-R2 in three different human colonic tissue arrays containing sections of adenocarcinoma (n = 43) and normal mucosa (n = 41). In human colon cancer cell lines HCT116 and HT29 and normal colon cell lines NCM356 and NCM460, we examined expression of VEGF, VEGF-R1 and VEGF-R2 mRNA and protein, VEGF production and secretion into the culture medium; and, the effect of a potent, selective inhibitor of VEGF receptors, AL-993, on cell proliferation. Results: Human colorectal cancer specimens had strong expression of VEGF in cancer cells and also expressed VEGF-R1 and VEGF-R2.In vitro studies showed that human colon cancer cell lines, HCT116 and HT29, but not normal colonic cell lines, express VEGF, VEGF-R1 and VEGF-R2 and secrete VEGF into the medium up to a concentration 2000 pg/ml within 48 h. Furthermore, we showed that inhibition of VEGF receptors using a specific VEGF-R inhibitor significantly reduced proliferation (by >50%) of cultured colon cancer cell lines. Conclusions: Our findings support the contention that VEGF generated by colon cancer cells stimulates their growth directly through an autocrine mechanism that is independent of its primary function in the induction of angiogenesis.« less
Jarrahy, Reza; Huang, Weibiao; Rudkin, George H; Lee, Jane M; Ishida, Kenji; Berry, Micah D; Sukkarieh, Modar; Wu, Benjamin M; Yamaguchi, Dean T; Miller, Timothy A
2005-08-01
Osteogenic differentiation of osteoprogenitor cells in three-dimensional (3D) in vitro culture remains poorly understood. Using quantitative real-time RT-PCR techniques, we examined mRNA expression of alkaline phosphatase, osteocalcin, and vascular endothelial growth factor (VEGF) in murine preosteoblastic MC3T3-E1 cells cultured for 48 h and 14 days on conventional two-dimensional (2D) poly(l-lactide-co-glycolide) (PLGA) films and 3D PLGA scaffolds. Differences in VEGF secretion and function between 2D and 3D culture systems were examined using Western blots and an in vitro Matrigel-based angiogenesis assay. Expression of both alkaline phosphatase and osteocalcin in cells cultured on 3D scaffolds was significantly downregulated relative to 2D controls in 48 h and 14 day cultures. In contrast, elevated levels of VEGF expression in 3D culture were noted at every time point in short- and long-term culture. VEGF protein secretion in 3D cultures was triple the amount of secretion observed in 2D controls. Conditioned medium from 3D cultures induced an enhanced level of angiogenic activity, as evidenced by increases in branch points observed in in vitro angiogenesis assays. These results collectively indicate that MC3T3-E1 cells commit to osteogenic differentiation at a slower rate when cultured on 3D PLGA scaffolds and that VEGF is preferentially expressed by these cells when they are cultured in three dimensions.
Role of VEGF-C and VEGF-D in lymphangiogenesis in gastric cancer.
Yonemura, Yutaka; Endo, Yoshio; Tabata, Kayoko; Kawamura, Taiichi; Yun, Hyo-Yung; Bandou, Etsurou; Sasaki, Takuma; Miura, Masahiro
2005-10-01
The molecular mechanisms of lymphangiogenesis induced by vascular endothelial growth factor (VEGF)-C and VEGF-D in gastric cancer were studied. VEGF-C and VEGF-D gene expression vectors were transfected into the gastric cancer cell line KKLS, which did not originally express VEGF-C and VEGF-D, and stable transfectants (KKLS/VEGF-C and KKLS/VEGF-D) were established. The cell lines were inoculated into the subserosal layer of the stomach and subcutaneous tissue of nude mice. VEGF-C and VEGF-D expression in KKLS/VEGF-C and KKLS/VEGF-D cells was found by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Expression of mouse VEGF receptor (VEGFR)-2 and mouse VEGFR-3 mRNA was detected in the KKLS/VEGF-C and KKLS/VEGF-D gastric tumors. Newly formed lymphatic vessels were detected not only in the periphery but also in the center of the tumors. The intratumor lymphatic vessels connected with the preexisting lymphatic vessels in the muscularis mucosa. The average numbers of lymphatic vessels in KKLS/VEGF-C (52.0 +/- 9.5) and KKLS/VEGF-D (16.4 +/- 0.6) gastric tumors were significantly higher than that in the KKLS/control vector tumors (4.0 +/- 1.4). VEGF-C and VEGF-D may induce neoformation of lymphatic vessels in experimental gastric tumors by the induction of VEGFR-3 expression.
Shirali, Saeed; Barari, Alireza; Hosseini, Seyed Ahmad; Khodadi, Elaheh
2017-01-01
The aim of this study was to determine effects of six weeks endurance training and Aloe Vera supplementation on COX-2 and VEGF levels in mice with breast cancer. For this purpose, 35 rats were randomly divided into 5 groups: control (healthy) and 4 cancer groups: control (cancer only), training, Aloe Vera and Aloe Vera + training. Breast cancer tumors were generated in mice by implantind. The training program comprised six weeks of swimming training accomplished in three sessions per week. Training time started with 10 minutes on the first day and increased to 60 minutes in the second week and the water flow rate was increased from 7 to 15 liters per minute at a constant rate. Aloe Vera extract at a dose of 300 mg/kg BW was administrated to rats by intraperitoneal injection. At the end of the study period, rats were anesthetized and blood samples were taken. Significant differences were concluded at p<0.05 with Kolmogorov-Smirnov and Tukey tests to analyze the data. The results showed significant increase in levels of serum. COX-2 and VEGF levels in the cancer group compared with the healthy group. Administration of Aloe Vera extract caused significant decrease in the COX-2 level in the cancer group. Also, in the training (swimming exercise) and Aloe Vera + training cancer groups, we observed significant decrease in the VEGF level as compared to controls. Our results suggest that Aloe Vera and training inhibit the COX pathway and cause decrease production of prostaglandin E2. Hence administration of Aloe Vera in combination with endurance training might synergistically improve the host milieu in mice bearing breast cancers. Creative Commons Attribution License
Wu, Da-Wei; Chang, Wei-An; Liu, Kuan-Ting; Yen, Meng-Chi; Kuo, Po-Lin
2017-09-01
Pleural effusion is associated with multiple benign and malignant conditions. Currently no biomarkers differentiate malignant pleural effusion (MPE) and benign pleural effusion (BPE) sensitively and specifically. The present study identified a novel combination of biomarkers in pleural effusion for differentiating MPE from BPE by enrolling 75 patients, 34 with BPE and 41 with MPE. The levels of lactate dehydrogenase, glucose, protein, and total cell, neutrophil, monocyte and lymphocyte counts in the pleural effusion were measured. The concentrations of interleukin (IL)-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, tumor necrosis factor-α, interferon γ, transforming growth factor-β1, colony stimulating factor 2, monocyte chemoattractant protein-1 and vascular endothelial growth factor (VEGF) were detected using cytometric bead arrays. Protein and VEGF levels differed significantly between patients with BPE and those with MPE. The optimal cutoff value of VEGF and protein was 214 pg/ml and 3.35 g/dl respectively, according to the receiver operating characteristic curve. A combination of VEGF >214 pg/ml and protein >3.35 g/dl in pleural effusion presented a sensitivity of 92.6% and an accuracy of 78.6% for MPE, but was not associated with a decreased survival rate. These results suggested that this novel combination strategy may provide useful biomarkers for predicting MPE and facilitating early diagnosis.
