Sample records for circulation control rock

  1. Interactions Between Ocean Circulation and Topography in Icy Worlds

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.

    2018-05-01

    To what extent does topography at the water-rock interface control the general circulation patterns of icy world oceans? And contrariwise, to what extent does liquid flow control the topography at the ice-water interface (or interfaces)?

  2. Validation of the BASALT model for simulating off-axis hydrothermal circulation in oceanic crust

    NASA Astrophysics Data System (ADS)

    Farahat, Navah X.; Archer, David; Abbot, Dorian S.

    2017-08-01

    Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems appear to produce considerable diversity of circulation behaviors. Circulation of seawater and seawater-derived fluids controls the extent of fluid-rock interaction, resulting in significant geochemical impacts. However, the primary regional characteristics that control how seawater is distributed within upper oceanic crust are still poorly understood. In this paper we present the details of the two-dimensional (2-D) BASALT (Basement Activity Simulated At Low Temperatures) numerical model of heat and fluid transport in an off-axis hydrothermal system. This model is designed to simulate a wide range of conditions in order to explore the dominant controls on circulation. We validate the BASALT model's ability to reproduce observations by configuring it to represent a thoroughly studied transect of the Juan de Fuca Ridge eastern flank. The results demonstrate that including series of narrow, ridge-parallel fractures as subgrid features produces a realistic circulation scenario at the validation site. In future projects, a full reactive transport version of the validated BASALT model will be used to explore geochemical fluxes in a variety of off-axis hydrothermal environments.

  3. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  4. Stratigraphic distribution of veins in the Murray and Stimson formations, Gale crater, Mars: Implications for ancient groundwater circulation

    NASA Astrophysics Data System (ADS)

    Nachon, M.; Sumner, D. Y.; Borges, S. R.; Stack, K.; Stein, N.; Watkins, J. A.; Banham, S.; Rivera-Hernandez, F.; Wiens, R. C.; l'Haridon, J.; Rapin, W.; Kronyak, R. E.

    2017-12-01

    Since landing at Gale crater, Mars, in August 2012, the Curiosity rover has driven through more than 300m of stratigraphy. From the first to the most recent sedimentary rocks explored, light-toned veins have been observed cutting the host-rock and were interpreted as diagenetic features emplaced by hydraulic fracturing. Chemical and mineralogical analyses show they consist of Ca-sulfate. Here we report on the veins' distribution within two geological formations explored more recently by the rover: (a) the Murray Formation that consists mainly of fine-grained laminated rocks that have been interpreted as having been deposited in a former lacustrine environment [1], and (b) the Stimson Formation, which lies unconformably above the Murray, and consists of cross bedded sandstones interpreted as being deposited in a aeolian environment [2]. We have performed a systematic observation of the veins within the MastCam images, from the base of the Murray (Sol 750) up to Sol 1515 [3], described their main geometrical characteristics (e.g. orientation to laminae, relative density, branching). Five veins facies were defined based on veins' geometrical properties, abundance, and host-rock grain size. The distribution of veins facies was placed within the broader stratigraphic context. The distribution of veins within the Murray and Stimson Formations shows strong rheological controls. In the Murray, light-toned veins are present from the basal part of the section up to the most recently explored exposures. Several dense vein outcrops are associated with local variations in host-rock type, suggesting rheological control of fluid circulation. In Stimson sandstones, light-toned veins are also present though much rarer, again possibly due to rheological properties. The light-toned veins represent post depositional fluid circulation, occurring after accumulation of the lacustrine Murray rocks; at least some veins formed after Murray's burial, erosion, and the deposition and lithification of the overlying Stimson aeolian rocks. Given the distribution of veins, ground water was likely present during an extended time interval, spanning a duration of at least millions of years. [1]Grotzinger et al., 2015, DOI: 10.1126/science.aac7575 [2]Banham et al., 2017, this meeting [3]Nachon et al., 2017, AbSciCon #3667

  5. Track of fluid paleocirculation in dolomite host rock at regional scale by the Anisotropy of Magnetic Susceptibility (AMS): An example from Aptian carbonates of La Florida, Northern Spain

    NASA Astrophysics Data System (ADS)

    Essalhi, Mourad; Sizaret, Stanislas; Barbanson, Luc; Chen, Yan; Branquet, Yannick; Panis, Dominique; Camps, Pierre; Rochette, Pierre; Canals, Angels

    2009-01-01

    The present study aims to apply the AMS method (Anisotropy of Magnetic Susceptibility) at a regional scale to track the fluid circulation direction that has produced an iron metasomatism within pre-existing dolomite host rock. The Urgonian formations hosting the Zn-Pb mineralizations in La Florida (Cantabria, northern Spain) have been taken as target for this purpose. Sampling was carried out, in addition to ferroan dolomite host rock enclosing the Zn-Pb mineralizations, in dolomite host rock and limestone to make the comparison possible between magnetic signals from mineralized rocks, where fluid circulation occurred, and their surrounding formations. AMS study was coupled with petrofabric analysis carried out by texture goniometry, Scanning Electron Microscopy (SEM) observations and also Shape Preferred Orientation (SPO) statistics. SEM observations of ferroan dolomite host rock illustrate both bright and dark grey ribbons corresponding respectively to Fe enriched and pure dolomites. SPO statistics applied on four images from ferroan dolomite host rock give a well-defined orientation of ribbons related to the intermediate axis of magnetic susceptibility K2. For AMS data, two magnetic fabrics are observed. The first one is observed in ferroan dolomite host rock and characterized by a prolate ellipsoid of magnetic susceptibility with a vertical magnetic lineation. The magnetic susceptibility carrier is Fe-rich dolomite. These features are probably acquired during metasomatic fluid circulations. In Fe-rich dolomite host rock, ‹ c› axes are vertical. As a rule, (0001) planes (i.e. planes perpendicular to ‹ c› axes) are isotropic with respect to crystallographic properties. So, the magnetic anisotropy measured in this plane should reflect crystallographic modification due to fluid circulation. This is confirmed by the texture observed using the SEM. Consequently, AMS results show a dominant NE-SW elongation interpreted as the global circulation direction and a NW-SE secondary elongation that we have considered as sinuosities of the fluid trajectory. The second type of magnetic fabric is essentially observed in the limestone and characterized by an oblate form of the ellipsoid of magnetic susceptibility, a horizontal magnetic foliation and mixed magnetic susceptibility carriers. It is interpreted as a sedimentary fabric.

  6. Effects of karst and geologic structure on the circulation of water and permeability in carbonate aquifers

    USGS Publications Warehouse

    Stringfield, V.T.; Rapp, J.R.; Anders, R.B.

    1979-01-01

    The results of the natural processes caused by solution and leaching of limestone, dolomite, gypsum, salt and other soluble rocks, is known as karst. Development of karst is commonly known as karstification, which may have a pronounced effect on the topography, hydrology and environment, especially where such karst features as sinkholes and vertical solution shafts extend below the land surface and intersect lateral solution passages, cavities, caverns and other karst features in carbonate rocks. Karst features may be divided into two groups: (1) surficial features that do not extend far below the surface; and (2) karst features such as sinkholes that extend below the surface and affect the circulation of water below. The permeability of the most productive carbonate aquifers is due chiefly to enlargement of fractures and other openings by circulation of water. Important controlling factors responsible for the development of karst and permeability in carbonate aquifers include: (1) climate, topography, and presence of soluble rocks; (2) geologic structure; (3) nature of underground circulation; and (4) base level. Another important factor is the condition of the surface of the carbonate rocks at the time they are exposed to meteoric water. A carbonate rock surface, with soil or relatively permeable, less soluble cover, is more favorable for initiation of karstification and solution than bare rocks. Water percolates downward through the cover to the underlying carbonate rocks instead of running off on the surface. Also, the water becomes more corrosive as it percolates through the permeable cover to the underlying carbonate rocks. Where there is no cover or the cover has been removed, the carbonate rocks become case hardened and resistant to erosion. However, in regions underlain not only by carbonate rocks but also by beds of anhydrite, gypsum and salt, such as the Hueco Plateau in southeastern New Mexico, subsurface solution may occur where water without natural acids moves down from bare rock surfaces through cracks to the beds that are more soluble than carbonate rocks. For example, in the area of Carlsbad Caverns in southeastern New Mexico, much of the water responsible for solution that formed the caverns apparently entered the groundwater system through large open fractures and did not form sinkhole topography. East of the Carlsbad Caverns, however, in the Pecos River Valley where the carbonate rocks are overlain by the less soluble Ogallala Formation of Late Tertiary age, solution began along escarpments as the Pecos River and its tributaries cut through the less soluble cover. As these escarpments retreated, sinkholes and other karst features developed. Joints or fractures are essential for initiation of downward percolation of water in compact carbonate rocks such as some Paleozoic limestone in which there is no intergranular permeability. Also joints or fractures and bedding planes may be essential in the initiation of lateral movement of water in the zone of saturation. Where conditions of recharge and discharge are favorable, groundwater may move parallel to the dip. However, the direction of movement of water in most carbonate rocks is not necessarily down dip or parallel to the dip. The general direction of movement of both surface and groundwater may be parallel to the strike in a breached anticline. Faults may restrict the lateral movement of water, especially if water-bearing beds are faulted against relatively impervious beds. Conversely, some fault may serve as avenues through which water may move as, for example, in the Cretaceous Edwards aquifer in the San Antonio area, Texas. Karst aquifers, chiefly carbonate rocks, may be placed in three groups according to water-bearing capacity. Water in aquifers of group 1 occurs chiefly in joints, fractures, and other openings that have not been enlarged by solution. The yield of wells is small. Aquifers in group 2, with low to intermediate yields, are those in which

  7. Experimental infection of rock pigeons (Columba livia) with three West Nile virus lineage 1 strains isolated in Italy between 2009 and 2012.

    PubMed

    Spedicato, M; Carmine, I; Bellacicco, A L; Marruchella, G; Marini, V; Pisciella, M; Di Francesco, G; Lorusso, A; Monaco, F; Savini, G

    2016-04-01

    West Nile virus (WNV) circulation dynamics in the context of the urban environment is not yet elucidated. In this perspective, three groups of eight rock pigeons (Columbia livia) were inoculated with three WNV lineage 1 strains isolated in Italy between 2009 and 2012. The pigeons did not develop any clinical signs consistent with WNV acute infection. All animals seroconverted and shed virus up to 15 days post-infection by the oral or cloacal routes. In all infected groups viraemia lasted for 4 days post-infection. No WNV-specific gross or histological lesions were found in infected birds compared to control birds and immunohistochemistry remained constantly negative from all tissues. The reservoir competence index was also assessed and it ranged between 0·11 and 0·14. This study demonstrates that pigeons are competent reservoir hosts for Italian WNV lineage 1 circulating strains thus potentially posing a risk to the public health system.

  8. Martian aeolian features and deposits - Comparisons with general circulation model results

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Skypeck, A.; Pollack, J. B.

    1993-02-01

    The relationships between near-surface winds and the distribution of wind-related features are investigated by means of a general circulation model of Mars' atmosphere. Predictions of wind surface stress as a function of season and dust optical depth are used to investigate the distribution and orientation of wind streaks, yardangs, and rock abundance on the surface. The global distribution of rocks on the surface correlates well with predicted wind stress, particularly during the dust storm season. The rocky areas are sites of strong winds, suggesting that fine material is swept away by the wind, leaving rocks and coarser material behind.

  9. Numerical analysis of seawater circulation in carbonate platforms: I. Geothermal convection

    USGS Publications Warehouse

    Sanford, W.E.; Whitaker, F.F.; Smart, P.L.; Jones, G.

    1998-01-01

    Differences in fluid density between cold ocean water and warm ground water can drive the circulation of seawater through carbonate platforms. The circulating water can be the major source of dissolved constituents for diagenetic reactions such as dolomitization. This study was undertaken to investigate the conditions under which such circulation can occur and to determine which factors control both the flux and the patterns of fluid circulation and temperature distribution, given the expected ranges of those factors in nature. Results indicate that the magnitude and distribution of permeability within a carbonate platform are the most important parameters. Depending on the values of horizontal and vertical permeability, heat transport within a platform can occur by one of three mechanisms: conduction, forced convection, or free convection. Depth-dependent relations for porosity and permeability in carbonate platforms suggest circulation may decrease rapidly with depth. The fluid properties of density and viscosity are controlled primarily by their dependency on temperature. The bulk thermal conductivity of the rocks within the platform affects the conductive regime to some extent, especially if evaporite minerals are present within the section. Platform geometry has only a second-order effect on circulation. The relative position of sealevel can create surface conditions that range from exposed (with a fresh-water lens present) to shallow water (with hypersaline conditions created by evaporation in constricted flow conditions) to submerged or drowned (with free surface water circulation), but these boundary conditions and associated ocean temperature profiles have only a second-order effect on fluid circulation. Deep, convective circulation can be caused by horizon tal temperature gradients and can occur even at depths below the ocean bottom. Temperature data from deep holes in the Florida and Bahama platforms suggest that geothermal circulation is actively occurring today to depths as great as several kilometers.

  10. Structural control on geothermal circulation in the Tocomar geothermal volcanic area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido

    2016-04-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous thermal springs. This study presents new stratigraphic, structural, volcanological, geochemical and hydrogeological data on the geothermal field. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field.

  11. Clay minerals related to the circulation of geothermal fluids in boreholes at Rittershoffen (Alsace, France)

    NASA Astrophysics Data System (ADS)

    Vidal, Jeanne; Patrier, Patricia; Genter, Albert; Beaufort, Daniel; Dezayes, Chrystel; Glaas, Carole; Lerouge, Catherine; Sanjuan, Bernard

    2018-01-01

    Two geothermal wells, GRT-1 and GRT-2, were drilled into the granite at Rittershoffen (Alsace, France) in the Upper Rhine Graben to exploit geothermal resources at the sediment-basement interface. Brine circulation occurs in a permeable fracture network and leads to hydrothermal alteration of the host rocks. The goal of the study was to characterize the petrography and mineralogy of the altered rocks with respect to the permeable fracture zones in the granitic basement. As clay minerals are highly reactive to hydrothermal alteration, they can be used as indicators of present-day and paleo-circulation systems. Special attention has been paid to the textural, structural and chemical properties of these minerals. The fine-grained clay fraction (< 5 μm) was analyzed around the originally permeable fracture zones to observe the crystal structure of clay minerals using X-ray diffraction. Chemical microanalysis of the clay minerals was performed using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The occurrences of mixed layers illite-smectite ( 10% smectite) provide a promising guide for identifying the fracture zones that control the present-day circulation of geothermal fluids in the Rittershoffen wells. However, multistage paleo-circulation systems could lead to an abundance of heterogeneous and fine-grained illitic minerals that could plug the fracture system. The permeability of fracture zones in the GRT-1 well was likely reduced because of an intense illitization, and the well was stimulated. The occurrence of chlorite in the permeable fracture zones of GRT-2 is indicative of less intense illitization, and the natural permeability is much higher in GRT-2 than in GRT-1.

  12. Evolution of arched roofs in salt caves: Role of gravity-induced stress and relative air humidity and temperature changes (Zagros Mts., Iran)

    NASA Astrophysics Data System (ADS)

    Bruthans, Jiri; Filippi, Michal; Zare, Mohammad

    2016-04-01

    In salt caves in the halite karst in SE Iran the disintegration of rock salt into individual grains can be observed. Highly disintegrated blocks and individual grains form a major volume of debris in many caves on islands in the Persian Gulf. Larger cave rooms have often perfectly arched roof. The perfect geometry of rooms and interlocking of salt grains indicate that evolution of room cross-sections in these caves is controlled by feedback between gravity-induced stress and rock salt disintegration in similar way as in evolution of sandstone landforms (Bruthans et al. 2014). Those portions of rock salt, which are under compressional stress, disintegrate much slower than portions under tensile stress. Important question is the kind of weathering mechanism responsible for intergranular disintegration of rock salt. The relationship between disintegration, its rate and cave climate was studied. Clearly the fastest disintegration rate was found in caves with strong air circulation (i.e, short caves with large cross-sections, open on both ends). Temperature and air humidity changes are considerable in these caves. On the other hand the disintegration is very slow in the inner parts of long caves with slow air circulation or caves with one entrance. The best example of such caves is the inner part of 3N Cave on Namakdan salt diapir with nearly no air circulation and stable temperature and humidity, where disintegration of rock salt into grains is missing. Strong effect of cave climate on disintegration rate can be explained by deliquescence properties of halite. Halite is absorbing air moisture forming NaCl solution if relative humidity (RH) exceeds 75 % (at 20-30 oC). In the Persian Gulf region the RH of the air is passing the 75 % threshold in case of 91% days (Qeshm Island, years 2002-2005), while in mountainous areas in mainland this threshold is less commonly reached. In most of nights (91 %) in Persian Gulf the air with RH >75 % is entering the salt caves and air moisture is wetting the dry rock and slightly diluting the percolating brine in ceiling of the caves, which is otherwise just saturated with respect to halite. During days the RH is <75% and brine partly dries up and precipitates halite. By repeating the cycle of dissolution and precipitation of halite and possibly also by temperature changes the rock salt is disintegrated into interlocked salt grains, whose behavior is then strongly controlled by gravity-induced stress. Research was funded by the Czech Science Foundation (GA CR No. 16-19459S). Reference: Bruthans J, Soukup J., Vaculíková J., Filippi M., Schweigstillova J., Mayo A.L., Masin D., Kletetschka G.,Rihosek J. (2014): Sandstone landforms shaped by negative feedback between stress and erosion. Nature Geoscience 7(8): 597-601.

  13. Deep permeable fault-controlled helium transport and limited mantle flux in two extensional geothermal systems in the Great Basin, United States

    USGS Publications Warehouse

    Banerjee, Amlan; Person, Mark; Hofstra, Albert; Sweetkind, Donald S.; Cohen, Denis; Sabin, Andrew; Unruh, Jeff; Zyvoloski, George; Gable, Carl W.; Crossey, Laura; Karlstrom, Karl

    2011-01-01

    This study assesses the relative importance of deeply circulating meteoric water and direct mantle fluid inputs on near-surface 3He/4He anomalies reported at the Coso and Beowawe geothermal fields of the western United States. The depth of meteoric fluid circulation is a critical factor that controls the temperature, extent of fluid-rock isotope exchange, and mixing with deeply sourced fluids containing mantle volatiles. The influence of mantle fluid flux on the reported helium anomalies appears to be negligible in both systems. This study illustrates the importance of deeply penetrating permeable fault zones (10-12 to 10-15 m2) in focusing groundwater and mantle volatiles with high 3He/4He ratios to shallow crustal levels. These continental geothermal systems are driven by free convection.

  14. Groundwater Isolation Governs Chemistry and Microbial Community Structure along Hydrologic Flowpaths

    PubMed Central

    Ben Maamar, Sarah; Aquilina, Luc; Quaiser, Achim; Pauwels, Hélène; Michon-Coudouel, Sophie; Vergnaud-Ayraud, Virginie; Labasque, Thierry; Roques, Clément; Abbott, Benjamin W.; Dufresne, Alexis

    2015-01-01

    This study deals with the effects of hydrodynamic functioning of hard-rock aquifers on microbial communities. In hard-rock aquifers, the heterogeneous hydrologic circulation strongly constrains groundwater residence time, hydrochemistry, and nutrient supply. Here, residence time and a wide range of environmental factors were used to test the influence of groundwater circulation on active microbial community composition, assessed by high throughput sequencing of 16S rRNA. Groundwater of different ages was sampled along hydrogeologic paths or loops, in three contrasting hard-rock aquifers in Brittany (France). Microbial community composition was driven by groundwater residence time and hydrogeologic loop position. In recent groundwater, in the upper section of the aquifers or in their recharge zone, surface water inputs caused high nitrate concentration and the predominance of putative denitrifiers. Although denitrification does not seem to fully decrease nitrate concentrations due to low dissolved organic carbon concentrations, nitrate input has a major effect on microbial communities. The occurrence of taxa possibly associated with the application of organic fertilizers was also noticed. In ancient isolated groundwater, an ecosystem based on Fe(II)/Fe(III) and S/SO4 redox cycling was observed down to several 100 of meters below the surface. In this depth section, microbial communities were dominated by iron oxidizing bacteria belonging to Gallionellaceae. The latter were associated to old groundwater with high Fe concentrations mixed to a small but not null percentage of recent groundwater inducing oxygen concentrations below 2.5 mg/L. These two types of microbial community were observed in the three sites, independently of site geology and aquifer geometry, indicating hydrogeologic circulation exercises a major control on microbial communities. PMID:26733990

  15. Structural controls and evolution of gold-, silver-, and REE-bearing copper-cobalt ore deposits, Blackbird district, east-central Idaho: Epigenetic origins

    USGS Publications Warehouse

    Lund, K.; Tysdal, Russell G.; Evans, Karl V.; Kunk, Michael J.; Pillers, Renee M.

    2011-01-01

    Textural data at all scales indicate that the host sites for veins and the tectonic evolution of both host rocks and mineral deposits were kinematically linked to Late Cretaceous regional thrust faulting. Heat, fluids, and conduits for generation and circulation of fluids were part of the regional crustal thickening. The faulting also juxtaposed metaevaporite layers in the Mesoproterozoic Yellowjacket Formation over Blackbird district host rocks. We conclude that this facilitated chemical exchange between juxtaposed units resulting in leaching of critical elements (Cl, K, B, Na) from metaevaporites to produce brines, scavenging of metals (Co, Cu, etc) from rocks in the region, and, finally, concentrating metals in the lower-plate ramp structures. Although the ultimate source of the metals remains undetermined, the present Cu-Co ± Au (± Ag ± Ni ± REE) Blackbird ore deposits formed during Late Cretaceous compressional deformation.

  16. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1991-01-01

    Published data relevant to the geochemistry of vanadium were used to evaluate processes and conditions that control vanadium accumulation in carbonaceous rocks. Reduction, adsorption, and complexation of dissolved vanadium favor addition of vanadium to sediments rich in organic carbon. Dissolved vanadate (V(V)) species predominate in oxic seawater and are reduced to vanadyl ion (V(IV)) by organic compounds or H2S. Vanadyl ion readily adsorbs to particle surfaces and is added to the sediment as the particles settle. The large vanadium concentrations of rocks deposited in marine as compared to lacustrine environments are the result of the relatively large amount of vanadium provided by circulating ocean water compared to terrestrial runoff. Vanadium-rich carbonaceous rocks typically have high contents of organically bound sulfur and are stratigraphically associated with phosphate-rich units. A correspondence between vanadium content and organically bound sulfur is consistent with high activities of H2S during sediment deposition. Excess H2S exited the sediment into bottom waters and favored reduction of dissolved V(V) to V(IV) or possibly V(III). The stratigraphic association of vanadiferous and phosphatic rocks reflects temporal and spatial shifts in bottom water chemistry from suboxic (phosphate concentrated) to more reducing (euxinic?) conditions that favor vanadium accumulation. During diagenesis some vanadium-organic complexes migrate with petroleum out of carbonaceous rocks, but significant amounts of vanadium are retained in refractory organic matter or clay minerals. As carbon in the rock evolves toward graphite during metamorphism, vanadium is incorporated into silicate minerals. ?? 1991.

  17. ROCK inhibition promotes microtentacles that enhance reattachment of breast cancer cells

    PubMed Central

    Bhandary, Lekhana; Whipple, Rebecca A.; Vitolo, Michele I.; Charpentier, Monica S.; Boggs, Amanda E.; Chakrabarti, Kristi R.; Thompson, Keyata N.; Martin, Stuart S.

    2015-01-01

    The presence of circulating tumor cells (CTCs) in blood predicts poor patient outcome and CTC frequency is correlated with higher risk of metastasis. Recently discovered, novel microtubule-based structures, microtentacles, can enhance reattachment of CTCs to the vasculature. Microtentacles are highly dynamic membrane protrusions formed in detached cells and occur when physical forces generated by the outwardly expanding microtubules overcome the contractile force of the actin cortex. Rho-associated kinase (ROCK) is a major regulator of actomyosin contractility and Rho/ROCK over-activation is implicated in tumor metastasis. ROCK inhibitors are gaining popularity as potential cancer therapeutics based on their success in reducing adherent tumor cell migration and invasion. However, the effect of ROCK inhibition on detached cells in circulation is largely unknown. In this study, we use breast tumor cells in suspension to mimic detached CTCs and show that destabilizing the actin cortex through ROCK inhibition in suspended cells promotes the formation of microtentacles and enhances reattachment of cells from suspension. Conversely, increasing actomyosin contraction by Rho over-activation reduces microtentacle frequency and reattachment. Although ROCK inhibitors may be effective in reducing adherent tumor cell behavior, our results indicate that they could inadvertently increase metastatic potential of non-adherent CTCs by increasing their reattachment efficacy. PMID:25749040

  18. The geothermal system of Caviahue-Copahue Volcanic Complex (Chile-Argentina): New insights from self-potential, soil CO2 degassing, temperature measurements and helium isotopes, with structural and fluid circulation implications.

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Bravo, Francisco; Barde-Cabusson, Stephanie; Pizarro, Marcela; Muños, Carlos; Sanchez, Juan; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; de Cal, Federico; Esteban, Carlos

    2016-04-01

    Geothermal systems represent natural heat transfer engines in a confined volume of rock which are strongly influenced by the regional volcano-tectonic setting controlling the formation of shallow magmatic reservoirs, and by the local faults/fracture network, that permits the development of hydrothermal circulation cells and promote the vertical migration of fluids and heat. In the Southern Volcanic Zone of Chile-Argentina, geothermal resources occur in close spatial relationship with active volcanism along the Cordillera which is primarily controlled by the 1000 km long, NNE Liquiñe-Ofqui Fault Zone (LOFZ), an intra-arc dextral strike-slip fault system, associated with second-order intra-arc anisotropy of overall NE-SW (extensional) and NW-SE orientation (compressional). However there is still a lack of information on how fault network (NE and WNW strinking faults) and lithology control the fluid circulation. In this study, we propose new data of dense self-potential (SP), soil CO2 emanation and temperature (T) measurements within the geothermal area from Caviahue-Copahue Volcanic Complex (CCVC), coupled with helium isotopes ratios measured in fumaroles and thermal springs. We observe that inside the geothermal system the NE-striking faults, characterized by a combination of SP-CO2 and T maxima with high 3He/4He ratios (7.86Ra), promote the formation of high vertical permeability pathways for fluid circulation. Whereas, the WNW-striking faults represent low permeability pathways for hydrothermal fluids ascent associated with moderate 3He/4He ratios (5.34Ra), promoting the infiltration of meteoric water at shallow depth. These active zones are interspersed by SP-CO2- T minima, which represent self-sealed zones (e.g. impermeable altered rocks) at depth, creating a barrier inhibiting fluids rise. The NE-striking faults seem to be associated with the upflow zones of the geothermal system, where the boiling process produces a high vapor-dominated zone close to the surface. The WNW-striking faults seems to limit to the south the Copahue geothermal area.

  19. Structural control on geothermal circulation in the Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido; Pinton, Annamaria; Cianfarra, Paola; Baez, Walter; Chiodi, Agostina; Viramonte, José; Norini, Gianluca; Groppelli, Gianluca

    2013-01-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous springs. This study presents new stratigraphic and hydrogeological data on the geothermal field, together with the analysis from remote sensed image analysis of morphostructural evidences associated with the structural framework and active tectonics. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field. Away from the main tectonic features, such as at the Cerro Tuzgle field, the less developed network of faults and fractures allows only a moderate upwelling of geothermal fluids and a mixing between hot and shallow cold waters. The integration of field-based and remote-sensing analyses at the Cerro Tuzgle-Tocomar area proved to be effective in approaching the prospection of remote geothermal fields, and in defining the conceptual model for geothermal circulation.

  20. Subseafloor processes in mid-ocean ridge hydrothennal systems

    NASA Astrophysics Data System (ADS)

    Alt, Jeffrey C.

    Convective circulation of seawater through oceanic crust at mid-ocean ridges (MOR) and on ridge flanks has wide-ranging effects on heat transport, the chemical and isotopic compositions of ocean crust and seawater, mineralization of the crust, and on the physical properties of oceanic basement. Submarine hydrothermal systems remove about 30% of the heat lost from oceanic crust [Selater et al., 1981; Stein and Stein, 1994], and chemical and isotopic exchange between seawater and basement rocks exerts important controls on the composition of seawater [Edmond et al., 1979a; Thompson, 1983]. The composition of altered crust is also changed and, when subducted, this altered crust can contribute to chemical and isotopic heterogeneities in the mantle [Zindler and Hart, 1986] and may affect the compositions of volcanic rocks in island arcs [Perfit et al., 1980; Tatsumi, 1989]. Mineralization of ocean crust occurs where metals, leached from large volumes of altered crust at depth, are concentrated at or near the surface by hydrothermal circulation [Hannington, 1995]. Hydrothermal alteration of magnetic minerals may affect the source of marine magnetic anomalies [Pariso and Johnson, 1991], and the formation of secondary minerals influences the density, porosity, and seismic velocity structure of the crust [Wilkens et al., 1991; Jacobson, 1992].

  1. Fluid circulations in the depths of accretionary prism: the record of quartz from the Shimanto Belt, Japan

    NASA Astrophysics Data System (ADS)

    Raimbourg, Hugues; Vacelet, Maxime; Ramboz, Claire; Famin, Vincent; Augier, Romain; Palazzin, Giulia

    2014-05-01

    Fluids present in the depths of subduction zones play a major role on seismogenesis, although fluid circulations paths and physico-chemical conditions are still largely unknown. Two main reservoirs of water, either in the pores of sediments or bound to hydrous minerals, release large amounts of water in the relatively shallow and deep domains of subduction zones, respectively. The usual model of circulation assumes then a bottom-up circulation driven by fluid pressure gradients. This study aims at reassessing this model, using the record of rocks from a paleo-accretionary prism, the Shimanto Belt in Japan. These rocks, buried to 5kbars and 300° C (Toriumi and Teruya, Modern Geology, 1988), were affected by pervasive fracturing throughout their history, from burial to exhumation. The quartz filling these fractures and the fluid inclusions that it contains keep the track of the fluid associated with the rock evolution. Using a combined approach of microstructural observations by optical microscopy and cathodoluminescence (CL), and chemical characterization by electron and ion microprobe as well as microthermometry, we show that there are actually two distinct fluids that have cyclically wetted the rock at depth. The first one is an 'external' fluid penetrating through macroscopic fractures and precipitating a quartz blue in CL. In contrast, a 'local' fluid attended the formation of quartz brown in CL, precipitating in microfractures or associated with ductile recrystallization. The two fluids are also chemically distinct: Both have a salinity close to seawater, but the local fluid is fresher than the external one. In addition, the external fluid is richer in aluminum than the local one. Finally, the external fluid is very slightly depleted in δ18O, although the difference is probably not significant and the first-order isotopic signal is a buffering by host rock. Our interpretation of microstructures and chemical signatures is that the external fluid is seawater, penetrating to accretionary prism depths during transient phases of large-scale fracturing and fluid circulation. Macroscale fractures then close, permeability drops, and the fluid is progressively reequilibrated at depth with water produced in-situ by metamorphic reactions. The general scheme is therefore a top-down circulation, contrasting with the usually proposed bottom-up flux. We finally discuss geodynamical scenarios, such as during the postseismic phase or in association with thermal anomalies, where such a counter-intuitive top-down flux of water could prevail in subduction zones.

  2. The origin and evolution of sulfur in an Archean volcano-sedimentary basin, Deer Lake area, Minnesota. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Nicol, D. L.

    1980-01-01

    Rocks of the Deer Lake area, northcentral Minnesota, consist of Archean (age greater than 2.6 billion years) metasediments and metavolcanics intruded by mafic layered sills. Geologic and sulfur isotopic data suggest that sulfides in the sediments are bacteriogenic, having formed in response to the activity of sulfate reducing bacteria during diagenesis. Deposition of the sediments appears to have occurred in a deep marine basin with restricted circulation of sea water. The bulk of the sulfur in the igneous rocks is of deep seated origin, but basal contacts of the sills show evidence of assimilation of biogenic sulfur from the intruded sediments. This assimilation of biogenic sulfur is the primary geochemical control of local Cu-Ni sulfide mineralization.

  3. Fluid circulations in response to mantle exhumation at the passive margin setting in the north Pyrenean zone, France

    NASA Astrophysics Data System (ADS)

    Corre, B.; Boulvais, P.; Boiron, M. C.; Lagabrielle, Y.; Marasi, L.; Clerc, C.

    2018-02-01

    Sub-continental lithospheric mantle rocks are exhumed in the distal part of magma-poor passive margins. Remnants of the North Iberian paleo-passive margin are now exposed in the North-Pyrenean Zone (NPZ) and offers a field analogue to study the processes of continental crust thinning, subcontinental mantle exhumation and associated fluid circulations. The Saraillé Massif which belongs to the `Chaînons Béarnais' range (Western Pyrenees), displays field, petrographic and stable isotopic evidence of syn-kinematic fluid circulations. Using electron probe micro-analyses on minerals, O, C, Sr isotopes compositions and micro thermometry/Raman spectrometry of fluid inclusions, we investigate the history of fluid circulations along and in the surroundings of the Saraillé detachment fault. The tectonic interface between the pre-rift Mesozoic sedimentary cover and the mantle rocks is marked by a metasomatic talc-chlorite layer. This layer formed through the infiltration of a fluid enriched in chemical elements like Cr leached from the exhuming serpentinized mantle rocks. In the overlying sediments (dolomitic and calcitic marbles of Jurassic to Aptian age), a network of calcitic veins, locally with quartz, formed as a consequence of the infiltration of aqueous saline fluids (salinities up to 34 wt% NaCl are recorded in quartz-hosted fluid inclusions) at moderate temperatures ( 220 °C). These brines likely derived from the dissolution of the local Triassic evaporites. In the upper part of the metasomatic system, upward movement of fluids is limited by the Albian metasediments, which likely acted as an impermeable layer. The model of fluid circulation in the Saraillé Massif sheds light onto other synchronous metasomatic systems in the Pyrenean realm.

  4. The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment

    NASA Astrophysics Data System (ADS)

    Amann, Florian; Gischig, Valentin; Evans, Keith; Doetsch, Joseph; Jalali, Reza; Valley, Benoît; Krietsch, Hannes; Dutler, Nathan; Villiger, Linus; Brixel, Bernard; Klepikova, Maria; Kittilä, Anniina; Madonna, Claudio; Wiemer, Stefan; Saar, Martin O.; Loew, Simon; Driesner, Thomas; Maurer, Hansruedi; Giardini, Domenico

    2018-02-01

    In this contribution, we present a review of scientific research results that address seismo-hydromechanically coupled processes relevant for the development of a sustainable heat exchanger in low-permeability crystalline rock and introduce the design of the In situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site dedicated to studying such processes under controlled conditions. The review shows that research on reservoir stimulation for deep geothermal energy exploitation has been largely based on laboratory observations, large-scale projects and numerical models. Observations of full-scale reservoir stimulations have yielded important results. However, the limited access to the reservoir and limitations in the control on the experimental conditions during deep reservoir stimulations is insufficient to resolve the details of the hydromechanical processes that would enhance process understanding in a way that aids future stimulation design. Small-scale laboratory experiments provide fundamental insights into various processes relevant for enhanced geothermal energy, but suffer from (1) difficulties and uncertainties in upscaling the results to the field scale and (2) relatively homogeneous material and stress conditions that lead to an oversimplistic fracture flow and/or hydraulic fracture propagation behavior that is not representative of a heterogeneous reservoir. Thus, there is a need for intermediate-scale hydraulic stimulation experiments with high experimental control that bridge the various scales and for which access to the target rock mass with a comprehensive monitoring system is possible. The ISC experiment is designed to address open research questions in a naturally fractured and faulted crystalline rock mass at the Grimsel Test Site (Switzerland). Two hydraulic injection phases were executed to enhance the permeability of the rock mass. During the injection phases the rock mass deformation across fractures and within intact rock, the pore pressure distribution and propagation, and the microseismic response were monitored at a high spatial and temporal resolution.

  5. Controls on Martian Hydrothermal Systems: Application to Valley Network and Magnetic Anomaly Formation

    NASA Technical Reports Server (NTRS)

    Harrison, Keith P.; Grimm, Robert E.

    2002-01-01

    Models of hydrothermal groundwater circulation can quantify limits to the role of hydrothermal activity in Martian crustal processes. We present here the results of numerical simulations of convection in a porous medium due to the presence of a hot intruded magma chamber. The parameter space includes magma chamber depth, volume, aspect ratio, and host rock permeability and porosity. A primary goal of the models is the computation of surface discharge. Discharge increases approximately linearly with chamber volume, decreases weakly with depth (at low geothermal gradients), and is maximized for equant-shaped chambers. Discharge increases linearly with permeability until limited by the energy available from the intrusion. Changes in the average porosity are balanced by changes in flow velocity and therefore have little effect. Water/rock ratios of approximately 0.1, obtained by other workers from models based on the mineralogy of the Shergotty meteorite, imply minimum permeabilities of 10(exp -16) sq m2 during hydrothermal alteration. If substantial vapor volumes are required for soil alteration, the permeability must exceed 10(exp -15) sq m. The principal application of our model is to test the viability of hydrothermal circulation as the primary process responsible for the broad spatial correlation of Martian valley networks with magnetic anomalies. For host rock permeabilities as low as 10(exp -17) sq m and intrusion volumes as low as 50 cu km, the total discharge due to intrusions building that part of the southern highlands crust associated with magnetic anomalies spans a comparable range as the inferred discharge from the overlying valley networks.

  6. Influence of the geothermal fluid rheology in the large scale hydro-thermal circulation in Soultz-sous-Forêts reservoir.

    NASA Astrophysics Data System (ADS)

    Vallier, Bérénice; Magnenet, Vincent; Fond, Christophe; Schmittbuhl, Jean

    2017-04-01

    Many numerical models have been developed in deep geothermal reservoir engineering to interpret field measurements of the natural hydro-thermal circulations or to predict exploitation scenarios. They typically aim at analyzing the Thermo-Hydro-Mechanical and Chemical (THMC) coupling including complex rheologies of the rock matrix like thermo-poro-elasticity. Few approaches address in details the role of the fluid rheology and more specifically the non-linear sensitivity of the brine rheology with temperature and pressure. Here we use the finite element Code_Aster to solve the balance equations of a 2D THM model of the Soultz-sous-Forêts reservoir. The brine properties are assumed to depend on the fluid pressure and the temperature as in Magnenet et al. (2014). A sensitive parameter is the thermal dilatation of the brine that is assumed to depend quadratically with temperature as proposed by the experimental measurements of Rowe and Chou (1970). The rock matrix is homogenized at the scale of the equation resolution assuming to have a representative elementary volume of the fractured medium smaller than the mesh size. We still chose four main geological units to adjust the rock physic parameters at large scale: thermal conductivity, permeability, radioactive source production rate, elastic and Biot parameters. We obtain a three layer solution with a large hydro-thermal convection below the cover-basement transition. Interestingly, the geothermal gradient in the sedimentary layer is controlled by the radioactive production rate in the upper altered granite. The second part of the study deals with an inversion approach of the homogenized solid and fluid parameters at large scale using our direct THM model. The goal is to compare the large scale inverted estimates of the rock and brine properties with direct laboratory measurements on cores and discuss their upscaling in the context of a fractured network hydraulically active. Magnenet V., Fond C., Genter A. and Schmittbuhl J.: two-dimensional THM modelling of the large-scale natural hydrothermal circulation at Soultz-sous-Forêts, Geothermal Energy, (2014), 2, 1-17. Rowe A.M. and Chou J.C.S.: Pressure-volume-temperature-concentration relation of aqueous NaCl solutions, J. Chem. Eng. Data., (1970), 15, 61-66.

  7. Positive feedback between strain localization and fluid flow at the ductile-brittle transition leading to Pb-Zn-Fe-Cu-Ag ore deposits in Lavrion (Greece)

    NASA Astrophysics Data System (ADS)

    Scheffer, Christophe; Tarantola, Alexandre; Vanderhaeghe, Olivier

    2016-04-01

    At the crustal scale, the ductile-brittle transition (DBT) might correspond to a physical barrier that separates a deep reservoir of metamorphic and magmatic fluids from a shallow reservoir of surficial fluids. Rock rheology, and thus the location of the DBT, is mainly governed by lithology, temperature and the presence/absence of fluids. Accordingly, the position of the DBT potentially evolves during orogenic evolution owing to thermal evolution and fluid circulation. In turn rocks are transferred across it during burial and exhumation. These processes induce connections between fluid reservoirs which might play a role on ore deposition. In this contribution, we discuss the impact of lithological heterogeneities on deformation, fluid flow and ore deposition based on the example of the Lavrion low-angle top-to-the-SSW detachment accommodating gravitational collapse of the Hellenides orogenic belt in Greece. The Lavrion peninsula, localized along the western boundary of the Attic-Cycladic Metamorphic Core Complex, is characterized by Pb-Zn-Fe-Cu-Ag ore mineralization mainly concentrated along a lithological contact (marble/schists) below and within a detachment shear zone. The mylonitic marble below the detachment shear zone is composed of white layers of pure marble alternating with blue layers containing impurities (SiO2, Al2O3, organic matter…). Development of the mylonitic fabric in competent impure blue marble is associated with its preferred dolomitization related to focused fluid infiltration. This mylonitic marble is cross-cut by several cataclastic horizons preferentially developed within the more competent impure blue marble and newly-crystallized dolomitic horizon. These cataclasites are invaded by fluorite and calcite gangue minerals showing locally Mn, Pb, Zn, Fe oxides and/or hydroxides, sphalerite, Ag-galena, Ag-sulfur and native Ag. Oxygen and carbon stable isotopes performed on marble sections point out decarbonation with magmatic contribution and fluid-rock interactions including organic matter present in the whole-rock during ore precipitation. These features show the positive feedback between localization of ductile-brittle deformation-recrystallization, fluid circulation and ore deposition. Accordingly, during orogenic gravitational collapse, the activation of mylonitic-cataclastic low-angle detachments, controlled at first order by temperature, are, at second order, influenced by lithologic heterogeneities that are determinant at localizing fluid circulation, allowing thus a multi-localization of the DBT and ore deposition.

  8. Multiphase groundwater flow near cooling plutons

    USGS Publications Warehouse

    Hayba, D.O.; Ingebritsen, S.E.

    1997-01-01

    We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.

  9. Karst of the Mid-Atlantic region in Maryland, West Virginia, and Virginia

    USGS Publications Warehouse

    Doctor, Daniel H.; Weary, David J.; Brezinski, David K.; Orndorff, Randall C.; Spangler, Lawrence E.; Brezinski, David K.; Halka, Jeffrey; Ortt, Richard A.

    2015-01-01

    The Mid-Atlantic region hosts some of the most mature karst landscapes in North America, developed in highly deformed rocks within the Piedmont and Valley and Ridge physiographic provinces. This guide describes a three-day excursion to examine karst development in various carbonate rocks by following Interstate 70 west from Baltimore across the eastern Piedmont, across the Frederick Valley, and into the Great Valley proper. The localities were chosen in order to examine the structural and lithological controls on karst feature development in marble, limestone, and dolostone rocks with an eye toward the implications for ancient landscape evolution, as well as for modern subsidence hazards. A number of caves will be visited, including two commercial caverns that reveal strikingly different histories of speleogenesis. Links between karst landscape development, hydrologic dynamics, and water resource sustainability will also be emphasized through visits to locally important springs. Recent work on quantitative dye tracing, spring water geochemistry, and groundwater modeling reveal the interaction between shallow and deep circulation of groundwater that has given rise to the modern karst landscape. Geologic and karst feature mapping conducted with the benefit of lidar data help reveal the strong bedrock structural controls on karst feature development, and illustrate the utility of geologic maps for assessment of sinkhole susceptibility.

  10. Ventifacts at the Pathfinder landing site

    USGS Publications Warehouse

    Bridges, N.T.; Greeley, R.; Haldemann, A.F.C.; Herkenhoff, K. E.; Kraft, M.; Parker, T.J.; Ward, A.W.

    1999-01-01

    About half of the rocks at the Mars Pathfinder Ares Vallis landing site appear to be ventifacts, rocks abraded by windborne particles. Comparable resolution images taken by the Imager for Mars Pathfinder (IMP) camera and the Viking landers show that ventifacts are more abundant at the Pathfinder site. The ventifacts occur in several forms, including rocks with faceted edges, finger-like projections, elongated pits, flutes, grooves, and possible rills. The trends of elongated pits, flutes, grooves, and rills cluster at ???280-330?? clockwise from north and generally dip 10-30?? away from their trend direction. These orientations are indicative of southeast to northwest winds and differ from the trend of wind tails at the landing site, the direction of local wind streaks, and predictions of the Global Circulation Model, all of which indicate northeast to southwest winds. The disparity between these data sets strongly suggests that local circulation patterns have changed since the abrasion of the ventifacted rocks. The greater number of ventifacts at the Pathfinder site compared to either of the Viking sites is most easily explained as being due to a larger supply of abrading particles, composed of either sand-sized grains or indurated dust aggregates, and higher surface roughness, which should increase the momentum of saltating grains. The Pathfinder ventifacts may have formed shortly after the deposition of outflow channel sediments nearly 2 Gry ago, when a large local supply of abrading particles should have been abundant and atmospheric conditions may have been more conducive to rock abrasion from saltating grains. Based on how ventifacts form on Earth, the several ventifact forms seen at the Pathfinder site and their presence on some rocks but not on others are probably due to local airflow conditions, original rock shape, exposure duration, rock movement, and to a lesser extent, rock lithology. The abundance of ventifacts at the Pathfinder site, together with other evidence of weathering, indicates that unaltered rock surfaces are rare on Mars. Copyright 1999 by the American Geophysical Union.

  11. Ancient Aqueous Environments at Endeavour Crater, Mars

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Squyres, S. W.; Bell, J. F.; Catalano, J. G.; Clark, B. C.; Crumpler, L. S.; de Souza, P. A.; Fairen, A. G.; Farrand, W. H.; Fox, V. K.; hide

    2014-01-01

    Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe(+3)-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.

  12. Ancient aqueous environments at Endeavour crater, Mars

    USGS Publications Warehouse

    Arvidson, R. E.; Squyres, S. W.; Bell, J.F.; Catalano, J.G.; Clark, B. C.; Crumpler, L.S.; de Souza, P.A.; Fairén, A.G.; Farrand, W. H.; Fox, V.K.; Gellert, Ralf; Ghosh, A.; Golombeck, M.P.; Grotzinger, J.P.; Guinness, E.A.; Herkenhoff, Kenneth E.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Moore, Johnnie N.; Morris, R.V.; Murchie, S.L.; Parker, T.J.; Paulsen, G.; Rice, J.W.; Ruff, S.W.; Smith, M.D.; Wolff, M.J.

    2014-01-01

    Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe+3-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.

  13. Preliminary hydrogeologic evaluation of the Cincinnati Arch region for underground high-level radioactive waste disposal, Indiana, Kentucky , and Ohio

    USGS Publications Warehouse

    Lloyd, O.B.; Davis, R.W.

    1989-01-01

    Preliminary interpretation of available hydrogeologic data suggests that some areas underlying eastern Indiana, north-central Kentucky, and western Ohio might be worthy of further study regarding the disposal of high-level radioactive waste in Precambrian crystalline rocks buried beneath Paleozoic sedimentary rocks in the area. The data indicate that (1) largest areas of deepest potential burial and thickest sedimentary rock cover occur in eastern Indiana; (2) highest concentrations of dissolved solids in the basal sandstone aquifer, suggesting the most restricted circulation, are found in the southern part of the area near the Kentucky-Ohio State line and in southeastern Indiana; (3) largest areas of lowest porosity in the basal sandstone aquifer, low porosity taken as an indicator of the lowest groundwater flow velocity and contaminant migration, are found in northeastern Indiana and northwestern Ohio, central and southeastern Indiana, and central Kentucky; (4) the thickest confining units that directly overlie the basal sandstone aquifer are found in central Kentucky and eastern Indiana where their thickness exceeds 500 ft; (5) steeply dipping faults that form potential hydraulic connections between crystalline rock, the basal sandstone aquifer, and the freshwater circulation system occur on the boundaries of the study area mainly in central Kentucky and central Indiana. Collectively, these data indicate that the hydrogeology of the sedimentary rocks in the western part of the study area is more favorably suited than that in the remainder of the area for the application of the buried crystalline-rock concept. (USGS)

  14. Fault Weakening due to Erosion by Fluids: A Possible Origin of Intraplate Earthquake Swarms

    NASA Astrophysics Data System (ADS)

    Vavrycuk, V.; Hrubcova, P.

    2016-12-01

    The occurrence and specific properties of earthquake swarms in geothermal areas are usually attributed to a highly fractured rock and/or heterogeneous stress within the rock mass being triggered by magmatic or hydrothermal fluid intrusion. The increase of fluid pressure destabilizes fractures and causes their opening and subsequent shear-tensile rupture. The spreading and evolution of the seismic activity is controlled by fluid flow due to diffusion in a permeable rock and/or by the redistribution of Coulomb stress. The `fluid-injection model', however, is not valid universally. We provide evidence that this model is inconsistent with observations of earthquake swarms in West Bohemia, Czech Republic. Full seismic moment tensors of micro-earthquakes in the 1997 and 2008 swarms in West Bohemia indicate that fracturing at the starting phase of the swarm was not associated with fault openings caused by pressurized fluids but rather with fault compactions. This can physically be explained by a `fluid-erosion model', when the essential role in the swarm triggering is attributed to chemical and hydrothermal fluid-rock interactions in the focal zone. Since the rock is exposed to circulating hydrothermal, CO2-saturated fluids, the walls of fractures are weakened by dissolving and altering various minerals. If fault strength lowers to a critical value, the seismicity is triggered. The fractures are compacted during failure, the fault strength recovers and a new cycle begins.

  15. Fluid-rock interaction controlling clay-mineral crystallization in quartz-rich rocks and its influence on the seismicity of the Carboneras fault area (SE Spain)

    NASA Astrophysics Data System (ADS)

    Jimenez-Espinosa, R.; Abad, I.; Jimenez-Millan, J.; Lorite-Herrera, M.

    2009-04-01

    The Carboneras Fault zone is one of the longest fault in the Betic Cordillera (SE Spain) and it would be a good candidate to generate large magnitude earthquakes (Gracia et al., 2006). Seismicity in the region is characterised by low to moderate magnitude events, although large destructive earthquakes have occurred, which reveals significant earthquake and tsunami hazards (Masana et al., 2004). Due to the internal architecture of the fault zone, shear lenses of post-orogenic sediments of Miocene and Pliocene age including marls and sandstones sequences are juxtaposed to the predominant slaty gouges of the Alpine basement. Microcataclasites and gouges of the quartz-rich post-orogenic sediments are also developed as cm- to m-scale bands, allowing the comparison between the deformed materials and their protoliths. Red, yellow and white sandstones and their respective cataclasites can be identified. This communication is concerned with the clay mineral crystallization events in these materials and its possible influence on the seismicity model of the region. The presence of phyllosilicates in fault zones as either neoformed or inherited clays is commonly related with fluid circulation and a mechanically weak fault behaviour (e.g., Wang, 1984). A critical factor for the understanding of the mechanical role of clays in fault rocks is to determine the timing of formation of mineral assemblages and microstructure of fault rocks and protolith. The effects of post-faulting alteration limit inferences about fault behaviour that can be made from exhumed rocks. The Carboneras fault zone provides good opportunities to study mineral processes enhanced by deformation, given that it is located in a region of arid climate and shows outcroppings of quartzitic rocks included in slaty rocks. Combined XRD, optical microscopy and SEM analyses reveal that deformed quartzitic rocks are enriched in phyllosilicates, increasing especially the amount of chlorite. The samples strongly damaged are characterised also by the presence of dolomite and gypsum. The deformation is highly localized, developing phyllosilicate-rich bands highly foliated due to the presence of fine-sized aligned clays (chlorite and mica). In some undeformed lenses of the cataclastic rocks, variable-sized patches of phyllosilicates containing random oriented stacks of chlorite and mica are developed. BSE images reveal that the stacks are made of two intergrown compositional types of chlorite. These results lead to conclude that limited clay growth during faulting occurred. The absence of significant compositional differences between undeformed and deformed phyllosilicates suggests that whereas fluids were present during strike-slip faulting, fluids were not preferentially focused along the quartz-rich rocks of the fault zone by phyllosilicates avoiding the development of the synkinematic clay alteration process. However, clays played an important role for the mechanical behaviour of the quartzitic rocks in the fault zone. Deformation is highly localized in chlorite-rich sandstones. These sandstones show substantial clay crystallization which texture can be related with a hydrothermal origin before strike-slip faulting, likely associated with the volcanic activity of the area leading to form of chlorite/mica patches. These data indicate that, although elevated fluid pressure confined by clay fabric cannot be appealed for the mechanical behaviour of the sandstones of the Carboneras fault, clay fabrics developed during deformation dominated the fault-weakening mechanism. We consider that lubricating properties of phyllosilicates in the quartzitic rocks were an important factor controlling movement mechanisms promoting the predominance of creep as regards seismic stick-slip (Bedrosian et al., 2004) reducing the possibility of larger seismogenic events that nucleate on localized fault planes developed within quartzitic rocks contained within the fault zone. Finally the crystallization of dolomite and gypsum in the highly damaged areas of the microcataclasites could be related with recent low-temperature and high-salinity water circulation episodes, suggesting that cataclasis may control pathways and focus circulation of the current aquifer systems. References Bedrosian, P.A., Unsworth, M.J., Egbert, G.D., Thuerber, C.H. (2004): Geophysical images of creeping segment of the San Andreas Fault: Implications for the role of crustal fluids in the earthquake process. Tectonophysics, 385, 137-158. Gracia, E., Palla, R., Soto, J.I., Comas, M., Moreno, X., Masana, E., Santanach, P., Diez, S., García, M., Dañobeitia, J. & HITS scientific party (2006): Active faulting offshore SE Spain (Alboran Sea): Implications for earthquake hazard assessment in the Southern Iberian Margin. Earth and Planetary Science Letters, 241, 734-749. Masana E., Martínez-Díaz, J.J., Hernández-Enrile, J.L. & Santanach, P. (2004): The Alhama de Murcia fault (SE Spain), a seismogenic fault in a diffuse plate boundary: seismotectonic implications for the Ibero-Magrebian region. J. Geophys. Res., 109, 1-17. Wang, C.Y. (1984): On the constitution of the San Andreas fault zone in central California. J. Geophys. Res., 89, 5858-5866.

  16. Clumped isotopologue constraints on the origin of methane at seafloor hot springs

    NASA Astrophysics Data System (ADS)

    Wang, David T.; Reeves, Eoghan P.; McDermott, Jill M.; Seewald, Jeffrey S.; Ono, Shuhei

    2018-02-01

    Hot-spring fluids emanating from deep-sea vents hosted in unsedimented ultramafic and mafic rock commonly contain high concentrations of methane. Multiple hypotheses have been proposed for the origin(s) of this methane, ranging from synthesis via reduction of aqueous inorganic carbon (∑CO2) during active fluid circulation to leaching of methane-rich fluid inclusions from plutonic rocks of the oceanic crust. To further resolve the process(es) responsible for methane generation in these systems, we determined the relative abundances of several methane isotopologues (including 13CH3D, a "clumped" isotopologue containing two rare isotope substitutions) in hot-spring source fluids sampled from four geochemically-distinct hydrothermal vent fields (Rainbow, Von Damm, Lost City, and Lucky Strike). Apparent equilibrium temperatures retrieved from methane clumped isotopologue analyses average 310-42+53 °C, with no apparent relation to the wide range of fluid temperatures (96-370 °C) and chemical compositions (pH, [H2], [∑CO2], [CH4]) represented. Combined with very similar bulk stable isotope ratios (13C/12C and D/H) of methane across the suite of hydrothermal fluids, all available geochemical and isotopic data suggest a common mechanism of methane generation at depth that is disconnected from active fluid circulation. Attainment of equilibrium amongst methane isotopologues at temperatures of ca. 270-360 °C is compatible with the thermodynamically-favorable reduction of CO2 to CH4 at temperatures at or below ca. 400 °C under redox conditions characterizing intrusive rocks derived from sub-ridge melts. Collectively, the observations support a model where methane-rich aqueous fluids, known to be trapped in rocks of the oceanic lithosphere, are liberated from host rocks during hydrothermal circulation and perhaps represent the major source of methane venting with thermal waters at unsedimented hydrothermal fields. The results also provide further evidence that water-rock reactions occurring at temperatures lower than 200 °C do not contribute significantly to the quantities of methane venting at mid-ocean ridge hot springs.

  17. Challenges of constructing salt cavern gas storage in China

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Yuan, Guangjie; Ban, Fansheng; Zhuang, Xiaoqian; Li, Jingcui

    2017-11-01

    After more than ten years of research and engineering practice in salt cavern gas storage, the engineering technology of geology, drilling, leaching, completion, operation and monitoring system has been established. With the rapid growth of domestic consumption of natural gas, the requirement of underground gas storage is increasing. Because high-quality rock salt resources about 1000m depth are relatively scarce, the salt cavern gas storages will be built in deep rock salt. According to the current domestic conventional construction technical scheme, construction in deep salt formations will face many problems such as circulating pressure increasing, tubing blockage, deformation failure, higher completion risk and so on, caused by depth and the complex geological conditions. Considering these difficulties, the differences between current technical scheme and the construction scheme of twin well and big hole are analyzed, and the results show that the technical scheme of twin well and big hole have obvious advantages in reducing the circulating pressure loss, tubing blockage and failure risk, and they can be the alternative schemes to solve the technical difficulties of constructing salt cavern gas storages in the deep rock salt.

  18. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A. D.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; Tsigaridis, K.

    2017-07-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  19. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    NASA Technical Reports Server (NTRS)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; hide

    2017-01-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth's, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  20. COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii

    2014-05-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the field by Gudmundsson & Arnorsson [3] and by Icelandic partners of the COTHERM project suggests that the concept of partial equilibrium with instantaneous precipitation of secondary minerals is not sufficient to satisfactorily describe the experimental data. Considering kinetic controls also for secondary minerals appears as indispensable to properly describe the geothermal system evolution using a reactive transport modelling approach [4]. [1] Kulik D.A., Wagner T., Dmytrieva S.V., Kosakowski G., Hingerl F.F., Chudnenko K.V., Berner U., 2013. GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Computational Geosciences 17, 1-24. http://gems.web.psi.ch. [2] Palandri, J.L., Kharaka, Y.K., 2004. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modelling. U.S.Geological Survey, Menlo Park, CA, pp. 1-64. [3] Gudmundsson B.T., Arnorsson S., 2005. Secondary mineral-fluid equilibria in the Krafla and Namafjall geothermal systems, Iceland. Applied Geochememistry 20, 1607-1625. [4] Kosakowski, G., & Watanabe, N., 2013. OpenGeoSys-Gem: A numerical tool for calculating geochemical and porosity changes in saturated and partially saturated media. Physics and Chemistry of the Earth, Parts A/B/C. doi:10.1016/j.pce.2013.11.008

  1. Interpretation of well logs in a carbonate aquifer

    USGS Publications Warehouse

    MacCary, L.M.

    1978-01-01

    This report describes the log analysis of the Randolph and Sabial core holes in the Edwards aquifer in Texas, with particular attention to the principles that can be applied generally to any carbonate system. The geologic and hydrologic data were obtained during the drilling of the two holes, from extensive laboratory analysis of the cores, and from numerous geophysical logs run in the two holes. Some logging methods are inherently superiors to others for the analysis of limestone and dolomite aquifers. Three such systems are the dentistry, neutron, and acoustic-velocity (sonic) logs. Most of the log analysis described here is based on the interpretation of suites of logs from these three systems. In certain instances, deeply focused resistivity logs can be used to good advantage in carbonate rock studies; this technique is used to computer the water resistivity in the Randolph core hole. The rocks penetrated by the Randolph core hole are typical of those carbonates that have undergone very little solution by recent ground-water circulation. There are few large solutional openings; the water is saline; and the rocks are dark, dolomitic, have pore space that is interparticle or intercrystalline, and contain unoxidized organic material. The total porosity of rocks in the saline zone is higher than that of rocks in the fresh-water aquifer; however, the intrinsic permeability is much less in the saline zone because there are fewer large solutional openings. The Sabinal core hole penetrates a carbonate environment that has experienced much solution by ground water during recent geologic time. The rocks have high secondary porosities controlled by sedimentary structures within the rock; the water is fresh; and the dominant rock composition is limestone. The relative percentages of limestone and dolomite, the average matrix (grain) densities of the rock mixtures , and the porosity of the rock mass can be calculated from density, neutron, and acoustic logs. With supporting data from resistivity logs, the formation water quality can be estimated, as well as the relative cementation or tortuosity of the rock. Many of these properties calculated from logs can be verified by analysis of the core available from test holes drilled in the saline and fresh water zones.

  2. USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 405.

    DTIC Science & Technology

    1977-09-28

    Equilibrium Temperature at Earth’s Center 24 Equivalence in Plane Problem of Gravimetry with Variable Density of Masses 24 Prediction of Rock...circulation mechanisms can be regarded as models relating the distribution of tempera- ture, precipitation , cloud cover, etc. with the system of air...does the dura- tion of elementary circulation mechanisms have a direct relationship to a paucity of precipitation . Data for the period prior to 1918

  3. Environmental consequences of shale gas exploitation and the crucial role of rock microfracturing

    NASA Astrophysics Data System (ADS)

    Renard, Francois

    2015-04-01

    The growing exploitation of unconventional gas and oil resources has dramatically changed the international market of hydrocarbons in the past ten years. However, several environmental concerns have also been identified such as the increased microseismicity, the leakage of gas into freshwater aquifers, and the enhanced water-rock interactions inducing the release of heavy metals and other toxic elements in the produced water. In all these processes, fluids are transported into a network of fracture, ranging from nanoscale microcracks at the interface between minerals and the kerogen of the source rock, to well-developed fractures at the meter scale. Characterizing the fracture network and the mechanisms of its formation remains a crucial goal. A major difficulty when analyzing fractures from core samples drilled at depth is that some of them are produced by the coring process, while some other are produced naturally at depth by the coupling between geochemical and mechanical forces. Here, I present new results of high resolution synchrotron 3D X-ray microtomography imaging of shale samples, at different resolutions, to characterize their microfractures and their mechanisms of formation. The heterogeneities of rock microstructure are also imaged, as they create local stress concentrations where cracks may nucleate or along which they propagate. The main results are that microcracks form preferentially along kerogen-mineral interfaces and propagate along initial heterogeneities according to the local stress direction, connecting to increase the total volume of fractured rock. Their lifetime is also an important parameter because they may seal by fluid circulation, fluid-rock interactions, and precipitation of a cement. Understanding the multi-scale processes of fracture network development in shales and the coupling with fluid circulation represents a key challenge for future research directions.

  4. Subsurface geology of the Lusi region: preliminary results from a comprehensive seismic-stratigraphic study.

    NASA Astrophysics Data System (ADS)

    Moscariello, Andrea; Do Couto, Damien; Lupi, Matteo; Mazzini, Adriano

    2016-04-01

    We investigate the subsurface data of a large sector in the Sidoarjo district (East Java, Indonesia) where the sudden catastrophic Lusi eruption started the 26th May 2006. Our goal is to understand the stratigraphic and structural features which can be genetically related to the surface manifestations of deep hydrothermal fluids and thus allow us to predict possible future similar phenomena in the region. In the framework of the Lusi Lab project (ERC grant n° 308126) we examined a series of densely spaced 2D reflection commercial seismic lines This allowed the reconstruction of the lateral variability of key stratigraphic horizons as well as the main tectonic features. In particular, we shed light on the deep structure of the Watukosek fault system and the associated fracture corridors crossing the entire stratigraphic successions. To the South-West, when approaching the volcanic complex, we could identify a clear contrast in seismic facies between chaotic volcanoclastic wedges and clastic-prone sedimentary successions as well as between the deeper stratigraphic units consisting of carbonates and lateral shales units. The latter show possible ductile deformation associated to fault-controlled diapirism which control in turns deformation of overlying stratigraphic units and deep geo-fluids circulation. Large collapse structures recognized in the study area (e.g. well PRG-1) are interpreted as the results of shale movement at depth. Similarly to Lusi, vertical deformation zones ("pipes"), likely associated with deeply rooted strike-slip systems seem to be often located at the interface between harder carbonate rocks forming isolated build ups and the laterally nearby clastic (shale-prone)-units. The mechanisms of deformation of structural features (strike vs dip slip systems) which may affect either the basement rock or the overlying deeper stratigraphic rocks is also being investigated to understand the relationship between deep and shallower (i.e. meteoric) fluid circulation. Seismic stratigraphic study of the basin margin (closer to volcanic accumulations) will also allow reconstructing the relationships between present and past volcanic activity recorded in the deep subsurface with the genesis of piercement structures and development of vertical deformation zones

  5. The role of the thermal convection of fluids in the formation of unconformity-type uranium deposits: the Athabasca Basin, Canada

    NASA Astrophysics Data System (ADS)

    Pek, A. A.; Malkovsky, V. I.

    2017-05-01

    In the global production of uranium, 18% belong to the unconformity-type Canadian deposits localized in the Athabasca Basin. These deposits, which are unique in terms of their ore quality, were primarily studied by Canadian and French scientists. They have elaborated the diagenetic-hydrothermal hypothesis of ore formation, which suggests that (1) the deposits were formed within a sedimentary basin near an unconformity surface dividing the folded Archean-Proterozoic metamorphic basement and a gently dipping sedimentary cover, which is not affected by metamorphism; (2) the spatial accommodation of the deposits is controlled by the rejuvenated faults in the basement at their exit into the overlying sedimentary sequence; the ore bodies are localized above and below the unconformity surface; (3) the occurrence of graphite-bearing rocks is an important factor in controlling the local structural mineralization; (4) the ore bodies are the products of uranium precipitation on a reducing barrier. The mechanism that drives the circulation of ore-forming hydrothermal solutions has remained one of the main unclear questions in the general genetic concept. The ore was deposited above the surface of the unconformity due to the upflow discharge of the solution from the fault zones into the overlying conglomerate and sandstone. The ore formation below this surface is a result of the downflow migration of the solutions along the fault zones from sandstone into the basement rocks. A thermal convective system with the conjugated convection cells in the basement and sedimentary fill of the basin may be a possible explanation of why the hydrotherms circulate in the opposite directions. The results of our computations in the model setting of the free thermal convection of fluids are consistent with the conceptual reasoning about the conditions of the formation of unique uranium deposits in the Athabasca Basin. The calculated rates of the focused solution circulation through the fault zones in the upflow and downflow branches of a convection cell allow us to evaluate the time of ore formation up to the first hundreds of thousands years.

  6. Comparative modeling of an in situ diffusion experiment in granite at the Grimsel Test Site.

    PubMed

    Soler, Josep M; Landa, Jiri; Havlova, Vaclava; Tachi, Yukio; Ebina, Takanori; Sardini, Paul; Siitari-Kauppi, Marja; Eikenberg, Jost; Martin, Andrew J

    2015-08-01

    An in situ diffusion experiment was performed at the Grimsel Test Site (Switzerland). Several tracers ((3)H as HTO, (22)Na(+), (134)Cs(+), (131)I(-) with stable I(-) as carrier) were continuously circulated through a packed-off borehole and the decrease in tracer concentrations in the liquid phase was monitored for a period of about 2years. Subsequently, the borehole section was overcored and the tracer profiles in the rock analyzed ((3)H, (22)Na(+), (134)Cs(+)). (3)H and (22)Na(+) showed a similar decrease in activity in the circulation system (slightly larger drop for (3)H). The drop in activity for (134)Cs(+) was much more pronounced. Transport distances in the rock were about 20cm for (3)H, 10cm for (22)Na(+), and 1cm for (134)Cs(+). The dataset (except for (131)I(-) because of complete decay at the end of the experiment) was analyzed with different diffusion-sorption models by different teams (IDAEA-CSIC, UJV-Rez, JAEA) using different codes, with the goal of obtaining effective diffusion coefficients (De) and porosity (ϕ) or rock capacity (α) values. From the activity measurements in the rock, it was observed that it was not possible to recover the full tracer activity in the rock (no activity balance when adding the activities in the rock and in the fluid circulation system). A Borehole Disturbed Zone (BDZ) had to be taken into account to fit the experimental observations. The extension of the BDZ (1-2mm) is about the same magnitude than the mean grain size of the quartz and feldspar grains. IDAEA-CSIC and UJV-Rez tried directly to match the results of the in situ experiment, without forcing any laboratory-based parameter values into the models. JAEA conducted a predictive modeling based on laboratory diffusion data and their scaling to in situ conditions. The results from the different codes have been compared, also with results from small-scale laboratory experiments. Outstanding issues to be resolved are the need for a very large capacity factor in the BDZ for (3)H and the difference between apparent diffusion coefficients (Da) from the in situ experiment and out-leaching laboratory tests. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. An Experimental Study on Characterization of Physical Properties of Ultramafic Rocks and Controls on Evolution of Fracture Permeability During Serpentinization at Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Farough, Aida

    Serpentinization is a complex set of hydration reactions, where olivine and pyroxene are replaced by serpentine, magnetite, brucite, talc and carbonate minerals. Serpentinization reactions alter chemical, mechanical, magnetic, seismic, and hydraulic properties of the crust. To understand the complicated nature of serpentinization and the linkages between physical and chemical changes during the reactions, I performed flow-through laboratory experiments on cylindrically cored samples of ultramafic rocks. Each core had a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at an effective pressure of 30 MPa, and temperature of 260"aC, simulating a depth of 2 km under hydrostatic conditions. Fracture permeability decreased by one to two orders of magnitude during the 200 to 340 hour experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferromagnesian minerals. The rate of transformation of olivine to serpentine in a tensile fracture is calculated using the data on evolution of fracture permeability assuming the fracture permeability could be represented by parallel plates. Assuming the dissolution and precipitation reactions occur simultaneously; the rate of transformation at the beginning of the experiments was 10-8-10-9 (mol/m2s) and decreased monotonically by about an order of magnitude towards the end of the experiment. Results show that dissolution and precipitation is the main mechanism contributing to the reduction in fracture aperture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems may be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses may be required to maintain fluid circulation. Another set of flow through experiments were performed on intact samples of ultramafic rocks at room temperature and effective pressures of 10, 20 and 30 MPa to estimate the pressure dependency of intact permeability. Porosity and density measurements were also performed with the purpose of characterizing these properties of ultramafic rocks. The pressure dependency of the coefficient of matrix permeability of the ultramafic rock samples fell in the range of 0.05-0.14 MPa -1. Using porosity and permeability measurements, the ratio of interconnected porosity to total porosity was estimated to be small and the permeability of the samples was dominantly controlled by microcracks. Using the density and porosity measurements, the degree of alteration of samples was estimated. Samples with high density and pressure dependent permeability had a smaller degree of alteration than those with lower density and pressure dependency.

  8. Fluid inclusions and biomarkers in the Upper Mississippi Valley zinc-lead district; implications for the fluid-flow and thermal history of the Illinois Basin

    USGS Publications Warehouse

    Rowan, E. Lanier; Goldhaber, Martin B.

    1996-01-01

    The Upper Mississippi Valley zinc-lead district is hosted by Ordovician carbonate rocks at the northern margin of the Illinois Basin. Fluid inclusion temperature measurements on Early Permian sphalerite ore from the district are predominantly between 90?C and I50?C. These temperatures are greater than can be explained by their reconstructed burial depth, which was a maximum of approximately 1 km at the time of mineralization. In contrast to the temperatures of mineral formation derived from fluid inclusions, biomarker maturities in the Upper Mississippi Valley district give an estimate of total thermal exposure integrated over time. Temperatures from fluid inclusions trapped during ore genesis with biomarker maturities were combined to construct an estimate of the district's overall thermal history and, by inference, the late Paleozoic thermal and hydrologic history of the Illinois Basin. Circulation of groundwater through regional aquifers, given sufficient flow rates, can redistribute heat from deep in a sedimentary basin to its shallower margins. Evidence for regional-scale circulation of fluids is provided by paleomagnetic studies, regionally correlated zoned dolomite, fluid inclusions, and thermal maturity of organic matter. Evidence for igneous acti vity contemporaneous with mineralization in the vicinity of the Upper Mississippi Valley district is absent. Regional fluid and heat circulation is the most likely explanation for the elevated fluid inclusion temperatures (relative to maximum estimated burial depth) in the Upper Mississippi Valley district. One plausible driving mechanism and flow path for the ore-forming fluids is groundwater recharge in the late Paleozoic Appalachian-Ouachita mountain belt and northward flow through the Reelfoot rift and the proto- Illinois Basin to the Upper Mississippi Valley district. Warm fluid flowing laterally through Cambrian and Ordovician aquifers would then move vertically upward through the fractures that control sphalerite mineralization in the Upper Mississippi Valley district. Biomarker reactant-product measurements on rock extracts from the Upper Mississippi Valley district define a relatively low level ofthermal maturity for the district, 0.353 for sterane and 0.577 for hopane. Recently published kinetic constants permit a time-temperature relationship to be determined from these biomarker maturities. Numerical calculations were made to simulate fluid heat flow through the fracture-controlled ore zones of the Thompson-Temperly mine and heat transfer to the adjacent rocks where biomarker samples were collected. Calculations that combine the fluid inclusion temperatures and the biomarker constraints on thermal maturity indicate that the time interval during which mineralizing fluids circulated through the Upper Mississippi Valley district is on the order of 200,000 years. Fluid inclusion measurements and thermal maturities from biomarkers in the district reflect the duration of peak temperatures resulting from regional fluid circulation. On the basis of thermal considerations, the timing of fluorite mineralization in southern Illinois, and the northward-decreasing pattern of fluorine enrichment in sediments, we hypothesize that the principal flow direction was northward through the Cambrian and Ordovician aquifers of the Illinois Basin. A basin-scale flow system would result in mass transport (hydrocarbon migration, transport of metals in solution) and energy (heat) transport, which would in turn drive chemical reactions (for example, maturation of organic matter, mineralization, diagenetic reactions) within the Illinois Basin and at its margins.

  9. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Way, M. J.; Aleinov, I.; Amundsen, David S.

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower tomore » more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.« less

  10. Geochemical and isotopic data for restricting seawater intrusion and groundwater circulation in a series of typical volcanic islands in the South China Sea.

    PubMed

    Zhang, Wenjie; Chen, Xi; Tan, Hongbing; Zhang, Yanfei; Cao, Jifu

    2015-04-15

    The decline of groundwater table and deterioration of water quality related to seawater have long been regarded as a crucial problem in coastal regions. In this work, a hydrogeologic investigation using combined hydrochemical and isotopic approaches was conducted in the coastal region of the South China Sea near the Leizhou peninsular to provide primary insight into seawater intrusion and groundwater circulation. Hydrochemical and isotopic data show that local groundwater is subjected to anthropogenic activities and geochemical processes, such as evaporation, water-rock interaction, and ion exchange. However, seawater intrusion driven by the over-exploitation of groundwater and insufficient recharge is the predominant factor controlling groundwater salinization. Systematic and homologic isotopic characteristics of most samples suggest that groundwater in volcanic area is locally recharged and likely caused by modern precipitation. However, very depleted stable isotopes and extremely low tritium of groundwater in some isolated aquifers imply a dominant role of palaeowater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Assessment of hydrochemical processes and groundwater hydrodynamics in a multilayer aquifer system under long-term irrigation condition: A case study of Nefzaoua basin, southern Tunisia.

    PubMed

    Tarki, M; Ben Hammadi, M; El Mejri, H; Dassi, L

    2016-04-01

    The hydrochemical and isotopic investigation of the Nefzaoua aquifer system demonstrates that groundwater mineralization in is controlled by natural and anthropogenic processes including water-rock interaction and irrigation return flow. It identifies all of the water bodies that flow within the aquifer system and their circulation patterns. The isotopically depleted paleowaters, identified within the deep and intermediate aquifers, undergo significant enrichment by evaporation during irrigation and recharged the shallow aquifer by return flow. Subsequently, they infiltrate to the intermediate aquifer which receives also rainfall modern recharge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Technology Transfer at Edgar Mine: Phase 1; October 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad R.; Bauer, Stephen; Nakagawa, Masami

    The objective of this project is to study the flow of fluid through the fractures and to characterize the efficiency of heat extraction (heat transfer) from the test rock mass in the Edgar Mine, managed by Colorado School of Mines in Idaho Springs, CO. The experiment consists of drilling into the wall of the mine and fracturing the rock, characterizing the size and nature of the fracture network, circulating fluid through the network, and measuring the efficiency of heat extraction from the 'reservoir' by monitoring the temperature of the 'produced' fluid with time. This is a multi-year project performed asmore » a collaboration between the National Renewable Energy Laboratory, Colorado School of Mines and Sandia National Laboratories and carried out in phases. This report summarizes Phase 1: Selection and characterization of the location for the experiment, and outlines the steps for Phase 2: Circulation Experiments.« less

  13. Applications of UThPb isotope systematics to the problems of radioactive waste disposal

    USGS Publications Warehouse

    Stuckless, J.S.

    1986-01-01

    Concentrations of U, Th and Pb, and the isotopic composition of Pb for whole-rock samples of granitoids show: (1) that open-system behavior is nearly universal in the surface and near-surface environment; and (2) that elemental mobility is possible to depths of several hundred meters. Several identified or at least postulated factors that control U and/or Pb mobility include: (1) the mineralogical sites for U and its daughter products; (2) access of groundwater to these sites; (3) the volume of circulating water; and (4) the chemistry of the groundwater. Studies of granitic samples from peralkaline complexes in the Arabian Shield have shown that most samples lost less than 20% of their U during recent exposure to the near-surface environment. Most of the U in these samples appears to be firmly bound in zircons. In contrast, most surface and shallow drill-core samples of the granite of Lankin Dome (Granite Mountains, Wyoming) have lost ??? 70% of their U. Most of the U in these samples is weakly bound in biotite and epidote-family minerals. The granite recovered during the Illinois Deep Drill Hole Project (Stephenson County, Illinois) is mineralogically similar to the granite of Lankin Dome, but this granite lost radiogenic Pb rather than U, probably as a result of exposure to groundwater that had a markedly different chemistry from that in the Granite Mountains. Studies of the Sherman Granite (Wyoming) and the Go??temar Granite (southeastern Sweden) have shown that U and/or Pb mobility is greatest in and near fractured rock. The greater mobility is interpreted to be the result of both a larger water/rock ratio in the fractured rock and exposure to water over an increased surface area (and consequently a greater number of uranium sites). Several types of geochemical and mineralogic data can be used to identify rock-water interaction in granites; however, if rock samples have favorable radiogenic to common Pb ratios, both the amount and approximate timing of U or Pb mobility can be obtained through the use of isotopic studies. Such information can be extremely important in the search for favorable hosts for containment of radioactive waste. Rocks such as the Go??temar Granite have undergone considerable rock-water interaction, most of which occurred ??? 400 Myr. ago and little in recent times. Thus a search for zones that have experienced only a little interaction with water may provide a misleading prediction as to the ability of such zones to shield radioactive wastes from the modern biosphere. From an isotopic point of view, an ideal candidate for evaluation as a host rock for radioactive wastes would have the following characteristics: (1) a high ratio (> 2) of radiogenic to common Pb in order to optimize precision of the results; (2) a simple two-stage geologic history so that results could be interpreted without multiple working hypotheses; and (3) an originally high percentage (> 50%) of labile U so that the results would be highly sensitive to even small amount of rock-water interaction. These characteristics should produce rocks with marked radioactive disequilibrium in surface samples. The disequilibrium should grade to radioactive equilibrium with increasing depth until zones in which water has not circulated are found. Extensive regions of such zones must exist because UThPb systematics of most analyzed granitoids demonstrate closed-system behavior for almost all of their history except for their recent history in the near-surface environment. ?? 1986.