Cui, Shanshan; Li, Wen; Lv, Xin; Wang, Pengyan; Gao, Yuxia; Huang, Guowei
2017-01-01
The pathogenesis of atherosclerosis has been partly acknowledged to result from aberrant epigenetic mechanisms. Accordingly, low folate levels are considered to be a contributing factor to promoting vascular disease because of deregulation of DNA methylation. We hypothesized that increasing the levels of folic acid may act via an epigenetic gene silencing mechanism to ameliorate atherosclerosis. Here, we investigated the atheroprotective effects of folic acid and the resultant methylation status in high-fat diet-fed ApoE knockout mice and in oxidized low-density lipoprotein-treated human umbilical vein endothelial cells. We analyzed atherosclerotic lesion histology, folate concentration, homocysteine concentration, S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), and DNA methyltransferase activity, as well as monocyte chemotactic protein-1 (MCP1) and vascular endothelial growth factor (VEGF) expression and promoter methylation. Folic acid reduced atherosclerotic lesion size in ApoE knockout mice. The underlying folic acid protective mechanism appears to operate through regulating the normal homocysteine state, upregulating the SAM: SAH ratio, elevating DNA methyltransferase activity and expression, altering MCP1 and VEGF promoter methylation, and inhibiting MCP1 and VEGF expression. We conclude that folic acid supplementation effectively prevented atherosclerosis by modifying DNA methylation through the methionine cycle, improving DNA methyltransferase activity and expression, and thus changing the expression of atherosclerosis-related genes. PMID:28475147
Del Moral-Hernández, Oscar; Martínez-Hernández, Norma E; Mosso-Pani, Manuel A; Hernández-Sotelo, Daniel; Illades-Aguiar, Berenice; Flores-Alfaro, Eugenia; Antonio-Vejar, Verónica; Leyva-Vázquez, Marco Antonio
2014-01-01
INFECTION BY DENGUE VIRUS (DENV) CAN BE ASYMPTOMATIC OR MANIFEST IN TWO CLINICALLY DIFFERENTIATED FORMS: dengue fever (DF) and denguehemorrhagic fever (DHF). The principal pathophysiological characteristic of DHF is the increase in vascular permeability and the loss of plasma caused by the malfunction of the vascular endothelium that induces the release of chemical mediators. However, so far there is nothing that allows for the identification the patients that are at risk of developing the more severe form of the illness. The objective of this study was to investigate the relationship between the serum levels of soluble thrombomodulin (sTM) and VEGF with the severity of dengue and the viral serotype. 231 serum samples were analyzed, 70 DF, 80 DHF and 81 control group, all were residents of Guerrero state in Mexico. The infection by dengue virus as well and the levels of sTM and VEGF were determined using the ELISA sandwich, while the serotype was determined by real time RT-PCR. Our results show that the concentrations of sTM correlate with the degree of severity of the disease given that they are significantly higher (p<0.001) in the DHF group (median = 10.2 ng/mL) than in the DF group (median = 7.2 ng/mL), and these in turn higher than those of the control group (median = 3.3 ng/mL). The concentration of sTM was significantly higher (p=0.0002) in the patients infected with DENV2. For the VEGF, the highest levels were found in DF (median = 291.3 pg/mL) and did not correlate with the severity of the disease. In conclusion, our results indicate that sTM is a good marker for the severity of the infection by DENV, better than VEGF, and with higher sensibility and specificity.
Role of Mesenchymal Stem Cells on Cornea Wound Healing Induced by Acute Alkali Burn
Yao, Lin; Li, Zhan-rong; Su, Wen-ru; Li, Yong-ping; Lin, Miao-li; Zhang, Wen-xin; Liu, Yi; Wan, Qian; Liang, Dan
2012-01-01
The aim of this study was to investigate the effects of subconjunctivally administered mesenchymal stem cells (MSCs) on corneal wound healing in the acute stage of an alkali burn. A corneal alkali burn model was generated by placing a piece of 3-mm diameter filter paper soaked in NaOH on the right eye of 48 Sprague-Dawley female rats. 24 rats were administered a subconjunctival injection of a suspension of 2×106 MSCs in 0.1 ml phosphate-buffered saline (PBS) on day 0 and day 3 after the corneal alkali burn. The other 24 rats were administered a subconjunctival injection of an equal amount of PBS as a control. Deficiencies of the corneal epithelium and the area of corneal neovascularization (CNV) were evaluated on days 3 and 7 after the corneal alkali burn. Infiltrated CD68+ cells were detected by immunofluorescence staining. The mRNA expression levels of macrophage inflammatory protein-1 alpha (MIP-1α), tumor necrosis factor-alpha (TNF-α), monocyte chemotactic protein-1 (MCP-1) and vascular endothelial growth factor (VEGF) were analyzed using real-time polymerase chain reaction (real-time PCR). In addition, VEGF protein levels were analyzed using an enzyme-linked immunosorbent assay (ELISA). MSCs significantly enhanced the recovery of the corneal epithelium and decreased the CNV area compared with the control group. On day 7, the quantity of infiltrated CD68+ cells was significantly lower in the MSC group and the mRNA levels of MIP-1α, TNF-α, and VEGF and the protein levels of VEGF were also down-regulated. However, the expression of MCP-1 was not different between the two groups. Our results suggest that subconjunctival injection of MSCs significantly accelerates corneal wound healing, attenuates inflammation and reduces CNV in alkaline-burned corneas; these effects were found to be related to a reduction of infiltrated CD68+ cells and the down-regulation of MIP-1α, TNF-α and VEGF. PMID:22363499
Rennel, E S; Varey, A H R; Churchill, A J; Wheatley, E R; Stewart, L; Mather, S; Bates, D O; Harper, S J
2009-10-06
The key mediator of new vessel formation in cancer and other diseases is VEGF-A. VEGF-A exists as alternatively spliced isoforms - the pro-angiogenic VEGF(xxx) family generated by exon 8 proximal splicing, and a sister family, termed VEGF(xxx)b, exemplified by VEGF(165)b, generated by distal splicing of exon 8. However, it is unknown whether this anti-angiogenic property of VEGF(165)b is a general property of the VEGF(xxx)b family of isoforms. The mRNA and protein expression of VEGF(121)b was studied in human tissue. The effect of VEGF(121)b was analysed by saturation binding to VEGF receptors, endothelial migration, apoptosis, xenograft tumour growth, pre-retinal neovascularisation and imaging of biodistribution in tumour-bearing mice with radioactive VEGF(121)b. The existence of VEGF(121)b was confirmed in normal human tissues. VEGF(121)b binds both VEGF receptors with similar affinity as other VEGF isoforms, but inhibits endothelial cell migration and is cytoprotective to endothelial cells through VEGFR-2 activation. Administration of VEGF(121)b normalised retinal vasculature by reducing both angiogenesis and ischaemia. VEGF(121)b reduced the growth of xenografted human colon tumours in association with reduced microvascular density, and an intravenous bolus of VEGF(121)b is taken up into colon tumour xenografts. Here we identify a second member of the family, VEGF(121)b, with similar properties to those of VEGF(165)b, and underline the importance of the six amino acids of exon 8b in the anti-angiogenic activity of the VEGF(xxx)b isoforms.
Matsuda, Masayuki; Sakurai, Kumi; Fushimi, Tomohisa; Yamamoto, Kanji; Rokuhara, Shiho; Hosaka, Naritoshi; Ikeda, Shu-ichi
2004-06-01
We report a patient with sarcoidosis who showed edema in the distal portion of all extremities, particularly the legs, as seen in remitting seronegative symmetrical synovitis with pitting edema (RS3PE). Magnetic resonance imaging demonstrated diffuse abnormal intensity in subcutaneous tissues of both legs, and skin biopsy led to a diagnosis of sarcoidosis. Vascular endothelial growth factor (VEGF) showed a high serum level, which decreased soon after starting oral prednisolone, in parallel with an improvement in the limb edema. In this patient VEGF as well as infiltration by sarcoid granuloma in the skin might have played an important role in the pathogenesis of RS3PE-like symptoms in the extremities. When painful pitting edema is seen predominantly in the distal portion of all extremities, sarcoidosis as well as RS3PE should be considered as a possible diagnosis.
Menge, Tyler; Zhao, Yuhai; Zhao, Jing; Wataha, Kathryn; Geber, Michael; Zhang, Jianhu; Letourneau, Phillip; Redell, John; Shen, Li; Wang, Jing; Peng, Zhalong; Xue, Hasen; Kozar, Rosemary; Cox, Charles S.; Khakoo, Aarif Y.; Holcomb, John B.; Dash, Pramod K.; Pati, Shibani
2013-01-01
Mesenchymal stem cells (MCSs) have been shown to have therapeutic potential in multiple disease states associated with vascular instability including traumatic brain injury (TBI). In the present study, Tissue Inhibitor of Matrix Metalloproteinase-3 (TIMP3) is identified as the soluble factor produced by MSCs that can recapitulate the beneficial effects of MSCs on endothelial function and blood brain barrier (BBB) compromise in TBI. Attenuation of TIMP3 expression in MSCs completely abrogates the effect of MSCs on BBB permeability and stability, while intravenous administration of rTIMP3 alone can inhibit BBB permeability in TBI. Our results demonstrate that MSCs increase circulating levels of soluble TIMP3, which inhibits VEGF-A induced breakdown of endothelial AJs in vitro and in vivo. These findings elucidate a clear molecular mechanism for the effects of MSCs on the BBB in TBI, and directly demonstrate a role for TIMP3 in regulation of BBB integrity. PMID:23175708
Li, Jiao; Cui, Yan; Wang, Qin; Guo, Dadong; Pan, Xuemei; Wang, Xingrong; Bi, Hongsheng; Chen, Wei; Liu, Zhengfeng; Zhao, Shengya
2014-01-01
Angiogenesis is an important mediator in tumor progression. Vascular endothelial growth factor (VEGF) is one of the major cytokines that can influence angiogenesis. However, the potential mechanism of tumor growth inhibition through anti-VEGF agents is still unclear. This study was performed to examine whether ranibizumab could inhibit malignant melanoma growth in vitro and to determine the safety of ranibizumab on human adult retinal pigment epithelium cell line (ARPE-19 cells). Malignant melanoma cells obtained from a clinic were cultured in vitro. VEGF concentrations secreted by malignant melanoma cells and the ARPE-19 cells were examined by enzyme-linked immunosorbent assay (ELISA). The two kinds of cells were both treated with VEGF and its antagonist, ranibizumab. The dynamic changes of the two types of cells were monitored by real-time cell electronic sensing (RT-CES) assay. The effect of ranibizumab on both types of cells was verified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl (MTT) assay. The expression of VEGF receptor 1 (VEGFR1) RNA in uveal melanoma was further investigated through the PCR technique. The levels of VEGF secreted by malignant melanoma cells were much higher than those of ARPE-19 cells, and were markedly decreased in the action of 0.1 mg/ml ranibizumab. However, there was no obvious reduction of VEGF in the presence of ranibizumab for ARPE-19 (p>0.05). Meanwhile, RT-CES showed that the viability of malignant melanoma cells increased greatly in the presence of VEGF. When VEGF was 20 ng/ml, viability of the malignant melanoma cells increased by 40% compared with the negative control. There was no evident effect on proliferation of ARPE-19 (p>0.05). Furthermore, the growth of malignant melanoma cells was obviously inhibited after ranibizumab intervention. When ranibizumab was administered at 0.25 mg/ml, the survival rate of the malignant melanoma cells decreased to 57.5%. Nevertheless, low-dose exposure to ranibizumab had only a slight effect on the growth of ARPE-19, and PCR result demonstrated that VEGFR1 plays a role in this tumor tissue rather than VEGFR2. Ranibizumab can selectively inhibit malignant melanoma cell proliferation by decreasing the expression of VEGF; the possible mechanism of the inhibitory effect may involve VEGFR1 antagonism.
Binder, N K; Evans, J; Gardner, D K; Salamonsen, L A; Hannan, N J
2014-10-10
Does vascular endothelial growth factor (VEGF) have important roles during early embryo development and implantation? VEGF plays key roles during mouse preimplantation embryo development, with beneficial effects on time to cavitation, blastocyst cell number and outgrowth, as well as implantation rate and fetal limb development. Embryo implantation requires synchronized dialog between maternal cells and those of the conceptus. Following ovulation, secretions from endometrial glands increase and accumulate in the uterine lumen. These secretions contain important mediators that support the conceptus during the peri-implantation phase. Previously, we demonstrated a significant reduction of VEGFA in the uterine cavity of women with unexplained infertility. Functional studies demonstrated that VEGF significantly enhanced endometrial epithelial cell adhesive properties and embryo outgrowth. Human endometrial lavages (n = 6) were obtained from women of proven fertility. Four-week old Swiss mice were superovulated and mated with Swiss males to obtain embryos for treatment with VEGF in vitro. Preimplantation embryo development was assessed prior to embryo transfer (n = 19-30/treatment group/output). Recipient F1 female mice (8-12 weeks of age) were mated with vasectomized males to induce pseudopregnancy and embryos were transferred. On Day 14.5 of pregnancy, uterine horns were collected for analysis of implantation rates as well as placental and fetal development (n = 14-19/treatment). Lavage fluid was assessed by western immunoblot analysis to determine the VEGF isoforms present. Mouse embryos were treated with either recombinant human (rh)VEGF, or VEGF isoforms 121 and 165. Preimplantation embryo development was quantified using time-lapse microscopy. Blastocysts were (i) stained for cell number, (ii) transferred to wells coated with fibronectin to examine trophoblast outgrowth or (iii) transferred to pseudo pregnant recipients to analyze implantation rates, placental and fetal development. Western blot analysis revealed the presence of VEGF121 and 165 isoforms in human uterine fluid. Time-lapse microscopy analysis revealed that VEGF (n = 22) and VEGF121 (n = 23) treatment significantly reduced the preimplantation mouse embryo time to cavitation (P < 0.05). VEGF and VEGF165 increased both blastocyst cell number (VEGF n = 27; VEGF165 n = 24: P < 0.001) and outgrowth (n = 15/treatment: 66 h, P < 0.001; 74, 90, 98 and 114 h, P < 0.01) on fibronectin compared with control. Furthermore, rhVEGF improved implantation rates and enhanced fetal limb development (P < 0.05). Due to the nature of this work, embryo development and implantation was only examined in the mouse. The absence or reduction in levels of VEGF during the preimplantation period likely affects key events during embryo development, implantation and placentation. The potential for improvement of clinical IVF outcomes by the addition of VEGF to human embryo culture media needs further investigation. This study was supported by a University of Melbourne Early Career Researcher Grant #601040, the NHMRC (L.A.S., Program grant #494802; Fellowship #1002028; N.J.H., Fellowship # 628927; J.E.; project grant #1047756) and L.A.S., Monash IVF Research and Education Foundation. N.K.B. was supported by an Australian Postgraduate Award. Work at PHI-MIMR Institute was also supported by the Victorian Government's Operational Infrastructure Support Program. There are no conflicts of interest to declare. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Defining response to anti-VEGF therapies in neovascular AMD.