  14. Miocene diagenetic and epigenetic strontium mineralization in calcareous series from Cyprus and the Arabian Gulf: Metallogenic perspective on sub- and suprasalt redox-controlled base metal deposits

    NASA Astrophysics Data System (ADS)

    Dill, Harald G.; Henjes-Kunst, Friedhelm; Berner, Zsolt; Stüben, Doris

    2009-04-01

    During the Neogene, celestite deposits evolved in the Neo-Tethys basins, in what is today called the Mediterranean Sea and the Arabian Gulf. Two evaporite deposits, in Cyprus and in Qatar have been investigated from the sedimentological and mineralogical point of view with emphasis placed on Sr, S and Ca isotopes of carbonate, gypsum and celestite. During the early Miocene shallow marine environments occurred in the Gulf region and in Cyprus both of which are abundant in syndiagenetic sulphate minerals. The calcareous environments had a strong impact on the fluid migration leading to the Sr mineralization. In the Gulf region algal biostromes favored the lateral migration of fluids but had a sealing effect so that any epigenetic mineralization based on vertical fluid flow was hampered. In contrast, the Cypriot depocentre overlying the Troodos ophiolite is dominated by patch and knoll reefs (bioherms) which provide enough porosity and permeability to be favorable for the circulation of fluids with a strong vertical component. Owing to these changes in the calcareous host series, epigenetic sulphate mineralization evolved in Cyprus during the late Miocene. This occurred as the Mediterranean Sea gradually became isolated from the open ocean and, as a precursor to the "Messinian salinity crisis" evaporitic brines circulated deep into the Meso-Cenozoic platform sediments and the underlying Troodos ophiolite where these fluids leached some base metals and sulphur for the celestite mineralization. The Red Sea Rifting was at full swing during the Late Miocene and its northern propagation into the Mediterranean Sea is assumed to have had a structural control on the positioning of the Sr deposits in Cyprus. In the Gulf area, the final closure of the Neo-Tethys and Zagros folding terminated deposition of marine calcareous rocks and alluvial-fluvial siliciclastic rocks were deposited across an unconformity. Missing circulation of highly saline brines was responsible for the absence of an epigenetic Sr mineralization of Cyprus-type in the Gulf area. Assemblages of light (e.g. zeolites) and heavy minerals (e.g. rutile, zoisite, clinopyroxene) and Ca isotope analyses support basic igneous rocks as the source for the detrital and dissolved matter in the depositional environments in Cyprus and the Arabian Gulf. The Ca isotope data imply formation of the sulphate and carbonate minerals in a marine environment without significant contributions of more radiogenic 40Ca coming from old continental crust, e.g., the Kyrenia Range or Mamonia Complex, both of which containing rocks as old as Permian. Cyprus-type (bioherm-type) and Gulf-type (biostrome-type) evaporites are potential progenitors of sediment-hosted mineral deposits (SHSCD) or base metal vein-type deposits. Syndiagenetic celestite-bearing evaporites of the Gulf-type are a model source and progenitor of base metal deposits of stratigraphically-controlled fixed or mobile reductants such as Kupferschiefer-type deposits. Is the Arabian Gulf a Kupferschiefer basin in the making? The epigenetic celestite-bearing mineralization of the Cyprus-type reflects an advanced stage of fluid migration relative to the celestite deposits along the Trucial coast but this brine mobilization failed to create a base metal deposit of its own mainly due to the absence of fixed or mobile reductants. These reductants were present in the western Mediterranean regions in Tunisia and Algeria, where evaporite-associated base metal deposits are going to be mined and in the Mesozoic through Cenozoic platform sediments in central Europe, where numerous suprasalt unconformity-related metal deposits were mined in the past.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis-Richards, J.; Watanable, K.; Yamaguchi, T.

    A set of models of HDR systems is presented which attempts to explain the formation and operation of HDR systems using only the in-situ properties of the fractured rock mass, the earth stress field, the engineering intervention applied by way of stimulation and the relative positions and pressures of the well(s). A statistical and rock mechanics description of fractures in low permeability rocks provides the basis for modeling of stimulation, circulation and water loss in HDR systems. The model uses a large number of parameters, chiefly simple directly measurable quantities, describing the rock mass and fracture system. The effect ofmore » stimulation (raised fluid pressure allowing slip) on fracture apertures is calculated, and the volume of rock affected per volume of fluid pumped estimated. The total rock volume affected by stimulation is equated with the rock volume containing the associated AE (microseismicity). The aperture and compliance properties of the stimulated fractures are used to estimate impedance and flow within the reservoir. Fluid loss from the boundary of the stimulated volume is treated using radial leak-off with pressure-dependent permeability.« less

  16. Mathematical Models of Seafloor Hydrothermal Systems Driven by Serpentinization of Peridotite

    NASA Astrophysics Data System (ADS)

    Lowell, R. P.; Rona, P. A.; Germanovich, L. N.

    2001-12-01

    Most seafloor hydrothermal systems are driven by heat transfer from subsurface magma bodies. At slow spreading ridges of the Atlantic and Indian oceans, however, magma supply is low; and tectonic activity brings mantle rocks to shallow depths in the crust. Then, the heat of formation released upon serpentinization of peridotite provides the energy source for hydrothermal circulation. This latter class of system has been relatively unstudied, but recent discoveries of peridotite-hosted hydrothermal systems along the Mid-Atlantic Ridge suggest that such systems may play an important role in geochemical cycling and biogeochemical processes. The likelihood that peridotite-hosted hydrothermal systems was more prevalent during the Archean further suggests that such systems may have played a role in the origin of life. We present the first mathematical models of seafloor hydrothermal systems driven by heat released upon serpentinization of peridotite. We assume seawater circulates through a major crack network in the host-peridotite and that cooling of the host-rock leads to the formation of microcracks through which the fluid infiltrates. Reaction of the fluid in microcracks with the host rock results in serpentinization and the heat released upon serpentinization is transported to the seafloor by the fluid circulating in the main crack network. The temperature and heat output of the resulting hydrothermal system is a function of the main network permeability and the rate at which the serpentinization reaction proceeds via diffusion and propagation of the microcracks. Although the temperature of such a system can be quite variable, vent temperatures between 10° C and 100° C are likely for typical crustal parameters.

  17. Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater

    USGS Publications Warehouse

    Crumpler, L.S.; Arvidson, R. E.; Bell, J.; Clark, B. C.; Cohen, B. A.; Farrand, W. H.; Gellert, Ralf; Golombek, M.; Grant, J. A.; Guinness, E.; Herkenhoff, Kenneth E.; Johnson, J. R.; Jolliff, B.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.; Rice, J. W.; Squyres, S. W.; Sullivan, R.; Yen, A. S.

    2015-01-01

    Using the Mars Exploration Rover Opportunity, we have compiled one of the first field geologic maps on Mars while traversing the Noachian terrain along the rim of the 22 km diameter Endeavour Crater (Latitude −2°16′33″, Longitude −5°10′51″). In situ mapping of the petrographic, elemental, structural, and stratigraphic characteristics of outcrops and rocks distinguishes four mappable bedrock lithologic units. Three of these rock units predate the surrounding Burns formation sulfate-rich sandstones and one, the Matijevic Formation, represents conditions on early Mars predating the formation of Endeavour Crater. The stratigraphy assembled from these observations includes several geologic unconformities. The differences in lithologic units across these unconformities record changes in the character and intensity of the Martian aqueous environment over geologic time. Water circulated through fractures in the oldest rocks over periods long enough that texturally and elementally significant alteration occurred in fracture walls. These oldest pre-Endeavour rocks and their network of mineralized and altered fractures were preserved by burial beneath impact ejecta and were subsequently exhumed and exposed. The alteration along joints in the oldest rocks and the mineralized veins and concentrations of trace metals in overlying lithologic units is direct evidence that copious volumes of mineralized and/or hydrothermal fluids circulated through the early Martian crust. The wide range in intensity of structural and chemical modification from outcrop to outcrop along the crater rim shows that the ejecta of large (>8 km in diameter) impact craters is complex. These results imply that geologic complexity is to be anticipated in other areas of Mars where cratering has been a fundamental process in the local and regional geology and mineralogy.

  18. Recharge and Topographical Controls on Groundwater Circulation in Shallow Crystalline Rock Aquifers revealed by CFC-based Age Data

    NASA Astrophysics Data System (ADS)

    Kolbe, T.; Abbott, B. W.; Marçais, J.; Thomas, Z.; Aquilina, L.; Labasque, T.; Pinay, G.; De Dreuzy, J. R.

    2016-12-01

    Groundwater transit time and flow path are key factors controlling nitrogen retention and removal capacity at the catchment scale (Abbott et al., 2016), but the relative importance of hydrogeological and topographical factors in determining these parameters remains uncertain (Kolbe et al., 2016). To address this unknown, we used numerical modelling techniques calibrated with CFC groundwater age data to quantify transit time and flow path in an unconfined aquifer in Brittany, France. We assessed the relative importance of parameters (aquifer depth, porosity, arrangement of geological layers, and permeability profile), hydrology (recharge rate), and topography in determining characteristic flow distances (Leray et al., 2016). We found that groundwater flow was highly local (mean travel distance of 350 m) but also relatively old (mean CFC age of 40 years). Sensitivity analysis revealed that groundwater travel distances were not sensitive to geological parameters within the constraints of the CFC age data. However, circulation was sensitive to topography in lowland areas where the groundwater table was close to the land surface, and to recharge rate in upland areas where water input modulated the free surface of the aquifer. We quantified these differences with a local groundwater ratio (rGW-LOCAL) defined as the mean groundwater travel distance divided by the equivalent surface distance water would have traveled along the land surface. Lowland rGW-LOCAL was near 1, indicating primarily topographic controls. Upland rGW-LOCALwas 1.6, meaning the groundwater recharge area was substantially larger than the topographically-defined catchment. This ratio was applied to other catchments in Brittany to test its relevance in comparing controls on groundwater circulation within and among catchments. REFERENCES Abbott et al., 2016, Using multi-tracer inference to move beyond single-catchment ecohydrology. Earth-Science Reviews. Kolbe et al., 2016, Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer. J. Hydrol. Leray et al., 2016, Residence time distributions for hydrologic systems: Mechanistic foundations and steady-state analytical solutions. J. Hydrol.

  19. Aqueous processes at Gusev crater inferred from physical properties of rocks and soils along the Spirit traverse

    USGS Publications Warehouse

    Cabrol, N.A.; Farmer, J.D.; Grin, E.A.; Ritcher, L.; Soderblom, L.; Li, R.; Herkenhoff, K.; Landis, G.A.; Arvidson, R. E.

    2006-01-01

    Gusev crater was selected as the landing site for Spirit on the basis of morphological evidence of long-lasting water activity, including possibly fluvial and lacustrine episodes. From the Columbia Memorial Station to the Columbia Hills, Spirit's traverse provides a journey back in time, from relatively recent volcanic plains showing little evidence for aqueous processes up to the older hills, where rock and soil composition are drastically different. For the first 156 sols, the only evidence of water action was weathering rinds, vein fillings, and soil crust cementation by salts. The trenches of Sols 112-145 marked the first significant findings of increased concentrations of sulfur and magnesium varying in parallel, suggesting that they be paired as magnesium-sulfate. Spirit's arrival at West Spur coincided with a shift in rock and soil composition with observations hinting at substantial amounts of water in Gusev's past. We used the Microscopic Imager data up to Sol 431 to analyze rock and soil properties and infer plausible types and magnitude of aqueous processes through time. We show the role played early by topography and structure. The morphology, texture, and deep alteration shown by the rocks in West Spur and the Columbia Hills Formation (CHF) suggest conditions that are not met in present-day Mars and required a wetter environment, which could have included transport of sulfur, chlorine, and bromine in water, vapor in volcanic gases, hydrothermal circulation, or saturation in a briny fluid containing the same elements. Changing conditions that might have affected flow circulation are suggested by different textural and morphological characteristics between the rocks in the CHF and those of the plains, with higher porosity proxy, higher void ratio, and higher water storage potential in the CHF. Soils were used to assess aqueous processes and water pathways in the top layers of modern soils. We conclude that infiltration might have become more difficult with time. Copyright 2006 by the American Geophysical Union.

  20. Compaction-Driven Evolution of Pluto's Rocky Core: Implications for Water-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Gabasova, L. R.; Tobie, G.; Choblet, G.

    2018-05-01

    We model the compaction of Pluto's rocky core after accretion and explore the potential for hydrothermal circulation within the porous layer, as well as examine its effect on core cooling and the persistence of a liquid internal ocean.

  1. Progress of the LASL dry hot rock geothermal energy project

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1974-01-01

    The possibilities and problems of extracting energy from geothermal reservoirs which do not spontaneously yield useful amounts of steam or hot water are discussed. The system for accomplishing this which is being developed first is a pressurized-water circulation loop intended for use in relatively impermeable hot rock. It will consist of two holes connected through the hot rock by a very large hydraulic fracture and connected at the surface through the primary heat exchanger of an energy utilization system. Preliminary experiments in a hole 2576 ft (0.7852 km) deep, extending about 470 ft (143 m) into the Precambrian basement rock underlying the Jemez Plateau of north-central New Mexico, revealed no unexpected difficulties in drilling or hydraulically fracturing such rock at a temperature of approximately 100 C, and demonstrated a permeability low enough so that it appeared probable that pressurized water could be contained by the basement rock. Similar experiments are in progress in a second hole, now 6701 ft (2.043 km) deep, about 1.5 miles (2.4 km) south of the first one.

  2. High resolution monitoring of hydrology and deformation in a unstable slope

    NASA Astrophysics Data System (ADS)

    Nevers, Pierre; Provost, Floriane; Kromer, Ryan; Bertrand, Catherine; Malet, Jean-Philippe; Marc, Vincent; Gaillardet, Jérôme; Gance, Julien; Abellan, Antonio; Jaboyedoff, Michel

    2017-04-01

    The Séchilienne landslide is located on the right bank of the Romanche River, South East of Grenoble (Isère, France). The active zone of the gravitational instability involves several millions of cubic meters. The geology consists in fractured hard rocks (micaschists) with double permeability and strong spatial heterogeneities. The deformation of the unstable slope is monitored by on-site extensometric gauges, inclinometers, GNSS and remotely by a terrestrial radar and a total station. Hydro-chemio-mechanical processes controlling the reactivation of the landslide are influenced by the evolution of the landslide deformation in space and time, and the water circulation in the highly heterogeneous fractured media. A hydrogeochemical monitoring of the unsaturated zone in the fractured hard rock has been carried out since 2010. This monitoring is supported by the French Landslide Observatory (OMIV) and consists in continuous measurements of physico-chemical parameters on two groundwater outlets (T°C, EC, flow rate) and weekly samplings of the waters for quality monitoring. Water chemistry is a good proxy to locate in time and space the origin of the infiltrated water. This tool is used to understand the complex relationships between chemical weathering, hydromechanical changes and weakening/deformation of the unstable material. This monitoring indicates a correlation between water chemistry, rainwater infiltration and rock mass deformation highlighting the impacts of rock-water interactions on the landslide dynamics. But a distributed information over area is still needed because the heterogeneities of the slope and the few sampling points currently prevent a detailed understanding of the global mechanisms involved. To better understand and constrain the hydrogeological and hydro-chemio-mechanical behavior of the slope, a multi-method monitoring of a flood wave infiltration has been carried out in early 2016 in order to distinguish possible signals related to significant displacements. Displacements were monitored by a GB-InSAR and a terrestrial laser scanner in order to obtain a global image of the deformation at high frequency (less than 1 hour). Repeated time-lapse geoelectrical profiles along four sections have been acquired each two hours on relevant plots which are suspected to be the main water flow paths from the surface to the depth. Water quality changes were monitored at high frequency in order to provide information on the water residence time. This first dataset gives insight into the moving volumes of rock and fluids. Imagery geophysics identifies a signal of fluid circulation in a fracture with a fast transit. The chemical signal identifies the heterogeneous functioning of the drainage system (drain/low permeable structure) with a fast transit.

  3. Refining the Subseafloor Circulation Model of the Middle Valley Hydrothermal System Using Fluid Geochemistry

    NASA Astrophysics Data System (ADS)

    Inderbitzen, K. E.; Wheat, C. G.; Baker, P. A.; Fisher, A. T.

    2014-12-01

    Currently, fluid circulation patterns and the evolution of rock/fluid compositions as circulation occurs in subseafloor hydrothermal systems are poorly constrained. Sedimented spreading centers provide a unique opportunity to study subsurface flow because sediment acts as an insulating blanket that traps heat from the cooling magma body and limits: (a) potential flow paths for seawater to recharge the aquifer in permeable upper basaltic basement and (b) points of altered fluid egress. This also allows for a range of thermal and geochemical gradients to exist near the sediment-water interface. Models of fluid circulation patterns in this type of hydrologic setting have been generated (eg. Stein and Fisher, 2001); however fluid chemistry datasets have not previously been used to test the model's viability. We address this issue by integrating the existing circulation model with fluid compositional data collected from sediment pore waters and high temperature hydrothermal vents located in Middle Valley on the Juan de Fuca Ridge. Middle Valley hosts a variety of hydrologic regimes: including areas of fluid recharge (Site 855), active venting (Site 858/1036; Dead Dog vent field), recent venting (Site 856/1035; Bent Hill Massive Sulfide deposit) and a section of heavily sedimented basement located between recharge and discharge sites (Site 857). We will present new results based on thermal and geochemical data from the area of active venting (Sites 858 and 1036), that was collected during Ocean Drilling Program Legs 139 and 169 and a subsequent heat flow/gravity coring effort. These results illuminate fine scale controls on secondary recharge and fluid flow within the sediment section at Site 858/1036. The current status of high temperature vents in this area (based on observations made in July, 2014) will also be outlined.

  4. Network structures between strategies in iterated prisoners' dilemma games

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Roh, Myungkyoon; Son, Seung-Woo

    2014-02-01

    We use replicator dynamics to study an iterated prisoners' dilemma game with memory. In this study, we investigate the characteristics of all 32 possible strategies with a single-step memory by observing the results when each strategy encounters another one. Based on these results, we define similarity measures between the 32 strategies and perform a network analysis of the relationship between the strategies by constructing a strategies network. Interestingly, we find that a win-lose circulation, like rock-paper-scissors, exists between strategies and that the circulation results from one unusual strategy.

  5. Geochemistry of spring water, southeastern Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    Kimball, Briant A.

    1981-01-01

    The chemical quality of water in the southeastern Uinta Basin, Utah and Colorado, is important to the future development of the abundant oil-shale resources of the area. This report examines the observed changes in chemistry as water circulates in both shallow and deep ground-water systems. Mass-balance and mass- transfer calculations are used to define reactions that simulate the observed water chemistry in the mixed sandstone, siltstone, and carbonate lithology of the Green River Formation of Tertiary age.The mass-transfer calculations determine a reaction path particular to this system. The early dominance of calcite dissolution produces a calcium carbonate water. After calcite saturation, deeper circulation and further rock-water interaction cause the reprecipitation of calcite, the dissolution of dolomite and plagioclase, and the oxidation of pyrite; all combining to produce a calcium magnesium sodium bicarbonate sulfate water. The calculations suggest that silica concentrations are controlled by a kaolinite-Ca-montmorillonite phase boundary. Close agreement of mineral-saturation indices calculated by both an aqueous-equilibrium model and the mass-transfer model support the selection of reactions from the mass-transfer calculations.

  6. Proceedings of the Circulation-Control Workshop, 1986

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N. (Compiler)

    1987-01-01

    A Circulation Control Workshop was held at NASA Ames by respresentatives of academia, industry, and government. A total of 32 papers were given in six technical sessions covering turbulence, circulation control airfoil theory, circulation control airfoil wing experiments, circulation control rotor theory, x-wing technology, fixed wing technology, and other concepts. The last session of the workshop was devoted to circulation control research planning.

  7. Heat-energy storage through semi-opened circulation into low-permeability hard-rock aquifers

    NASA Astrophysics Data System (ADS)

    Pettenati, Marie; Bour, Olivier; Ausseur, Jean-Yves; de Dreuzy, Jean-Raynald; de la Bernardie, Jérôme; Chatton, Eliot; Lesueur, Hervé; Bethencourt, Lorine; Mougin, Bruno; Aquilina, Luc; Koch, Florian; Dewandel, Benoit; Boisson, Alexandre; Mosser, Jean-François; Pauwels, Hélène

    2016-04-01

    In low-permeability environments, the solutions of heat storage are still limited to the capacities of geothermal borehole heat exchangers. The ANR Stock-en-Socle project explores the possibilities of periodic storage of sensitive heat1 in low-permeability environments that would offer much better performance than that of borehole heat exchangers, especially in terms of unit capacity. This project examines the storage possibilities of using semi-open water circulation in typically a Standing Column Well (SCW), using the strong heterogeneity of hard-rock aquifers in targeting the least favorable areas for water resources. To solve the main scientific issues, which include evaluating the minimum level of permeability required around a well as well as its evolution through time (increase and decrease) due to water-rock interaction processes, the study is based on an experimental program of fieldwork and modelling for studying the thermal, hydraulic and geochemical processes involved. This includes tracer and water-circulation tests by injecting hot water in different wells located in distinct hard-rock settings (i.e. granite and schist) in Brittany, Ploemeur (H+ observatory network) and Naizin. A numerical modelling approach allows studying the effects of permeability structures on the storage and heat-recovery capacities, whereas the modelling of reactive transfers will provide an understanding of how permeability evolves under the influence of dissolution and precipitation. Based on the obtained results, technical solutions will be studied for constructing a well of the SCW type in a low-permeability environment. This work will be completed by a technical and economic feasibility study leading to an investment and operations model. This study aims to describe the suitability of SCW storage for shallow geothermal energy. In order to reach these objectives, Stock-en-Socle is constructed around a public/private partnership between two public research organizations, Géosciences Rennes and BRGM, and two companies, Antea Group and Soletanche Bachy, experts in groundwater and geothermal energy. 1Sensitive heat: modifies the temperature of water and its surrounding solids without modification of physical properties, as opposed to latent heat that causes a phase change, such as vaporization.

  8. A new setup for studying thermal microcracking through acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Baud, Patrick; Schmittbuhl, Jean

    2016-04-01

    Thermal stressing is common in geothermal environments and has been shown in the laboratory to induce changes in the physical and mechanical properties of rocks. These changes are generally considered to be a consequence of the generation of thermal microcracks and debilitating chemical reactions. Thermal microcracks form as a result of the build-up of internal stresses due to: (1) the thermal expansion mismatch between the different phases present in the material, (2) thermal expansion anisotropy within individual minerals, and (3) thermal gradients. The generation of cracks during thermal stressing has been monitored in previous studies using the output of acoustic emissions (AE), a common proxy for microcrack damage, and through microstructural observations. Here we present a new experimental setup which is optimised to record AE from a rock sample at high temperatures and under a servo-controlled uniaxial stress. The design is such that the AE transducer is embedded in the top of the piston, which acts as a continuous wave guide to the sample. In this way, we simplify the ray path geometry whilst minimising the number of interfaces between the microcrack and the transducer, maximising the quality of the signal. This allows for an in-depth study of waveform attributes such as energy, amplitude, counts and duration. Furthermore, the capability of this device to apply a servo-controlled load on the sample, whilst measuring strain in real time, leads to a spectrum of possible tests combining mechanical and thermal stress. It is also an essential feature to eliminate the build-up of stresses through thermal expansion of the pistons and the sample. We plan a systematic experimental study of the AE of thermally stressed rock during heating and cooling cycles. We present results from pilot tests performed on Darley Dale sandstone and Westerly granite. Understanding the effects of thermal stressing in rock is of particular interest at a geothermal site, where circulating fluids influence the temperature field in the surrounding rock mass. These stresses can, for example, provoke thermal borehole breakouts due to cooling-induced tensile microcracking or may be actively used to enhance the injectivity of geothermal wells.

  9. Hydrogeothermal Convective Circulation Model for the Formation of the Chicxulub Ring of Cenotes in the Yucatan Peninsula, Mexico.

    NASA Astrophysics Data System (ADS)

    Monroy-Rios, E.; Beddows, P. A.

    2015-12-01

    Despite being deeply buried, the topography and geophysical characteristics of the multi-ring Chicxulub impact structure are reflected on the now subaerial Yucatan Peninsula with aligned arcs of cenotes (sinkholes), forming the "Ring of Cenotes". A pending question is the determination of the geological, geochemical, structural features and associated processes that have led to void development, and the upwards propagation of the voids, cross cutting over 1000 m of super-deposited carbonate sequences. Drawing from the published literature on drill core and geophysical surveys undertaken by Pemex, UNAM, and IODP/ICDP, numerical modeling, and general carbonate platform hydrothermal reactive transport models, we provide a conceptual model for the genesis of the Ring of Cenotes. In horizontally bedded carbonate platforms, geothermal gradients will drive convective flow, with strong vertical components specifically in the platform center. In the Yucatan Platform, a high occurrence of anhydrite and dolomite at depth evokes early burial dolomitization and anhydritization, sourcing Mg from seawater. The Chicxulub impact near the center of the platform produced a low permeability and high thermal conductivity melt rock that arguably extends to the basement rock at 3.5 km below surface. Heat of impact enforced the pre-existing geothermal circulation pattern, and even with depletion of the heat of impact, the high thermal conductivity of the crystalline melt would lead to enhanced geothermal gradients in the center of the platform. The cenotes overlying the crater are deep (150+ m) vertical shafts with most (but not all) breaching the surface. The pit geomorphology suggests a bottom-up formation. Excess Si in the shallow groundwater points to a convective circulation with strong vertical components geochemically linking the granodioritic basement rock to the surface. Water temperature and conductivity profiles support ongoing vertical flux in some deep pit cenotes. Within this framework, we argue for the formation of the Ring of Cenotes by hydrogeothermal convective circulation in the post-impact carbonate sequences, leading to spatially focused dissolution at depth, with voids initiated along the crater edge effectively propagating upwards, often breaching the surface.

  10. The evolution of the Cappadocia Geothermal Province, Anatolia (Turkey): geochemical and geochronological evidence

    NASA Astrophysics Data System (ADS)

    Şener, M. Furkan; Şener, Mehmet; Uysal, I. Tonguç

    2017-12-01

    Cappadocia Geothermal Province (CGP), central Turkey, consists of nine individual geothermal regions controlled by active regional fault systems. This paper examines the age dating of alteration minerals and the geochemistry (trace elements and isotopes) of the alteration minerals and geothermal waters, to assess the evolution of CGP in relation to regional tectonics. Ar-Ar age data of jarosite and alunite show that the host rocks were exposed to oxidizing conditions near the Earth's surface at about 5.30 Ma. Based on the δ18O-δD relationhip, water samples had a high altitude meteoric origin. The δ34S values of jarosite and alunite indicate that water samples from the southern part of the study area reached the surface after circulation through volcanic rocks, while northern samples had traveled to the surface after interacting with evaporates at greater depths. REY (rare earth elements and yttrium) diagrams of alteration minerals (especially illite, jarosite and alunite) from rock samples, taken from the same locations as the water samples, display a similar REY pattern to water samples. This suggests that thermal fluids, which reached the surface along a fault zone and caused the mineral alteration in the past, had similar chemical composition to the current geothermal water. The geothermal conceptual model, which defines a volcanically heated reservoir and cap rocks, suggests there are no structural drawbacks to the use of the CGP geothermal system as a resource. However, fluid is insufficient to drive the geothermal system as a result of scanty supply of meteoric water due to evaporation significantly exceeding rainfall.

  11. Oxygen isotope evidence for submarine hydrothermal alteration of the Del Puerto ophiolite, California

    USGS Publications Warehouse

    Schiffman, P.; Williams, A.E.; Evarts, R.C.

    1984-01-01

    The oxygen isotope compositions and metamorphic mineral assemblages of hydrothermally altered rocks from the Del Puerto ophiolite and overlying volcaniclastic sedimentary rocks at the base of the Great Valley sequence indicate that their alteration occurred in a submarine hydrothermal system. Whole rock ??18O compositions decrease progressively down section (with increasing metamorphic grade): +22.4??? (SMOW) to +13.8 for zeolite-bearing volcaniclastic sedimentary rocks overlying the ophiolite; +19.6 to +11.6 for pumpellyite-bearing metavolcanic rocks in the upper part of the ophiolite's volcanic member; +12.3 to +8.1 for epidote-bearing metavolcanic rocks in the lower part of the volcanic member; +8.5 to +5.7 for greenschist facies rocks from the ophiolite's plutonic member; +7.6 to +5.8 for amphibolite facies or unmetamorphosed rocks from the plutonic member. Modelling of fluid-rock interaction in the Del Puerto ophiolite indicates that the observed pattern of upward enrichment in whole rock ??18O can be best explained by isotopic exchange with discharging 18O-shifted seawater at fluid/rock mass ratios near 2 and temperatures below 500??C. 18O-depleted plutonic rocks necessarily produced during hydrothermal circulation were later removed as a result of tectonism. Submarine weathering and later burial metamorphism at the base of the Great Valley sequence cannot by itself have produced the zonation of hydrothermal minerals and the corresponding variations in oxygen isotope compositions. The pervasive zeolite and prehnite-pumpellyite facies mineral assemblages found in the Del Puerto ophiolite may reflect its origin near an island arc rather than deep ocean spreading center. ?? 1984.

  12. Preliminary study of favorability for uranium resources in Juab County, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leedom, S.H.; Mitchell, T.P.

    1978-02-01

    The best potential for large, low-grade uranium deposits in Juab County is in the hydrothermally altered vitric tuffs of Pliocene age. The lateral extent of the altered tuffs may be determined by subsurface studies around the perimeter of the volcanic centers in the Thomas Range and the Honeycomb Hills. Because the ring-fracture zone associated with collapse of the Thomas caldera was a major control for hydrothermal uranium deposits, delineation of the northern and eastern positions of the ring-fracture zone is critical in defining favorable areas for uranium deposits. A small, medium-grade ore deposit in tuffaceous sand of Pliocene age atmore » the Yellow Chief mine in Dugway Dell is unique in origin, and the probability of discovering another deposit of this type is low. A deposit of this type may be present under alluvial cover in the northwestern Drum Mountains along the southern extension of the ring-fracture zone of the Thomas caldera. Festoonlike iron oxide structures and uranium deposition within permeable sandstone horizons indicate that the Yellow Chief deposit was formed by recent ground-water circulation. Granitic intrusive rocks in the Deep Creek Range and in Desert Mountain contain isolated epigenetic vein-type deposits. These rocks could be a source of arkosic sediments buried in adjacent valleys. The Pleistocene lacustrine sediments and playa lake brines may contain concentrations of uranium leached from uranium-rich rocks.« less

  13. 3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES INCREASINGLY AUTOMATED, EAGLE ROCK WILL BECOME MORE AND MORE THE CENTRAL CONTROL SYSTEM OF THE METROPOLITAN WATER DISTRICT. - Eagle Rock Operations Control Center, Pasadena, Los Angeles County, CA

  14. A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California

    USGS Publications Warehouse

    Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.

    1991-01-01

    The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.

  15. Origin and structure of major orogen-scale exhumed strike-slip

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz

    2016-04-01

    The formation of major exhumed strike-slip faults represents one of the most important dynamic processes affecting the evolution of the Earth's lithosphere and surface. Detailed models of the potential initiation and properties and architecture of orogen-scale exhumed strike-slip faults and how these relate to exhumation are rare. In this study, we deal with key properties controlling the development of major exhumed strike-slip fault systems, which are equivalent to the deep crustal sections of active across fault zones. We also propose two dominant processes for the initiation of orogen-scale exhumed strike-slip faults: (1) pluton-controlled and (2) metamorphic core complex-controlled strike-slip faults. In these tectonic settings, the initiation of faults occurs by rheological weakening along hot-to-cool contacts and guides the overall displacement and ultimate exhumation. These processes result in a specific thermal and structural architecture of such faults. These types of strike-slip dominated fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust during various stages of faulting. The high variety of distinctive fault rocks is a potential evidence for recognition of these types of strike-slip faults. Exhumation of mylonitic rocks is, therefore, a common feature of such reverse oblique-slip strike-slip faults, implying major transtensive and/or transpressive processes accompanying pure strike-slip motion during exhumation. Some orogen-scale strike-slip faults nucleate and initiate along rheologically weak zones, e.g. at granite intrusions, zones of low-strength minerals, thermally weakened crust due to ascending fluids, and lateral borders of hot metamorphic core complexes. A further mechanism is the juxtaposition of mechanically strong mantle lithosphere to hot asthenosphere in continental transform faults (e.g., San Andreas Fault, Alpine Fault in New Zealand) and transtensional rift zones such as the East African rift. In many cases, subsequent shortening exhumes such faults from depth to the surface. A major aspect of many exhumed strike-slip faults is its lateral thermal gradient induced by the juxtaposition of hot and cool levels of the crust controlling relevant properties of such fault zones, e.g. the overall fault architecture (e.g., fault core, damage zone, shear lenses, fault rocks) and the thermal structure. These properties and the overall fault architecture include strength of fault rocks, permeability and porosity, the hydrological regime, as well as the nature and origin of circulating hydrothermal fluids.

  16. Solar Water-Heater Design and Installation

    NASA Technical Reports Server (NTRS)

    Harlamert, P.; Kennard, J.; Ciriunas, J.

    1982-01-01

    Solar/Water heater system works as follows: Solar--heated air is pumped from collectors through rock bin from top to bottom. Air handler circulates heated air through an air-to-water heat exchanger, which transfers heat to incoming well water. In one application, it may reduce oil use by 40 percent.

  17. Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy

    NASA Astrophysics Data System (ADS)

    Kilburn, Christopher R. J.; Petley, David N.

    2003-08-01

    Rapid, giant landslides, or sturzstroms, are among the most powerful natural hazards on Earth. They have minimum volumes of ˜10 6-10 7 m 3 and, normally preceded by prolonged intervals of accelerating creep, are produced by catastrophic and deep-seated slope collapse (loads ˜1-10 MPa). Conventional analyses attribute rapid collapse to unusual mechanisms, such as the vaporization of ground water during sliding. Here, catastrophic collapse is related to self-accelerating rock fracture, common in crustal rocks at loads ˜1-10 MPa and readily catalysed by circulating fluids. Fracturing produces an abrupt drop in resisting stress. Measured stress drops in crustal rock account for minimum sturzstrom volumes and rapid collapse accelerations. Fracturing also provides a physical basis for quantitatively forecasting catastrophic slope failure.

  18. Experimentally determined rock-fluid interactions applicable to a natural hot dry rock geothermal system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles, R.W.; Holley, C.E. Jr.; Tester, J.W.

    1980-02-01

    The Los Alamos Scientific Laboratory is pursuing laboratory and field experiments in the development of the Hot Dry Rock concept of geothermal energy. The field program consists of experiments in a hydraulically fractured region of low permeability in which hot rock is intercepted by two wellbores. These experiments are designed to test reservoir engineering parameters such as: heat extraction rates, water loss rates, flow characteristics including impedance and buoyancy, seismic activity and fluid chemistry. Laboratory experiments have been designed to provide information on the mineral reactivity which may be encountered in the field program. Two experimental circulation systems have beenmore » built to study the rates of dissolution and alteration in dynamic flow. Solubility studies have been done in agitated systems. To date, pure minerals, samples of the granodiorite from the actual reservoir and Tijeras Canyon granite have been reacted with distilled water and various solutions of NaCl, NaOH, and Na/sub 2/CO/sub 3/. The results of these experimental systems are compared to observations made in field experiments done in a hot dry rock reservoir at a depth of approximately 3 km with initial rock temperatures of 150 to 200/sup 0/C.« less

  19. Modeling pellet impact drilling process

    NASA Astrophysics Data System (ADS)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  20. Shallow circulation groundwater - the main type of water containing hazardous radon concentration

    NASA Astrophysics Data System (ADS)

    Przylibski, Tadeusz

    2010-05-01

    Radon dissolves in water very good. As an effect this gas is present in surface and groundwater, which are used in households. The range of Rn-222 concentration in water is very wide, it changes from below 1 Bq/dm3 up to several hundreds of thousands Bq/dm3. Inhabitants may be exposed to an important additional dose from ionizing radiation if they use in household radon water (concentration of Rn-222 between 100 and 999.9(9) Bq/dm3), high-radon water (1000 - 9999.9(9) Bq/dm3) or extreme-radon water (10 000 Bq/dm3 and more). Value of the dose depends on the amount of radon released from water during cooking, washing, taking bath or shower, and it not depends on the amount of radon dissolved in drinked water or water used for making a meal. Radon released from water to the air in a house may be inhaled by inhabitants and increase the risk of lung cancer. Knowing the risk, international organizations, i.e. WHO, publish the recommendations concerning admissible levels of radon concentration in water in the intake (before supplying households). In a few countries these recommendations became a law (i.e. USA, England, Finland, Sweden, Russia, Czech Rep., Slowak Rep.). Law regulations force to measuring concentrations of radon dissolved in water in all the intakes of water supplying hauseholds. Knowing radon behaviour in the environment it is possible to select certain types of water, which may contain the highest radon concentration. As a result one may select these intakes of water, which should be particularly controled with regard to possible hazardous radon cencentration. Radon concentration in surface water depends on partial pressure of this gas over the water table - in the atmosphere. Partial pressure of radon in the atmosphere is very low, so the radon concentration in surface water is usually low and as a rule it is not higher than several, rarely several tens of Bq/dm3. In the spring, where the groundwater flows out on the surface, and groundwater become a surface water forming a stream, radon very quickly escapes to the atmosphere. This is the main reason, that even in regions, where the bottoms of streams and rivers are formed by the rocks containing high amounts of radium (and uranium), surface waters very quickly lose radon escaping to the atmosphere. Concluding, surface waters cannot be the source of hazardous radon concentration. One may expect completely different situation in the case of groundwater. When the groundwater is exploited without any contact with the atmosphere, it contains higher concentration of Rn-222, than surface water in the same neighbourhood with regard to geological structure. Concentration of radon dissolved in groundwater depends first of all on the emanation coefficient of the reservoir rock. This coefficient may be calculated taking into account a few parameters, like cancentration of parent Ra-226 isotope in the reservoir rocks, effective porosity of the rock and the density of the grain framework of the rock. The way of radium atoms disposition in crystals or mineral grains of rock with reference to the pores and cracks filled with groundwater is also an important parameter. Calculations made by the author for more than 100 intakes of groundwater proove, that the highest values of emanation coefficient are characteristic for the rocks in the weathering zone - on the depths between surface level and 30 - 50 m below surface level. Groundwater exploited from the rocks of this zone contains the highest concentration of Rn-222. On the greater depths even high Ra-226 content in the reservoir rock does not affect to the Rn-222 concentration in groundwater flowing through this rock. Summing up, potentially the great radon concentration may contain groundwater of shallow circulation (up to ~50 m b.s.l.), flowing through weathered resrvoir rock with high content of parent Ra-226 isotope.

  1. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    NASA Astrophysics Data System (ADS)

    Farough, A.; Moore, D. E.; Lockner, D. A.; Lowell, R. P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1-2 orders of magnitude during the 200-330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  2. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    USGS Publications Warehouse

    Farough, Aida; Moore, Diane E.; Lockner, David A.; Lowell, R.P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1–2 orders of magnitude during the 200–330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  3. Microbially mediated alteration of crystalline basalts as identified from analogical reactive percolation experiments

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Ménez, Bénédicte; Stéphant, Sylvian; Dupraz, Sébastien; Ranchou-Peyruse, Magali; Ranchou-Peyruse, Anthony; Gérard, Emmanuelle

    2017-04-01

    Alteration in the ocean crust through fluid circulation is an ongoing process affecting the first kilometers and at low temperatures some alteration may be microbially mediated. Hydrothermal activity through the hard rock basement supports diverse microbial communities within the rock by providing nutrient and energy sources. Currently, the impact of basement hosted microbial communities on alteration is poorly understood. In order to identify and quantify the nature of microbially mediated alteration two reactive percolation experiments mimicking circulation of CO2 enriched ground water were performed at 35 °C and 30 bar for 21 days each. The experiments were performed using a crystalline basalt substrate from an earlier drilled deep Icelandic aquifer. One experiment was conducted on sterile rock while the other was conducted with the addition of a microbial inoculate derived from groundwater enrichment cultures obtained from the same aquifer. µCT on the experimental basaltic substrate before and after the reactive percolation experiment along with synchrotron radiation x-ray tomographic microscopy and the mineralogical characterization of resulting material allows for the comparative volumetric quantification of dissolution and precipitation. The unique design of this experiment allows for the identification of alteration which occurs solely abiotically and of microbially mediated alteration. Experimental results are compared to natural basaltic cores from Iceland retrieved following a large field CO2 injection experiment that stimulated microbial activity at depth.

  4. Fluid evolution during burial and Variscan deformation in the Lower Devonian rocks of the High-Ardenne slate belt (Belgium): sources and causes of high-salinity and C-O-H-N fluids

    NASA Astrophysics Data System (ADS)

    Kenis, I.; Muchez, Ph.; Verhaert, G.; Boyce, A.; Sintubin, M.

    2005-08-01

    Fluid inclusions in quartz veins of the High-Ardenne slate belt have preserved remnants of prograde and retrograde metamorphic fluids. These fluids were examined by petrography, microthermometry and Raman analysis to define the chemical and spatial evolution of the fluids that circulated through the metamorphic area of the High-Ardenne slate belt. The earliest fluid type was a mixed aqueous/gaseous fluid (H2O-NaCl-CO2-(CH4-N2)) occurring in growth zones and as isolated fluid inclusions in both the epizonal and anchizonal part of the metamorphic area. In the central part of the metamorphic area (epizone), in addition to this mixed aqueous/gaseous fluid, primary and isolated fluid inclusions are also filled with a purely gaseous fluid (CO2-N2-CH4). During the Variscan orogeny, the chemical composition of gaseous fluids circulating through the Lower Devonian rocks in the epizonal part of the slate belt, evolved from an earlier CO2-CH4-N2 composition to a later composition enriched in N2. Finally, a late, Variscan aqueous fluid system with a H2O-NaCl composition migrated through the Lower Devonian rocks. This latest type of fluid can be observed in and outside the epizonal metamorphic part of the High-Ardenne slate belt. The chemical composition of the fluids throughout the metamorphic area, shows a direct correlation with the metamorphic grade of the host rock. In general, the proportion of non-polar species (i.e. CO2, CH4, N2) with respect to water and the proportion of non-polar species other than CO2 increase with increasing metamorphic grade within the slate belt. In addition to this spatial evolution of the fluids, the temporal evolution of the gaseous fluids is indicative for a gradual maturation due to metamorphism in the central part of the basin. In addition to the maturity of the metamorphic fluids, the salinity of the aqueous fluids also shows a link with the metamorphic grade of the host-rock. For the earliest and latest fluid inclusions in the anchizonal part of the High-Ardenne slate belt the salinity varies respectively between 0 and 3.5 eq.wt% NaCl and between 0 and 2.7 eq.wt% NaCl, while in the epizonal part the salinity varies between 0.6 and 17 eq.wt% NaCl and between 3 and 10.6 eq.wt% for the earliest and latest aqueous fluid inclusions, respectively. Although high salinity fluids are often attributed to the original sedimentary setting, the increasing salinity of the fluids that circulated through the Lower Devonian rocks in the High-Ardenne slate belt can be directly attributed to regional metamorphism. More specifically the salinity of the primary fluid inclusions is related to hydrolysis reactions of Cl-bearing minerals during prograde metamorphism, while the salinity of the secondary fluid inclusions is rather related to hydration reactions during retrograde metamorphism. The temporal and spatial distribution of the fluids in the High-Ardenne slate belt are indicative for a closed fluid flow system present in the Lower Devonian rocks during burial and Variscan deformation, where fluids were in thermal and chemical equilibrium with the host rock. Such a closed fluid flow system is confirmed by stable isotope study of the veins and their adjacent host rock for which uniform δ180 values of both the veins and their host rock demonstrate a rock-buffered fluid flow system.

  5. Continental Subduction: Mass Fluxes and Interactions with the Wider Earth System

    NASA Astrophysics Data System (ADS)

    Cuthbert, S. J.

    2011-12-01

    Substantial parts of ultra-high pressure (UHP) terrains probably represent subducted passive continental margins (PCM). This contribution reviews and synthesises research on processes operating in such systems and their implication for the wider Earth system. PCM sediments are large repositories of volatiles including hydrates, nitrogen species, carbonates and hydrocarbons. Sediments and upper/ mid-crustal basement are rich in incompatible elements and are fertile for melting. Lower crust may be more mafic and refractory. Juvenile rift-related mafic rocks also have the potential to generate substantial volumes of granitoid melts, especially if they have been hydrated. Exposed UHP terrains demonstrate the return of continental crust from mantle depths, show evidence for substantial fluxes of aqueous fluid, anatexis and, in entrained orogenic peridotites, metasomatism of mantle rocks by crust- derived C-O-H fluids. However, substantial bodies of continental material may never return to the surface as coherent masses of rock, but remain sequestered in the mantle where they melt or become entrained in the deeper mantle circulation. Hence during subduction, PCM's become partitioned by a range of mechanisms. Mechanical partitioning strips away weaker sediment and middle/upper crust, which circulate back up the subduction channel, while denser, stronger transitional pro-crust and lower crust may "stall" near the base of the lithosphere or be irreversibly subducted to join the global mantle circulation. Under certain conditions sediment and upper crustal basement may reach depths for UHPM. Further partitioning takes place by anatexis, which either aids stripping and exhumation of the more melt-prone rock-masses through mechanical softening, or separates melt from residuum so that melt escapes and is accreted to the upper plate leading to "undercrusting", late-orogenic magmatism and further refinement of the crust. Melt that traverses sections of mantle will interact with it causing metasomatism and refertilisation. Partitioning also takes place by solid-fluid and melt-fluid partitioning. Dehydration may take place both during subduction and exhumation, and fluxes between dehydrating and hydrating rock masses influence the internal fluid budget of the orogen (essential for eclogitisation and densification of mafic lithologies). Ascending granitic melts advect dissolved water to shallow levels, or even the atmosphere. Irreversible subduction of PCM sediment carries water plus nitrogen species to the deeper mantle. Decarbonation of voluminous PCM carbonates depends on thermal regime and may release a pulse of CO2 to the atmosphere, but is limited in colder subduction zones hence transferring large volumes of carbon to the deep mantle. This may ultimately be mobilised by melting or dissolution to form fluid media for diamond formation.

  6. Seafloor weathering buffering climate: numerical experiments

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Archer, D. E.; Abbot, D. S.

    2013-12-01

    Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching reactions, carbonate precipitation, and clay formation.

  7. Castro ring zone: a 4,500-km2 fossil hydrothermal system in the Challis volcanic field, central Idaho.

    USGS Publications Warehouse

    Criss, R.E.; Ekren, E.B.; Hardyman, R.F.

    1984-01-01

    The largest fossil hydrothermal system occupying a 4500 km2 area in central Idaho is revealed by delta 18O studies. The remains of this meteoric-hydrothermal system are preserved within a sharply bounded, 15 km wide, 70-km-diameter annulus of low delta 18O rock (+2.0 to -8.8per mille) termed the Castro ring zone. The zone is centred on a less depleted (+4.5) core zone consisting of granitic rocks of the Castro pluton. This 700-km2 Eocene subvolcanic batholith has intruded, domed, and hydrothermally metamorphosed a thick sequence of Challis Volcanics, the stratigraphically low rocks in the 2000-km2 Van Horn Peak and the 1000-km2 Thunder Mountain cauldron complexes being most strongly altered. Less extreme 18O depletions occur in the youngest major ash-flow sheets of these complexes, indicating a vertical 18O gradient. Water/rock ratios of geothermal systems are surprisingly insensitive to the circulation scale.-L.-di H.

  8. A deep hydrothermal fault zone in the lower oceanic crust, Samail ophiolite Oman

    NASA Astrophysics Data System (ADS)

    Zihlmann, B.; Mueller, S.; Koepke, J.; Teagle, D. A. H.

    2017-12-01

    Hydrothermal circulation is a key process for the exchange of chemical elements between the oceans and the solid Earth and for the extraction of heat from newly accreted crust at mid-ocean ridges. However, due to a dearth of samples from intact oceanic crust, or continuous samples from ophiolites, there remain major short comings in our understanding of hydrothermal circulation in the oceanic crust, especially in the deeper parts. In particular, it is unknown whether fluid recharge and discharge occurs pervasively or if it is mainly channeled within discrete zones such as faults. Here, we present a description of a hydrothermal fault zone that crops out in Wadi Gideah in the layered gabbro section of the Samail ophiolite of Oman. Field observations reveal a one meter thick chlorite-epidote normal fault with disseminated pyrite and chalcopyrite and heavily altered gabbro clasts at its core. In both, the hanging and the footwall the gabbro is altered and abundantly veined with amphibole, epidote, prehnite and zeolite. Whole rock mass balance calculations show enrichments in Fe, Mn, Sc, V, Co, Cu, Rb, Zr, Nb, Th and U and depletions of Si, Ca, Na, Cr, Zn, Sr, Ba and Pb concentrations in the fault rock compared to fresh layered gabbros. Gabbro clasts within the fault zone as well as altered rock from the hanging wall show enrichments in Na, Sc, V, Co, Rb, Zr, Nb and depletion of Cr, Ni, Cu, Zn, Sr and Pb. Strontium isotope whole rock data of the fault rock yield 87Sr/86Sr ratios of 0.7046, which is considerably more radiogenic than fresh layered gabbro from this locality (87Sr/86Sr = 0.7030 - 0.7034), and similar to black smoker hydrothermal signatures based on epidote, measured elsewhere in the ophiolite. Altered gabbro clasts within the fault zone show similar values with 87Sr/86Sr ratios of 0.7045 - 0.7050, whereas hanging wall and foot wall display values only slightly more radiogenic than fresh layered gabbro.The secondary mineral assemblages and strontium isotope compositions of the fault rock, clasts and hanging wall indicate interaction with a seawater-derived hydrothermal fluid during oceanic spreading at an ancient mid-ocean ridge. The considerable elemental mass changes in the fault rocks and surrounds compared to the primary layered gabbros suggests extensive hydrothermal fluid flow and exchange deep within the ocean crust.

  9. Grinding into Soft, Powdery Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This hole in a rock dubbed 'Clovis' is the deepest hole drilled so far in any rock on Mars. NASA's Mars Exploration Rover Spirit captured this view with its microscopic imager on martian sol 217 (Aug. 12, 2004) after drilling 8.9 millimeters (0.35 inch) into the rock with its rock abrasion tool. The view is a mosaic of four frames taken by the microscopic imager. The hole is 4.5 centimeters (1.8 inches) in diameter. Clovis is key to a developing story about environmental change on Mars, not only because it is among the softest rocks encountered so far in Gusev Crater, but also because it contains mineral alterations that extend relatively deep beneath its surface. In fact, as evidenced by its fairly crumbly texture, it is possibly the most highly altered volcanic rock ever studied on Mars.

    Scientific analysis shows that the rock contains higher levels of the elements sulfur, chlorine, and bromine than are normally encountered in basaltic rocks, such as a rock dubbed 'Humphrey' that Spirit encountered two months after arriving on Mars. Humphrey showed elevated levels of sulfur, chlorine, and bromine only in the outermost 2 millimeters (less than 0.1 inch) of its surface. Clovis shows elevated levels of the same elements along with the associated softness of the rock within a borehole that is 4 times as deep. Scientists hope to compare Clovis to other, less-altered rocks in the vicinity to assess what sort of water-based processes altered the rock. Hypotheses include transport of sulfur, chlorine, and bromine in water vapor in volcanic gases; hydrothermal circulation (flow of volcanically heated water through rock); or saturation in a briny soup containing the same elements.

    In this image, very fine-grained material from the rock has clumped together by electrostatic attraction and fallen into the borehole. NASA/JPL/Cornell/USGS

  10. Authigenic potassium feldspar: a tracer for the timing of palaeofluid flow in carbonate rocks, Northern Calcareous Alps, Austria

    USGS Publications Warehouse

    Spotl, C.; Kunk, Michael J.; Ramseyer, K.; Longstaffe, F.J.

    1998-01-01

    This paper is included in the Special Publication entitled 'Dating and duration of fluid flow and fluid-rock interaction', edited by J. Parnell. Feldspar is a common authigenic constituent in Permian carbonate rocks which occur as tectonically isolated blocks within the evaporitic Haselgebirge melange in the Northern Calcareous Alps (NCA). Coexisting with pyrite, anhydrite, (saddle) dolomite, magnesite, fluorite and calcite, K-feldspar and minor albite record an event of regionally extensive interaction of hot brines with carbonate rocks. Detailed petrographic, crystallographic and geochemical studies reveal a variability in crystal size and shape, Al-Si ordering, elemental and stable isotopic compositions of the K-feldspar, which is only partially consistent with the traditional view of authigenic feldspar as a well-ordered, compositionally pure mineral. 40Ar-39Ar step- heating measurements of authigenic potassium feldspar from several localities yield two age populations, an older one of 145-154 Ma, and a younger one of c.90-97 Ma. Most age spectra reflect cooling through the argon retention temperature interval, which was rapid in some localities (as indicated by plateau ages) and slower in others. Rb-Sr isotope data are more difficult to interpret, because in many K-feldspar samples they are controlled largely by Sr-bearing inclusions. The Jurassic 40Ar-39Ar dates are interpreted as minimum ages of feldspar growth and hence imply that fluid-rock interaction is likely to be simultaneous with or to slightly predate melange formation. Deformation associated with the closure and subduction of the Meliata-Hallstatt ocean south of the NCA during the Upper Jurassic is regarded as the principal geodynamic driving force for both enhanced fluid circulation and melange formation. Some localities were reheated beyond the argon retention temperature for microcline during mid-Cretaceous nappe stacking of the NCA, thus obliterating the older signal.

  11. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to themore » identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  12. Perm-Fit: a new program to estimate permeability at high P-T conditions

    NASA Astrophysics Data System (ADS)

    Moulas, Evangelos; Madonna, Claudio

    2016-04-01

    Several geological processes are controlled by porous fluid flow. The circulation of porous fluids influences many physical phenomena and in turn it depends on the rock permeability. The permeability of rocks is a physical property that needs to be measured since it depends on many factors such as secondary porosity (fractures etc). We present a numerical approach to estimate permeability using the transient step method (Brace et al., 1968). When a non-reacting, compressible fluid is considered in a relative incompressible solid matrix, the only unknown parameter in the equations of porous flow is permeability. Porosity is assumed to be known and the physical properties of the fluid (compressibility, density, viscosity) are taken from the NIST database. Forward numerical calculations for different values of permeability are used and the results are compared to experimental measurements. The extracted permeability value is the one that minimizes the misfit between experimental and numerical results. The uncertainty on the value of permeability is estimated using a Monte Carlo method. REFERENCES Brace, W.F., Walsh J.B., & Frangos, W.T. 1968: Permeability of Granite under High Pressure, Journal of Geophysical Research, 73, 6, 2225-2236

  13. Hydrothermal mineralization along submarine rift zones, Hawaii

    USGS Publications Warehouse

    Hein, J.R.; Gibbs, A.E.; Clague, D.A.; Torresan, M.

    1996-01-01

    Describes mineralization of midplate submarine rift zones and hydrothermal manganese oxide mineralization of midplate volcanic edifices. Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks; both deposit types are composed of todorokite and birnessite. Unlike most other hydrothermal Mn oxide deposits, those from Hawaiian rift zones are enriched in the trace metals Zn, Co, Ba, Mo, Sr, V, and especially Ni. Metals are derived from three sources: mafic and ultramafic rocks leached by circulating hydrothermal fluids, clastic material (in Mn-cemented sandstone), and seawater that mixed with the hydrothermal fluids. Precipitation of Mn oxide below the seafloor is indicated by its occurrence as cement, growth textures that show mineralizing fluids were introduced from below, and pervasive replacement of original matrix of clastic rocks.Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks. Both deposit types are composed of todorokite and birnessite. This article describes in detail the specific characteristics of these Mn oxides.

  14. Insular and submarine ferromanganese mineralization of the Tonga-Lau region

    USGS Publications Warehouse

    Hein, J.R.; Schulz, M.S.; Jung-Keuk, Kang

    1990-01-01

    Ferromanganese oxides in the Tonga-Lau region are divided into crusts and stratabound deposits. Crusts were collected from the Tonga and Lau Ridges and have Fe/Mn ratios greater than 1, and an average Co content of 0.25%. The crusts average less than 10 mm thick with a maximum of 50 mm, and growth rates of tens of millimeters per million years. The thickest crust is probably less than a million years old. Crusts formed by both hydrogenetic and hydrothermal precipitation, with the hydrothermal input averaging 76%. Stratabound deposits are divided into three types. The source rocks through which the circulating fluids passed controlled the dominant minor element compositions of the stratabound deposits from each area: Valu Fa Ridge, Mo; Tonga Ridge Ti; Tonumea, Sr and Eua, V. -from Authors

  15. Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone.

    PubMed

    Xue, Lian; Li, Hai-Bing; Brodsky, Emily E; Xu, Zhi-Qing; Kano, Yasuyuki; Wang, Huan; Mori, James J; Si, Jia-Liang; Pei, Jun-Ling; Zhang, Wei; Yang, Guang; Sun, Zhi-Ming; Huang, Yao

    2013-06-28

    Permeability controls fluid flow in fault zones and is a proxy for rock damage after an earthquake. We used the tidal response of water level in a deep borehole to track permeability for 18 months in the damage zone of the causative fault of the 2008 moment magnitude 7.9 Wenchuan earthquake. The unusually high measured hydraulic diffusivity of 2.4 × 10(-2) square meters per second implies a major role for water circulation in the fault zone. For most of the observation period, the permeability decreased rapidly as the fault healed. The trend was interrupted by abrupt permeability increases attributable to shaking from remote earthquakes. These direct measurements of the fault zone reveal a process of punctuated recovery as healing and damage interact in the aftermath of a major earthquake.

  16. Carbonate rocks of the Seward Peninsula, Alaska: Their correlation and paleogeographic significance

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Alta; Repetski, John E.

    2014-01-01

    Paleozoic carbonate strata deposited in shallow platform to off-platform settings occur across the Seward Peninsula and range from unmetamorphosed Ordovician–Devonian(?) rocks of the York succession in the west to highly deformed and metamorphosed Cambrian–Devonian units of the Nome Complex in the east. Faunal and lithologic correlations indicate that early Paleozoic strata in the two areas formed as part of a single carbonate platform. The York succession makes up part of the York terrane and consists of Ordovician, lesser Silurian, and limited, possibly Devonian rocks. Shallow-water facies predominate, but subordinate graptolitic shale and calcareous turbidites accumulated in deeper water, intraplatform basin environments, chiefly during the Middle Ordovician. Lower Ordovician strata are mainly lime mudstone and peloid-intraclast grainstone deposited in a deepening upward regime; noncarbonate detritus is abundant in lower parts of the section. Upper Ordovician and Silurian rocks include carbonate mudstone, skeletal wackestone, and coral-stromatoporoid biostromes that are commonly dolomitic and accumulated in warm, shallow to very shallow settings with locally restricted circulation. The rest of the York terrane is mainly Ordovician and older, variously deformed and metamorphosed carbonate and siliciclastic rocks intruded by early Cambrian (and younger?) metagabbros. Older (Neoproterozoic–Cambrian) parts of these units are chiefly turbidites and may have been basement for the carbonate platform facies of the York succession; younger, shallow- and deep-water strata likely represent previously unrecognized parts of the York succession and its offshore equivalents. Intensely deformed and altered Mississippian carbonate strata crop out in a small area at the western edge of the terrane. Metacarbonate rocks form all or part of several units within the blueschist- and greenschist-facies Nome Complex. The Layered sequence includes mafic meta¬igneous rocks and associated calcareous metaturbidites of Ordovician age as well as shallow-water Silurian dolostones. Scattered metacarbonate rocks are chiefly Cambrian, Ordovician, Silurian, and Devonian dolostones that formed in shallow, warm-water settings with locally restricted circulation and marbles of less constrained Paleozoic age. Carbonate metaturbidites occur on the northeast and southeast coasts and yield mainly Silurian and lesser Ordovician and Devonian conodonts; the northern succession also includes debris flows with meter-scale clasts and an argillite interval with Late Ordovician graptolites and lenses of radiolarian chert. Mafic igneous rocks at least partly of Early Devonian age are common in the southern succession. Carbonate rocks on Seward Peninsula experienced a range of deformational and thermal histories equivalent to those documented in the Brooks Range. Conodont color alteration indices (CAIs) from Seward Peninsula, like those from the Brooks Range, define distinct thermal provinces that likely reflect structural burial. Penetratively deformed high-pressure metamorphic rocks of the Nome Complex (CAIs ≥5) correspond to rocks of the Schist belt in the southern Brooks Range; both record subduction during early stages of the Jurassic–Cretaceous Brooks Range orogeny. Weakly metamorphosed to unmetamorphosed strata of the York terrane (CAIs mainly 2–5), like Brooks Range rocks in the Central belt and structural allochthons to the north, experienced moderate to shallow burial during the main phase of the Brooks Range orogeny. The nature of the contact between the York terrane and the Nome Complex is uncertain; it may be a thrust fault, an extensional surface, or a thrust fault later reactivated as an extensional fault. Lithofacies and biofacies data indicate that, in spite of their divergent Mesozoic histories, rocks of the York terrane and protoliths of the Nome Complex formed as part of the same lower Paleozoic carbonate platform. Stratigraphies in both

  17. A model for the magmatic-hydrothermal system at Mount Rainier, Washington, from seismic and geochemical observations

    USGS Publications Warehouse

    Moran, S.C.; Zimbelman, D.R.; Malone, S.D.

    2000-01-01

    Mount Rainier is one of the most seismically active volcanoes in the Cascade Range, with an average of one to two high-frequency volcano-tectonic (or VT) earthquakes occurring directly beneath the summit in a given month. Despite this level of seismicity, little is known about its cause. The VT earthquakes occur at a steady rate in several clusters below the inferred base of the Quaternary volcanic edifice. More than half of 18 focal mechanisms determined for these events are normal, and most stress axes deviate significantly from the regional stress field. We argue that these characteristics are most consistent with earthquakes in response to processes associated with circulation of fluids and magmatic gases within and below the base of the edifice. Circulation of these fluids and gases has weakened rock and reduced effective stress to the point that gravity-induced brittle fracture, due to the weight of the overlying edifice, can occur. Results from seismic tomography and rock, water, and gas geochemistry studies support this interpretation. We combine constraints from these studies into a model for the magmatic system that includes a large volume of hot rock (temperatures greater than the brittle-ductile transition) with small pockets of melt and/or hot fluids at depths of 8-18 km below the summit. We infer that fluids and heat from this volume reach the edifice via a narrow conduit, resulting in fumarolic activity at the summit, hydrothermal alteration of the edifice, and seismicity.

  18. Free Our Friends in Learning

    ERIC Educational Resources Information Center

    Stidham, Sue

    2007-01-01

    Many secrets can be told by the physical surroundings of library media centers. Whether the center is kid-friendly is one of the first obvious tell-tale signs. When a library center has Arthur & D.W., Clifford, Pooh & Eeyore, shells, special rocks, etc. hidden by the circulation center or in the back in boxes, it's time to revolt. The movie Free…

  19. Oxygen and U-Th isotopes and the timescales of hydrothermal exchange and melting in granitoid wall rocks at Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Ankney, Meagan E.; Bacon, Charles R.; Valley, John W.; Beard, Brian L.; Johnson, Clark M.

    2017-01-01

    We report new whole rock U-Th and in-situ oxygen isotope compositions for partially melted (0–50 vol% melt), low-δ18O Pleistocene granitoid blocks ejected during the ∼7.7 ka caldera-forming eruption of Mt. Mazama (Crater Lake, Oregon). The blocks are interpreted to represent wall rocks of the climactic magma chamber that, prior to eruption, experienced variable amounts of exchange with meteoric hydrothermal fluids and subsequent partial melting. U-Th and oxygen isotope results allow us to examine the timescales of hydrothermal circulation and partial melting, and provide an “outside in” perspective on the buildup to the climactic eruption of Mt. Mazama. Oxygen isotope compositions measured in the cores and rims of individual quartz (n = 126) and plagioclase (n = 91) crystals, and for transects across ten quartz crystals, document zonation in quartz (Δ18OCore-Rim ≤ 0.1–5.5‰), but show homogeneity in plagioclase (Δ18OCore-Rim ≤ ±0.8‰). We propose that oxygen isotope zonation in quartz records hydrothermal exchange followed by high-temperature exchange in response to partial melting caused by injection of basaltic to andesitic recharge magma into the deeper portions of the chamber. Results of modeling of oxygen diffusion in quartz indicates that hydrothermal exchange in quartz occurred over a period of ∼1000–63,000 years. Models also suggest that the onset of melting of the granitoids occurred a minimum of ∼10–200 years prior to the Mazama climactic eruption, an inference which is broadly consistent with results for magnetite homogenization and for Zr diffusion in melt previously reported by others.Uranium-thorium isotope compositions of most granitoid blocks are in 238U excess, and are in agreement with a 238U enriched array previously measured for volcanic rocks at Mt. Mazama. Uranium excess in the granitoids is likely due to enrichment via hydrothermal circulation, given their low δ18O values. The sample with the highest U excess (≥5.8%) also has the most 18O isotope depletion (average δ18Oplag = −4.0‰). The granitoids are a probable assimilant and source of U excess in volcanic rocks from Mt. Mazama. Two granitoids have Th excess and low δ18O values, interpreted to record leaching of U during hydrothermal alteration. A U-Th isochron based on the U excess array of the granitoids and volcanic rocks indicates that hydrothermal circulation initiated ∼40–75 kyrs before the climactic eruption, potentially marking the initiation of a persistent upper-crustal magma chamber. The U-Th ages are consistent with the maximum timescales inferred for hydrothermal alteration based on oxygen isotope zoning in quartz.

  20. The climate of Mars

    NASA Astrophysics Data System (ADS)

    Haberle, R. M.

    1986-05-01

    The composition of the primitive Martian atmosphere and its development into the present environment are described. The primitive atmosphere consisted of water vapor, carbon dioxide, and nitrogen released from rocks; the greenhouse effect which maintained the surface temperature above the frost point of water is examined. Volcanic activity reduced the greenhouse effect and along with CO2 removal from the atmosphere caused a lowering of the planet temperature. The global circulation patterns on earth and Mars are compared; the similarities in the circulation patterns and Mars' seasonal variations are studied. The carbon dioxide and water cycles on Mars are analyzed; the carbon dioxide cycle determines seasonal variations in surface pressure and the behavior of the water cycle. The behavior of the atmospheric dust and the relationship between the seasonal dust cycle and Hadley circulation are investigated. The periodic variations in the three orbital parameters of Mars, which affect the climate by changing the seasonal and latitudinal distribution of incoming solar energy are discussed

  1. Drilling into molten rock at Kilauea Iki

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colp, J.L.; Okamura, R.T.

    1978-01-01

    The scientific feasibility of extracting energy directly from buried circulating magma resources is being assessed. One of the tasks of the project is the study of geophysical measuring systems to locate and define buried molten rock bodies. To verify the results of a molten rock sensing experiment performed at Kilauea Iki lava lake, it is necessary to drill a series of holes through the solid upper crust and through the molten zone at that location. Thirteen holes have been drilled in Kilauea Iki. The results achieved during the drilling of the last two holes indicated that the molten zone inmore » Kilauea Iki is not a simple, relatively homogeneous fluid body as expected. The encountering of an unexpected, unknown rigid obstruction 2.5 ft below the crust/melt interface has led to the conceptual development of a drilling system intended to have the capability to drill through a hot, rigid obstruction while the drill stem is immersed in molten rock. The concept will be field tested at Kilauea Iki in the summer of 1978.« less

  2. Stable-isotope studies of rocks and secondary minerals in a vapor-dominated hydrothermal system at The Geysers, Sonoma County, California

    NASA Astrophysics Data System (ADS)

    Lambert, Steven J.; Epstein, Samuel

    1992-11-01

    The Geysers, a vapor-dominated hydrothermal system, is developed in host rock of the Franciscan Formation, which contains veins of quartz and calcite whose δ 18O values record the temperatures and isotopic compositions of fluids prevailing during at least two different episodes of rock-fluid interaction. The first episode took place at about 200°C, during which marine silica and carbonate apparently interacted with ocean water entrapped in the sediments to form veins of quartz and calcite whose δ 18O values were around +19 and +16%, respectively. The calculated water/mineral ratios were less than unity. The water may have profoundly influenced the δ 18O values of spilitic basalts during their metamorphism to greenstones. Serpentinization and structural emplacement of ophiolite slabs were isotopically unrelated to this episode, which was essentially a low-grade (post-Cretaceous?) burial metamorphism. D/H ratios of actinolite, chlorite, and micas in host rocks were more profoundly altered during this episode than were 18O/ 16O ratios. A paleogeothermal gradient of about 53°C/km has been inferred for this episode, from δ 18O-depth distributions of vein minerals. The second episode, in part recorded by cogenetic vein quartz and calcite δ 18O values of +4 to +6% and +1 to +3%, respectively, began with large quantities of meteoric water circulating in fractures in the rock at temperatures of 160-180°C in response to the initiation of the Pliocene-Pleistocene Clear Lake magmatism. The temperature rose, and with the restricted circulation of fluids the ancestral hot-water system evolved into the presently active vapor-dominated system, which according to the cogenetic vein quartz and calcite δ 18O values involved temperatures as high as 320°C and fluid/mineral ratios near unity. The change in the oxygen-isotopic composition of the serpentinite within the host rock during this later activity was negligible. The δ 13C values of vein calcite at The Geysers reflect both a marine carbonate and organic component of carbon, but carbon-isotope exchange has been facilitated by the vapor-dominated hydrothermal fluid to a greater degree than in any other episode or in other hot-water systems.

  3. Methods to ensure optimal off-bottom and drill bit distance under pellet impact drilling

    NASA Astrophysics Data System (ADS)

    Kovalyov, A. V.; Isaev, Ye D.; Vagapov, A. R.; Urnish, V. V.; Ulyanova, O. S.

    2016-09-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rock for various purposes. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The paper presents the survey of methods ensuring an optimal off-bottom and a drill bit distance. The analysis of methods shows that the issue is topical and requires further research.

  4. Rock magnetic properties in the sulfate reduction zone in IODP 350 Hole 1437B, Izu Bonin rear arc: preliminary results

    NASA Astrophysics Data System (ADS)

    Musgrave, R. J.; Kars, M. A. C.; Kodama, K.

    2014-12-01

    During the northern Spring 2014 (April-May), IODP Expedition 350 drilled a 1806.5 m deep hole at Site U1437 in the Izu-Bonin rear arc, in order to understand, among other objectives, the compositional evolution of the arc since the Miocene and track the missing half of the subduction factory. The good recovery of mostly fine grained sediments at this site enables a high resolution paleomagnetic and rock magnetic study. Particularly, variations in magnetic properties and mineralogy are well documented. The onboard magnetostratigraphy established from the study of the archive halves highlighted remagnetized intervals that produced "ghost" repetitions of geomagnetic reversals ~10's meters below their actual stratigraphic position in specific intervals. Onboard paleo- and rock magnetic analyses showed that remagnetization is probably due to a chemical remanence carried by iron sulfides (putatively identified as greigite). The rock magnetic parameters, SIRM/k and the S-ratio are consistent with the presence of ferromagnetic iron sulfides in Site U1437. A mixture of iron oxides and iron sulfides was found within the sulfate reduction zone, which was identified by onboard pore water analyses at ~50-60 meters below sea floor (mbsf) by a minimum in sulfate (~5 mM) coupled with a maximum in alkalinity. Below 50 mbsf, the sulfate content increases up to ~29 mM at ~460 mbsf. The particular downhole profile of the sulfate content in Site U1437 is probably triggered by fluid circulation. Evolution of sulfate content, pyritization process and fluid circulation are closely linked. Onshore research is focusing on further downhole characterization of the iron sulfides including their abundance, grain size and composition. Routine magnetic properties (NRM, magnetic susceptibility) and rock magnetic analyses at high resolution (every ~20-50 cm), including hysteresis properties and low temperature magnetic measurements, have been conducted on about 400 discrete samples in the first 200 m of Hole 1437B (Cores 1H to 30X). As suggested by the onboard data, hysteresis measurements showed the occurrence of both single domain-pseudo single domain iron oxides and iron sulfides in the sulfate reduction zone. Preliminary results will be compared with the geochemical data.

  5. European and Middle-East ferroan hydrothermal dolomites: lessons learnt with respect to crustal dynamics, fluid circulations and rock-fluid interactions

    NASA Astrophysics Data System (ADS)

    Nader, Fadi Henri; Gasparrini, Marta; Bachaud, Pierre

    2016-04-01

    Classical case studies of hydrothermal dolostones, which are known worldwide to provide excellent reservoirs for ores and hydrocarbons, often illustrate the presence of iron-rich dolomite phases. The world-class hydrothermal dolostones from the Basque-Cantabrian Basin (Northern Spain) exemplify the initiation of high temperature dolomitization (at about 200°C), with significant amount of ferroan dolomite phases (including up to 2% FeO). These dolomites are believed to be responsible for the pervasive replacement of the original limestone rocks - they are followed by non-ferroan dolomite phases. The associated fluids are supposed to have interacted with basement rocks, and travelled from deep-seated sources along major fault pathways. The geochemical traits of such fluids are also typically similar to, and probably associated with, mineralization fluids (e.g. Pb-Zn, MVT). In the Middle East, several observed dolostones show, on the contrary, a later phase of ferroan dolomite cements which occlude the inter-crystalline porosity of earlier non-ferroan matrix dolomites. Dolomitization occurred under increasingly higher temperatures (from 50 to 100°C) during burial. Here, the origin of iron-rich fluids and conditions of precipitation of associated dolomites do not necessarily involve interactions with basement rocks, but rather a relative Fe-enrichment with further reducing settings. Based on previous research projects concerning a variety of dolostones from Europe and the Middle-East, this contribution presents observational, analytical and computational results focused on ferroan dolomites. Recent numerical geochemical modelling emphasized the physico-chemical pre-requisites for crystallizing ferroan rather than non-ferroan dolomites (and vice-versa), allowing better understanding of related diagenetic processes. Besides, important larger-scale information on the crustal fluid circulations are demonstrated to be intimately associated to the parent-fluids sources and the conditions of mineral precipitation. By adopting this approach, ferroan dolomites are no longer considered simply as accessory diagenetic phases. They rather provide significant clues for understanding crustal dynamics and the impacts of evolving rock-fluid interactions on carbonate reservoir properties which are essential for ore and hydrocarbon exploitation, and for underground storage and gas sequestration.

  6. One-year assessment of a solar space/water heater--Clinton, Mississippi

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Unit called "System 4" integrated into space-heating and hot-water systems of dormitory satisfied 32 percent of building heat load. System 4 includes flat-plate air collectors, circulation blowers, rock storage bed with heat exchanger, two hot water tanks, and auxiliary heaters. Report describes performance of system and subsystems, operating-energy requirements and savings, and performance parameters.

  7. Two-way feedback between biology and deep Earth processes

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.; Pope, E.; Bird, D.

    2012-12-01

    The presence of the metamorphic products of banded iron formation and black shale indicate that the Earth teemed with life by the time of the earliest preserved rocks, ca. 3.85 Ga. Iron and sulfur-based anoxygenic photosynthesis with full carbon cycles was present by this time. The pH of the ocean was ~8. The lack of older rock record cloaks pre-biotic evolution and the origin of life. Nascent and early life obtained energy from chemical disequilibria in rocks rather than sunlight. Appraising putative rock pre-biological environments is difficult in that life has modified the composition of the atmosphere, the hydrosphere, and sedimentary rocks. It has greatly affected the composition of crystalline crustal rocks and measurably modified the mantle. Conversely, hard crustal rocks and the mantle likely sequester a very ancient record of last resort. Theory provides additional insight. The Earth's surface and interior cooled following the moon-forming impact. The oceans passed through conditions favored by thermophile organisms before becoming clement. Ocean pH was ~6 and bars of CO2 existed in the atmosphere. Subduction removed the CO2 into the mantle before the time of rock record. Serpentinite likely existed in land, tidal, and marine environments as it does today. Seafloor spreading and arc volcanism likely drove hydrothermal circulation. The late heavy bombardment occurred after ca. 4.1 Ga; low heat flow environments and hence habitable subsurface refugia existed. It is conceivable that one or a few ocean-boiling impacts left thermophile survivors in their wake. Overall, the molecular biology of extant life likely conserves features that relate to its earliest abodes.

  8. Rock sampling. [apparatus for controlling particle size

    NASA Technical Reports Server (NTRS)

    Blum, P. (Inventor)

    1971-01-01

    An apparatus for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The device includes grinding means for cutting grooves in the rock surface and to provide a grouping of thin, shallow, parallel ridges and cutter means to reduce these ridges to a powder specimen. Collection means is provided for the powder. The invention relates to rock grinding and particularly to the sampling of rock specimens with good size control.

  9. Heterogeneity of hydrodynamic properties and groundwater circulation of a coastal andesitic volcanic aquifer controlled by tectonic induced faults and rock fracturing - Martinique island (Lesser Antilles - FWI)

    NASA Astrophysics Data System (ADS)

    Vittecoq, B.; Reninger, P. A.; Violette, S.; Martelet, G.; Dewandel, B.; Audru, J. C.

    2015-10-01

    We conducted a multidisciplinary study to analyze the structure and the hydrogeological functioning of an andesitic coastal aquifer and to highlight the importance of faults and associated rock fracturing on groundwater flow. A helicopter-borne geophysical survey with an unprecedented resolution (SkyTEM) was flown over this aquifer in 2013. TDEM resistivity, total magnetic intensity, geological and hydrogeological data from 30 boreholes and two pumping tests were correlated, including one which lasted an exceptional 15 months. We demonstrate that heterogeneous hydrodynamic properties and channelized flows result from tectonically-controlled aquifer compartmentalization along the structural directions of successive tectonic phases. Significant fracturing of the central compartment results in enhanced hydrodynamic properties of the aquifer and an inverse relationship between electrical resistivity and transmissivity. Basalts within the fractured compartment have lower resistivity and higher permeability than basalts outside the compartment. Pumping tests demonstrate that the key factor is the hydraulic conductivity contrast between compartments rather than the hydrodynamic properties of the fault structure. In addition, compartmentalization and associated transmissivity contrasts protect the aquifer from seawater intrusion. Finally, unlike basaltic volcanic islands, the age of the volcanic formations is not the key factor that determines hydrodynamic properties of andesitic islands. Basalts that are several million years old (15 Ma here) have favorable hydrodynamic properties that are generated or maintained by earthquakes/faulting that result from active subduction beneath these islands, which is superimposed on their primary permeability.