Amoaku, W M; Chakravarthy, U; Gale, R; Gavin, M; Ghanchi, F; Gibson, J; Harding, S; Johnston, R L; Kelly, S P; Kelly, S; Lotery, A; Mahmood, S; Menon, G; Sivaprasad, S; Talks, J; Tufail, A; Yang, Y
2015-06-01
The introduction of anti-vascular endothelial growth factor (anti-VEGF) has made significant impact on the reduction of the visual loss due to neovascular age-related macular degeneration (n-AMD). There are significant inter-individual differences in response to an anti-VEGF agent, made more complex by the availability of multiple anti-VEGF agents with different molecular configurations. The response to anti-VEGF therapy have been found to be dependent on a variety of factors including patient's age, lesion characteristics, lesion duration, baseline visual acuity (VA) and the presence of particular genotype risk alleles. Furthermore, a proportion of eyes with n-AMD show a decline in acuity or morphology, despite therapy or require very frequent re-treatment. There is currently no consensus as to how to classify optimal response, or lack of it, with these therapies. There is, in particular, confusion over terms such as 'responder status' after treatment for n-AMD, 'tachyphylaxis' and 'recalcitrant' n-AMD. This document aims to provide a consensus on definition/categorisation of the response of n-AMD to anti-VEGF therapies and on the time points at which response to treatment should be determined. Primary response is best determined at 1 month following the last initiation dose, while maintained treatment (secondary) response is determined any time after the 4th visit. In a particular eye, secondary responses do not mirror and cannot be predicted from that in the primary phase. Morphological and functional responses to anti-VEGF treatments, do not necessarily correlate, and may be dissociated in an individual eye. Furthermore, there is a ceiling effect that can negate the currently used functional metrics such as >5 letters improvement when the baseline VA is good (ETDRS>70 letters). It is therefore important to use a combination of both the parameters in determining the response.The following are proposed definitions: optimal (good) response is defined as when there is resolution of fluid (intraretinal fluid; IRF, subretinal fluid; SRF and retinal thickening), and/or improvement of >5 letters, subject to the ceiling effect of good starting VA. Poor response is defined as <25% reduction from the baseline in the central retinal thickness (CRT), with persistent or new IRF, SRF or minimal or change in VA (that is, change in VA of 0+4 letters). Non-response is defined as an increase in fluid (IRF, SRF and CRT), or increasing haemorrhage compared with the baseline and/or loss of >5 letters compared with the baseline or best corrected vision subsequently. Poor or non-response to anti-VEGF may be due to clinical factors including suboptimal dosing than that required by a particular patient, increased dosing intervals, treatment initiation when disease is already at an advanced or chronic stage), cellular mechanisms, lesion type, genetic variation and potential tachyphylaxis); non-clinical factors including poor access to clinics or delayed appointments may also result in poor treatment outcomes. In eyes classified as good responders, treatment should be continued with the same agent when disease activity is present or reactivation occurs following temporary dose holding. In eyes that show partial response, treatment may be continued, although re-evaluation with further imaging may be required to exclude confounding factors. Where there is persistent, unchanging accumulated fluid following three consecutive injections at monthly intervals, treatment may be withheld temporarily, but recommenced with the same or alternative anti-VEGF if the fluid subsequently increases (lesion considered active). Poor or non-response to anti-VEGF treatments requires re-evaluation of diagnosis and if necessary switch to alternative therapies including other anti-VEGF agents and/or with photodynamic therapy (PDT). Idiopathic polypoidal choroidopathy may require treatment with PDT monotherapy or combination with anti-VEGF. A committee comprised of retinal specialists with experience of managing patients with n-AMD similar to that which developed the Royal College of Ophthalmologists Guidelines to Ranibizumab was assembled. Individual aspects of the guidelines were proposed by the committee lead (WMA) based on relevant reference to published evidence base following a search of Medline and circulated to all committee members for discussion before approval or modification. Each draft was modified according to feedback from committee members until unanimous approval was obtained in the final draft. A system for categorising the range of responsiveness of n-AMD lesions to anti-VEGF therapy is proposed. The proposal is based primarily on morphological criteria but functional criteria have been included. Recommendations have been made on when to consider discontinuation of therapy either because of success or futility. These guidelines should help clinical decision-making and may prevent over and/or undertreatment with anti-VEGF therapy.
Liu, C X; Xu, X; Chen, X L; Yang, P B; Zhang, J S; Liu, Y
2015-09-20
The high levels of glutamate might involve in neurogenesis after brain injuries. However, the mechanisms are not fully understood. In this study, we investigated the effect of glutamate on the proliferation of rat embryonic neural stem/progenitor cells (NSCs) through regulating the vascular endothelial growth factor (VEGF) expression of astrocytes (ASTs) in vitro, and the cyclin D1 expression of NSCs. The results showed that glutamate promoted the expression and secretion of VEGF of rat astrocytes by activating group I mGluRs. Astrocyte conditioned medium-containing Glu [ACM (30%)] promoted the proliferation of embryonic NSCs compared with normal astrocyte conditioned medium+Glu [N-ACM (30%)+Glu (30 μM)] by increasing cell activity, diameter of neurospheres, bromodeoxyuridine (BrdU) incorporation and cell division; while ACM+VEGF neutralizing antibody [ACM (30%)+VEGF NAb (15 μg/ml)] significantly inhibited the proliferation of embryonic NSCs compared with ACM (30%). ACM (30%) increased the expressions of cyclin D1 and decreased cell death compared with N-ACM (30%)+Glu (30 μM). ACM (30%)+VEGF NAb (15 μg/ml) decreased the expressions of cyclin D1 and increased cell death compared with ACM (30%). These results demonstrated that glutamate could also indirectly promote the proliferation of rat embryonic NSCs through inducing the VEGF expression of ASTs in vitro, and VEGF may increase the expression of cyclin D1. These finding suggest that glutamate may be a major molecule for regulating embryonic NSC proliferation and facilitate neural repair in the process of NSC transplants after brain injuries.
Tivers, M S; House, A K; Smith, K C; Wheeler-Jones, C P D; Lipscomb, V J
2014-01-01
Dogs with congenital portosystemic shunts (CPSS) have hypoplasia of the intrahepatic portal veins. Surgical CPSS attenuation results in the development of the intrahepatic portal vasculature, the precise mechanism for which is unknown, although new vessel formation by angiogenesis is suspected. That the degree of portal vascular development and the increase in portal vascularization after CPSS attenuation is significantly associated with hepatic vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) gene expression and serum VEGF concentration. Client-owned dogs with CPSS undergoing surgical treatment. Forty-nine dogs were included in the gene expression data and 35 in the serum VEGF data. Dogs surgically treated by partial or complete CPSS attenuation were prospectively recruited. Relative gene expression of VEGF and VEGFR2 was measured in liver biopsy samples taken at initial and follow-up surgery using quantitative polymerase chain reaction. Serum VEGF concentration was measured before and after CPSS attenuation using a canine specific ELISA. Statistical significance was set at the 5% level (P ≤ .05). There was a significant increase in the mRNA expression of VEGFR2 after partial attenuation (P = .006). Dogs that could tolerate complete attenuation had significantly greater VEGFR2 mRNA expression than those that only tolerated partial attenuation (P = .037). Serum VEGF concentration was significantly increased at 24 (P < .001) and 48 (P = .003) hours after attenuation. These findings suggest that intrahepatic angiogenesis is likely to occur after the surgical attenuation of CPSS in dogs, and contributes to the development of the intrahepatic vasculature postoperatively. Copyright © 2014 by the American College of Veterinary Internal Medicine.
Jain, Harsh; Jackson, Trachette
2018-05-01
Tumor growth and progression are critically dependent on the establishment of a vascular support system. This is often accomplished via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. VEGF ligands are overexpressed in a wide variety of solid tumors and therefore have inspired optimism that inhibition of the different axes of the VEGF pathway-alone or in combination-would represent powerful anti-angiogenic therapies for most cancer types. When considering treatments that target VEGF and its receptors, it is difficult to tease out the differential anti-angiogenic and anti-tumor effects of all combinations experimentally because tumor cells and vascular endothelial cells are engaged in a dynamic cross-talk that impacts key aspects of tumorigenesis, independent of angiogenesis. Here we develop a mathematical model that connects intracellular signaling responsible for both endothelial and tumor cell proliferation and death to population-level cancer growth and angiogenesis. We use this model to investigate the effect of bidirectional communication between endothelial cells and tumor cells on treatments targeting VEGF and its receptors both in vitro and in vivo. Our results underscore the fact that in vitro therapeutic outcomes do not always translate to the in vivo situation. For example, our model predicts that certain therapeutic combinations result in antagonism in vivo that is not observed in vitro. Mathematical modeling in this direction can shed light on the mechanisms behind experimental observations that manipulating VEGF and its receptors is successful in some cases but disappointing in others.
Cellular and molecular aspects of diabetic nephropathy; the role of VEGF-A.
Carranza, Katherine; Veron, Dolores; Cercado, Alicia; Bautista, Noemi; Pozo, Wilson; Tufro, Alda; Veron, Delma
2015-01-01
The prevalence of diabetes mellitus increased during the last century and it is estimated that 45% of the patients are not diagnosed. In South America the prevalence of diabetes and chronic kidney disease (CKD) increased, with a great disparity among the countries with respect to access to dialysis. In Ecuador it is one of the main causes of mortality, principally in the provinces located on the coast of the Pacific Ocean. The greatest single cause of beginning dialysis is diabetic nephropathy (DN). Even using the best therapeutic options for DN, the residual risk of proteinuria and of terminal CKD remains high. In this review we indicate the importance of the problem globally and in our region. We analyse relevant cellular and molecular studies that illustrate the crucial significance of glomerular events in DN development and evolution and in insulin resistance. We include basic anatomical, pathophysiological and clinical concepts, with special attention to the role of angiogenic factors such as the vascular endothelial growth factor (VEGF-A) and their relationship to the insulin receptor, endothelial isoform of nitric oxide synthase (eNOS) and angiopoietins. We also propose various pathways that have therapeutic potential in our opinion. Greater in-depth study of VEGF-A and angiopoietins, the state of glomerular VEGF resistance, the relationship of VEGF receptor 2/nephrin, VEGF/insulin receptors/nephrin and the relationship of VEGF/eNOS-NO at glomerular level could provide solutions to the pressing world problem of DN and generate new treatment alternatives. Copyright © 2015. Published by Elsevier España, S.L.U.
Dedecjus, Marek; Kołomecki, Krzysztof; Brzeziński, Jan; Adamczewski, Zbigniew; Tazbir, Józef; Lewiński, Andrzej
2007-02-01
Angiogenesis is a process of new blood vessel development from pre-existing vasculature. It is a crucial process in normal physiology, as well as in several pathological conditions. The vascular endothelial growth factor (VEGF) represents a family of specific endothelial cell mitogens, involved in normal angiogenesis and in tumour development. The aim of the present study was to estimate the influence of L-thyroxine (L-T4) administration on poor-platelet plasma (P-PP) VEGF concentrations in patients with induced short-term hypothyroidism, monitored for differentiated thyroid carcinoma. In the present study, P-PP concentrations of VEGF, thyroglobulin, thyrotropin and free thyroid hormones were investigated in a population of 24 hypothyroid patients, who were withdrawn from L-T4 treatment for 5 weeks and studied before and after 2 months of L-T4 therapy. Only healthy female patients with no evidence of metastasis in whole body scintigraphy were included in the study. They were then compared with 20 healthy control subjects, matched for age, sex and body mass index (BMI). The patients had significantly lower plasma VEGF concentrations before treatment with L-T4 than after administration of that hormone. There was no significant difference in plasma VEGF levels, either between the patients treated with L-T4, and the controls, or between the patients untreated with L-T4, and the controls. Even short-time changes in thyrometabolic profile exert an important influence on P-PP VEGF concentrations, even if there is no thyroid tissue.
Horai, Yoshiro; Honda, Mai; Nishino, Ayako; Nakashima, Yoshikazu; Suzuki, Takahisa; Kawashiri, Shin-Ya; Ichinose, Kunihiro; Tamai, Mami; Nakamura, Hideki; Motomura, Masakatsu; Origuchi, Tomoki; Kawakami, Atsushi
2014-01-01
A 73-year-old man with a history of myasthenia gravis (MG) was diagnosed with rheumatoid arthritis (RA) based on a history of polyarthritis and positivity for anti-citrullinated protein antibodies (ACPA). He presented with a high level of serum vascular endothelial growth factor (VEGF) and RS3PE syndrome-like pitting edema in the extremities, which improved following treatment with low-dose prednisolone. This is an interesting case of ACPA-positive RA associated with RS3PE syndrome-like pitting edema and a high VEGF level.
Carbon Ion Radiation Inhibits Glioma and Endothelial Cell Migration Induced by Secreted VEGF
Liu, Yang; Liu, Yuanyuan; Sun, Chao; Gan, Lu; Zhang, Luwei; Mao, Aihong; Du, Yuting; Zhou, Rong; Zhang, Hong
2014-01-01
This study evaluated the effects of carbon ion and X-ray radiation and the tumor microenvironment on the migration of glioma and endothelial cells, a key process in tumorigenesis and angiogenesis during cancer progression. C6 glioma and human microvascular endothelial cells were treated with conditioned medium from cultures of glioma cells irradiated at a range of doses and the migration of both cell types, tube formation by endothelial cells, as well as the expression and secretion of migration-related proteins were evaluated. Exposure to X-ray radiation-conditioned medium induced dose-dependent increases in cell migration and tube formation, which were accompanied by an upregulation of vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2 and -9 expression. However, glioma cells treated with conditioned medium of cells irradiated at a carbon ion dose of 4.0 Gy showed a marked decrease in migratory potential and VEGF secretion relative to non-irradiated cells. The application of recombinant VEGF165 stimulated migration in glioma and endothelial cells, which was associated with increased FAK phosphorylation at Tyr861, suggesting that the suppression of cell migration by carbon ion radiation could be via VEGF-activated FAK signaling. Taken together, these findings indicate that carbon ion may be superior to X-ray radiation for inhibiting tumorigenesis and angiogenesis through modulation of VEGF level in the glioma microenvironment. PMID:24893038
Canavese, Miriam; Spaccapelo, Roberta
2014-03-01
Cerebral malaria (CM) is the major lethal complication of Plasmodium falciparum infection. It is characterized by persistent coma along with symmetrical motor signs. Several clinical, histopathological, and laboratory studies have suggested that cytoadherence of parasitized erythrocytes, neural injury by malarial toxin, and excessive inflammatory cytokine production are possible pathogenic mechanisms. Although the detailed pathophysiology of CM remains unsolved, it is thought that the binding of parasitized erythrocytes to the cerebral endothelia of microvessels, leading to their occlusion and the consequent angiogenic dysregulation play a key role in the disease pathogenesis. Recent evidences showed that vascular endothelial growth factor (VEGF) and its receptor-related molecules are over-expressed in the brain tissues of CM patients, as well as increased levels of VEGF are detectable in biologic samples from malaria patients. Whether the modulation of VEGF is causative agent of CM mortality or a specific phenotype of patients with susceptibility to fatal CM needs further evaluation. Currently, there is no biological test available to confirm the diagnosis of CM and its complications. It is hoped that development of biomarkers to identify patients and potential risk for adverse outcomes would greatly enhance better intervention and clinical management to improve the outcomes. We review and discuss here what it is currently known in regard to the role of VEGF in CM as well as VEGF as a potential biomarker.