  10. Duration of mineralization and fluid-flow history of the Upper Mississippi Valley zinc-lead district

    USGS Publications Warehouse

    Rowan, E.L.; Goldhaber, M.B.

    1995-01-01

    Studies of fluid inclusions in sphalerite and biomarkers from the Upper Mississippi Valley zinc district show homogenization temperatures to be primarily between 90 and 150??C, yet show relatively low levels of thermal maturity. Numerical calculations are used to simulate fluid and heat flow through fracture-controlled ore zones and heat transfer to the adjacent rocks. Combining a best-fit path through fluid-inclusion data with measured thermal alteration of biomarkers, the time interval during which mineralizing fluids circulated through the Upper Mississippi Valley district was calculated to be on the order of 200 ka. Cambrian and Ordovician aquifers underlying the district, principally the St. Peter and Mt. Simon Sandstones, were the source of the mineralizing fluid. The duration of mineralization thus reflects the fluid-flow history of these regional aquifers. -from Authors

  11. Environment tracers application to groundwater circulation assessment in an alluvial aquifer in Central Italy

    NASA Astrophysics Data System (ADS)

    Sappa, Giuseppe; Barbieri, Maurizio; Vitale, Stefania

    2017-04-01

    Groundwater vulnerability assessment is an important tool in order to plan any groundwater protection strategy. The aim of this study is to experiment a specific approach to give a conceptual model about groundwater circulation characterization. This approach has been applied to a suspected contaminated site in a large alluvial plan, made of sediments coming from weathered volcanic rocks, laying on marine sediments, where more than thirty years ago had been built a very important urban waste solid landfill. In referring to this case history it has been pointed out the importance of natural chemical interaction between ground water and rock mass, especially when pyroclastic origin sediments are involved. The landfill had been isolated from the surrounding environment, especially to protect aquifers, by a waterproof diaphragm This land is characterised by intensive agricultural and industrial activities (oil refineries, medical waste incinerators, concrete production, tar factory). The study will highlight the importance of environmental tracers which provide information about the flow and mixing processes of water coming from different sources. They are also useful to point out directions of groundwater flow and to determine origin Environmental tracers are natural chemical and isotopic substances that can be measured in groundwater and used to understand hydrologic properties of aquifers. They may be input into the hydrological system from the atmosphere at recharge and/or are added/lost/exchanged inherently as waters flow over and through materials. Variations in their chemical abundances and isotopic compositions can be used as tracers to determine sources (provenance), pathways (of reaction or interaction) and also timescales (dating) of environmental processes. In combination with these, the basic idea is to use. In this case enviromental tracers have been integrated by temperature and electric conductivity logs, to better investigate different levels of faster or slower circulation of groundwater. The obtained results are very interesting for investigate complex circulation of groundwater like it happens in many alluvial aquifer environment.

  12. Low-altitude permafrost research in an overcooled talus slope-rock glacier system in the Romanian Carpathians (Detunata Goală, Apuseni Mountains)

    NASA Astrophysics Data System (ADS)

    Popescu, Răzvan; Vespremeanu-Stroe, Alfred; Onaca, Alexandru; Vasile, Mirela; Cruceru, Nicolae; Pop, Olimpiu

    2017-10-01

    Ground and air temperature monitoring, geophysical soundings and dendrological investigations were applied to a basaltic talus slope-rock glacier system from Detunata site in the Apuseni Mountains (Western Romanian Carpathians) to verify the presence of sporadic permafrost at 1020-1110 m asl, well below the regional limit of mountain permafrost. The near 0 °C mean annual ground surface temperatures imposed by the large negative annual thermal anomalies of the ground (up to 7.4 °C), together with the high resistivity values and the occurrence of trees with severe growth anomalies, support the presence of permafrost at this location. Temperature measurements and ground air circulation experiments proved that the so-called "chimney effect" is the main process favoring the ground overcooling and allowed for the construction of a model of ground air circulation in complex morphology deposits. The texture and porosity of the debris were quantified along with the local morphology in order to evaluate their role upon the chimney circulation. The debris porosity was found to be very high promoting intense ground overcooling during the cold season, including the periods of high snow cover due to the development of snow funnels. It efficiently reduces the heat transfer during summer thus contributing essentially to permafrost preservation. In compound morphologies, the depressed and low-lying features are the cold zones subjected to winter overcooling and summer chill, while the high-positioned and convex-up landforms become warm air evacuation features with positive thermal anomalies. Tree-ring measurements showed that the growth of cold-affected trees is higher during colder intervals (years to decades) probably as a consequence of the weakened katabatic air outflow during cooler summers. The dendrological analysis of multi-centennial spruces and their growth rates also provided palaeoclimatic inferences for the last 200 years. Dendrological data describe the multi-centennial chimney circulation and its response to climate variability.

  13. Radioactive deposits in California

    USGS Publications Warehouse

    Walker, George W.; Lovering, Tom G.

    1954-01-01

    Reconnaissance examination by Government geologists of many areas, mine properties, and prospects in California during the period between 1948 and 1953 has confirmed the presence of radioactive materials in place at more than 40 localities. Abnormal radioactivity at these localities is due to concentrations of primary and secondary uranium minerals, to radon gas, radium (?), and to thorium minerals. Of the known occurrences only three were thought to contain uranium oxide (uranitite or pitchblende), 4 contained uranium-bearing columbate, tantalate, or titanate minerals, 12 contained secondary uranium minerals, such as autunite, carnotite, and torbernite, one contained radon gas, 7 contained thorium minerals, and, at the remaining 16 localities, the source of the anomalous radiation was not positively determined. The occurrences in which uranium oxide has been tentatively identified include the Rathgeb mine (Calaveras County), the Yerih group of claims (San Bernardino County), and the Rainbow claim (Madera County). Occurrences of secondary uranium minerals are largely confined to the arid desert regions of south-eastern California including deposits in San Bernardino, Kern, Inyo, and Imperial Counties. Uranium-bearing columbate, tantalate, or titanate minerals have been reported from pegmatite and granitic rock in southeastern and eastern California. Thorium minerals have been found in vein deposits in eastern San Bernardino County and from pegmatites and granitic rocks in various parts of southeastern California; placer concentrations of thorium minerals are known from nearly all areas in the State that are underlain, in part, by plutonic crystalline rocks. The primary uranium minerals occur principally as minute accessory crystals in pegmatite or granitic rock, or with base-metal sulfide minerals in veins. Thorium minerals also occur as accessory crystals in pegmatite or granitic rock, in placer deposits derived from such rock, and, at Mountain Pass, in veins containing rare earths. Secondary uranium minerals have been found as fracture coatings and as disseminations in various types of wall rock, although they are largely confined to areas of Tertiary volcanic rocks. Probably the uranium in the uraniferous deposits in California is related genetically to felsic crystalline rocks and felsic volcanic rocks; the present distribution of the secondary uranium minerals has been controlled, in part, by circulating ground waters and probably, in part, by magmatic waters related to the Tertiary volcanic activity. The thorium minerals are genetically related to the intrusion of pegmatite and plutonic crystalline rocks. None of the known deposits of radioactive minerals in California contain marketable reserves of uranium or thorium ore under economic conditions existing in 1952. With a favorable local market small lots of uranium ore may be available in the following places: the Rosamund prospect, the Rafferty and Chilson properties, the Lucky Star claim, and the Yerih group. The commercial production of thorium minerals will be possible, in the near future, only if these minerals can be recovered cheaply as a byproduct either from the mining of rare earths minerals at Mountain Pass or as a byproduct of placer mining for gold.

  14. Tinnitus, Anxiety, Depression and Substance Abuse in Rock Musicians a Norwegian Survey.

    PubMed

    Stormer, Carl Christian Lein; Sorlie, Tore; Stenklev, Niels Christian

    2017-06-01

    Rock musicians are known to have an increased prevalence of hearing loss and tinnitus. The aims of the present study were to examine the distribution of anxiety and depression symptoms among rock musicians with or without tinnitus and how these mental health indicators and internal locus of control influenced upon their tinnitus symptom concerns and the degree to which the tinnitus affected their lives. The study was a questionnairebased cross-sectional survey of subjects selected from a cohort of rock musicians. We recruited 111 active musicians from the Oslo region, and a control group of 40 non-musicians from the student population at the University of Tromso. Among the rock musicians 19.8% reported permanent tinnitus vs. 0% among the controls. Musicians more often reported anxiety symptoms than controls (35.1% vs. 17.5%), however this prevalence was not different in musicians with and without tinnitus. Tinnitus-affected musicians reported depressive symptoms, significantly more than controls (13.6% vs. 5%). Rock musicians consumed more alcohol than controls, but alcohol consumption was unrelated to severity of tinnitus. Drug abuse was not more prevalent in rock musicians than in controls. Duration of tinnitus, internal locus of control, sleep disturbance and anxiety were significant predictors of how affected and how concerned musicians were about their tinnitus. Rock musicians are at risk for the development of chronic tinnitus, and they have an increased prevalence of anxiety. There is an association between chronic tinnitus and depressive symptoms in rock musicians, but our results are ambiguous. Although rock musicians have a chronic exposure to noise, noise-induced hearing loss is not the sole causative agent for the development of tinnitus.

  15. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T

    2007-06-01

    The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore,more » the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  16. The investigation of fault-controlled groundwater recharge within a suburban area of Damascus, Syria

    NASA Astrophysics Data System (ADS)

    Wannous, M.; Siebert, C.; Tröger, Uwe

    2016-08-01

    Al-Mazraa is a heavily populated suburb of Damascus (Syria) with agricultural activity. It is adjacent to the Cretaceous Qassioun Mountain Range, from which it is structurally separated by the Damascus fault. Al-Mazraa waterworks abstracts from a shallow Quaternary aquifer, whose recharge processes are unidentified. The functions of Qassioun Mountain, the Damascus fault, the agricultural activities, the ascending deeper groundwater, and the through-flowing Tora River are not well understood and they are, hence, subject to study. The application of hydrochemical parameters and ratios in combination with signatures of δD and δ18O revealed that recharge predominantly occurs in the outcropping Cretaceous rocks through subsurface passages rather than through influent conditions of the Tora River or through direct rainfall. Interestingly, high Na/Cl ratios indicate contact with volcanic rocks which exist within the Cretaceous anticline and also in the subsurface of the studied Quaternary aquifer. Evidence for deeper circulating groundwater is given, since replenishing waters are up to 4 °C warmer and have much lower nitrate concentrations than the groundwater in the study area. From these points, it is indicated that the Damascus fault is conductive in respect to groundwater, rather than being impermeable, as it is elsewhere.

  17. Organic synthesis during fluid mixing in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.; Schulte, Mitchell D.

    1998-12-01

    Hydrothermal circulation can lead to fluid mixing on any planet with liquid water and a source of heat. Aqueous fluids with differing compositions, especially different oxidation states, are likely to be far from thermodynamic equilibrium when they mix, and provide a source of free energy that can drive organic synthesis from CO2 and H2, and/or supply a source of geochemical energy to chemolithoautotrophic organisms. Results are presented that quantify the potential for organic synthesis during unbuffered fluid mixing in present submarine hydrothermal systems, as well as hypothetical systems that may have existed on the early Earth and Mars. Dissolved hydrogen, present in submarine hydrothermal fluids owing to the high-temperature reduction of H2O as seawater reacts with oceanic crustal rocks, provides the reduction potential and the thermodynamic drive for organic synthesis from CO2 (or bicarbonate) as hydrothermal fluids mix with seawater. The potential for organic synthesis is a strong function of the H2 content of the hydrothermal fluid, which is, in turn, a function of the prevailing oxidation state controlled by the composition of the rock that hosts the hydrothermal system. Hydrothermal fluids with initial oxidation states at or below those set by the fayalite-magnetite-quartz mineral assemblage show the greatest potential for driving organic synthesis. These calculations show that it is thermodynamically possible for 100% of the carbon in the mixed fluid to be reduced to a mixture of carboxylic acids, alcohols, and ketones in the range 250-50°C as cold seawater mixes with the hydrothermal fluid. As the temperature drops, larger organic molecules are favored, which implies that fluid mixing could drive the geochemical equivalent of a metabolic system. This enormous reduction potential probably drives a large portion of the primary productivity around present seafloor hydrothermal vents and would have been present in hydrothermal systems on the early Earth or Mars. The single largest control on the potential for organic synthesis is the composition of the rock that hosts the hydrothermal system.

  18. THM modelling of hydrothermal circulation in deep geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Magnenet, Vincent; Fond, Christophe; Schmittbuhl, Jean; Genter, Albert

    2014-05-01

    Numerous models have been developped for describing deep geothermal reservoirs. Using the opensource finite element software ASTER developped by EDF R&D, we carried out 2D simulations of the hydrothermal circulation in the deep geothermal reservoir of Soultz-sous-Forêts. The model is based on the effective description of Thermo-Hydro-Mechanical (THM) coupling at large scale. Such a model has a fourfold interest: a) the physical integration of laboratory measurements (rock physics), well logging, well head parameters, geological description, and geophysics field measurements; b) the construction of a direct model mechanically based for geophysical inversion: fluid flow, fluid pressure, temperature profile, seismicity monitoring, deformation of the ground surface (INSAR/GPS) related to reservoir modification, gravity or electromagnetic geophysical measurements; c) the sensitivity analysis of the parameters involved in the hydrothermal circulation and identification of the dominant ones; d) the development of a decision tool for drilling planning, stimulation and exploitation. In our model, we introduced extended Thermo-Hydro-Mechanical coupling including not only poro-elastic behavior but also the sensitivity of the fluid density, viscosity, and heat capacity to temperature and pressure. The behavior of solid rock grains is assumed to be thermo-elastic and linear. Hydraulic and thermal phenomena are governed by Darcy and Fourier laws respectively, and most rock properties (like the specific heat at constant stress csσ(T), or the thermal conductivity Λ(T,φ)) are assumed to depend on the temperature T and/or porosity φ. The radioactivity of the rocks is taken into account through a heat source term appearing in the balance equation of enthalpy. To characterize as precisely as possible the convective movement of water and the associated heat flow, water properties (specific mass ρw(T,pw), specific enthalpy hmw(T,pw) dynamic viscosity μw(T), thermal dilation αw(T), and specific heat cwp(T)) are assumed to depend on pressure and/or temperature. The entire set of material properties is extracted from references dealing with investigations at Soultz-sous-Forêts when existing. The reservoir is described at large scale (about 10 km in width and 5 km in height) and it is assumed that the medium is homogenous, porous, and saturated with a single-phase fluid (considering homogenized effective porous and/or fractured layers, neglecting the details of the fracture networks). We performed a feasability study and show that a large scale convection regime is possible using realistic parameters. The size of the convection cell (2.8km) are shown to be compatible with field observations.

  19. Now and Long Ago at Gale Crater, Mars Illustration

    NASA Image and Video Library

    2016-12-13

    This pair of drawings depicts the same location on Mars at two points in time: now and billions of years ago. The location is in Gale Crater, near the Red Planet's equator. Since August 2012, NASA's Curiosity Mars rover mission has been investigating rock layers in the crater floor and in the crater's central peak (Mount Sharp) for information recorded in the rocks about ancient environmental conditions and how they changed over time. Slide 1 shows a present-day snapshot of the northern half of Gale Crater. North is to the left. The underlying basement is the crust of Mars that forms the crater's rim (left) and central peak (right). About 3.5 billion years ago, rivers brought sediment into the crater, depositing pebbles where the river was flowing more quickly, sand where the river entered a standing body of water in the center of the basin, and silt within this lake. Lake level rose over time as the sediments built up. Eventually they were buried by dry dust. These sediments later turned into the conglomerate, sandstone, mudstone, and duststone rocks that Curiosity has found. Wind then carved the stack of deposits into the present shape of a mountain, which Curiosity is climbing as approximately shown. The basement rock fractured during the initial impact that formed the crater, and the later sediments fractured as they were buried. Slide 2 shows a snapshot in time when a lake was present in the crater. As on Earth, Martian lakes were the surface expression of a much larger lake and groundwater system. Spaces between grains and in fractures were saturated with water at levels below the water table (dashed blue line). This groundwater circulated due to gravity and the topography within and around the crater. In this case, groundwater pressurized under the nearby Martian highlands may have flowed into the crater, where it would be less confined. Groundwater also flowed downward from the lake. As the groundwater circulated, it drove chemical reactions that dissolved some minerals and precipitate others. Habitable environments in ancient Gale Crater -- identified during Curiosity's first year on Mars --expanded both in space and time beyond just the lakes. They extend throughout the subsurface where groundwater was present, and extended in time well after the lakes disappeared, when groundwater continued to circulate through the buried and fractured sediments. The unannotated figure and an animated gif are available at http://photojournal.jpl.nasa.gov/catalog/PIA21255

  20. Circulation control propellers for general aviation, including a BASIC computer program

    NASA Technical Reports Server (NTRS)

    Taback, I.; Braslow, A. L.; Butterfield, A. J.

    1983-01-01

    The feasibility of replacing variable pitch propeller mechanisms with circulation control (Coanada effect) propellers on general aviation airplanes was examined. The study used a specially developed computer program written in BASIC which could compare the aerodynamic performance of circulation control propellers with conventional propellers. The comparison of aerodynamic performance for circulation control, fixed pitch and variable pitch propellers is based upon the requirements for a 1600 kg (3600 lb) single engine general aviation aircraft. A circulation control propeller using a supercritical airfoil was shown feasible over a representative range of design conditions. At a design condition for high speed cruise, all three types of propellers showed approximately the same performance. At low speed, the performance of the circulation control propeller exceeded the performance for a fixed pitch propeller, but did not match the performance available from a variable pitch propeller. It appears feasible to consider circulation control propellers for single engine aircraft or multiengine aircraft which have their propellers on a common axis (tractor pusher). The economics of the replacement requires a study for each specific airplane application.

  1. Quantifying Seasonal Dynamic Water Storage in a Fractured Bedrock Vadose Zone With Borehole Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Schmidt, L.; Minton, B.; Soto-Kerans, N.; Rempe, D.; Heidari, Z.

    2017-12-01

    In many uplands landscapes, water is transiently stored in the weathered and fractured bedrock that underlies soils. The timing and spatial pattern of this "rock moisture" has strong implications for ecological and biogeochemical processes that influence global cycling of water and solutes. However, available technologies for direct monitoring of rock moisture are limited. Here, we quantify temporal and spatial changes in rock moisture at the field scale across thick (up to 20 m) fractured vadose zone profiles using a novel narrow diameter borehole nuclear magnetic resonance system (BNMR). Successive BNMR surveys were performed using the Vista Clara Inc. Dart system in a network of boreholes within two steep, intensively hydrologically monitored hillslopes associated with the Eel River Critical Zone Observatory (ERCZO) in Northern California. BNMR data showed agreement with estimates of the temporal and spatial pattern of rock moisture depletion over the dry season via downhole neutron and gamma density surveys, as well as permanently installed continuous time domain reflectometry. Observable shifts in the BNMR-derived T2 distribution over time provide a direct measure of changes in the amount of water held within different pore sizes (large vs. small) in fractured rock. Analysis of both BNMR and laboratory-scale NMR (using a 2MHz benchtop NMR spectrometer) measurements of ERCZO core samples at variable saturation suggest that rock moisture changes associated with summer depletion occur within both large (fracture) and small (matrix) pore sizes. Collectively, our multi-method field- and laboratory- scale measurements highlight the potential for BNMR to improve quantification of rock moisture storage for better understanding of the biogeochemical and ecohydrological implications of rock moisture circulation in the Critical Zone.

  2. STRUCTURAL CONTROLS OF THE EMERSON PASS GEOTHERMAL SYSTEM, NORTHWESTERN NEVADA: CHARACTERIZATION OF A "BLIND" SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Ryan B; Faulds, James E

    Detailed geologic analyses have elucidated the kinematics, stress state, structural controls, and past surface activity of a blind geothermal system in Emerson Pass on the Pyramid Lake Paiute Reservation, western Nevada. The Emerson Pass area resides near the boundary of the Basin and Range and Walker Lane provinces and at the western edge of a broad left step or relay ramp between the north- to north-northeast-striking, west-dipping, Fox and Lake Range normal faults. The step-over provides a structurally favorable setting for deep circulation of meteoric fluids. Strata in the area are comprised of late Miocene to Pliocene sedimentary rocks andmore » the middle Miocene Pyramid sequence mafic to intermediate volcanic rocks, all overlying Mesozoic metasedimentary and intrusive rocks. A thermal anomaly was discovered in Emerson Pass by use of 2-m temperature surveys deployed within a structurally favorable setting and proximal to surface features indicative of geothermal activity. The 2-m temperature surveys define a north-south elongate thermal anomaly that has a maximum recorded temperature of ~60°C and resides on a north- to north-northeast-striking normal fault. Although the active geothermal system is expressed solely as a soil heat anomaly, late Pleistocene travertine and tufa mounds, chalcedonic silica/calcite veins, and silica cemented Pleistocene lacustrine gravels indicate a robust geothermal system was active at the surface in the recent past. The geothermal system is controlled primarily by the broad step-over between two major range-bounding normal faults. In detail, the system likely results from enhanced permeability generated by the intersection of two oppositely dipping, southward terminating north- to north-northwest-striking (Fox Range fault) and north-northeast-striking normal faults. Structural complexity and spatial heterogeneities of the strain and stress field have developed in the step-over region, but kinematic data suggest a west-northwest-trending (~280° azimuth) extension direction. Therefore, geothermal activity in the Emerson Pass area is probably hosted on north-to north-northeast striking normal faults.« less

  3. Interbasin flow in the Great Basin with special reference to the southern Funeral Mountains and the source of Furnace Creek springs, Death Valley, California, U.S.

    USGS Publications Warehouse

    Belcher, W.R.; Bedinger, M.S.; Back, J.T.; Sweetkind, D.S.

    2009-01-01

    Interbasin flow in the Great Basin has been established by scientific studies during the past century. While not occurring uniformly between all basins, its occurrence is common and is a function of the hydraulic gradient between basins and hydraulic conductivity of the intervening rocks. The Furnace Creek springs in Death Valley, California are an example of large volume springs that are widely accepted as being the discharge points of regional interbasin flow. The flow path has been interpreted historically to be through consolidated Paleozoic carbonate rocks in the southern Funeral Mountains. This work reviews the preponderance of evidence supporting the concept of interbasin flow in the Death Valley region and the Great Basin and addresses the conceptual model of pluvial and recent recharge [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley, California. EOS 85, 349; Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. Journal of Hydrology 323, 276-302] as the source of the Furnace Creek springs. We find that there is insufficient modern recharge and insufficient storage potential and permeability within the basin-fill units in the Furnace Creek basin for these to serve as a local aquifer. Further, the lack of high sulfate content in the spring waters argues against significant flow through basin-fill sediments and instead suggests flow through underlying consolidated carbonate rocks. The maximum temperature of the spring discharge appears to require deep circulation through consolidated rocks; the Tertiary basin fill is of insufficient thickness to generate such temperatures as a result of local fluid circulation. Finally, the stable isotope data and chemical mass balance modeling actually support the interbasin flow conceptual model rather than the alternative presented in Nelson et al. [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley, California. EOS 85, 349] and Anderson et al. [Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. Journal of Hydrology 323, 276-302]. In light of these inconsistencies, interbasin flow is the only readily apparent explanation for the large spring discharges at Furnace Creek and, in our view, is the likely explanation for most large volume, low elevation springs in the Great Basin. An understanding of hydrogeologic processes that control the rate and direction of ground-water flow in eastern and central Nevada is necessary component of regional water-resource planning and management of alluvial and bedrock aquifers.

  4. Layered Outcrops in Gusev Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Mars Exploration Rover Spirit collected data on morphology, composition, and mineralogy of a rock nicknamed 'Tetl' using the microscopic imager, the alpha particle X-ray spectrometer, and the Moessbauer spectrometer before moving on. Scientists are discussing a suggestion that this rock outcrop and others on the 'West Spur' of the 'Columbia Hills' in Gusev Crater on Mars may contain evidence of graded bedding, in which alternate layers of sediment are either coarser or finer depending on the turbulence of the processes that deposited them. Such layers could be deposited by water circulating in rivers or lakes, volcanic ash settling on the surface, wind carrying fine-grained sediments, or a combination of these processes. This view is a mosaic of images that Spirit took with its microscopic imager on the rover's 272nd and 273rd martian days, or sols (Oct. 7 and 8, 2004). It has been enhanced to bring out details in the shadows without washing out sunlit areas. The section of rock shown here is approximately 17 centimeters (6.7 inches) wide.

  5. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding seismicity in unconventional reservoirs is the role of anisotropy of rocks. We evaluate an elastic VTI rock model corresponding to a shale gas reservoir in the Horn River Basin to understand the relation between stress, event occurrence and elastic heterogeneity in anisotropic rocks.

  6. Alteration minerals in impact-generated hydrothermal systems - Exploring host rock variability

    NASA Astrophysics Data System (ADS)

    Schwenzer, Susanne P.; Kring, David A.

    2013-09-01

    Impact-generated hydrothermal systems have been previously linked to the alteration of Mars’ crust and the production of secondary mineral assemblages seen from orbit. The sensitivity of the resultant assemblages has not yet been evaluated as a function of precursor primary rock compositions. In this work, we use thermochemical modeling to explore the variety of minerals that could be produced by altering several known lithologies based on martian meteorite compositions. For a basaltic host rock lithology (Dhofar 378, Humphrey) the main alteration phases are feldspar, zeolite, pyroxene, chlorite, clay (nontronite, kaolinite), and hematite; for a lherzolithic host rock lithology (LEW 88516) the main alteration phases are amphibole, serpentine, chlorite, clay (nontronite, kaolinite), and hematite; and for an ultramafic host rock lithology (Chassigny) the main minerals are secondary olivine, serpentine, magnetite, quartz, and hematite. These assemblages and proportions of phases in each of those cases depend on W/R and temperature. Integrating geologic, hydrologic and alteration mineral evidence, we have developed a model to illustrate the distribution of alteration assemblages that occur in different levels of an impact structure. At the surface, hot, hydrous alteration affects the ejecta and melt sheet producing clay and chlorite. Deeper in the subsurface and depending on the permeability of the rock, a variety of minerals - smectite, chlorite, serpentine, amphiboles and hematite - are produced in a circulating hydrothermal system. These modeled mineral distributions should assist with interpretation of orbital observations and help guide surface exploration by rovers and sample return assets.

  7. Numerical Simulation Applications in the Design of EGS Collab Experiment 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Henry; White, Mark D.; Fu, Pengcheng

    The United States Department of Energy, Geothermal Technologies Office (GTO) is funding a collaborative investigation of enhanced geothermal systems (EGS) processes at the meso-scale. This study, referred to as the EGS Collab project, is a unique opportunity for scientists and engineers to investigate the creation of fracture networks and circulation of fluids across those networks under in-situ stress conditions. The EGS Collab project is envisioned to comprise three experiments and the site for the first experiment is on the 4850 Level (4,850 feet below ground surface) in phyllite of the Precambrian Poorman formation, at the Sanford Underground Research Facility, locatedmore » at the former Homestake Gold Mine, in Lead, South Dakota. Principal objectives of the project are to develop a number of intermediate-scale field sites and to conduct well-controlled in situ experiments focused on rock fracture behavior and permeability enhancement. Data generated during these experiments will be compared against predictions of a suite of computer codes specifically designed to solve problems involving coupled thermal, hydrological, geomechanical, and geochemical processes. Comparisons between experimental and numerical simulation results will provide code developers with direction for improvements and verification of process models, build confidence in the suite of available numerical tools, and ultimately identify critical future development needs for the geothermal modeling community. Moreover, conducting thorough comparisons of models, modelling approaches, measurement approaches and measured data, via the EGS Collab project, will serve to identify techniques that are most likely to succeed at the Frontier Observatory for Research in Geothermal Energy (FORGE), the GTO's flagship EGS research effort. As noted, outcomes from the EGS Collab project experiments will serve as benchmarks for computer code verification, but numerical simulation additionally plays an essential role in designing these meso-scale experiments. This paper describes specific numerical simulations supporting the design of Experiment 1, a field test involving hydraulic stimulation of two fractures from notched sections of the injection borehole and fluid circulation between sub-horizontal injection and production boreholes in each fracture individually and collectively, including the circulation of chilled water. Whereas the mine drift allows for accurate and close placement of monitoring instrumentation to the developed fractures, active ventilation in the drift cooled the rock mass within the experimental volume. Numerical simulations were executed to predict seismic events and magnitudes during stimulation, initial fracture orientations for smooth horizontal wellbores, pressure requirements for fracture initiation from notched wellbores, fracture propagation during stimulation between the injection and production boreholes, tracer travel times between the injection and production boreholes, produced fluid temperatures with chilled water injections, pressure limits on fluid circulation to avoid fracture growth, temperature environment surrounding the 4850 Level drift, and fracture propagation within a stress field altered by drift excavation, ventilation cooling, and dewatering.« less

  8. Structural controls on fluid circulation at the Caviahue-Copahue Volcanic Complex (CCVC) geothermal area (Chile-Argentina), revealed by soil CO2 and temperature, self-potential, and helium isotopes

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Bravo, Francisco; Pinti, Daniele L.; Barde-Cabusson, Stéphanie; Pizarro, Marcela; Tardani, Daniele; Muñoz, Carlos; Sanchez, Juan; Sano, Yuji; Takahata, Naoto; de la Cal, Federico; Esteban, Carlos; Morata, Diego

    2017-07-01

    Natural geothermal systems are limited areas characterized by anomalously high heat flow caused by recent tectonic or magmatic activity. The heat source at depth is the result of the emplacement of magma bodies, controlled by the regional volcano-tectonic setting. In contrast, at a local scale a well-developed fault-fracture network favors the development of hydrothermal cells, and promotes the vertical advection of fluids and heat. The Southern Volcanic Zone (SVZ), straddling Chile and Argentina, has an important, yet unexplored and undeveloped geothermal potential. Studies on the lithological and tectonic controls of the hydrothermal circulation are therefore important for a correct assessment of the geothermal potential of the region. Here, new and dense self-potential (SP), soil CO2 and temperature (T) measurements, and helium isotope data measured in fumaroles and thermal springs from the geothermal area located in the north-eastern flank of the Copahue volcanic edifice, within the Caviahue Caldera (the Caviahue-Copahue Volcanic Complex - CCVC) are presented. Our results allowed to the constraint of the structural origin of the active thermal areas and the understanding of the evolution of the geothermal system. NE-striking faults in the area, characterized by a combination of SP, CO2, and T maxima and high 3He/4He ratios (up to 8.16 ± 0.21Ra, whereas atmospheric Ra is 1.382 × 10- 6), promote the formation of vertical permeability preferential pathways for fluid circulation. WNW-striking faults represent low-permeability pathways for hydrothermal fluid ascent, but promote infiltration of meteoric water at shallow depths, which dilute the hydrothermal input. The region is scattered with SP, CO2, and T minima, representing self-sealed zones characterized by impermeable altered rocks at depth, which create local barriers for fluid ascent. The NE-striking faults seem to be associated with the upflowing zones of the geothermal system, where the boiling process produces a high vapor-dominated zone close to the surface, whereas the WNW-striking faults could act as a boundary of the Copahue geothermal area to the south.

  9. RhoA-stimulated intra-capillary morphology switch facilitates the arrest of individual circulating tumor cells.

    PubMed

    Huang, Xi; Yang, Yu; Zhao, Yuwei; Cao, Dan; Ai, Xiaolin; Zeng, Anqi; Gou, Maling; Cai, Lulu; Yang, Hanshuo; Zhao, Chengjian

    2018-05-15

    Metastasis is the primary cause of death for most cancer patients. Hematogenous arrest of circulating tumor cells (CTCs) is an essential prerequisite for metastases formation. Using transparent transgenic zebrafish (kdrl:eGFP; Casper), together with resonant laser scanning confocal microscopy, we tracked the fate of CTCs in vivo in the blood circulation for days. We found the intra-capillary morphology-switch (ICMS) of individual CTCs from strip to sphere was necessary for their intravascular arrests. Further genetic and pharmacological inhibition experiments indicated that the RhoA signaling was necessary for ICMS and the arrest of CTCs. At last, we demonstrated that early treatment by a clinically approved RhoA/ROCK inhibitor, Fasudil, could efficiently inhibit the initial arrest of individual CTCs and reduce the incidence of tumor metastasis in both zebrafish and mouse models. These results together indicate that RhoA-stimulated ICMS represents a mechanism for the arrest of individual CTCs, providing a potential target for future treatments of hematogenous metastatic disease. © 2017 UICC.

  10. A Study of Permeability Changes Due to Cold Fluid Circulation in Fractured Geothermal Reservoirs.

    PubMed

    Gholizadeh Doonechaly, Nima; Abdel Azim, Reda R; Rahman, Sheik S

    2016-05-01

    Reservoir behavior due to injection and circulation of cold fluid is studied with a shear displacement model based on the distributed dislocation technique, in a poro-thermoelastic environment. The approach is applied to a selected volume of Soultz geothermal reservoir at a depth range of 3600 to 3700 m. Permeability enhancement and geothermal potential of Soultz geothermal reservoir are assessed over a stimulation period of 3 months and a fluid circulation period of 14 years. This study-by shedding light onto another source of uncertainty-points toward a special role for the fracture surface asperities in predicting the shear dilation of fractures. It was also observed that thermal stress has a significant impact on changing the reservoir stress field. The effect of thermal stresses on reservoir behavior is more evident over longer circulation term as the rock matrix temperature is significantly lowered. Change in the fracture permeability due to the thermal stresses can also lead to the short circuiting between the injection and production wells which in turn decreases the produced fluid temperature significantly. The effect of thermal stress persists during the whole circulation period as it has significant impact on the continuous increase in the flow rate due to improved permeability over the circulation period. In the current study, taking into account the thermal stress resulted in a decrease of about 7 °C in predicted produced fluid temperature after 14 years of cold fluid circulation; a difference which notably influences the potential prediction of an enhanced geothermal system. © 2015, National Ground Water Association.

  11. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock shall... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling... the purpose of this section. (c) Water control. Water used to control dust from drilling rock shall be...

  12. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dust control at underground areas of underground mines. (a) Dust resulting from drilling in rock shall... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling... the purpose of this section. (c) Water control. Water used to control dust from drilling rock shall be...

  13. Carbon dioxide, ground air and carbon cycling in Gibraltar karst

    NASA Astrophysics Data System (ADS)

    Mattey, D. P.; Atkinson, T. C.; Barker, J. A.; Fisher, R.; Latin, J.-P.; Durrell, R.; Ainsworth, M.

    2016-07-01

    We put forward a general conceptual model of CO2 behaviour in the vadose zone of karst aquifers, based on physical principles of air flow through porous media and caves, combined with a geochemical interpretation of cave monitoring data. This 'Gibraltar model' links fluxes of water, air and carbon through the soil with the porosity of the vadose zone, the circulation of ground air and the ventilation of caves. Gibraltar hosts many natural caves whose locations span the full length and vertical range of the Rock. We report results of an 8-year monitoring study of carbon in soil organic matter and bedrock carbonate, dissolved inorganic carbon in vadose waters, and gaseous CO2 in soil, cave and ground air. Results show that the regime of cave air CO2 results from the interaction of cave ventilation with a reservoir of CO2-enriched ground air held within the smaller voids of the bedrock. The pCO2 of ground air, and of vadose waters that have been in close contact with it, are determined by multiple factors that include recharge patterns, vegetation productivity and root respiration, and conversion of organic matter to CO2 within the soil, the epikarst and the whole vadose zone. Mathematical modelling and field observations show that ground air is subject to a density-driven circulation that reverses seasonally, as the difference between surface and underground temperatures reverses in sign. The Gibraltar model suggests that cave air pCO2 is not directly related to CO2 generated in the soil or the epikarstic zone, as is often assumed. Ground air CO2 formed by the decay of organic matter (OM) washed down into the deeper unsaturated zone is an important additional source of pCO2. In Gibraltar the addition of OM-derived CO2 is the dominant control on the pCO2 of ground air and the Ca-hardness of waters within the deep vadose zone. The seasonal regime of CO2 in cave air depends on the position of a cave in relation to the density-driven ground air circulation pattern which is itself determined by the topography, as well as by the high-permeability conduits for air movement provided by caves themselves. In the steep topography of Gibraltar, caves in the lower part of the Rock act as outflow conduits for descending ground air in summer, and so have higher pCO2 in that season. Caves in the upper Rock have high pCO2 in winter, when they act as outflow conduits for rising currents of CO2-enriched ground air. Understanding seasonal flows of ground air in the vadose zone, together with the origins and seasonal regimes of CO2 in cave air underpins robust interpretation of speleothem-based climate proxy records.

  14. Processes and controls in swelling anhydritic clay rocks

    NASA Astrophysics Data System (ADS)

    Mutschler, Thomas; Blum, Philipp; Butscher, Christoph

    2015-04-01

    Referring to the swelling of anhydritic clay rocks in tunneling, Leopold Müller-Salzburg noted in the third volume on tunneling of his fundamental text book on rock engineering that "a truly coherent explanation of these phenomena is still owing" (Müller-Salzburg 1978, p. 306). This valuation is still true after more than three decades of research in the field of swelling anhydritic clay rocks. One of the reasons is our limited knowledge of the processes involved in the swelling of such rocks, and of the geological, mineralogical, hydraulic, chemical and mechanical controls of the swelling. In this contribution, a review of processes in swelling anhydritic clay rocks and of associated controls is presented. Also numerical models that aim at simulating the swelling processes and controls are included in this review, and some of the remaining open questions are pointed out. By focusing on process-oriented work in this review, the presentation intends to stimulate further research across disciplines in the field of swelling anhydritic clay rocks to finally get a step further in managing the swelling problem in geotechnical engineering projects. Keywords: swelling; anhydritic clay rocks; review

  15. Cryo-conditioned rocky coast systems: A case study from Wilczekodden, Svalbard.

    PubMed

    Strzelecki, M C; Kasprzak, M; Lim, M; Swirad, Z M; Jaskólski, M; Pawłowski, Ł; Modzel, P

    2017-12-31

    This paper presents the results of an investigation into the processes controlling development of a cryo-conditioned rock coast system in Hornsund, Svalbard. A suite of nested geomorphological and geophysical methods have been applied to characterise the functioning of rock cliffs and shore platforms influenced by lithological control and geomorphic processes driven by polar coast environments. Electrical resistivity tomography (ERT) surveys have been used to investigate permafrost control on rock coast dynamics and reveal the strong interaction with marine processes in High Arctic coastal settings. Schmidt hammer rock tests, demonstrated strong spatial control on the degree of rock weathering (rock strength) along High Arctic rock coasts. Elevation controlled geomorphic zones are identified and linked to distinct processes and mechanisms, transitioning from peak hardness values at the ice foot through the wave and storm dominated scour zones to the lowest values on the cliff tops, where the effects of periglacial weathering dominate. Observations of rock surface change using a traversing micro-erosion meter (TMEM) indicate that significant changes in erosion rates occur at the junction between the shore platform and the cliff toe, where rock erosion is facilitated by frequent wetting and drying and operation of nivation and sea ice processes (formation and melting of snow patches and icefoot complexes). The results are synthesised to propose a new conceptual model of High Arctic rock coast systems, with the aim of contributing towards a unifying concept of cold region landscape evolution and providing direction for future research regarding the state of polar rock coasts. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Crustal structure in the Elko-Carlin Region, Nevada, during Eocene gold mineralization: Ruby-East Humboldt metamorphic core complex as a guide to the deep crust

    USGS Publications Warehouse

    Howard, K.A.

    2003-01-01

    The deep crustal rocks exposed in the Ruby-East Humboldt metamorphic core complex, northeastern Nevada, provide a guide for reconstructing Eocene crustal structure ~50 km to the west near the Carlin trend of gold deposits. The deep crustal rocks, in the footwall of a west-dipping normal-sense shear system, may have underlain the Pinon and Adobe Ranges about 50 km to the west before Tertiary extension, close to or under part of the Carlin trend. Eocene lakes formed on the hanging wall of the fault system during an early phase of extension and may have been linked to a fluid reservoir for hydrothermal circulation. The magnitude and timing of Paleogene extension remain indistinct, but dikes and tilt axes in the upper crust indicate that spreading was east-west to northwest-southeast, perpendicular to a Paleozoic and Mesozoic orogen that the spreading overprinted. High geothermal gradients associated with Eocene or older crustal thinning may have contributed to hydrothermal circulation in the upper crust. Late Eocene eruptions, upper crustal dike intrusion, and gold mineralization approximately coincided temporally with deep intrusion of Eocene sills of granite and quartz diorite and shallower intrusion of the Harrison Pass pluton into the core-complex rocks. Stacked Mesozoic nappes of metamorphosed Paleozoic and Precambrian rocks in the core complex lay at least 13 to 20 km deep in Eocene time, on the basis of geobarometry studies. In the northern part of the complex, the presently exposed rocks had been even deeper in the late Mesozoic, to >30 km depths, before losing part of their cover by Eocene time. Nappes in the core plunge northward beneath the originally thicker Mesozoic tectonic cover in the north part of the core complex. Mesozoic nappes and tectonic wedging likely occupied the thickened midlevel crustal section between the deep crustal core-complex intrusions and nappes and the overlying upper crust. These structures, as well as the subsequent large-displacement Cenozoic extensional faulting and flow in the deep crust, would be expected to blur the expression of any regional structural roots that could correlate with mineral belts. Structural mismatch of the mineralized upper crust and the tectonically complex middle crust suggests that the Carlin trend relates not to subjacent deeply penetrating rooted structures but to favorable upper crustal host rocks aligned within a relatively coherent regional block of upper crust.

  17. Ground-water geology of the Gonaives Plain, Haiti

    USGS Publications Warehouse

    Taylor, George C.; Lemoine, Rémy C.

    1950-01-01

    The Gonaives Plain lies in northern Haiti at the head of the Gulf of Gonaives. Ground water in the plain is used widely for domestic and stock purposes but only to limited extent for irrigation. The future agricultural development of the plain will depend in large measure on the proper utilization of available ground-water supplies for irrigation. The rocks in the region of the Gonaives Plain belong to the upper (?) Cretaceous series of the Cretaceous system, the Nocene and Oligovene series of the Tertiary system, and the Pleistocene and Recent series of the Quarternary system. The structural depression occupied by the Gonaives Plain was formed in post-Miocene time by the dislocation of Oligocene and older rocks along normal faults and by the tilting of the adjacent crustal blocks. The lower parts of the depression contain a Pleistocene and Recent alluvial fill deposited by streams tributary to the plain. The upper (?) Cretaceous rocks include aniesite and basalt lava flows locally intercalated with some beds of tuff and agglomerate. These rocks are generally dense and impervious but locally small springs rise from fractures and bedding planes or from weathered zones. The Nocene rocks are hard, thin-bedded, cherty limestones with some beds of massive chalky limestone. Considerable ground water circulates through joints, bedding planes, and solution passages in these rocks giving rise to important springs such as Sources Madame Charles. These springs discharge at the rate of about 110 liters per second. The Oligocene rocks include limestone, shely limestone, limy sandstone, marl, and shale. The limestone beds contain solution passages and other openings and these may afford capacity for the circulation of ground water. However, no wells or springs in Oligocene rocks were observed during the present study. The alluvial fill of the plain is composed of interbedded lenses of clay, silt, sand, and gravel. These deposits contain a zone of saturation whose upper limit is marked by a water table. The depth to the water table beneath the alluvial lowland of the plain ranges from less than one meter to about 20 meters. In most places in the plain the depth to water is less that 15 meters. Where present in the zone of saturation the coarse, well-sorted sand and gravel beds of the alluvium will probably yield moderate to large supplies of water to wells and infiltration galleries. The individual yields of existing wells range from a few liters to about 60 liters per second. The most favorable part of the plain for ground-water prospecting and development lies 5 to 10 kilometers northeast of Gonaives. In this area yields of 10 to 50 liters per second could be obtained from the alluvium in simple wells drilled to depths of about 35 to 45 meters. Additional information on the yield and physical character of aquifers in the alluvium would be provided by test wells drilled to depths of 40 to 60 meters.

  18. Geothermal energy resources of wadi Al-Lith, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Lashin, A.; Chandrasekharam, D.; Al Arifi, N.; Al Bassam, A.; Varun, C.

    2014-09-01

    The entire western Arabian shield is the domain of both hydrothermal and enhanced geothermal systems associated with volcanic centres (Harrats) and high heat generating granites. The most prominent sites of hydrothermal systems are located around Al-Lith and Jizan. The hydrothermal system in Al Lith is controlled by high heat generating (∼11 μW/m3) post orogenic granites. The high heat flow value of >80 mW/m2 across Al-Lith coast is due to such granite intrusives, presence of dike swarms that intrude into the granites as well as position of Moho at shallow level. Although the thermal waters are chloride rich, Red Sea involvement is not observed. Long residence time and water rock interaction with granites are the main processes responsible for chloride enrichment in the thermal waters. Oxygen isotope shift indicates presence of high temperature geothermal system in the area. The tritium values indicate that the circulating waters are >75 years old.

  19. Low-Temperature Alteration of the Seafloor: Impacts on Ocean Chemistry

    NASA Astrophysics Data System (ADS)

    Coogan, Laurence A.; Gillis, Kathryn M.

    2018-05-01

    Over 50% of Earth is covered by oceanic crust, the uppermost portion of which is a high-permeability layer of basaltic lavas through which seawater continuously circulates. Fluid flow is driven by heat lost from the oceanic lithosphere; the global fluid flux is dependent on plate creation rates and the thickness and distribution of overlying sediment, which acts as a low-permeability layer impeding seawater access to the crust. Fluid-rock reactions in the crust, and global chemical fluxes, depend on the average temperature in the aquifer, the fluid flux, and the composition of seawater. The average temperature in the aquifer depends largely on bottom water temperature and, to a lesser extent, on the average seafloor sediment thickness. Feedbacks between off-axis chemical fluxes and their controls may play an important role in modulating ocean chemistry and planetary climate on long timescales, but more work is needed to quantify these feedbacks.

  20. Hydrothermal systems in small ocean planets.

    PubMed

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  1. Aerated drilling cutting transport analysis in geothermal well

    NASA Astrophysics Data System (ADS)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  2. 76 FR 3178 - Proposed Extension of Existing Information Collection; Rock Burst Control Plan, Metal and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... Extension of Existing Information Collection; Rock Burst Control Plan, Metal and Nonmetal Mines AGENCY: Mine... extension of the information collection for 30 CFR 57.3461 Rock Bursts. DATES: All comments must be received... contains the request for an extension of the existing collection of information in 30 CFR 57.3461 Rock...

  3. Performance of Control System Using Microcontroller for Sea Water Circulation

    NASA Astrophysics Data System (ADS)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yalong; Jones, Edward A.; Wang, Fred

    Arm inductor in a modular multilevel converter (MMC) is used to limit the circulating current and dc short circuit fault current. The circulating current in MMC is dominated by second-order harmonic, which can be largely reduced with circulating current suppressing control. By analyzing the mechanism of the circulating current suppressing control, it is found that the circulating current at switching frequency becomes the main harmonic when suppression control is implemented. Unlike the second-order harmonic that circulates only within the three phases, switching frequency harmonic also flows through the dc side and may further cause high-frequency dc voltage harmonic. This articlemore » develops the theoretical relationship between the arm inductance and switching frequency circulating current, which can be used to guide the arm inductance selection. The experimental results with a downscaled MMC prototype verify the existence of the switching frequency circulating current and its relationship with arm inductance.« less

  5. High-Reynolds Number Circulation Control Testing in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.

    2012-01-01

    A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. The first active flow control experiment was completed using the new FAST-MAC semi-span model to study Reynolds number scaling effects for several circulation control concepts. Testing was conducted over a wide range of Mach numbers, up to chord Reynolds numbers of 30 million. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. Preliminary analysis of the uncorrected lift data showed that the circulation control increased the low-speed maximum lift coefficient by 33%. At transonic speeds, the circulation control was capable of positively altering the shockwave pattern on the upper wing surface and reducing flow separation. Furthermore, application of the technique to only the outboard portion of the wing demonstrated the feasibility of a pneumatic based roll control capability.

  6. Lower crustal hydrothermal circulation at slow-spreading ridges: evidence from chlorine in Arctic and South Atlantic basalt glasses and melt inclusions

    NASA Astrophysics Data System (ADS)

    van der Zwan, Froukje M.; Devey, Colin W.; Hansteen, Thor H.; Almeev, Renat R.; Augustin, Nico; Frische, Matthias; Haase, Karsten M.; Basaham, Ali; Snow, Jonathan E.

    2017-12-01

    Hydrothermal circulation at slow-spreading ridges is important for cooling the newly formed lithosphere, but the depth to which it occurs is uncertain. Magmas which stagnate and partially crystallize during their rise from the mantle provide a means to constrain the depth of circulation because assimilation of hydrothermal fluids or hydrothermally altered country rock will raise their chlorine (Cl) contents. Here we present Cl concentrations in combination with chemical thermobarometry data on glassy basaltic rocks and melt inclusions from the Southern Mid-Atlantic Ridge (SMAR; 3 cm year-1 full spreading rate) and the Gakkel Ridge (max. 1.5 cm year-1 full spreading rate) in order to define the depth and extent of chlorine contamination. Basaltic glasses show Cl-contents ranging from ca. 50-430 ppm and ca. 40-700 ppm for the SMAR and Gakkel Ridge, respectively, whereas SMAR melt inclusions contain between 20 and 460 ppm Cl. Compared to elements of similar mantle incompatibility (e.g. K, Nb), Cl-excess (Cl/Nb or Cl/K higher than normal mantle values) of up to 250 ppm in glasses and melt inclusions are found in 75% of the samples from both ridges. Cl-excess is interpreted to indicate assimilation of hydrothermal brines (as opposed to bulk altered rock or seawater) based on the large range of Cl/K ratios in samples showing a limited spread in H2O contents. Resorption and disequilibrium textures of olivine, plagioclase and clinopyroxene phenocrysts and an abundance of xenocrysts and gabbroic fragments in the SMAR lavas suggest multiple generations of crystallization and assimilation of hydrothermally altered rocks that contain these brines. Calculated pressures of last equilibration based on the major element compositions of melts cannot provide reliable estimates of the depths at which this crystallization/assimilation occurred as the assimilation negates the assumption of crystallization under equilibrium conditions implicit in such calculations. Clinopyroxene-melt thermobarometry on rare clinopyroxene phenocrysts present in the SMAR magmas yield lower crustal crystallization/assimilation depths (10-13 km in the segment containing clinopyroxene). The Cl-excesses in SMAR melt inclusions indicate that assimilation occurred before crystallization, while also homogeneous Cl in melts from Gakkel Ridge indicate Cl addition during magma chamber processes. Combined, these observations imply that hydrothermal circulation reaches the lower crust at slow-spreading ridges, and thereby promotes cooling of the lower crust. The generally lower Cl-excess at slow-spreading ridges (compared to fast-spreading ridges) is probably related to them having few if any permanent magma chambers. Magmas therefore do not fractionate as extensively in the crust, providing less heat for assimilation (on average, slow-spreading ridge magmas have higher Mg#), and hydrothermal systems are ephemeral, leading to lower total degrees of crustal alteration and more variation in the amount of Cl contamination. Hydrothermal plumes and vent fields have samples in close vicinity that display Cl-excess, mostly of > 25 ppm, which thus can aid as a guide for the exploration of (active or extinct) hydrothermal vent fields on the axis.

  7. Circulating Current Suppressing Control’s Impact on Arm Inductance Selection for Modular Multilevel Converter

    DOE PAGES

    Li, Yalong; Jones, Edward A.; Wang, Fred

    2016-10-13

    Arm inductor in a modular multilevel converter (MMC) is used to limit the circulating current and dc short circuit fault current. The circulating current in MMC is dominated by second-order harmonic, which can be largely reduced with circulating current suppressing control. By analyzing the mechanism of the circulating current suppressing control, it is found that the circulating current at switching frequency becomes the main harmonic when suppression control is implemented. Unlike the second-order harmonic that circulates only within the three phases, switching frequency harmonic also flows through the dc side and may further cause high-frequency dc voltage harmonic. This articlemore » develops the theoretical relationship between the arm inductance and switching frequency circulating current, which can be used to guide the arm inductance selection. The experimental results with a downscaled MMC prototype verify the existence of the switching frequency circulating current and its relationship with arm inductance.« less

  8. Geo Techno Park potential at Arjuno-Welirang Volcano hosted geothermal area, Batu, East Java, Indonesia (Multi geophysical approach)

    NASA Astrophysics Data System (ADS)

    Maryanto, Sukir

    2017-11-01

    Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.

  9. Subsurface water and clay mineral formation during the early history of Mars.

    PubMed

    Ehlmann, Bethany L; Mustard, John F; Murchie, Scott L; Bibring, Jean-Pierre; Meunier, Alain; Fraeman, Abigail A; Langevin, Yves

    2011-11-02

    Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.

  10. Pneumatic Flap Performance for a 2D Circulation Control Airfoil, Steady and Pulsed

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.

    2005-01-01

    Circulation Control technologies have been around for 65 years, and have been successfully demonstrated in laboratories and flight vehicles alike, yet there are few production aircraft flying today that implement these advances. Circulation Control techniques may have been overlooked due to perceived unfavorable trade offs of mass flow, pitching moment, cruise drag, noise, etc. Improvements in certain aspects of Circulation Control technology are the focus of this paper. This report will describe airfoil and blown high lift concepts that also address cruise drag reduction and reductions in mass flow through the use of pulsed pneumatic blowing on a Coanda surface. Pulsed concepts demonstrate significant reductions in mass flow requirements cor Circulation Control, as well as cruise drag concepts that equal or exceed conventional airfoil systems.

  11. Climate Dynamics and Hysteresis at Low and High Obliquity

    NASA Astrophysics Data System (ADS)

    Colose, C.; Del Genio, A. D.; Way, M.

    2017-12-01

    We explore the large-scale climate dynamics at low and high obliquity for an Earth-like planet using the ROCKE-3D (Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics) 3-D General Circulation model being developed at NASA GISS as part of the Nexus for Exoplanet System Science (NExSS) initiative. We highlight the role of ocean heat storage and transport in determining the seasonal cycle at high obliquity, and describe the large-scale circulation and resulting regional climate patterns using both aquaplanet and Earth topographical boundary conditions. Finally, we contrast the hysteresis structure to varying CO2 concentration for a low and high obliquity planet near the outer edge of the habitable zone. We discuss the prospects for habitability for a high obliquity planet susceptible to global glaciation.

  12. Two-Dimensional Depth-Averaged Circulation Model CMS-M2D: Version 3.0, Report 2, Sediment Transport and Morphology Change

    DTIC Science & Technology

    2006-08-01

    demonstrates symmetry of the methodology and capability to represent complex configurations of non -erodible cells. The bathymetric configuration (Figure...Army Engineer Rsearch and Development Center, Coastal and Hydraulics Laboratory. The upgrades chiefly concern capability to calculate sediment...hard bottom ( non -erodible bottom) to represent limestone and rocking coasts, as well as scour blankets at jetties, and (2) bottom avalanching to limit

  13. Coastal Erosion Control Methods

    NASA Astrophysics Data System (ADS)

    Greene, V.

    2016-12-01

    Coastal erosion is bad because the ecosystem there will be washed away and the animals could drown or be displaced and have to adapt to a new ecosystem that they are not prepared for. I'm interested in this problem because if there aren't beaches when I grow up I won't be able to do the things I would really like to do. I would like to be a marine biologist. Secondly, I don't want to see beach houses washed away. I would like to see people live in harmony with their environment. So, to study ways in which to preserve beaches I will make and use models that test different erosion controls. Two different ideas for erosion control I tested are using seaweed or a rock berm. I think the rock berm will work better than the model of seaweed because the seaweed is under water and the waves can carry the sand over the seaweed, and the rock berm will work better because the rocks will help break the waves up before they reach the shore and the waves can not carry the sand over the rocks that are above the water. To investigate this I got a container to use to model the Gulf of Mexico coastline. I performed several test runs using sand and water in the container to mimic the beach and waves from the Gulf of Mexico hitting the shoreline. I did three trials for the control (no erosion control), seaweed and a rock berm. Rock berms are a border of a raised area of rock. The model for seaweed that I used was plastic shopping bags cut into strips and glued to the bottom of my container to mimic seaweed. My results were that the control had the most erosion which ranged from 2.75 - 3 inches over 3 trials. The seaweed was a little better than the control but was very variable and ranged from 1.5 - 3 inches over 3 trials. The rock berm worked the best out of all at controlling erosion with erosion ranging from 1.5 - 2 inches. My hypothesis was correct because the rock berm did best to control erosion compared to the control which had no erosion control and the model with seaweed.

  14. Mechanisms controlling rock coast evolution in paraglacial landscapes - examples from Arctic, Antarctic and Scandinavian regions

    NASA Astrophysics Data System (ADS)

    Strzelecki, M. C.; Lim, M.; Kasprzek, M.; Swirad, Z. M.; Rachlewicz, G.; Migoń, P.; Pawlowski, L.; Jaskolski, M.

    2017-12-01

    This paper presents the results of an investigation into the processes controlling development of paraglacial rock coast systems in Hornsund, Svalbard, Admiralty Bay, South Shetland Islands and Gotland Island, Scandinavia. A suite of nested geomorphological and geophysical methods have been applied to characterize the functioning of rock cliffs, shore platforms and stacks influenced by lithological control and geomorphic processes driven by paraglacial coast environments - both in glaciated and deglaciated study sites. Rock hardness, quantified by Schmidt hammer rebound tests, demonstrate strong spatial control on the degree of rock weathering (rock strength) along studied rock coasts. Elevation controlled geomorphic zones are identified and linked to distinct processes and mechanisms, transitioning from peak hardness values at the icefoot/sea-ice through the wave and storm dominated scour zones to the lowest values on the cliff tops, where the effects of periglacial weathering dominate. Observations of rock surface change using a traversing micro-erosion meter (TMEM) indicate that significant changes in erosion rates occur at the junction between shore platform and the cliff toe, where rock erosion is facilitated by frequent wetting and drying and operation of nivation and sea ice processes (formation and melting of snow patches and icefoot complexes). Electrical resistivity tomography (ERT) surveys have been used to investigate frozen ground control on rock coast dynamics and reveal the strong interaction with marine processes in polar coastal settings. In Gotland, Scandinavia the morphology of rocky coastal landforms (rauks) bear traces of numerous environmental changes that occurred in Baltic region over the Holocene including salinity, temperature, ice-cover/storminess and relative sea-level. The results are synthesised to propose a new conceptual model of paraglacial rock coast systems, with the aim of contributing towards a unifying concept of cold region landscape evolution and providing direction for future research regarding the state of rock coasts in deglaciated regions. This is a contribution to National Science Centre projects: RAUK (2016/21/D/ST10/01976) and POROCO (UMO-2013/11/B/ST10/00283).

  15. Culture and Characterization of Circulating Endothelial Progenitor Cells in Patients with Renal Cell Carcinoma.

    PubMed

    Gu, Wenyu; Sun, Wei; Guo, Changcheng; Yan, Yang; Liu, Min; Yao, Xudong; Yang, Bin; Zheng, Junhua

    2015-07-01

    Although emerging evidence demonstrates increased circulating endothelial progenitor cells in patients with solid tumors, to our knowledge it is still unknown whether such cells can be cultured from patients with highly angiogenic renal cell carcinoma. We cultured and characterized circulating endothelial progenitor cells from patients with renal cell carcinoma. The circulating endothelial progenitor cell level (percent of CD45(-)CD34(+) VEGF-R2(+) cells in total peripheral blood mononuclear cells) was quantified in 47 patients with renal cell carcinoma and 40 healthy controls. Peripheral blood mononuclear cells were then isolated from 33 patients with renal cell carcinoma and 30 healthy controls to culture and characterize circulating endothelial progenitor cells. The circulating endothelial progenitor cell level was significantly higher in patients with renal cell carcinoma than in healthy controls (0.276% vs 0.086%, p <0.001). A colony of circulating endothelial progenitor cells first emerged significantly earlier in patient than in control preparations (6.72 vs 14.67 days, p <0.001). The culture success rate (87.8% vs 40.0% of participants) and the number of colonies (10.06 vs 1.83) were significantly greater for patients than for controls (each p <0.001). The circulating endothelial progenitor cell level correlated positively with the number of patient colonies (r = 0.762, p <0.001). Cells cultured from patients and controls showed a similar growth pattern, immunophenotype, ability to uptake Ac-LDL and bind lectin, and form capillary tubes in vitro. However, significantly more VEGF-R2(+) circulating endothelial progenitor cells were found in preparations from patients with renal cell carcinoma than from healthy controls (21.1% vs 13.4%, p <0.001). Earlier emergence of circulating endothelial progenitor cell colonies, a higher cell culture success rate and more colonies were found for patients with renal cell carcinoma than for healthy controls. Results indicate the important significance of VEGF-R2(+) circulating endothelial progenitors in patients with renal cell carcinoma. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Hydrogeologic and hydrochemical framework, south-central Great Basin, Nevada-California, with special reference to the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winograd, I.J.; Thordarson, W.

    Intensely fractured Precambrian and Paleozoic carbonate and clastic rocks and block-faulted Cenozoic volcanic and sedimentary strata in the Nevada Test Site are divided into 10 hydrogeologic units. Three of these--the lower clastic aquitard, the lower carbonate aquifer, and the tuff aquitard--control the regional movement of ground water. The coefficients of fracture transmissiblity of these rocks are, respectively, less than 1,000, 1,000 to 900,000, and less than 200 gallons per day per foot; interstitial permeability is negligible. Solution caverns are locally present in the carbonate aquifer, but regional movement of water is controlled by variations in fracture transmissibility and by structuralmore » juxtaposition of the aquifer and the lower clastic aquitard. Water circulates freely to depths of at least 1,500 feet beneath the top of the aquifer and up to 4,200 feet below land surface. Synthesis of hydrogeologic, hydrochemical, and isotopic data suggests that an area of at least 4,500 square miles (including 10 intermontane valleys) is hydraulically integrated into one ground-water basin, the Ash Meadows basin, by interbasin movement of ground water through the widespread carbonate aquifer. Discharge from this basin--a minimum of about 17,000 acre-feet annually--occurs along a fault-controlled spring line at Ash Meadows in east-central Amargosa Desert. Intrabasin movement of water between Cenozoic aquifers and the lower carbonate aquifer is controlled by the tuff aquitard, the basal Cenozoic hydrogeologic unit. Such movement significantly influences the chemistry of water in the carbonate aquifer. Ground-water velocity through the tuff aquitard in Yucca Flat is less than 1 foot per year. Velocity through the lower carbonate aquifer ranges from an estimated 0.02 to 200 feet per day, depending upon geographic position within the flow system.Within the Nevada Test Site, ground water moves southward and southwestward toward Ash Meadows.« less

  17. Water Content of Earth's Continental Mantle Is Controlled by the Circulation of Fluids or Melts

    NASA Technical Reports Server (NTRS)

    Peslier, Anne; Woodland, Alan B.; Bell, David R.; Lazarov, Marina; Lapen, Thomas J.

    2014-01-01

    A key mission of the ARES Directorate at JSC is to constrain models of the formation and geological history of terrestrial planets. Water is a crucial parameter to be measured with the aim to determine its amount and distribution in the interior of Earth, Mars, and the Moon. Most of that "water" is not liquid water per se, but rather hydrogen dissolved as a trace element in the minerals of the rocks at depth. Even so, the middle layer of differentiated planets, the mantle, occupies such a large volume and mass of each planet that when it is added at the planetary scale, oceans worth of water could be stored in its interior. The mantle is where magmas originate. Moreover, on Earth, the mantle is where the boundary between tectonic plates and the underlying asthenosphere is located. Even if mantle rocks in Earth typically contain less than 200 ppm H2O, such small quantities have tremendous influence on how easily they melt (i.e., the more water there is, the more magma is produced) and deform (the more water there is, the less viscous they are). These two properties alone emphasize that to understand the distribution of volcanism and the mechanism of plate tectonics, the water content of the mantle must be determined - Earth being a template to which all other terrestrial planets can be compared.

  18. Relationships between groundwater contamination and major-ion chemistry in a karst aquifer

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.

    1990-11-01

    Groundwater contamination was examined within a rural setting of the Inner Bluegrass Karst Region of central Kentucky where potential contaminant sources include soil-organic matter, organic and inorganic fertilizer, and septic-tank effluent. To evaluate controls on groundwater contamination, data on nitrate concentrations and indicator bacteria in water from wells and springs were compared with physical and chemical attributes of the groundwater system. Bacterial densities greater than the recommended limit were found in all springs and approximately half of the wells, whereas nitrate concentrations >45 mg l -1 were restricted to 20% of the springs and 10% of the wells. Nitrate concentrations varied markedly in closely spaced wells and springs, which indicates that land use is not the primary control on groundwater contamination. Groundwater contamination is related to the distribution of chemical water types in the study area. All Ca subtype water was contaminated with nitrate and bacteria. Ca subtype water occurs in the shallow, rapidly circulating groundwater zone, which is most susceptible to contamination. The similarity in nitrate concentrations between local springs, major springs, and wells that contain Ca subtype water indicates that the occurrence of large conduits is not the main control on nitrate and bacterial contamination of groundwater. Temporal fluctuations in nitrate concentrations of Ca subtype water are attributed to seasonal fluctuations in recharge and in plant growth. Ca-Mg water subtype was generally not contaminated, and Na-HCO 3 and Na-Cl water types were not contaminated. Ca-Mg water subtype, and Na-HCO 3 and Na-Cl water types are associated with longer residence times and reducing conditions, which allow bacterial die-off and denitrification, respectively. Differences in residence time and reducing conditions among the chemical water types and subtypes are attributed to variations in rock permeability and to the occurrence of horizontal shales that control the rate and depth of active groundwater circulation. This relationship between chemical water types and contaminant concentrations is important for groundwater monitoring programs and the siting of waste-disposal facilities.

  19. Bering Sea Nd isotope records of North Pacific Intermediate Water circulation

    NASA Astrophysics Data System (ADS)

    Rabbat, C.; Knudson, K. P.; Goldstein, S. L.

    2017-12-01

    North Pacific Intermediate Water (NPIW) is the primary water mass associated with Pacific meridional overturning circulation. While the relationship between Atlantic meridional overturning circulation and climate has been extensively studied, a lack of suitable sediment cores has limited past investigations of North Pacific climate and NPIW variability. Integrated Ocean Drilling Program Site U1342 (818 m water depth) on Bower's Ridge in the Bering Sea is located at a sensitive depth for detecting changes in NPIW, and it is the only available sub-arctic North Pacific site that offers long, continuous core recovery, relatively high sedimentation rates, excellent foraminifera preservation, and a well-constrained age model over multiple glacial-interglacial cycles. Previous work at Site U1342 from Knudson and Ravelo (2015), using non-quantitative circulation proxies, provides evidence for enhanced NPIW formation during extreme glacials associated with the closure of the Bering Strait and suggest that NPIW was formed locally within the Bering Sea. Our work builds on the potential importance of these results and applies more robust and potentially quantitative circulation proxies to constrain NPIW variability. Here, we present new records of NPIW circulation from Site U1342 based on Nd isotope analyses on fish debris and Fe-Mn encrusted foraminifera, which serve as semi-quantitative "water mass tracers." Weak Bering Sea NPIW formation and ventilation are reflected by relatively lower eNd values indicative of open subarctic North Pacific waters, which are presently predominant, whereas enhanced Bering Sea NPIW formation and ventilation are be reflected by relatively higher eNd values due to the input of Nd from regional volcanic rocks.

  20. The permeaiblity of fault-zones:the role of stylolites as incipit of dissolution

    NASA Astrophysics Data System (ADS)

    Magni, Silvana

    2017-04-01

    Fault zones and fractures play an important role in fluid circulation and then in dissolution, acting as barriers or conductors depending on the distribution of other features associated with them and on the specific conditions (lithological and structural, as well). The fault zone have a high permeability only in the early stages of the movement but shortly after recrystallization and reprecipitation processes greatly reduce the permeability within them. Indeed the dissolution is a complex phenomenon which involves both several factors that lead to the formation of caves and karst systems often complex. Traditionally, in the field of karst , the dissolution is associated with extensional structures such as faults and joints believing that they are more favorable to the water circulation. In this context compressional tectonic structures, as like the stylolites, are never considered. In fact the stylolites play an important role in the fluid circulation (Rawling, 2001) and in particular in the incipit of dissolution and then of the karst. We have so focused our research on the study of permeability of four fault zones in a karst area of Alte Murge (South Italy). Through a detailed structural analysis in the field and using the method of Caine (Caine, 1996), we reconstructed the permeability of the four previous fault zones. Our attention was focused on faults, joints and on stylolites. Contrary to the literature the dissolution and therefore the karst was mainly found along the stylolites and only secondarily along faults. No sign of dissolution was found along the joints. In the context of karst studies, the stylolites, which are structures due to pressure solution has never been taken into account, thinking that in compressional structures is not possible any circulation of water and that therefore there is no fluid-rock interaction. No consideration has been given to the enormous role that the pressure and the microfluidic that are created have in this context. The styololites, the focus of our research open important questions about their exact role as incipit of the dissolution. Through petrophysical analysis and microstructural we are characterizing the porosity and permeability near the stylolites. Recently, fluid-rock interactions and their impact on carbonate rocks is becoming very important because of an increasing interest it the carbonate reservoirs as a consequence of a progressive deterioration of the quantity and quality of the groundwater due to increasing pollution phenomena. In fact the aquifers represent about 40% of the drinking water resources and their importance will increase in coming years. REFERENCESE Caine, J.S.,Evans, J.P., Forster,C.B. (1996). Fault zone architecture and permeability structure. Geology 24, 1025-1032 Rawling,G.C., Goodwin,L.B., Wilson,J.L. (2001). Internal architecture permeability structure and hydrogeologic significance of contrasting fault-zone types. Geology 29, 43-46

  1. Effects of underground mining and mine collapse on the hydrology of selected basins in West Virginia

    USGS Publications Warehouse

    Hobba, William A.

    1993-01-01

    The effects of underground mining and mine collapse on areal hydrology were determined at one site where the mined bed of coal lies above major streams and at two sites where the bed of coal lies below major streams. Subsidence cracks observed at land surface generally run parallel to predominant joint sets in the rocks. The mining and subsidence cracks increase hydraulic conductivity and interconnection of water-bearing rock units, which in turn cause increased infiltration of precipitation and surface water, decreased evapotranspiration, and higher base flows in some small streams. Water levels in observation wells in mined areas fluctuate as much as 100 ft annually. Both gaining and losing streams are found in mined areas. Mine pumpage and drainage can cause diversion of water underground from one basin to another. Areal and single-well aquifer tests indicated that near-surface rocks have higher transmissivity in a mine-subsided basin than in unmined basins. Increased infiltration and circulation through shallow subsurface rocks increase dissolved mineral loads in streams, as do treated and untreated contributions from mine pumpage and drainage. Abandoned and flooded underground mines make good reservoirs because of their increased transmissivity and storage. Subsidence cracks were not detectable by thermal imagery, but springs and seeps were detectable.

  2. FORTRAN 77 programs for conductive cooling of dikes with temperature-dependent thermal properties and heat of crystallization

    USGS Publications Warehouse

    Delaney, P.T.

    1988-01-01

    Temperature histories obtained from transient heat-conduction theory are applicable to most dikes despite potential complicating effects related to magma flow during emplacement, groundwater circulation, and metamorphic reaction during cooling. Here. machine-independent FORTRAN 77 programs are presented to calculate temperatures in and around dikes as they cool conductively. Analytical solutions can treat thermal-property contrasts between the dike and host rocks, but cannot address the release of magmatic heat of crystallization after the early stages of cooling or the appreciable temperature dependence of thermal conductivity and diffusivity displayed by most rock types. Numerical solutions can incorporate these additional factors. The heat of crystallization can raise the initial temperature at the dike contact, ??c1, about 100??C above that which would be estimated if it were neglected, and can decrease the rate at which the front of solidified magma moves to the dike center by a factor of as much as three. Thermal conductivity and diffusivity of rocks increase with decreasing temperature and, at low temperatures, these properties increase more if the rocks are saturated with water. Models that treat these temperature dependencies yield estimates of ??c1 that are as much as 75??C beneath those which would be predicted if they were neglected. ?? 1988.

  3. Elemental Geochemistry of Samples From Fault Segments of the San Andreas Fault Observatory at Depth (SAFOD) Drill Hole

    NASA Astrophysics Data System (ADS)

    Tourscher, S. N.; Schleicher, A. M.; van der Pluijm, B. A.; Warr, L. N.

    2006-12-01

    Elemental geochemistry of mudrock samples from phase 2 drilling of the San Andreas Fault Observatory at Depth (SAFOD) is presented from bore hole depths of 3066 m to 3169 m and from 3292 m to 3368 m, which contain a creeping section and main trace of the fault, respectively. In addition to preparation and analysis of whole rock sample, fault grains with neomineralized, polished surfaces were hand picked from well-washed whole rock samples, minimizing the potential contamination from drilling mud and steel shavings. The separated fractions were washed in deionized water, powdered using a mortar and pestle, and analyzed using an Inductively Coupled Plasma- Optical Emission Spectrometer for major and minor elements. Based on oxide data results, systematic differences in element concentrations are observed between the whole rock and fault rock. Two groupings of data points are distinguishable in the regions containing the main trace of the fault, a shallow part (3292- 3316 m) and a deeper section (3320-3368 m). Applying the isocon method, assuming Zr and Ti to be immobile elements in these samples, indicates a volume loss of more than 30 percent in the shallow part and about 23 percent in the deep part of the main trace. These changes are minimum estimates of fault-related volume loss, because the whole rock from drilling samples contains variable amount of fault rock as well. Minimum estimates for volume loss in the creeping section of the fault are more than 50 percent when using the isocon method, comparing whole rock to plucked fault rock. The majority of the volume loss in the fault rocks is due to the dissolution and loss of silica, potassium, aluminum, sodium and calcium, whereas (based on oxide data) the mineralized surfaces of fractures appear to be enriched in Fe and Mg. The large amount of element mobility within these fault traces suggests extensive circulation of hydrous fluids along fractures that was responsible for progressive dissolution and leaching of the wall rock during faulting.

  4. Interaction of thermal and mechanical processes in steep permafrost rock walls: A conceptual approach

    NASA Astrophysics Data System (ADS)

    Draebing, D.; Krautblatter, M.; Dikau, R.

    2014-12-01

    Degradation of permafrost rock wall decreases stability and can initiate rock slope instability of all magnitudes. Rock instability is controlled by the balance of shear forces and shear resistances. The sensitivity of slope stability to warming results from a complex interplay of shear forces and resistances. Conductive, convective and advective heat transport processes act to warm, degrade and thaw permafrost in rock walls. On a seasonal scale, snow cover changes are a poorly understood key control of the timing and extent of thawing and permafrost degradation. We identified two potential critical time windows where shear forces might exceed shear resistances of the rock. In early summer combined hydrostatic and cryostatic pressure can cause a peak in shear force exceeding high frozen shear resistance and in autumn fast increasing shear forces can exceed slower increasing shear resistance. On a multiannual system scale, shear resistances change from predominantly rock-mechanically to ice-mechanically controlled. Progressive rock bridge failure results in an increase of sensitivity to warming. Climate change alters snow cover and duration and, hereby, thermal and mechanical processes in the rock wall. Amplified thawing of permafrost will result in higher rock slope instability and rock fall activity. We present a holistic conceptual approach connecting thermal and mechanical processes, validate parts of the model with geophysical and kinematic data and develop future scenarios to enhance understanding on system scale.

  5. Preliminary examination of uranium deposits near Marysvale, Piute County, Utah

    USGS Publications Warehouse

    Granger, Harry C.; Bauer, Herman L.

    1950-01-01

    Autunite and other uranium minerals were discovered in 1948 by Pratt Seegmiller about 3 1/4 miles north of Marysvale, Piute County, Utah. Mining operations were begun in the summer of 1949 by the Vanadium Corporation of America on the Prospector and the Freedom claims, and by the Bullion Monarch Mining Company a the Bullion Monarch claims. These claims were examined briefly in December 1949 and January 1950 by the writers. The uranium deposits of the Marysvale district are in north-easterly striking fault zones in quartz monzonite that intrudes rocks of the "older" Tertiary volcanic sequence. Flows and tuffs of the "younger" Tertiary volcanic sequence uncomfortably overlie the earlier rocks. Autunite, tobernite, uranophane, schroeckingerite, and at least one unidentified secondary uranium mineral occur in the upper parts of the deposits. Pitchblende has been mined from the underground workings of the Prospector No. 1 mine. The uranium minerals are associated with dense quartz veins and intensely argillized wall rock. In the upper parts of the deposits pyrite is completely oxidized. The secondary uranium minerals probably were formed by the alteration of primary pitchblende by circulating meteoric waters.

  6. Earth Observations taken by the Expedition 22 Crew

    NASA Image and Video Library

    2010-01-14

    ISS022-E-026137 (14 Jan. 2010) --- Open Pit Mines in southern Arizona are featured in this image photographed by an Expedition 22 crew member on the International Space Station. The State of Arizona is the United States? largest producer of the metal copper, primarily mined from ore bodies known as porphyry copper deposits. Copper is a good conductor of electricity and heat, and is a vital element of virtually all of our electronic devices and components. A porphyry copper deposit is a geological structure formed by crystal-rich magma moving upwards through pre-existing rock layers. As the magma cools and crystallizes, it forms an igneous rock with large crystals embedded in a fine-grained matrix, known as porphyry. Hot fluids circulate through the magma and surrounding rocks via fractures, depositing copper-bearing and other minerals in characteristic spatial patterns that signal the nature of the ore body to a geologist. The most common approach to extracting metal-bearing ore from a porphyry copper deposit is by open-pit mining. For more details, please refer to http://earth.jsc.nasa.gov/EarthObservatory/OpenPitMinesSouthernArizona.htm.

  7. A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations

    NASA Astrophysics Data System (ADS)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.

    2017-06-01

    Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical algorithm, and the validation and application results are outlined in this work.

  8. Downhole material injector for lost circulation control

    DOEpatents

    Glowka, D.A.

    1991-01-01

    This invention is comprised of an apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

  9. Downhole material injector for lost circulation control

    DOEpatents

    Glowka, D.A.

    1994-09-06

    Apparatus and method are disclosed for simultaneously and separately emplacing two streams of different materials through a drill string in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drill string at the desired downhole location and harden only after mixing for control of a lost circulation zone. 6 figs.

  10. Processes and mechanisms governing hard rock cliff erosion in western Brittany, France

    NASA Astrophysics Data System (ADS)

    Laute, Katja; Letortu, Pauline; Le Dantec, Nicolas

    2017-04-01

    The evolution of rocky coasts is controlled by the interplay between subaerial, marine as well as biological processes, and the geological context. In times of ongoing climate change it is difficult to predict how these erosional landscapes will respond for example to anticipated sea-level rise or to an increase in storminess. However, it can be expected that changes in the morphodynamics of rocky coasts will have a noticeable effect on society and infrastructure. Recent studies have proven that monitoring cliff micro-seismic ground motion has been very effective in exploring both marine and atmospheric actions on coastal cliffs. But only few studies have focused so far on the effects of wave loading and water circulation (runoff, infiltration, water table variations) on cliff stability and subsequent erosion, considering the interaction between subaerial and marine processes. This project focuses on the identification and quantification of environmental controls on hard rock cliff erosion with an emphasis on discriminating the relative contributions of subaerial and marine processes. We aim at relating different sources of mechanical stress (e.g. wave loading, direct wave impact, hydrostatic pressure, thermal expansion) to cliff-scale strain (cliff-top swaying and shaking) and micro-fracturing (generation, expansion and contraction of micro-cracks) with the objective to unravel and discriminate triggering mechanisms of cliff failure. A four-month monitoring field experiment during the winter period (February-May) of 2017 is carried out at a cliff face located in Porsmilin beach (western Brittany, France). The selected cliff section is exposed to Atlantic swell from the south/southwest with a significant wave height of ca. 1.5 m on average and, reaching up to 4 m during storm events. The cliff rises ca. 20 m above the beach and is mainly formed of orthogneiss with intrusions of granodiorite. The entire cliff is highly fractured and altered, which can promote slope failure in the otherwise rather resistant rock. The density of the fracture network and the principal directions of fracturation play a significant role in controlling the rate of mass wasting. The characterization of cliff micro-fracturing will be accomplished through in-situ monitoring of cliff-top ground motion with a seismometer installed at the cliff top and geophones installed within the cliff face. Wave impact will be monitored by setting up a real-time video system in front of the cliff face in combination with pressure- and wave load sensors that will be installed on the beach in a cross-shore array and directly at the cliff toe. Temperature sensors will be placed in shallow boreholes at the cliff face in order to record surface rock temperature. In addition, a weather station and a piezometer will be deployed in order to monitor local weather and groundwater conditions at the study site. This novel combination of the different field measurements is expected to yield new insights into the processes controlling cliff erosion and retreat along rocky coastlines. In particular, we hope to gain understanding on the possible importance of rock micro-fracturing as a precursor to cliff failure.

  11. [Control of poliomyelitis and enterovirus infection in several areas of Russian Federation].

    PubMed

    Romanenkova, N I; Bichurina, M A; Rosaeva, N R

    2011-01-01

    Control of poliovirus circulation by study of material from patients with acute flaccid paralysis and contact individuals, from children of risk groups; molecular characteristics of isolated polioviruses; monitoring of circulation of polioviruses and nonpoliomyelitis enteroviruses in population and the environment. Isolation and study of polioviruses and nonpoliomyelitis enteroviruses from various sources was performed in accordance with WHO recommendations. Prolonged persistence and circulation of vaccine related strains of polioviruses in children is demonstrated. Enterovirus serotypes that circulate in the population and the environment more frequently are determined. CONCLUSION. Long term control of poliomyelitis and acute flaccid paralysis in combination with additional control variants in children from risk groups and objects of the environment allowed to obtain valuable data on poliovirus and nonpoliomyelitis enteroviruses circulation for the Program of eradication of poliomyelitis.

  12. Archean cherts: field, petrographic and geochemical criteria to determine their origin

    NASA Astrophysics Data System (ADS)

    Ledevin, Morgane; Arndt, Nicholas T.; Simionovici, Alexandre

    2013-04-01

    Archean cherts provide valuable information about conditions on the sea floor during the early history of Earth. We conducted field, petrological and geochemical studies on examples from different environments in the Barberton Greenstone Belt (3.2-3.5 Ga), South Africa, with the aim of improving our understanding of these enigmatic rocks. We distinguish three different origins for cherts: direct precipitation from seawater (C-cherts); precipitation in fractures from silica-rich fluids (F-cherts); and replacement of preexisting rocks (silicification) either at or near the surface (S-cherts). The three types were distinguished using a combination of sedimentary and deformation structures, petrological observations (RAMAN, electron microprobe, X-Ray microfluorescence, cathodoluminescence) and geochemical data. C-cherts best record the composition and physical conditions in primitive oceans and the depositional environment because they precipitated from seawater. Based on sedimentary structures, we show that the silica was deposited as a siliceous ooze or amorphous gel on the seafloor, with variable precipitation rates that depend on the amount and nature of co-precipitated phases (called here the "contaminant"), such as detrital grains, carbonates, carbonaceous matter and oxides. We observe a complex rheology of C-cherts, which show both ductile to brittle deformation structures, sometimes in the same layer. We infer that the cherts underwent extremely rapid diagenetic induration at or near the surface, a process that proceeded faster when contaminants are lacking. Geochemical data (ICP-MS/ICP-AES) indicate that whole rock chemistries are dominated by the contaminant phases. Detrital grains with continental signatures dominate the compositions of cherts in the turbidite sequence of the Komati River whereas carbonates preserving modern, seawater-like compositions control the compositions of cherts of Fig Tree Fm in the Barite Valley. The silica minerals do not contribute significantly to the trace-element composition, but acts as a diluent. Buck Reef cherts have extremely low contents of most trace elements due to low contents of detrital minerals and carbonates. S-cherts result from the silicification of preexisting rocks: under the action of circulating fluids, primary minerals are replaced by silica minerals and the porosity of the protolith is significantly reduced. Such process occurs even at the surface and persist downward the sedimentary units until after the rocks are indurated. F-cherts were observed in the Barite Valley, where chert dykes cross-cut surrounding units at high angle. The fractures often display jigsaw-puzzle textures, suggesting hydraulic fracturation, and their near-vertical orientation points to emplacement at shallow levels in the sediment pile. The dykes are filled with a black chert that contains variable amounts of host rock fragments that vary in shape (angular to rounded) and size (dm to µm). They control the whole-rock chemistry of cherts, and obscure the chemical composition of the primary, precipitating fluid. We believe that this fluid had a thixotropic behavior, i.e. it was fluid enough during the intrusion to fill very fine <1mm fractures but viscous enough when the velocity decreased to suspend decimetric host rock fragments. Based on our observations, we conclude that (1) field and petrological studies are more reliable than geochemical analyses for the recognition of various chert types; (2) the composition of cherts strongly depends on the type and amount of mineral phases other than silica, especially clays and carbonates; (3) C-cherts might be more abundant than previously thought and deposited as an amorphous, siliceous gel onto the seafloor before being rapidly indurated.

  13. Earth Observations taken by the Expedition 15 Crew

    NASA Image and Video Library

    2007-09-20

    ISS015-E-29867 (20 Sept. 2007) --- Bingham Canyon Mine, Utah is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. The Bingham Canyon Mine (center) located approximately 32 kilometers to the southeast of Salt Lake City, UT is one of the largest open-pit mines in the world, measuring over 4 kilometers wide and 1,200 meters deep. The mine exploits a porphyry copper, a type of geological structure formed by crystal-rich magma moving upwards through pre-existing rock layers. As the magma cools and crystallizes (forming an igneous rock with large crystals in a fine-grained matrix, known as a porphyry), hot fluids circulate through the magma and surrounding rocks via fractures. This process of hydrothermal alteration typically forms copper-bearing and other minerals in spatial patterns that a geologist recognizes as a potential porphyry copper deposit. Parallel benches (stepped terraces), visible along the western pit face (center left), range from 16 to 25 meters high - these provide access for equipment to work the rock face, as well as maintaining stability of the sloping pit walls. A dark, larger roadway is also visible directly below the benches. Brown to gray, flat topped hills of gangue (waste rock) surround the pit, and are thrown into sharp relief by shadows and the oblique viewing angle of this image. Leachate reservoirs associated with ore processing are visible to the south of the city of Bingham Canyon, UT (right).

  14. Hydrogeologic data from a 2,000-foot deep core hole at Polk City, Green Swamp area, central Florida

    USGS Publications Warehouse

    Navoy, A.S.

    1986-01-01

    Two core holes were drilled to depths of 906 and 1,996 feet, respectively, within the Tertiary limestone (Floridan) aquifers, at Polk City, central Florida. Data from the two holes revealed that the bottom of the zone of vigorous groundwater circulation is confined by carbonate rocks at a depth of about 1,000 feet (863 feet below sea level). The zone of circulation is divided into two high-permeability zones. The dissolved solids of the water within the high-permeability zones is approximately 150 milligrams per liter. Within the carbonate rocks, the dissolved solids content of the water reaches about 2,000 milligrams per liter at the bottom of the core hole. Water levels in the core holes declined a total of about 16 feet as the hole was drilled; most of the head loss occurred at depths below 1,800 feet. The porosities of selected cores ranged from 1.6 to 45.3 percent; the hydraulic conductivities ranged from less than 0.000024 to 19.0786 feet per day in the horizontal direction and from less than 0.000024 to 2.99 feet per day in the vertical direction; and the ratio of vertical to horizontal permeability ranged from 0.03 to 1.98. Due to drilling problems, packer tests and geophysical logging could not be accomplished. (USGS)

  15. Leak-off mechanism and pressure prediction for shallow sediments in deepwater drilling

    NASA Astrophysics Data System (ADS)

    Tan, Qiang; Deng, Jingen; Sun, Jin; Liu, Wei; Yu, Baohua

    2018-02-01

    Deepwater sediments are prone to loss circulation in drilling due to a low overburden gradient. How to predict the magnitude of leak-off pressure more accurately is an important issue in the protection of drilling safety and the reduction of drilling cost in deep water. Starting from the mechanical properties of a shallow formation and based on the basic theory of rock-soil mechanics, the stress distribution around a borehole was analyzed. It was found that the rock or soil on a borehole is in the plastic yield state before the effective tensile stress is generated, and the effective tangential and vertical stresses increase as the drilling fluid density increases; thus, tensile failure will not occur on the borehole wall. Based on the results of stress calculation, two mechanisms and leak-off pressure prediction models for shallow sediments in deepwater drilling were put forward, and the calculated values of these models were compared with the measured value of shallow leak-off pressure in actual drilling. The results show that the MHPS (minimum horizontal principle stress) model and the FIF (fracturing in formation) model can predict the lower and upper limits of leak-off pressure. The PLC (permeable lost circulation) model can comprehensively analyze the factors influencing permeable leakage and provide a theoretical basis for leak-off prevention and plugging in deepwater drilling.

  16. Preparing rock powder specimens of controlled size distribution

    NASA Technical Reports Server (NTRS)

    Blum, P.

    1968-01-01

    Apparatus produces rock powder specimens of the size distribution needed in geological sampling. By cutting grooves in the surface of the rock sample and then by milling these shallow, parallel ridges, the powder specimen is produced. Particle size distribution is controlled by changing the height and width of ridges.

  17. Pacific deep circulation and ventilation controlled by tidal mixing away from the sea bottom.

    PubMed

    Oka, Akira; Niwa, Yoshihiro

    2013-01-01

    Vertical mixing in the ocean is a key driver of the global ocean thermohaline circulation, one of the most important factors controlling past and future climate change. Prior observational and theoretical studies have focused on intense tidal mixing near the sea bottom (near-field mixing). However, ocean general circulation models that employ a parameterization of near-field mixing significantly underestimate the strength of the Pacific thermohaline circulation. Here we demonstrate that tidally induced mixing away from the sea bottom (far-field mixing) is essential in controlling the Pacific thermohaline circulation. Via the addition of far-field mixing to a widely used tidal parameterization, we successfully simulate the Pacific thermohaline circulation. We also propose that far-field mixing is indispensable for explaining the presence of the world ocean's oldest water in the eastern North Pacific Ocean. Our findings suggest that far-field mixing controls ventilation of the deep Pacific Ocean, a process important for ocean carbon and biogeochemical cycles.

  18. High-resolution cross-borehole thermal tracer testing in granite: preliminary field results

    NASA Astrophysics Data System (ADS)

    Brixel, Bernard; Klepikova, Maria; Jalali, Mohammadreza; Amann, Florian; Loew, Simon

    2017-04-01

    Understanding how heat is transported, stored and exchanged across fractured media is becoming increasingly relevant in our society, as manifested from the growing popularity of modern technologies relying on the subsurface to either source or store heat. One good example is the utilization of heat from deep hydrothermal or petrothermal systems to generate electricity for base load power generation, a technology also known as deep geothermal energy (DGE). While very attractive in principle, the number of geothermal fields producing economical levels of electricity to this day is still very limited - largely due to the difficulty of either locating deep reservoirs that are both sufficiently hot and permeable or, in the absence of the latter, creating them. In this context, the Swiss Competence Center for Energy Research - Supply of Electricity (SCCER - SoE) is carrying out an in situ stimulation and circulation (ISC) experiment at the Grimsel Test Site (GTS), an underground rock lab located in the Aar massif, in the Swiss Alps. The circulation experiment planned for the post-stimulation phase represents one of the key components of this experimental research program, and the outcome of this test is expected to ultimately provide key insights in the factors controlling the performance of enhanced geothermal reservoirs. Therefore, to support the design of this experiment, short-term thermal tracer tests (TTT) were conducted with the objective to (i) assess the feasibility of conducting TTTs in a relatively intact granite (where fluid flow is controlled by a limited number of discrete fractures); (ii) determine optimal experimental setups; and to ultimately (iii) monitor thermal breakthroughs at high spatial and temporal resolution, providing insights on heat transport and complementing the characterization of hydrogeological conditions carried out through conventional means (e.g. hydraulic and/or solute tracer tests). Presented herein are the results of a 10-day thermal tracer test conducted by continuously injecting water at 40°C (ambient groundwater temperatures average around 12-13 °C) across a discrete fractured zone, isolated with packers. Monitoring was achieved using a combination of discrete temperature sensors (PT1000) and FO DTS (Silixa XT system) deployed along a network of both packed-off and open boreholes situated approx. 6-20 m apart from the injection zone. Thermal breakthrough was observed in multiple boreholes, as early as 6-7 hours following the injection of hot water. The rate of increase in temperatures was observed to significantly diminish over time, allowing water in the fracture carrying the majority of heat to reach a temperature of 17°C at the closest observation location. Furthermore, temperature declined along the fracture length. These data allowed us identifying the precise location of conductive fractures, thereby improving our understanding of the connectivity structure of our experimental rock volume. In addition, these results provide significant insights on heat transport and the efficiency of heat-exchange between fractures and the surrounding rock mass at Grimsel.

  19. Unraveling multiple phases of sulfur cycling during the alteration of ancient ultramafic oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Johnston, David T.

    2018-02-01

    Ultramafic-hosted hydrothermal systems - characterized by ongoing serpentinization reactions - exert an important influence on the global sulfur cycle. Extensive water-rock interaction causes elemental exchange between seawater and the oceanic lithosphere, effectively removing sulfate from seawater through both abiogenic and biogenic processes. Here, we use bulk rock multiple sulfur isotope signatures (32S, 33S, 34S) and in situ sulfide analyses together with petrographic observations to track the sulfur cycling processes and the hydrothermal evolution of ancient peridotite-hosted hydrothermal systems. We investigate serpentinized peridotites from the Northern Apennine ophiolite in Italy and the Santa Elena ophiolite in Costa Rica and compare those with the Iberian Margin (Ocean Drilling Program (ODP) Leg 149 and 173) and the 15°20‧N Fracture Zone along the Mid-Atlantic Ridge (ODP Leg 209). In situ measurements of sulfides in the Northern Apennine serpentinites preserve a large range in δ34Ssulfide of -33.8 to +13.3‰ with significant heterogeneities within single sulfide grains and depending on mineralogy. Detailed mineralogical investigation and comparison with bulk rock Δ33Ssulfide and in situ δ34Ssulfide data implies a thermal evolution of the system from high temperatures (∼350 °C) that allowed thermochemical sulfate reduction and input of hydrothermal sulfide to lower temperatures (<120 °C) that permitted microbial activity. The change in temperature regime is locally preserved in individual samples and correlates with the progressive uplift and exposure of mantle rock associated with detachment faulting along a mid-ocean ridge spreading center. The Santa Elena peridotites preserve distinct signatures for fluid circulation at high temperatures with both closed system thermochemical sulfate reduction and input of mafic-derived sulfur. In addition, the peridotites provide strong evidence that low Ca2+ concentrations in peridotite-hosted systems can limit sulfate removal during anhydrite precipitation at temperatures above 150 °C. This may play a central role for the availability of sulfate to microbial communities within these systems. Overall, the combined application of in situ and bulk rock multiple sulfur isotope measurements with petrographic observations allows us to resolve the different episodes of sulfur cycling during alteration of the oceanic lithosphere and the temporal changes between abiogenic and biogenic processes that control the sulfur cycling in these systems.

  20. Rock sampling. [method for controlling particle size distribution

    NASA Technical Reports Server (NTRS)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  1. Phagocytosis, bacterial killing, and cytokine activation of circulating blood neutrophils in horses with severe equine asthma and control horses.

    PubMed

    Vanderstock, Johanne M; Lecours, Marie-Pier; Lavoie-Lamoureux, Annouck; Gottschalk, Marcelo; Segura, Mariela; Lavoie, Jean-Pierre; Jean, Daniel

    2018-04-01

    OBJECTIVE To evaluate in vitro phagocytosis and bactericidal activity of circulating blood neutrophils in horses with severe equine asthma and control horses and to determine whether circulating blood neutrophils in horses with severe equine asthma have an increase in expression of the proinflammatory cytokine tumor necrosis factor (TNF)-α and the chemokine interleukin (IL)-8 and a decrease in expression of the anti-inflammatory cytokine IL-10 in response to bacteria. ANIMALS 6 horses with severe equine asthma and 6 control horses. PROCEDURES Circulating blood neutrophils were isolated from horses with severe equine asthma and control horses. Phagocytosis was evaluated by use of flow cytometry. Bactericidal activity of circulating blood neutrophils was assessed by use of Streptococcus equi and Streptococcus zooepidemicus as targets, whereas the cytokine mRNA response was assessed by use of a quantitative PCR assay. RESULTS Circulating blood neutrophils from horses with severe equine asthma had significantly lower bactericidal activity toward S zooepidemicus but not toward S equi, compared with results for control horses. Phagocytosis and mRNA expression of TNF-α, IL-8, and IL-10 were not different between groups. CONCLUSIONS AND CLINCAL RELEVANCE Impairment of bactericidal activity of circulating blood neutrophils in horses with severe equine asthma could contribute to an increased susceptibility to infections.

  2. Deformation mechanisms in a coal mine roadway in extremely swelling soft rock.

    PubMed

    Li, Qinghai; Shi, Weiping; Yang, Renshu

    2016-01-01

    The problem of roadway support in swelling soft rock was one of the challenging problems during mining. For most geological conditions, combinations of two or more supporting approaches could meet the requirements of most roadways; however, in extremely swelling soft rock, combined approaches even could not control large deformations. The purpose of this work was to probe the roadway deformation mechanisms in extremely swelling soft rock. Based on the main return air-way in a coal mine, deformation monitoring and geomechanical analysis were conducted, as well as plastic zone mechanical model was analysed. Results indicated that this soft rock was potentially very swelling. When the ground stress acted alone, the support strength needed in situ was not too large and combined supporting approaches could meet this requirement; however, when this potential released, the roadway would undergo permanent deformation. When the loose zone reached 3 m within surrounding rock, remote stress p ∞ and supporting stress P presented a linear relationship. Namely, the greater the swelling stress, the more difficult it would be in roadway supporting. So in this extremely swelling soft rock, a better way to control roadway deformation was to control the releasing of surrounding rock's swelling potential.

  3. Microbial Life Driving Low-Temperature Basalt Alteration in the Subsurface: Decoupling Abiotic Processes from Biologically-Mediated Rock Alteration

    NASA Astrophysics Data System (ADS)

    Moore, R.; Lecoeuvre, A.; Stephant, S.; Dupraz, S.; Ranchou-Peyruse, M.; Ranchou-Peyruse, A.; Gérard, E.; Ménez, B.

    2017-12-01

    Microorganisms are involved with specific rock alteration processes in the deep subsurface. It is a challenge to link any contribution microbial life may have on rock alteration with specific functions or phyla because many alteration features and secondary minerals produced by metabolic processes can also produce abiotically. Here, two flow-through experiments were designed to mimic the circulation of a CO2-rich fluid through crystalline basalt. In order to identify microbially-mediated alteration and be able to link it with specific metabolisms represented in the subsurface, a relatively fresh crystalline basalt substrate was subsampled, sterilized and used as the substrate for both experiments. In one experiment, the substrate was left sterile, and in the other it was inoculated with an enrichment culture derived from the same aquifer as the rock substrate. Initial results show that the inoculum contained Proteobacteria and Firmicutes, which have diverse metabolic potentials. Fluid and rock analyses before, during, and after the experiments show that mineralogy, fluid chemistry, and dissolution processes differ between the sterile and inoculated systems. In the inoculated experiment iron-rich orthopyroxenes were preferentially dissolved while in the sterile system clinopyroxenes and plagioclases both exhibited a higher degree of dissolution. Additionally, the patterns of CO2 consumption and production over the duration of both experiments is different. This suggest that in a low-temperature basalt system with microorganisms CO2 is either consumed to produce biomass, or that carbonates are produced and then subsequently preserved. This suite of results combined with molecular ecology analyses can be used to conclude that in low-temperature basalts microorganisms play an intrinsic role in rock alteration.

  4. Attenuation and Dispersion Analysis in Laboratory Measured Elastic Properties in the Middle East Carbonate Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Sharma, R.

    2016-12-01

    Carbonate rocks are sensitive to circulation of fluid types that leads to diagenetic alterations and therefore to heterogeneity in distribution of porosity and permeability. These heterogeneities in turn, lead to heterogeneity in saturations varying from partial to patchy to uniform. Depending on the interaction between fluids and rock matrix, a weakening or strengthening in shear modulus of carbonate rocks can also develop (Eberli et al., 2003; Adam et al., 2006; Sharma et al., 2009; Sharma et al., 2013). Thus the elastic response over the production life of the carbonate reservoirs can change considerably. Efforts to couple fluid flow with varying seismic properties of these reservoirs are limited in success due to the differences between static elastic properties derived from reservoir simulation and dynamic elastic properties derived from inverted seismic. An additional limitation arises from the assumption that shear modulus does not change with fluid type and saturations. To overcome these limitations, we need to understand the relationships between the static and the dynamic elastic properties using laboratory measurements made at varying pressures, frequencies and with varying saturants. I will present the following results: 1) errors associated with using dynamic (2 - 2000 Hz and 1 MHz) elastic properties data for static ( 0 Hz) reservoir properties, 2) shear modulus variation in carbonates upon saturation with varying saturants The results will enable us to estimate, 1) distribution of stress-strain relations in reservoir rocks and 2) modulus dispersion to correct seismic-derived moduli as inputs for reservoir simulators. The results are critical to estimate, 1) modulus dispersion correction and 2) occurrence and amount of shear modulus variation with fluid change vital for rock stability analysis

  5. Microstructural, textural and thermal evolution of an exhumed strike-slip fault and insights into localization and rheological transition

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz; Liu, Junlai; Bernroider, Manfred; Genser, Johann

    2016-04-01

    The presence of deep exhumed crustal rocks with a dominant but contrasting mineralogy results in shear concentration in the rheological weakest layer, which exhibits contrasting patterns of fabrics and thermal conditions during their formation. We tested a combination of methodologies including microstructural and textural investigations, geochronology and geothermometry on deformed rocks from exhumed strike-slip fault, Ailao Shan-Red River, SE, Asian. Results indicate that the exhumed deep crustal rocks since late Oligocene (ca. 28 Ma) to Pliocene (ca. 4 Ma) typically involve dynamic microstructural, textural and thermal evolution processes, which typically record a progressive deformation and syn-kinematic reactions from ductile to semi-ductile and brittle behavior during exhumation. This transformation also resulted in dramatic strength reduction that promoted strain localization along the strike-slip and transtensional faults. Detailed analysis has revealed the co-existence of microfabrics ranging from high-temperatures (granulite facies conditions) to overprinting low-temperatures (lower greenschist facies conditions). The high-temperature microstructures and textures are in part or entirely altered by subsequent, overprinting low-temperature shearing. In quartz-rich rocks, quartz was deformed in the dislocation creep regime and records transition of microfabrics and slip systems during decreasing temperature, which lasted until retrogression related to final exhumation. As a result, grain-size reduction associated by fluids circulating within the strike-slip fault zone at brittle-ductile transition leads to rock softening, which resulted in strain localization, weak rock rheology and the overall hot thermal structure of the crust. Decompression occurred during shearing and as a result of tectonic exhumation. All these results demonstrate that the ductile to ductile-brittle transition involves a combination of different deformation mechanisms, rheological transition features and feedbacks between deformation, decreasing temperature and fluids.

  6. Experimental Investigation of a 2D Supercritical Circulation-Control Airfoil Using Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Yao, Chung-Sheng; Allan, Brian G.

    2006-01-01

    Recent efforts in extreme short takeoff and landing aircraft configurations have renewed the interest in circulation control wing design and optimization. The key to accurately designing and optimizing these configurations rests in the modeling of the complex physics of these flows. This paper will highlight the physics of the stagnation and separation regions on two typical circulation control airfoil sections.

  7. Location of eastern Mediterranean hot springs induced by mantle heat flow due to slab roll-back and tearing

    NASA Astrophysics Data System (ADS)

    Roche, V. M.; Sternai, P.; Guillou-Frottier, L.; Jolivet, L.; Gerya, T.

    2016-12-01

    The Aegean-Anatolian retreating subduction and collision zones have been investigated through 3D numerical geodynamic models involving slab rollback/tearing/breakoff constrained by, for instance, seismic tomography or anisotropy and geochemical proxies. Here we integrate these investigations by using geothermal anomaly measurements from western Turkey. Such data provides insights into the thermal state of the Aegean-Anatolian region at depth and reflects the development of a widespread active geothermal province that is unlikely to be related only to the Quaternary volcanism because this has a too limited extent in space and time. Firstly, we look for possible connections with larger-scale mantle dynamics and use 3D high-resolution petrological and thermo-mechanical numerical models to quantify the potential contribution of the Aegean-Anatolian subduction dynamics to such measured thermal anomalies. Secondly, the subduction-induced thermal signature at the base of the continental crust is then inserted as the imposed basal thermal condition of 2D models dedicated to the understanding of fluid flow in the shallow crust. These models couple heat transfer and fluid flow equations with appropriate fluid and rock physical properties. Results from the 3D numerical models suggest an efficient control of subduction-related asthenospheric return flow on the regional distribution of thermal anomalies. Results from the 2D numerical models also highlight that low angle normal faults (detachments) in the back-arc region can control the bulk of the heat transport and fluid circulation patterns. Such detachments can drain hot crustal and/or mantellic fluids down to several kilometers depths, thus allowing for or fostering deep fluid circulation.

  8. Increased Rho kinase activity in congestive heart failure

    PubMed Central

    Dong, Ming; Liao, James K.; Fang, Fang; Lee, Alex Pui-Wai; Yan, Bryan Ping-Yen; Liu, Ming; Yu, Cheuk-Man

    2012-01-01

    Aims Rho kinases (ROCKs) are the best characterized effectors of the small G-protein RhoA, and play a role in enhanced vasoconstriction in animal models of congestive heart failure (CHF). This study examined if ROCK activity is increased in CHF and how it is associated with the outcome in CHF. Methods and results Patients admitted with CHF (n =178), disease controls (n =31), and normal subjects (n =30) were studied. Baseline ROCK activity was measured by phosphorylation of themyosin-binding subunit in peripheral leucocytes. The patients were followed up for 14.4 ± 7.2 months (range 0.5–26 months) or until the occurrence of cardiac death. The ROCK activity in CHF patients (2.93 ± 0.87) was significantly higher than that of the disease control (2.06 ± 0.38, P < 0.001) and normal control (1.57 ± 0.43, P < 0.001) groups. Similarly, protein levels of ROCK1 and ROCK2 as well as the activity of RhoA in CHF were significantly higher than in disease controls and normal controls (all P < 0.05). Dyspnoea at rest (β =0.338, P < 0.001), low left ventricular ejection fraction (β = –0.277, P < 0.001), and high creatinine (β =0.202, P =0.006) were independent predictors of the baseline ROCK activity in CHF. Forty-five patients died within 2 years follow-up (25.3%). Combining ROCK activity and N-terminal pro brain natriuretic peptide (NT-proBNP) had an incremental value (log rank χ2 =11.62) in predicting long-term mortality when compared with only NT-proBNP (log rank χ2 =5.16, P < 0.05). Conclusion ROCK activity is increased in CHF and it might be associated with the mortality in CHF. ROCK activity might be a complementary biomarker to CHF risk stratification. PMID:22588320

  9. Research on Parallel Three Phase PWM Converters base on RTDS

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Zou, Jianxiao; Li, Kai; Liu, Jingbo; Tian, Jun

    2018-01-01

    Converters parallel operation can increase capacity of the system, but it may lead to potential zero-sequence circulating current, so the control of circulating current was an important goal in the design of parallel inverters. In this paper, the Real Time Digital Simulator (RTDS) is used to model the converters parallel system in real time and study the circulating current restraining. The equivalent model of two parallel converters and zero-sequence circulating current(ZSCC) were established and analyzed, then a strategy using variable zero vector control was proposed to suppress the circulating current. For two parallel modular converters, hardware-in-the-loop(HIL) study based on RTDS and practical experiment were implemented, results prove that the proposed control strategy is feasible and effective.

  10. Neural network adaptive control of wing-rock motion of aircraft model mounted on three-degree-of-freedom dynamic rig in wind tunnel

    NASA Astrophysics Data System (ADS)

    Ignatyev, D. I.

    2018-06-01

    High-angles-of-attack dynamics of aircraft are complicated with dangerous phenomena such as wing rock, stall, and spin. Autonomous dynamically scaled aircraft model mounted in three-degree-of-freedom (3DoF) dynamic rig is proposed for studying aircraft dynamics and prototyping of control laws in wind tunnel. Dynamics of the scaled aircraft model in 3DoF manoeuvre rig in wind tunnel is considered. The model limit-cycle oscillations are obtained at high angles of attack. A neural network (NN) adaptive control suppressing wing rock motion is designed. The wing rock suppression with the proposed control law is validated using nonlinear time-domain simulations.

  11. Seismic Reflection Imaging of the Heat Source of an Ultramafic-Hosted Hydrothermal System (Rainbow, Mid-Atlantic Ridge 36° 10-17'N)

    NASA Astrophysics Data System (ADS)

    Canales, J. P.; Dunn, R. A.; Sohn, R. A.; Horning, G.; Arai, R.; Paulatto, M.

    2015-12-01

    Most of our understanding of hydrothermal systems and the nature of their heat sources comes from models and observations at fast and intermediate spreading ridges. In these settings, hydrothermal systems are mainly located within the axial zone of a spreading segment, hosted in basaltic rock, and primarily driven by heat extracted from crystallization of crustal melt sills. In contrast, hydrothermal systems at slow-spreading ridges like the Mid-Atlantic Ridge (MAR) show a great variety of venting styles and host-rock lithology, and are located in diverse tectonic settings like axial volcanic ridges, non-transform discontinuities (NTDs), the foot of ridge valley walls, and off-axis inside corner highs. Among MAR systems, the Rainbow hydrothermal field (RHF) stands out as an end-member of this diversity: an ultramafic-hosted system emitting H2 and CH4-rich fluids at high temperatures and high flow rates, which suggests a magmatic heat source despite the lack of evidence for recent volcanism and its location within an NTD with presumably low magma budget. We present 2D multichannel seismic reflection images across the Rainbow massif from the NSF-funded MARINER multidisciplinary geophysical study that reveal, for the first time, the magmatic system driving hydrothermal circulation in an ultramafic setting. Data were acquired in 2013 onboard the RV M. Langseth with an 8-km-long hydrophone streamer. The images have been obtained from pre-stack depth migrations using a regional 3D P-wave velocity model from a coincident controlled-source seismic tomography experiment using ocean bottom seismometers. Our images show a complex magmatic system centered beneath the RHF occupying an areal extent of ~3.7x6 km2, with partially molten sills ranging in depth between ~3.4 km and ~6.9 km below the seafloor. Our data also image high-amplitude dipping reflections within the massif coincident with strong lateral velocity gradients that may arise from detachment fault planes, lithological contacts, and/or alteration boundaries. Our results are an important step towards understanding the interactions of detachment faulting, magmatic intrusion, and hydrothermal circulation.

  12. Palaeoenvironment and Its Control on the Formation of Miocene Marine Source Rocks in the Qiongdongnan Basin, Northern South China Sea

    PubMed Central

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  13. A THC Simulator for Modeling Fluid-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Hamidi, Sahar; Galvan, Boris; Heinze, Thomas; Miller, Stephen

    2014-05-01

    Fluid-rock interactions play an essential role in many earth processes, from a likely influence on earthquake nucleation and aftershocks, to enhanced geothermal system, carbon capture and storage (CCS), and underground nuclear waste repositories. In THC models, two-way interactions between different processes (thermal, hydraulic and chemical) are present. Fluid flow influences the permeability of the rock especially if chemical reactions are taken into account. On one hand solute concentration influences fluid properties while, on the other hand, heat can affect further chemical reactions. Estimating heat production from a naturally fractured geothermal systems remains a complex problem. Previous works are typically based on a local thermal equilibrium assumption and rarely consider the salinity. The dissolved salt in fluid affects the hydro- and thermodynamical behavior of the system by changing the hydraulic properties of the circulating fluid. Coupled thermal-hydraulic-chemical models (THC) are important for investigating these processes, but what is needed is a coupling to mechanics to result in THMC models. Although similar models currently exist (e.g. PFLOTRAN), our objective here is to develop algorithms for implementation using the Graphics Processing Unit (GPU) computer architecture to be run on GPU clusters. To that aim, we present a two-dimensional numerical simulation of a fully coupled non-isothermal non-reactive solute flow. The thermal part of the simulation models heat transfer processes for either local thermal equilibrium or nonequilibrium cases, and coupled to a non-reactive mass transfer described by a non-linear diffusion/dispersion model. The flow process of the model includes a non-linear Darcian flow for either saturated or unsaturated scenarios. For the unsaturated case, we use the Richards' approximation for a mixture of liquid and gas phases. Relative permeability and capillary pressure are determined by the van Genuchten relations. Permeability of rock is controlled by porosity, which is itself related to effective stress. The theoretical model is solved using explicit finite differences, and runs in parallel mode with OpenMP. The code is fully modular so that any combination of current THC processes, one- and two-phase, can be chosen. Future developments will include dissolution and precipitation of chemical components in addition to chemical erosion.

  14. Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 1

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S. (Editor); Joslin, Ronald D. (Editor)

    2005-01-01

    As technological advances influence the efficiency and effectiveness of aerodynamic and hydrodynamic applications, designs and operations, this workshop was intended to address the technologies, systems, challenges and successes specific to Coanda driven circulation control in aerodynamics and hydrodynamics. A major goal of this workshop was to determine the 2004 state-of-the-art in circulation control and understand the roadblocks to its application. The workshop addressed applications, CFD, and experiments related to circulation control, emphasizing fundamental physics, systems analysis, and applied research. The workshop consisted of 34 single session oral presentations and written papers that focused on Naval hydrodynamic vehicles (e.g. submarines), Fixed Wing Aviation, V/STOL platforms, propulsion systems (including wind turbine systems), ground vehicles (automotive and trucks) and miscellaneous applications (e.g., poultry exhaust systems and vacuum systems). Several advanced CFD codes were benchmarked using a two-dimensional NCCR circulation control airfoil. The CFD efforts highlighted inconsistencies in turbulence modeling, separation and performance predictions.

  15. A Wind Tunnel Model to Explore Unsteady Circulation Control for General Aviation Applications

    NASA Technical Reports Server (NTRS)

    Cagle, Christopher M.; Jones, Gregory S.

    2002-01-01

    Circulation Control airfoils have been demonstrated to provide substantial improvements in lift over conventional airfoils. The General Aviation Circular Control model is an attempt to address some of the concerns of this technique. The primary focus is to substantially reduce the amount of air mass flow by implementing unsteady flow. This paper describes a wind tunnel model that implements unsteady circulation control by pulsing internal pneumatic valves and details some preliminary results from the first test entry.

  16. Localization, characterization and dating of water circulations in the soil-saprolite system of the Strengbach watershed: petrological, hydro-geophysical and geochemical evidences.

    NASA Astrophysics Data System (ADS)

    Chabaux, François; Viville, Daniel; Pierret, Marie-Claire; Stille, Peter; Lerouge, Catherine; Wyns, Robert; Dezayes, Chrystel; Labasque, Thierry; Aquilina, Luc; Ranchoux, Coralie; Négrel, Philippe

    2017-04-01

    The characterization of the critical zone along depth profiles remains a major scientific issue for understanding and modelling the response of continental surfaces to climatic, tectonic and anthropogenic forcings. Besides characterization it requires the modelling of the water circulations within the substratum of the critical zone. A series of boreholes drilled along the north and the south slopes of the Strengbach watershed makes it possible to characterize the critical zone to depths of ≈100 to 150 m within this critical zone observatory. In this study we attempt to combine mineralogical and petrological observations of the cores recovered through the drilling with chemical data of waters collected in each of these wells and hydro-geophysical data in order to characterize processes of water-rock interactions, visualize the water arrivals within the boreholes and bring new information on the deep water circulations within the watershed. Mineralogical, petrological and hydrogeophysical data suggest that deepwater circulation in the watershed likely occurs along fractures, concentrated in relatively narrow areas, several centimeters wide, interspersed with areas where the granite is much less fractured. This points to the occurrence of deep waters circulating in a network of more or less independent conduits, which could extend over several tens to hundreds of meters deep. The hydrochemical data from the boreholes, show contrasting characteristics for surface waters collected at 10 to 15 m depth and the deeper waters collected between 50 to 80m depth; the surface waters are very similar to those of the spring waters collected in the watershed (Pierret et al., 2014), and the deeper waters collected between 50 to 80m depth. The residence times of the circulating waters are also very variable, with ages of up to a few months for surface and subsurface waters and ages exceeding several decades for the deep waters. These differences suggest that the subsurface circulation systems are quite different from the deeper circulation ones. They also point to the importance to focus future studies on deep-water circulations in order to properly characterize the functioning of the critical zone in watersheds, especially in mountainous areas, such as the Strengbach watershed.

  17. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling...) Ventilation control. To adequately control dust from drilling rock, the air current shall be so directed that...

  18. 30 CFR 72.630 - Drill dust control at underground areas of underground mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling...) Ventilation control. To adequately control dust from drilling rock, the air current shall be so directed that...

  19. Prediction and control of slender-wing rock

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Salman, Ahmed A.

    1992-01-01

    The unsteady Euler equations and the Euler equations of rigid-body dynamics, both written in the moving frame of reference, are sequentially solved to simulate the limit-cycle rock motion of slender delta wings. The governing equations of the fluid flow and the dynamics of the present multidisciplinary problem are solved using an implicit, approximately-factored, central-difference-like, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. For the control of wing-rock motion, leading-edge flaps are forced to oscillate anti-symmetrically at prescribed frequency and amplitude, which are tuned in order to suppress the rock motion. Since the computational grid deforms due to the leading-edge flaps motion, the grid is dynamically deformed using the Navier-displacement equations. Computational applications cover locally-conical and three-dimensional solutions for the wing-rock simulation and its control.

  20. Thrust Removal Scheme for the FAST-MAC Circulation Control Model Tested in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Milholen, William E., II; Jones, Gregory S.; Goodliff, Scott L.

    2014-01-01

    A second wind tunnel test of the FAST-MAC circulation control semi-span model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged flap. The model was configured for transonic testing of the cruise configuration with 0deg flap deflection to determine the potential for drag reduction with the circulation control blowing. Encouraging results from analysis of wing surface pressures suggested that the circulation control blowing was effective in reducing the transonic drag on the configuration, however this could not be quantified until the thrust generated by the blowing slot was correctly removed from the force and moment balance data. This paper will present the thrust removal methodology used for the FAST-MAC circulation control model and describe the experimental measurements and techniques used to develop the methodology. A discussion on the impact to the force and moment data as a result of removing the thrust from the blowing slot will also be presented for the cruise configuration, where at some Mach and Reynolds number conditions, the thrust-removed corrected data showed that a drag reduction was realized as a consequence of the blowing.

  1. Cyclic transgressive and regressive sequences, Paleocene Suite, Sirte basin, Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abushagur, S.A.

    1986-05-01

    The Farrud lithofacies represent the main reservoir rock of the Ghani oil field and Western Concession Eleven of the Sirte basin, Libya. Eight microfacies are recognized in the Farrud lithofacies in the Ghani field area: (1) bryozoan-bioclastic (shallow, warm, normal marine shelf deposits); (2) micrite (suggesting quiet, low-energy conditions such as may have existed in a well-protected lagoon); (3) dasycladacean (very shallow, normal marine environment); (4) bioclastic (very shallow, normal marine environment with moderate to vigorous energy); (5) mgal (very shallow, normal marine environment in a shelf lagoon); (6) pelletal-skeletal (deposition within slightly agitated waters of a sheltered lagoon withmore » restricted circulation); (7) dolomicrite (fenestrate structures indicating a high intertidal environment of deposition); and (8) anhydrite (supratidal environment). The Paleocene suite of the Farrud lithofacies generally shows a prograding, regressive sequence of three facies: (1) supratidal facies, characterized by nonfossiliferous anhydrite, dolomite, and dolomitic pelletal carbonate mudstone; (2) intertidal to very shallow subtidal facies, characterized by fossiliferous, pelletal, carbonate mudstone and skeletal calcarenite; and (3) subtidal facies, characterized by a skeletal, pelletal, carbonate mudstone. Source rocks were primarily organic-rich shales overlying the Farrud reservoir rock. Porosity and permeability were developed in part by such processes as dolomitization, leaching, and fracturing in the two progradational, regressive carbonate facies. Hydrocarbons were trapped by a supratidal, anhydrite cap rock.« less

  2. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands - Strontium, neodymium, lead, and oxygen isotopic evidence

    NASA Technical Reports Server (NTRS)

    Cousens, Brian L.; Spera, Frank J.; Dobson, Patrick F.

    1993-01-01

    The isotopic composition of lavas from oceanic islands provides important information about the composition and evolution of the earth's mantle. Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from the Canary islands were performed. Results provide evidence for posteruptive mobility of Rb and Sr during low temperature postemplacement interaction with circulating ground water. Calculated Sr isotope ratios define a magmatic trend in the stratigraph section. 87Sr/86Sr ratios in hydrated vitrophyte and devitrified matrix separates indicate significant posteruptive interaction with meteoric water starting soon after deposition. This process extends patchily through the entire pyroclastic flow and may be ongoing. 87Sr/86Sr ratios determined by whole rock analysis of silicic rocks from oceanic islands are suspect and should not be incorporated into mantle tracer studies. Anorthoclase phenocrysts are resistant to these processes and may produce useful data.

  3. PRE-ORE POTASSIUM METASOMATISM, CREEDE MINING DISTRICT, COLORADO.

    USGS Publications Warehouse

    Bethke, P.M.; Rye, R.O.; Barton, P.B.

    1985-01-01

    Rhyolitic welded-tuff wallrocks of the epithermal base and precious metal veins of the Creede district were pervasively altered by the addition of more than two billion metric tons of potassium some 1. 5-2 million years before mineralization. Sodium, calcium and magnesium were strongly depleted, yielding a nearly binary quartz plus potassium feldspar assemblage containing as much as 13 weight percent K//2O. This large-scale metasomatism, originally noted by Steven and Rattle (1965), took place progressively by initial alteration of plagioclase phenocrysts to orthoclase or microcline followed by alteration of the groundmass feldspar to orthoclase and gradual change of the sanidine phenocrysts to more Or-rich compositions. Oxygen isotope and chemical studies show that the metasomatism resulted from the interaction of the tuffs with deeply circulating heated ground water and suggest that the potassium metasomatism of rhyolitic rocks is the facies equivalent of propylitization of volcanic rocks of more basic composition.

  4. Origin and significance of clay-coated fractures in mudrock fragments of the SAFOD borehole (Parkfield, California)

    USGS Publications Warehouse

    Schleicher, A.M.; van der Pluijm, B.A.; Solum, J.G.; Warr, L.N.

    2006-01-01

    The clay mineralogy and texture of rock fragments from the SAFOD borehole at 3067 m and 3436 m measured depth (MD) was investigated by electron microscopy (SEM, TEM) and X-ray-diffraction (XRD). The washed and ultrasonically cleaned samples show slickenfiber striations and thin films of Ca-K bearing smectite that are formed on polished fault surfaces, along freshly opened fractures and within adjacent mineralized veins. The cation composition and hydration behavior of these films differ from the Namontmorillonite of the fresh bentonite drilling mud, although there is more similarity with circulated mud recovered from 3479 m MD. We propose that these thin film smectite precipitates formed by natural nucleation and crystal growth during fault creep, probably associated with the shallow circulation of low temperature aqueous fluids along this shallow portion of the San Andreas Fault. Copyright 2006 by the American Geophysical Union.

  5. Hydrothermal plumes over spreading-center axes: Global distributions and geological inferences

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; German, Christopher R.; Elderfield, Henry

    Seafloor hydrothermal circulation is the principal agent of energy and mass exchange between the ocean and the earth's crust. Discharging fluids cool hot rock, construct mineral deposits, nurture biological communities, alter deep-sea mixing and circulation patterns, and profoundly influence ocean chemistry and biology. Although the active discharge orifices themselves cover only a minuscule percentage of the ridge-axis seafloor, the investigation and quantification of their effects is enhanced as a consequence of the mixing process that forms hydrothermal plumes. Hydrothermal fluids discharged from vents are rapidly diluted with ambient seawater by factors of 104-105 [Lupton et al., 1985]. During dilution, the mixture rises tens to hundreds of meters to a level of neutral buoyancy, eventually spreading laterally as a distinct hydrographic and chemical layer with a spatial scale of tens to thousands of kilometers [e.g., Lupton and Craig, 1981; Baker and Massoth, 1987; Speer and Rona, 1989].

  6. Optimal control of CPR procedure using hemodynamic circulation model

    DOEpatents

    Lenhart, Suzanne M.; Protopopescu, Vladimir A.; Jung, Eunok

    2007-12-25

    A method for determining a chest pressure profile for cardiopulmonary resuscitation (CPR) includes the steps of representing a hemodynamic circulation model based on a plurality of difference equations for a patient, applying an optimal control (OC) algorithm to the circulation model, and determining a chest pressure profile. The chest pressure profile defines a timing pattern of externally applied pressure to a chest of the patient to maximize blood flow through the patient. A CPR device includes a chest compressor, a controller communicably connected to the chest compressor, and a computer communicably connected to the controller. The computer determines the chest pressure profile by applying an OC algorithm to a hemodynamic circulation model based on the plurality of difference equations.

  7. 75 FR 77664 - Honeywell International, Inc., Automation and Control Solutions Division, Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ..., Inc., Automation and Control Solutions Division, Including On-Site Leased Workers From Manpower...., Automation and Control Solutions Division, Rock Island, Illinois. The notice was published in the Federal...-site at the Rock Island, Illinois location of Honeywell International, Inc., Automation and Control...

  8. Dolomitization and over-dolomitization in the Vajont limestone (Dolomiti Bellunesi, Italy) controlled by Mesozoic normal faults: a microstructural and diagenesis study

    NASA Astrophysics Data System (ADS)

    Cortinovis, Silvia; Swennen, Rudy; Bistacchi, Andrea

    2015-04-01

    The Vajont Gorge (Dolomiti Bellunesi, Italy) provides spectacular outcrops of Jurassic limestones (Vajont Limestone Formation) in which Mesozoic faults and fracture corridors are continuously exposed. Some of these faults acted as conduits for Mg-enriched hydrothermal fluids resulting in structurally-controlled dolomitization of the limestone. The dolomitization resulted in several dolomite bodies (100-200 m thick and several hundreds of meters along fault strike) that are particularly interesting as reservoir analogues for hydrocarbon, CO2, or water-bearing systems. The dolomitization process occurred after deposition and compaction of the oolitic limestone (dolomitization post-dates a dissolution event that affected the internal parts of the oolites), but before the Alpine contractional deformation. In fact, the meso-structural data collected in the Vajont Gorge allowed the reconstruction of a 3D model showing that the circulation of the dolomitizing fluids into the limestone host rock, but also the late stage of porosity reduction (strong pore filling due to over-dolomitization) were controlled by normal faults and fracture corridors interpreted as Pre-Alpine (Jurassic or Cretaceous). Later on, the influence of Alpine (Tertiary) deformation have been very limited in the studied volume. For instance dolomite veins are sometimes overprinted by bed-inclined stylolites consistent with Alpine shortening axes, but no large Alpine fault is present in the studied outcrops. Cathodoluminescence microscopy allowed recognizing different growth stages saddle dolomite crystals, which point to varying precipitation conditions during three main stages of dolomitization. Dolomite and calcite crystal twinning suggests deformation under increasing temperature conditions, consistent with intracrystalline plasticity deformation mechanisms. The presence of cataclasites composed of hydrothermal dolostone clasts, in turn cemented by dolomite, or of dolomite veins and compaction/deformation bands in high porosity dolomite bodies, is an additional argument pointing to the close interaction between tectonic deformation and fluid circulation. Particularly, it shows how tectonics controlled fluid circulation both in the first stages of dolomitization, when porosity was created, and in later stages, when porosity was strongly reduced due to over-dolomitization. The microstructure of fault breccia suggests a high-pressure of injected fluids and is useful to reconstruct the chronology of events involved in the formation and evolution of dolostone bodies. A study of quasi-steady-state (e.g. crack and seal) vs. episodic/seismic (mass precipitation, cavitation) deformation processes is under way to investigate the possible correlation between fluid injection events and the progressive slip on faults.

  9. Pulverized Tejon Lookout Granite: Attempts at Placing Constraints on the Processes

    NASA Astrophysics Data System (ADS)

    Sisk, M.; Dor, O.; Rockwell, T.; Girty, G.; Ben-Zion, Y.

    2007-12-01

    We have described and analyzed pulverized Tejon Lookout granite recovered from several transects of the western segment of the Garlock fault on Tejon Ranch in southern California. Observations and data collected at this location are compared to a sampled transect of the San Andreas fault at Tejon Pass previously studied by Wilson et al. (2005), also exposing the Tejon Lookout granite. The purpose of this study is to characterize the physical and chemical properties of the pervasively pulverized leucocratic rocks at multiple locations and to hopefully place constraints on the processes producing them. To accomplish this we performed particle size analysis with the use of both laser particle analyzer and pipette methodology; major and trace chemistry analyses determined by XRF; clay mineralogy determined by XRD; and we evaluated fabric and texture through the study of thin sections. Recovered samples met the field criteria of pulverization developed by Dor et al., 2006 - that is, the individual 1-2 mm-sized crystals can be recognized in the field but the granite (including quartz and feldspar) can be mashed with ones fingers and exhibits the texture of toothpaste. All samples were analyzed on a Horiba LA930 Laser Particle Analyzer in an attempt to reproduce the earlier results of Wilson et al. (2005) with similar methodology. We also utilized the classic pipette methodology to ensure complete discrimination of particle sizes. Our PSD analysis shows that the dominant particle size falls in the 31-125 micron range, much coarser than previously reported by Wilson et al. (2005), with >90% of the total sample falling in the >31 micron size range. We can reproduce the previously documented results by allowing the samples to circulate for long periods of time at slow circulation speeds in the laser particle size analyzer, during which time the coarse fraction settles out, thereby leaving only the fine fraction for detection. However, subsequent increase in the circulation speed leads to a complete recovery of the original PSD. Our XRF and XRD analyses provide evidence of the lack of major weathering products and their inability to skew the PSD results in a significant way. Dor et al. (2007) and Stillings et al. (2007) document evidence that support theoretical predictions and previous inferences of pulverization occurring in the upper few kilometers, especially along faults of the southern San Andreas system. Geophysical observations of Lewis et al. (2005, 2007) provide evidence that low velocity fault- parallel layers, which are likely made of pulverized or highly damaged material, are dominant in the upper few kilometers of the crust. Their asymmetric position with respect to the slipping zone, in agreement with asymmetric patterns of small scale mapped rock damage (Dor et al., 2006), suggest that pulverized rocks are likely the product of a preferred rupture direction during dynamic slip. Our results combined with the above mentioned works imply that pulverized fault zone rocks at multiple locations are much less damaged than suggested in previous studies.

  10. Emergence of Habitable Environments in Icy World Interiors

    NASA Astrophysics Data System (ADS)

    Neveu, Marc

    2016-07-01

    Finding habitable worlds is a key driver of solar system exploration. Many solar system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life [1]. Such environments include hydrothermal systems, spatially confined systems where hot aqueous fluid circulates through rock by convection. Hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are icy moons and dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core [2]. By improving an icy world evolution code [3] to include the effects of core fracturing and hydrothermal circulation, I show that several icy moons and dwarf planets likely have undergone extensive water-rock interaction [4,5]. This supports observations of aqueous products on their surfaces [6,7]. I simulated the alteration of chondritic rock [8] by pure water or fluid of cometary composition [9] to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the distribution of radionuclides, whose decay is a chief heat source on dwarf planets [10]. Hydrothermal circulation also efficiently transports heat from the core into the ocean, thereby increasing ocean persistence [4]. Thus, these coupled geophysical-geochemical models provide a comprehensive picture of icy world evolution and the emergence of liquid environments in chemical disequilibrium with underlying rock in their interiors. Habitable settings also require a suitable supply of bioessential elements; but what constitutes "suitable"? I sought to quantify the bulk elemental composition of hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA. To do so, one must minimize the contribution of non-biological material to the samples analyzed. This was achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents [11]. Using this method, I showed that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary [12]. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of hydrothermal settings beyond Earth. References: [1] US National Research Council (2011)Vision & Voyages in the Decade 2013-2022. [2] Hussmann et al. (2006) Icarus 185, 258-273. [3] Desch et al. (2009) Icarus 202, 694-714. [4] Neveu et al. (2015) JGR 120, 123-154. [5] Neveu & Rhoden, in prep. [6] De Sanctis et al. (2015) Nature 528, 241-244. [7] Hsu et al. (2015) Nature 519, 207-210. [8] Wasson & Kallemeyn (1988) Phil Trans R Soc London A 325, 535-544. [9] Mumma & Charnley (2011) Annu Rev Astron Astrophys 49, 471. [10] Neveu et al., in revision. [11] Neveu et al. (2014) Limn Oceanogr 12, 519-529. [12] Neveu et al. (2016) Geobiology 14, 33-53.

  11. Early Paleozoic paleogeography of the northern Gondwana margin: new evidence for Ordovician-Silurian glaciation

    NASA Astrophysics Data System (ADS)

    Semtner, A.-K.; Klitzsch, E.

    1994-12-01

    During the Early Paleozoic, transgressions and the distribution of sedimentary facies on the northern Gondwana margin were controlled by a regional NNW-SSE to almost north-south striking structural relief. In Early Silurian times, a eustatic highstand enabled the sea to reach its maximum southward extent. The counterclockwise rotation of Gondwana during the Cambrian and Early Ordovician caused the northern Gondwana margin to shift from intertropical to southern polar latitudes in Ordovician times. Glacial and periglacial deposits are reported from many localities in Morocco, Algeria, Niger, Libya, Chad, Sudan, Jordan and Saudi Arabia. The Late Ordovician glaciation phase was followed by a period of a major glacioeustatic sea-level rise in the Early Silurian due to the retreat of the ice-cap. As a consequence of the decreasing water circulation in the basin centers (Central Arabia, Murzuk- and Ghadames basins), highly bituminous euxinic shales were deposited. These shales are considered to be the main source rock of Paleozoic oil and gas deposits in parts of Saudi Arabia, Libya and Algeria. The following regression in the southern parts of the Early Silurian sea was probably caused by a second glacial advance, which was mainly restricted to areas in Chad, Sudan and Niger. Evidence for glacial activity and fluvioglacial sedimentation is available from rocks overlying the basal Silurian shale in north-east Chad and north-west Sudan. The Early Silurian ice advance is considered to be responsible for the termination of euxinic shale deposition in the basin centers.

  12. Sinkhole susceptibility in carbonate rocks of the Apulian karst (southern Italy)

    NASA Astrophysics Data System (ADS)

    Di Santo, Antonio; Fazio, Nunzio L.; Fiore, Antonio; Lollino, Piernicola; Luisi, Michele; Miccoli, Maria N.; Pagliarulo, Rosa; Parise, Mario; Perrotti, Michele; Pisano, Luca; Spalluto, Luigi; Vennari, Carmela; Vessia, Giovanna

    2016-04-01

    Apulia region, the foreland of the southern Italian Apennines, is made up of a 6-7 km-thick succession of Mesozoic shallow-water limestones and dolostones, locally covered by thin and discontinuous Tertiary and Quaternary carbonate and clastic deposits. Due to their long subaerial exposure, the Mesozoic carbonate bedrock recorded the development in the subsurface of a dense network of karst cavities, mostly controlled by tectonic discontinuities. As a result, a strong susceptibility to natural sinkholes has to be recorded in Apulia. In addition, the possibility of occurrence of other problems related to the high number of man-made cavities has to be added in the region. A great variety of different typologies of artificial cavities (mostly excavated in the Plio-Pleistocene soft calcarenites) is actually present, including underground quarries, worship sites, oil mills, civilian settlements, etc. Overall, 2200 natural and 1200 artificial cavities, respectively, have been so far surveyed in Apulia. Following the urban development in the last century in Apulia, many of these cavities lie nowadays below densely populated neighborhoods, roads or communication routes. These conditions are at the origin of the main geomorphological hazard for the human society in Apulia, which requires a careful evaluation, aimed at protecting and safeguarding the human life, and at providing the necessary information for a correct land use planning and management. The importance of the sinkhole hazard is further testified by the worrying increase in the number of events during the last 5-6 years. In response to these situations, joint research activities were started by the Institute of Research for Hydrological Protection of the National Research Council (CNR-IRPI) and the Basin Authority of Apulia, aimed at several goals, that include (but are not limited to) the collection of information on natural and anthropogenic sinkholes in Apulia, the implementation of numerical analyses for modelling the instability processes, and the development of charts for a preliminary evaluation of the stability of underground caves. Two distinct approaches were established to take into account the different petrographic, structural and geotechnical features of both the hard and soft carbonate rocks. The approach dealing with hard carbonate rocks (where natural karst caves develop) is based on speleological and geometrical surveys of the caves and on an integrated geological and geomechanical characterization of the carbonate rock mass, aimed at individuating the main critical aspects of the karst caves in terms of likely effects on the society. On the other hand, the approach to verify the stability of soft rocks where artificial cavities have been excavated is mostly dependent upon the peculiar petrographic and geomechanical characteristics of the calcarenite rock mass, typically massive and unaffected by tectonic discontinuities. As a consequence, the traditional analytical methods of rock mass classification fail in these materials, since the rock strength of soft calcarenites is mostly dependent upon sediment texture, porosity type and distribution and degree of cementation. The fluid circulation into the rock mass is also important because the removal of the rock matrix may induce a rapid deterioration of the mechanical behaviour of the rock mass. The approach to the calcarenite is mostly based on the characterization of petrographic and geotechnical parameters by means of direct sampling from the rock walls and in situ surveys (wells, trenches, etc.). Through implementation of the two approaches, our goal is to reconstruct accurate geometrical, geological and geotechnical models for both natural caves and artificial cavities. These models will be useful also to plan specific monitoring activities in order to understand the development of underground instability, and the related evolution through the rock mass, possibly threatening the urban areas and infrastructures above.

  13. Customized Internal Reference Controls for Improved Assessment of Circulating MicroRNAs in Disease.

    PubMed

    Schlosser, Kenny; McIntyre, Lauralyn A; White, R James; Stewart, Duncan J

    2015-01-01

    Altered levels of circulating extracellular miRNA in plasma and serum have shown promise as non-invasive biomarkers of disease. However, unlike the assessment of cellular miRNA levels for which there are accepted housekeeping genes, analogous reference controls for normalization of circulating miRNA are lacking. Here, we provide an approach to identify and validate circulating miRNA reference controls on a de novo basis, and demonstrate the advantages of these customized internal controls in different disease settings. Importantly, these internal controls overcome key limitations of external spike-in controls. Using a global RT-qPCR screen of 1066 miRNAs in plasma from pulmonary hypertension patients (PAH) and healthy subjects as a case example, we identified a large pool of initial candidate miRNAs that were systematically ranked according to their plasma level stability using a predefined algorithm. The performance of the top candidates was validated against multiple comparators, and in a second independent cohort of PAH and control subjects. The broader utility of this approach was demonstrated in a completely different disease setting with 372 miRNAs screened in plasma from septic shock patients and healthy controls. Normalization of data with specific internal reference controls significantly reduced the overall variation in circulating miRNA levels between subjects (relative to raw data), provided a more balanced distribution of up- and down-regulated miRNAs, replicated the results obtained by the benchmark geometric averaging of all detected miRNAs, and outperformed the commonly used external spike-in strategy. We demonstrate the feasibility of identifying circulating reference controls that can reduce extraneous technical variations, and improve the assessment of disease-related changes in plasma miRNA levels. This study provides a novel conceptual framework that addresses a critical and previously unmet need if circulating miRNAs are to advance as reliable diagnostic tools in medicine.

  14. Customized Internal Reference Controls for Improved Assessment of Circulating MicroRNAs in Disease

    PubMed Central

    Schlosser, Kenny; McIntyre, Lauralyn A.; White, R. James; Stewart, Duncan J.

    2015-01-01

    Background Altered levels of circulating extracellular miRNA in plasma and serum have shown promise as non-invasive biomarkers of disease. However, unlike the assessment of cellular miRNA levels for which there are accepted housekeeping genes, analogous reference controls for normalization of circulating miRNA are lacking. Here, we provide an approach to identify and validate circulating miRNA reference controls on a de novo basis, and demonstrate the advantages of these customized internal controls in different disease settings. Importantly, these internal controls overcome key limitations of external spike-in controls. Methods Using a global RT-qPCR screen of 1066 miRNAs in plasma from pulmonary hypertension patients (PAH) and healthy subjects as a case example, we identified a large pool of initial candidate miRNAs that were systematically ranked according to their plasma level stability using a predefined algorithm. The performance of the top candidates was validated against multiple comparators, and in a second independent cohort of PAH and control subjects. The broader utility of this approach was demonstrated in a completely different disease setting with 372 miRNAs screened in plasma from septic shock patients and healthy controls. Results Normalization of data with specific internal reference controls significantly reduced the overall variation in circulating miRNA levels between subjects (relative to raw data), provided a more balanced distribution of up- and down-regulated miRNAs, replicated the results obtained by the benchmark geometric averaging of all detected miRNAs, and outperformed the commonly used external spike-in strategy. Conclusions We demonstrate the feasibility of identifying circulating reference controls that can reduce extraneous technical variations, and improve the assessment of disease-related changes in plasma miRNA levels. This study provides a novel conceptual framework that addresses a critical and previously unmet need if circulating miRNAs are to advance as reliable diagnostic tools in medicine. PMID:26010841

  15. Mineralization, alteration, and hydrothermal metamorphism of the ophiolite-hosted Turner-Albright sulfide deposit, southwestern Oregon

    USGS Publications Warehouse

    Zierenberg, R.A.; Shanks, Wayne C.; Seyfried, W.E.; Koski, R.A.; Strickler, M.D.

    1988-01-01

    The Turner-Albright sulfide deposit, part of the Josephine ophiolite, formed on and below the seafloor during Late Jurassic volcanism at a back arc spreading center. Ore fluids were probably localized by faults which were active on the seafloor at the time of sulfide deposition. The uppermost massive sulfide formed on the seafloor at hydrothermal vents. The bulk of the sulfide mineralization formed below the seafloor within olivine basalt hyaloclastite erupted near the time of mineralization. Infiltration of hydrothermal fluid into the hyaloclastite altered the rock. The fluid responsible for the hydrothermal alteration was evolved seawater with low pH and Mg and high Fe. The average value of sulfide and the difference between sulfide and contemporaneous seawater sulfate values are similar to ophiolite-hosted sulfide deposits in Cyprus. Mudstone and clinopyroxene basalt above the sulfide horizons were not altered by the ore-transporting hydrothermal fluid, but these rocks were hydrothermally metamorphosed by altered seawater heated by deep circulation into hot oceanic crust. This subseafloor metamorphism produced a mineral assemblage typical of prehnite-pumpellyite facies metamorphism. Exchange with altered seawater increased the whole-rock ??18O of the basalts to values of 9.4-11.2%. -from Authors

  16. KAr ages, chemical composition and geothermal significance of cenozoic basalt near the Jordan rift

    USGS Publications Warehouse

    Duffield, W.A.; McKee, E.H.; El, Salem F.; Teimeh, M.

    1988-01-01

    Late Cenozoic mafic lavas crop out locally along the Jordan rift. Some of these lavas are spatially associated with thermal springs, and this association has prompted some workers to hypothesize that the hot water derives its thermal energy from the shallow, still hot intrusive roots of the volcanic rocks. However, all of the volcanic rocks appear to represent mantle-derived mafic magma that rose rather quickly to the Earth's surface, without filling crustal reservoirs within which differentiation would have produced evolved, derivative products. Moreover, the lavas are too old and of too small a volume to represent the surface expression of an active reservoir of magma within the crust. These interpretations of the volcanic geology are consistent with conclusions drawn from the chemistry of the thermal water; the water has equilibrated with host rocks at no more than 110??C, probably at depths of 2-3 km. Thus, thermal springs along the Jordan rift appear to reflect heating during circulation through a regional regime of average crustal heat flow (Galanis et at., 1986). The magmatic activity may only be a second or third order contributor to this heat flow. ?? 1988.

  17. Reaction of seawater with fresh mid-ocean ridge gabbro creates ';atypical' REE pattern and high REE fluid fluxes: Experiments at 425 and 475 °C, 400 and 1000 bar

    NASA Astrophysics Data System (ADS)

    Beermann, O.; Garbe-Schönberg, D.; Holzheid, A. D.

    2013-12-01

    High-temperature MOR hydrothermalism significantly affects ocean chemistry. The Sisters Peak (SP) hydrothermal field at 5°S on the slow-spreading Mid-Atlantic Ridge (MAR) emanates fluids >400°C [1] that have high concentrations of H2, transition metals, and rare earth elements (REE) exhibiting ';atypical' REE pattern characterized by depletions of LREE and HREE relative to MREE and no Eu anomaly [2]. This is in contrast to the ';typical' LREE enrichment and strong positive Eu anomaly known from many MOR vent fluids observed world-wide [e.g., 3]. Besides temperature, the seawater-to-rock ratio (w/r ratio) has significant control on the fluid chemistry [e.g., 4, 5]. To understand how vent fluid REE-signatures are generated during water-rock interaction processes we reacted unaltered gabbro with natural bottom seawater at 425 °C and 400 bar and at 425 and 475 °C at 1000 bar at variable w/r (mass) ratios ranging from 0.5-10 by using cold seal pressure vessels (CSPV). The run durations varied from 3-72 h. Reacted fluids were analysed for major and trace elements by ICP-OES and ICP-MS. In our experiments, ';atypical' REE fluid pattern similar to those of SP fluids were obtained at high w/r ratio (5 and 10) that might be characteristic for focused fluid-flow along e.g., detachment faults at slow-spreading MOR [6]. In contrast, more ';typical'-like REE pattern with elevated LREE and slightly positive Eu anomalies have been reproduced at low w/r ratio (0.5-1). Results of numerical simulations imply that strong positive Eu anomalies of fluids and altered gabbro from high temperature MOR hydrothermal systems can be created by intense rock leaching processes at high w/r ratio (5-10). This suggests that hydrothermal circulation through the ocean crust creates ';typical' REE fluid pattern with strong positive Eu anomalies if seawater reacts with gabbroic host rock that has been already leached in REE at high fluid fluxes. Simulations of the temporal chemical evolution of high temperature MOR hydrothermal systems reveal that rock and fluid REE contents can rapidly decrease within several months particularly at high fluid fluxes. In contrast, the reaction with ';fresh', unaltered rock is evident from the high REE concentration of SP fluids. Both, fluid access to fresh rock and the fluid flux should therefore significantly control chemical fluxes to the ocean. Thus, high chemical fluxes can be expected in particular from early stage high-temperature MOR hydrothermal systems that are assumed to be not uncommon along the slow-spreading MAR. [1] Koschinsky A., Garbe-Schönberg D., Sander S., Schmidt K., Gennerich H.-H., and Strauss H. (2008) Geology 36, 615-618. [2] Schmidt K., Garbe-Schönberg D., Bau M., and Koschinsky A. (2010) Geochim. Cosmochim. Acta 74, 4058-4077. [3] Douville E., Bienvenu P., Charlou J. L., Donval J. P., Fouquet Y., Appriou P., and Gamo T. (1999). Geochim. Cosmochim. Acta 63, 627-643. [4] Seyfried [Jr.] W. E. and Bischoff J. L. (1977) Earth. Planet. Sci. Lett. 34, 71-77. [5] Hajash A. and Chandler G. W. (1981) Contrib. Mineral. Petrol. 78, 240-254. [6] McCaig A.M. and Harris M. (2012) Geology 40, 367-370.

  18. The cold climate geomorphology of the Eastern Cape Drakensberg: A reevaluation of past climatic conditions during the last glacial cycle in Southern Africa

    NASA Astrophysics Data System (ADS)

    Mills, S. C.; Barrows, T. T.; Telfer, M. W.; Fifield, L. K.

    2017-02-01

    Southern Africa is located in a unique setting for investigating past cold climate geomorphology over glacial-interglacial timescales. It lies at the junction of three of the world's major oceans and is affected by subtropical and temperate circulation systems, therefore recording changes in Southern Hemisphere circulation patterns. Cold climate landforms are very sensitive to changes in climate and thus provide an opportunity to investigate past changes in this region. The proposed existence of glaciers in the high Eastern Cape Drakensberg mountains, together with possible rock glaciers, has led to the suggestion that temperatures in this region were as much as 10-17 °C lower than present. Such large temperature depressions are inconsistent with many other palaeoclimatic proxies in Southern Africa. This paper presents new field observations and cosmogenic nuclide exposure ages from putative cold climate landforms. We discuss alternative interpretations for the formation of the landforms and confirm that glaciers were absent in the Eastern Cape Drakensberg during the last glaciation. However, we find widespread evidence for periglacial activity down to an elevation of 1700 m asl, as illustrated by extensive solifluction deposits, blockstreams, and stone garlands. These periglacial deposits suggest that the climate was significantly colder ( 6 °C) during the Last Glacial Maximum, in keeping with other climate proxy records from the region, but not cold enough to initiate or sustain glaciers or rock glaciers.

  19. Geochemical, isotopic and geochronological characterization of listvenite from the Upper Unit on Tinos, Cyclades, Greece

    NASA Astrophysics Data System (ADS)

    Hinsken, Tim; Bröcker, Michael; Strauss, Harald; Bulle, Florian

    2017-06-01

    We describe a largely unknown listvenite deposit from Tinos, Cyclades, Greece and combine field observations with petrographic, bulk-rock geochemical, isotope (Sr, O, C), and Rb-Sr geochronological data. The volumetrically small listvenite occurrences are associated with metabasic phyllites, talc schists, meta-gabbros, ophicalcites and serpentinites of the Upper Unit. Geochemical characteristics (high Mg#, Cr, Ni), as well as preserved relic Cr-spinel and the typical mesh-texture of serpentinized Mg-silicates, document derivation from ultramafic precursors. Judging from field and textural observations it is very likely that carbonation affected serpentinite and not unaltered meta-peridotite. The direct contact or transition zones to ultramafic rocks are not preserved, but serpentinites that escaped carbonation are closely associated. The listvenites occur near a low-angle normal fault that probably focused fluid infiltration and distribution. The carbonation is associated with the influx of CO2-rich, K-bearing fluids that led to the formation of ferroan magnesite, quartz and Cr-bearing white mica (fuchsite), but otherwise the transformation of serpentinized peridotite into listvenite had been a largely isochemical process. The studied rocks do not contain elevated concentrations of precious metals (Au, Pt, Pd). Field relationships suggest that the listvenite-bearing occurrences most likely represent the same tectonostratigraphic level as Upper Unit rocks that had been thermally overprinted in the contact aureole of Miocene granitoids at ca. 15 Ma. Accordingly the intrusion depth provides a minimum pressure constraint for the somewhat older carbonation. Pressure estimates for thermally overprinted rocks and the granitoids suggest an intrusion depth of ca. 7-10 km that corresponds to a pressure of ca. 2-3 kbar. Chlorite thermometry applied to the Tinos listvenites mostly indicates temperatures of ca. 250 °C during carbonation. Internal Rb-Sr mineral isochrons (different grain-size fractions of fuchsite and magnesite) yielded apparent ages of ca. 16 Ma and ca. 19 Ma, respectively, which are interpreted to date carbonation and associated fuchsite formation. The new ages indicate that listvenite formation is considerably younger than the presumed Late Cretaceous or Jurassic protolith age of the ultramafic precursors and also post-dates tectonic juxtaposition of the Upper Unit onto the Lower Unit at ca. 21 Ma. Although not the dominant process, a contribution of contact metamorphic decarbonation cannot completely be ruled out. The Sr isotope characteristics of magnesite and whole rocks correspond very well to the seawater curve for the formation age indicated by Rb-Sr dating. Carbonate carbon and oxygen isotopes measured for the listvenites suggest that magnesite formed following the deep circulation of fluids and their interaction with other carbonate rocks (possibly the marble units present on Tinos) including a possible contribution from magmatic CO2. The similarity in δ13C and δ18O between listvenite and some of the ophicalcite occurrences could indicate a common origin from the same circulating fluids, but remains elusive at present. Combined, P-T constraints and Sr isotope data imply infiltration of seawater-dominated fluids to a depth of several kilometers. This conclusion is supported by oxygen and carbon isotope data.

  20. Sex steroid receptors in male human bladder: expression and biological function.

    PubMed

    Chavalmane, Aravinda K; Comeglio, Paolo; Morelli, Annamaria; Filippi, Sandra; Fibbi, Benedetta; Vignozzi, Linda; Sarchielli, Erica; Marchetta, Matilde; Failli, Paola; Sandner, Peter; Saad, Farid; Gacci, Mauro; Vannelli, Gabriella B; Maggi, Mario

    2010-08-01

    In male, lower urinary tract symptoms (LUTS) have been associated, beside benign prostatic hyperplasia, to some unexpected comorbidities (hypogonadism, obesity, metabolic syndrome), which are essentially characterized by an unbalance between circulating androgens/estrogens. Within the bladder, LUTS are linked to RhoA/Rho-kinase (ROCK) pathway overactivity. To investigate the effects of changing sex steroids on bladder smooth muscle. ER α, ER β, GPR30/GPER1 and aromatase mRNA expression was analyzed in male genitourinary tract tissues, and cells isolated from bladder, prostate, and urethra. Estrogen and G1 effect on RhoA/ROCK signaling output like cell migration, gene expression, and cytoskeletal remodeling, and [Ca(2+) ](i) was also studied in hB cells. Contractile studies on bladder strips from castrated male rats supplemented with estradiol and testosterone was also performed. The effects of classical (ER α, ER β) and nonclassical (GPR30/GPER1) estrogen receptor ligands (17 β-estradiol and G1, respectively) and androgens on RhoA/ROCK-.mediated cell functions were studied in hB cells. Contractility studies were also performed in bladder strips from castrated male rats supplemented with testosterone or estradiol. Aromatase and sex steroid receptors, including GPR30, were expressed in human bladder and mediates several biological functions. Both 17 β-estradiol and G1 activated calcium transients and induced RhoA/ROCK signaling (cell migration, cytoskeleton remodeling and smooth muscle gene expression). RhoA/ROCK inhibitors blunted these effects. Estrogen-, but not androgen-supplementation to castrated rats increased sensitivity to the ROCK inhibitor, Y-27632 in isolated bladder strips. In hB cells, testosterone elicited effects similar to estrogen, which were abrogated by blocking its aromatization through letrozole. Our data indicate for the first time that estrogen-more than androgen-receptors up-regulate RhoA/ROCK signaling. Since an altered estrogen/androgen ratio characterizes conditions, such as aging, obesity and metabolic syndrome, often associated to LUTS, we speculate that a relative hyperestrogenism may induce bladder overactivity through the up-regulation of RhoA/ROCK pathway. © 2010 International Society for Sexual Medicine.

  1. Rock slope design guide.

    DOT National Transportation Integrated Search

    2011-04-01

    This Manual is intended to provide guidance for the design of rock cut slopes, rockfall catchment, and : rockfall controls. Recommendations presented in this manual are based on research presented in Shakoor : and Admassu (2010) entitled Rock Slop...

  2. Martian and Terrestrial Rock Abrasion from Wind Tunnel and Field Studies

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Greeley, R.; Eddlemon, E.; Laity, J. E.; Meyer, C.; Phoreman, J.; White, B. R.

    2003-01-01

    Earth and Mars exhibit ventifacts, rocks that have been abraded by saltating sand. Previous theoretical and laboratory studies have determined abrasion susceptibilities of rocks as a function of sand type and impact angle and rock material strengths. For the last two years we have been engaged in wind tunnel and field studies to better understand the fundamental factors which control and influence rock abrasion and ventifact formation on Earth and Mars. In particular, we are examining: 1) What types of rocks (composition, texture, and shape) preferentially erode and what are the relative rates of one type vs. another? 2) What are the controlling factors of the aeolian sand cloud (flux, particle speed, surface roughness, etc) which favor rock abrasion?, 3) How do specific ventifact characteristics tie into their mode of formation and rock properties? We find several important factors: 1) Initial rock shape controls the rate of abrasion, with steeper faces abrading faster than shallower ones. The relationship is partly dependent on angle-dependent flux (proportional to sin[theta]) but exhibits additional non-linear effects from momentum transfer efficiency and rebound effects that vary with incidence angle. 2) Irregular targets with pits or grooves abrade at greater rates than targets with smooth surfaces, with indentations generally enlarging with time. Surfaces become rougher with time. 3) Targets also abrade via slope retreat, which is roughly dependent on the slope of the front face. The formation of basal sills is common, as observed on terrestrial and Martian ventifacts.