RS3PE syndrome presenting as vascular endothelial growth factor associated disorder
Arima, K; Origuchi, T; Tamai, M; Iwanaga, N; Izumi, Y; Huang, M; Tanaka, F; Kamachi, M; Aratake, K; Nakamura, H; Ida, H; Uetani, M; Kawakami, A; Eguchi, K
2005-01-01
Methods: Vascular endothelial growth factor165 (VEGF165), tumour necrosis factor α (TNFα), and interleukin 1ß (IL1ß) were measured by enzyme linked immunosorbent assay (ELISA) in serum samples from three patients with RS3PE syndrome. As controls, serum samples from 26 healthy volunteers, 12 patients with rheumatoid arthritis, 10 patients with systemic lupus erythematosus, 13 patients with polymyositis/dermatomyositis, 13 patients with vasculitis syndrome, and 6 patients with mixed connective tissue disease were also analysed. Synovial hypervascularity of patients with RS3PE syndrome was estimated by rate of enhancement (E-rate) in a dynamic MRI study. Results: Serum concentrations of VEGF165 (mean (SD) 2223.3 (156.3) pg/ml) were significantly higher in patients with active RS3PE syndrome than in controls before corticosteroid treatment. TNFα and IL1ß levels were similar in patients and controls. Synovial hypervascularity in affected joints and subcutaneous oedema decreased during corticosteroid treatment, in parallel with the fall in serum VEGF165. Conclusions: VEGF promotes synovial inflammation and vascular permeability in patients with RS3PE syndrome, suggesting that RS3PE can be classified as a VEGF associated disorder. PMID:16227418
Opiate receptor blockade on human granulosa cells inhibits VEGF release.
Lunger, Fabian; Vehmas, Anni P; Fürnrohr, Barbara G; Sopper, Sieghart; Wildt, Ludwig; Seeber, Beata
2016-03-01
The objectives of this study were to determine whether the main opioid receptor (OPRM1) is present on human granulosa cells and if exogenous opiates and their antagonists can influence granulosa cell vascular endothelial growth factor (VEGF) production via OPRM1. Granulosa cells were isolated from women undergoing oocyte retrieval for IVF. Complementary to the primary cells, experiments were conducted using COV434, a well-characterized human granulosa cell line. Identification and localization of opiate receptor subtypes was carried out using Western blot and flow cytometry. The effect of opiate antagonist on granulosa cell VEGF secretion was assessed by enzyme-linked immunosorbent assay. For the first time, the presence of OPRM1 on human granulosa cells is reported. Blocking of opiate signalling using naloxone, a specific OPRM1 antagonist, significantly reduced granulosa cell-derived VEGF levels in both COV434 and granulosa-luteal cells (P < 0.01). The presence of opiate receptors and opiate signalling in granulosa cells suggest a possible role in VEGF production. Targeting this signalling pathway could prove promising as a new clinical option in the prevention and treatment of ovarian hyperstimulation syndrome. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Fang; Li, Xiuli; Kong, Jian
2013-11-08
Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarianmore » cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.« less
Chen, Lu; Li, Qian; Zhou, Xiang-dong; Shi, Yu; Yang, Lang; Xu, Sen-lin; Chen, Cong; Cui, You-hong; Zhang, Xia; Bian, Xiu-wu
2014-05-01
Infiltration of inflammatory cells and production of pro-angiogenic factors are important in lung cancer immunity. The distributions of those cells and their contributions to the production of pro-angiogenic factors and the activation phenotype of macrophages in bronchoalveolar lavage fluid (BALF) from lung cancer patients remain unclear. We analyzed the presence of distinct inflammatory cells and the macrophage activation phenotype together with the levels of vascular endothelial growth factor (VEGF) and interleukin 8 (IL-8) within BALF from 54 smoking lung cancer patients including 36 squamous cell carcinoma (SCC), 9 adenocarcinoma (AC), and 9 small cell lung cancer (SCLC) in comparison with those from 13 non-smoking and 7 smoking patients with nonspecific chronic inflammation and 8 non-smoking normal controls. We found a significantly lower percentage of total macrophages and a much higher percentage of neutrophils among all inflammatory cells in BALF from lung cancer and non-specific chronic inflammation patients. BALF from AC patients had a significantly higher percentage of lymphocytes. CD163(+)) macrophages predominantly existed in BALF from SCLC patients. BALF of lung cancer patients had markedly higher levels of IL-8 and VEGF. Interestingly, IL-8 level was positively correlated to the numbers of neutrophils and lymphocytes. VEGF level was inversely correlated to the number of lymphocytes but positively to cancer cells in SCC cases, whereas no correlation existed between CD163(+)) macrophages and the levels of IL-8 and VEGF. Our results suggest that the detection of infiltrating inflammatory cells and pro-angiogenic factors in BALF will be helpful for diagnosis of cancerous inflammation in lungs. Copyright © 2014 Elsevier B.V. All rights reserved.
Arachidonic acid metabolites and endothelial dysfunction of portal hypertension.
Sacerdoti, David; Pesce, Paola; Di Pascoli, Marco; Brocco, Silvia; Cecchetto, Lara; Bolognesi, Massimo
2015-07-01
Increased resistance to portal flow and increased portal inflow due to mesenteric vasodilatation represent the main factors causing portal hypertension in cirrhosis. Endothelial cell dysfunction, defined as an imbalance between the synthesis, release, and effect of endothelial mediators of vascular tone, inflammation, thrombosis, and angiogenesis, plays a major role in the increase of resistance in portal circulation, in the decrease in the mesenteric one, in the development of collateral circulation. Reduced response to vasodilators in liver sinusoids and increased response in the mesenteric arterioles, and, viceversa, increased response to vasoconstrictors in the portal-sinusoidal circulation and decreased response in the mesenteric arterioles are also relevant to the pathophysiology of portal hypertension. Arachidonic acid (AA) metabolites through the three pathways, cyclooxygenase (COX), lipoxygenase, and cytochrome P450 monooxygenase and epoxygenase, are involved in endothelial dysfunction of portal hypertension. Increased thromboxane-A2 production by liver sinusoidal endothelial cells (LSECs) via increased COX-1 activity/expression, increased leukotriens, increased epoxyeicosatrienoic acids (EETs) (dilators of the peripheral arterial circulation, but vasoconstrictors of the portal-sinusoidal circulation), represent a major component in the increased portal resistance, in the decreased portal response to vasodilators and in the hyper-response to vasoconstrictors. Increased prostacyclin (PGI2) via COX-1 and COX-2 overexpression, and increased EETs/heme-oxygenase-1/K channels/gap junctions (endothelial derived hyperpolarizing factor system) play a major role in mesenteric vasodilatation, hyporeactivity to vasoconstrictors, and hyper-response to vasodilators. EETs, mediators of liver regeneration after hepatectomy and of angiogenesis, may play a role in the development of regenerative nodules and collateral circulation, through stimulation of vascular endothelial growth factor (VEGF) inside the liver and in the portal circulation. Pharmacological manipulation of AA metabolites may be beneficial for cirrhotic portal hypertension. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuesters, Geoffrey M.