  3. Exogenous nitric oxide inhibits Rho-associated kinase activity in patients with angina pectoris: a randomized controlled trial

    PubMed Central

    Maruhashi, Tatsuya; Noma, Kensuke; Fujimura, Noritaka; Kajikawa, Masato; Matsumoto, Takeshi; Hidaka, Takayuki; Nakashima, Ayumu; Kihara, Yasuki; Liao, James K; Higashi, Yukihito

    2016-01-01

    The RhoA/Rho-associated kinase (ROCK) pathway has a key physiological role in the pathogenesis of atherosclerosis. Increased ROCK activity is associated with cardiovascular diseases. Endogenous nitric oxide (NO) has an anti-atherosclerotic effect, whereas the exogenous NO-mediated cardiovascular effect still remains controversial. The purpose of this study was to evaluate the effect of exogenous NO on ROCK activity in patients with angina pectoris. This is a prospective, open-label, randomized, controlled study. A total of 30 patients with angina pectoris were randomly assigned to receive 40 mg day−1 of isosorbide mononitrate (n = 15, 12 men and 3 women, mean age of 63 ± 12 years, isosorbide mononitrate group) or conventional treatment (n = 15, 13 men and 2 women, mean age of 64 ± 13 years, control group) for 12 weeks. ROCK activity in peripheral leukocytes was measured by western blot analysis. ROCK activities at 4 and 12 weeks after treatment were decreased in the isosorbide mononitrate group (0.82 ± 0.33 at 0 week, 0.62 ± 0.20 at 4 weeks, 0.61 ± 0.19 at 12 weeks, n = 15 in each group, P < 0.05, respectively) but not altered in the control group. ROCK1 and ROCK2 expression levels were similar in all treatment periods in the two groups. These findings suggest that the administration of exogenous NO can inhibit ROCK activity, indicating that the usage of exogenous NO could have a protective effect in patients with angina pectoris. PMID:25740292

  4. Laboratory measurements of P- and S-wave anisotropy in synthetic rocks by 3D printing

    NASA Astrophysics Data System (ADS)

    Kong, L.; Ostadhassan, M.; Tamimi, N.; Li, C.; Alexeyev, A.

    2017-12-01

    Synthetic rocks have been widely used to realize the models with controlled factors in rock physics and geomechanics experiments. Additive manufacturing technology, known as 3D printing, is becoming a popular method to produce the synthetic rocks as the advantages of timesaving, economics, and control. In terms of mechanical properties, the duplicability of 3D printed rock towards a natural rock has been studied whereas the seismic anisotropy still remains unknown as being the key factor in conducting rock physics experiments. This study utilized a 3D printer with gypsum as the ink to manufacture a series of synthetic rocks that have the shapes of octagonal prisms, with half of them printed from lateral and another half from the bottom. An ultrasonic investigation system was set up to measure the P- and S- wave velocities at different frequencies while samples were under dry conditions. The results show the impact of layered property on the P- and S- wave velocities. The measurement results were compared with the predicted results of Hudson model, demonstrating that the synthetic rock from 3D printing is a transverse isotropic model. The seismic anisotropy indicates that the availability of using 3D printed rocks to duplicate natural rocks for the purpose of recreating the experiments of rock physics. Future experiments will be performed on the dependence of seismic anisotropy on fracture geometry and density in 3D printed synthetic rocks.

  5. Circulating Zinc-α2-glycoprotein levels and Insulin Resistance in Polycystic Ovary Syndrome

    PubMed Central

    Lai, Yerui; Chen, Jinhua; Li, Ling; Yin, Jingxia; He, Junying; Yang, Mengliu; Jia, Yanjun; Liu, Dongfang; Liu, Hua; Liao, Yong; Yang, Gangyi

    2016-01-01

    The aim of study was to assess the relationship between zinc-α2-glycoprotein (ZAG) and androgen excess with insulin resistance in polycystic ovary syndrome (PCOS) women. 99 PCOS women and 100 healthy controls were recruited. Euglycemic-hyperinsulinemic clamp (EHC) was preformed to assess their insulin sensitivity. Circulating ZAG was determined with an ELISA kit. In healthy subjects, circulating ZAG levels exhibited a characteristic diurnal rhythm in humans, with a major nocturnal rise occurring between midnight and early morning. Circulating ZAG and M-value were much lower in PCOS women than in the controls. In all population, overweight/obese subjects had significantly lower circulating ZAG levels than lean individuals. Multiple linear regression analysis revealed that only M-value and the area under the curve for glucose were independently related factors to circulating ZAG in PCOS women. Multivariate logistic regression analysis showed that circulating ZAG was significantly associated with PCOS even after controlling for anthropometric variables, blood pressure, lipid profile and hormone levels. The PCOS women with high ZAG had fewer MetS, IGT and polycystic ovaries as compared with the low ZAG PCOS women. Taken together, circulating ZAG levels are reduced in women with PCOS and ZAG may be a cytokine associated with insulin resistance in PCOS women. PMID:27180914

  6. Targeting the RhoA-ROCK Pathway to Reverse T Cell Dysfunction in SLE

    PubMed Central

    Rozo, Cristina; Chinenov, Yurii; Maharaj, Reena Khianey; Gupta, Sanjay; Leuenberger, Laura; Kirou, Kyriakos A.; Bykerk, Vivian P.; Goodman, Susan M.; Salmon, Jane E.; Pernis, Alessandra B.

    2018-01-01

    Objectives Deregulated production of IL-17 and IL-21 contributes to the pathogenesis of autoimmune disorders like SLE and RA. Production of IL-17 and IL-21 can be regulated by ROCK2, one of the two Rho kinases. Increased ROCK activation was previously observed in an SLE cohort. Here, we evaluated ROCK activity in a new SLE cohort, an RA cohort, and assessed the ability of distinct inhibitors of the ROCK pathway to suppress production of IL-17 and IL-21 by SLE T cells or human Th17 cells. Methods ROCK activity in PBMCs from 29 SLE patients, 31 RA patients, and 28 healthy controls was determined by ELISA. SLE T cells or in vitro-differentiated Th17 cells were treated with Y27632 (a pan-ROCK inhibitor), KD025 (a selective ROCK2 inhibitor), or simvastatin (which inhibits RhoA, a major ROCK activator). ROCK activity, IL-17, and IL-21 production were assessed. The transcriptional profile altered by ROCK inhibitors was evaluated by NanoString technology. Results ROCK activity levels were significantly higher in SLE and RA patients than healthy controls. Th17 cells exhibited high ROCK activity that was inhibited by Y276327, KD025, or simvastatin; each also decreased IL-17 and IL-21 production by purified SLE T cells or Th17 cells. Immune profiling revealed both overlapping and distinct effects of the different ROCK inhibitors. Conclusions ROCK activity is elevated in PBMCs from SLE and RA patients. Production of IL-17 and IL-21 by SLE T cells or Th17 cells can furthermore be inhibited by targeting the RhoA-ROCK pathway via both non-selective and selective approaches. PMID:28283529

  7. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Mittempergher, Silvia; Vho, Alice; Bistacchi, Andrea

    2016-04-01

    A quantitative analysis of fault-rock distribution in outcrops of exhumed fault zones is of fundamental importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation. We present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM), developed on the Gole Larghe Fault Zone (GLFZ), a well exposed strike-slip fault in the Adamello batholith (Italian Southern Alps). The GLFZ has been exhumed from ca. 8-10 km depth, and consists of hundreds of individual seismogenic slip surfaces lined by green cataclasites (crushed wall rocks cemented by the hydrothermal epidote and K-feldspar) and black pseudotachylytes (solidified frictional melts, considered as a marker for seismic slip). A digital model of selected outcrop exposures was reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs processed with VisualSFM software. The resulting DOM has a resolution up to 0.2 mm/pixel. Most of the outcrop was imaged using images each one covering a 1 x 1 m2 area, while selected structural features, such as sidewall ripouts or stepovers, were covered with higher-resolution images covering 30 x 40 cm2 areas.Image processing algorithms were preliminarily tested using the ImageJ-Fiji package, then a workflow in Matlab was developed to process a large collection of images sequentially. Particularly in detailed 30 x 40 cm images, cataclasites and hydrothermal veins were successfully identified using spectral analysis in RGB and HSV color spaces. This allows mapping the network of cataclasites and veins which provided the pathway for hydrothermal fluid circulation, and also the volume of mineralization, since we are able to measure the thickness of cataclasites and veins on the outcrop surface. The spectral signature of pseudotachylyte veins is indistinguishable from that of biotite grains in the wall rock (tonalite), so we tested morphological analysis tools to discriminate them with respect to biotite. In higher resolution images this could be performed using circularity and size thresholds, however this could not be easily implemented in an automated procedure since the thresholds must be varied by the interpreter almost for each image. In 1 x 1 m images the resolution is generally too low to distinguish cataclasite and pseudotachylyte, so most of the time fault rocks were treated together. For this analysis we developed a fully automated workflow that, after applying noise correction, classification and skeletonization algorithms, returns labeled edge images of fault segments together with vector polylines associated to edge properties. Vector and edge properties represent a useful format to perform further quantitative analysis, for instance for classifying fault segments based on structural criteria, detect continuous fault traces, and detect the kind of termination of faults/fractures. This approach allows to collect statistically relevant datasets useful for further quantitative structural analysis.

  8. The impact of circulation control on rotary aircraft controls systems

    NASA Technical Reports Server (NTRS)

    Kingloff, R. F.; Cooper, D. E.

    1987-01-01

    Application of circulation to rotary wing systems is a new development. Efforts to determine the near and far field flow patterns and to analytically predict those flow patterns have been underway for some years. Rotary wing applications present a new set of challenges in circulation control technology. Rotary wing sections must accommodate substantial Mach number, free stream dynamic pressure and section angle of attack variation at each flight condition within the design envelope. They must also be capable of short term circulation blowing modulation to produce control moments and vibration alleviation in addition to a lift augmentation function. Control system design must provide this primary control moment, vibration alleviation and lift augmentation function. To accomplish this, one must simultaneously control the compressed air source and its distribution. The control law algorithm must therefore address the compressor as the air source, the plenum as the air pressure storage and the pneumatic flow gates or valves that distribute and meter the stored pressure to the rotating blades. Also, mechanical collective blade pitch, rotor shaft angle of attack and engine power control must be maintained.

  9. Clay mineralogy, strontium and neodymium isotope ratios in the sediments of two High Arctic catchments (Svalbard)

    NASA Astrophysics Data System (ADS)

    Hindshaw, Ruth S.; Tosca, Nicholas J.; Piotrowski, Alexander M.; Tipper, Edward T.

    2018-03-01

    The identification of sediment sources to the ocean is a prerequisite to using marine sediment cores to extract information on past climate and ocean circulation. Sr and Nd isotopes are classical tools with which to trace source provenance. Despite considerable interest in the Arctic Ocean, the circum-Arctic source regions are poorly characterised in terms of their Sr and Nd isotopic compositions. In this study we present Sr and Nd isotope data from the Paleogene Central Basin sediments of Svalbard, including the first published data of stream suspended sediments from Svalbard. The stream suspended sediments exhibit considerable isotopic variation (ɛNd = -20.6 to -13.4; 87Sr / 86Sr = 0.73421 to 0.74704) which can be related to the depositional history of the sedimentary formations from which they are derived. In combination with analysis of the clay mineralogy of catchment rocks and sediments, we suggest that the Central Basin sedimentary rocks were derived from two sources. One source is Proterozoic sediments derived from Greenlandic basement rocks which are rich in illite and have high 87Sr / 86Sr and low ɛNd values. The second source is Carboniferous to Jurassic sediments derived from Siberian basalts which are rich in smectite and have low 87Sr / 86Sr and high ɛNd values. Due to a change in depositional conditions throughout the Paleogene (from deep sea to continental) the relative proportions of these two sources vary in the Central Basin formations. The modern stream suspended sediment isotopic composition is then controlled by modern processes, in particular glaciation, which determines the present-day exposure of the formations and therefore the relative contribution of each formation to the stream suspended sediment load. This study demonstrates that the Nd isotopic composition of stream suspended sediments exhibits seasonal variation, which likely mirrors longer-term hydrological changes, with implications for source provenance studies based on fixed end-members through time.

  10. Coking-coal deposits of the western United States

    USGS Publications Warehouse

    Berryhill, Louise R.; Averitt, Paul

    1951-01-01

    Geohydrologic systems in the Anadarko basin in the central United States are controlled by topography, climate, geologic structures, and aquifer hydraulic properties, all of which are the result of past geologic and hydrologic processes, including tectonics and diagenesis. From Late Cambrian through Middle Ordovician time, a generally transgressive but cyclic sea covered the area. The first deposits were permeable sand, followed by calcareous mud. During periods of sea transgression, burial diagenesis decreased porosity and permeability. During Pennsylvanian time, rapid sedimentation accompanied rapid subsidence in the Anadarko basin. A geopressure zone probably resulted when sediments with little permeability trapped depositional water in Lower Pennsylvanian sands. Burial diagenesis included compaction and thermal alteration of deeply buried organic material, which released carbon dioxide, water, and hydrocarbons. By Middle Pennsylvanian time, the sea had submerged most of the central United States, including the Ozarks, as tectonic activity reached its maximum. During Late Pennsylvanian and Early Permian time, the Ouachita uplift had been formed and was higher than the Ozarks. Uplift was accompanied by a regional upward tilt toward the Ouachita-Ozarks area; the sea receded westward, depositing large quantities of calcareous mud and clay, and precipitating evaporitic material in the restricted-circulation environment. By the end of Permian time, > 20,000 ft of Pennsylvanian and Permian sediments had been deposited in the Anadarko basin. These thick sediments caused rapid and extreme burial diagensis, including alteration of organic material During Permian time in the Ozarks area, development of the Ozark Plateau aquifer system commenced in the permeable Cambrian-Mississippian rocks near the St. Francois Mountains as the Pennsylvanian confining material was removed. Since Permian time, uplift diagenesis has been more active than burial diagenesis in the Anadarko basin. Synopsis of paleohydrologic interpretation indicates that Cambrian-Mississippian rocks in the Anadarko basin should be relatively impermeable, except for local secondary permeability, because rocks in the basin have undergone little uplift diagenesis. (Lantz-PTT)

  11. Functional ankle control of rock climbers

    PubMed Central

    Schweizer, A; Bircher, H; Kaelin, X; Ochsner, P

    2005-01-01

    Objective: To evaluate whether rock climbing type exercise would be of value in rehabilitating ankle injuries to improve ankle stability and coordination. Results: The rock climbers showed significantly better results in the stabilometry and greater absolute and relative maximum strength of flexion in the ankle. The soccer players showed greater absolute but not relative strength in extension. Conclusion: Rock climbing, because of its slow and controlled near static movements, may be of value in the treatment of functional ankle instability. However, it has still to be confirmed whether it is superior to the usual rehabilitation exercises such as use of the wobble board. PMID:15976164

  12. Cardiovascular disease delay in centenarian offspring: role of heat shock proteins.

    PubMed

    Terry, Dellara F; McCormick, Maegan; Andersen, Stacy; Pennington, Jaemi; Schoenhofen, Emily; Palaima, Elizabeth; Bausero, Maria; Ogawa, Kishiko; Perls, Thomas T; Asea, Alexzander

    2004-06-01

    Cardiovascular disease is a major cause of morbidity and mortality of older Americans. We have demonstrated recently that centenarian offspring, when compared with age-matched controls, avoid and/or delay cardiovascular disease and cardiovascular risk factors. Given recent evidence suggesting that higher circulating levels of HSP70 predict the future development of cardiovascular disease in established hypertensives and a recent study demonstrating a decrease in HSP60 and HSP70 with advancing age, we hypothesized that HSP70 levels would be lower in centenarian offspring compared with controls. The circulating serum concentration of HSP70 in 20 centenarian offspring and 9 spousal controls was analyzed using a modified HSP70 ELISA method. Centenarian offspring showed approximately 10-fold lower levels of circulating serum HSP70 compared with spousal controls (P <.001). The exact biological significance of the extremely low levels of circulating serum HSP70 observed in centenarian offspring thus far is not clear. However, circulating HSP has been shown to correlate in diseases or disorders in which there is destruction or damage to target tissues or organs, including cardiovascular diseases and numerous autoimmune disorders. We hypothesize that low levels of circulating serum HSP70 may be an indicator of a healthy state and point to longevity of the host; therefore, our results suggest that levels of circulating serum HSP70 may be a marker for longevity.

  13. Cardiovascular Disease Delay in Centenarian Offspring: Role of Heat Shock Proteins

    PubMed Central

    TERRY, DELLARA F.; McCORMICK, MAEGAN; ANDERSEN, STACY; PENNINGTON, JAEMI; SCHOENHOFEN, EMILY; PALAIMA, ELIZABETH; BAUSERO, MARIA; OGAWA, KISHIKO; PERLS, THOMAS T.; ASEA, ALEXZANDER

    2006-01-01

    Cardiovascular disease is a major cause of morbidity and mortality of older Americans. We have demonstrated recently that centenarian offspring, when compared with age-matched controls, avoid and/or delay cardiovascular disease and cardiovascular risk factors. Given recent evidence suggesting that higher circulating levels of HSP70 predict the future development of cardiovascular disease in established hypertensives and a recent study demonstrating a decrease in HSP60 and HSP70 with advancing age, we hypothesized that HSP70 levels would be lower in centenarian offspring compared with controls. The circulating serum concentration of HSP70 in 20 centenarian offspring and 9 spousal controls was analyzed using a modified HSP70 ELISA method. Centenarian offspring showed approximately 10-fold lower levels of circulating serum HSP70 compared with spousal controls (P < .001). The exact biological significance of the extremely low levels of circulating serum HSP70 observed in centenarian offspring thus far is not clear. However, circulating HSP has been shown to correlate in diseases or disorders in which there is destruction or damage to target tissues or organs, including cardiovascular diseases and numerous autoimmune disorders. We hypothesize that low levels of circulating serum HSP70 may be an indicator of a healthy state and point to longevity of the host; therefore, our results suggest that levels of circulating serum HSP70 may be a marker for longevity. PMID:15247074

  14. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  15. Landslides and rock fall processes in the proglacial area of the Gepatsch glacier, Tyrol, Austria - Quantitative assessment of controlling factors and process rates

    NASA Astrophysics Data System (ADS)

    Vehling, Lucas; Rohn, Joachim; Moser, Michael

    2013-04-01

    Due to the rapid deglaciation since 1850, lithological structures and topoclimatic factors, mass movements like rock fall, landslides and complex processes are important contributing factors to sediment transport and modification of the earth's surface in the steep, high mountain catchment of the Gepatsch reservoir. Contemporary geotechnical processes, mass movement deposits, their source areas, and controlling factors like material properties and relief parameters are mapped in the field, on Orthofotos and on digital elevation models. The results are presented in an Arc-Gis based geotechnical map. All mapped mass movements are stored in an Arc-Gis geodatabase and can be queried regarding properties, volume and controlling factors, so that statistical analyses can be conducted. The assessment of rock wall retreat rates is carried out by three different methods in multiple locations, which differ in altitude, exposition, lithology and deglaciation time: Firstly, rock fall processes and rates are investigated in detail on five rock fall collector nets with an overall size of 750 m2. Rock fall particles are gathered, weighed and grain size distribution is detected by sieving and measuring the diameter of the particles to distinct between rock fall processes and magnitudes. Rock wall erosion processes like joint formation and expansions are measured with high temporal resolution by electrical crack meters, together with rock- and air temperature. Secondly, in cooperation with the other working groups in the PROSA project, rock fall volumes are determined with multitemporal terrestrial laserscanning from several locations. Lately, already triggered rock falls are accounted by mapping the volume of the deposit and calculating of the bedrock source area. The deposition time span is fixed by consideration of the late Holocene lateral moraines and analysing historical aerial photographs, so that longer term rock wall retreat rates can be calculated. In order to limit homogenous bedrock sections for calculating specific rock wall retreat rates and to extrapolate the local determinated rock wall retreat rates to larger scale, bedrock areas will be divided into units of similar morphodynamic intensities which will be therefore classified by a rock mass strength (RMS) system. The RMS-System contains lithological and topoclimatic factors but also takes the measured rock wall retreat rates into account.

  16. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  17. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    NASA Astrophysics Data System (ADS)

    1980-08-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  18. Yucca blowup theory bombs, says study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taubes, G.

    The theory was explosive, but in its biggest test yet, it has fizzled. Last year, an unpublished paper circulated at the Los Alamos National Laboratory raised the possibility that the planned nuclear waste repository at Yucca Mountain, Nevada, might erupt in massive nuclear explosions. The scenario, which held that leaking waste could concentrate in the surrounding rock to form a {open_quotes}supercritical mass,{close_quotes} received heavy publicity. But a review released last week by the nuclear engineering department at the University of California, Berkeley, says it is not credible.

  19. Noise Reduction Through Circulation Control

    NASA Technical Reports Server (NTRS)

    Munro, Scott E.; Ahuja, K. K.; Englar, Robert J.

    2005-01-01

    Circulation control technology uses tangential blowing around a rounded trailing edge or a leading edge to change the force and moment characteristics of an aerodynamic body. This technology has been applied to circular cylinders, wings, helicopter rotors, and even to automobiles for improved aerodynamic performance. Only limited research has been conducted on the acoustic of this technology. Since wing flaps contribute to the environmental noise of an aircraft, an alternate blown high lift system without complex mechanical flaps could prove beneficial in reducing the noise of an approaching aircraft. Thus, in this study, a direct comparison of the acoustic characteristics of high lift systems employing a circulation control wing configuration and a conventional wing flapped configuration has been made. These results indicate that acoustically, a circulation control wing high lift system could be considerably more acceptable than a wing with conventional mechanical flaps.

  20. An Active Flow Circulation Controlled Flap Concept for General Aviation Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Viken, Sally A.; Washburn, Anthony E.; Jenkins, Luther N.; Cagle, C. Mark

    2002-01-01

    A recent focus on revolutionary aerodynamic concepts has highlighted the technology needs of general aviation and personal aircraft. New and stringent restrictions on these types of aircraft have placed high demands on aerodynamic performance, noise, and environmental issues. Improved high lift performance of these aircraft can lead to slower takeoff and landing speeds that can be related to reduced noise and crash survivability issues. Circulation Control technologies have been around for 65 years, yet have been avoided due to trade offs of mass flow, pitching moment, perceived noise etc. The need to improve the circulation control technology for general aviation and personal air-vehicle applications is the focus of this paper. This report will describe the development of a 2-D General Aviation Circulation Control (GACC) wing concept that utilizes a pulsed pneumatic flap.

  1. Evidence for brittle deformation events at eclogite-facies P-T conditions (example of the Mt. Emilius klippe, Western Alps)

    NASA Astrophysics Data System (ADS)

    Hertgen, Solenn; Yamato, Philippe; Morales, Luiz F. G.; Angiboust, Samuel

    2017-06-01

    Eclogitic rocks are crucial for the understanding of tectonic processes as they provide key constraints on both the P-T-t evolutions and the deformation modes sustained by rocks in subduction zones. Here we focus on eclogitised and deformed mafic bodies that are exposed within granulites from the continental basement slice of the Mt. Emilius klippe (Western Alps, Italy). These eclogites exhibit highly deformed garnetite and clinopyroxenite layers. In some places, these deformed rocks (up to mylonitic grade) can be found as clasts within meter-thick brecciated fault rocks that formed close to the lawsonite-eclogite facies peak P-T conditions. Garnet-rich layers are dominated by brittle features, whereas deformation within clinopyroxene-rich layers is accommodated by both creep and fracturing. We present a petro-structural study of these eclogites, that allows to track the brittle deformation history associated with chemical evolution. Based on these data, we propose a new tectono-metamorphic model for these rocks, related to the alpine eclogitic stage. This model is consistent with the coexistence of both ductile and brittle features that developed at similar P-T conditions (i.e., at P 2.15-2.40 GPa and T 500-550 °C), and closely associated with fluid circulations. Our study demonstrates that crustal material, buried along the subduction interface at HP-LT conditions, can record several successive brittle events in places where deformation is classically envisioned as ductile. We suggest, based on our observations, that strain-rate increase along plate interface shear zones may trigger fracturing and fluid infiltration which in turn enables brittle-ductile instabilities along these deformation networks.

  2. Geology and hydrocarbon potential of the Hartford-Deerfield Basin, Connecticut and Massachusetts

    USGS Publications Warehouse

    Coleman, James

    2016-01-01

    The Hartford-Deerfield basin, a Late Triassic to Early Jurassic rift basin located in central Connecticut and Massachusetts, is the northernmost basin of the onshore Mesozoic rift basins in the eastern United States. The presence of asphaltic petroleum in outcrops indicates that at least one active petroleum system has existed within the basin. However, to-date oil and gas wells have not been drilled in the basin to test any type of petroleum trap. There are good to excellent quality source rocks (up to 3.8% present day total organic carbon) within the Jurassic East Berlin and Portland formations. While these source rock intervals are fairly extensive and at peak oil to peak gas stages of maturity, individual source rock beds are relatively thin (typically less than 1 m) based solely on outcrop observations. Potential reservoir rocks within the Hartford-Deerfield basin are arkosic conglomerates, pebbly sandstones, and finer grained sandstones, shales, siltstones, and fractured igneous rocks of the Triassic New Haven and Jurassic East Berlin and Portland formations (and possibly other units). Sandstone porosity data from 75 samples range from less than 1% to 21%, with a mean of 5%. Permeability is equally low, except around joints, fractures, and faults. Seals are likely to be unfractured intra-formational shales and tight igneous bodies. Maturation, generation, and expulsion likely occurred during the late synrift period (Early Jurassic) accentuated by an increase in local geothermal gradient, igneous intrusions, and hydrothermal fluid circulation. Migration pathways were likely along syn- and postrift faults and fracture zones. Petroleum resources, if present, are probably unconventional (continuous) accumulations as conventionally accumulated petroleum is likely not present in significant volumes.

  3. Earth Observations taken by the Expedition 16 Crew

    NASA Image and Video Library

    2008-03-05

    ISS016-E-031056 (3 March 2008) --- Cananea Copper Mine, Sonora, Mexico is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. One of the largest open-pit copper mines in the world, the Cananea mine produced over 164,000 tons of copper in 2006. The mine is located approximately 40 kilometers south of the border between the USA (Arizona) and Mexico (Sonora). Copper and gold ores at Cananea are found in a porphyry copper deposit, a geological structure formed by crystal-rich magma moving upwards through pre-existing rock layers. A porphyry - an igneous rock with large crystals in a fine-grained matrix -- is formed as the magma cools and crystallizes. While crystallization is occurring, hot fluids can circulate through the magma and surrounding rocks via fractures. This hydrothermal alteration of the rocks typically forms copper-bearing and other minerals. Much of the Cananea mine's ore is concentrated in breccia pipes -- mineralized rod or chimney-shaped bodies that contain broken rock fragments. The active, two-kilometers-in-diameter Colorada Pit (top right) is recognizable in this image by the concentric steps or benches cut around its perimeter. These benches allow for access into the pit for extraction of ore and waste materials. Water (black) is visible filling the bottom of the pit, and several other basins in the surrounding area. The city of Cananea -- marked by its street grid -- is located to the northeast of the mine workings. A leachate reservoir is located to the east of the mine (lower left) for removal and evaporation of water pumped from the mine workings -- the bluish-white coloration of deposits near the reservoir suggests the high mineral content of the leachate. A worker strike halted mine operations in 2007.

  4. Use of heat as a groundwater tracer in fractured rock hydrology

    NASA Astrophysics Data System (ADS)

    Bour, Olivier; Le Borgne, Tanguy; Klepikova, Maria V.; Read, Tom; Selker, John S.; Bense, Victor F.; Le Lay, Hugo; Hochreutener, Rebecca; Lavenant, Nicolas

    2015-04-01

    Crystalline rocks aquifers are often difficult to characterize since flows are mainly localized in few fractures. In particular, the geometry and the connections of the main flow paths are often only partly constrained with classical hydraulic tests. Here, we show through few examples how heat can be used to characterize groundwater flows in fractured rocks at the borehole, inter-borehole and watershed scale. Estimating flows from temperature measurements requires heat advection to be the dominant process of heat transport, but this condition is generally met in fractured rock at least within the few structures where flow is highly channelized. At the borehole scale, groundwater temperature variations with depth can be used to locate permeable fractures and to estimates borehole flows. Measurements can be done with classical multi-parameters probes, but also with recent technologies such as Fiber Optic Distributed Temperature Sensing (FO-DTS) which allows to measure temperature over long distances with an excellent spatial and temporal resolution. In addition, we show how a distributed borehole flowmeter can be achieved using an armored fiber-optic cable and measuring the difference in temperature between a heated and unheated cable that is a function of the fluid velocity. At the inter-borehole scale, temperature changes during cross-borehole hydraulic tests allow to identify the connections and the hydraulic properties of the main flow paths between boreholes. At the aquifer scale, groundwater temperature may be monitored to record temperature changes and estimate groundwater origin. In the example chosen, the main water supply comes from a depth of at least 300 meters through relatively deep groundwater circulation within a major permeable fault zone. The influence of groundwater extraction is clearly identified through groundwater temperature monitoring. These examples illustrate the advantages and limitations of using heat and groundwater temperature measurements for fractured rock hydrology.

  5. Influence of voluntary control of masticatory side and rhythm on cerebral hemodynamics.

    PubMed

    Hasegawa, Yoko; Ono, Takahiro; Sakagami, Joe; Hori, Kazuhiro; Maeda, Yoshinobu; Hamasaki, Toshimitsu; Nokubi, Takashi

    2011-02-01

    The aim of this study was to investigate the influence on cerebral hemodynamics of voluntary control of masticatory side and rhythm during gum chewing. Blood flow velocity in the middle cerebral artery was measured using transcranial Doppler ultrasonography to evaluate cerebral circulation in healthy volunteers. Heart rate and masseter muscle activity were recorded simultaneously. Volunteers performed three tasks: (1) free gum chewing, (2) gum chewing in which mastication was limited to the right side, and (3) gum chewing in which mastication was limited to the right side and rhythm was set at 1.0 Hz. Changes in cerebral circulation during pre-task, on-task, and post-task periods were analyzed using random effects model, and differences in cerebral circulation and muscle activity between tasks were analyzed using the Friedman test. In all tasks, on-task cerebral circulation was greater than pre-task. Muscle activity and masticatory rhythm varied between tasks, whereas the rate of increase in cerebral circulation did not differ significantly among tasks. These results suggest that cerebral circulation is activated during gum chewing, irrespective of voluntary control of masticatory side and rhythm.

  6. Microstructural controls on the macroscopic behavior of geo-architected rock samples

    NASA Astrophysics Data System (ADS)

    Mitchell, C. A.; Pyrak-Nolte, L. J.

    2017-12-01

    Reservoir caprocks, are known to span a range of mechanical behavior from elastic granitic units to visco-elastic shale units. Whether a rock will behave elastically, visco-elastically or plastically depends on both the compositional and textural or microsctructural components of the rock, and how these components are spatially distributed. In this study, geo-architected caprock fabrication was performed to develop synthetic rock to study the role of rock rheology on fracture deformations, fluid flow and geochemical alterations. Samples were geo-architected with Portland Type II cement, Ottawa sand, and different clays (kaolinite, illite, and Montmorillonite). The relative percentages of these mineral components are manipulated to generate different rock types. With set protocols, the mineralogical content, texture, and certain structural aspects of the rock were controlled. These protocols ensure that identical samples with the same morphological and mechanical characteristics are constructed, thus overcoming issues that may arise in the presence of heterogeneity and high anisotropy from natural rock samples. Several types of homogeneous geo-architected rock samples were created, and in some cases the methods were varied to manipulate the physical parameters of the rocks. Characterization of rocks that the samples exhibit good repeatability. Rocks with the same mineralogical content generally yielded similar compressional and shear wave velocities, UCS and densities. Geo-architected rocks with 10% clay in the matrix had lower moisture content and effective porosities than rocks with no clay. The process by which clay is added to the matrix can strongly affect the resulting compressive strength and physical properties of the geo-architected sample. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  7. Forensic analysis of rockfall scars

    NASA Astrophysics Data System (ADS)

    de Vilder, Saskia J.; Rosser, Nick J.; Brain, Matthew J.

    2017-10-01

    We characterise and analyse the detachment (scar) surfaces of rockfalls to understand the mechanisms that underpin their failure. Rockfall scars are variously weathered and comprised of both discontinuity release surfaces and surfaces indicative of fracturing through zones of previously intact rock, known as rock bridges. The presence of rock bridges and pre-existing discontinuities is challenging to quantify due to the difficulty in determining discontinuity persistence below the surface of a rock slope. Rock bridges form an important control in holding blocks onto rockslopes, with their frequency, extent and location commonly modelled from the surface exposure of daylighting discontinuities. We explore an alternative approach to assessing their role, by characterising failure scars. We analyse a database of multiple rockfall scar surfaces detailing the areal extent, shape, and location of broken rock bridges and weathered surfaces. Terrestrial laser scanning and gigapixel imagery were combined to record the detailed texture and surface morphology. From this, scar surfaces were mapped via automated classification based on RGB pixel values. Our analysis of the resulting data from scars on the North Yorkshire coast (UK) indicates a wide variation in both weathering and rock bridge properties, controlled by lithology and associated rock mass structure. Importantly, the proportion of rock bridges in a rockfall failure surface does not increase with failure size. Rather larger failures display fracturing through multiple rock bridges, and in contrast smaller failures fracture occurs only through a single critical rock bridge. This holds implications for how failure mechanisms change with rockfall size and shape. Additionally, the location of rock bridges with respect to the geometry of an incipient rockfall is shown to determine failure mode. Weathering can occur both along discontinuity surfaces and previously broken rock bridges, indicating the sequential stages of progressively detaching rockfall. Our findings have wider implications for hazard assessment where rock slope stability is dependent on the nature of rock bridges, how this is accounted for in slope stability modelling, and the implications of rock bridges on long-term rock slope evolution.

  8. Wing rock suppression using forebody vortex control

    NASA Technical Reports Server (NTRS)

    Ng, T. T.; Ong, L. Y.; Suarez, C. J.; Malcolm, G. N.

    1991-01-01

    Static and free-to-roll tests were conducted in a water tunnel with a configuration that consisted of a highly-slender forebody and 78-deg sweep delta wings. Flow visualization was performed and the roll angle histories were obtained. The fluid mechanisms governing the wing rock of this configuration were identified. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetries had to be induced at the same time. On the other hand, alternating pulsed blowing on the left and right sides of the forebody was demonstrated to be potentially an effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  9. Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, Northern Carlin Trend, Nevada

    USGS Publications Warehouse

    Emsbo, P.; Hofstra, A.H.; Lauha, E.A.; Griffin, G.L.; Hutchinson, R.W.

    2003-01-01

    The Meikle mine exploits one of the world's highest grade Carlin-type gold deposits with reserves of ca. 220 t gold at an average grade of 24.7 g/t. Locally, gold grades exceed 400 g/t. Several geologic events converged at Meikle to create these spectacular gold grades. Prior to mineralization, a Devonian hydrothermal system altered the Bootstrap limestone to Fe-rich dolomite. Subsequently the rocks were brecciated by faulting and Late Jurassic intrusive activity. The resulting permeability focused flow of late Eocene Carlin-type ore fluids and allowed them to react with the Fe-rich dolomite. Fluid inclusion data and mineral assemblages indicate that these fluids were hot (ca. 220??C),of moderate salinity (400 g/t. Petrographic observations, geochemical data, and stable isotope results from the Meikle mine and other deposits at the Goldstrike mine place important constraints on genetic models for Meikle and other Carlin-type gold deposits on the northern Carlin trend. The ore fluids were meteoric water (??D = -135???, ??18O = -5???) that interacted with sedimentary rocks at a water/rock ratio of ca. 1 and temperatures of ca. 220??C. The absence of significant silicification suggests that there was little cooling of the ore fluids during mineralization. These two observations strongly suggest that ore fluids were not derived from deep sources but instead flowed parallel to isotherms. The gold was transported by H2S (??34S = 9???), which was derived from Paleozoic sedimentary rocks. The presence of auriferous sedimentary exhalative mineralization in the local stratigraphic sequence raises the possibility that preexisting concentrations of gold contributed to the Carlin-type deposits. Taken together our observations suggest that meteoric water evolved to become an ore fluid by shallow circulation through previously gold- and sulfur-enriched rocks. Carlin-type gold deposits formed where these fluids encountered permeable, reactive Fe-rich rocks.

  10. [The present and future state of minimized extracorporeal circulation].

    PubMed

    Meng, Fan; Yang, Ming

    2013-05-01

    Minimized extracorporeal circulation improved in the postoperative side effects of conventional extracorporeal circulation is a kind of new extracorporeal circulation. This paper introduces the principle, characteristics, applications and related research of minimized extracorporeal circulation. For the problems of systemic inflammatory response syndrome and limited assist time, the article proposes three development direction including system miniaturization and integration, pulsatile blood pump and the adaptive control by human parameter identification.

  11. The relationship between magnetic anisotropy, rock-strength anisotropy and vein emplacement in gold-bearing metabasalts of Gadag (South India)

    NASA Astrophysics Data System (ADS)

    Vishnu, C. S.; Lahiri, Sivaji; Mamtani, Manish A.

    2018-01-01

    In this study the importance of rock strength and its anisotropy in controlling vein emplacement is evaluated by integrating anisotropy of magnetic susceptibility (AMS) with rock mechanics data from massive (visibly isotropic) metabasalts of Gadag region (Dharwar Craton, South India). Orientation of magnetic foliation (MF) is first recognized from AMS. Subsequently, rock mechanics tests viz. ultrasonic P-wave velocity (Vp), uniaxial compressive strength (UCS) and point load strength (Is(50)) are done in cores extracted parallel and perpendicular to MF. Vp is found to be higher in direction parallel to MF than perpendicular to it. In contrast rock strength (UCS and Is(50)) is greater in direction perpendicular to MF, than parallel to it. This proves that rocks from the gold mineralized belt of Gadag have rock strength anisotropy. Orientation of MF in Gadag region is NW-SE, which is also the mean orientation of quartz veins. Previous studies indicate that emplacement of veins in the region took place during regional D3 (NW-SE shortening). Based on the present study, it is concluded that vein emplacement took place in NW-SE orientation because the rocks have strength anisotropy and are weaker in this direction (orientation of MF), which dilated to accommodate fluid flow. In addition, vein intensities are measured along three traverses and found to be variable. It is argued that since mineralization is favoured when the system gets saturated with fluid, variation in fluid flow could not have been responsible for variation in vein intensities in the study area. Since the rock strength of the different blocks investigated here is not uniform, it is envisaged that variation in rock strength played an important role in controlling the vein intensities. It is concluded that rock strength variation controlled strain partitioning and channelized fluid flow thus influencing vein emplacement and mineralization and formation of lodes.

  12. Shape Memory Alloy Rock Splitters (SMARS) - A Non-Explosive Method for Fracturing Planetary Rocklike Materials and Minerals

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane; Noebe, Ronald D.; Halsmer, Timothy J.

    2015-01-01

    A static rock splitter device based on high-force, high-temperature shape memory alloys (HTSMAs) was developed for space related applications requiring controlled geologic excavation in planetary bodies such as the Moon, Mars, and near-Earth asteroids. The device, hereafter referred to as the shape memory alloy rock splitter (SMARS), consisted of active (expanding) elements made of Ni50.3Ti29.7Hf20 (at.%) that generate extremely large forces in response to thermal input. The preshaping (training) of these elements was accomplished using isothermal, isobaric and cyclic training methods, which resulted in active components capable of generating stresses in excess of 1.5 GPa. The corresponding strains (or displacements) were also evaluated and were found to be 2 to 3 percent, essential to rock fracturing and/or splitting when placed in a borehole. SMARS performance was evaluated using a test bed consisting of a temperature controller, custom heaters and heater holders, and an enclosure for rock placement and breakage. The SMARS system was evaluated using various rock types including igneous rocks (e.g., basalt, quartz, granite) and sedimentary rocks (e.g., sandstone, limestone).

  13. The computation of the post-stall behavior of a circulation controlled airfoil

    NASA Technical Reports Server (NTRS)

    Linton, Samuel W.

    1993-01-01

    The physics of the circulation controlled airfoil is complex and poorly understood, particularly with regards to jet stall, which is the eventual breakdown of lift augmentation by the jet at some sufficiently high blowing rate. The present paper describes the numerical simulation of stalled and unstalled flows over a two-dimensional circulation controlled airfoil using a fully implicit Navier-Stokes code, and the comparison with experimental results. Mach numbers of 0.3 and 0.5 and jet total to freestream pressure ratios of 1.4 and 1.8 are investigated. The Baldwin-Lomax and k-epsilon turbulence models are used, each modified to include the effect of strong streamline curvature. The numerical solutions of the post-stall circulation controlled airfoil show a highly regular unsteady periodic flowfield. This is the result of an alternation between adverse pressure gradient and shock induced separation of the boundary layer on the airfoil trailing edge.

  14. Water flow in fractured rock masses: numerical modeling for tunnel inflow assessment

    NASA Astrophysics Data System (ADS)

    Gattinoni, P.; Scesi, L.; Terrana, S.

    2009-04-01

    Water circulation in rocks represents a very important element to solve many problems linked with civil, environmental and mining engineering. In particular, the interaction of tunnelling with groundwater has become a very relevant problem not only due to the need to safeguard water resources from impoverishment and from the pollution risk, but also to guarantee the safety of workers and to assure the efficiency of the tunnel drainage systems. The evaluation of the hydrogeological risk linked to the underground excavation is very complex, either for the large number of variables involved or for the lack of data available during the planning stage. The study is aimed to quantify the influence of some geo-structural parameters (i.e. discontinuities dip and dip direction) on the tunnel drainage process, comparing the traditional analytical method to the modeling approach, with specific reference to the case of anisotropic rock masses. To forecast the tunnel inflows, a few Authors suggest analytic formulations (Goodman et al., 1965; Knutsson et al., 1996; Ribacchi et al., 2002; Park et al., 2008; Perrochet et al., 2007; Cesano et al., 2003; Hwang et al., 2007), valid for infinite, homogeneous and isotropic aquifer, in which the permeability value is given as a modulus of equivalent hydraulic conductivity Keq. On the contrary, in discontinuous rock masses the water flow is strongly controlled by joints orientation, by their hydraulic characteristics and by rocks fracturing conditions. The analytic equations found in the technical literature could be very useful, but often they don't reflect the real phenomena of the tunnel inflow in rock masses. Actually, these equations are based on the hypothesis of homogeneous aquifer, and then they don't give good agreement for an heterogeneous fractured medium. In this latter case, the numerical modelling could provide the best results, but only with a detailed conceptual model of the water circulation, high costs and long simulation times. Therefore, the integration of analytic method and numerical modeling is very important to adapt the analytic formula to the specific hydrogeological structure. The study was carried out through a parametrical modeling, so that groundwater flow was simulated with the DEM Model UDEC 2D, considering different geometrical (tunnel depth and radius) and hydrogeological settings (piezometrical). The influence of geo-structural setting (as dip and dip direction of discontinuities, with reference to their permeability) on tunnel drainage process was quantified. The simulations are aimed to create a sufficient data set of tunnel inflows, in different geological-structural setting, enabling a quantitative comparison between numerical and the well-known analytic formulas (i.e. Goodman and El Tani equations). Results of this comparison point out the following aspects: - the geological-structural setting critical for hydrogeological risk in tunnel corresponds to joints having low dip (close to 0°) that favour the drainage processes and the increasing of the tunnel inflow; - the rock mass anisotropy strongly influences both the tunnel inflow and the water table drawdown; - the reliability of analytic formulas for the tunnel inflow assessment in discontinuous rock masses depends on the geostractural setting; actually the analytic formulas overestimate the tunnel inflow and this overestimation is bigger for geostructural setting having discontinuities with higher dips. Finally, using the results of parametrical modeling, the previous cited analytic formulas were corrected to point out an empirical equation that gives the tunnel inflow as a function of the different geological-structural setting, with particular regard to: - the horizontal component of discontinuities, - the hydraulic conductivity anisotropy ratio, - the orientation of the hydraulic conductivity tensor. The obtained empirical equation allows a first evaluation of the tunnel inflow, in which joint characteristics are taken into account, very useful to identify the areas where in-depth studies are required. References Cesano D., Bagtzoglou A.C., Olofsson B. (2003). Quantifying fractured rock hydraulic heterogeneity and groundwater inflow prediction in underground excavations: the heterogeneity index. Tunneling and Underground Space Technology, 18, pp. 19-34. El Tani M. (2003). Circular tunnel in a semi-infinite aquifer. Tunnelling and Groundwater Space Technology, 18, pp. 49-55. Goodman R.E., Moye D.G., Van Schalkwyk A., Javandel I. (1965). Ground water inflow during tunnel driving. Eng. Geol., 2, pp. 39-56. Hwang J-H., Lu C-C. (2007). A semi-analytical method for analyzing the tunnel water inflow. Tunneling and Underground Space Technology, 22, pp. 39-46. Itasca (2001). UDEC, User's guide. Itasca Consultino Group Inc., Minneapolis, Minnesota. Knutsson G., Olofsson B., Cesano D. (1996). Prognosis of groundwater inflows and drawdown due to the construction of rock tunnels in heterogeneous media. Res. Proj. Rep. Kungl Tekniska, Stokholm. Park K-H., Owatsiriwong A., Lee G-G. (2008). Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer: a revisit. Tunnelling and Underground Space Technology, 23, pp. 206-209. Perrochet P., Dematteis A. (2007). Modelling Transient Discharge into a Tunnel Drilled in Heterogeneous Formation. Ground Water, 45(6), pp. 786-790.

  15. Targeting the RhoA-ROCK pathway to reverse T-cell dysfunction in SLE.

    PubMed

    Rozo, Cristina; Chinenov, Yurii; Maharaj, Reena Khianey; Gupta, Sanjay; Leuenberger, Laura; Kirou, Kyriakos A; Bykerk, Vivian P; Goodman, Susan M; Salmon, Jane E; Pernis, Alessandra B

    2017-04-01

    Deregulated production of interleukin (IL)-17 and IL-21 contributes to the pathogenesis of autoimmune disorders such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Production of IL-17 and IL-21 can be regulated by ROCK2, one of the two Rho kinases. Increased ROCK activation was previously observed in an SLE cohort. Here, we evaluated ROCK activity in a new SLE cohort, and an RA cohort, and assessed the ability of distinct inhibitors of the ROCK pathway to suppress production of IL-17 and IL-21 by SLE T cells or human Th17 cells. ROCK activity in peripheral blood mononuclear cells (PBMCs) from 29 patients with SLE, 31 patients with RA and 28 healthy controls was determined by ELISA. SLE T cells or in vitro-differentiated Th17 cells were treated with Y27632 (a pan-ROCK inhibitor), KD025 (a selective ROCK2 inhibitor) or simvastatin (which inhibits RhoA, a major ROCK activator). ROCK activity and IL-17 and IL-21 production were assessed. The transcriptional profile altered by ROCK inhibitors was evaluated by NanoString technology. ROCK activity levels were significantly higher in patients with SLE and RA than healthy controls. Th17 cells exhibited high ROCK activity that was inhibited by Y27632, KD025 or simvastatin; each also decreased IL-17 and IL-21 production by purified SLE T cells or Th17 cells. Immune profiling revealed both overlapping and distinct effects of the different ROCK inhibitors. ROCK activity is elevated in PBMCs from patients with SLE and RA. Production of IL-17 and IL-21 by SLE T cells or Th17 cells can furthermore be inhibited by targeting the RhoA-ROCK pathway via both non-selective and selective approaches. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Prediction of circulation control performance characteristics for Super STOL and STOL applications

    NASA Astrophysics Data System (ADS)

    Naqvi, Messam Abbas

    The rapid air travel growth during the last three decades, has resulted in runway congestion at major airports. The current airports infrastructure will not be able to support the rapid growth trends expected in the next decade. Changes or upgrades in infrastructure alone would not be able to satisfy the growth requirements, and new airplane concepts such as the NASA proposed Super Short Takeoff and Landing and Extremely Short Takeoff & Landing (ESTOL) are being vigorously pursued. Aircraft noise pollution during Takeoff & Landing is another serious concern and efforts are aimed to reduce the airframe noise produced by Conventional High Lift Devices during Takeoff & Landing. Circulation control technology has the prospect of being a good alternative to resolve both the aforesaid issues. Circulation control airfoils are not only capable of producing very high values of lift (Cl values in excess of 8.0) at zero degree angle of attack, but also eliminate the noise generated by the conventional high lift devices and their associated weight penalty as well as their complex operation and storage. This will ensure not only satisfying the small takeoff and landing distances, but minimal acoustic signature in accordance with FAA requirements. The Circulation Control relies on the tendency of an emanating wall jet to independently control the circulation and lift on an airfoil. Unlike, conventional airfoil where rear stagnation point is located at the sharp trailing edge, circulation control airfoils possess a round trailing edge, therefore the rear stagnation point is free to move. The location of rear stagnation point is controlled by the blown jet momentum. This provides a secondary control in the form of jet momentum with which the lift generated can be controlled rather the only available control of incidence (angle of attack) in case of conventional airfoils. The use of Circulation control despite its promising potential has been limited only to research applications due to the lack of a simple prediction capability. This research effort was focused on the creation of a rapid prediction capability of Circulation Control Aerodynamic Characteristics which could help designers with rapid performance estimates for design space exploration. A morphological matrix was created with the available set of options which could be chosen to create this prediction capability starting with purely analytical physics based modeling to high fidelity CFD codes. Based on the available constraints, and desired accuracy meta-models have been created around the two dimensional circulation control performance results computed using Navier Stokes Equations (Computational Fluid Dynamics). DSS2, a two dimensional RANS code written by Professor Lakshmi Sankar was utilized for circulation control airfoil characteristics. The CFD code was first applied to the NCCR 1510-7607N airfoil to validate the model with available experimental results. It was then applied to compute the results of a fractional factorial design of experiments array. Metamodels were formulated using the neural networks to the results obtained from the Design of Experiments. Additional validation runs were performed to validate the model predictions. Metamodels are not only capable of rapid performance prediction, but also help generate the relation trends of response matrices with control variables and capture the complex interactions between control variables. Quantitative as well as qualitative assessments of results were performed by computation of aerodynamic forces & moments and flow field visualizations. Wing characteristics in three dimensions were obtained by integration over the whole wing using Prandtl's Wing Theory. The baseline Super STOL configuration [3] was then analyzed with the application of circulation control technology. The desired values of lift and drag to achieve the target values of Takeoff & Landing performance were compared with the optimal configurations obtained by the model. The same optimal configurations were then subjected to Super STOL cruise conditions to perform a trade off analysis between Takeoff and Cruise Performance. Supercritical airfoils modified for circulation control were also thoroughly analyzed for Takeoff and Cruise performance and may constitute a viable option for Super STOL & STOL Designs. The prediction capability produced by this research effort can be integrated with the current conceptual aircraft modeling & simulation framework. The prediction tool is applicable within the selected ranges of each variable, but methodology and formulation scheme adopted can be applied to any other design space exploration.

  17. Seismicity preliminary results in a geothermal and volcano activity area: study case Liquiñe-Ofqui fault system in Southern Andes, Chile

    NASA Astrophysics Data System (ADS)

    Estay, N. P.; Yáñez Morroni, G.; Crempien, J. G. F.; Roquer, T.

    2017-12-01

    Fluid transport through the crust takes place in domains with high permeability. For this reason, fault damage zones are a main feature where fluids may circulate unimpeded, since they have much larger permeability than normal country rocks. With the location of earthquakes, it is possible to infer fault geometry and stress field of the crust, therefore we can determine potential places where fluid circualtion is taking place. With that purpose, we installed a seismic network in an active volcanic-geothermal system, the Liquiñe-Ofqui Fault System (LOFS), located in Puyuhuapi, Southern Andes (44°-45°S). This allowed to link epicentral seismicity, focal mechanisms and surface expression of fluid circulation (hot-springs and volcanos). The LOFS is composed by two NS-striking dextral master faults, and several secondary NE-striking dextral and normal faults. Surface manifestation of fluid circulation in Puyuhuapi area are: 1) six hot-springs, most of them spatially associated with different mapped faults; 2) seven minor eruptive centers aligned over a 10-km-along one of the master NS-striking fault, and; 3) the Melimouyu strato-volcano without any spatial relationship with mapped faults. The network consists of 6 short period seismometers (S31f-2.0a sensor of IESE, with natural frequency of 2Hz), that were installed between July 2016 and August 2017; also 4 permanent broad-band seismometers (Guralp 6TD/ CD 24 sensor) which belong to the Volcano Observatory of Southern Andes (OVDAS). Preliminary results show a correlation between seismicity and surface manifestation of fluid circulation. Seismicity has a heterogeneous distribution: most of the earthquake are concentrated is the master NS-striking fault with fluid circulation manifestations; however along the segments without surface manifestation of fluids do not have seismicity. These results suggest that fluid circulation mostly occur in areas with high seismicity, and thus, the increment in fluid pressure enhances fracturing and earthquake production.

  18. Catastrophe theory—one of the basic components in the analysis of the seismic response of rock mass to explosions

    NASA Astrophysics Data System (ADS)

    Khachay, OA; Khachay, OYu

    2018-03-01

    It is shown that the dynamic process of mining can be controlled using the catastrophe theory. The control parameters can be values of blasting energy and locations of explosions relative to an area under study or operation. The kinematic and dynamic parameters of the deformation waves, as well as the structural features of rock mass through which these waves pass act as internal parameters. The use of the analysis methods for short-term and medium-term forecast of rock mass condition with the control parameters only is insufficient in the presence of sharp heterogeneity. However, the joint use of qualitative recommendations of the catastrophe theory and spatial–temporal data of changes in the internal parameters of rock mass will allow accident prevention in the course of mining.

  19. Origin of the Okrouhlá Radouň episyenite-hosted uranium deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope constraints

    NASA Astrophysics Data System (ADS)

    Dolníček, Zdeněk; René, Miloš; Hermannová, Sylvie; Prochaska, Walter

    2014-04-01

    The Okrouhlá Radouň shear zone hosted uranium deposit is developed along the contact of Variscan granites and high-grade metasedimentary rocks of the Moldanubian Zone of the Bohemian Massif. The pre-ore pervasive alteration of wall rocks is characterized by chloritization of mafic minerals, followed by albitization of feldspars and dissolution of quartz giving rise to episyenites. The subsequent fluid circulation led to precipitation of disseminated uraninite and coffinite, and later on, post-ore quartz and carbonate mineralization containing base metal sulfides. The fluid inclusion and stable isotope data suggest low homogenization temperatures (˜50-140 °C during pre-ore albitization and post-ore carbonatization, up to 230 °C during pre-ore chloritization), variable fluid salinities (0-25 wt.% NaCl eq.), low fluid δ18O values (-10 to +2 ‰ V-SMOW), low fluid δ13C values (-9 to -15 ‰ V-PDB), and highly variable ionic composition of the aqueous fluids (especially Na/Ca, Br/Cl, I/Cl, SO4/Cl, NO3/Cl ratios). The available data suggest participation of three fluid endmembers of primarily surficial origin during alteration and mineralization at the deposit: (1) local meteoric water, (2) Na-Ca-Cl basinal brines or shield brines, (3) SO4-NO3-Cl-(H)CO3 playa-like fluids. Pre-ore albitization was caused by circulation of alkaline, oxidized, and Na-rich playa fluids, whereas basinal/shield brines and meteoric water were more important during the post-ore stage of alteration.

  20. Measurement of Circulating Cytokines and Immune-Activation Markers by Multiplex Technology in the Clinical Setting: What Are We Really Measuring?

    PubMed

    Aziz, Najib

    2015-01-01

    Measurement of circulating cytokine levels can provide important information in the study of the pathogenesis of disease. John L. Fahey was a pioneer in the measurement of circulating cytokines and immune-activation markers and a leader in the quality assessment/control of assays for measurement of circulating cytokines. Insights into the measurement of circulating cytokines, including consideration of multiplex assays, are presented here.

  1. Could circulating fetuin A be a biomarker of aortic valve stenosis?

    PubMed

    Di Minno, Alessandro; Zanobini, Marco; Myasoedova, Veronika A; Valerio, Vincenza; Songia, Paola; Saccocci, Matteo; Di Minno, Matteo Nicola Dario; Tremoli, Elena; Poggio, Paolo

    2017-12-15

    Aortic valve stenosis (AVS) is a multifactorial-progressive pathological process. In the past decades, many studies have focus their attention on circulating biomarkers able to identify AVS and/or to predict its progression. One of the many biomarkers studied is the fetuin A. The aim of the present meta-analysis was to evaluate the correlation between fetuin A levels and end-stage AVS. A systematic search was performed in three electronic databases (PubMed, Web of Science and Scopus), looking for studies that compared control subjects with AVS patients and that have measured fetuin A circulating levels in both groups. The main outcome was to evaluate the difference in circulating fetuin A concentration in the two groups. Seven studies, enrolling 2283 AVS patients and 1549 controls, were included. Differences between control subjects and AVS patients were expressed as standardized mean difference (SMD) with pertinent 95% confidence intervals (95%CI) and standard deviation (SD), analysing the data using a random effect model. We found significantly lower circulating levels of fetuin A in AVS patients compared to healthy subjects (SMD: -0.96μg/mL, 95% CI: -1.62, -0.30; p=0.004). In addition, meta-regression analyses showed that several cardiovascular risk factors were significantly associated with circulating levels of fetuin A between patients affected by AVS and healthy controls. In conclusion, our meta-analysis shows that AVS patients have significant lower circulating levels of fetuin A compared to control subjects. However, dedicated studies with large and matched cohorts are needed to validate these findings, evaluating if there is a real link or just a mere association. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Elevated circulating IGF-I promotes mammary gland development and proliferation.

    PubMed

    Cannata, Dara; Lann, Danielle; Wu, Yingjie; Elis, Sebastien; Sun, Hui; Yakar, Shoshana; Lazzarino, Deborah A; Wood, Teresa L; Leroith, Derek

    2010-12-01

    Animal studies have shown that IGF-I is essential for mammary gland development. Previous studies have suggested that local IGF-I rather than circulating IGF-I is the major mediator of mammary gland development. In the present study we used the hepatic IGF-I transgenic (HIT) and IGF-I knockout/HIT (KO-HIT) mouse models to examine the effects of enhanced circulating IGF-I on mammary development in the presence and absence of local IGF-I. HIT mice express the rat IGF-I transgene under the transthyretin promoter in the liver and have elevated circulating IGF-I and normal tissue IGF-I levels. The KO-HIT mice have no tissue IGF-I and increased circulating IGF-I. Analysis of mammary gland development reveals a greater degree of complexity in HIT mice as compared to control and KO-HIT mice, which demonstrate similar degrees of mammary gland complexity. Immunohistochemical evaluation of glands of HIT mice also suggests an enhanced degree of proliferation of the mammary gland, whereas KO-HIT mice exhibit mammary gland proliferation similar to control mice. In addition, HIT mice have a higher percentage of proliferating myoepithelial and luminal cells than control mice, whereas KO-HIT mice have an equivalent percentage of proliferating myoepithelial and luminal cells as control mice. Thus, our findings show that elevated circulating IGF-I levels are sufficient to promote normal pubertal mammary epithelial development. However, HIT mice demonstrate more pronounced mammary gland development when compared to control and KO-HIT mice. This suggests that both local and endocrine IGF-I play roles in mammary gland development and that elevated circulating IGF-I accelerates mammary epithelial proliferation.

  3. Low-temperature water-rock interactions in bedrock aquifers of southern Rhode Island: Results of laboratory simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veeger, A.I.; Moulton, K.L.

    1993-03-01

    The nature of low-temperature chemical reactions occurring in bedrock aquifers of southern Rhode Island was investigated in the laboratory using flow-through columns. Crushed samples of Narragansett Pier Granite (NPG), Scituate Granite Gneiss (SGG), Hope Valley Alaskite Gneiss (HVAG) and Ten Rod Granite Gneiss (TRGG) were placed in flow-through columns. Water was circulated through the columns at a 3 ml/min and maintained at 25 C and at equilibrium with atmospheric carbon dioxide. Samples were collected from the columns at increasing time intervals and were analyzed for pH, conductivity, major cations and anions, and silica. The leachate compositions show that distinctive chemicalmore » differences can be expected in ground water that flows through each of these different rock types. Chemical modeling of the leachate solutions shows that reactions involving plagioclase feldspar (albiteoligoclase), reactive accessory minerals such as sphene, and, to a lesser degree, potassium feldspar and biotite, dominate the solution chemistry, with amorphous oxides and aluminosilicates formed as products of the weathering reactions. Small concentrations of reactive minerals may profoundly affect the composition of the leachate. Batch experiments using mineral separates revealed that the calcium in the NPG leachate was almost entirely attributable to sphene which comprises less than 1% of the rock.« less

  4. Paleomagnetism of sedimentary cores from the Ross Sea outer shelf and continental slope (PNRA-ROSSLOPE II Project)

    NASA Astrophysics Data System (ADS)

    Macrì, Patrizia; Sagnotti, Leonardo; Caricchi, Chiara; Colizza, Ester

    2016-04-01

    We carried out a paleomagnetic and rock magnetic study of 4 gravity cores sampled in the Ross Sea continental slope of the area to the east of Pennell-Iselin banks. The cores (RS14-C1, C2, C3 and ANTA99-C20) consist of hemipelagic fine-grained (silty-clays) sediments with an IRD component. Rock magnetic and paleomagnetic measurements were carried out at 1-cm spacing on u-channel samples. The data indicate that the cored sediments carry a well-defined characteristic remanent magnetization (ChRM) and have a valuable potential to reconstruct dynamics and amplitude of the geomagnetic field variation at high southern latitudes (ca. 75°S) during the Holocene and the late Pleistocene. The paleomagnetic and rock magnetic data are integrated in a multidisciplinary context which includes previous geological, geophysical, oceanographic and morpho-bathimetric data obtained in the same area in the frame of the PNRA/ROSSLOPE (Past and present sedimentary dynamic in the ROSS Sea: a multidisciplinary approach to study the continental slope) Project. The main aim of the project is to investigate the relation between present and past water mass circulation and to provide a basis for paleoceanographic reconstructions and for the development of a depositional model of the modern processes active along the continental slope.

  5. Prospects for the commercial development of hot dry rock geothermal energy in New Mexico

    NASA Astrophysics Data System (ADS)

    Duchane, D. V.; Goff, F.

    A vast store of energy is available to the world in the form of hot dry rock (HDR) which exists almost everywhere beneath the surface of the earth. The Los Alamos National Laboratory has developed technology to mine the heat from HDR by using techniques developed in the petroleum industry. In practice, an artificial reservoir is created in the hot rock and water is circulated through the reservoir to extract the thermal energy and bring it to the surface. There are virtually no adverse environmental effects from an HDR plant when the system is operated in a closed-loop mode with the process water continually recirculated. An experimental plant at Fenton Hill, NM is now undergoing long-term testing to demonstrate that energy can be obtained from HDR on a sustained basis with operational procedures which are readily adaptable to industry. Significant HDR resources exist in the state of New Mexico. Resources in the Valles Caldera, Zuni Uplift, and Rio Grande Rift have been evaluated in detail. Studies indicate that it should be possible to economically develop high grade HDR resources with technology available today. As advanced concepts for developing and operating HDR systems are investigated, even more widespread utilization of the technology will be commercially feasible.

  6. Serpentinization and its implications for life on the early Earth and Mars.

    PubMed

    Schulte, Mitch; Blake, David; Hoehler, Tori; McCollom, Thomas

    2006-04-01

    Ophiolites, sections of ocean crust tectonically displaced onto land, offer significant potential to support chemolithoautotrophic life through the provision of energy and reducing power during aqueous alteration of their highly reduced mineralogies. There is substantial chemical disequilibrium between the primary olivine and pyroxene mineralogy of these ophiolites and the fluids circulating through them. This disequilibrium represents a potential source of chemical energy that could sustain life. Moreover, E (h)-pH conditions resulting from rock- water interactions in ultrabasic rocks are conducive to important abiotic processes antecedent to the origin of life. Serpentinization--the reaction of olivine- and pyroxene-rich rocks with water--produces magnetite, hydroxide, and serpentine minerals, and liberates molecular hydrogen, a source of energy and electrons that can be readily utilized by a broad array of chemosynthetic organisms. These systems are viewed as important analogs for potential early ecosystems on both Earth and Mars, where highly reducing mineralogy was likely widespread in an undifferentiated crust. Secondary phases precipitated during serpentinization have the capability to preserve organic or mineral biosignatures. We describe the petrology and mineral chemistry of an ophiolite-hosted cold spring in northern California and propose criteria to aid in the identification of serpentinizing terranes on Mars that have the potential to harbor chemosynthetic life.

  7. Serpentinization and Its Implications for Life on the Early Earth and Mars

    NASA Astrophysics Data System (ADS)

    Schulte, Mitch; Blake, David; Hoehler, Tori; McCollom, Thomas

    2006-04-01

    Ophiolites, sections of ocean crust tectonically displaced onto land, offer significant potential to support chemolithoautotrophic life through the provision of energy and reducing power during aqueous alteration of their highly reduced mineralogies. There is substantial chemical disequilibrium between the primary olivine and pyroxene mineralogy of these ophiolites and the fluids circulating through them. This disequilibrium represents a potential source of chemical energy that could sustain life. Moreover, E h-pH conditions resulting from rock- water interactions in ultrabasic rocks are conducive to important abiotic processes antecedent to the origin of life. Serpentinization-the reaction of olivine- and pyroxene-rich rocks with water-produces magnetite, hydroxide, and serpentine minerals, and liberates molecular hydrogen, a source of energy and electrons that can be readily utilized by a broad array of chemosynthetic organisms. These systems are viewed as important analogs for potential early ecosystems on both Earth and Mars, where highly reducing mineralogy was likely widespread in an undifferentiated crust. Secondary phases precipitated during serpentinization have the capability to preserve organic or mineral biosignatures. We describe the petrology and mineral chemistry of an ophiolite-hosted cold spring in northern California and propose criteria to aid in the identification of serpentinizing terranes on Mars that have the potential to harbor chemosynthetic life.

  8. Role of a cumulus parameterization scheme in simulating atmospheric circulation and rainfall in the nine-layer Goddard Laboratory for Atmospheres General Circulation Model

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Chao, Winston C.; Walker, G. K.

    1992-01-01

    The influence of a cumulus convection scheme on the simulated atmospheric circulation and hydrologic cycle is investigated by means of a coarse version of the GCM. Two sets of integrations, each containing an ensemble of three summer simulations, were produced. The ensemble sets of control and experiment simulations are compared and differentially analyzed to determine the influence of a cumulus convection scheme on the simulated circulation and hydrologic cycle. The results show that cumulus parameterization has a very significant influence on the simulation circulation and precipitation. The upper-level condensation heating over the ITCZ is much smaller for the experiment simulations as compared to the control simulations; correspondingly, the Hadley and Walker cells for the control simulations are also weaker and are accompanied by a weaker Ferrel cell in the Southern Hemisphere. Overall, the difference fields show that experiment simulations (without cumulus convection) produce a cooler and less energetic atmosphere.

  9. Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages

    PubMed Central

    Lartaud, Franck; Little, Crispin T. S.; de Rafelis, Marc; Bayon, Germain; Dyment, Jerome; Ildefonse, Benoit; Gressier, Vincent; Fouquet, Yves; Gaill, Françoise; Le Bris, Nadine

    2011-01-01

    Among the deep-sea hydrothermal vent sites discovered in the past 30 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from mantle rock serpentinization and the spectacular seafloor carbonate chimneys precipitated from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpentinite-hosted hydrothermal system currently lacks chemosynthetic assemblages dominated by large animals typical of high-temperature vent sites. Here we report abundant specimens of chemosymbiotic mussels, associated with gastropods and chemosymbiotic clams, in approximately 100 kyr old Lost City-like carbonates from the MAR close to the Rainbow site (36 °N). Our finding shows that serpentinization-related fluids, unaffected by high-temperature hydrothermal circulation, can occur on-axis and are able to sustain high-biomass communities. The widespread occurrence of seafloor ultramafic rocks linked to likely long-range dispersion of vent species therefore offers considerably more ecospace for chemosynthetic fauna in the oceans than previously supposed. PMID:21518892

  10. Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages.

    PubMed

    Lartaud, Franck; Little, Crispin T S; de Rafelis, Marc; Bayon, Germain; Dyment, Jerome; Ildefonse, Benoit; Gressier, Vincent; Fouquet, Yves; Gaill, Françoise; Le Bris, Nadine

    2011-05-10

    Among the deep-sea hydrothermal vent sites discovered in the past 30 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from mantle rock serpentinization and the spectacular seafloor carbonate chimneys precipitated from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpentinite-hosted hydrothermal system currently lacks chemosynthetic assemblages dominated by large animals typical of high-temperature vent sites. Here we report abundant specimens of chemosymbiotic mussels, associated with gastropods and chemosymbiotic clams, in approximately 100 kyr old Lost City-like carbonates from the MAR close to the Rainbow site (36 °N). Our finding shows that serpentinization-related fluids, unaffected by high-temperature hydrothermal circulation, can occur on-axis and are able to sustain high-biomass communities. The widespread occurrence of seafloor ultramafic rocks linked to likely long-range dispersion of vent species therefore offers considerably more ecospace for chemosynthetic fauna in the oceans than previously supposed.

  11. Neural Control of the Circulation

    ERIC Educational Resources Information Center

    Thomas, Gail D.

    2011-01-01

    The purpose of this brief review is to highlight key concepts about the neural control of the circulation that graduate and medical students should be expected to incorporate into their general knowledge of human physiology. The focus is largely on the sympathetic nerves, which have a dominant role in cardiovascular control due to their effects to…

  12. Circulation of carbon dioxide in the mantle: multiscale modeling

    NASA Astrophysics Data System (ADS)

    Morra, G.; Yuen, D. A.; Lee, S.

    2012-12-01

    Much speculation has been put forward on the quantity and nature of carbon reservoirs in the deep Earth, because of its involvement in the evolution of life at the surface and inside planetary interiors. Carbon penetrates into the Earth's mantle mostly during subduction of oceanic crust, which contains carbonate deposits [1], however the form that it assumes at lower mantle depths is scarcely understood [2], hampering our ability to estimate the amount of carbon in the entire mantle by orders of magnitude. We present simulations of spontaneous degassing of supercritical CO2 using in-house developed novel implementations of the Fast-Multipole Boundary Element Method suitable for modeling two-phase flow (here mantle mineral and free CO2 fluid) through disordered materials such as porous rocks. Because the mutual interaction of droplets immersed either in a fluid or a solid matrix and their weakening effect to the host rock alters the strength of the mantle rocks, at the large scale the fluid phases in the mantle may control the creeping of mantle rocks [3]. In particular our study focuses on the percolation of supercritical CO2, estimated through the solution of the Laplace equation in a porous system, stochastically generated through a series of random Karhunen-Loeve decomposition. The model outcome is employed to extract the transmissivity of supercritical fluids in the mantle from the lowest scale up to the mantle scale and in combination with the creeping flow of the convecting mantle. The emerging scenarios on the global carbon cycle are finally discussed. [1] Boulard, E., et al., New host for carbon in the deep Earth. Proceedings of the National Academy of Sciences, 2011. 108(13): p. 5184-5187. [2] Walter, M.J., et al., Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 2011. 334(6052): p. 54-57. [3] Morra, G., et al., Ascent of Bubbles in Magma Conduits Using Boundary Elements and Particles. Procedia Computer Science, 2011.; Boundary Element solution of a flow through a porous. Left boxes represent the the matrix associated with the integrals. The flow enters below and emerges at the top, the amount of flow is identical. The flow is spread in the porous and is viscousless (Laplace equation).

  13. Analysis of propagation mechanisms of stimulation-induced fractures in rocks

    NASA Astrophysics Data System (ADS)

    Krause, Michael; Renner, Joerg

    2016-04-01

    Effectivity of geothermal energy production depends crucially on the heat exchange between the penetrated hot rock and the circulating water. Hydraulic stimulation of rocks at depth intends to create a network of fractures that constitutes a large area for exchange. Two endmembers of stimulation products are typically considered, tensile hydro-fractures that propagate in direction of the largest principal stress and pre-existing faults that are sheared when fluid pressure reduces the effective normal stress acting on them. The understanding of the propagation mechanisms of fractures under in-situ conditions is still incomplete despite intensive research over the last decades. Wing-cracking has been suggested as a mechanism of fracture extension from pre-existent faults with finite length that are induced to shear. The initiation and extension of the wings is believed to be in tensile mode. Open questions concern the variability of the nominal material property controlling tensile fracture initiation and extension, the mode I facture toughness KIC, with in-situ conditions, e.g., its mean-stress dependence. We investigated the fracture-propagation mechanism in different rocks (sandstones and granites) under varying conditions mimicking those representative for geothermal systems. To determine KIC-values we performed 3-point bending experiments. We varied the confining pressure, the piston velocity, and the position of the chevron notch relative to the loading configuration. Additional triaxial experiments at a range of confining pressures were performed to study wing crack propagation from artificial flaws whose geometrical characteristics, i.e., length, width, and orientation relative to the axial load are varied. We monitored acoustic emissions to constrain the spacio-temporal evolution of the fracturing. We found a significant effect of the length of the artificial flaw and the confining pressure on wing-crack initiation but did not observe a systematic dependence of wing-crack initiation on the orientation of the initial flaw in the range of tested angles. In fact, wings do not develop for artificial flaws shorter than 3 mm. The force required to initiate wing cracking increases with increasing confining pressure as does the apparent fracture toughness. So called ``anti-wing cracks'' were observed too, probably an artifact of the geometrical constraints imposed on the sample in a conventional triaxial compression test.

  14. Interaction between different groundwaters in brittany catchments (france): characterizing multiple sources through Sr- and S isotope tracing

    NASA Astrophysics Data System (ADS)

    Negrel, Ph; Pauwels, H.

    2003-04-01

    Water resources in hard-rocks commonly involve different hydrogeological compartments such as overlying sediments, weathered rock, the weathered-fissured zone, and fractured bedrock. Streams, lakes and wetlands that drain such environments can drain groundwater, recharge groundwater, or do both. Groundwater resources in many countries are increasingly threatened by growing demand, wasteful use, and contamination. Surface water and shallow groundwater are particularly vulnerable to pollution, while deeper resources are more protected from contamination. Sr- and S-isotope data as well as major ions, from shallow and deep groundwater in three granite and Brioverian "schist" areas of the Armorican Massif (NW France) with intensive agriculture covering large parts are presented. The stable-isotope signatures of the waters plot close to the general meteoric-water line, reflecting a meteoric origin and the lack of significant evaporation or water-rock interaction. The water chemistry from the different catchments shows large variation in the major-element contents. Plotting Na, Mg, NO_3, K, SO_4 and Sr vs. Cl contents concentrations reflect agricultural input from hog and livestock farming and fertilizer applications, with local sewage-effluent influence, although some water samples are clearly unpolluted. The δ34S(SO_4) is controlled by several potential sources (atmospheric sulphate, pyrite-derived sulphates, fertilizer sulphates). Some δ18O and δ34S values are expected to increase through sulphate reduction, with higher effect on δ34S for the dissimilatory processes and on δ18O for assimilatory processes. The range in Sr contents in groundwater from different catchments agrees with previous work on groundwater sampled from granites in France. The Sr content is well correlated with Mg and both are related to agricultural practises. As in granite-gneiss watersheds in France, 87Sr/86Sr ratios range from 0.71265 to 0.72009. The relationship between 87Sr/86Sr and Mg/Sr ratios defines the different end-members (rain, agricultural practise, water-rock interaction) both in the three Brittany catchments and elsewhere in France such as the Margeride mountains (S Massif Central), the Hérault watershed (S France), the Morvan (SE Paris Basin), the Cantal (E Massif Central) and the Vosges massif (NE France). Sr-isotope tracing defines and identifies the relative signature of groundwater circulation in alterite and underlying weathered-fissured and fractured bedrock.

  15. The effect of the Ras homolog gene family (Rho), member A/Rho associated coiled-coil forming protein kinase pathway in atrial fibrosis of type 2 diabetes in rats.

    PubMed

    Chen, Jinling; Li, Qingqing; Dong, Ruiqing; Gao, Huikuan; Peng, Hui; Wu, Yongquan

    2014-09-01

    Diabetes mellitus promotes atrial structural remodeling, thereby producing atrial arrhythmogenicity. Atrial arrhythmia can substantially increase the risk of premature death. The aim of this study was to investigate the role of Ras homolog gene family, member A (RhoA)/Rho associated coiled-coil forming protein kinase (ROCK) in atrial fibrosis in diabetic hearts, and the effects of fasudil hydrochloride hydrate on atrial fibrosis. An eight-week-old male Sprague-Dawley rat model of type 2 diabetes was established using a high-fat diet combined with streptozotocin [30 mg/kg, once, intraperitoneal (i.p.)]. Animals were randomly divided into three groups: Control rats, untreated diabetic rats that received vehicle, and treated diabetic rats that received Rho kinase inhibitor fasudil hydrochloride hydrate (10 mg/kg/day, i.p., for 14 weeks). The morphological features of atrial fibrosis were observed using Masson staining. The mRNA expression levels of RhoA, ROCK1, ROCK2, type-I and type-III procollagen were assessed with quantitative polymerase chain reaction. The protein levels of RhoA, ROCK1 and ROCK2 were evaluated using western blot analysis. The atria of untreated diabetic rats showed evident atrial fibrosis as compared to the control rats; the mRNA expression levels of RhoA, ROCK1, ROCK2, type-I and type-III procollagen were upregulated; and the protein levels of RhoA, ROCK1 and ROCK2 were increased. The treatment with fasudil hydrochloride hydrate significantly reduced atrial fibrosis, mRNA levels of RhoA, ROCK1, ROCK2, type-I and type-III procollagen, and the protein levels of RhoA, ROCK1 and ROCK2. The results suggested that RhoA/ROCK was involved in atrial fibrosis, and that fasudil hydrochloride hydrate ameliorates atrial fibrosis through the RhoA/ROCK pathway in rats with type 2 diabetes.

  16. An experimental investigation of the effect of impact generated micro-deformations in Moenkopi and Coconino Sandstone from Meteor Crater, Arizona on subsequent weathering

    NASA Astrophysics Data System (ADS)

    Verma, A.; Bourke, M. C.; Osinski, G.; Viles, H. A.; Blanco, J. D. R.

    2017-12-01

    Impact cratering is an important geological process that affects all planetary bodies in our solar system. As rock breakdown plays an important role in the evolution of landforms and sediments, it is important to assess the role of inheritance in the subsequent breakdown of impacted rocks.The shock pressure of several gigapascals generated during the impact can exceed the effective strength of target lithology by three to four orders of magnitude and is responsible for melting, vaporisation, shock metamorphism, fracturing and fragmentation of rocks. Environmental conditions and heterogeneities in rock properties exert an important control in rock breakdown. Similar to other subaerial rocks, impacted rocks are affected by a range of rock breakdown processes. In order to better understand the role of inheritance of the impact on rock breakdown, a rock breakdown experiment was conducted in a simulated environmental cabinet under conditions similar to the arid conditions found at the Meteor Crater site. We sampled Moenkopi and Coconino Sandstone from the Meteor Crater impact site in Arizona. For comparison, samples were also collected at control sites close by that have similar rock formations but did not undergo impact. Several established techniques (X-ray CT, SEM, Equotip, SfM) were used to characterise the rock samples before the environmental cabinet experiments. Our laboratory analysis (XRD, SEM, optical microscopy, X-ray CT) on impacted rock samples from Meteor Crater, show that rock porosity and permeability changes due to compaction and fracturing during impact. There were no high-pressure polymorphs of quartz or glass detected in XRD analysis. We ran the experiments on a total of 28 petrophysically characterised 5x5x5 cm sample blocks of Coconino and Moenkopi Sandstone (24 impacted rocks and 4 non-impacted). The results will be presented at the AGU Fall meeting 2017.