Targeting the tumor vascular supply in a homogenous manner is a difficult task to achieve with the use of pegylated cationic liposomes (PCLs) alone. Our formulation consisting of bevacizumab conjugated to the distal end of PEG on PCLs was thus developed in an effort to eliminate some of this heterogeneity as well as to increase tumor targeting overall. This study focuses on pancreatic cancer, which has the poorest five-year survival rate of all cancers because of its late diagnosis. The addition of bevacizumab will target tumor areas because it binds to VEGF which is secreted by tumors in high levels. In vitro, we showed that pancreatic cancer cells (Capan-1, HPAF-II and PANC-1) all secrete VEGF into media at different levels, with Capan-1 producing the most and HPAF-II producing the least. A murine endothelial cell line, MS1-VEGF, produces and secretes the most VEGF. A human microvascular endothelial cell line (HMEC-1) was grown in two different conditions, with and without VEGF in the media. Modifying PCLs with bevacizumab enhanced the binding and uptake of PCLs by some pancreatic and endothelial cells in vitro, particularly the cells that had or secreted the most significant amount of VEGF in the media. This translated into enhanced tumor targeting in a biodistribution study using a Capan-1 subcutaneous pancreatic tumor model. This also showed enhanced blood retention compared to the unmodified PCLs while it diminished uptake by the spleen and increased uptake by the kidney. To test the therapeutic benefit of this enhanced uptake and targeting, an anti-angiogenic agent, 2-methoxyestradiol was incorporated into the formulation with 20% incorporation efficiency. Both the unmodified and modified drug-loaded PCLs were the least efficacious against Capan-1, moderately effective against HPAF-II, PANC-1, MS1-VEGF and HMEC-1 grown without VEGF in the media and most efficacious against HMEC-1 grown with VEGF which had the most VEGF present in the media. Multiple in vivo experiments were performed using two different pancreatic cancer models, one with HPAF-II and the other with Capan-1. The HPAF-II study showed that bevacizumab-modified PCLs significantly enhanced the therapeutic effect over unmodified PCLs, which were ineffective when compared to the untreated control. However, bevacizumab alone was just as efficacious as the bevacizumab-modified PCLs. In the Capan-1 study, both the modified and unmodified PCLs were efficacious but the bevacizumab-modified PCLs were the most efficacious. The addition of bevacizumab not only increased the tumor targeting but also the therapeutic efficacy of 2-methoxyestradiol. Attaching bevacizumab to the distal end of PEG on 2-methoxyestradiol-loaded PCLs was effective at limiting tumor growth. The potential for this formulation is not limited to therapy but also for imaging tumors as well as monitoring the therapeutic response.
Hakimoglu, Yasemin; Can, Murat; Hakimoglu, Sedat; Gorkem Mungan, Ayca; Acikgoz, Sereften; Cikcikoglu Yildirim, Nuran; Aydin Mungan, Necmettin; Ozkocak Turan, Isil
2014-01-01
Objective: Anesthesia and surgical intervention, leads to the development of systemic inflammatory response. The severity of the inflammatory response depends on the pharmacological effects of anesthetic agents and duration of anesthesia. Objective of the study was to investigate the effect of nitrous oxide on VEGF and VEGFR1 levels in patients undergoing surgery. Methods: Forty-four patients undergoing elective urological surgery were included in the study. Anesthesia maintenance was provided with 1-2 MAC sevoflurane, O2 50%, N2O 50% in 4L/m transporter gase for group 1 (n=22) and 1-2 MAC sevoflurane, O2 50%, air 50% in 4L/m transporter gase for group 2 (n=22) Venous blood samples for the measurement of VEGF and VEGFR1 were taken before the induction of anaesthesia, 60 minutes of anesthesia induction, at the end of anaesthesia and 24 hours after operation. In statistical analysis Bonferroni test and analysis of variance at the repeated measures were used Results: In the postoperative period serum VEGF levels had decreased significantly in both group whereas VEGFR1 did not show a significant change. Conclusions: Nitrous oxide showed significant effect on angiogenic parameters. Further detailed studies are required to evaluate the effect of nitrous oxide. PMID:24639829
Hakimoglu, Yasemin; Can, Murat; Hakimoglu, Sedat; Gorkem Mungan, Ayca; Acikgoz, Sereften; Cikcikoglu Yildirim, Nuran; Aydin Mungan, Necmettin; Ozkocak Turan, Isil
2014-01-01
Anesthesia and surgical intervention, leads to the development of systemic inflammatory response. The severity of the inflammatory response depends on the pharmacological effects of anesthetic agents and duration of anesthesia. OBJECTIVE of the study was to investigate the effect of nitrous oxide on VEGF and VEGFR1 levels in patients undergoing surgery. Forty-four patients undergoing elective urological surgery were included in the study. Anesthesia maintenance was provided with 1-2 MAC sevoflurane, O2 50%, N2O 50% in 4L/m transporter gase for group 1 (n=22) and 1-2 MAC sevoflurane, O2 50%, air 50% in 4L/m transporter gase for group 2 (n=22) Venous blood samples for the measurement of VEGF and VEGFR1 were taken before the induction of anaesthesia, 60 minutes of anesthesia induction, at the end of anaesthesia and 24 hours after operation. In statistical analysis Bonferroni test and analysis of variance at the repeated measures were used Results: In the postoperative period serum VEGF levels had decreased significantly in both group whereas VEGFR1 did not show a significant change. Nitrous oxide showed significant effect on angiogenic parameters. Further detailed studies are required to evaluate the effect of nitrous oxide.
Baker, Cheryl H; Solorzano, Carmen C; Fidler, Isaiah J
2002-04-01
We determined whether concurrent blockage of vascular endothelial growth factor (VEGF) receptor and epidermal growth factor (EGF) receptor signaling by two novel tyrosine kinase inhibitors, PTK 787 and PKI 166, respectively, can inhibit angiogenesis and, hence, the growth and metastasis of human pancreatic carcinoma in nude mice. Highly metastatic human pancreatic carcinoma L3.6pl cells were injected into the pancreas of nude mice. Seven days later, groups of mice began receiving oral doses of PTK 787 and PKI 166 three times weekly. Some groups of mice also received i.p. injections of gemcitabine twice a week. The mice were necropsied when the control mice became moribund. Treatment with PTK 787 and PKI 166, with gemcitabine alone, or with the combination of PTK 787, PKI 166, and gemcitabine produced 69, 50, and 97% reduction in the volume of pancreatic tumors, respectively. Administration of protein tyrosine kinase inhibitors and gemcitabine also significantly decreased the incidence of lymph node and liver metastasis. The therapeutic efficacy directly correlated with a decrease in circulating proangiogenic molecules (VEGF, interleukin-8), a decrease in microvessel density, a decrease in proliferating cell nuclear antigen staining, and an increase in apoptosis of tumor cells and endothelial cells. Therapies produced by combining gemcitabine with either PKI 166 or PTK 787 were similar to those produced by combining gemcitabine with both PKI 166 and PTK 787. These results suggest that blockade of either epidermal growth factor receptor or VEGF receptor signaling combined with chemotherapy provides an effective approach to the therapy of pancreatic cancer.
Park, Hongzoo; Lee, Dae-Sung; Yim, Mi-Jin; Choi, Yung Hyun; Park, Saegwang; Seo, Su-Kil; Choi, Jung Sik; Jang, Won Hee; Yea, Sung Su; Park, Won Sun; Lee, Chang-Min; Jung, Won-Kyo; Choi, Il-Whan
2015-07-01
Oxidative stress in the retinal pigment epithelium (RPE) can lead to the pathological causes of age-related macular degeneration (AMD). Hypoxia induces oxidative damage in retinal pigment epithelial cells (RPE cells). In this study, we investigated the capacity of 3,3'-diindolylmethane (DIM) to reduce the expression of vascular endothelial growth factor (VEGF) under hypoxic conditions, as well as the molecular mechanisms involved. Human RPE cells (ARPE-19 cells) were treated with cobalt chloride (CoCl2, 200 µM) and/or DIM (10 and 20 µM). The production of VEGF was measured by enzyme-linked immunosorbent assay. The translocation of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-κB (NF-κB) was determined by western blot analysis. The binding activity of HIF-1α and NF-κB was analyzed by electrophoretic mobility shift assay. The phosphorylation levels of mitogen-activated protein kinases (MAPKs) were measured by western blot analysis. The levels of mitochondrial reactive oxygen species (ROS) were detected by fluorescence microplate assay. The results revealed that DIM significantly attenuated the CoCl2-induced expression of VEGF in the ARPE-19 cells. The CoCl2-induced translocation and activation of HIF-1α and NF-κB were also attenuated by treatment with DIM. In addition, DIM inhibited the CoCl2-induced activation of p38 MAPK in the ARPE-19 cells. Pre-treatment with YCG063, a mitochondrial ROS inhibitor, led to the downregulation of the CoCl2-induced production of VEGF by suppressing HIF-1α and NF-κB activity. Taken together, the findings of our study demonstrate that DIM inhibits the CoCl2-induced production of VEGF by suppressing mitochondrial ROS production, thus attenuating the activation of HIF-1α and p38 MAPK/NF-κB.
Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators.
Jin, Yiping; Arita, Makoto; Zhang, Qiang; Saban, Daniel R; Chauhan, Sunil K; Chiang, Nan; Serhan, Charles N; Dana, Reza
2009-10-01
Resolvins and lipoxins are lipid mediators generated from essential polyunsaturated fatty acids that are the first dual anti-inflammatory and pro-resolving signals identified in the resolution phase of inflammation. Here the authors investigated the potential of aspirin-triggered lipoxin (LX) A4 analog (ATLa), resolving (Rv) D1, and RvE1, in regulating angiogenesis in a murine model. ATLa and RvE1 receptor expression was tested in different corneal cell populations by RT-PCR. Corneal neovascularization (CNV) was induced by suture or micropellet (IL-1 beta, VEGF-A) placement. Mice were then treated with ATLa, RvD1, RvE1, or vehicle, subconjunctivally at 48-hour intervals. Infiltration of neutrophils and macrophages was quantified after immunofluorescence staining. The mRNA expression levels of inflammatory cytokines, VEGFs, and VEGFRs were analyzed by real-time PCR. CNV was evaluated intravitally and morphometrically. The receptors for LXA4, ALX/Fpr-rs-2 and for RvE1, ChemR23 were each expressed by epithelium, stromal keratocytes, and infiltrated CD11b(+) cells in corneas. Compared to the vehicle-treated eye, ATLa-, RvD1-, and RvE1-treated eyes had reduced numbers of infiltrating neutrophils and macrophages and reduced mRNA expression levels of TNF-alpha, IL-1 alpha, IL-1 beta, VEGF-A, VEGF-C, and VEGFR2. Animals treated with these mediators had significantly suppressed suture-induced or IL-1 beta-induced hemangiogenesis (HA) but not lymphangiogenesis. Interestingly, only the application of ATLa significantly suppressed VEGF-A-induced HA. ATLa, RvE1, and RvD1 all reduce inflammatory corneal HA by early regulation of resolution mechanisms in innate immune responses. In addition, ATLa directly inhibits VEGF-A-mediated angiogenesis and is the most potent inhibitor of NV among this new genus of dual anti-inflammatory and pro-resolving lipid mediators.
Vitamin C prophylaxis promotes oxidative lipid damage during surgical ischemia-reperfusion.
Bailey, Damian M; Raman, Sudarsanam; McEneny, Jane; Young, Ian S; Parham, Kelly L; Hullin, David A; Davies, Bruce; McKeeman, Gareth; McCord, Joe M; Lewis, Michael H
2006-02-15
Reactive oxygen species (ROS) have been implicated in the cellular membrane damage and postoperative morbidity associated with obligatory ischemia-reperfusion (I-R) during vascular surgery. Thus, a clinical study was undertaken to evaluate the effects of ascorbate prophylaxis on ROS exchange kinetics in 22 patients scheduled for elective abdominal aortic aneurysm (AAA) or infra-inguinal bypass (IIB) repair. Patients were assigned double-blind to receive intravenous sodium ascorbate (2 g vitamin C, n=10) or placebo (0.9% saline, n=12) administered 2 h prior to surgery. Blood samples were obtained from the arterial and venous circulation proximal to the respective sites of surgical repair (local) and from an antecubital vein (peripheral) during cross-clamping (ischemia) and within 60 s of clamp release (reperfusion). Ascorbate supplementation increased the venoarterial concentration difference (v-adiff) of lipid hydroperoxides (LH), interleukin (IL)-6 and vascular endothelial growth factor (VEGF) protein during ischemia. This increased the peripheral concentration of LH, total creatine phosphokinase (CPK), and VEGF protein during reperfusion (P<0.05 vs placebo). Electron paramagnetic resonance (EPR) spectroscopy confirmed that free iron was available for oxidative catalysis in the local ischemic venous blood of supplemented patients. An increased concentration of the ascorbate radical (A.-) and alpha-phenyl-tert-butylnitrone (PBN) adducts assigned as lipid-derived alkoxyl (LO.) and alkyl (LC.) species were also detected in the peripheral blood of supplemented patients during reperfusion (P<0.05 vs ischemia). In conclusion, these findings suggest that ascorbate prophylaxis may have promoted iron-induced oxidative lipid damage via a Fenton-type reaction initiated during the ischemic phase of surgery. The subsequent release of LH into the systemic circulation may have catalyzed formation of second-generation radicals implicated in the regulation of vascular permeability and angiogenesis.
In vivo and in vitro characteristic of HIF-1α and relative genes in ischemic femoral head necrosis
Zhang, Wanglin; Yuan, Zhe; Pei, Xinhong; Ma, Ruixue
2015-01-01
Background: Legg-Calvé-Perthes Disease (Perthes’ disease) is a childhood hip disorder initiated by ischemic necrosis of the growing femoral head. So far, the etiology and pathogenesis of Perthes’ disease is poorly understood. Materials and methods: Avascular osteonecrosis rat model was established to mimic the pathophysiological changes of femoral head necrosis. The chondrocytes of newborn Sprague-Dawley rats were isolated and cultured in hypoxic and normoxic condition. The expression characteristic of the hypoxia-inducible factor-1 alpha (HIF-1α) was evaluated both in vivo and in vitro models. Vascular endothelial growth factor (VEGF) and apoptotic genes in chondrocytes treated with normoxia and hypoxia were also studied. Results: HIF-1α expression increased greatly after ischemic operation and kept at relative high level in the arthromeningitis stage and declined in the stages of osteonecrosis and reconstruction. The HIF-1α mRNA levels of chondrocytes incubated at hypoxia were significantly higher than the cells treated with normoxia at 24 and 72 hours. Hypoxia inhibited VEGF expression; chondrocytes could oppose this inhibition manifested by the increasing of VEGF mRNA level after 72 hours hypoxia. The expression of apoptotic genes, Casp3, Casp8 and Casp9, elevated in chondrocytes after hypoxia with time differences. Conclusion: Hypoxia might be an etiological factor for femoral head necrosis, HIF-1α, VEGF as well as apoptotic genes participated the pathophysiological process of ischemic osteonecrosis. PMID:26261616
Shin, Dae Hyun; Cha, Youn Jeong; Yang, Kyeong Eun; Jang, Ik-Soon; Son, Chang-Gue; Kim, Bo Hyeon; Kim, Jung Min
2014-07-01
Crude Panax ginseng has been documented to possess hair growth activity and is widely used to treat alopecia, but the effects of ginsenoside Rg3 on hair growth have not to our knowledge been determined. The aim of the current study was to identify the molecules through which Rg3 stimulates hair growth. The thymidine incorporation for measuring cell proliferation was determined. We used DNA microarray analysis to measure gene expression levels in dermal papilla (DP) cells upon treatment with Rg3. The mRNA and protein expression levels of vascular endothelial growth factor (VEGF) in human DP cells were measured by real-time polymerase chain reaction and immunohistochemistry, respectively. We also used immunohistochemistry assays to detect in vivo changes in VEGF and 3-stemness marker expressions in mouse hair follicles. Reverse transcription polymerase chain reaction showed dose-dependent increases in VEGF mRNA levels on treatment with Rg3. Immunohistochemical analysis showed that expression of VEGF was significantly up-regulated by Rg3 in a dose-dependent manner in human DP cells and in mouse hair follicles. In addition, the CD8 and CD34 were also up-regulated by Rg3 in the mouse hair follicles. It may be concluded that Rg3 might increase hair growth through stimulation of hair follicle stem cells and it has the potential to be used in hair growth products. Copyright © 2013 John Wiley & Sons, Ltd.