  17. Offshore wellbore stability analysis based on fully coupled poro-thermo-elastic theory

    NASA Astrophysics Data System (ADS)

    Cao, Wenke; Deng, Jingen; Yu, Baohua; Liu, Wei; Tan, Qiang

    2017-03-01

    Drilling-induced tensile fractures are usually caused when the weight of mud is too high, and the effective tangential stress becomes tensile. It is thus hard to explain why tensile fractures are distributed along the lower part of a hole in an offshore exploration well when the mud weight is low. According to analysis, the reason could be the thermal effect, which cannot be ignored because of the drilling fluid and the cooling action of sea water during circulation. A heat transfer model is set up to obtain the temperature distribution of the wellbore and its formation by the finite difference method. Then, fully coupled poro-thermo-elastic theory is used to study the pore pressure and effective stress around the wellbore. By comparing it with both poroelastic and elastic models, it is indicated that the poroelastic effect is dominant at the beginning of circulation and inhibits tensile fractures from forming; then, the thermal effect becomes more important and decreases the effective tangential stress with the passing of time, so the drilling fluid and the cooling effect of sea water can cause tensile fractures to happen. Meanwhile, tensile fractures are shallow and not likely to lead to mud leakage with lower mud weight, which agrees with the actual drilling process. On the other hand, the fluid cooling effect could increase the strength of the rock and reduce the likelihood of shear failure, which would be beneficial for wellbore stability. So, the thermal effect cannot be neglected in offshore wellbore stability analysis, and mud weight and borehole exposure time should be controlled in the case of mud loss.

  18. Thermal regimes of Malaysian sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdul Halim, M.F.

    1994-07-01

    Properly corrected and calibrated thermal data are important in estimating source-rock maturation, diagenetics, evolution of reservoirs, pressure regimes, and hydrodynamics. Geothermal gradient, thermal conductivity, and heat flow have been determined for the sedimentary succession penetrated by exploratory wells in Malaysia. Geothermal gradient and heat-flow maps show that the highest average values are in the Malay Basin. The values in the Sarawak basin are intermediate between those of the Malay basin and the Sabah Basin, which contains the lowest average values. Temperature data were analyzed from more than 400 wells. An important parameter that was studied in detail is the circulationmore » time. The correct circulation time is essential in determining the correct geothermal gradient of a well. It was found that the most suitable circulation time for the Sabah Basin is 20 hr, 30 hr for the Sarawak Basin and 40 hr for the Malay Basin. Values of thermal conductivity, determined from measurement and calibrated calculations, were grouped according to depositional units and cycles in each basin.« less

  19. Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.

    PubMed

    Cui, Zhihua; Ai, Chi; Lv, Lei; Yin, Fangxian

    2017-01-01

    The shear swirling flow vibration cementing (SSFVC) technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1) the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2) the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.

  20. Evaluation of a research circulation control airfoil using Navier-Stokes methods

    NASA Technical Reports Server (NTRS)

    Shrewsbury, George D.

    1987-01-01

    The compressible Reynolds time averaged Navier-Stokes equations were used to obtain solutions for flows about a two dimensional circulation control airfoil. The governing equations were written in conservation form for a body-fitted coordinate system and solved using an Alternating Direction Implicit (ADI) procedure. A modified algebraic eddy viscosity model was used to define the turbulent characteristics of the flow, including the wall jet flow over the Coanda surface at the trailing edge. Numerical results are compared to experimental data obtained for a research circulation control airfoil geometry. Excellent agreement with the experimental results was obtained.

  1. Numerical Investigation of the Dynamic Properties of Intermittent Jointed Rock Models Subjected to Cyclic Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Zhao, Tao; Xu, Nu-wen

    2017-01-01

    Intermittent jointed rocks, which exist in a myriad of engineering projects, are extraordinarily susceptible to cyclic loadings. Understanding the dynamic fatigue properties of jointed rocks is necessary for evaluating the stability of rock engineering structures. This study numerically investigated the influences of cyclic loading conditions (i.e., frequency, maximum stress and amplitude) and joint geometric configurations (i.e., dip angle, persistency and interspace) on the dynamic fatigue mechanisms of jointed rock models. A reduction model of stiffness and strength was first proposed, and then, sixteen cyclic uniaxial loading tests with distinct loading parameters and joint geometries were simulated. Our results indicate that the reduction model can effectively reproduce the hysteresis loops and the accumulative plastic deformation of jointed rocks in the cyclic process. Both the loading parameters and the joint geometries significantly affect the dynamic properties, including the irreversible strain, damage evolution, dynamic residual strength and fatigue life. Three failure modes of jointed rocks, which are principally controlled by joint geometries, occur in the simulations: splitting failure through the entire rock sample, sliding failure along joint planes and mixed failure, which are principally controlled by joint geometries. Furthermore, the progressive failure processes of the jointed rock samples are numerically observed, and the different loading stages can be distinguished by the relationship between the number of broken bonds and the axial stress.

  2. Transient evoked otoacoustic emissions in rock musicians.

    PubMed

    Høydal, Erik Harry; Lein Størmer, Carl Christian; Laukli, Einar; Stenklev, Niels Christian

    2017-09-01

    Our focus in this study was the assessment of transient evoked otoacoustic emissions (TEOAEs) in a large group of rock musicians. A further objective was to analyse tinnitus among rock musicians as related to TEOAEs. The study was a cross-sectional survey of rock musicians selected at random. A control group was included at random for comparison. We recruited 111 musicians and a control group of 40 non-musicians. Testing was conducted by using clinical examination, pure tone audiometry, TEOAEs and a questionnaire. TEOAE SNR in the half-octave frequency band centred on 4 kHz was significantly lower bilaterally in musicians than controls. This effect was strongly predicted by age and pure-tone hearing threshold levels in the 3-6 kHz range. Bilateral hearing thresholds were significantly higher at 6 kHz in musicians. Twenty percent of the musicians had permanent tinnitus. There was no association between the TEOAE parameters and permanent tinnitus. Our results suggest an incipient hearing loss at 6 kHz in rock musicians. Loss of TEOAE SNR in the 4 kHz half-octave frequency band was observed, but it was related to higher mean 3-6 kHz hearing thresholds and age. A large proportion of rock musicians have permanent tinnitus.

  3. Hydrothermal Habitats: Measurements of Bulk Microbial Elemental Composition, and Models of Hydrothermal Influences on the Evolution of Dwarf Planets

    NASA Astrophysics Data System (ADS)

    Neveu, Marc Francois Laurent

    Finding habitable worlds is a key driver of solar system exploration. Many solar system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life. Such environments include hydrothermal systems, spatially-confined systems where hot aqueous fluid circulates through rock by convection. I sought to characterize hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA, by measuring their bulk elemental composition. To do so, one must minimize the contribution of non-biological material to the samples analyzed. I demonstrate that this can be achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents. Using this method, I show that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of hydrothermal settings beyond Earth. Indeed, hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core. I enhance a dwarf planet evolution code, including the effects of core fracturing and hydrothermal circulation, to demonstrate that dwarf planets likely have undergone extensive water-rock interaction. This supports observations of aqueous products on their surfaces. I simulate the alteration of chondritic rock by pure water or cometary fluid to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the distribution of radionuclides, whose decay is a chief heat source on dwarf planets. Interaction products can be observed if transported to the surface. I simulate numerically how cryovolcanic transport is enabled by primordial and hydrothermal volatile exsolution. Cryovolcanism seems plausible on dwarf planets in light of images recently returned by spacecrafts. Thus, these coupled geophysical-geochemical models provide a comprehensive picture of dwarf planet evolution, processes, and habitability.

  4. X-29 vortex flow control tests

    NASA Technical Reports Server (NTRS)

    Hancock, Regis; Fullerton, Gordon

    1992-01-01

    A joint Air Force/NASA X-29 aircraft program to improve yaw control at high angle of attack using vortex flow control (VFC) is described. Directional VFC blowing proved to a be a powerful yaw moment generator and was very effective in overriding natural asymmetries, but was essentially ineffective in suppressing wing rock. Symmetric aft blowing also had little effect on suppressing wing rock.

  5. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    NASA Astrophysics Data System (ADS)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  6. YELLOWSTONE MAGMATIC-HYDROTHERMAL SYSTEM, U. S. A.

    USGS Publications Warehouse

    Fournier, R.O.; Pitt, A.M.; ,

    1985-01-01

    At Yellowstone National Park, the deep permeability and fluid circulation are probably controlled and maintained by repeated brittle fracture of rocks in response to local and regional stress. Focal depths of earthquakes beneath the Yellowstone caldera suggest that the transition from brittle fracture to quasi-plastic flow takes place at about 3 to 4 km. The maximum temperature likely to be attained by the hydrothermal system is 350 to 450 degree C, the convective thermal output is about 5. 5 multiplied by 10**9 watts, and the minimum average thermal flux is about 1800 mW/m**2 throughout 2,500 km**2. The average thermal gradient between the heat source and the convecting hydrothermal system must be at least 700 to 1000 degree C/km. Crystallization and partial cooling of about 0. 082 km**3 of basalt or 0. 10 km**3 of rhyolite annually could furnish the heat discharged in the hot-spring system. The Yellowstone magmatic-hydrothermal system as a whole appears to be cooling down, in spite of a relatively large rate of inflation of the Yellowstone caldera.

  7. Lower Circulating Irisin Level in Patients with Diabetes Mellitus: A Systematic Review and Meta-Analysis.

    PubMed

    Du, X-L; Jiang, W-X; Lv, Z-T

    2016-09-01

    Studies measuring circulating irisin levels in patients with insulin resistance conditions such as type 2 diabetes mellitus (T2DM) and gestational diabetes mellitus (GDM) have achieved controversial results. Our systematic review and meta-analysis aim to assess the circulating irisin levels in patients with diabetes mellitus. Pubmed, EMBASE, CENTRAL, ISI Web of Science, and CNKI were searched to identify observational studies of circulating irisin levels in patients with diabetes mellitus. Two reviewers independently searched the databases and screened studies according to the inclusion criteria. Data were extracted using a standardized collection form. Meta-analysis was performed. A total of 23 studies (17 cross-sectional and 6 case control) involving 1 745 diabetic patients and 1 337 non-diabetic controls were selected. Compared with non-diabetic controls, circulating irisin concentrations were significantly lower in patients with T2DM (SMD -1.72, 95%CI -2.49, -0.96; p<0.00001) and GDM (SMD -0.76, 95CI -1.31, -0.22; p=0.006), but 30 percent higher in patients with T1DM. Circulating irisin in Asian diabetic patients decreased more than European patients. The findings of our current review suggest that circulating irisin levels were decreased in patients with T2DM and GDM, but not in patients with T1DM. © Georg Thieme Verlag KG Stuttgart · New York.

  8. The Role of Siliceous Hydrothermal Breccias in the Genesis of Volcanic Massive Sulphide Deposits - Ancient and Recent Systems

    NASA Astrophysics Data System (ADS)

    Costa, I. A.; Barriga, F. J.; Fouquet, Y.

    2014-12-01

    Siliceous hydrothermal breccias were sampled in two Mid-Atlantic Ridge active sites: Lucky Strike and Menez Gwen. These hydrothermal fields are located in the border of the Azorean plateau, southwest of the Azores islands where the alteration processes affecting basaltic rocks are prominent (Costa et al., 2003). The hydrothermal breccias are genetically related with the circulation of low temperature hydrothermal fluids in diffuse vents. The groundmass of these breccias precipitates from the fluid and consolidates the clastic fragments mostly composed of basalt. The main sources are the surrounding volcanic hills. Breccias are found near hydrothermal vents and may play an important role in the protection of subseafloor hydrothermal deposits forming an impermeable cap due to the high content in siliceous material. The amorphous silica tends to precipitate when the fluid is conductively cooled as proposed by Fouquet et al. (1998) after Fournier (1983). The process evolves gradually from an initial stage where we have just the fragments and circulating seawater. The ascending hydrothermal fluid mixes with seawater, which favours the precipitation of the sulphide components. Sealing of the initially loose fragments begins, the temperature rises below this crust, and the processes of mixing fluid circulation and conductive cooling are simultaneous. At this stage the fluid becomes oversaturated with respect to amorphous silica. This form of silica can precipitate in the open spaces of the porous sulphides and seal the system. Normally this can happen at low temperatures. At this stage the hydrothermal breccia is formed creating a progressively less permeable, eventually impermeable cap rock at the surface. Once the fluid is trapped under this impermeable layer, conductive cooling is enhanced and mixing with seawater is restricted, making the precipitation of amorphous silica more efficient. Since the first discovery and description of recent mineralized submarine hydrothermal deposits, comparison with ancient volcanic massive sulphide deposits is appropriate. The proposed model can explain some of the processes taking place in the early phase of formation of old deposits where equivalent siliceous material is found in the hanging wall of the ore bodies (e.g. Barriga and Fyfe, 1988).

  9. A Classroom Simulation of Water-Rock Interaction for Upper-Level Geochemistry Courses.

    ERIC Educational Resources Information Center

    Cercone, Karen Rose

    1988-01-01

    Describes a simple hands-on model of water-rock interaction that can be constructed in the classroom using styrofoam bowls and foil-wrapped candies. This interactive simulation allows students to vary the factors which control water-rock interaction and to obtain immediate results. (Author/CW)

  10. Isotopic constraints on the formation of carbonates during low-temperature hydrothermal oceanic crust alteration

    NASA Astrophysics Data System (ADS)

    Stolper, D. A.; Antonelli, M. A.; Ramos, D. S.; Bender, M. L.; Schrag, D. P.; DePaolo, D. J.; Higgins, J. A.

    2016-12-01

    Low temperature (<100°C) water-rock reactions in oceanic crust have a potentially large influence on seawater chemical compositions and atmospheric pCO2. Quantification of the conditions (e.g., temperature) of oceanic crust alteration is needed to evaluate its importance for global silicate weathering fluxes. The isotopic and chemical compositions of secondary carbonates in oceanic crust reflect the temperature and chemistry of the circulating fluid and thus are used to reconstruct past conditions of crustal alteration. For example, temperatures are calculated via carbonate δ18O thermometry using measured δ18Ocarb vs. assumed δ18Ofluid. δ18Ofluid is usually assumed to be the seawater value at the time of carbonate formation. We present measured clumped-isotope temperatures (Tclump) and δ18O, δ13C, δ44Ca, and 87Sr/86Sr values of Jurassic carbonates from altered oceanic crust (ODP Site 801). Tclump measured at Caltech ranges from 24-51°C. Calculated δ18Ofluid (based on Tclump and δ18Ocarb) ranges from -0.4‰ (±0.4, 1σ) to -3.5‰ (±0.6). Higher temperatures correlate with lower δ18Ofluid (R2 = 0.75). This suggests that at elevated temperatures, δ18Ofluid was modified away from seawater values, likely via the preferential incorporation of 18O vs. 16O into secondary minerals relative to water. This indicates that δ18Ofluid values of circulating fluids are not necessarily identical to seawater δ18O. Tclump measurements are being replicated at Harvard for further verification. Carbonates with δ13C indicating a seawater C source (δ13C > 0‰) have average δ44Ca (relative to modern seawater) of -0.84‰ (±0.08). This is indistinguishable from igneous rock δ44Ca and suggests that carbonate Ca is derived from igneous Ca released during crustal alteration. Carbonates with δ13C indicating an organic C source (δ13C < -2.5‰) have lower δ44Cacarb (< -1‰). Carbonate 87Sr/86Sr ranges from 0.70742 to 0.70656. Based on the seawater 87Sr/86Sr curve, this range requires the release of low 87Sr/86Sr strontium from igneous rocks (87Sr/86Sr ≈ 0.7025) during alteration. Together these results support the presence of substantial water-rock interactions and fluid modification during alteration and carbonate precipitation. They will be discussed in the context of models of fluid flow coupled to alteration reaction kinetics.

  11. The role of magmas in the formation of hydrothermal ore deposits

    USGS Publications Warehouse

    Hedenquist, Jeffrey W.; Lowenstern, Jacob B.

    1994-01-01

    Magmatic fluids, both vapour and hypersaline liquid, are a primary source of many components in hydrothermal ore deposits formed in volcanic arcs. These components, including metals and their ligands, become concentrated in magmas in various ways from various sources, including subducted oceanic crust. Leaching of rocks also contributes components to the hydrothermal fluid—a process enhanced where acid magmatic vapours are absorbed by deeply circulating meteoric waters. Advances in understanding the hydrothermal systems that formed these ore deposits have come from the study of their active equivalents, represented at the surface by hot springs and volcanic fumaroles.

  12. HIV induces production of IL-18 from intestinal epithelial cells that increases intestinal permeability and microbial translocation

    PubMed Central

    Allam, Ossama; Samarani, Suzanne; Mehraj, Vikram; Jenabian, Mohammad-Ali; Tremblay, Cecile; Routy, Jean-Pierre; Amre, Devendra

    2018-01-01

    Interleukin-18 (IL-18) is a pleiotropic cytokine of the IL-1 family with multiple context dependent functions. We and others have shown that HIV infection is accompanied by increased circulating levels of IL-18 along with decreased levels of its antagonist, Interleukin-18 Binding Protein (IL-18BP). The infection is also accompanied by intestinal inflammation and decreased intestinal integrity as measured by intestinal permeability, regeneration and repair. However, little is known concerning the relation between high level of IL-18 associated with the viral infection and intestinal permeability. Here we demonstrate that HIV treatment increases production of IL-18 and decreases that of IL-18BP production in human intestinal epithelial cell (IEC) lines. IL-18 causes apoptosis of the IEC by activating caspase-1 and caspase-3. It induces epithelial barrier hyperpermeability by decreasing and disrupting both tight and adherens junction proteins, occludin, claudin 2 and beta-catenin. Disorganization of F-actin was also observed in the IEC that were exposed to the cytokine. Moreover IL-18 decreases transepithelial electrical resistance (TEER) in Caco-2 and increases permeability in HT29 monolayers. The cells’ treatment with IL-18 causes an increase in the expression of phosphorylated myosin II regulatory light-chain (p-MLC) and myosin light-chain kinase (MLCK), and a decrease in phosphorylated Signal Transducer and Activator of Transcription (p-STAT)-5. This increase in p-MLC is suppressed by a Rho-kinase (ROCK)-specific inhibitor. Interestingly, the levels of the cytokine correlate with those of LPS in the circulation in three different categories of HIV infected patients (HAART-naïve and HAART-treated HIV-infected individuals, and Elite controls) as well as in healthy controls. Collectively, these results suggest that the HIV-induced IL-18 plays a role in increased intestinal permeability and microbial translocation observed in HIV-infected individuals. PMID:29601578

  13. High-temperature hydrothermal circulation in the lower oceanic crust at fast spreading ridges: Reconciling geophysical and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Wilcock, W.

    2003-04-01

    Hydrothermal circulation is the dominant mechanism for cooling young oceanic crust and knowledge of its depth, extent and timing is critical for our understanding of crustal accretion. At fast-spreading ridges there is considerable controversy regarding the importance of this process in the lower crust. Geochemical data indicate that high-temperature hydrothermal fluids react with the lower crust but they also suggest that the reactions are limited to a narrow temperature interval and involve relatively small volumes of fluid. As a result many geochemical studies conclude that high-temperature hydrothermal circulation plays a relatively small role in heat transport in the lower crust and occurs in a closed system that is isolated from upper crustal hydrothermal cells. In contrast, seismic observations on the fast spreading East Pacific Rise show that the mid-crustal axial magma chamber is underlain by a low velocity zone which is no more than 5-8 km wide throughout the lower crust and is interpreted as a region of elevated temperatures containing relatively low average melt fractions. Irrespective of the style of lower crustal accretion, simple physical considerations suggest that this structure is only thermally feasible if the lower crust cools by extensive hydrothermal circulation. Modeling studies indicate that this requires the permeability of the lower crust to temporarily reach at least ~10-13 m2. In order to reconcile the geochemical and geophysical data it is important to recognize that the thermal constraints do not require pervasive seawater circulation in the lower crust and can be satisfied by focused flow through narrow permeable zones spaced as far as about 1 km apart. Widely spaced regions of flow might be difficult to find in the field especially if the sampling strategies focus on the freshest outcrops. There is a tendency to overestimate the volume of fluid that must circulate through an open single-pass system. The fluid-rock ratios (0.2 - 1) inferred from oxygen isotope studies are often cited as evidence of limited circulation but when interpreted physically they are actually sufficient to transport a substantial proportion of the heat required to solidify and cool the lower crust. Nevertheless the geophysical constraints are also compatible with circulation in a two-layer double diffusive system favored by many researchers, in which the lower crust is cooled by a recirculating brine cell.

  14. 77 FR 20700 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... safety standards related to ventilation, methane, roof control, combustible materials, rock dust, other... standards related to ventilation, methane, roof control, combustible materials, rock dust, other safeguards... and unsafe conditions, such as methane accumulations, water accumulations, and adverse roof conditions...

  15. Enceladus Hydrothermal Activity

    NASA Image and Video Library

    2017-04-13

    This graphic illustrates how scientists on NASA's Cassini mission think water interacts with rock at the bottom of the ocean of Saturn's icy moon Enceladus, producing hydrogen gas (H2). The Cassini spacecraft detected the hydrogen in the plume of gas and icy material spraying from Enceladus during its deepest and last dive through the plume on Oct. 28, 2015. Cassini also sampled the plume's composition during previous flybys, earlier in the mission. From these observations scientists have determined that nearly 98 percent of the gas in the plume is water vapor, about 1 percent is hydrogen, and the rest is a mixture of other molecules including carbon dioxide, methane and ammonia. The graphic shows water from the ocean circulating through the seafloor, where it is heated and interacts chemically with the rock. This warm water, laden with minerals and dissolved gases (including hydrogen and possibly methane) then pours into the ocean creating chimney-like vents. The hydrogen measurements were made using Cassini's Ion and Neutral Mass Spectrometer, or INMS, instrument, which sniffs gases to determine their composition. The finding is an independent line of evidence that hydrothermal activity is taking place in the Enceladus ocean. Previous results from Cassini's Cosmic Dust Analyzer instrument, published in March 2015, suggested hot water is interacting with rock beneath the ocean; the new findings support that conclusion and indicate that the rock is reduced in its geochemistry. With the discovery of hydrogen gas, scientists can now conclude that there is a source of chemical free energy in Enceladus' ocean. https://photojournal.jpl.nasa.gov/catalog/PIA21442

  16. Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells through human brain microvascular endothelial cell monolayers.

    PubMed

    Lin, Mei-Na; Shang, De-Shu; Sun, Wei; Li, Bo; Xu, Xin; Fang, Wen-Gang; Zhao, Wei-Dong; Cao, Liu; Chen, Yu-Hua

    2013-06-04

    Bone marrow-derived mesenchymal stem cells (MSC) represent an important and easily available source of stem cells for potential therapeutic use in neurological diseases. The entry of circulating cells into the central nervous system by intravenous administration requires, firstly, the passage of the cells across the blood-brain barrier (BBB). However, little is known of the details of MSC transmigration across the BBB. In the present study, we employed an in vitro BBB model constructed using a human brain microvascular endothelial cell monolayer to study the mechanism underlying MSC transendothelial migration. Transmigration assays, transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) flux assays showed that MSC could transmigrate through human brain microvascular endothelial cell monolayers by a paracellular pathway. Cell fractionation and immunofluorescence assays confirmed the disruption of tight junctions. Inhibition assays showed that a Rho-kinase (ROCK) inhibitor (Y27632) effectively promoted MSC transendothelial migration; conversely, a PI3K inhibitor (LY294002) blocked MSC transendothelial migration. Interestingly, adenovirus-mediated interference with ROCK in MSC significantly increased MSC transendothelial migration, and overexpression of a PI3K dominant negative mutant in MSC cells could block transendothelial migration. Our findings provide clear evidence that the PI3K and ROCK pathways are involved in MSC migration through human brain microvascular endothelial cell monolayers. The information yielded by this study may be helpful in constructing gene-modified mesenchymal stem cells that are able to penetrate the BBB effectively for cell therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Distinction between epigenic and hypogenic maze caves

    NASA Astrophysics Data System (ADS)

    Palmer, Arthur N.

    2011-11-01

    Certain caves formed by dissolution of bedrock have maze patterns composed of closed loops in which many intersecting fractures or pores have enlarged simultaneously. Their origin can be epigenic (by shallow circulation of meteoric groundwater) or hypogenic (by rising groundwater or production of deep-seated solutional aggressiveness). Epigenic mazes form by diffuse infiltration through a permeable insoluble caprock or by floodwater supplied by sinking streams. Most hypogenic caves involve deep sources of aggressiveness. Transverse hypogenic cave origin is a recently proposed concept in which groundwater of mainly meteoric origin rises across strata in the distal portions of large flow systems, to form mazes in soluble rock sandwiched between permeable but insoluble strata. The distinction between maze types is debated and is usually based on examination of diagnostic cave features and relation of caves to their regional setting. In this paper, the principles of mass transfer are applied to clarify the limits of each model, to show how cave origin is related to groundwater discharge, dissolution rate, and time. The results show that diffuse infiltration and floodwater can each form maze caves at geologically feasible rates (typically within 500 ka). Transverse hypogenic mazes in limestone, to enlarge significantly within 1 Ma, require an unusually high permeability of the non-carbonate beds (generally ≥ 10-4 cm/s), large discharge, and calcite saturation no greater than 90%, which is rare in deep diffuse flow in sedimentary rocks. Deep sources of aggressiveness are usually required. The origin of caves by transverse hypogenic flow is much more favorable in evaporite rocks than in carbonate rocks.

  18. Sedimentary rock-hosted Au deposits of the Dian-Qian-Gui area, Guizhou, and Yunnan Provinces, and Guangxi District, China

    USGS Publications Warehouse

    Peters, S.G.; Jiazhan, H.; Zhiping, L.; Chenggui, J.

    2007-01-01

    Sedimentary rock-hosted Au deposits in the Dian-Qian-Gui area in southwest China are hosted in Paleozoic and early Mesozoic sedimentary rocks along the southwest margin of the Yangtze (South China) Precambrian craton. Most deposits have characteristics similar to Carlin-type Au deposits and are spatially associated, on a regional scale, with deposits of coal, Sb, barite, As, Tl, and Hg. Sedimentary rock-hosted Au deposits are disseminated stratabound and(or) structurally controlled. The deposits have many similar characteristics, particularly mineralogy, geochemistry, host rock, and structural control. Most deposits are associated with structural domes, stratabound breccia bodies, unconformity surfaces or intense brittle-ductile deformation zones, such as the Youjiang fault system. Typical characteristics include impure carbonate rock or calcareous and carbonaceous host rock that contains disseminated pyrite, marcasite, and arsenopyrite-usually with ??m-sized Au, commonly in As-rich rims of pyrite and in disseminations. Late realgar, orpiment, stibnite, and Hg minerals are spatially associated with earlier forming sulfide minerals. Minor base-metal sulfides, such as galena, sphalerite, chalcopyrite, and Pb-Sb-As-sulphosalts also are present. The rocks locally are silicified and altered to sericite-clay (illite). Rocks and(or) stream-sediment geochemical signatures typically include elevated concentrations of As, Sb, Hg, Tl, and Ba. A general lack of igneous rocks in the Dian-Qian-Gui area implies non-pluton-related, ore forming processes. Some deposits contain evidence that sources of the metal may have originated in carbonaceous parts of the sedimentary pile or other sedimentary or volcanic horizons. This genetic process may be associated with formation and mobilization of petroleum and Hg in the region and may also be related to As-, Au-, and Tl-bearing coal horizons. Many deposits also contain textures and features indicative of strong structural control by tectonic domes or shear zones and also suggest syndeformational ore deposition, possibly related to the Youjiang fault system. Several sedimentary rock-hosted Au deposits in the Dian-Qian-Gui area also are of the red earth-type and Au grades have been concentrated and enhanced during episodes of deep weathering. ?? 2006 Elsevier B.V. All rights reserved.

  19. Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels

    DOE Data Explorer

    Hunt, Jonathan

    2013-01-31

    In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances rock permeability and therefore conductive heat transfer to the circulating geothermal fluid (e.g. water or supercritical carbon dioxide). The ultimate goal is to increase or improve the thermal energy production from the subsurface by either optimal designs of injection and production wells or by altering the fracture permeability to create different zones of circulation that can be exploited in geothermal heat extraction. Moreover, hydraulic fracturing can lead to the creation of undesirable short-circuits or fast flow-paths between the injection and extraction wells leading to a short thermal residence time, low heat recovery, and thus a short-life of the EGS. A potential remedy to these problems is to deploy a cementing (blocking, diverting) agent to minimize short-cuts and/or create new circulation cells for heat extraction. A potential diverting agent is the colloidal silica by-product that can be co-produced from geothermal fluids. Silica gels are abundant in various surface and subsurface applications, yet they have not been evaluated for EGS applications. In this study we are investigating the benefits of silica gel deployment on thermal response of an EGS, either by blocking short-circuiting undesirable pathways as a result of diverting the geofluid to other fractures; or creating, within fractures, new circulation cells for harvesting heat through newly active surface area contact. A significant advantage of colloidal silica is that it can be co-produced from geothermal fluids using an inexpensive membrane-based separation technology that was developed previously using DOE-GTP funding. This co-produced silica has properties that potentially make it useful as a fluid diversion agent for subsurface applications. Colloidal silica solutions exist as low-viscosity fluids during their “induction period” but then undergo a rapid increase in viscosity (gelation) to form a solid gel. The length of the induction period can be manipulated by varying the properties of the solution, such as silica concentration and colloid size. We believe it is possible to produce colloidal silica gels suitable for use as diverting agents for blocking undesirable fast-paths which result in short-circuiting the EGS once hydraulic fracturing has been deployed. In addition, the gels could be used in conventional geothermal fields to increase overall energy recovery by modifying flow.

  20. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James B. Paces; Zell E. Peterman; Kiyoto Futa

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously aroundmore » the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values for Paleozoic seawater present at the time of deposition. Many of the samples have 87Sr/86Sr compositions that remain relatively unmodified from expected seawater values. However, rocks underlying the northern Nevada Test Site as well as rocks exposed at Bare Mountain commonly have elevated 87Sr/86Sr values derived from post-depositional addition of radiogenic Sr most likely from fluids circulating through rubidium-rich Paleozoic strata or Precambrian basement rocks.« less

  1. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Vho, Alice; Bistacchi, Andrea

    2015-04-01

    A quantitative analysis of fault-rock distribution is of paramount importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation along faults at depth. Here we present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM). This workflow has been developed on a real case of study: the strike-slip Gole Larghe Fault Zone (GLFZ). It consists of a fault zone exhumed from ca. 10 km depth, hosted in granitoid rocks of Adamello batholith (Italian Southern Alps). Individual seismogenic slip surfaces generally show green cataclasites (cemented by the precipitation of epidote and K-feldspar from hydrothermal fluids) and more or less well preserved pseudotachylytes (black when well preserved, greenish to white when altered). First of all, a digital model for the outcrop is reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs, processed with VisualSFM software. By using high resolution photographs the DOM can have a much higher resolution than with LIDAR surveys, up to 0.2 mm/pixel. Then, image processing is performed to map the fault-rock distribution with the ImageJ-Fiji package. Green cataclasites and epidote/K-feldspar veins can be quite easily separated from the host rock (tonalite) using spectral analysis. Particularly, band ratio and principal component analysis have been tested successfully. The mapping of black pseudotachylyte veins is more tricky because the differences between the pseudotachylyte and biotite spectral signature are not appreciable. For this reason we have tested different morphological processing tools aimed at identifying (and subtracting) the tiny biotite grains. We propose a solution based on binary images involving a combination of size and circularity thresholds. Comparing the results with manually segmented images, we noticed that major problems occur only when pseudotachylyte veins are very thin and discontinuous. After having tested and refined the image analysis processing for some typical images, we have recorded a macro with ImageJ-Fiji allowing to process all the images for a given DOM. As a result, the three different types of rocks can be semi-automatically mapped on large DOMs using a simple and efficient procedure. This allows to develop quantitative analyses of fault rock distribution and thickness, fault trace roughness/curvature and length, fault zone architecture, and alteration halos due to hydrothermal fluid-rock interaction. To improve our workflow, additional or different morphological operators could be integrated in our procedure to yield a better resolution on small and thin pseudotachylyte veins (e.g. perimeter/area ratio).

  2. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Paces, James B.; Peterman, Zell E.; Futo, Kiyoto; Oliver, Thomas A.; Marshall, Brian D.

    2007-01-01

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values for Paleozoic seawater present at the time of deposition. Many of the samples have 87Sr/86Sr compositions that remain relatively unmodified from expected seawater values. However, rocks underlying the northern Nevada Test Site as well as rocks exposed at Bare Mountain commonly have elevated 87Sr/86Sr values derived from post-depositional addition of radiogenic Sr most likely from fluids circulating through rubidium-rich Paleozoic strata or Precambrian basement rocks.

  3. Serpentinization and fluid-rock interaction in Jurassic mafic and ultramafic sea-floor: constraints from Ligurian ophiolite sequences

    NASA Astrophysics Data System (ADS)

    Vogel, Monica; Früh-Green, Gretchen L.; Boschi, Chiara; Schwarzenbach, Esther M.

    2014-05-01

    The Bracco-Levanto ophiolitic complex (Eastern Liguria) represents one of the largest and better-exposed ophiolitic successions in the Northern Apennines. It is considered to be a fragment of heterogeneous Jurassic lithosphere that records tectono-magmatic and alteration histories similar to those documented along the Mid-Atlantic Ridge, such as at the 15°20'N area and the Atlantis Massif at 30°N. Structural and petrological studies on these rocks provide constraints on metamorphic/deformation processes during formation and hydrothermal alteration of the Jurassic oceanic lithosphere. We present a petrological and geochemical study of deformation processes and fluid-rock interaction in the Bracco-Levanto ophiolitic complex and compare these to modern oceanic hydrothermal systems, such as the Lost City Hydrothermal Field hosted in ultramafic rocks on the Atlantis Massif. A focus is on investigating mass transfer and fluid flow paths during high and low temperature hydrothermal activity, and on processes leading to hydrothermal carbonate precipitation and the formation of ophicalcites, which are characteristic of the Bracco-Levanto sequences. Major element and mineral compositional data allow us to distinguish a multiphase history of alteration characterized by: (1) widespread SiO2 metasomatism during progressive serpentinization, and (2) multiple phases of veining and carbonate precipitation associated with circulation of seawater and high fluid-rock ratios in the shallow ultramafic-dominated portions of the Jurassic seafloor. We observe regional variations in MgO, SiO2 and Al2O3, suggesting Si-flux towards stratigraphically higher units. In general, the ophicalcites have higher Si, Al and Fe concentrations and lower Mg than the serpentinite basement rocks or serpentinites with minimal carbonate veins. Bulk rock trace element data and Sr isotope ratios indicate seawater reacting with rocks of more mafic composition, then channeled towards stratigraphically higher units, leading to Si metasomatism in the serpentinites and ophicalcites. Channelling of Si-rich fluids is also indicated by amphibole and talc growth in shear zones and wall rock around the ophicalcites. δ18O-values of the carbonate veins indicate temperatures up to 150°C and document a decrease in temperature with ongoing serpentinization. Comparison with serpentinites from the Atlantis Massif and 15°20'N indicates a similar degree of Si enrichment in the modern seafloor and suggests that Si-metasomatism may be a fundamental process associated with serpentinization at slow-spreading ridge environments.

  4. Differential adipokine receptor expression on circulating leukocyte subsets in lean and obese children.

    PubMed

    Keustermans, Genoveva; van der Heijden, Laila B; Boer, Berlinda; Scholman, Rianne; Nuboer, Roos; Pasterkamp, Gerard; Prakken, Berent; de Jager, Wilco; Kalkhoven, Eric; Janse, Arieke J; Schipper, Henk S

    2017-01-01

    Childhood obesity prevalence has increased worldwide and is an important risk factor for type 2 diabetes (T2D) and cardiovascular disease (CVD). The production of inflammatory adipokines by obese adipose tissue contributes to the development of T2D and CVD. While levels of circulating adipokines such as adiponectin and leptin have been established in obese children and adults, the expression of adiponectin and leptin receptors on circulating immune cells can modulate adipokine signalling, but has not been studied so far. Here, we aim to establish the expression of adiponectin and leptin receptors on circulating immune cells in obese children pre and post-lifestyle intervention compared to normal weight control children. 13 obese children before and after a 1-year lifestyle intervention were compared with an age and sex-matched normal weight control group of 15 children. Next to routine clinical and biochemical parameters, circulating adipokines were measured, and flow cytometric analysis of adiponectin receptor 1 and 2 (AdipoR1, AdipoR2) and leptin receptor expression on peripheral blood mononuclear cell subsets was performed. Obese children exhibited typical clinical and biochemical characteristics compared to controls, including a higher BMI-SD, blood pressure and circulating leptin levels, combined with a lower insulin sensitivity index (QUICKI). The 1-year lifestyle intervention resulted in stabilization of their BMI-SD. Overall, circulating leukocyte subsets showed distinct adipokine receptor expression profiles. While monocytes expressed high levels of all adipokine receptors, NK and iNKT cells predominantly expressed AdipoR2, and B-lymphocytes and CD4+ and CD8+ T-lymphocyte subsets expressed AdipoR2 as well as leptin receptor. Strikingly though, leukocyte subset numbers and adipokine receptor expression profiles were largely similar in obese children and controls. Obese children showed higher naïve B-cell numbers, and pre-intervention also higher numbers of immature transition B-cells and intermediate CD14++CD16+ monocytes combined with lower total monocyte numbers, compared to controls. Furthermore, adiponectin receptor 1 expression on nonclassical CD14+CD16++ monocytes was consistently upregulated in obese children pre-intervention, compared to controls. However, none of the differences in leukocyte subset numbers and adipokine receptor expression profiles between obese children and controls remained significant after multiple testing correction. First, the distinct adipokine receptor profiles of circulating leukocyte subsets may partly explain the differential impact of adipokines on leukocyte subsets. Second, the similarities in adipokine receptor expression profiles between obese children and normal weight controls suggest that adipokine signaling in childhood obesity is primarily modulated by circulating adipokine levels, instead of adipokine receptor expression.

  5. Respirable dust measured downwind during rock dust application.

    PubMed

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  6. Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 2

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S. (Editor); Joslin, Ronald D. (Editor)

    2005-01-01

    This conference proceeding is comprised of papers that were presented at the NASA/ONR Circulation Control Workshop held 16-17 March 2004 at the Radisson-Hampton in Hampton, VA. Over two full days, 30 papers and 4 posters were presented with 110 scientists and engineers in attendance, representing 3 countries. As technological advances influence the efficiency and effectiveness of aerodynamic and hydrodynamic applications, designs, and operations, this workshop was intended to address the technologies, systems, challenges and successes specific to Coanda driven circulation control in aerodynamics and hydrodynamics. A major goal of this workshop was to determine the state-of-the-art in circulation control and to assess the future directions and applications for circulation control. The 2004 workshop addressed applications, experiments, computations, and theories related to circulation control, emphasizing fundamental physics, systems analysis, and applied research. The workshop consisted of single session oral presentations, posters, and written papers that are documented in this unclassified conference proceeding. The format of this written proceeding follows the agenda of the workshop. Each paper is followed with the presentation given at the workshop. the editors compiled brief summaries for each effort that is at the end of this proceeding. These summaries include the paper, oral presentation, and questions or comments that occurred during the workshop. The 2004 Circulation Control Workshop focused on applications including Naval vehicles (Surface and Underwater vehicles), Fixed Wing Aviation (general aviation, commercial, cargo, and business aircraft); V/STOL platforms (helicopters, military aircraft, tilt rotors); propulsion systems (propellers, jet engines, gas turbines), and ground vehicles (automotive, trucks, and other); wind turbines, and other nontraditional applications (e.g., vacuum cleaner, ceiling fan). As part of the CFD focus area of the 2004 CC Workshop, CFD practitioners were invited to compute a two-dimensional benchmark problem for which geometry, flow conditions, grids, and experimental data were available before the workshop. The purpose was to accumulate a database of simulations for a single problem using a range of CFD codes, turbulence models, and grid strategies so as to expand knowledge of model performance/requirements and guide simulation of practical CC configurations.

  7. Effect of a rock dust amendment on disease severity of tomato bacterial wilt.

    PubMed

    Li, Jian-Gang; Dong, Yuan-Hua

    2013-01-01

    Nutrients are important for growth and development of plants and microbes, and they are also important factors in plant disease control. The objective of this study was to evaluate the effect of a rock dust used as a fertilizer in maintaining health of soil and tomato plants under greenhouse conditions. Four treatments-including M (commercial organic fertilizer), A (rock dust soil amendment), M + A (commercial organic fertilizer + rock dust soil amendment) and CK (blank control)--were examined for their effect on soil properties, soil enzymatic activity, plant growth and control efficacy against tomato bacterial wilt. Treatments A and M + A were significantly better than other treatments in changing soil pH, increasing it from acidic (pH 5.13) to nearly neutral (pH 6.81 and 6.70, respectively). Enzymatic activities in soil were notably influenced by the different treatments--particularly treatment M + A, which increased the activities of alkaline phosphatase, urease, catalase and sucrase to a greater extent in soil. There was no significant difference (P < 0.05) in the effects of treatments A and M + A on tomato plant height, stem diameter and biomass. The effect of the four treatments on the chlorophyll content and photosynthetic rate (in decreasing order) were M + A, A, M and CK. The replicate greenhouse experiments showed that the control efficacies of treatments M + A, A, and M against bacterial wilt were respectively 89.99, 81.11 and 8.89 % in first experiment and with the efficacies of 84.55, 74.36, and 13.49 % in the replicate; indicating that rock dust played a key role in the plant-soil interaction. The raised soil pH and Ca content were the key factors for the rock dust amendment controlling bacterial wilt under greenhouse conditions.

  8. A Novel Mobile Testing Equipment for Rock Cuttability Assessment: Vertical Rock Cutting Rig (VRCR)

    NASA Astrophysics Data System (ADS)

    Yasar, Serdar; Yilmaz, Ali Osman

    2017-04-01

    In this study, a new mobile rock cutting testing apparatus was designed and produced for rock cuttability assessment called vertical rock cutting rig (VRCR) which was designed specially to fit into hydraulic press testing equipment which are available in almost every rock mechanics laboratory. Rock cutting trials were initiated just after the production of VRCR along with calibration of the measuring load cell with an external load cell to validate the recorded force data. Then, controlled rock cutting tests with both relieved and unrelieved cutting modes were implemented on five different volcanic rock samples with a standard simple-shaped wedge tool. Additionally, core cutting test which is an important approach for roadheader performance prediction was simulated with VRCR. Mini disc cutters and point attack tools were used for execution of experimental trials. Results clearly showed that rock cutting tests were successfully realized and measuring system is delicate to rock strength, cutting depth and other variables. Core cutting test was successfully simulated, and it was also shown that rock cutting tests with mini disc cutters and point attack tools are also successful with VRCR.

  9. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development

    NASA Astrophysics Data System (ADS)

    Lu, Lianghua; Pang, Zhonghe; Kong, Yanlong; Guo, Qi; Wang, Yingchun; Xu, Chenghua; Gu, Wen; Zhou, Lingling; Yu, Dandan

    2018-01-01

    Geothermal resources are practical and competitive clean-energy alternatives to fossil fuels, and study on the recharge sources of geothermal water supports its sustainable exploitation. In order to provide evidence on the recharge source of water and circulation dynamics of the Tangshan Geothermal System (TGS) near Nanjing (China), a comprehensive investigation was carried out using multiple chemical and isotopic tracers (δ2H, δ18O, δ34S, 87Sr/86Sr, δ13C, 14C and 3H). The results confirm that a local (rather than regional) recharge source feeds the system from the exposed Cambrian and Ordovician carbonate rocks area on the upper part of Tangshan Mountain. The reservoir temperature up to 87 °C, obtained using empirical as well as theoretical chemical geothermometers, requires a groundwater circulation depth of around 2.5 km. The temperature of the geothermal water is lowered during upwelling as a consequence of mixing with shallow cold water up to a 63% dilution. The corrected 14C age shows that the geothermal water travels at a very slow pace (millennial scale) and has a low circulation rate, allowing sufficient time for the water to become heated in the system. This study has provided key information on the genesis of TGS and the results are instructive to the effective management of the geothermal resources. Further confirmation and even prediction associated with the sustainability of the system could be achieved through continuous monitoring and modeling of the responses of the karstic geothermal reservoir to hot-water mining.

  10. In Situ Observation of Failure Mechanisms Controlled by Rock Masses with Weak Interlayer Zones in Large Underground Cavern Excavations Under High Geostress

    NASA Astrophysics Data System (ADS)

    Duan, Shu-Qian; Feng, Xia-Ting; Jiang, Quan; Liu, Guo-Feng; Pei, Shu-Feng; Fan, Yi-Lin

    2017-09-01

    A weak interlayer zone (WIZ) is a poor rock mass system with loose structure, weak mechanical properties, variable thickness, random distribution, strong extension, and high risk due to the shear motion of rock masses under the action of tectonism, bringing many stability problems and geological hazards, especially representing a potential threat to the overall stability of rock masses with WIZs in large underground cavern excavations. Focusing on the deformation and failure problems encountered in the process of excavation unloading, this research proposes comprehensive in situ observation schemes for rock masses with WIZs in large underground cavern on the basis of the collection of geological, construction, monitoring, and testing data. The schemes have been fully applied in two valuable project cases of an underground cavern group under construction in the southwest of China, including the plastic squeezing-out tensile failure and the structural stress-induced collapse of rock masses with WIZs. In this way, the development of rock mass failure, affected by the step-by-step excavations along the cavern's axis and the subsequent excavation downward, could be observed thoroughly. Furthermore, this paper reveals the preliminary analyses of failure mechanism of rock masses with WIZs from several aspects, including rock mass structure, strength, high stress, ground water effects, and microfracture mechanisms. Finally, the failure particularities of rock masses with WIZs and rethink on prevention and control of failures are discussed. The research results could provide important guiding reference value for stability analysis, as well as for rethinking the excavation and support optimization of rock masses with WIZs in similar large underground cavern under high geostress.

  11. Rock falls landslides in Abruzzo (Central Italy) after recent earthquakes: morphostructural control

    NASA Astrophysics Data System (ADS)

    Piacentini, T.; Miccadei, E.; Di Michele, R.; Esposito, G.

    2012-04-01

    Recent earthquakes show that damages due to collateral effects could, in some cases exceed the economic and social losses directly connected to the seismic shaking. The earthquake heavily damaged urban areas and villages and induced several coseismic deformations and geomorphologic effects, including different types of instability such as: rock falls, debris falls, sink holes, ground collapses, liquefaction, etc. Among the effects induced by the seismic energy release, landslides are one of the most significant in terms of hazard and related risk, owing to the occurrence of exposed elements. This work analyzes the geomorphological effects, and particularly the rock falls, which occurred in the L'Aquila area during and immediately after the April 2009 earthquake. The analysis is focused mainly on the rock fall distribution related to the local morphostructural setting. Rock falls occurred mostly on calcareous bedrock slopes or on scarps developed on conglomerates and breccias of Quaternary continental deposits. Geological and geomorphological surveys have outlined different types of rock falls on different morpho-structural settings, which can be summarized as follow: 1)rock falls on calcareous faulted homoclinal ridges; 2)rock falls on calcareous rock slopes of karst landforms; 3)rock falls on structural scarps on conglomerates and breccias of Quaternary continental deposits. The first type of rockfall occurred particularly along main gorges carved on calcareous rocks and characterised by very steep fault slopes and structural slopes (i.e. San Venanzio Gorges, along the Aterno river). In these cases already unstable slopes due to lithological and structural control were triggered as rockfalls also at high distance from the epicentre area. These elements provide useful indications both at local scale, for seismic microzonation studies and seismic risk prevention, and at regional scale, for updating studies and inventory of landslides.

  12. Environmental Assessment. Proposed Sahara Mustard Control on the Barry M. Goldwater Range - East

    DTIC Science & Technology

    2012-02-01

    While some sites consist of only a few artifacts or a single archaeological feature such as a trail or a hearth ; others cover a large area and...such as hearths , roasting pits, and fire-affected rock, cleared areas or sleeping circles, linear and circular rock alignments, rock cairns, trails

  13. Photo essay: Trinchera dams for erosion control and streambed restoration (Foto ensayo: Trincheras para controlar la erosion y restaurar el cauce de los arroyos)

    Treesearch

    Valer Austin; Josiah Austin

    2006-01-01

    Loose rock structures, called trincheras or rock curtains, can be constructed across streambeds to slow water flow, allowing water to seep into the ground. Soil and debris collect behind the rocks, forming a bed for vegetation.

  14. RFQ accelerator tuning system

    DOEpatents

    Bolie, V.W.

    1990-07-03

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

  15. RFQ accelerator tuning system

    DOEpatents

    Bolie, Victor W.

    1990-01-01

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

  16. RFQ (radio-frequency quadrupole) accelerator tuning system

    DOEpatents

    Bolie, V.W.

    1988-04-12

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in responsive to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. 3 figs., 2 tabs.

  17. The investigation of circulating microRNAs associated with lipid metabolism in childhood obesity.

    PubMed

    Can, U; Buyukinan, M; Yerlikaya, F H

    2016-06-01

    Childhood obesity is an increasing health challenge related to increased risk of chronic diseases. microRNAs (miRNAs) are noncoding short RNA molecules regulating multiple biological processes linked to obesity. We aimed at evaluating the association between circulating miRNA levels and lipid metabolism in obese and non-obese children and adolescents. By constituting study group, 45 obese children and adolescents were recruited. To perform comparisons with study group, 41 lean controls were matched for age and sex. Using real-time quantitative PCR analysis, circulating miRNAs were evaluated in both groups. Circulating miR-335 (P < 0.001), miR-143 (P = 0.001) and miR-758 (P = 0.006) in obese children were significantly lower than those of controls. However, circulating miR-27 (P = 0.032), miR-378 (P < 0.001) and miR-370 (P = 0.045) in obese children were significantly higher, compared with those of controls. In addition, circulating miR-33 in obese children was higher than those of controls, but no significant difference was present (P = 0.687). Our findings showed that a significant association is present between circulating miR-370, miR-33, miR-378, miR-27, miR-335, miR-143 and miR-758 values, and childhood obesity. Low levels of miR-335, miR-143 and miR-758, and high levels of miR-27, miR-378, miR-33 and miR-370 may have been responsible for elevated triglycerides and low-density lipoprotein (LDL-C) levels, and low level of high-density lipoprotein (HDL-C) in obese subjects. Therefore, miRNAs may be a good novel biomarker for childhood obesity. © 2015 World Obesity.

  18. Public speaking stress-induced neuroendocrine responses and circulating immune cell redistribution in irritable bowel syndrome.

    PubMed

    Elsenbruch, Sigrid; Lucas, Ayscha; Holtmann, Gerald; Haag, Sebastian; Gerken, Guido; Riemenschneider, Natalie; Langhorst, Jost; Kavelaars, Annemieke; Heijnen, Cobi J; Schedlowski, Manfred

    2006-10-01

    Augmented neuroendocrine stress responses and altered immune functions may play a role in the manifestation of functional gastrointestinal (GI) disorders. We tested the hypothesis that IBS patients would demonstrate enhanced psychological and endocrine responses, as well as altered stress-induced redistribution of circulating leukocytes and lymphocytes, in response to an acute psychosocial stressor when compared with healthy controls. Responses to public speaking stress were analyzed in N = 17 IBS patients without concurrent psychiatric conditions and N = 12 healthy controls. At baseline, immediately following public speaking, and after a recovery period, state anxiety, acute GI symptoms, cardiovascular responses, serum cortisol and plasma adrenocorticotropic hormone (ACTH) were measured, and numbers of circulating leukocytes and lymphocyte subpopulations were analyzed by flow cytometry. Public speaking led to significant cardiovascular activation, a significant increase in ACTH, and a redistribution of circulating leukocytes and lymphocyte subpopulations, including significant increases in natural killer cells and cytotoxic/suppressor T cells. IBS patients demonstrated significantly greater state anxiety both at baseline and following public speaking. However, cardiovascular and endocrine responses, as well as the redistribution of circulating leukocytes and lymphocyte subpopulations after public speaking stress, did not differ for IBS patients compared with controls. In IBS patients without psychiatric comorbidity, the endocrine response as well as the circulation pattern of leukocyte subpopulations to acute psychosocial stress do not differ from healthy controls in spite of enhanced emotional responses. Future studies should discern the role of psychopathology in psychological and biological stress responses in IBS.

  19. The architecture and frictional properties of faults in shale

    NASA Astrophysics Data System (ADS)

    De Paola, Nicola; Murray, Rosanne; Stillings, Mark; Imber, Jonathan; Holdsworth, Robert

    2015-04-01

    The geometry of brittle fault zones and associated fracture patterns in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement ≤ 3 m) cut exhumed oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry, controlled by the reactivation of en-echelon, pre-existing joints in the protolith. Cores typically show a poorly developed damage zone, up to 25 cm wide, and sharp contact with the protolith rocks. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm, composed of angular clasts of reworked fault and protolith rock, dispersed within a sparry calcite cement. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates. Experiments at seismic slip rates (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1). Our field observations show that brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults, where slip localization may lead to the development of a thin slip zone made of very fine-grained gouges. The velocity-strengthening behaviour and negative healing rates observed during our laboratory experiments, suggest that slow, stable sliding faulting should take place within the protolith rocks and slip zone gouges. This behaviour will cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence, limiting oil and gas production during reservoir stimulation. During slipping events, fluid circulation may be very effective along the fault zone at dilational jogs - where oil and gas production should be facilitated by the creation of large fracture areas - and rather restricted in the adjacent areas of the protolith, due to the lack of a well-developed damage zone and the low permeability of the matrix and slip zone gouge. Finally, our experiments performed at seismic slip rates show that seismic ruptures may still be able to propagate in a very efficient way within the slip zone of fluid-saturated shale faults, due to the attainment of instantaneous weakening.

  20. Effect of Discrete Fracture Network Characteristics on the Sustainability of Heat Production in Enhanced Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Riahi, A.; Damjanac, B.

    2013-12-01

    Viability of an enhanced or engineered geothermal reservoir is determined by the rate of produced fluid at production wells and the rate of temperature drawdown in the reservoir as well as that of the produced fluid. Meeting required targets demands sufficient permeability and flow circulation in a relatively large volume of rock mass. In-situ conditions such overall permeability of the bedrock formation, magnitude and orientation of stresses, and the characteristics of the existing Discrete Fracture Network (DFN) greatly affect sustainable heat production. Because much of the EGS resources are in formations with low permeability, different stimulation techniques are required prior to the production phase to enhance fluid circulation. Shear stimulation or hydro-shearing is the method of injecting a fluid into the reservoir with the aim of increasing the fluid pressure in the naturally fractured rock and inducing shear failure or slip events. This mechanism can enhance the system's permeability through permanent dilatational opening of the sheared fractures. Using a computational modeling approach, the correlation between heat production and DFN statistical characteristics, namely the fracture length distribution, fracture orientation, and also fracture density is studied in this paper. Numerical analyses were completed using two-dimensional distinct element code UDEC (Itasca, 2011), which represents rock masses as an assembly of interacting blocks separated by fractures. UDEC allows for simulation of fracture propagation along the predefined planes only (i.e., the trajectory of the hydraulic fracture is not part of the solution of the problem). Thus, the hydraulic fracture is assumed to be planar, aligned with the direction of the major principal stress. The pre-existing fractures were represented explicitly. They are discontinuities which deform elastically, but also can open and slip (Coulomb slip law) as a function of pressure and total stress changes. The fluid injection into the reservoir during stimulation phase was simulated using a fully coupled hydro-mechanical model. The heat production phase was simulated using a coupled thermo-hydro-mechanical model. In these simulations, both advective heat transfer by fluid flow and the conductive heat transfer within the rock blocks were modeled. The effect of temperature change on stresses and fracture aperture, and thus flow rates was considered. The response of formations with different DFN characteristics are analyzed by evaluating the production rate, produced power, and total energy extracted from the system over a period of five years. By simulating a full cycle of stimulation and production, the numerical modeling approach represents a realistic estimate of evolving permeability and evaluates how stimulation can be beneficial to the production phase. It is believed that these numerical sensitivity studies can provide valuable insight in evaluation of the potential of success of an EGS project, and can be used to better design the operational parameters in order to optimize heat production. Keywords: Numerical modeling, rock mechanics, discrete fracture network, stimulation, engineered geothermal reservoirs, heat production

  1. Hydraulic properties of siliciclastic geothermal reservoir rocks under triaxial stress conditions, a multidisciplinary approach.

    NASA Astrophysics Data System (ADS)

    Bakker, Richard; Gholizadeh Doonechaly, Nima; Bruhn, David

    2017-04-01

    Cretaceous Sandstone bodies in the subsurface of western Netherlands are already used for heating some of the greenhouses in that area. The reservoirs used are typically at depths between 1500 and 3000m, with temperatures generally <100 ˚C. For higher temperature applications deeper reservoirs are required. However, deeper reservoirs are subjected to higher effective pressures due to more overburden, which can lead to more compacted rocks, and thereby reduced permeability. We assess the effects of effective pressure on Triassic Buntsandstein, a formation targeted to act as a deep geothermal reservoir in the western Netherlands. Rock samples are acquired from laterally equivalent quarries and prepared for permeability measurements within a tri-axial apparatus. To determine anisotropy, cores are drilled both perpendicular and parallel to bedding. Experiments are conducted by maintaining hydrostatic confining pressure, stepwise increasing up to 700 bar (if still permeable enough for accurate measurements) and a pore pressure of 25 bar. At each step the permeability is assessed by imposing a number of constant flow rates and continuous measurement of the pore pressure difference between up and downstream reservoirs. Throughout the experiment the sample strain is measured in radial and axial directions, such that elastic constants can be determined and micromechanical mechanisms may be observed. In addition to measurements on in-tact rock samples, we also assess the effect of induced fracturing on permeability by similar measurements. First, rock samples are fractured within the tri-axial cell with normal jacketing to evaluate the stress conditions of failure. Secondly, the experiment is repeated using relatively strong jackets which remain sealing after sample failure, allowing for permeability measurements. Preliminary results show that an increase of confining pressure leads to a decrease of permeability by three orders of magnitude, from 1e-13 to 1e-16 m2. Anisotropy results in permeability parallel to bedding to be roughly one order of magnitude higher than perpendicular to it. Based on the collected data, the validity of the available exponential permeability-porosity-stress relationship is assessed and the model parameters with the best fitting characteristic is chosen for the selected formation. The established relationship is then used as an input for field scale numerical simulation of cold fluid circulation in Buntsandstein formation to predict the reservoir behavior over longer term of fluid circulation. The Finite Element Method is used to evaluate the reservoir behaviour during injection/production of the cold/hot fluid in a fully coupled poro-thermo-elastic environment. Weighted residual method is used for deriving the weak formulation of the mass-, momentum- and energy balance equations. Consequently the standard Galerkin approach is used for spatial discretization of the weak formulas. Temporal discretization is also carried out in a fully implicit manner to avoid the time-stepping limitation. The preliminary results of this study show a promising capacity of heat extraction from the Buntsandstein formation as a geothermal reservoir within western Netherlands.

  2. Association of Circulating Orexin-A Level With Metabolic Risk Factors in North Indian Pre Menopausal Women.

    PubMed

    Gupta, Vani; Mishra, Sameeksha; Kumar, Sandeep; Mishra, Supriya

    2015-01-01

    The present study was designed to investigate the association between circulating Orexin-A level with metabolic risk factors in North Indian adult women. 342 women were enrolled for the case-control study, 172 women were with metabolic syndrome (mets) and 170 healthy control women were without metabolic syndrome, (womets) according to (NCEP ATP III criteria). Circulating Orexin-A level was determined by enzyme-linked immunosorbent assay. Observations indicated low levels of orexin-A (26.06 ± 6.09 ng/ml) in women with mets and other metabolic risk factors compared to women without metabolic syndrome (36.50 ± 10.42 ng/ml). Further, in women with metabolic syndrome, circulating Orexin A was significantly associated with waist circumference, triglyceride (negative correlation) and hyperdensity lipoprotein (positive correlation). Our study shows that circulating Orexin A was found to be significantly associated with hyperlipidemia, obesity and obesity-related disorders in North Indian premenopausal women.

  3. Production of systemically circulating Hedgehog by the intestine couples nutrition to growth and development.

    PubMed

    Rodenfels, Jonathan; Lavrynenko, Oksana; Ayciriex, Sophie; Sampaio, Julio L; Carvalho, Maria; Shevchenko, Andrej; Eaton, Suzanne

    2014-12-01

    In Drosophila larvae, growth and developmental timing are regulated by nutrition in a tightly coordinated fashion. The networks that couple these processes are far from understood. Here, we show that the intestine responds to nutrient availability by regulating production of a circulating lipoprotein-associated form of the signaling protein Hedgehog (Hh). Levels of circulating Hh tune the rates of growth and developmental timing in a coordinated fashion. Circulating Hh signals to the fat body to control larval growth. It regulates developmental timing by controlling ecdysteroid production in the prothoracic gland. Circulating Hh is especially important during starvation, when it is also required for mobilization of fat body triacylglycerol (TAG) stores. Thus, we demonstrate that Hh, previously known only for its local morphogenetic functions, also acts as a lipoprotein-associated endocrine hormone, coordinating the response of multiple tissues to nutrient availability. © 2014 Rodenfels et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Marine and nonmarine gas-bearing rocks in Upper Cretaceous Blackhawk and Neslen Formations, eastern Uinta Basin, Utah: sedimentology, diagenesis, and source rock potential

    USGS Publications Warehouse

    Pitman, Janet K.; Franczyk, K.J.; Anders, D.E.

    1987-01-01

    Thermogenic gas was generated from interbedded humic-rich source rocks. The geometry and distribution of hydrocarbon source and reservoir rocks are controlled by depositional environment. The rate of hydrocarbon generation decreased from the late Miocene to the present, owing to widespread cooling that occurred in response to regional uplift and erosion associated with the development of the Colorado Plateau. -from Authors

  5. Geogenic Groundwater Contamination: A Case Study Of Canakkale - Western Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ozan; Çalık, Ayten

    2016-04-01

    Study area is located NW of Turkey. Total area of the drainage basin is 465 square kilometers and mostly covered by volcanic rocks. Majority of these rocks have highly altered and lost their primary properties because of alteration processes. Especially argillic alteration is common. Tectonic movements and cooling fractures were created suitable circulation environment of groundwater in the rocks (secondary porosity). Alteration affects the composition of groundwater and some rock elements pass into groundwater during the movement of water in the cavities of rocks. High concentration of natural contaminants related to water-rock interaction in spring water has been studied in this research. Field measurements such as pH, electrical conductivity, temperature, oxidation-reduction potential and salinity carried out in 500 water points (spring, drilling, well and stream). 150 water samples taken from the water points and 50 rock samples taken from the source of springs has been investigated in point of major anion-cations, heavy metals and trace elements. Some components in the water such as pH (3.5-9.1), specific electrical conductivity (84-6400 microS/cm), aluminum (27-44902 ppb), iron (10-8048 ppb), manganese (0.13-8740 ppb), nickel (0.2-627 ppb), lead (0.1-42.5 ppb) and sulphate (10 to 1940 ppm) extremely high or low in the springs sourced from especially highly altered Miocene aged volcanic rocks. Some measured parameters highly above according to European Communities Drinking Water Regulations (2007) and TS266 (2015-Intended for Human Consumption Water Regulations of Turkey) drinking water standards. The most common element which is found in the groundwater is aluminum that is higher than to the drinking water standards (200 microg/L). The highest levels of the Al values measured in acidic waters with very low pH (3.4) emerging from altered volcanic rocks because of acid mine drainage in Obakoy district, north of the study area. The abundance of this element in some water sources is believed to be closely associated with the alteration of feldspar minerals in the andesite and basalts of the Middle Eocene Sahinli Formation. Various studies related to topic show that consumption of these water containing high aluminum, iron, manganese, nickel and lead for drinking purposes cause serious health problems (Alzheimer's, Parkinson's, physical and mental development disorders in children, various cancers, stomach - intestinal disorders and skin diseases). This situation limits the usable groundwater potential and causes potable water scarcity in the region. Consequently, while using of these groundwater resources in the region, taking several precautions are necessary and doing new water resource explorations are recommended. This study is supported by The Turkish Scientific and Technical Research Institute (Project number: 113Y577). Keywords: Geogenic groundwater contamination, Water-Rock Interaction, Canakkale

  6. Application of air hammer drilling technology in igneous rocks of Junggar basin

    NASA Astrophysics Data System (ADS)

    Zhao, Hongshan; Feng, Guangtong; Yu, Haiye

    2018-03-01

    There were many technical problems such as serious well deviation, low penetration rate and long drilling cycle in igneous rocks because of its hardness, strong abrasive and poor drillability, which severely influenced the exploration and development process of Junggar basin. Through analyzing the difficulties of gas drilling with roller bits in Well HS 2, conducting the mechanics experiments about igneous rock, and deeply describing the rock-breaking mechanism of air hammer drilling and its adaptability in igneous rocks, air hammer drilling can realize deviation control and fast drilling in igneous rocks of piedmont zone and avoid the wear and fatigue fracture of drilling strings due to its characteristics of low WOB, low RPM and high frequency impact. Through firstly used in igneous rocks of Well HS 201, compared with gas drilling with cone bit, the average penetration rate and one-trip footage of air hammer drilling respectively increased by more than 2.45 times and 6.42 times while the well deviation was always controlled less than 2 degrees. Two records for Block HS were set up such as the fastest penetration rate of 14.29m/h in Φ444.5mm well hole and the highest one-trip footage of 470.62m in Φ311.2mm well hole. So air hammer drilling was an effective way to realize optimal and fast drilling in the igneous rock formation of Junggar basin.

  7. Potato-size Rock in Spirit's Wheel Well

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In recent days, controllers directed NASA's Mars Exploration Rover Spirit to back up and turn to try to dislodge a potato-size rock from Spirit's right rear wheel. The rock did not present a threat -- it was sort of like having a pebble stuck in your shoe -- but the rover team was taking no chances that the rock might work its way deeper inside the rover's wheel well. The rock can be seen in the lower left side of this image, which Spirit took with its right rear hazard avoidance camera on martian day, or sol, 345 (Dec. 21, 2004). By the following day, the rock had rolled out onto the martian sand.

  8. A little island with significant groundwater resources: hydrogeological and hydrogeochemical features of the Pianosa aquifer (Tuscan Archipelago, Italy)

    NASA Astrophysics Data System (ADS)

    Giannecchini, R.; Doveri, M.; Mussi, M.; Nicotra, I.; Puccinelli, A.

    2012-12-01

    The Pianosa Island is one of the seven islands of the Tuscan Archipelago, particularly known for its typical flat morphological structure. It is formed by Neogenic-Quaternary sedimentary rocks, mainly represented by superficial calcarenite and underlying marl and clayey marl. Despite the small extension of the island (just 10,2 km2 wide, coastal perimeter of approximately 18 km, maximum altitude of 29 m a.s.l.) and poor rainfall amount (the annual average is 480,7 mm in 1951-2002 period), the Pianosa aquifer is characterized by significant groundwater resources, which supported the presence of approximately 2,000 people at the end of Eighties. Nevertheless, the groundwater overexploitation and the land use (agricultural activity and cattle-breeding, associated to the local penal settlement activity) caused important sea-water intrusion and pollution phenomena. An improvement of such situation occurs since 1998, owing to the closing of the penal settlement and its activities. This pilot research intends to describe the hydrogeological and hydrogeochemical features of the Pianosa Island aquifer system and the groundwater quality several years after the penal settlement closing. The results of a multidisciplinary approach (hydrogeological, geochemical, isotopic) show that the groundwater recharge and circulation are substantially controlled by the hydro-structural conditions. The flat and permeable superficial calcarenite allows a high infiltration rate. The water table flow direction is generally W-E, in accordance with the dip direction of the stratigraphic contact between the calcarenite and the underlying impermeable marly-clayey rocks. However, the latter present conglomerate and sandstone intercalations, sometimes in contact (by angular unconformity) with the calcarenite, determining a general continuity in groundwater circulation, which is phreatic in the calcarenite, and confined in the conglomerate and sandstone horizons. A piezometric depression with values below the sea level has been identified in the eastern part of the island. The electric conductivity (EC) map confirms this hydrogeological structure. EC values above 1.000 μS/cm are common in almost all the groundwater analyzed. An increase in groundwater salinity is observable in the eastern part of Pianosa, where the water table depression has been recognized. In agreement with the hydro-structural and water table conditions, the hydrogeochemical analyses confirm the recharge of the confined horizons (conglomerate and sandstone) by the superficial calcarenite. The isotopic data indicate that the aquifer system is recharged by the rainfall direct infiltration and there are not connections with the close Elba Island. Finally, the chemical analyses of most groundwater samples suggest an intermediate facies Na-Cl/Ca-HCO3, produced by the combination of the sea spray and the circulation in a prevalently carbonate aquifer (calcarenite). Clearly Na-Cl groundwater prevails in the eastern portion of the island, evidencing the seawater intrusion in the calcarenite, also confirmed by water table conditions and isotopic data.

  9. Does the stress response predict the ability of wild birds to adjust to short-term captivity? A study of the rock pigeon (Columbia livia)

    PubMed Central

    Parenteau, Charline; Trouvé, Colette; Angelier, Nicole

    2016-01-01

    Although the transfer of wild animals to captivity is crucial for conservation purposes, this process is often challenging because some species or individuals do not adjust well to captive conditions. Chronic stress has been identified as a major concern for animals held on long-term captivity. Surprisingly, the first hours or days of captivity have been relatively overlooked. However, they are certainly very stressful, because individuals are being transferred to a totally novel and confined environment. To ensure the success of conservation programmes, it appears crucial to better understand the proximate causes of interspecific and interindividual variability in the sensitivity to these first hours of captivity. In that respect, the study of stress hormones is relevant, because the hormonal stress response may help to assess whether specific individuals or species adjust, or not, to such captive conditions (‘the stress response-adjustment to captivity hypothesis’). We tested this hypothesis in rock pigeons by measuring their corticosterone stress response and their ability to adjust to short-term captivity (body mass loss and circulating corticosterone levels after a day of captivity). We showed that an increased corticosterone stress response is associated with a lower ability to adjust to short-term captivity (i.e. higher body mass loss and circulating corticosterone levels). Our study suggests, therefore, that a low physiological sensitivity to stress may be beneficial for adjusting to captivity. Future studies should now explore whether the stress response can be useful to predict the ability of individuals from different populations or species to not only adjust to short-term but also long-term captivity. PMID:28083117

  10. Does the stress response predict the ability of wild birds to adjust to short-term captivity? A study of the rock pigeon (Columbia livia).

    PubMed

    Angelier, Frédéric; Parenteau, Charline; Trouvé, Colette; Angelier, Nicole

    2016-12-01

    Although the transfer of wild animals to captivity is crucial for conservation purposes, this process is often challenging because some species or individuals do not adjust well to captive conditions. Chronic stress has been identified as a major concern for animals held on long-term captivity. Surprisingly, the first hours or days of captivity have been relatively overlooked. However, they are certainly very stressful, because individuals are being transferred to a totally novel and confined environment. To ensure the success of conservation programmes, it appears crucial to better understand the proximate causes of interspecific and interindividual variability in the sensitivity to these first hours of captivity. In that respect, the study of stress hormones is relevant, because the hormonal stress response may help to assess whether specific individuals or species adjust, or not, to such captive conditions ('the stress response-adjustment to captivity hypothesis'). We tested this hypothesis in rock pigeons by measuring their corticosterone stress response and their ability to adjust to short-term captivity (body mass loss and circulating corticosterone levels after a day of captivity). We showed that an increased corticosterone stress response is associated with a lower ability to adjust to short-term captivity (i.e. higher body mass loss and circulating corticosterone levels). Our study suggests, therefore, that a low physiological sensitivity to stress may be beneficial for adjusting to captivity. Future studies should now explore whether the stress response can be useful to predict the ability of individuals from different populations or species to not only adjust to short-term but also long-term captivity.

  11. Vein mineralizations - archives of paleo-fluid systems in the Thuringian basin (Germany)

    NASA Astrophysics Data System (ADS)

    Abratis, M.; Brey, M.; Fritsch, S.; Majzlan, J.; Viereck-Götte, L.

    2012-04-01

    We investigate vein mineralizations within and around the Thuringian basin (Germany) in order to characterize paleo-fluid systems that have been active in the basin. By investigating the composition, temperature, origin, age and evolution of paleo-fluids in the Thuringian basin as a model case, we aim for comprehensive understanding of the character of mineralized fluid systems in sedimentary basins in general and their evolution over geological time scales. Mineralizations along faults are archives for the composition of fluids which intruded the basin and circulated within it millions of years ago. These mineralizations give information on the physical and chemical characteristics of the related fluids as well as on their evolution with time during basin evolution. Mapping of mineralizations in space and time and comparison with the present-day fluid circulation system allows for recognition of the paleo-fluid dynamics and high temperature fluid influx pathways. The chemical characteristics of vein-related mineralizations are proxies for the paleo-fluid sources and their solution load. Methods implied comprise bulk rock analyses (petrography, XRD, XRF, ICP-MS), mineral analyses (EPMA, LA-ICP-MS), fluid inclusion measurements (microthermometry, Raman spectroscopy, ion chromatography) and isotope studies (O, H, C, S, Sr). Vein-related mineralizations within the Mesozoic sediments of the basin occur predominantly along WNW-ESE trending fault systems and comprise mainly carbonates and sulfates. Mineralizations within the basin-confining uplifted Variscan basement rocks and lowermost sedimentary units (Zechstein) show also (Fe-, Cu-, Zn-, As-, Sb-) sulfides, (Fe-, Mn-) oxides, fluorite and barite. The present study is part of INFLUINS, a BMBF-funded project bundle which is dedicated to comprehensive description and understanding of the fluid systems within the Thuringian basin in time and space.

  12. In situ cardiac perfusion reveals interspecific variation of intraventricular flow separation in reptiles.

    PubMed

    Joyce, William; Axelsson, Michael; Altimiras, Jordi; Wang, Tobias

    2016-07-15

    The ventricles of non-crocodilian reptiles are incompletely divided and provide an opportunity for mixing of oxygen-poor blood and oxygen-rich blood (intracardiac shunting). However, both cardiac morphology and in vivo shunting patterns exhibit considerable interspecific variation within reptiles. In the present study, we develop an in situ double-perfused heart approach to characterise the propensity and capacity for shunting in five reptile species: the turtle Trachemys scripta, the rock python Python sebae, the yellow anaconda Eunectes notaeus, the varanid lizard Varanus exanthematicus and the bearded dragon Pogona vitticeps To simulate changes in vascular bed resistance, pulmonary and systemic afterloads were independently manipulated and changes in blood flow distribution amongst the central outflow tracts were monitored. As previously demonstrated in Burmese pythons, rock pythons and varanid lizards exhibited pronounced intraventricular flow separation. As pulmonary or systemic afterload was raised, flow in the respective circulation decreased. However, flow in the other circulation, where afterload was constant, remained stable. This correlates with the convergent evolution of intraventricular pressure separation and the large intraventricular muscular ridge, which compartmentalises the ventricle, in these species. Conversely, in the three other species, the pulmonary and systemic flows were strongly mutually dependent, such that the decrease in pulmonary flow in response to elevated pulmonary afterload resulted in redistribution of perfusate to the systemic circuit (and vice versa). Thus, in these species, the muscular ridge appeared labile and blood could readily transverse the intraventricular cava. We conclude that relatively minor structural differences between non-crocodilian reptiles result in the fundamental changes in cardiac function. Further, our study emphasises that functionally similar intracardiac flow separation evolved independently in lizards (varanids) and snakes (pythons) from an ancestor endowed with the capacity for large intracardiac shunts. © 2016. Published by The Company of Biologists Ltd.

  13. Integrated system for investigating sub-surface features of a rock formation

    DOEpatents

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.

    2015-08-18

    A system for investigating non-linear properties of a rock formation around a borehole is provided. The system includes a first sub-system configured to perform data acquisition, control and recording of data; a second subsystem in communication with the first sub-system and configured to perform non-linearity and velocity preliminary imaging; a third subsystem in communication with the first subsystem and configured to emit controlled acoustic broadcasts and receive acoustic energy; a fourth subsystem in communication with the first subsystem and the third subsystem and configured to generate a source signal directed towards the rock formation; and a fifth subsystem in communication with the third subsystem and the fourth subsystem and configured to perform detection of signals representative of the non-linear properties of the rock formation.

  14. Crack propagation of brittle rock under high geostress

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Chu, Weijiang; Chen, Pingzhi

    2018-03-01

    Based on fracture mechanics and numerical methods, the characteristics and failure criterions of wall rock cracks including initiation, propagation, and coalescence are analyzed systematically under different conditions. In order to consider the interaction among cracks, adopt the sliding model of multi-cracks to simulate the splitting failure of rock in axial compress. The reinforcement of bolts and shotcrete supporting to rock mass can control the cracks propagation well. Adopt both theory analysis and simulation method to study the mechanism of controlling the propagation. The best fixed angle of bolts is calculated. Then use ansys to simulate the crack arrest function of bolt to crack. Analyze the influence of different factors on stress intensity factor. The method offer more scientific and rational criterion to evaluate the splitting failure of underground engineering under high geostress.

  15. Distributed Sensing with Fault-Tolerant Resource Reallocation for Disaster Area Assessment

    DTIC Science & Technology

    2010-05-01

    Abrasion Tool R/C .............................................................................................................. Radio Control RISC...spectrometer onboard the rovers in order to determine their composition. Prior to soil and rock analysis, the robots might utilize their Rock Abrasion ...one robot might be responsible for using its rock abrasion tool and perhaps a manipulator, while another performs the analysis with the Mössbauer

  16. Rock fragment distributions and regolith evolution in the Ouachita Mountains, Arkansas, USA

    Treesearch

    Jonathan D. Phillips; Ken Luckow; Daniel A. Marion; Kristin R. Adams

    2005-01-01

    Rock fragments in the regolith are a persistent property that reflects the combined influences of geologic controls, erosion, deposition, bioturbation, and weathering. The distribution of rock fragments in regoliths of the Ouachita Mountains, Arkansas, shows that sandstone fragments are common in all layers, even if sandstone is absent in parent material. Shale and...

  17. Linear thermal circulator based on Coriolis forces.

    PubMed

    Li, Huanan; Kottos, Tsampikos

    2015-02-01

    We show that the presence of a Coriolis force in a rotating linear lattice imposes a nonreciprocal propagation of the phononic heat carriers. Using this effect we propose the concept of Coriolis linear thermal circulator which can control the circulation of a heat current. A simple model of three coupled harmonic masses on a rotating platform permits us to demonstrate giant circulating rectification effects for moderate values of the angular velocities of the platform.

  18. A Collapsin Response Mediator Protein 2 Isoform Controls Myosin II-Mediated Cell Migration and Matrix Assembly by Trapping ROCK II

    PubMed Central

    Morgan-Fisher, Marie; Wait, Robin; Couchman, John R.; Wewer, Ulla M.

    2012-01-01

    Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among nonneuronal cells, regulates myosin II-mediated cellular functions, including cell migration. While the CRMP-2 short form (CRMP-2S) is recognized as a substrate of the Rho-GTP downstream kinase ROCK in neuronal cells, a CRMP-2 complex containing 2L not only bound the catalytic domain of ROCK II through two binding domains but also trapped and inhibited the kinase. CRMP-2L protein levels profoundly affected haptotactic migration and the actin-myosin cytoskeleton of carcinoma cells as well as nontransformed epithelial cell migration in a ROCK activity-dependent manner. Moreover, the ectopic expression of CRMP-2L but not -2S inhibited fibronectin matrix assembly in fibroblasts. Underlying these responses, CRMP-2L regulated the kinase activity of ROCK II but not ROCK I, independent of GTP-RhoA levels. This study provides a new insight into CRMP-2 as a controller of myosin II-mediated cellular functions through the inhibition of ROCK II in nonneuronal cells. PMID:22431514

  19. Oxidative Burst of Circulating Neutrophils Following Traumatic Brain Injury in Human

    PubMed Central

    Liao, Yiliu; Liu, Peng; Guo, Fangyuan; Zhang, Zhi-Yuan; Zhang, Zhiren

    2013-01-01

    Besides secondary injury at the lesional site, Traumatic brain injury (TBI) can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91phox) in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected organs and the injured brain from the secondary damage. PMID:23894384

  20. Cytologic characteristics of circulating epithelioid cells in pancreatic disease.

    PubMed

    Rosenbaum, Matthew W; Cauley, Christy E; Kulemann, Birte; Liss, Andrew S; Castillo, Carlos Fernandez-Del; Warshaw, Andrew L; Lillemoe, Keith D; Thayer, Sarah P; Pitman, Martha B

    2017-05-01

    Circulating epithelioid cells (CECs), also known as circulating tumor, circulating cancer, circulating epithelial, or circulating nonhematologic cells, are a prognostic factor in various malignancies that can be isolated via various protocols. In the current study, the authors analyzed the cytomorphologic characteristics of CECs isolated by size in a cohort of patients with benign and malignant pancreatic diseases to determine whether cytomorphological features could predict CEC origin. Blood samples were collected from 9 healthy controls and 171 patients with pancreatic disease who were presenting for surgical evaluation before treatment. Blood was processed with the ScreenCell size-based filtration device. Evaluable CECs were analyzed in a blinded fashion for cytomorphologic characteristics, including cellularity; nucleoli; nuclear size, irregularity, variability, and hyperchromasia; and nuclear-to-cytoplasmic ratio. Statistical differences between variables were analyzed via the Fisher exact test. No CECs were identified among the 9 normal healthy controls. Of the 115 patients with CECs (positive or suspicious for), 25 had nonmalignant disease and 90 had malignancy. There were no significant differences in any of the cytologic criteria noted between groups divided by benign versus malignant, neoplastic versus nonneoplastic, or pancreatic ductal adenocarcinoma versus neuroendocrine tumor. CECs were observed in patients with malignant and nonmalignant pancreatic disease, but not in healthy controls. There were no morphologic differences observed between cells from different pancreatic diseases, suggesting that numerous conditions may be associated with CECs in the circulation and that care must be taken not to overinterpret cells identified by cytomorphology as indicative of circulating tumor cells of pancreatic cancer. Additional studies are required to determine the origin and clinical significance of these cells. Cancer Cytopathol 2017;125:332-340. © 2017 American Cancer Society. © 2017 American Cancer Society.

  1. Paleozoic strata of the Dyckman Mountain area, northeastern Medfra quadrangle, Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Dumoulin, Julie A.; Bradley, Dwight C.; Harris, Anita G.

    2000-01-01

    Paleozoic rocks in the Dyckman Mountain area (northeastern Medfra quadrangle; Farewell terrane) include both shallowand deep-water lithologies deposited on and adjacent to a carbonate platform. Shallow-water strata, which were recognized by earlier workers but not previously studied in detail, consist of algal-laminated micrite and skeletal-peloidal wackestone, packstone, and lesser grainstone. These rocks are, at least in part, of Early and (or) Middle Devonian age but locally could be as old as Silurian; they accumulated in shallow subtidal to intertidal settings with periodically restricted water circulation. Deepwater facies, reported here for the first time, are thin, locally graded beds of micrite and calcisiltite and subordinate thick to massive beds of lime grainstone and conglomerate. Conodonts indicate an age of Silurian to Middle Devonian; the most tightly dated intervals are early Late Silurian (early to middle Ludlow). These strata formed as hemipelagic deposits, turbidites, and debris flows derived from shallow-water lithologies of the Nixon Fork subterrane. Rocks in the Dyckman Mountain area are part of a broader facies belt that is transitional between the Nixon Fork carbonate platform to the west and deeper water, basinal lithologies (Minchumina “terrane”) to the east. Transitional facies patterns are complex because of Paleozoic shifts in the position of the platform margin, Mesozoic shortening, and Late Cretaceous-Tertiary disruption by strike-slip faulting.

  2. K isotopes as a tracer of seafloor hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Parendo, Christopher A.; Jacobsen, Stein B.; Wang, Kun

    2017-02-01

    At ocean spreading ridges, circulation of seawater through rock at elevated temperatures alters the chemical and isotopic composition of oceanic crust. Samples obtained from drilling into ocean floor and from ophiolites have demonstrated that certain isotope systems, such as 18O/16O and 87Sr/86Sr, are systematically modified in hydrothermally altered oceanic crust. Although K is known to be mobile during hydrothermal alteration, there have not yet been any K-isotope analyses of altered oceanic crustal materials. Moreover, the 41K/39K of seawater was recently found to be significantly higher than that of igneous rocks, so the addition of seawater K to oceanic crust would be expected to generate 41K/39K variations in affected rocks. Here, we report high-precision 41K/39K measurements for samples from the Bay of Islands ophiolite, and we document large variations in 41K/39K, covarying with previous determinations of 87Sr/86Sr. Our data indicate that analytically resolvable 41K/39K effects arise in oceanic crust as a result of hydrothermal alteration. This finding raises the possibility that 41K/39K can be used as an effective tracer of oceanic crust recycled into the mantle, as a diagnostic criterion by which to identify ancient fragments of oceanic crust, and as a constraint on the flux of K between oceanic crust and seawater.

  3. Was The 01.09.2001 Etarpas Rockfall Detectable? Answer Using A Gis Approach

    NASA Astrophysics Data System (ADS)

    Baillifard, F.; Jaboyedoff, M.; Rouiller, J.-D.; Sartori, M.

    As a general rule, "a posteriori" studies of rock slope instabilities show that rock- falls don't occur in casual locations. First, many geomorphologic arguments allow to identify the rupture zone as sensitive; secondly, external factors such as groundwa- ter circulations, freezing and thaw cycles, etc., induce long-term solicitations of the rock mass, and thus the diminution of the resistance along the discontinuities and the probably progressive rupture of the thrust. Once the sensitive zones are detected, the global activity induced by the external factors must be assessed, and the probability of rupture may be evaluated. Taking the opportunity of a 2'000 m3 rockfall that occurred on January, 9th, 2001, along a mountain road near Sion (Switzerland), a simple method to detect rock slope instabilities was tested. In order to locate sensitive areas, a set of five criterions was chosen, using available GIS formatted data such as vectorized topographic and geological maps, and a 25 m grid DTM. The chosen criterions are: the presence of faults and screes within a short distance, the presence of a rock face, a steep slope and a road. This scaling leads to a linear rating from 0 to 5. The location of the 01.09.01 rockfall obtains a score of 5. Once applied to the entire length of the road (4 km), the present method indicates two others areas which are highly sensitive to rupture, allowing to detect the main instabilities along this road. Such methods based on rough available parameters have now to be applied to larger areas. They also must be calibrated using a survey of past events. The studied rockfall area is affected by a high probability of rupture, as far as some necessary criteria are respected: first, the structural pattern has to be unfavorable; sec- ondly, the morphological conditions have to be favorable to the action of external factors.

  4. Effects of shallow basaltic intrusion into pyroclastic deposits, Grants Ridge, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Keating, Gordon N.; Valentine, Greg A.

    1999-10-01

    A localized aureole up to 10 m wide developed around a 150-m-wide, 2.6 Ma basaltic plug at Grants Ridge, New Mexico. The plug intruded into nonwelded, pumice-rich compositionally homogenous tuff and volcaniclastic sediments of similar age (3.3 Ma). Color variation (pinkish to orange), strong local contact welding, brecciation, partial melting, and stoping characterize the host rock within the contact zone. Despite the high-temperature basaltic intrusion, there is no indication of extensive fluid-driven convective heat transfer and pervasive hydrothermal circulation and alteration of the country rock. The proportion of volcanic glass, loss on ignition (LOI), fluorine, iron, and some trace and rare earth element contents in the host rocks are somewhat depleted at the contact of the intrusion. Conversely, the degree of devitrification and the potassium content are higher along the contact. Vapor-phase expulsion of elemental species as complexes of fluoride, chloride, hydroxide, sulfide, and carbon dioxide may have been responsible for the minor depletion of the elements during the devitrification of silicic glass at near-solidus temperature related to the basaltic intrusion. The results of finite-difference numerical modeling of the intrusion as a dry, conduction-dominated system agree well with geochemical and mineralogical data. Contact welding of the host rocks apparently occurred at temperatures >700°C under a density-driven lateral load of approximately 1 MPa, corresponding to the observed depth below the former ground surface of ˜100 m. Other physical changes in the first 10 m of host rock, represented by partial devitrification and color changes, apparently occurred at temperatures of 500-600°C, which probably persisted for up to 55 years after the emplacement of the basaltic plug. Devitrification is generally enhanced by the presence of aqueous fluids; however, the abundance of volcanic glass within a short distance (˜10 m) from the plug is consistent with our inference that the plug intruded into a dry (unsaturated) environment.

  5. Some Speculations Concerning The Abitibi Greenstone Belt As A Possible Analog To The Early Martian Crust

    NASA Astrophysics Data System (ADS)

    Russell, M.; Allwood, A.; Anderson, R. B.; Atkinson, B.; Beaty, D.; Bristow, T. F.; Ehlmann, B. L.; Grotzinger, J. P.; Hand, K. P.; Halevy, I.; Hurowitz, J. A.; Knoll, A.; McCleese, D. J.; Milliken, R.; Stolper, D. A.; Stolper, E. M.; Tosca, N. J.; Agouron Mars Simulation Field Team

    2011-12-01

    The Noachian crust of Mars comprises basaltic and, potentially, komatiitic lavas derived from a hot mantle slightly more reducing and sulfur-rich than that of the Earth. Ultramafic volcanic sequences of the ~2.7Ga Tisdale Group of the Abitibi Greenstone Belt, Ontario, provide a potential analog to these early martian lavas. The Abitibi rocks are a possible source of quartz veins carrying, in places, pyrite, carbonate and gold. These were hydrothermally introduced into volcanic and sedimentary rocks during greenschist metamorphism. Kilometer-scale talc-magnesite zones, resulting from the carbonation of serpentinized ultramafics, may have been the source and seawater, with some magmatic addition, was probably responsible for the pervasive alteration, although the chemical nature of hydrothermal fluids circulating in such piles depends upon the temperature of wall-rock interactions and is largely independent of fluid origin. Any sulfides and gold in unaltered ultramafic putative source rocks may have been lost to the invasive convective fluids. Given high heat flow and the presence of a hydrosphere, hydrothermal convection cells were probably the main mechanism of heat transfer through the crust on both planets. Exploration of the Abitibi belt provides a template for possible martian exploration strategies. Orbital remote sensing indicates that some ultramafic rocks on Mars have also been serpentinized and isolated areas of magnesite have been recently discovered, overlying altered mafic crust, with characteristic ridges at scales of a few hundred meters. While cogent arguments have been made favoring sedimentary exhalative accumulations of hydrothermal silica of the kind that are known to harbor bacteria on our own planet, no in situ siliceous sinters or even quartz veins have been identified with certainty on Mars. Here, we report on the mineralogic and visible to infrared spectral characteristics of mafic and ultramafic lithologies at Abitibi for comparison to locations on Mars where hydrothermal activity has been proposed.

  6. Mineralogical compositions of fault rocks from surface ruptures of Wenchuan earthquake and implication of mineral transformation during the seismic cycle along Yingxiu-Beichuan fault, Sichuan Province, China

    NASA Astrophysics Data System (ADS)

    Dang, Jiaxiang; Zhou, Yongsheng; He, Changrong; Ma, Shengli

    2018-06-01

    There are two co-seismic bedrock surface ruptures from the Mw 7.9 Wenchuan earthquake in the northern and central parts of the Beichuan-Yingxiu fault, Sichuan Province, southwest China. In this study, we report on the macrostructure of the fault rocks and results from X-ray powder diffraction analysis of minerals from rocks in the fault zone. The most recent fault gouge (the gouge produced by the most recent co-seismic fault movement) in all the studied outcrops is dark or grayish-black, totally unconsolidated and ultrafine-grained. Older fault gouges in the same outcrops are grayish or yellowish and weakly consolidated. X-ray powder diffraction analysis results show that mineral assemblages in both the old fault gouge and the new fault gouge are more complicated than the mineral assemblages in the bedrock as the fault gouge is rich in clay minerals. The fault gouge inherited its major rock-forming minerals from the parent rocks, but the clay minerals in the fault gouge were generated in the fault zone and are therefore authigenic and synkinematic. In profiles across the fault, clay mineral abundances increase as one traverses from the bedrock to the breccia to the old gouge and from the old gouge to the new gouge. Quartz and illite are found in all collected gouge samples. The dominant clay minerals in the new fault gouge are illite and smectite along the northern part of the surface rupture and illite/smectite mixed-layer clay in the middle part of the rupture. Illite/smectite mixed-layer clay found in the middle part of the rupture indicates that fault slip was accompanied by K-rich fluid circulation. The existence of siderite, anhydrite, and barite in the northern part of the rupture suggests that fault slip at this locality was accompanied by acidic fluids containing ions of Fe, Ca, and Ba.

  7. Late Cretaceous remagnetization of Proterozoic mafic dikes, southern Highland Mountains, southwestern Montana: A paleomagnetic and 40Ar/39Ar study

    USGS Publications Warehouse

    Harlan, S.S.; Geissman, J.W.; Snee, L.W.; Reynolds, R.L.

    1996-01-01

    Paleomagnetic results from Early Proterozoic metabasite sills and Middle Proterozoic diabase dikes from the southern Highland Mountains of southwestern Montana give well-defined, dual-polarity magnetizations that are statistically identical to those from a small Late Cretaceous pluton that cuts the dikes. The concordance of paleomagnetic directions from rocks of three widely separated ages indicates that the Proterozoic rocks were remagnetized, probably during Late Cretaceous time. Paleomagnetic, rock magnetic, and petrographic observations from the metabasite and diabase samples indicate that remanence is carried primarily by low-Ti magnetite. Combining virtual geomagnetic poles from metabasite sills, diabase dikes, and the Late Cretaceous pluton, we obtain a paleomagnetic pole at 85.5??N, 310.7??E (K = 19.9, A95 = 9.1??, N = 14 sites) that is similar to a reference pole from the 74 Ma Adel Mountain Volcanics of western Montana. Biotite and hornblende 40Ar/39Ar isotopic dates from host basement geneiss and a hornblende from a remagnetized metabasite sill yield ages of ca. 1800 Ma; these dates probably record cooling of the southern Highland Mountains following high-grade metamorphism at 1.9-1.8 Ga. The gneiss and metabasite age spectra show virtually no evidence of disturbance, indicating that the basement rocks were never heated to temperatures sufficient to cause even partial resetting of their argon systems. Thus, the overprint magnetization of the Highland Mountains rocks is not a thermoremanent magnetization acquired during conductive cooling of nearby Late Cretaceous plutons. Remagnetization of the metabasite sills and diabase dikes was probably caused by localized thermochemical and thermoviscous effects during circulation of Late Cretaceous hydrothermal fluids related to epithermal mineralization. The absence of significant disturbance to the 40Ar/39Ar age spectrum from the remagnetized metabasite hornblende indicates that some secondary magnetizations may go unrecognized and undated, even if 40Ar/39Ar dating is applied.

  8. Enhanced Geothermal Systems (EGS) - Where Are We Now

    NASA Astrophysics Data System (ADS)

    Wyborn, D.

    2011-12-01

    There were seven major EGS projects in which reservoir circulation was achieved prior to the Geodynamics Limited project in the Innamincka granite in northern South Australia which commenced in 2002. Six other projects did not achieve significant circulation. Importantly all but one of these projects were located in granitic bodies in which it is assumed that families of existing natural fractures are present. Evidence from all these EGS projects indicated that: 1 Stimulation in granite rock resulting from water injection with no added chemicals enhanced rock fracture permeability by 2-3 orders of magnitude. 2 The increased permeability resulted from increased fracture porosity associated with slippage on existing natural fractures during the stimulation. 3The extent of the resulting reservoir could be accurately mapped by acoustic (micro-seismic) monitoring of the fracture slippages. 4 The orientation of the reservoir is strongly dependent on the relative directions of the three principle rock stress axes. 5 The stimulation pumping pressures required were 50-75% of the minimum principle stress for the depth of reservoir creation in accord with geomechanical theory, and are therefore lower than those required to open tensile fractures (fracking). 6 The size of the resulting stimulated reservoir is proportional to the volume of water injected. New space created by the increase in fracture porosity associated with the micro-seismic events is taken up by the injected water. 7 Most projects to 2002 were carried out in strike-slip and normal faulting stress regimes with minimum stress direction horizontal and the resulting reservoirs were oriented close to vertically. 8 Volcanic activity can only occur in strike-slip and normal faulting stress regimes so EGS reservoirs in volcanic areas will be oriented close to vertically. 9 The Fjallbacka project in Sweden was the only project carried out in an overthrust stress regime (minimum stress direction vertical) and the reservoir was oriented horizontally. It is with these understandings that the Geodynamics field program commenced near Innamincka in 2002 where high temperature granite basement had been intersected at 3.6 km depth by petroleum exploration wells. Gravity and heat flow models indicated the basement granite to be 10 km thick and that most of the heat flow (> 100 mW/m2) was derived from elevated thorium and uranium levels in the granite. The stress environment was thought to be overthrust, but this was not certain.The results of the Geodynamics field program consists of drilling 5 wells to the granite, stimulation in three of those wells, flow testing in two of those wells and circulation between two of those wells. There are now four main barriers to economic deployment of EGS throughout the world for electricity generation. One is the cost of drilling and new technologies need to be developed to increase drilling ROP in high strength rocks. The other three relate to reservoir development and increased flow rate. These are (i) new geophysical tools to locate large fractures remotely (ii) deployment of temporary fracture sealing agents to allow enhancement in more than one fracture, and (iii) decreased flow impedance in a given fracture at the production well. New projects at different locations around the world are required to test ways of overcoming these barriers.

  9. Artificial blood circulation: stabilization, physiological control, and optimization.

    PubMed

    Lerner, A Y

    1990-04-01

    The requirements for creating an efficient Artificial Blood Circulation System (ABCS) have been determined. A hierarchical three-level adaptive control system is suggested for ABCS to solve the following problems: stabilization of the circulation conditions, left and right pump coordination, physiological control for maintaining a proper relation between the cardiac output and the level of gas exchange required for metabolism, and optimization of the system behavior. The adaptations to varying load and body parameters will be accomplished using the signals which characterize the real-time computer-processed values of correlations between the changes in hydraulic resistance of blood vessels, or the changes in aortic pressure, and the oxygen (or carbon dioxide) concentration.

  10. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest). Brown Rock Crab, Red Rock Crab, and Yellow Crab

    DTIC Science & Technology

    1989-12-01

    staged by examining the California (Talent 1982). pleopod tips (P. Reilly, pcrs. comm.). The specific hormonal mechanisms that control molting cycles...Coos Bay, Oregon, was correlated California, they sometimes occur near the cooling water with changes in salinity ; because red rock crabs are...discharges of coastal power plants. Adams (1970) osmoconformers, survival was low at salinities below observed both juvenile and adult brown rock crabs in the

  11. A comparison of the effects of hard rock and easy listening on the frequency of observed inappropriate behaviors: control of environmental antecedents in a large public area.

    PubMed

    Harris, C S; Bradley, R J; Titus, S K

    1992-01-01

    Observation of clients at a state mental health hospital by direct care staff indicated that they appeared to act in more inappropriate ways when "hard rock" or "rap" music was played in an open courtyard than when "easy listening" or "country" music was played. A study was conducted to compare the inappropriate behavior of clients when hard rock and rap music were played (21 days), followed by easy listening and country and western music (21 days). This comparison was followed by a reversal phase in which hard rock and rap music were again played (18 days). The behaviors of the clients were observed and recorded via a controlled methodology. The results demonstrated that more inappropriate behavior was observed under conditions in which hard rock and rap music were played than when easy listening and country western music were played. The implications of these findings are discussed.

  12. An aerodynamic model for one and two degree of freedom wing rock of slender delta wings

    NASA Technical Reports Server (NTRS)

    Hong, John

    1993-01-01

    The unsteady aerodynamic effects due to the separated flow around slender delta wings in motion were analyzed. By combining the unsteady flow field solution with the rigid body Euler equations of motion, self-induced wing rock motion is simulated. The aerodynamic model successfully captures the qualitative characteristics of wing rock observed in experiments. For the one degree of freedom in roll case, the model is used to look into the mechanisms of wing rock and to investigate the effects of various parameters, like angle of attack, yaw angle, displacement of the separation point, and wing inertia. To investigate the roll and yaw coupling for the delta wing, an additional degree of freedom is added. However, no limit cycle was observed in the two degree of freedom case. Nonetheless, the model can be used to apply various control laws to actively control wing rock using, for example, the displacement of the leading edge vortex separation point by inboard span wise blowing.

  13. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  14. Non-extracorporeal circulation for coronary artery bypass graft surgery is more beneficial than extracorporeal circulation.

    PubMed

    Yang, F-Y; Bao, Y-Z; Liu, F-S; Zhu, Y-C; Zheng, J; Zhang, J-H; Zheng, X-F; Wei, G-C

    2015-04-01

    The objective of this study was to compare coronary artery bypass graft (CABG) surgery with non-extracorporeal vs. extracorporeal circulation. The study outcomes included operative time, number of graft vessels, pulmonary infection rates, and systemic inflammatory markers. 96 patients received selective CABG, either with non-extracorporeal (study group; n = 48) or extracorporeal circulation (control group; n = 48). Operative time, pulmonary infection rates, and blood levels of inflammatory markers TNF-α, IL-6, and IL-8 before and 4, 24, and 48 hours after the surgery were quantified. Graft vessels were quantified using computed tomography. Operative time was significantly shorter in study group (4.58 ± 0.91 vs. 5.36 ± 1.12 hours in control group; p < 0.05). The number of graft vessels and pulmonary infection rates were comparable between both techniques. However, systemic inflammatory markers were significantly (p < 0.05) lower in study group at 4 and, partly, 24 hours after the surgery. Extracorporeal circulation prolongs operation and can aggravate systemic inflammatory response. Therefore, CABG with non-extracorporeal circulation offers more beneficial outcomes.

  15. 'Mister Badger' Pushing Mars Rock

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Viking's soil sampler collector arm successfully pushed a rock on the surface of Mars during the afternoon of Friday, October 8. The irregular-shaped rock was pushed several inches by the Lander's collector arm, which displaced the rock to the left of its original position, leaving it cocked slightly upward. Photographs and other information verified the successful rock push. Photo at left shows the soil sampler's collector head pushing against the rock, named 'Mister Badger' by flight controllers. Photo at right shows the displaced rock and the depression whence it came. Part of the soil displacement was caused by the collector s backhoe. A soil sample will be taken from the site Monday night, October 11. It will then be delivered to Viking s organic chemistry instrument for a series of analyses during the next few weeks. The sample is being sought from beneath a rock because scientists believe that, if there are life forms on Mars, they may seek rocks as shelter from the Sun s intense ultraviolet radiation.

  16. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis.

    PubMed

    Kümper, Sandra; Mardakheh, Faraz K; McCarthy, Afshan; Yeo, Maggie; Stamp, Gordon W; Paul, Angela; Worboys, Jonathan; Sadok, Amine; Jørgensen, Claus; Guichard, Sabrina; Marshall, Christopher J

    2016-01-14

    Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility.

  17. The Architecture and Frictional Properties of Faults in Shale

    NASA Astrophysics Data System (ADS)

    De Paola, N.; Imber, J.; Murray, R.; Holdsworth, R.

    2015-12-01

    The geometry of brittle fault zones in shale rocks, as well as their frictional properties at reservoir conditions, are still poorly understood. Nevertheless, these factors may control the very low recovery factors (25% for gas and 5% for oil) obtained during fracking operations. Extensional brittle fault zones (maximum displacement < 3 m) cut exhumed oil mature black shales in the Cleveland Basin (UK). Fault cores up to 50 cm wide accommodated most of the displacement, and are defined by a stair-step geometry. Their internal architecture is characterised by four distinct fault rock domains: foliated gouges; breccias; hydraulic breccias; and a slip zone up to 20 mm thick, composed of a fine-grained black gouge. Hydraulic breccias are located within dilational jogs with aperture of up to 20 cm. Brittle fracturing and cataclastic flow are the dominant deformation mechanisms in the fault core of shale faults. Velocity-step and slide-hold-slide experiments at sub-seismic slip rates (microns/s) were performed in a rotary shear apparatus under dry, water and brine-saturated conditions, for displacements of up to 46 cm. Both the protolith shale and the slip zone black gouge display shear localization, velocity strengthening behaviour and negative healing rates, suggesting that slow, stable sliding faulting should occur within the protolith rocks and slip zone gouges. Experiments at seismic speed (1.3 m/s), performed on the same materials under dry conditions, show that after initial friction values of 0.5-0.55, friction decreases to steady-state values of 0.1-0.15 within the first 10 mm of slip. Contrastingly, water/brine saturated gouge mixtures, exhibit almost instantaneous attainment of very low steady-state sliding friction (0.1), suggesting that seismic ruptures may efficiently propagate in the slip zone of fluid-saturated shale faults. Stable sliding in faults in shale can cause slow fault/fracture propagation, affecting the rate at which new fracture areas are created and, hence, limiting oil and gas production during reservoir stimulation. However, fluid saturated conditions can favour seismic slip propagation, with fast and efficient creation of new fracture areas. These processes are very effective at dilational jogs, where fluid circulation may be enhanced, facilitating oil and gas production.

  18. First assessment of water and carbon cycles in two tropical coastal rivers of south-west India: an isotopic approach.

    PubMed

    Tripti, M; Lambs, L; Otto, T; Gurumurthy, G P; Teisserenc, R; Moussa, I; Balakrishna, K; Probst, J L

    2013-08-15

    The contribution of tropical coastal rivers to the global carbon budget remains unmeasured, despite their high water dynamics, i.e. higher run-off with their basin characteristic of warm temperature. Two rivers draining the western part of the Western Ghats, the Swarna (length 80 km) and Nethravati (147 km) Rivers, were studied for water and carbon cycles. The stable isotope ratios of oxygen (δ(18) O values), hydrogen (δ(2) H values) and carbon (δ(13) C values) were used to understand the water circulation, the weathering processes and the carbon biogeochemical cycle. The river water samples were collected during the dry post-monsoonal season (November 2011). The δ(18) O and δ(2) H values of river water suggested that the monsoonal vapour source and its high recycling have a dominant role because of the orographical and tropical conditions. The absence of calcareous rocks has led to dissolved inorganic carbon (DIC) mainly originating from atmospheric/soil CO2 , via rock-weathering processes, and the low soil organic matter combined with high run-off intensity has led to low riverine dissolved organic carbon (DOC) contents. The δ(13) C values increase from upstream to downstream and decrease with increasing pCO2 . There is a positive relationship between the δ(13) CDIC values and the DOC concentrations in these two rivers that is contrary to that in most of the studied rivers of the world. The higher evapotranspiration supported by tropical conditions suggests that there are higher vapour recycling process in the Swarna and Nethravati basins as studied from the water δ(18) O and δ(2) H values. The basin characteristics of higher rainfall/run-off accompanied by warm temperature suggest that the δ(13) C value of riverine DIC is mainly controlled by the weathering of source rocks (silicates) with variation along the river course by CO2 degassing from the river water to the atmosphere and is less dominated by the oxidation of DOC. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Water-Rock Differentiation on Ceres as Derived From Numerical Studies: Late Water Separation and Thick Undifferentiated Crust

    NASA Astrophysics Data System (ADS)

    Neumann, Wladimir Otto; Breuer, Doris; Spohn, Tilman

    2016-10-01

    Water-rock separation is a major factor in discriminating between models of Ceres' present-day state. We calculate differentiation models of Ceres to investigate how water-rock separation and convection influence its evolution. We expand on the presence of liquids and the possibility of cryovolcanism in order to explain surface features observed by Dawn[1,2].The model[3] includes accretion, reduction of the dust porosity, latent heat of ice melting, compaction driven water-rock separation, accretional heating, hydrothermal circulation, solid-state convection of ice, and convection in a water ocean.Accretion times considered cover 1-10 Ma rel. to CAIs. Compaction of the dust pores starts with ice at T≈180-240 K and proceeds with rock minerals at temperatures of up to 730 K. Sub-surface remains too cold to close these pores. The water-rock separation proceeds by water percolation in a rock matrix. Differentiation timing depends on the matrix deformation and no differentiation occurs in layers with leftover dust porosity. Compaction takes several hundred million years due to a slow temperature increase. The differentiation is extended according to this time scale even though liquid water is produced early. While the radionuclides are concentrated in the core no heat is produced in the ocean. If convection is neglected, the ocean is heated by the core and cooled through the crust, and remains totally liquid until the present day. Convection keeps the ocean cold and results in a colder present-day crust. Only a thin basal part of the ocean remains liquid, while the upper part freezes.In our models, a water ocean starts forming within 10 Ma after CAIs, but its completion is retarded relative to the melting of ice by up to O(0.1 Ga). The differentiation is partial and a porous outer layer is retained. Present-day temperatures calculated indicate that hydrated salts can be mobile at a depth of ≥1.5-5 km implying buoyancy of ice and salt-enriched crustal reservoirs. The impacts Haulani, Ikapati and Occator may have cut into these reservoirs triggering the mobility that formed cryovolcanic features[1,2].[1] Jaumann R et al. (2016) LPSC XLVII [2] Krohn K et al. (2016) LPSC XLVII. [3] Neumann W et al. (2015) A&A 584: A117.

  20. Microbial decomposition of marine dissolved organic matter in cool oceanic crust

    NASA Astrophysics Data System (ADS)

    Shah Walter, Sunita R.; Jaekel, Ulrike; Osterholz, Helena; Fisher, Andrew T.; Huber, Julie A.; Pearson, Ann; Dittmar, Thorsten; Girguis, Peter R.

    2018-05-01

    Marine dissolved organic carbon (DOC) is one of the largest active reservoirs of reduced carbon on Earth. In the deep ocean, DOC has been described as biologically recalcitrant and has a radiocarbon age of 4,000 to 6,000 years, which far exceeds the timescale of ocean overturning. However, abiotic removal mechanisms cannot account for the full magnitude of deep-ocean DOC loss. Deep-ocean water circulates at low temperatures through volcanic crust on ridge flanks, but little is known about the associated biogeochemical processes and carbon cycling. Here we present analyses of DOC in fluids from two borehole observatories installed in crustal rocks west of the Mid-Atlantic Ridge, and show that deep-ocean DOC is removed from these cool circulating fluids. The removal mechanism is isotopically selective and causes a shift in specific features of molecular composition, consistent with microbe-mediated oxidation. We suggest organic molecules with an average radiocarbon age of 3,200 years are bioavailable to crustal microbes, and that this removal mechanism may account for at least 5% of the global loss of DOC in the deep ocean. Cool crustal circulation probably contributes to maintaining the deep ocean as a reservoir of `aged' and refractory DOC by discharging the surviving organic carbon constituents that are molecularly degraded and depleted in 14C and 13C into the deep ocean.

  1. Hydrological and glaciological balances on Antizana Volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Favier, V.; Cadier, E.; Coudrain, A.; Francou, B.; Maisincho, L.; Praderio, E.; Villacis, M.; Wagnon, P.

    2006-12-01

    Water supply for Quito, the capital of Ecuador, is partly fed by the water collected at the piedmont of Antizana ice covered stratovolcano. In order to assess the contribution of glaciers to the local water resources, a comparison of hydrological and glaciological datasets collected over the 1995-2005 period on Antizana Glacier 15 watershed was realized. Over the study period, Antizana glacier 15 retreated quickly, inducing an important water contribution to lower altitude discharges. However, comparison of hydrological and glaciological balances allowed observation of important missing runoffs due to underground circulations. Subsuperficial circulations were initially questioned due to the total disappearance of surface streams at the level of the frontal moraine, a surface stream being observed again downstream the moraine. Brine injections were performed upstream the moraine and in a small lake located on the moraine and restitution rates of salt were computed. Tracer experiments demonstrated a complete restitution of discharges implying that missing runoff were not involved in subsuperficial circulations but in deeper ones that may have flown through the fractured rock environment of the stratovlocano. Experiments also demonstrated that infiltrations occurred directly at the bedrock of the glaciers. Then, taking into account the weak discharges observed at the glacier front would induce computation of a strongly underestimated value of the actual water contribution from glaciers to lower altitude discharges. Finally, assessing water contribution from glaciers of Ecuador requires a comparison of glaciological and hydrological data.

  2. Effect of dietary fiber on circulating C-reactive protein in overweight and obese adults: a meta-analysis of randomized controlled trials.

    PubMed

    Jiao, Jun; Xu, Jia-Ying; Zhang, Weiguo; Han, Shufen; Qin, Li-Qiang

    2015-02-01

    Previous studies suggested that dietary fiber intake may have a lowing effect on circulating C-reactive protein (CRP) level, a sensitive marker of inflammation, in overweight/obese adults with inconsistent results. A literature search was performed in April 2014 for related randomized controlled trials (RCTs) and meta-analysis was conducted. Meta-analysis including 14 RCTs showed that intervention with dietary fiber or fiber-rich food, compared with control, produced a slight, but significant reduction of 0.37 mg/L (95% CI -0.74, 0) in circulating CRP level among this population. Subgroup analyses showed that such a significant reduction was only observed after combining studies where the total fiber intake was 8 g/d higher in the intervention group than in the control group. No obvious heterogeneity and publication bias were found in the meta-analysis. In conclusion, this meta-analysis provides evidence that dietary fiber or food naturally rich in fiber has beneficial effects on circulating CRP level in overweight/obese adults.

  3. Relationship between High Red Cell Distribution Width and Systemic Inflammatory Response Syndrome after Extracorporeal Circulation.

    PubMed

    Seth, Harsh Sateesh; Mishra, Prashant; Khandekar, Jayant V; Raut, Chaitanya; Mohapatra, Chandan Kumar Ray; Ammannaya, Ganesh Kumar K; Saini, Jaskaran Singh; Shah, Vaibhav

    2017-01-01

    Cardiac surgical operations involving extracorporeal circulation may develop severe inflammatory response. This severe inflammatory response syndrome (SIRS) is usually associated with poor outcome with no predictive marker. Red cell distribution width (RDW) is a routine hematological marker with a role in inflammation. We aim to determine the relationship between RDW and SIRS through our study. A total of 1250 patients who underwent cardiac surgery with extracorporeal circulation were retrospectively analyzed out of which 26 fell into the SIRS criteria and 26 consecutive control patients were taken. RDW, preoperative clinical data, operative time and postoperative data were compared between SIRS and control groups. The demographic profile of the patients was similar. RDW was significantly higher in the SIRS versus control group (15.5±2.0 vs. 13.03±1.90), respectively with P value <0.0001. There was significant mortality in the SIRS group, 20 (76.92%) as compared to 2 (7.6%) in control group with a P value of <0.005. Multiple logistic regression analysis revealed that there was significant association with high RDW and development of SIRS after extracorporeal circulation (OR for RDW levels exceeding 13.5%; 95% CI 1.0-1.2; P<0.05). Increased RDW was significantly associated with increased risk of SIRS after extracorporeal circulation. Thus, RDW can act as a useful tool to predict SIRS in patients undergoing cardiac surgery with extracorporeal circulation. Hence, more aggressive measures can be taken in patients with high RDW to prevent postoperative morbidity and mortality.

  4. A Novel Strategy for Detection and Enumeration of Circulating Rare Cell Populations in Metastatic Cancer Patients Using Automated Microfluidic Filtration and Multiplex Immunoassay.

    PubMed

    Magbanua, Mark Jesus M; Pugia, Michael; Lee, Jin Sun; Jabon, Marc; Wang, Victoria; Gubens, Matthew; Marfurt, Karen; Pence, Julia; Sidhu, Harwinder; Uzgiris, Arejas; Rugo, Hope S; Park, John W

    2015-01-01

    Size selection via filtration offers an antigen-independent approach for the enrichment of rare cell populations in blood of cancer patients. We evaluated the performance of a novel approach for multiplex rare cell detection in blood samples from metastatic breast (n = 19) and lung cancer patients (n = 21), and healthy controls (n = 30) using an automated microfluidic filtration and multiplex immunoassay strategy. Captured cells were enumerated after sequential staining for specific markers to identify circulating tumor cells (CTCs), circulating mesenchymal cells (CMCs), putative circulating stem cells (CSCs), and circulating endothelial cells (CECs). Preclinical validation experiments using cancer cells spiked into healthy blood demonstrated high recovery rate (mean = 85%) and reproducibility of the assay. In clinical studies, CTCs and CMCs were detected in 35% and 58% of cancer patients, respectively, and were largely absent from healthy controls (3%, p = 0.001). Mean levels of CTCs were significantly higher in breast than in lung cancer patients (p = 0.03). Fifty-three percent (53%) of cancer patients harbored putative CSCs, while none were detectable in healthy controls (p<0.0001). In contrast, CECs were observed in both cancer and control groups. Direct comparison of CellSearch® vs. our microfluidic filter method revealed moderate correlation (R2 = 0.46, kappa = 0.47). Serial blood analysis in breast cancer patients demonstrated the feasibility of monitoring circulating rare cell populations over time. Simultaneous assessment of CTCs, CMCs, CSCs and CECs may provide new tools to study mechanisms of disease progression and treatment response/resistance.

  5. A Novel Strategy for Detection and Enumeration of Circulating Rare Cell Populations in Metastatic Cancer Patients Using Automated Microfluidic Filtration and Multiplex Immunoassay

    PubMed Central

    Lee, Jin Sun; Jabon, Marc; Wang, Victoria; Gubens, Matthew; Marfurt, Karen; Pence, Julia; Sidhu, Harwinder; Uzgiris, Arejas; Rugo, Hope S.; Park, John W.

    2015-01-01

    Size selection via filtration offers an antigen-independent approach for the enrichment of rare cell populations in blood of cancer patients. We evaluated the performance of a novel approach for multiplex rare cell detection in blood samples from metastatic breast (n = 19) and lung cancer patients (n = 21), and healthy controls (n = 30) using an automated microfluidic filtration and multiplex immunoassay strategy. Captured cells were enumerated after sequential staining for specific markers to identify circulating tumor cells (CTCs), circulating mesenchymal cells (CMCs), putative circulating stem cells (CSCs), and circulating endothelial cells (CECs). Preclinical validation experiments using cancer cells spiked into healthy blood demonstrated high recovery rate (mean = 85%) and reproducibility of the assay. In clinical studies, CTCs and CMCs were detected in 35% and 58% of cancer patients, respectively, and were largely absent from healthy controls (3%, p = 0.001). Mean levels of CTCs were significantly higher in breast than in lung cancer patients (p = 0.03). Fifty-three percent (53%) of cancer patients harbored putative CSCs, while none were detectable in healthy controls (p<0.0001). In contrast, CECs were observed in both cancer and control groups. Direct comparison of CellSearch® vs. our microfluidic filter method revealed moderate correlation (R2 = 0.46, kappa = 0.47). Serial blood analysis in breast cancer patients demonstrated the feasibility of monitoring circulating rare cell populations over time. Simultaneous assessment of CTCs, CMCs, CSCs and CECs may provide new tools to study mechanisms of disease progression and treatment response/resistance. PMID:26496203

  6. Transonic Drag Reduction Through Trailing-Edge Blowing on the FAST-MAC Circulation Control Model

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Jones, Gregory S.; Milholen, William E., II; Goodliff, Scott L.

    2017-01-01

    A third wind tunnel test of the FAST-MAC circulation control semi-span model was completed in the National Transonic Facility at the NASA Langley Research Center where the model was configured for transonic testing of the cruise configuration with 0deg flap detection to determine the potential for transonic drag reduction with the circulation control blowing. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged ap. Recent upgrades to transonic semi-span flow control testing at the NTF have demonstrated an improvement to overall data repeatability, particularly for the drag measurement, that allows for increased confidence in the data results. The static thrust generated by the blowing slot was removed from the wind-on data using force and moment balance data from wind-o thrust tares. This paper discusses the impact of the trailing-edge blowing to the transonic aerodynamics of the FAST-MAC model in the cruise configuration, where at flight Reynolds numbers, the thrust-removed corrected data showed that an overall drag reduction and increased aerodynamic efficiency was realized as a consequence of the blowing.

  7. Natural flows of H2-rich fluids in the ophiolites of Oman and the Philippines: Tectonic control of migration pathways and associated diagenetic processes

    NASA Astrophysics Data System (ADS)

    Deville, E. P.; Prinzhofer, A.; Vacquand, C.; Chavagnac, V.; Monnin, C.; Ceuleneer, G.; Arcilla, C. A.

    2009-12-01

    We compare the geological environments of sites of emission of natural hydrogen in the Oman ophiolite and the Zambales ophiolite (Luzon, Philippines). The genesis of natural H2 results from the interaction between ultrabasic rocks and aqueous solutions circulating in deep fracture networks, by oxidation of metals (Fe2+, Mn2+) and reduction of water, probably under high temperature conditions. This process generates very reducing conditions capable of destabilizing other molecules (notably reduction of deep CO2 being transformed into CH4 by Fisher-Tropsch type reactions). Nitrogen is also commonly associated to the H2-rich fluids. H2 flows are associated with the expulsion of hyperalkaline waters rich in ions OH- and Ca2+ and characterized by high pH (between 11 and 12). Most alkaline springs are found in the vicinity of major faults and/or lithological discontinuities like the basal thrust plane of the ophiolites and the peridotite-gabbro contact (Moho). Within the fracture networks, gas and water separate probably at shallow depth, i.e. close to the top of the upper aquifer level. Locally high flows of gas migrate vertically through fracture pathways and they are able to inflame spontaneously on the surface. Aqueous fluids tends to migrate laterally in the fracture network toward the creeks where most of the hyperalkaline springs are found. This water circulation induces a chain of diagenetic reactions starting in the fracture systems and continuing at the surface where it leads to the precipitation of calcite, aragonite, brucite and more rarely portlandite. This chain of diagenetic reactions is associated with the capture of the atmospheric CO2 during the precipitation of carbonates.

  8. Rho-associated Kinase Connects a Cell Cycle-controlling Anchorage Signal to the Mammalian Target of Rapamycin Pathway*

    PubMed Central

    Park, Jung-ha; Arakawa-Takeuchi, Shiho; Jinno, Shigeki; Okayama, Hiroto

    2011-01-01

    When deprived of anchorage to the extracellular matrix, fibroblasts arrest in G1 phase at least in part due to inactivation of G1 cyclin-dependent kinases. Despite great effort, how anchorage signals control the G1-S transition of fibroblasts remains highly elusive. We recently found that the mammalian target of rapamycin (mTOR) cascade might convey an anchorage signal that regulates S phase entry. Here, we show that Rho-associated kinase connects this signal to the TSC1/TSC2-RHEB-mTOR pathway. Expression of a constitutively active form of ROCK1 suppressed all of the anchorage deprivation effects suppressible by tsc2 mutation in rat embryonic fibroblasts. TSC2 contains one evolutionarily conserved ROCK target-like sequence, and an alanine substitution for Thr1203 in this sequence severely impaired the ability of ROCK1 to counteract the anchorage loss-imposed down-regulation of both G1 cell cycle factors and mTORC1 activity. Moreover, TSC2 Thr1203 underwent ROCK-dependent phosphorylation in vivo and could be phosphorylated by bacterially expressed active ROCK1 in vitro, providing biochemical evidence for a direct physical interaction between ROCK and TSC2. PMID:21561859

  9. Pathophysiological effects of RhoA and Rho-associated kinase on cardiovascular system.

    PubMed

    Cai, Anping; Li, Liwen; Zhou, Yingling

    2016-01-01

    In past decades, growing evidence from basic and clinical researches reveal that small guanosine triphosphate binding protein ras homolog gene family, member A (RhoA) and its main effector Rho-associated kinase (ROCK) play central and complex roles in cardiovascular systems, and increasing RhoA and ROCK activity is associated with a broad range of cardiovascular diseases such as congestive heart failure, atherosclerosis, and hypertension. Favorable outcomes have been observed with ROCK inhibitors treatment. In this review, we briefly summarize the pathophysiological roles of RhoA/ROCK signaling pathway on cardiovascular system, displaying the potential benefits in the cardiovascular system with controlling RhoA/ROCK signaling pathway.

  10. Quantitative impact of hydrothermal alteration on electrical resistivity in geothermal systems from a joint analysis of laboratory measurements and borehole data in Krafla area, N-E Iceland

    NASA Astrophysics Data System (ADS)

    Lévy, Léa; Páll Hersir, Gylfi; Flóvenz, Ólafur; Gibert, Benoit; Pézard, Philippe; Sigmundsson, Freysteinn; Briole, Pierre

    2016-04-01

    Rock permeability and fluid temperature are the two most decisive factors for a successful geothermal drilling. While those parameters are only measured from drilling, they might be estimated on the basis of their impact on electrical resistivity that might be imaged from surface soundings, for example through TEM (Transient Electro Magnetic) down to one km depth. The electrical conductivity of reservoir rocks is the sum of a volume term depending on fluid parameters and a surface term related to rock alteration. Understanding the link between electrical resistivity and geothermal key parameters requires the knowledge of hydrothermal alteration and its petrophysical signature with the Cation Exchange Capacity (CEC). Fluid-rock interactions related to hydrothermal circulation trigger the precipitation of alteration minerals, which are both witnesses of the temperature at the time of reaction and new paths for the electrical current. Alteration minerals include zeolites, smectites, chlorites, epidotes and amphiboles among which low temperatures parageneses are often the most conductive. The CEC of these mineral phases contributes to account for surface conductivity occuring at the water-rock interface. In cooling geothermal systems, these minerals constitute in petrophysical terms and from surface electrical conduction a memory of the equilibrium phase revealed from electrical probing at all scales. The qualitative impact of alteration minerals on resistivity structure has been studied over the years in the Icelandic geothermal context. In this work, the CEC impact on pore surfaces electrical conductivity is studied quantitatively at the borehole scale, where several types of volcanic rocks are mixed together, with various degrees of alteration and porosity. Five boreholes located within a few km at the Krafla volcano, Northeast Iceland, constitute the basis for this study. The deepest and reference hole, KJ-18, provides cuttings of rock and logging data down to 2215 m depth; CEC measurements performed on cuttings show. KH-1 and KH-3 have cores and logs in the top 200 m only. Boreholes KH-5 and KH-6 sample cores with higher temperature alteration minerals down to 600 m. Together, these 4 shallow holes cover the diversity of rock types and alterations facies found in KJ-18. The petrophysical calibration obtained from cores will then be upscaled to log data analysis in KJ-18: porosity, formation factor, permeability, acoustic velocity, electrical surface conduction at different temperatures and CEC. This research is supported by the IMAGE FP7 EC project (Integrated Methods for Advanced Geothermal Exploration, grant agreement No. 608553).

  11. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit

    NASA Astrophysics Data System (ADS)

    Fouquet, Yves; Cambon, Pierre; Etoubleau, Joël; Charlou, Jean Luc; Ondréas, Hélène; Barriga, Fernando J. A. S.; Cherkashov, Georgy; Semkova, Tatiana; Poroshina, Irina; Bohn, M.; Donval, Jean Pierre; Henry, Katell; Murphy, Pamela; Rouxel, Olivier

    Several hydrothermal deposits associated with ultramafic rocks have recently been found along slow spreading ridges with a low magmatic budget. Three preferential settings are identified: (1) rift valley walls near the amagmatic ends of ridge segments; (2) nontransform offsets; and (3) ultramafic domes at inside corners of ridge transform-fault intersections. The exposed mantle at these sites is often interpreted to be a detachment fault. Hydrothermal cells in ultramafic rocks may be driven by regional heat flow, cooling gabbroic intrusions, and exothermic heat produced during serpentinization. Along the Mid-Atlantic Ridge (MAR), hydrothermal deposits in ultramafic rocks include the following: (1) sulfide mounds related to high-temperature low-pH fluids (Logatchev, Rainbow, and Ashadze); (2) carbonate chimneys related to low-temperature, high-pH fluids (Lost City); (3) low-temperature diffuse venting and high-methane discharge associated with silica, minor sulfides, manganese oxides, and pervasive alteration (Saldanha); and (4) stockwork quartz veins with sulfides at the base of detachment faults (15°05'N). These settings are closely linked to preferential circulation of fluid along permeable detachment faults. Compared to mineralization in basaltic environments, sulfide deposits associated with ultramafic rocks are enriched in Cu, Zn, Co, Au, and Ni. Gold has a bimodal distribution in low-temperature Zn-rich and in high-temperature Cu-rich mineral assemblages. The Cu-Zn-Co-Au deposits along the MAR seem to be more abundant than in ophiolites on land. This may be because ultramafic-hosted volcanogenic massive sulfide deposits on slow spreading ridges are usually not accreted to continental margins during obduction and may constitute a specific marine type of mineralization.

  12. Industrial applications of hot dry rock geothermal energy

    NASA Astrophysics Data System (ADS)

    Duchane, D. V.

    1992-07-01

    Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

  13. Water and the thermal evolution of carbonaceous chondrite parent bodies

    NASA Technical Reports Server (NTRS)

    Grimm, Robert E.; Mcsween, Harry Y., Jr.

    1989-01-01

    Two hypotheses are proposed for the aqueous alteration of carbonaceous chondrites within their parent bodies, in which respectively the alteration occurs (1) throughout the parent body interior, or (2) in a postaccretional surface regolith; both models assume an initially homogeneous mixture of ice and rock that is heated through the decay of Al-26. Water is seen to exert a powerful influence on chondrite evolution through its role of thermal buffer, permitting substitution of a low temperature aqueous alteration for high temperature recrystallization. It is quantitatively demonstrated that liquid water may be introduced by either hydrothermal circulation, vapor diffusion from below, or venting due to fracture.

  14. Linking TGF-beta-mediated Cdc25A inhibition and cytoskeletal regulation through RhoA/p160(ROCK) signaling.

    PubMed

    Brown, Kimberly; Bhowmick, Neil A

    2004-04-01

    Transforming growth factor-beta (TGF-beta) can mediate G(1)/S cell-cycle inhibition and changes in the cytoskeletal organization through multiple parallel downstream signaling pathways. Recent findings regarding TGF-beta-mediated cell-cycle checkpoint control and epithelial to mesenchymal transition have converged to the RhoA/p160(ROCK) signaling pathway. The activation of TGF-beta-mediated p160(ROCK)rapidly inhibits the Cdc25A phosphatase as a component of the G(1)/S checkpoint control at the time cytoskeletal re-organization occurs. This can be likened to the ability to preserve genomic integrity in circumstances of genotoxic stress. The inactivation of the RhoA/p160(ROCK) pathway may be a mechanism by which cancer cells bypass growth inhibition even in the presence of TGF-beta.

  15. The occurrence and dominant controls on arsenic in the Newark and Gettysburg Basins.

    PubMed

    Blake, Johanna M; Peters, Stephen C

    2015-02-01

    Elevated arsenic (As) concentrations in groundwater and rocks have been found in crystalline and sedimentary aquifers from New England to Pennsylvania, USA. The arsenic geochemistry and water-rock interactions of the Northern Appalachian Mountains and the Newark Basin have been researched at length, however, little is known about arsenic in the Gettysburg Basin. Both the Newark and Gettysburg Basins were formed during the breakup of Pangea, sediment deposition occurred during the Triassic and lithologies are of similar depositional environment. We compile and review the work done in the Newark Basin and collect new samples in the Gettysburg Basin for comparison. The Gettysburg Basin has 18%-39% of rock samples with arsenic concentrations greater than the crustal average of 2 mg/kg, while the Newark Basin has 73% to 95% of rock samples above the crustal average. The strongest controls on arsenic in rocks of the Gettysburg Basin are the relationship between arsenic and iron and silicon concentrations while the strongest controls in the Newark Basin are the relationship between arsenic and iron and organic carbon concentrations. The groundwater arsenic concentrations follow similarly with 8-39% of water samples from the Gettysburg Basin above 10 μg/L and 24-54% of water samples from the Newark Basin above 10 μg/L. The strongest controls on arsenic in water of the Gettysburg Basin are pH, alkalinity and silicon, while the strongest controls in the Newark Basin are pH and alkalinity. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Making Ice Creep in the Classroom

    NASA Astrophysics Data System (ADS)

    Prior, David; Vaughan, Matthew; Banjan, Mathilde; Hamish Bowman, M.; Craw, Lisa; Tooley, Lauren; Wongpan, Pat

    2017-04-01

    Understanding the creep of ice has direct application to the role of ice sheet flow in sea level and climate change and to modelling of icy planets and satellites of the outer solar system. Additionally ice creep can be used as an analogue for the high temperature creep of rocks, most particularly quartzites. We adapted technologies developed for ice creep experiments in the research lab, to build some inexpensive ( EU200) rigs to conduct ice creep experiments in an undergraduate (200 and 300 level) class in rock deformation. The objective was to give the students an experience of laboratory rock deformation experiments so that they would understand better what controls the creep rate of ice and rocks. Students worked in eight groups of 5/6 students. Each group had one deformation rig and temperature control system. Each group conducted two experiments over a 2 week period. The results of all 16 experiments were then shared so that all students could analyse the mechanical data and generate a "flow law" for ice. Additionally thin sections were made of each deformed sample so that some microstructural analysis could be incorporated in the data analysis. Students were able to derive a flow law that showed the relationship of creep rate to both stress and temperature. The flow law matches with those from published research. The class did provide a realistic introduction to laboratory rock deformation experiments and helped students' understanding of what controls the creep of rocks.

  17. Surficial Studies of Mars Using Cosmogenic Nuclides

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.

    2001-01-01

    Cosmogenic nuclides (CNs) are produced by cosmic-ray nuclear interactions with target nuclei in rocks, soils, ice, and the atmosphere. Cosmogenic nuclides have been widely used for investigation of solar system matter for several decades. Stable nuclides, such as He-3, Ne-21, and Ar-38, are built up over time as the surface is exposed to cosmic rays. The concentrations of cosmogenic radionuclides, such as Be-10, Al-26, and C-14 also build up with exposure time but reach saturation values after several half-lives. Especially since the development of accelerator mass spectrometry (AMS), CNs in terrestrial samples have been routinely used for geomorphic studies such as glaciation, surface erosion, and tectonics, and studies of atmospheric and ocean circulation. Cosmogenic nuclides on Mars will be able to answer questions of exposure ages, erosion rates, tectonic events, and deposition rates of sediments and/or volatiles. The concentrations of cosmogenic stable nuclides give the integrated exposure time of the rock/mineral, and the activities of radionuclides give recent records for times back as long as a few half-lives.

  18. Lineated Valley Fills and Lobate Debris Aprons in Coloe Fossae: Evolutionary characteristics and time-stratigraphic relationships.

    NASA Astrophysics Data System (ADS)

    Schreiner, Björn; van Gasselt, Stephan; Neukum, Gerhard; HRSC Co-Investigator Team

    2010-05-01

    Mid-latitude regions of Mars, especially the crustal dichotomy boundary between highlands and northern lowlands are characterized by lineated valley fills (LVF) and lobate debris aprons (LDA). These features reveal evidence of ice-rich deposits. LDAs are assumed to consist of a mixture of ice and rock/debris consistent with models of apron formation such as rock glacier ice assisted creep of talus, ice-rich landslides, or debris-covered glaciers. Deposition of ice at these latitudes is consistent with athmospheric circulation models and predictions of spin axis and orbital variations for the past history of Mars. In this study we measured crater size frequency distributions of LVS and LDA including unrelaxed glacier-like convex bodies in the Coloe Fossae region (35°N, 55°E) and determined late amazonian crater retention ages of 30-50 Ma and 80-100 Ma which gives evidence of repeated deposition of mantling material from surrounding head walls with continuous resurfacing between active periods. We use new HRSC data for topography and imaging in conjunction with high resolution CTX imaging data.

  19. Geology of the MER 2003 "Elysium" candidate landing site in southeastern Utopia Planitia, Mars

    USGS Publications Warehouse

    Tanaka, K.L.; Carr, M.H.; Skinner, J.A.; Gilmore, M.S.; Hare, T.M.

    2003-01-01

    The NASA Mars Exploration Rover (MER) Project has been considering a landing-site ellipse designated EP78B2 in southeastern Utopia Planitia, southwest of Elysium Mons. The site appears to be relatively safe for a MER landing site because of its predicted low wind velocities in mesoscale atmospheric circulation models and its low surface roughness at various scales as indicated by topographic and imaging data sets. Previously, the site's surface rocks have been interpreted to be marine sediments or lava flows. In addition, we suggest that Late Noachian to Early Hesperian collapse and mass wasting of Noachian highland rocks contributed to the deposition of detritus in the area of the ellipse. Furthermore, we document partial Late Hesperian to Early Amazonian resurfacing of the ellipse by flows and vents that may be of mud or silicate volcanic origin. A rover investigation of the Utopia landing site using the MER Athena instrument package might address some fundamental aspects of Martian geologic evolution, such as climate change, hydrologic evolution, and magmatic and tectonic history. Copyright 2003 by the American Geophysical Union.

  20. Multistage crack seal vein and hydrothermal Ni enrichment in serpentinized ultramafic rocks (Koniambo massif, New Caledonia)

    NASA Astrophysics Data System (ADS)

    Cathelineau, Michel; Myagkiy, Andrey; Quesnel, Benoit; Boiron, Marie-Christine; Gautier, Pierre; Boulvais, Philippe; Ulrich, Marc; Truche, Laurent; Golfier, Fabrice; Drouillet, Maxime

    2017-10-01

    Sets of fractures and breccia sealed by Ni-rich silicates and quartz occur within saprock of the New Caledonian regolith developed over ultramafic rocks. The crystallization sequence in fractures is as follows: (1) serpentine stage: lizardite > polygonal serpentine > white lizardite; (2) Ni stage: Ni-Mg kerolite followed by red-brown microcrystalline quartz; and (3) supergene stages. The red-brown microcrystalline quartz corresponds to the very last stage of the Ni sequence and is inferred to have precipitated within the 50-95 °C temperature range. It constitutes also the main cement of breccia that has all the typical features of hydraulic fracturing. The whole sequence is therefore interpreted as the result of hydrothermal fluid circulation under medium to low temperature and fluctuating fluid pressure. Although frequently described as the result of a single downward redistribution of Ni and Mg leached in the upper part of the regolith under ambient temperature, the Ni silicate veins thus appear as the result of recurrent crack and seal process, corresponding to upward medium temperature fluid convection, hydraulic fracturing and subsequent fluid mixing, and mineral deposition.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, Karsten

    Responding to the need to reduce atmospheric emissions of carbon dioxide, Donald Brown (2000) proposed a novel enhanced geothermal systems (EGS) concept that would use CO{sub 2} instead of water as heat transmission fluid, and would achieve geologic sequestration of CO{sub 2} as an ancillary benefit. Following up on his suggestion, we have evaluated thermophysical properties and performed numerical simulations to explore the fluid dynamics and heat transfer issues in an engineered geothermal reservoir that would be operated with CO{sub 2}. We find that CO{sub 2} is superior to water in its ability to mine heat from hot fractured rock.more » CO{sub 2} also has certain advantages with respect to wellbore hydraulics, where larger compressibility and expansivity as compared to water would increase buoyancy forces and would reduce the parasitic power consumption of the fluid circulation system. While the thermal and hydraulic aspects of a CO{sub 2}-EGS system look promising, major uncertainties remain with regard to chemical interactions between fluids and rocks. An EGS system running on CO{sub 2} has sufficiently attractive features to warrant further investigation.« less

  2. Quantum optical circulator controlled by a single chirally coupled atom

    NASA Astrophysics Data System (ADS)

    Scheucher, Michael; Hilico, Adèle; Will, Elisa; Volz, Jürgen; Rauschenbeutel, Arno

    2016-12-01

    Integrated nonreciprocal optical components, which have an inherent asymmetry between their forward and backward propagation direction, are key for routing signals in photonic circuits. Here, we demonstrate a fiber-integrated quantum optical circulator operated by a single atom. Its nonreciprocal behavior arises from the chiral interaction between the atom and the transversally confined light. We demonstrate that the internal quantum state of the atom controls the operation direction of the circulator and that it features a strongly nonlinear response at the single-photon level. This enables, for example, photon number-dependent routing and novel quantum simulation protocols. Furthermore, such a circulator can in principle be prepared in a coherent superposition of its operational states and may become a key element for quantum information processing in scalable integrated optical circuits.

  3. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    NASA Astrophysics Data System (ADS)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  4. Hearing loss and tinnitus in rock musicians: A Norwegian survey.

    PubMed

    Størmer, Carl Christian Lein; Laukli, Einar; Høydal, Erik Harry; Stenklev, Niels Christian

    2015-01-01

    Our focus in this study was to assess hearing thresholds and the prevalence and characteristics of tinnitus in a large group of rock musicians based in Norway. A further objective was to assess related factors such as exposure, instrument category, and the preventive effect of hearing protection. The study was a cross-sectional survey of rock musicians selected at random from a defined cohort of musicians. A random control group was included for comparison. We recruited 111 active musicians from the Oslo region, and a control group of 40 nonmusicians from the student population at the University of TromsØ. The subjects were investigated using clinical examination, pure tone audiometry, tympanometry, and a questionnaire. We observed a hearing loss in 37.8% of the rock musicians. Significantly poorer hearing thresholds were seen at most pure-tone frequencies in musicians than controls, with the most pronounced threshold shift at 6 kHz. The use of hearing protection, in particular custom-fitted earplugs, has a preventive effect but a minority of rock musicians apply them consistently. The degree of musical performance exposure was inversely related to the degree of hearing loss in our sample. Bass and guitar players had higher hearing thresholds than vocalists. We observed a 20% prevalence of chronic tinnitus but none of the affected musicians had severe tinnitus symptomatology. There was no statistical association between permanent tinnitus and hearing loss in our sample. We observed an increased prevalence of hearing loss and tinnitus in our sample of Norwegian rock musicians but the causal relationship between musical exposure and hearing loss or tinnitus is ambiguous. We recommend the use of hearing protection in rock musicians.

  5. Hearing loss and tinnitus in rock musicians: A Norwegian survey

    PubMed Central

    Størmer, Carl Christian Lein; Laukli, Einar; Høydal, Erik Harry; Stenklev, Niels Christian

    2015-01-01

    Our focus in this study was to assess hearing thresholds and the prevalence and characteristics of tinnitus in a large group of rock musicians based in Norway. A further objective was to assess related factors such as exposure, instrument category, and the preventive effect of hearing protection. The study was a cross-sectional survey of rock musicians selected at random from a defined cohort of musicians. A random control group was included for comparison. We recruited 111 active musicians from the Oslo region, and a control group of 40 nonmusicians from the student population at the University of Tromsø. The subjects were investigated using clinical examination, pure tone audiometry, tympanometry, and a questionnaire. We observed a hearing loss in 37.8% of the rock musicians. Significantly poorer hearing thresholds were seen at most pure-tone frequencies in musicians than controls, with the most pronounced threshold shift at 6 kHz. The use of hearing protection, in particular custom-fitted earplugs, has a preventive effect but a minority of rock musicians apply them consistently. The degree of musical performance exposure was inversely related to the degree of hearing loss in our sample. Bass and guitar players had higher hearing thresholds than vocalists. We observed a 20% prevalence of chronic tinnitus but none of the affected musicians had severe tinnitus symptomatology. There was no statistical association between permanent tinnitus and hearing loss in our sample. We observed an increased prevalence of hearing loss and tinnitus in our sample of Norwegian rock musicians but the causal relationship between musical exposure and hearing loss or tinnitus is ambiguous. We recommend the use of hearing protection in rock musicians. PMID:26572701

  6. Modelling of Dynamic Rock Fracture Process with a Rate-Dependent Combined Continuum Damage-Embedded Discontinuity Model Incorporating Microstructure

    NASA Astrophysics Data System (ADS)

    Saksala, Timo

    2016-10-01

    This paper deals with numerical modelling of rock fracture under dynamic loading. For this end, a combined continuum damage-embedded discontinuity model is applied in finite element modelling of crack propagation in rock. In this model, the strong loading rate sensitivity of rock is captured by the rate-dependent continuum scalar damage model that controls the pre-peak nonlinear hardening part of rock behaviour. The post-peak exponential softening part of the rock behaviour is governed by the embedded displacement discontinuity model describing the mode I, mode II and mixed mode fracture of rock. Rock heterogeneity is incorporated in the present approach by random description of the rock mineral texture based on the Voronoi tessellation. The model performance is demonstrated in numerical examples where the uniaxial tension and compression tests on rock are simulated. Finally, the dynamic three-point bending test of a semicircular disc is simulated in order to show that the model correctly predicts the strain rate-dependent tensile strengths as well as the failure modes of rock in this test. Special emphasis is laid on modelling the loading rate sensitivity of tensile strength of Laurentian granite.

  7. Large Deformation Characteristics and Reinforcement Measures for a Rock Pillar in the Houziyan Underground Powerhouse

    NASA Astrophysics Data System (ADS)

    Xiao, Xin-hong; Xiao, Pei-wei; Dai, Feng; Li, Hai-bo; Zhang, Xue-bin; Zhou, Jia-wen

    2018-02-01

    The underground powerhouse of the Houziyan Hydropower Station is under the conditions of high geo-stress and a low strength/stress ratio, which leads to significant rock deformation and failures, especially for rock pillars due to bidirectional unloading during the excavation process. Damages occurred in thinner rock pillars after excavation due to unloading and stress concentration, which will reduce the surrounding rock integrity and threaten the safety of the underground powerhouse. By using field investigations and multi-source monitoring data, the deformation and failure characteristics of a rock pillar are analyzed from the tempo-spatial distribution features. These results indicate that significant deformation occurred in the rock pillar when the powerhouse was excavated to the fourth layer, and the maximum displacement reached 107.57 mm, which occurred on the main transformer chamber upstream sidewall at an elevation of 1721.20 m. The rock deformation surrounding the rock pillar is closely related to the excavation process and has significant time-related characteristics. To control large deformation of the rock pillar, thru-anchor cables were used to reinforce the rock pillar to ensure the stability of the powerhouse. The rock deformation surrounding the rock pillar decreases gradually and forms a convergent trend after reinforcement measures are installed based on the analysis of the temporal characteristics and the rock pillar deformation rate.

  8. Finding the Balance: Fertility Control for the Management of Fragmented Populations of a Threatened Rock-Wallaby Species.

    PubMed

    Willers, Nicole; Martin, Graeme B; Matson, Phill; Mawson, Peter R; Morris, Keith; Bencini, Roberta

    2015-12-16

    Populations of Australian marsupials can become overabundant, resulting in detrimental impacts on the environment. For example, the threatened black-flanked rock-wallaby ( Petrogale lateralis lateralis ) has previously been perceived as overabundant and thus 'unwanted' when they graze crops and cause habitat degradation. Hormonally-induced fertility control has been increasingly used to manage population size in other marsupials where alternative management options are not viable. We tested whether deslorelin, a superagonist of gonadotropin-releasing hormone (GnRH), would suppress reproduction in free-living adult female rock-wallabies without adversely impacting body condition. We trapped, synchronised reproduction and allocated female rock-wallabies to a placebo implant (control, n = 22), one (n = 22) or two (n = 20) subcutaneous implants of deslorelin. Females were then recaptured over the following 36 months to monitor reproduction, including Luteinising Hormone levels, and body condition. Following treatment, diapaused blastocysts reactivated in five females and the resulting young were carried through to weaning. No wallabies treated with deslorelin, conceivede a new young for at least 27 months. We did not observe adverse effects on body condition on treated females. We conclude that deslorelin implants are effective for the medium-term suppression of reproduction in female black-flanked rock-wallabies and for managing overabundant populations of some marsupials.

  9. Compositional data supports decentralized model of production and circulation of artifacts in the pre-Columbian south-central Andes.

    PubMed

    Lazzari, Marisa; Pereyra Domingorena, Lucas; Stoner, Wesley D; Scattolin, María Cristina; Korstanje, María Alejandra; Glascock, Michael D

    2017-05-16

    The circulation and exchange of goods and resources at various scales have long been considered central to the understanding of complex societies, and the Andes have provided a fertile ground for investigating this process. However, long-standing archaeological emphasis on typological analysis, although helpful to hypothesize the direction of contacts, has left important aspects of ancient exchange open to speculation. To improve understanding of ancient exchange practices and their potential role in structuring alliances, we examine material exchanges in northwest Argentina (part of the south-central Andes) during 400 BC to AD 1000 (part of the regional Formative Period), with a multianalytical approach (petrography, instrumental neutron activation analysis, laser ablation inductively coupled plasma mass spectrometry) to artifacts previously studied separately. We assess the standard centralized model of interaction vs. a decentralized model through the largest provenance database available to date in the region. The results show: ( i ) intervalley heterogeneity of clays and fabrics for ordinary wares; ( ii ) intervalley homogeneity of clays and fabrics for a wide range of decorated wares (e.g., painted Ciénaga); ( iii ) selective circulation of two distinct polychrome wares (Vaquerías and Condorhuasi); ( iv ) generalized access to obsidian from one major source and various minor sources; and ( v ) selective circulation of volcanic rock tools from a single source. These trends reflect the multiple and conflicting demands experienced by people in small-scale societies, which may be difficult to capitalize by aspiring elites. The study undermines centralized narratives of exchange for this period, offering a new platform for understanding ancient exchange based on actual material transfers, both in the Andes and beyond.

  10. Compositional data supports decentralized model of production and circulation of artifacts in the pre-Columbian south-central Andes

    PubMed Central

    Pereyra Domingorena, Lucas; Stoner, Wesley D.; Scattolin, María Cristina; Korstanje, María Alejandra; Glascock, Michael D.

    2017-01-01

    The circulation and exchange of goods and resources at various scales have long been considered central to the understanding of complex societies, and the Andes have provided a fertile ground for investigating this process. However, long-standing archaeological emphasis on typological analysis, although helpful to hypothesize the direction of contacts, has left important aspects of ancient exchange open to speculation. To improve understanding of ancient exchange practices and their potential role in structuring alliances, we examine material exchanges in northwest Argentina (part of the south-central Andes) during 400 BC to AD 1000 (part of the regional Formative Period), with a multianalytical approach (petrography, instrumental neutron activation analysis, laser ablation inductively coupled plasma mass spectrometry) to artifacts previously studied separately. We assess the standard centralized model of interaction vs. a decentralized model through the largest provenance database available to date in the region. The results show: (i) intervalley heterogeneity of clays and fabrics for ordinary wares; (ii) intervalley homogeneity of clays and fabrics for a wide range of decorated wares (e.g., painted Ciénaga); (iii) selective circulation of two distinct polychrome wares (Vaquerías and Condorhuasi); (iv) generalized access to obsidian from one major source and various minor sources; and (v) selective circulation of volcanic rock tools from a single source. These trends reflect the multiple and conflicting demands experienced by people in small-scale societies, which may be difficult to capitalize by aspiring elites. The study undermines centralized narratives of exchange for this period, offering a new platform for understanding ancient exchange based on actual material transfers, both in the Andes and beyond. PMID:28461485

  11. A combination of increased Rho kinase activity and N-terminal pro-B-type natriuretic peptide predicts worse cardiovascular outcome in patients with acute coronary syndrome

    PubMed Central

    Dong, Ming; Liao, James K.; Yan, Bryan; Li, Ruijie; Zhang, Mang; Yu, Cheuk-Man

    2013-01-01

    Background Recent experimental evidence suggests that the Rho/Rho-kinase (ROCK) system may play an important role in the pathogenesis of acute coronary syndrome (ACS) but there are little clinical data. This study examined if ROCK activity is increased in patients with acute coronary syndrome and if ROCK activity predicts long-term cardiovascular event. Method Blood samples were collected from 188 patients within 12 h after admission for ACS (53% men; aged 70±13) and from 61 control subject. The main outcome measures were all cause mortality, readmission with ACS or congestive heart failure (CHF) from presentation within around 2 years (mean:14.4±7.2 months; range: 0.5 to 26 months). Results ROCK activity increased in ST elevation myocardial infarction (STEMI, n=90) (3.33±0.93), non-STEMI (NSTEMI, n=68) (3.37±1.04) and unstable angina (UA, n=30) (2.53±0.59) groups when compared with disease controls (n=31) (2.06±0.38, all p<0.001) and healthy controls (n=30) (1.54±0.43, all p<0.001). There were 24 deaths, 34 readmissions with ACS and 15 admissions with CHF within 2 years. Patients with a high N-terminal pro-B-type natriuretic peptide (NT-proBNP) and high ROCK activity on admission had a five-fold risk of a cardiovascular event (RR: 5.156; 95% CI: 2.180–12.191) when compared to those with low NT-proBNP and low ROCK activity. Conclusion ROCK activity was increased in patients with ACS, particularly in those with myocardial infarction. The combined usage of both ROCK activity and NT-proBNP might identify a subset of ACS patients at particularly high risk. PMID:22921817

  12. An experimental study of a turbulent boundary layer in the trailing edge region of a circulation-control airfoil

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Brown, Jeff

    1992-01-01

    This report discusses progress made on NASA Cooperative Agreement NCC2-545, 'An Experimental Study of a Turbulent Boundary Layer in the Trailing-Edge Region of a Circulation-Control Airfoil' during the period 9/1/91 through 9/30/92. The study features 2-component laser Doppler velocimeter (LDV) measurements in the trailing edge and wake regions of a generic 2-dimensional circulation-control model. The final experimental phase of the study will be carried out in the Ames High Reynolds Number Channel 2 (HRC2) transonic blow-down-facility. During the 13-month period covered by this report, work continued on the development of the near-wall laser Doppler velocimeter (LDV) described in previous reports.

  13. Weathering and hydrothermal alteration of basalts in Iceland: mineralogy from VNIR, TIR, XRD, and implications for Mars

    NASA Astrophysics Data System (ADS)

    Ehlmann, B. L.; Mustard, J. F.; Bish, D. L.

    2009-12-01

    Recent orbital investigations have revealed that aqueous alteration on early Mars took place in diverse alteration environments indicated by distinctive assemblages of minerals (Murchie et al., 2009, JGR). There is growing evidence for past diagenetic or low-temperature/pressure hydrothermal activity on Mars at neutral to alkaline pH, indicated by the presence of Fe/Mg smectites, chlorite, prehnite, serpentine, opaline silica, and zeolites such as analcime in Noachian terrains (Ehlmann et al., 2009, JGR). In recent investigations of terrestrial Mars analog sites, neutral to alkaline pH alteration of basalt, both pedogenic and hydrothermal, has been understudied in favor of sulfur-rich, acidic systems including those at the Hawaiian volcanoes and Rio Tinto, Spain. We began study of the alteration of basalt lava flows in Iceland as a geochemical analog for Noachian Mars. Because the basaltic bedrock is recently formed (<16Ma) with few localities of more highly evolved composition and has poorly formed soils and spare vegetation, the ground and surface waters are broadly similar to those which might have existed on Noachian Mars. Iceland has a variety of geothermal spring systems--low T, low S; low T, high S; and high T, high S--each of which creates distinctive mineralogic assemblages. Here we examine rocks of the Hvalfjordur peninsula, collected from basalt flows that were in some places altered at the surface by pedogenesis and in other locations were hydrothermally altered by non-sulfurous groundwater circulation (low T, low S) following the emplacement of a later hot basalt flow. Rock samples were surveyed in the field using a portable VNIR spectrometer. Altered and unaltered rocks that were typical for the locality were collected as were altered rocks whose spectra were most similar to those measured by CRISM from Mars orbit. Ten rocks were ultimately selected for detailed laboratory analyses: zeolitized basaltic rocks bearing minerals including analcime and thomsonite, basalts with silica/quartz-bearing veins, basalts bearing celadonite, and basalts partially altered to montmorillonite, Fe/Mg smectite, or mixed smectite-chlorite. Analyses included: (1) measurement of reflectance spectra of the whole rock by the ASD; (2) measurement of VNIR and TIR spectra in RELAB of particle-size separates (<25um and <125um) derived from the bulk rock and from precipitated minerals extracted from the vesicles; (3) measurement of X-ray diffraction (XRD) patterns, including quantitative XRD; and (4) electron microprobe chemical analyses. These data emulate orbital data from CRISM, OMEGA, and TES, which detect the infrared active components, linked to in-situ data on whole rock modal mineralogy such as will be measured by the ChemMin instrument on the MSL rover.

  14. A Thermal Technique of Fault Nucleation, Growth, and Slip

    NASA Astrophysics Data System (ADS)

    Garagash, D.; Germanovich, L. N.; Murdoch, L. C.; Martel, S. J.; Reches, Z.; Elsworth, D.; Onstott, T. C.

    2009-12-01

    Fractures and fluids influence virtually all mechanical processes in the crust, but many aspects of these processes remain poorly understood largely because of a lack of controlled field experiments at appropriate scale. We have developed an in-situ experimental approach to create carefully controlled faults at scale of ~10 meters using thermal techniques to modify in situ stresses to the point where the rock fails in shear. This approach extends experiments on fault nucleation and growth to length scales 2-3 orders of magnitude greater than are currently possible in the laboratory. The experiments could be done at depths where the modified in situ stresses are sufficient to drive faulting, obviating the need for unrealistically large loading frames. Such experiments require an access to large rock volumes in the deep subsurface in a controlled setting. The Deep Underground Science and Engineering Laboratory (DUSEL), which is a research facility planned to occupy the workings of the former Homestake gold mine in the northern Black Hills, South Dakota, presents an opportunity for accessing locations with vertical stresses as large as 60 MPa (down to 2400 m depth), which is sufficient to create faults. One of the most promising methods for manipulating stresses to create faults that we have evaluated involves drilling two parallel planar arrays of boreholes and circulating cold fluid (e.g., liquid nitrogen) to chill the region in the vicinity of the boreholes. Cooling a relatively small region around each borehole causes the rock to contract, reducing the normal compressive stress throughout much larger region between the arrays of boreholes. This scheme was evaluated using both scaling analysis and a finite element code. Our results show that if the boreholes are spaced by ~1 m, in several days to weeks, the normal compressive stress can be reduced by 10 MPa or more, and it is even possible to create net tension between the borehole arrays. According to the Mohr-Coulomb strength criterion with standard Byerlee parameters, a fault will initiate before the net tension occurs. After a new fault is created, hot fluid can be injected into the boreholes to increase the temperature and reverse the direction of fault slip. This process can be repeated to study the formation of gouge, and how the properties of gouge control fault slip and associated seismicity. Instrumenting the site with arrays of geophones, tiltmeters, strain gauges, and displacement transducers as well as back mining - an opportunity provided by the DUSEL project - can reveal details of the fault geometry and gouge. We also expect to find small faults (with cm-scale displacement) during construction of DUSEL drifts. The same thermal technique can be used to induce slip on one of them and compare the “man-made” and natural gouges. The thermal technique appears to be a relatively simple way to rapidly change the stress field and either create slip on existing fractures or create new faults at scales up to 10 m or more.

  15. South Fork Zumbro River Stage 1B, Rochester, Minnesota. Design Memorandum Number 2, Flood Control Project

    DTIC Science & Technology

    1987-02-01

    inspection of outcrops, the bedrock is estimated to be rippable to an average depth of 4.5 feet with a D-9 dozer and mounted hydraulic No. 9 ripper. B-4...removed and to evaluate the rippability of the rock. Seventeen borings were completed in the channel in an effort to characterize the rock. Nine of the...characteristics were evaluated and an assessment of the rippability of the rock was made. The assessments of the thickness of rippable rock at various

  16. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis.

    PubMed

    Pirola, Carlos J; Fernández Gianotti, Tomas; Castaño, Gustavo O; Mallardi, Pablo; San Martino, Julio; Mora Gonzalez Lopez Ledesma, María; Flichman, Diego; Mirshahi, Faridodin; Sanyal, Arun J; Sookoian, Silvia

    2015-05-01

    We used a screening strategy of global serum microRNA (miRNA) profiling, followed by a second stage of independent replication and exploration of liver expression of selected miRNAs to study: (1) the circulating miRNA signature associated with non-alcoholic fatty liver disease (NAFLD) progression and predictive power, (2) the role of miRNAs in disease biology and (3) the association between circulating miRNAs and features of the metabolic syndrome. The study used a case-control design and included patients with NAFLD proven through biopsy and healthy controls. Among 84 circulating miRNAs analysed, miR-122, miR-192, miR-19a and miR-19b, miR-125b, and miR-375 were upregulated >2-fold (p<0.05) either in simple steatosis (SS) or non-alcoholic steatohepatitis (NASH). The most dramatic and significant fold changes were observed in the serum levels of miR-122 (7.2-fold change in NASH vs controls and 3.1-fold change in NASH vs SS) and miR-192 (4.4-fold change in NASH vs controls); these results were replicated in the validation set. The majority of serum miR-122 circulate in argonaute2-free forms. Circulating miR-19a/b and miR-125b were correlated with biomarkers of atherosclerosis. Liver miR-122 expression was 10-fold (p<0.03) downregulated in NASH compared with SS and was preferentially expressed at the edge of lipid-laden hepatocytes. In vitro exploration showed that overexpression of miR-122 enhances alanine aminotransferase activity. miR-122 plays a role of physiological significance in the biology of NAFLD; circulating miRNAs mirror the histological and molecular events occurring in the liver. NAFLD has a distinguishing circulating miRNA profile associated with a global dysmetabolic disease state and cardiovascular risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Diuretics prevent Rho-kinase activation and expression of profibrotic/oxidative genes in the hypertensive aortic wall.

    PubMed

    Araos, Patricio; Mondaca, David; Jalil, Jorge E; Yañez, Cristián; Novoa, Ulises; Mora, Italo; Ocaranza, María Paz

    2016-12-01

    Diuretics are current antihypertensive drugs since they reduce blood pressure and cardiovascular risk. Increased vascular tone is modulated in a relevant way by the RhoA/Rho-kinase (ROCK) pathway, by acting on vascular smooth muscle cell contraction. This pathway has also proremodeling vascular effects. There are few data on the role of diuretics on both vascular ROCK activation and on proremodeling effects. We assessed the effects of hydrochlorothiazide (HCTZ) and spironolactone (spiro) alone and in combination with the ROCK inhibitor fasudil (FAS) on ROCK activation, gene expression of proremodeling markers and on hypertrophy in the aortic wall of hypertensive rats. Deoxycorticosterone acetate (DOCA)-salt hypertensive rats (male, Sprague-Dawley) were randomized to the specific ROCK inhibitor FAS, HCTZ, spiro or the combinations of FAS/HCTZ or FAS/spiro for 3 weeks. At the end of the study, ROCK activation (by western blot), gene expression of proremodeling markers (by reverse transcription polymerase chain reaction, RT-PCR) and vascular hypertrophy (by morphometry) were determined in the aortic wall. All treatments significantly reduced blood pressure. In the DOCA rats the p-myosin phosphatase target protein-1 (MYPT1)/t-MYPT1 ratio, index of ROCK activation was higher by 2.8 fold (p < 0.05) compared with control rats. All treatments reduced ROCK activation in the aortic wall to control levels (p < 0.05). Besides, significantly increased protein levels of transforming growth factor β1 (TGF-β 1 ), gene expression of TGF-β 1 , connective tissue growth factor (CTGF), p22 phox and gp91 phox subunits of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, as well as increased media thickness and aortic media area/lumen area (AM/LA) in the untreated hypertensive rats were significantly reduced (p < 0.05) to control levels by all treatments. Similar effects were observed using both diuretics alone or in combination with FAS. In the aortic wall, both HCTZ and spiro in antihypertensive doses reduce ROCK activation, subsequent expression of genes that promote vascular remodeling and hypertrophy in this experimental model of hypertension. These effects could explain some of their clinical benefits in hypertensive patients. © The Author(s), 2016.

  18. Diuretics prevent Rho-kinase activation and expression of profibrotic/oxidative genes in the hypertensive aortic wall

    PubMed Central

    Araos, Patricio; Mondaca, David; Jalil, Jorge E.; Yañez, Cristián; Novoa, Ulises; Mora, Italo; Ocaranza, María Paz

    2016-01-01

    Background: Diuretics are current antihypertensive drugs since they reduce blood pressure and cardiovascular risk. Increased vascular tone is modulated in a relevant way by the RhoA/Rho-kinase (ROCK) pathway, by acting on vascular smooth muscle cell contraction. This pathway has also proremodeling vascular effects. There are few data on the role of diuretics on both vascular ROCK activation and on proremodeling effects. We assessed the effects of hydrochlorothiazide (HCTZ) and spironolactone (spiro) alone and in combination with the ROCK inhibitor fasudil (FAS) on ROCK activation, gene expression of proremodeling markers and on hypertrophy in the aortic wall of hypertensive rats. Methods: Deoxycorticosterone acetate (DOCA)-salt hypertensive rats (male, Sprague–Dawley) were randomized to the specific ROCK inhibitor FAS, HCTZ, spiro or the combinations of FAS/HCTZ or FAS/spiro for 3 weeks. At the end of the study, ROCK activation (by western blot), gene expression of proremodeling markers (by reverse transcription polymerase chain reaction, RT-PCR) and vascular hypertrophy (by morphometry) were determined in the aortic wall. Results: All treatments significantly reduced blood pressure. In the DOCA rats the p-myosin phosphatase target protein-1 (MYPT1)/t-MYPT1 ratio, index of ROCK activation was higher by 2.8 fold (p < 0.05) compared with control rats. All treatments reduced ROCK activation in the aortic wall to control levels (p < 0.05). Besides, significantly increased protein levels of transforming growth factor β1 (TGF-β1), gene expression of TGF-β1, connective tissue growth factor (CTGF), p22 phox and gp91 phox subunits of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, as well as increased media thickness and aortic media area/lumen area (AM/LA) in the untreated hypertensive rats were significantly reduced (p < 0.05) to control levels by all treatments. Similar effects were observed using both diuretics alone or in combination with FAS. Conclusions: In the aortic wall, both HCTZ and spiro in antihypertensive doses reduce ROCK activation, subsequent expression of genes that promote vascular remodeling and hypertrophy in this experimental model of hypertension. These effects could explain some of their clinical benefits in hypertensive patients. PMID:27587602

  19. Model-free adaptive control of advanced power plants

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  20. Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Morford, Scott L.; Houlton, Benjamin Z.; Dahlgren, Randy A.

    2016-02-01

    Rock contains > 99% of Earth's reactive nitrogen (N), but questions remain over the direct importance of rock N weathering inputs to terrestrial biogeochemical cycling. Here we investigate the factors that regulate rock N abundance and develop a new model for quantifying rock N mobilization fluxes across desert to temperate rainforest ecosystems in California, USA. We analyzed the N content of 968 rock samples from 531 locations and compiled 178 cosmogenically derived denudation estimates from across the region to identify landscapes and ecosystems where rocks account for a significant fraction of terrestrial N inputs. Strong coherence between rock N content and geophysical factors, such as protolith, (i.e. parent rock), grain size, and thermal history, are observed. A spatial model that combines rock geochemistry with lithology and topography demonstrates that average rock N reservoirs range from 0.18 to 1.2 kg N m-3 (80 to 534 mg N kg-1) across the nine geomorphic provinces of California and estimates a rock N denudation flux of 20-92 Gg yr-1 across the entire study area (natural atmospheric inputs ~ 140 Gg yr-1). The model highlights regional differences in rock N mobilization and points to the Coast Ranges, Transverse Ranges, and the Klamath Mountains as regions where rock N could contribute meaningfully to ecosystem N cycling. Contrasting these data to global compilations suggests that our findings are broadly applicable beyond California and that the N abundance and variability in rock are well constrained across most of the Earth system.

  1. Circulating Endothelial Progenitor Cells Present an Inflammatory Phenotype and Function in Patients With Alcoholic Liver Cirrhosis

    PubMed Central

    Kaur, Savneet; Sehgal, Rashi; Shastry, Saggere M.; McCaughan, Geoffrey; McGuire, Helen M.; Fazekas St de Groth, Barbara; Sarin, Shiv; Trehanpati, Nirupma; Seth, Devanshi

    2018-01-01

    Background and Aim: Endothelial progenitor cells (EPCs) have been implicated in liver injury and repair. However, the phenotype and potential of these heterogenous EPCs remain elusive. In particular, their involvement in the pathogenesis of alcoholic liver cirrhosis (ALC) remains unclear. The current study extensively characterized the phenotype and functions of EPCs to understand their role in ALC pathogenesis. Methods: Circulating EPCs were identified as CD34+CD133+CD31+ cells by flow cytometer in ALC patients (n = 7) and healthy controls (HC, n = 7). A comprehensive characterization of circulating EPCs using more than 30 phenotype markers was performed by mass cytometer time of flight (CyTOF) in an independent cohort of age and gender matched ALC patients (n = 4) and controls (n = 5). Ex vivo cultures of circulating EPCs from ALC patients (n = 20) and controls (n = 18) were also tested for their functions, including colony formation, LDL uptake, lectin binding and cytokine secretion (ELISA). Results: Three distinct populations of circulating EPCs (CD34+CD133+CD31+) were identified, classified on their CD45 expression (negative: CD45−; intermediate: CD45int; high: CD45hi). CD45int and CD45hi EPCs significantly increased in ALC patients compared to controls (p-val = 0.006). CyTOF data showed that CD45hi EPCs were distinct from CD45− and CD45int EPCs, with higher expression of T cell and myeloid markers, including CD3, CD4, HLA-DR, and chemokine receptors, CCR2, CCR5, CCR7, and CX3CR1. Similar to circulating EPCs, percentage of CD45hiCD34+CD31+ EPCs in ex-vivo cultures from patients, were significantly higher compared to controls (p < 0.05). Cultured EPCs from patients also showed increased LDL uptake, lectin binding and release of TNF-alpha, RANTES, FGF-2, and VEGF. Conclusions: We report the first extensive characterization of circulating human EPCs with distinct EPC subtypes. Increase in CD45hi EPC subtype in ALC patients with enhanced functions, inflammatory cytokines and angiogenic mediators in patients suggests an inflammatory role for these cells in ALC. PMID:29872403

  2. Theoretical and Numerical Investigation of the Cavity Evolution in Gypsum Rock

    NASA Astrophysics Data System (ADS)

    Li, Wei; Einstein, Herbert H.

    2017-11-01

    When water flows through a preexisting cylindrical tube in gypsum rock, the nonuniform dissolution alters the tube into an enlarged tapered tube. A 2-D analytical model is developed to study the transport-controlled dissolution in an enlarged tapered tube, with explicit consideration of the tapered geometry and induced radial flow. The analytical model shows that the Graetz solution can be extended to model dissolution in the tapered tube. An alternative form of the governing equations is proposed to take advantage of the invariant quantities in the Graetz solution to facilitate modeling cavity evolution in gypsum rock. A 2-D finite volume model was developed to validate the extended Graetz solution. The time evolution of the transport-controlled and the reaction-controlled dissolution models for a single tube with time-invariant flow rate are compared. This comparison shows that for time-invariant flow rate, the reaction-controlled dissolution model produces a positive feedback between the tube enlargement and dissolution, while the transport-controlled dissolution does not.

  3. Autonomic control of circulation in fish: a comparative view.

    PubMed

    Sandblom, Erik; Axelsson, Michael

    2011-11-16

    The autonomic nervous system has a central role in the control and co-ordination of the cardiovascular system in all vertebrates. In fish, which represent the largest and most diverse vertebrate group, the autonomic control of the circulation displays a vast variation with a number of interesting deviations from the typical vertebrate pattern. This diversity ranges from virtually no known nervous control of the circulation in hagfish, to a fully developed dual control from both cholinergic and adrenergic nerves in teleost, much resembling the situation found in other vertebrate groups. This review summarizes current knowledge on the role of the autonomic nervous system in the control of the cardiovascular system in fish. We set out by providing an overview of the general trends and patterns in the major fish groups, and then a summary of how the autonomic nervous control is involved in normal daily activities such as barostatic control of blood pressure, as well as adjustments of the cardiovascular system during feeding and environmental hypoxia. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Taoying; Cao, Ping

    2017-09-01

    The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  5. Modelling karst aquifer evolution in fractured, porous rocks

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg

    2016-12-01

    The removal of material in soluble rocks by physical and chemical dissolution is an important process enhancing the secondary porosity of soluble rocks. Depending on the history of the soluble rock, dissolution can occur either along fractures and bedding partings of the rock in the case of a telogenetic origin, or within the interconnected pore space in the case of eogenetic origin. In soluble rocks characterised by both fractures and pore space, dissolution in both flow compartments is possible. We investigate the dissolution of calcite both along fractures and within the pore space of a limestone rock by numerical modelling. The limestone rock is treated as fractured, porous aquifer, in which the hydraulic conductivity increases with time both for the fractures and the pore spaces. We show that enlargement of pore space by dissolution will accelerate the development of a classical fracture-dominated telogenetic karst aquifer, breakthrough occurs faster. In the case of a pore-controlled aquifer as in eogenetic rocks, enlargement of pores results in a front of enlarged pore spaces migrating into the karst aquifer, with more homogeneous enlargement around this dissolution front, and later breakthrough.

  6. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis

    PubMed Central

    Kümper, Sandra; Mardakheh, Faraz K; McCarthy, Afshan; Yeo, Maggie; Stamp, Gordon W; Paul, Angela; Worboys, Jonathan; Sadok, Amine; Jørgensen, Claus; Guichard, Sabrina

    2016-01-01

    Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility. DOI: http://dx.doi.org/10.7554/eLife.12203.001 PMID:26765561

  7. Circulating Magnetic Microbubbles for Localized Real-Time Control of Drug Delivery by Ultrasonography-Guided Magnetic Targeting and Ultrasound

    PubMed Central

    Chertok, Beata; Langer, Robert

    2018-01-01

    Image-guided and target-selective modulation of drug delivery by external physical triggers at the site of pathology has the potential to enable tailored control of drug targeting. Magnetic microbubbles that are responsive to magnetic and acoustic modulation and visible to ultrasonography have been proposed as a means to realize this drug targeting strategy. To comply with this strategy in vivo, magnetic microbubbles must circulate systemically and evade deposition in pulmonary capillaries, while also preserving magnetic and acoustic activities in circulation over time. Unfortunately, challenges in fabricating magnetic microbubbles with such characteristics have limited progress in this field. In this report, we develop magnetic microbubbles (MagMB) that display strong magnetic and acoustic activities, while also preserving the ability to circulate systemically and evade pulmonary entrapment. Methods: We systematically evaluated the characteristics of MagMB including their pharmacokinetics, biodistribution, visibility to ultrasonography and amenability to magneto-acoustic modulation in tumor-bearing mice. We further assessed the applicability of MagMB for ultrasonography-guided control of drug targeting. Results: Following intravenous injection, MagMB exhibited a 17- to 90-fold lower pulmonary entrapment compared to previously reported magnetic microbubbles and mimicked circulation persistence of the clinically utilized Definity microbubbles (>10 min). In addition, MagMB could be accumulated in tumor vasculature by magnetic targeting, monitored by ultrasonography and collapsed by focused ultrasound on demand to activate drug deposition at the target. Furthermore, drug delivery to target tumors could be enhanced by adjusting the magneto-acoustic modulation based on ultrasonographic monitoring of MagMB in real-time. Conclusions: Circulating MagMB in conjunction with ultrasonography-guided magneto-acoustic modulation may provide a strategy for tailored minimally-invasive control over drug delivery to target tissues. PMID:29290812

  8. Circulating anti-double-stranded DNA antibody-secreting cells in patients with systemic lupus erythematosus: a novel biomarker for disease activity.

    PubMed

    Hanaoka, H; Okazaki, Y; Satoh, T; Kaneko, Y; Yasuoka, H; Seta, N; Kuwana, M

    2012-10-01

    Antibodies against double-stranded DNA (dsDNA) are widely used to diagnose systemic lupus erythematosus (SLE) and evaluate its activity in patients. This study was undertaken to examine the clinical utility of circulating anti-dsDNA antibody-secreting cells for evaluating SLE patients. Anti-dsDNA antibody-secreting cells quantified using an enzyme-linked immunospot assay were detected in the spleen, bone marrow and peripheral blood from MRL/lpr but not in control BALB/c mice. Circulating anti-dsDNA antibody-secreting cells were detected in 29 (22%) of 130 patients with SLE, but in none of 49 with non-SLE connective-tissue disease or 18 healthy controls. The presence of circulating anti-dsDNA antibody-secreting cells was associated with persistent proteinuria, high SLE disease activity index and systemic lupus activity measures, and a high serum anti-dsDNA antibody titre measured with an enzyme-linked immunosorbent assay. The positive predictive value for active disease was 48% for circulating anti-dsDNA antibody-secreting cells versus 17% for serum anti-dsDNA antibodies. A prospective cohort of patients with circulating anti-dsDNA antibodies and inactive SLE showed that the cumulative disease flare-free rate was significantly lower in patients with than without circulating anti-dsDNA antibody-secreting cells (p < 0.001). Circulating anti-dsDNA antibody-secreting cells are a useful biomarker for assessing disease activity in SLE patients.

  9. Computational Evaluation of the Steady and Pulsed Jet Effects on the Performance of a Circulation Control Wing Section

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.; Gaeta, R.

    2005-01-01

    Circulation Control technology is a very effective way of achieving high lift forces required by aircraft during take-off and landing. This technology can also directly control the flow field over the wing. Compared to a conventional high-lift system, a Circulation Control Wing (CCW) can generate comparable or higher lift forces during take-off/landing with fewer or no moving parts and much less complexity. In this work, an unsteady three-dimensional Navier-Stokes analysis procedure has been developed and applied to Circulation Control Wing configurations. The effects of 2-D steady jets and 2-D pulsed jets on the aerodynamic performance of CCW airfoils have been investigated. It is found that a steady jet can generate very high lift at zero angle of attack without stall, and that a small amount of blowing can eliminate vortex shedding at the trailing edge, a potential noise source. It is also found that a pulsed jet can achieve the same high lift as a steady jet at lower mass flow rates, especially at a high frequency, and that the Strouhal number has a more dominant effect on the pulsed jet performance than just the frequency or the free-stream velocity.

  10. Directable weathering of concave rock using curvature estimation.

    PubMed

    Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew

    2010-01-01

    We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linard, Joshua; Hall, Steve

    9.1 Compliance Summary The Lakeview, Oregon, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected September 16 and 17, 2015. Other than some ongoing concern with erosion-control rock riprap degradation, the disposal cell was in good condition. Some minor fence repairs and vegetation removal, and minor erosion repair work along the west site fence is planned. Inspectors identified no other maintenance needs or cause for a follow-up or contingency inspection. Disposal cell riprap is evaluated annually to ensure continued long-term protection of the cell from erosion during a severe precipitation event. Degradation of the rock riprapmore » was first observed at the site in the mid-1990s. Rock gradation monitoring of the riprap on the west side slope has been performed as part of the annual inspection since 1997 to determine the mean diameter (D 50) value. As prescribed by the monitoring procedure, the rock monitoring is routinely conducted at random locations. However, at the U.S. Nuclear Regulatory Commission’s (NRC’s) request, the 2015 rock monitoring approach deviated from the normal procedure by using a pre-established monitoring grid in a subset area of the west side slope. This changed the monitoring approach from random sampling to biased sampling. The D 50 value measured during the 2015 gradation monitoring is 2.39 inches, which falls below the original D 50 design size range of 2.7–3.9 inches for the Type B size side slope riprap. At NRC’s request, rock durability monitoring was added to the gradation monitoring in 2009 to monitor durability by rock type. Results of the 2015 durability monitoring showed that74 percent of the total rock sampled is durability class code A rock with an assigned durability class of “highly durable” or durability class code B “durable” rock, and that over 90 percent of the 3-inch or larger rock is durability class code A or B. The rock durability classifications are further explained in Section 9.4.2.2.« less

  12. [Effects of self-foot reflexology on stress, fatigue and blood circulation in premenopausal middle-aged women].

    PubMed

    Jang, Soo Hyun; Kim, Kye Ha

    2009-10-01

    This study was to examine the effects of self-foot reflexology on stress, fatigue and blood circulation in premenopausal middle-aged women. A quasi-experimental nonequivalent control group, pretest-posttest design was used. Participants were 59 premenopausal, middle-aged women in their 40s and 60s living in G city: 30 in the experiment group and 29 in the control group. Data were collected from May to August 2008. Self-foot reflexology was performed three times a week for 6 weeks for 40 min at each session. The results showed that self-foot reflexology was effective in reducing perceived stress and fatigue and helped blood circulation in premenopausal middle-aged women. Self-foot reflexology may be an effective nursing intervention in reducing perceived stress and fatigue and in improving blood circulation.

  13. Mercury- and silver-rich ferromanganese oxides, southern California Borderland: Deposit model and environmental implications

    USGS Publications Warehouse

    Hein, J.R.; Koschinsky, A.; McIntyre, B.R.

    2005-01-01

    Mercury- and silver-enriched ferromanganese oxide crusts were recovered at water depths of 1,750 tol,300 m from La Victoria knoll, located about 72 km off the coast of northern Baja California. No other ferromanganese precipitate found so far in the modern ocean basins is similarly enriched in Hg and Ag. The precipitates consist of submetallic gray, brecciated, Mn oxide layers overlain by brown earthy, laminated Fe-Mn oxide crusts. Both oxide types are rich in Hg (to 10 ppm) and Ag (to 5.5 ppm). The Mn-rich layers are composed of ??MnO2, with lesser amounts of 10A?? and 7A?? manganates, whereas the Mn phase in the Fe-Mn crusts is solely ??MnO2. The Fe phase in both layers is X-ray amorphous. Established criteria for distinguishing hydrothermal versus hydrogenetic crusts indicate that the Mn-rich layers are predominantly of low-temperature hydrothermal origin, whereas the Fe-Mn crusts are hydrogenetic, although there is some overlap in the source of chemical components in both types. La Victoria knoll is uplifted continental basement rock with basalt, andesite, and schist cropping out at the surface; the knoll may have an intrusive core. The Hg and Ag were derived from leaching by hydrothermal fluids of organic matter-rich sediments in basins adjacent to La Victoria knoll and, to a lesser extent, from continental basement rocks underlying the knoll and adjacent basins. Both rock types are notably enriched in Ag and Hg. Faults were the main fluid transport pathway, and hydrothermal circulation was driven by high heat flow associated with thinned crust. Other elements derived from the hydrothermal fluids include Tl, Cd, Cr, and Li. The main host for Hg and Ag is FeOOH, although MnO2 likely hosts some of the Ag. Minor sulfide and barite also may contain small amounts of these metals. Possible analogs in the geologic record for this deposit type are found in the Basin and Range province of the western United States and Mexico. The discovery highlights the fact that fluids circulating along faults in the offshore California borderland are transporting potentially toxic metals (Hg, Ag, Tl, As, Cd, Cr, Pb, and Ni) and depositing them on and just below the ocean floor. ?? 2005 Society of Economic Geologists, Inc.

  14. Increased liver-specific proteins in circulating extracellular vesicles as potential biomarkers for drug- and alcohol-induced liver injury

    PubMed Central

    Cho, Young-Eun; Im, Eun-Ju; Moon, Pyong-Gon; Mezey, Esteban; Song, Byoung-Joon; Baek, Moon-Chang

    2017-01-01

    Drug- and alcohol-induced liver injury are a leading cause of liver failure and transplantation. Emerging evidence suggests that extracellular vesicles (EVs) are a source of biomarkers because they contain unique proteins reflecting the identity and tissue-specific origin of the EV proteins. This study aimed to determine whether potentially hepatotoxic agents, such as acetaminophen (APAP) and binge alcohol, can increase the amounts of circulating EVs and evaluate liver-specific EV proteins as potential biomarkers for liver injury. The circulating EVs, isolated from plasma of APAP-exposed, ethanol-fed mice, or alcoholic hepatitis patients versus normal control counterparts, were characterized by proteomics and biochemical methods. Liver specific EV proteins were analyzed by immunoblots and ELISA. The amounts of total and liver-specific proteins in circulating EVs from APAP-treated mice significantly increased in a dose- and time-dependent manner. Proteomic analysis of EVs from APAP-exposed mice revealed that the amounts of liver-specific and/or hepatotoxic proteins were increased compared to those of controls. Additionally, the increased protein amounts in EVs following APAP exposure returned to basal levels when mice were treated with N-acetylcysteine or glutathione. Similar results of increased amounts and liver-specific proteins in circulating EVs were also observed in mice exposed to hepatotoxic doses of thioacetamide or d-galactosamine but not by non-hepatotoxic penicillin or myotoxic bupivacaine. Additionally, binge ethanol exposure significantly elevated liver-specific proteins in circulating EVs from mice and alcoholics with alcoholic hepatitis, compared to control counterparts. These results indicate that circulating EVs in drug- and alcohol-mediated hepatic injury contain liver-specific proteins that could serve as specific biomarkers for hepatotoxicity. PMID:28225807

  15. Association of calcium sensing receptor polymorphisms at rs1801725 with circulating calcium in breast cancer patients.

    PubMed

    Wang, Li; Widatalla, Sarrah E; Whalen, Diva S; Ochieng, Josiah; Sakwe, Amos M

    2017-08-02

    Breast cancer (BC) patients with late-stage and/or rapidly growing tumors are prone to develop high serum calcium levels which have been shown to be associated with larger and aggressive breast tumors in post and premenopausal women respectively. Given the pivotal role of the calcium sensing receptor (CaSR) in calcium homeostasis, we evaluated whether polymorphisms of the CASR gene at rs1801725 and rs1801726 SNPs in exon 7, are associated with circulating calcium levels in African American and Caucasian control subjects and BC cases. In this retrospective case-control study, we assessed the mean circulating calcium levels, the distribution of two inactivating CaSR SNPs at rs1801725 and rs1801726 in 199 cases and 384 age-matched controls, and used multivariable regression analysis to determine whether these SNPs are associated with circulating calcium in control subjects and BC cases. We found that the mean circulating calcium levels in African American subjects were higher than those in Caucasian subjects (p < 0.001). As expected, the mean calcium levels were higher in BC cases compared to control subjects (p < 0.001), but the calcium levels in BC patients were independent of race. We also show that in BC cases and control subjects, the major alleles at rs1801725 (G/T, A986S) and at rs1801726 (C/G, Q1011E) were common among Caucasians and African Americans respectively. Compared to the wild type alleles, polymorphisms at the rs1801725 SNP were associated with higher calcium levels (p = 0.006) while those at rs1801726 were not. Using multivariable linear mixed-effects models and adjusting for age and race, we show that circulating calcium levels in BC cases were associated with tumor grade (p = 0.009), clinical stage (p = 0.003) and more importantly, with inactivating mutations of the CASR at the rs1801725 SNP (p = 0.038). These data suggest that decreased sensitivity of the CaSR to calcium due to inactivating polymorphisms at rs1801725, may predispose up to 20% of BC cases to high circulating calcium-associated larger and/or aggressive breast tumors.

  16. Fluid phase biopsy for detection and characterization of circulating endothelial cells in myocardial infarction

    NASA Astrophysics Data System (ADS)

    Bethel, Kelly; Luttgen, Madelyn S.; Damani, Samir; Kolatkar, Anand; Lamy, Rachelle; Sabouri-Ghomi, Mohsen; Topol, Sarah; Topol, Eric J.; Kuhn, Peter

    2014-02-01

    Elevated levels of circulating endothelial cells (CECs) occur in response to various pathological conditions including myocardial infarction (MI). Here, we adapted a fluid phase biopsy technology platform that successfully detects circulating tumor cells in the blood of cancer patients (HD-CTC assay), to create a high-definition circulating endothelial cell (HD-CEC) assay for the detection and characterization of CECs. Peripheral blood samples were collected from 79 MI patients, 25 healthy controls and six patients undergoing vascular surgery (VS). CECs were defined by positive staining for DAPI, CD146 and von Willebrand Factor and negative staining for CD45. In addition, CECs exhibited distinct morphological features that enable differentiation from surrounding white blood cells. CECs were found both as individual cells and as aggregates. CEC numbers were higher in MI patients compared with healthy controls. VS patients had lower CEC counts when compared with MI patients but were not different from healthy controls. Both HD-CEC and CellSearch® assays could discriminate MI patients from healthy controls with comparable accuracy but the HD-CEC assay exhibited higher specificity while maintaining high sensitivity. Our HD-CEC assay may be used as a robust diagnostic biomarker in MI patients.

  17. Dual isotopic approach for determining groundwater origin and water-rock interactions in over exploited watershed in India

    NASA Astrophysics Data System (ADS)

    Negrel, Philippe; Pauwels, Hélène; Millot, Romain; Roy, Stéphane; Guerrot, Catherine

    2010-05-01

    Groundwater flow and storage in hard rock areas is becoming a matter of great interest and importance to researchers and water managers either with regards to the quantity, quality of water as well as delimitation of resources and aquifers. Degradation of groundwater resources by abstraction, contamination, ... has been increasing in many areas and is of growing concern for few decades. In terms of hydrogeology, hard rocks represent a quite heterogeneous and anisotropic media with irregular distribution of pathways of groundwater flow, typically consisting of three vertical zones, upper weathered, middle fractured and lower massive bedrock. Aim of this work is dual and the Maheshwaram watershed (53 km2, Andhra Pradesh, India) representative of watersheds in southern India in terms of geology, overpumping of its hard-rock aquifer (more than 700 classical open end wells in use), its cropping pattern (rice dominating), and its rural socio-economy mainly based on traditional agriculture is investigated through stable isotopes of the water molecule and lead isotopes in groundwater. The overall objective is to incorporate isotopic- and chemical-tracing data and constraints into methods for evaluating groundwater circulation. It divides into fingerprinting the groundwater recharge processes (e.g. the input by the monsoon) and the water use in such agricultural watershed, which is of primary importance in such semi-arid context and investigating the processes of water-rock interactions (e.g. granite-water interaction). In the frame of delimitation of resources and aquifers and long-term sustainability, we monitored the input from monsoon-precipitation over 2 years, and measured spatial and temporal variations in δ18O and δ2H in the groundwater and in precipitation. Individual recharge from the two monsoon periods was identified. This led to identification of periods during which evaporation affects groundwater quality through a higher concentration of salts and stable isotopes in the return flow. In addition, such evaporation is further affected by land use, rice paddies having the strongest evapotranspiration. Lead concentrations span over one or two orders of magnitude up to approximately 20 ?g. L-1. Pb-isotopes, measured in water by MC-ICPMS using an improved new procedure, fluctuate largely as exemplified by the 206Pb/204Pb ratio, reaching values up to 25. Most of the lead in the groundwaters is of geogenic origin, and through the lead isotopic signature in groundwater we have traced and fingerprinted the processes of water-rock interactions considering the granite matrix. Combining a weathering model and field observations, we have defined a two step weathering process that includes a control on the Pb-isotopes ratios by accessory phases and by the main mineral from the granite in a second step of weathering. For future studies, multi-isotope approach will be necessary for the identification of possible flowpaths, in conjunction with the larger exploitation of the groundwater resources. This is also challenging for generalising the use of isotope tools (such as Nd, Sr, Pb and newly developed isotope systematics like Ca, Si...) in many other catchments that may face structural problems of groundwater overdraft.

  18. Enhancements to the FAST-MAC Circulation Control Model and Recent High-Reynolds Number Testing in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.; Anders, Scott G.; Melton, Latunia P.; Carter, Melissa B.; Allan, Brian G.; Capone, Francis J.

    2013-01-01

    A second wind tunnel test of the FAST-MAC circulation control model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 and 60 degrees, along with the transonic cruise configuration with zero degree flap deflection. Testing was again conducted over a wide range of Mach numbers up to 0.88, and Reynolds numbers up to 30 million based on the mean chord. The first wind tunnel test had poor transonic force and moment data repeatability at mild cryogenic conditions due to inadequate thermal conditioning of the balance. The second test demonstrated that an improvement to the balance heating system significantly improved the transonic data repeatability, but also indicated further improvements are still needed. The low-speed highlift performance of the model was improved by testing various blowing slot heights, and the circulation control was again demonstrated to be effective in re-attaching the flow over the wing at off-design transonic conditions. A new tailored spanwise blowing technique was also demonstrated to be effective at transonic conditions with the benefit of reduced mass flow requirements.

  19. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean.

    PubMed

    Edmonds, H N; Michael, P J; Baker, E T; Connelly, D P; Snow, J E; Langmuir, C H; Dick, H J B; Mühe, R; German, C R; Graham, D W

    2003-01-16

    Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure, and the global distribution of such vents has implications for heat and mass fluxes from the Earth's crust and mantle and for the biogeography of vent-endemic organisms. Previous studies have predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridges (ridges with full spreading rates <2 cm x yr(-1)-which make up 25 per cent of the global ridge length), and that such vent systems would be hosted in ultramafic in addition to volcanic rocks. Here we present evidence for active hydrothermal venting on the Gakkel ridge, which is the slowest spreading (0.6-1.3 cm x yr(-1)) and least explored mid-ocean ridge. On the basis of water column profiles of light scattering, temperature and manganese concentration along 1,100 km of the rift valley, we identify hydrothermal plumes dispersing from at least nine to twelve discrete vent sites. Our discovery of such abundant venting, and its apparent localization near volcanic centres, requires a reassessment of the geologic conditions that control hydrothermal circulation on ultraslow-spreading ridges.

  20. Organic-rich sediments in ventilated deep-sea environments: Relationship to climate, sea level, and trophic changes

    NASA Astrophysics Data System (ADS)

    Bertrand, P.; Pedersen, T. F.; Schneider, R.; Shimmield, G.; Lallier-Verges, E.; Disnar, J. R.; Massias, D.; Villanueva, J.; Tribovillard, N.; Huc, A. Y.; Giraud, X.; Pierre, C.; VéNec-Peyré, M.-T.

    2003-02-01

    Sediments on the Namibian Margin in the SE Atlantic between water depths of ˜1000 and ˜3600 m are highly enriched in hydrocarbon-prone organic matter. Such sedimentation has occurred for more than 2 million years and is geographically distributed over hundreds of kilometers along the margin, so that the sediments of this region contain a huge concentrated stock of organic carbon. It is shown here that most of the variability in organic content is due to relative dilution by buried carbonates. This reflects both export productivity and diagenetic dissolution, not differences in either water column or bottom water anoxia and related enhanced preservation of organic matter. These observations offer a new mechanism for the formation of potential source rocks in a well-ventilated open ocean, in this case the South Atlantic. The organic richness is discussed in terms of a suite of probable controls including local wind-driven productivity (upwelling), trophic conditions, transfer efficiency, diagenetic processes, and climate-related sea level and deep circulation. The probability of past occurrences of such organic-rich facies in equivalent oceanographic settings at the edge of large oceanic basins should be carefully considered in deep offshore exploration.

  1. Circulating betatrophin is elevated in patients with type 1 and type 2 diabetes.

    PubMed

    Yamada, Hodaka; Saito, Tomoyuki; Aoki, Atsushi; Asano, Tomoko; Yoshida, Masashi; Ikoma, Aki; Kusaka, Ikuyo; Toyoshima, Hideo; Kakei, Masafumi; Ishikawa, San-E

    2015-01-01

    There is evidence that betatrophin, a hormone derived from adipose tissue and liver, affects the proliferation of pancreatic beta cells in mice. The aim of this study was to examine circulating betatrophin concentrations in Japanese healthy controls and patients with type 1 and type 2 diabetes. A total of 76 subjects (12 healthy controls, 34 type 1 diabetes, 30 type 2 diabetes) were enrolled in the study. Circulating betatrophin was measured with an ELISA kit and clinical parameters related to betatrophin were analyzed statistically. Circulating betatrophin (Log transformed) was significantly increased in patients with diabetes compared with healthy subjects (healthy controls, 2.29 ± 0.51; type 1 diabetes, 2.94 ± 0.44; type 2 diabetes, 3.17 ± 0.18; p<0.001, 4.1 to 5.4 times in pg/mL order). Age, HbA1c, fasting plasma glucose and Log triglyceride were strongly associated with Log betatrophin in all subjects (n=76) in correlation analysis. In type 1 diabetes, there was a correlation between Log betatrophin and Log CPR. These results provide the first evidence that circulating betatrophin is significantly elevated in Japanese patients with diabetes. The findings of this pilot study also suggest a possibility of association between the level of betatrophin and the levels of glucose and triglycerides.

  2. The impact of the ocean observing system on estimates of the California current circulation spanning three decades

    NASA Astrophysics Data System (ADS)

    Moore, Andrew M.; Jacox, Michael G.; Crawford, William J.; Laughlin, Bruce; Edwards, Christopher A.; Fiechter, Jérôme

    2017-08-01

    Data assimilation is now used routinely in oceanography on both regional and global scales for computing ocean circulation estimates and for making ocean forecasts. Regional ocean observing systems are also expanding rapidly, and observations from a wide array of different platforms and sensor types are now available. Evaluation of the impact of the observing system on ocean circulation estimates (and forecasts) is therefore of considerable interest to the oceanographic community. In this paper, we quantify the impact of different observing platforms on estimates of the California Current System (CCS) spanning a three decade period (1980-2010). Specifically, we focus attention on several dynamically related aspects of the circulation (coastal upwelling, the transport of the California Current and the California Undercurrent, thermocline depth and eddy kinetic energy) which in many ways describe defining characteristics of the CCS. The circulation estimates were computed using a 4-dimensional variational (4D-Var) data assimilation system, and our analyses also focus on the impact of the different elements of the control vector (i.e. the initial conditions, surface forcing, and open boundary conditions) on the circulation. While the influence of each component of the control vector varies between different metrics of the circulation, the impact of each observing system across metrics is very robust. In addition, the mean amplitude of the circulation increments (i.e. the difference between the analysis and background) remains relatively stable throughout the three decade period despite the addition of new observing platforms whose impact is redistributed according to the relative uncertainty of observations from each platform. We also consider the impact of each observing platform on CCS circulation variability associated with low-frequency climate variability. The low-frequency nature of the dominant climate modes in this region allows us to track through time the impact of each observation on the circulation, and illustrates how observations from some platforms can influence the circulation up to a decade into the future.

  3. Hydraulic Excavation System. Phase 2

    DTIC Science & Technology

    1988-09-01

    excavation techniques. Hydraulic fracturing has been particulary attractive in past work. The tensile strength of most rock is less than 20 MPa, which...Fairhurst, C. (1970) "In-situ Stress Determination at Great Depth by Means of Hydraulic Fracturing ," Proceedings of the 11th Symposium on Rock...Technique for Controlled Small-scale Hydraulic Fracturing ," First International Symposium on Rock Fragmentation bY Blasting, Vol. 3, A. Rustan and R

  4. 17β-Estradiol Induces Overproliferation in Adenomyotic Human Uterine Smooth Muscle Cells of the Junctional Zone Through Hyperactivation of the Estrogen Receptor-Enhanced RhoA/ROCK Signaling Pathway.

    PubMed

    Sun, Fu-Qing; Duan, Hua; Wang, Sha; Li, Jin-Jiao

    2015-11-01

    Adenomyosis (ADS) is a common estrogen-dependent gynecological disease with unknown etiology. Recent models favor abnormal thickening of the junctional zone (JZ) may be the causative factor in the development of ADS. RhoA, a small guanosine triphosphatase which controls multiple cellular processes, is involved in the control of cell proliferation. Here we demonstrate that treatment of human uterine smooth muscle cells (SMCs) of the JZ with 17β-estradiol (E2) increased expression of RhoA and its downstream effectors (-associated coiled coil containing protein kinase [ROCK] 1 and ROCK2). Compared with non-ADS cells, RhoA, ROCK1, and ROCK2 were overexpressed and hyperactivated in ADS cells. These effects were suppressed in the presence of ICI 182,780, supporting an estrogen receptor (ER)-dependent mechanism. Hyperactivation of ER-enhanced RhoA/ROCK signaling was associated with overproliferation in ADS human uterine SMCs of the JZ. Moreover, E2-induced overproliferation was accompanied by downregulation of cyclin-dependent kinases inhibitors (CKIs; p21(Waf1/Cip1) and p27(Kip1)) and upregulation of cyclin-dependent kinases (CDKs) and cyclins (cyclin D1, cyclin E1, CDK2, CDK4, and CDK6). © The Author(s) 2015.

  5. High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor

    PubMed Central

    2010-01-01

    Background Single-use rocking-motion-type bag bioreactors provide advantages compared to standard stirred tank bioreactors by decreased contamination risks, reduction of cleaning and sterilization time, lower investment costs, and simple and cheaper validation. Currently, they are widely used for cell cultures although their use for small and medium scale production of recombinant proteins with microbial hosts might be very attractive. However, the utilization of rocking- or wave-induced motion-type bioreactors for fast growing aerobic microbes is limited because of their lower oxygen mass transfer rate. A conventional approach to reduce the oxygen demand of a culture is the fed-batch technology. New developments, such as the BIOSTAT® CultiBag RM system pave the way for applying advanced fed-batch control strategies also in rocking-motion-type bioreactors. Alternatively, internal substrate delivery systems such as EnBase® Flo provide an opportunity for adopting simple to use fed-batch-type strategies to shaken cultures. Here, we investigate the possibilities which both strategies offer in view of high cell density cultivation of E. coli and recombinant protein production. Results Cultivation of E. coli in the BIOSTAT® CultiBag RM system in a conventional batch mode without control yielded an optical density (OD600) of 3 to 4 which is comparable to shake flasks. The culture runs into oxygen limitation. In a glucose limited fed-batch culture with an exponential feed and oxygen pulsing, the culture grew fully aerobically to an OD600 of 60 (20 g L-1 cell dry weight). By the use of an internal controlled glucose delivery system, EnBase® Flo, OD600 of 30 (10 g L-1 cell dry weight) is obtained without the demand of computer controlled external nutrient supply. EnBase® Flo also worked well in the CultiBag RM system with a recombinant E. coli RB791 strain expressing a heterologous alcohol dehydrogenase (ADH) to very high levels, indicating that the enzyme based feed supply strategy functions well for recombinant protein production also in a rocking-motion-type bioreactor. Conclusions Rocking-motion-type bioreactors may provide an interesting alternative to standard cultivation in bioreactors for cultivation of bacteria and recombinant protein production. The BIOSTAT® Cultibag RM system with the single-use sensors and advanced control system paves the way for the fed-batch technology also to rocking-motion-type bioreactors. It is possible to reach cell densities which are far above shake flasks and typical for stirred tank reactors with the improved oxygen transfer rate. For more simple applications the EnBase® Flo method offers an easy and robust solution for rocking-motion-systems which do not have such advanced control possibilities. PMID:20509968

  6. Investigation and hazard assessment of the 2003 and 2007 Staircase Falls rock falls, Yosemite National Park, California, USA

    USGS Publications Warehouse

    Wieczorek, G.F.; Stock, Gregory M.; Reichenbach, P.; Snyder, J.B.; Borchers, J.W.; Godt, J.W.

    2008-01-01

    Since 1857 more than 600 rock falls, rock slides, debris slides, and debris flows have been documented in Yosemite National Park, with rock falls in Yosemite Valley representing the majority of the events. On 26 December 2003, a rock fall originating from west of Glacier Point sent approximately 200 m 3 of rock debris down a series of joint-controlled ledges to the floor of Yosemite Valley. The debris impacted talus near the base of Staircase Falls, producing fragments of flying rock that struck occupied cabins in Curry Village. Several years later on 9 June 2007, and again on 26 July 2007, smaller rock falls originated from the same source area. The 26 December 2003 event coincided with a severe winter storm and was likely triggered by precipitation and/or frost wedging, but the 9 June and 26 July 2007 events lack recognizable triggering mechanisms. We investigated the geologic and hydrologic factors contributing to the Staircase Falls rock falls, including bedrock lithology, weathering, joint spacing and orientations, and hydrologic processes affecting slope stability. We improved upon previous geomorphic assessment of rock-fall hazards, based on a shadow angle approach, by using STONE, a three-dimensional rock-fall simulation computer program. STONE produced simulated rock-fall runout patterns similar to the mapped extent of the 2003 and 2007 events, allowing us to simulate potential future rock falls from the Staircase Falls detachment area. Observations of recent rock falls, mapping of rock debris, and simulations of rock fall runouts beneath the Staircase Falls detachment area suggest that rock-fall hazard zones extend farther downslope than the extent previously defined by mapped surface talus deposits.

  7. Quantifying Heterogeneities in Soil Cover and Weathering in the Bitterroot and Sapphire Mountains, Montana: Implications for Glacial Legacies and their Morphologic Control on Soil Formation

    NASA Astrophysics Data System (ADS)

    Benjaram, S. S.; Dixon, J. L.

    2017-12-01

    To what extent is chemical weathering governed by a landscape's topography? Quantifying chemical weathering in both steep rocky landscapes and soil-mantled landscapes requires describing heterogeneity in soil and rock cover at local and landscape scales. Two neighboring mountain ranges in the northern Rockies of western Montana, USA, provide an ideal natural laboratory in which to investigate the relationship between soil chemical weathering, persistence of soil cover, and topography. We focus our work in the previously glaciated Bitterroot Mountains, which consist of steep, rock-dominated hillslopes, and the neighboring unglaciated Sapphire Mountains, which display convex, soil-mantled hillslopes. Soil thickness measurements, soil and rock geochemistry, and digital terrain analysis reveal that soils in the rock-dominated Bitterroot Mountains are only slightly less weathered than those in the Sapphire Mountains. However, these differences are magnified when adjusted for rock fragments at a local scale and bedrock cover at a landscape scale, using our newly developed metric, the rock-adjusted chemical depletion fraction (RACDF) and rock-adjusted mass transfer coefficient (RA τ). The Bitterroots overall are 30% less weathered than the Sapphires despite higher mean annual precipitation in the former, with an average rock-adjusted CDF of 0.38 in the postglacial Bitterroots catchment and 0.61 in the nonglacial Sapphire catchment, suggesting that 38% of rock mass is lost in the conversion to soil in the Bitterroots, whereas 61% of rock mass is lost in the nonglaciated Sapphires. Because the previously glaciated Bitterroots are less weathered despite being wetter, we conclude that the glacial history of this landscape exerts more influence on soil chemical weathering than does modern climate. However, while previous studies have correlated weathering intensity with topographic parameters such as slope gradient, we find little topographic indication of specific controls on weathering in these complex systems.

  8. The evolution of pore connectivity in volcanic rocks

    NASA Astrophysics Data System (ADS)

    Colombier, Mathieu; Wadsworth, Fabian B.; Gurioli, Lucia; Scheu, Bettina; Kueppers, Ulrich; Di Muro, Andrea; Dingwell, Donald B.

    2017-03-01

    Pore connectivity is a measure of the fraction of pore space (vesicles, voids or cracks) in a material that is interconnected on the system length scale. Pore connectivity is fundamentally related to permeability, which has been shown to control magma outgassing and the explosive potential of magma during ascent in the shallowest part of the crust. Here, we compile a database of connectivity and porosity from published sources and supplement this with additional measurements, using natural volcanic rocks produced in a broad range of eruptive styles and with a range of bulk composition. The database comprises 2715 pairs of connectivity C and porosity ϕ values for rocks from 35 volcanoes as well as 116 products of experimental work. For 535 volcanic rock samples, the permeability k was also measured. Data from experimental studies constrain the general features of the relationship between C and ϕ associated with both vesiculation and densification processes, which can then be used to interpret natural data. To a first order, we show that a suite of rocks originating from effusive eruptive behaviour can be distinguished from rocks originating from explosive eruptive behaviour using C and ϕ. We observe that on this basis, a particularly clear distinction can be made between scoria formed in fire-fountains and that formed in Strombolian activity. With increasing ϕ, the onset of connectivity occurs at the percolation threshold ϕc which in turn can be hugely variable. We demonstrate that C is an excellent metric for constraining ϕc in suites of porous rocks formed in a common process and discuss the range of ϕc values recorded in volcanic rocks. The percolation threshold is key to understanding the onset of permeability, outgassing and compaction in shallow magmas. We show that this threshold is dramatically different in rocks formed during densification processes than in rocks formed in vesiculating processes and propose that this value is the biggest factor in controlling the evolution of permeability at porosities above ϕc.

  9. A quantitative analysis of rock cliff erosion environments

    NASA Astrophysics Data System (ADS)

    Lim, M.; Rosser, N.; Petley, D. N.; Norman, E. C.; Barlow, J.

    2009-12-01

    The spatial patterns and temporal sequencing of failures from coastal rock cliffs are complex and typically generate weak correlations with environmental variables such as tidal inundation, wave energy, wind and rain. Consequently, understanding of rock cliff behaviour, its response to predicted changes in environmental forcing and, more specifically, the interaction between marine and climatic factors in influencing failure processes has remained limited. This work presents the results from the first attempt to characterise and quantify the conditions on coastal cliffs that lead to accelerated rates of material detachment. The rate of change in an 80 m high section of coastal rock cliffs has been surveyed annually with high-resolution terrestrial laser scanning (TLS). The rockfall data have been analysed according to a simplified source geology that exhibit distinct magnitude-frequency distributions relating to the dominance of particular failure types. An integrated network of sensors and instrumentation designed to reflect the lithological control on failure has been installed to examine both the distinction between prevailing conditions and those affecting the local cliff environment and the physical response of different rock types to micro-climatic processes. The monitoring system records near-surface rock strain, temperature, moisture and micro-seismic displacement in addition to air temperature, humidity, radiation, precipitation, water-level and three-dimensional wind characteristics. A characteristic environmental signal, unique to the cliff face material, has been identified that differs substantially from that experienced by the surrounding area; suggesting that established methods of meteorological and tidal data collection are insufficient and inappropriate to represent erosive processes. The interaction between thermo- and hydro-dynamics of the cliff environment and the physical response of the rock highlights the composite environmental effects acting on the rock mass and provides a new interpretation on the dominant controls on the behaviour of coastal rock cliffs that challenges the almost universal application of undercutting and cantilever collapse as the primary driver of rock cliff erosion.

  10. The effect of rock fabric on P-wave velocity distribution in amphibolites

    NASA Astrophysics Data System (ADS)

    Vajdová, V.; Přikryl, R.; Pros, Z.; Klíma, K.

    1999-07-01

    This study presents contribution to the laboratory investigation of elastic properties and rock fabric of amphibolites. P-wave velocity was determined on four spherical samples prepared from a shallow borehole core. The measurement was conducted in 132 directions under various conditions of hydrostatic pressure (up to 400 MPa). The rock fabric was investigated by image analysis of thin sections that enabled precise determination of grain size, modal composition and shape parameters of rock-forming minerals. Laboratory measurement of P-waves revealed pseudoorthorhombic symmetry of rock fabric in amphibolites studied. This symmetry reflects rocks' macro- and microfabric. Maximum P-wave velocity corresponds to the macroscopically visible stretching lineation. Minimum P-wave velocity is oriented perpendicular to the foliation plane. The average grain size is the main microstructural factor controlling mean P-wave velocity.

  11. NEUTRONIC REACTOR COUNTER METHOD AND SYSTEM

    DOEpatents

    Graham, C.B.; Spiewak, I.

    1960-05-31

    An improved method is given for controlling the rate of fission in circulating-fuel neutronic reactors in which the fuel is a homogeneous liquid containing fissionable material and a neutron moderator. A change in the rate of flssion is effected by preferentially retaining apart from the circulating fuel a variable amount of either fissionable material or moderator, thereby varying the concentration of fissionable material in the fuel. In the case of an aqueous fuel solution a portion of the water may be continuously vaporized from the circulating solution and the amount of condensate, or condensate plus make-up water, returned to the solution is varied to control the fission rate.

  12. Geological characteristics and ore-forming process of the gold deposits in the western Qinling region, China

    NASA Astrophysics Data System (ADS)

    Liu, Jiajun; Liu, Chonghao; Carranza, Emmanuel John M.; Li, Yujie; Mao, Zhihao; Wang, Jianping; Wang, Yinhong; Zhang, Jing; Zhai, Degao; Zhang, Huafeng; Shan, Liang; Zhu, Laimin; Lu, Rukui

    2015-05-01

    The western Qinling, belonging to the western part of the Qinling-Dabie-Sulu orogen between the North China Block and South China Block, is one of the most important gold regions in China. Isotopic dates suggest that the Mesozoic granitoids in the western Qinling region emplaced during the Middle-Late Triassic, and the deposits formed during the Late Triassic. Almost all gold deposits in the western Qinling region are classified as orogenic, Carlin-type, and Carlin-like gold deposits, and they are the products of Qinling Orogenesis caused by the final collision between the North China Block and the South China Block. The early subduction of the Mian-Lue oceanic crust and the latter collision between South Qinling Terrane and the South China Block along the Mian-Lue suture generated lithosphere-scale thermal anomalies to drive orogen-scale hydrothermal systems. The collision-related magmatism also provided heat source for regional ore-forming fluids in the Carlin-like gold deposits. Orogenic gold deposits such as Huachanggou, Liziyuan, and Baguamiao lie between the Shang-Dan and Mian-Lue sutures and are confined to WNW-trending brittle-ductile shear zones in Devonian and Carboniferous greenschist-facies metasedimentary rocks that were highly-deformed and regionally-metamorphosed. These deposits are typical orogenic gold deposits and formed within a Late Triassic age. The deposits show a close relationship between Au and Ag. Ores contain mainly microscopic gold, and minor electrum and visible gold, along with pyrite. The ore-forming fluids were main metamorphic fluids. Intensive tectonic movements caused by orogenesis created fluid-migrating channels for precipitation locations. Although some orogenic gold deposits occur adjacent to granitoids, mineralization is not synchronous with magmatism; that is, the granitoids have no genetic relations to orogenic gold deposits. As ore-forming fluids converged into dilated fractures during the extension stage of orogenesis, changes of physico-chemical conditions resulted in fluid immiscibility that played a key role in gold and sulfide deposition. The geochemical and mineralogical characteristics of the Carlin-type deposits in the western Qinling region are similar to those in the Carlin trend, Nevada, USA. Gold deposits such as La'erma and Jinlongshan occur mostly in the southeastern margin of the western Qinling regionic region whereas some deposits occur in its eastern part. These deposits are hosted in slightly metamorphosed Cambrian to Triassic sedimentary rocks, showing structurally- and stratigraphically-controlled features. The deposits mainly contain submicroscopic and microscopic gold in arsenian pyrite and arsenopyrite, with characteristic ore-forming elements of Au-As-Sb-Ba. The ore-forming fluids are early-stocked formation water and later-recharged meteoric water. Meteoric water apparently evolved in ore-forming fluids by circulation, indicating the extensional setting, and led to the deposition of Au and other elements in cool reactive permeable rocks at shallow levels, forming the disseminated ores. Carlin-like gold deposits occur between the Shang-Dan suture and the Fengxian-Zhen'an fault. The host rocks are mainly sedimentary rocks that underwent reconstruction through reworking by structural metamorphism. These deposits are structurally controlled by brittle-ductile shear zone and occur adjacent to granitoid plutons. The most important characteristic that differ to the orogenic and Carlin-type gold deposits is the genetic relationship with the synchronous magmatism. Gold occurs mainly as microscopic gold. Pyrite and arsenian pyrite can be recognized as gold-bearing minerals. The ore-forming fluids are main magmatic water mixed with metamorphic and/or formation water. Similar to orogenic gold deposits, fluid immiscibility caused the deposition of gold Carlin-like gold deposits.

  13. Time courses and value of circulating microparticles in patients with operable stage non-small cell lung cancer undergoing surgical intervention.

    PubMed

    Tseng, Chia-Cheng; Wang, Chin-Chou; Hsiao, Chang-Chun; Lu, Hung-I; Leu, Steve; Chang, Huang-Chih; Huang, Kuo-Tung; Fang, Wen-Feng; Chen, Yu-Mu; Liu, Shih-Feng; Yang, Cheng-Ta; Lin, Meng-Chih; Yip, Hon-Kan

    2016-09-01

    Microparticles (MPs) are substantially increased in patients with operable stage non-small cell lung cancer (NSCLC) prior to lung resection surgery. This study tested the hypothesis that there is a decrease in MPs after surgical intervention. Between March 2012 and January 2015, 33 patients who had operable stage NSCLC were consecutively and prospectively enrolled into the study. Additionally, 31 healthy subjects who were consecutively enrolled in the study period served as age- and gender-matched controls. Circulating MPs (EDAc-MPs, EDAp-MPs, PDAc-MPs, PDAp-MPs) were measured by flow cytometry once in control subjects and twice (i.e., prior to and three months later after surgical intervention) in NSCLC patients. Compared with control subjects, these four types of circulating MPs were significantly higher in NSCLC patients prior to operation (all P < 0.005), but did not differ among the controls and NSCLC patients at 3 months after surgery (all P > 0.2). Additionally, a receiver operating characteristic curve (ROC) showed that these four types of MPs were significantly valuable predictors for detecting early stage NSCLC (all P < 0.004). Circulating MPs which were remarkably increased in the operable stage of NSCLC prior to surgery were substantially decreased 3 months later after surgery. These findings show that circulating MPs might be an accessory biomarker for monitoring those of NSCLC after receiving lung resection surgery.

  14. Rock-Fluid Interactions Under Stress: How Rock Microstructure Controls The Evolution of Porosity and Permeability

    NASA Astrophysics Data System (ADS)

    Vanorio, T.

    2016-12-01

    Monitoring chemo-mechanical processes geophysically — e.g., fluid disposal or storage, thermal and chemical stimulation of reservoirs, or natural fluids simply entering a new system in the subsurface— raises numerous concerns because of the likelihood of fluid-rock chemical interactions and our limited ability to decipher the geophysical signature of coupled processes. One of the missing links is coupling the evolution of porosity, permeability, and velocity of rocks together with reactive transport, since rocks deform and their microstructure evolves, as a result of chemical reactions under stress. This study describes recent advances in rock-physics experiments to understand the effects of dissolution-induced compaction on acoustic velocity, porosity, and permeability. Data observation includes time-lapse experiments and imaging tracking transport and elastic properties, the rock microstructure, and the pH and chemical composition of the fluid permeating the rock. Results show that the removal of high surface area, mineral phases such as microcrystalline calcite and clay appears to be mostly responsible for dissolution-induced compaction. Nevertheless, it is the original rock microstructure and its response to stress that ultimately defines how solution-transfer and rock compaction feed back upon each other. This work has a dual aim: understanding the mechanisms underlying permanent modifications to the rock microstructure and providing a richer set of experimental information to inform the formulation of new simulations and rock modeling.

  15. Optical circulation in a multimode optomechanical resonator.

    PubMed

    Ruesink, Freek; Mathew, John P; Miri, Mohammad-Ali; Alù, Andrea; Verhagen, Ewold

    2018-05-04

    Breaking the symmetry of electromagnetic wave propagation enables important technological functionality. In particular, circulators are nonreciprocal components that can route photons directionally in classical or quantum photonic circuits and offer prospects for fundamental research on electromagnetic transport. Developing highly efficient circulators thus presents an important challenge, especially to realise compact reconfigurable implementations that do not rely on magnetic fields to break reciprocity. We demonstrate optical circulation utilising radiation pressure interactions in an on-chip multimode optomechanical system. Mechanically mediated optical mode conversion in a silica microtoroid provides a synthetic gauge bias for light, enabling four-port circulation that exploits tailored interference between appropriate light paths. We identify two sideband conditions under which ideal circulation is approached. This allows to experimentally demonstrate ~10 dB isolation and <3 dB insertion loss in all relevant channels. We show the possibility of actively controlling the circulator properties, enabling ideal opportunities for reconfigurable integrated nanophotonic circuits.

  16. Constraints on hydrocarbon and organic acid abundances in hydrothermal fluids at the Von Damm vent field, Mid-Cayman Rise (Invited)

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; German, C. R.; Sylva, S. P.

    2013-12-01

    The generation of organic compounds in vent fluids has been of interest since the discovery of seafloor hydrothermal systems, due to implications for the sustenance of present-day microbial populations and their potential role in the origin of life on early Earth. Possible sources of organic compounds in hydrothermal systems include microbial production, thermogenic degradation of organic material, and abiotic synthesis. Abiotic organic synthesis reactions may occur during active circulation of seawater-derived fluids through the oceanic crust or within olivine-hosted fluid inclusions containing carbon-rich magmatic volatiles. H2-rich end-member fluids at the Von Damm vent field on the Mid-Cayman Rise, where fluid temperatures reach 226°C, provide an exciting opportunity to examine the extent of abiotic carbon transformations in a highly reducing system. Our results indicate multiple sources of carbon compounds in vent fluids at Von Damm. An ultramafic-influenced hydrothermal system located on the Mount Dent oceanic core complex at 2350 m depth, Von Damm vent fluids contain H2, CH4, and C2+ hydrocarbons in high abundance relative to basalt-hosted vent fields, and in similar abundance to other ultramafic-hosted systems, such as Rainbow and Lost City. The CO2 content and isotopic composition in end-member fluids are virtually identical to bottom seawater, suggesting that seawater DIC is unchanged during hydrothermal circulation of seawater-derived fluids. Accordingly, end-member CH4 that is present in slightly greater abundance than CO2 cannot be generated from reduction of aqueous CO2 during hydrothermal circulation. We postulate that CH4 and C2+ hydrocarbons that are abundantly present in Von Damm vent fluids reflect leaching of fluids from carbon- and H2-rich fluid inclusions hosted in plutonic rocks. Geochemical modeling of carbon speciation in the Von Damm fluids suggests that the relative abundances of CH4, C2+ hydrocarbons, and CO2 are consistent with thermodynamic equilibrium at higher temperatures and more reducing conditions than those observed in the Von Damm vent fluids. These findings are consistent with a scenario in which n-alkanes form abiotically within a high-H2, carbon-rich olivine-hosted fluid inclusion, and are subsequently liberated and transported to the seafloor during hydrothermal alteration of the lower crustal rocks exposed at the Mount Dent oceanic core complex. Mixed fluids at Von Damm show depletions in CO2 and H2, relative to conservative mixing. Multiple S isotope measurements indicate that the H2 sink cannot be attributed to sulfate reduction. Thermodynamic constraints indicate that high-H2 conditions support the active formation of formate via reduction of dissolved CO2 during hydrothermal circulation - a process that has also been described at the Lost City vent field - and could account for the concurrent depletions in CO2 and H2. The transformation of inorganic carbon to organic compounds via two distinct pathways in modern seafloor hydrothermal vents validates theoretical and experimental conceptual models regarding processes occurring in the crust and during hydrothermal circulation, and is relevant to supporting life in vent ecosystems.

  17. Sequence stratigraphy of the Monterey Formation, Santa Barbara County: Integration of physical, chemical, and biofacies data from outcrop and subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohacs, K.M.

    1990-05-01

    Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, facies stacking patterns, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level change and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed by typingmore » the outcrop sections to an integrated well-log/seismic grid through outcrop gamma-ray-spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies, evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary, Downlap surfaces exhibited increased proportions of pelagic facies around the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or no significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to the rock properties to genetic processes for construction of predictive models.« less

  18. Heat flow in relation to hydrothermal activity in the southern Black Rock Desert, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sass, J.H.; Zoback, M.L.; Galanis, S.P. Jr.

    1979-01-01

    As part of an investigation of the Gerlach NE KGRA (Known Geothermal Resource Area) a number of heat-flow measurements were made in playa sediments of the southern Black Rock Desert, northwestern Nevada. These data together with additional previously unpublished heat-flow values reveal a complex pattern of heat flow with values ranging between 1.0 to 5.0 HFU (40 to 100 mWm/sup -2/) outside of the hot springs area. The mean heat flow for the 13 reported sites in the southern Black Rock Desert is 1.8 +- 0.15 HFU (75 +- 6 mWm/sup -2/). The complexity of the pattern of heat flowmore » is believed to arise from hydrothermal circulation supporting the numerous hot springs throughout the region. The fact that the lowest observed heat flow occurs in the deepest part of the basin strongly suggests that fluid movement within the basin represents part of the recharge for the hydrothermal system. A thermal balance for the system incorporating both anomalous conductive heat loss and convective heat loss from the spring systems indicate a total energy loss of about 8.0 Mcal/sec or 34 megawatts over an estimated 1000 km/sup 2/ region. Consideration of this additional heat loss yields a mean regional heat flow of 2.5 + HFU (100 + mWm/sup -2/) and warrants inclusion of this region in the Battle Mountain heat-flow high (Lachenbruch and Sass, 1977, 1978).« less

  19. Orientation, composition, and entrapment conditions of fluid inclusions in the footwall of the northern Snake Range detachment, Nevada

    NASA Astrophysics Data System (ADS)

    Carter, Matthew J.; Siebenaller, Luc; Teyssier, Christian

    2015-12-01

    Footwall rocks of the northern Snake Range detachment fault (Hampton and Hendry's Creeks) offer exposures of quartzite mylonites (sub-horizontal foliation) that were permeated by surface fluids. An S-C-C‧ mylonitic fabric is defined by dynamically recrystallized quartz and mica. Electron backscatter diffraction analyses indicate a strong preferred orientation of quartz that is overprinted by two sets of sub-vertical, ESE and NNE striking fractures. Analyses of sets of three perpendicular thin sections indicate that fluid inclusions (FIs) are arranged according to macroscopic fracture patterns. FIs associated with NNE and ESE-striking fractures coevally trapped unmixed CO2 and H2O-rich fluids at conditions near the critical CO2-H2O solvus, giving minimum trapping conditions of T = 175-200 °C and ∼100 MPa H2O-rich FIs trapped along ESE-trending microcracks in single crystals of quartz may have been trapped at conditions as low as 150 °C and 50 MPa indicating the latest microfracturing and annealing of quartz in an overall extensional system. Results suggest that the upper crust was thin (4-8 km) during FI trapping and had an elevated geotherm (>50 °C/km). Footwall rocks that have been exhumed through the brittle-ductile transition in such extensional systems experience both brittle and crystal-plastic deformation that may allow for circulation of meteoric fluids and grain-scale fluid-rock interactions.

  20. Investigations of the characteristics, origin, and residence time of the upland residual mantle of the Piedmont of Fairfax County, Virginia

    USGS Publications Warehouse

    Pavich, M.J.; Leo, G.W.; Obermeier, S.F.; Estabrook, J.R.

    1989-01-01

    Undisturbed cores of upland regolith developed from a variety of crystalline rocks of the Piedmont province in Fairfax County, Va., have been obtained by using a combination of Shelby tubes, Denison sampler, and modified diamond core drilling. The core study correlated variations in chemistry, mineralogy, and texture with engineering properties throughout individual weathering profiles and contrasted these parameters among weathering profiles developed from various parent rocks. Coring sites were chosen to obtain a maximum depth of weathering on diverse lithologies. The rocks that were investigated included metapelite, metagraywacke, granite, diabase, and serpentinite. Four to twelve samples per core were selected for analysis of petrography, texture, clay mineralogy, and major-element chemistry. The number of samples was determined on the basis of (1) the thickness of the weathering profile (from about 1 m in serpentinite to more than 30 m in pelitic schist) and (2) megascopic changes in the weathering profile. Shear strength and compressibility were determined on corresponding segments of core. Standard penetration tests were performed adjacent to coring sites to evaluate in-place engineering properties. The regolith profiles on all rocks can be subdivided into soil, massive subsoil, saprolite, and weathered rock zones. Major differences in thicknesses of these zones are related to parent rock. Total regolith thickness is related to saprolite thickness. Saprolite is thickest on quartzofeldspathic metapelite, metagraywacke, and granite; thinner on diabase; and thinnest on serpentinite. Thickness of saprolite is related to rock structure and mineralogy. Geochemical changes of saprolite developed from each rock type follow predictable trends from fresh rock to soil profile, with increases in Ti, AI, Fe 3 +, and H 2 0+relative to absolute losses of Si, Fe2+, Mg, Ca, and Na. These variations are more pronounced in the weathering profiles above mafic and ultramafic rocks than in those above metagraywacke. Clay minerals in granite, schist, and metagraywacke saprolites are kaolinite, dioctahedral vermiculite, interlayered mica-vermiculite, and minor illite. Gibbsite is developed in near-surface samples of schist. Standard penetration test data for the upper 7 m of saprolite above schist, metagraywacke, and granite suggest alternations between stronger and weaker horizons that correlate with megascopic ally identified zones: soil, massive subsoil, and saprolite. The data correlate with density. Shear strength increases fairly regularly downward in the weathering profile. The engineering behavior of diabase saprolite is controlled by a dense, plastic, near-surface clay layer (montmorillonite and kaolinite) overlying rock that is weathered to a granular state (grus); the engineering properties of serpentinite are controlled by a very thin weathering profile. Similarities in regolith thickness, zonation, mineralogy, and chemistry of quartzofeldspathic rocks indicate the existence of fundamental geochemical and geomechanical controls on regolith evolution on the Piedmont upland. Data from the profiles of quartzofeldspathic regolith are used to construct a model suggesting the principal rate-control steps in the development and downwasting of the upland regolith. This model is consistent with available information about Piedmont hydrology and tectonic uplift.

  1. Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis

    PubMed

    Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar

    2000-12-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method.

  2. Finding the Balance: Fertility Control for the Management of Fragmented Populations of a Threatened Rock-Wallaby Species

    PubMed Central

    Willers, Nicole; Martin, Graeme B.; Matson, Phill; Mawson, Peter R.; Morris, Keith; Bencini, Roberta

    2015-01-01

    Simple Summary Black-flanked rock-wallabies (Petrogale lateralis lateralis) can reach high numbers in fragmented populations in the West Australian wheat-belt, where they can damage crops and cause habitat degradation. As they are threatened, we wanted a non-permanent control method that did not adversely affect the body condition of treated females compared to untreated females, using body condition as an indicator of general health and fitness. We gave adult female rock-wallabies deslorelin contraceptive implants to suppress their fertility and monitored the impact for three years. Treated females did not conceive new young for over two years. We did not detect any negative effects on body condition, suggesting that deslorelin may be an effective tool for managing overabundant populations of marsupials. Abstract Populations of Australian marsupials can become overabundant, resulting in detrimental impacts on the environment. For example, the threatened black-flanked rock-wallaby (Petrogale lateralis lateralis) has previously been perceived as overabundant and thus ‘unwanted’ when they graze crops and cause habitat degradation. Hormonally-induced fertility control has been increasingly used to manage population size in other marsupials where alternative management options are not viable. We tested whether deslorelin, a superagonist of gonadotropin-releasing hormone (GnRH), would suppress reproduction in free-living adult female rock-wallabies without adversely impacting body condition. We trapped, synchronised reproduction and allocated female rock-wallabies to a placebo implant (control, n = 22), one (n = 22) or two (n = 20) subcutaneous implants of deslorelin. Females were then recaptured over the following 36 months to monitor reproduction, including Luteinising Hormone levels, and body condition. Following treatment, diapaused blastocysts reactivated in five females and the resulting young were carried through to weaning. No wallabies treated with deslorelin, conceivede a new young for at least 27 months. We did not observe adverse effects on body condition on treated females. We conclude that deslorelin implants are effective for the medium-term suppression of reproduction in female black-flanked rock-wallabies and for managing overabundant populations of some marsupials. PMID:26694471

  3. Aerodynamic control of NASP-type vehicles through vortex manipulation. Volume 3: Wing rock experiments

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Smith, Brooke C.; Kramer, Brian R.; Ng, T. Terry; Ong, Lih-Yenn; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll tests were conducted in water and wind tunnels in an effort to investigate the mechanisms of wing rock on a NASP-type vehicle. The configuration tested consisted of a highly-slender forebody and a 78 deg swept delta wing. In the water tunnel test, extensive flow visualization was performed and roll angle histories were obtained. In the wind tunnel test, the roll angle, forces and moments, and limited forebody and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the experiments confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly slowed the energy balance necessary to sustain the limit cycle oscillation. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetrices are created, causing the model to stop at a non-zero roll angle. On the other hand, alternating pulsed blowing on the left and right sides of the fore body was demonstrated to be a potentially effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  4. Influence of rock strength variations on interpretation of thermochronologic data

    NASA Astrophysics Data System (ADS)

    Flowers, Rebecca; Ehlers, Todd

    2017-04-01

    Low temperature thermochronologic datasets are the primary means for estimating the timing, magnitude, and rates of erosion over extended (10s to 100s of Ma) timescales. Typically, abrupt shifts in cooling rates recorded by thermochronologic data are interpreted as changes in erosion rates caused by shifts in uplift rates, drainage patterns, or climate. However, recent work shows that different rock types vary in strength and erodibility by as much as several orders of magnitude, therefore implying that lithology should be an important control on how landscapes change through time and the thermochronometer record of erosion histories. Attention in the surface processes community has begun to focus on rock strength as a critical control on short-term (Ka to Ma) landscape evolution, but there has been less consideration of the influence of this factor on landscapes over longer intervals. If intrinsic lithologic variability can strongly modify erosion rates without changes in external factors, this result would have important implications for how thermochronologic datasets are interpreted. Here we evaluate the importance of rock strength for interpreting thermochronologic datasets by examining erosion rates and total denudation magnitudes across sedimentary rock-crystalline basement rock interfaces. We particularly focus on the 'Great Unconformity', a global stratigraphic surface between Phanerozoic sedimentary rocks and Precambrian crystalline basement, which based on rock strength studies marks a dramatic rock erodibility contrast across which erosion rates should decelerate. In the Rocky Mountain basement uplifts of the western U.S., thermochronologic data and geologic observations indicate that erosion rates were high during latest Cretaceous-early Tertiary denudation of the sedimentary cover (3-4 km over 10 m.y., 300-400 m/m.y.) but dramatically decelerated when less erodible basement rocks were encountered (0.1-0.5 km over 55 m.y., 2-9 m/m.y.). Similarly, the western Canadian shield underwent multiple Phanerozoic episodes of substantial (1-4 km) sedimentary rock burial and erosion, but total Phanerozoic erosion of the crystalline basement below the Great Unconformity was no more than a few hundred meters. We use published low temperature thermochronologic dates, the LandLab landscape evolution model, and 1D thermokinematic and erosion (Pecube) models to assess whether the observed deceleration of erosion can be explained by measured variations in rock strength alone. We use these results to consider the extent to which rock strength can change the cooling history recorded by thermochronologic datasets.

  5. Regional climates in the GISS global circulation model - Synoptic-scale circulation

    NASA Technical Reports Server (NTRS)

    Hewitson, B.; Crane, R. G.

    1992-01-01

    A major weakness of current general circulation models (GCMs) is their perceived inability to predict reliably the regional consequences of a global-scale change, and it is these regional-scale predictions that are necessary for studies of human-environmental response. For large areas of the extratropics, the local climate is controlled by the synoptic-scale atmospheric circulation, and it is the purpose of this paper to evaluate the synoptic-scale circulation of the Goddard Institute for Space Studies (GISS) GCM. A methodology for validating the daily synoptic circulation using Principal Component Analysis is described, and the methodology is then applied to the GCM simulation of sea level pressure over the continental United States (excluding Alaska). The analysis demonstrates that the GISS 4 x 5 deg GCM Model II effectively simulates the synoptic-scale atmospheric circulation over the United States. The modes of variance describing the atmospheric circulation of the model are comparable to those found in the observed data, and these modes explain similar amounts of variance in their respective datasets. The temporal behavior of these circulation modes in the synoptic time frame are also comparable.

  6. Double-Edge Sword of Sustained ROCK Activation in Prion Diseases through Neuritogenesis Defects and Prion Accumulation

    PubMed Central

    Alleaume-Butaux, Aurélie; Nicot, Simon; Pietri, Mathéa; Baudry, Anne; Dakowski, Caroline; Tixador, Philippe; Ardila-Osorio, Hector; Haeberlé, Anne-Marie; Bailly, Yannick; Peyrin, Jean-Michel; Launay, Jean-Marie; Kellermann, Odile; Schneider, Benoit

    2015-01-01

    In prion diseases, synapse dysfunction, axon retraction and loss of neuronal polarity precede neuronal death. The mechanisms driving such polarization defects, however, remain unclear. Here, we examined the contribution of RhoA-associated coiled-coil containing kinases (ROCK), key players in neuritogenesis, to prion diseases. We found that overactivation of ROCK signaling occurred in neuronal stem cells infected by pathogenic prions (PrPSc) and impaired the sprouting of neurites. In reconstructed networks of mature neurons, PrPSc-induced ROCK overactivation provoked synapse disconnection and dendrite/axon degeneration. This overactivation of ROCK also disturbed overall neurotransmitter-associated functions. Importantly, we demonstrated that beyond its impact on neuronal polarity ROCK overactivity favored the production of PrPSc through a ROCK-dependent control of 3-phosphoinositide-dependent kinase 1 (PDK1) activity. In non-infectious conditions, ROCK and PDK1 associated within a complex and ROCK phosphorylated PDK1, conferring basal activity to PDK1. In prion-infected neurons, exacerbated ROCK activity increased the pool of PDK1 molecules physically interacting with and phosphorylated by ROCK. ROCK-induced PDK1 overstimulation then canceled the neuroprotective α-cleavage of normal cellular prion protein PrPC by TACE α-secretase, which physiologically precludes PrPSc production. In prion-infected cells, inhibition of ROCK rescued neurite sprouting, preserved neuronal architecture, restored neuronal functions and reduced the amount of PrPSc. In mice challenged with prions, inhibition of ROCK also lowered brain PrPSc accumulation, reduced motor impairment and extended survival. We conclude that ROCK overactivation exerts a double detrimental effect in prion diseases by altering neuronal polarity and triggering PrPSc accumulation. Eventually ROCK emerges as therapeutic target to combat prion diseases. PMID:26241960

  7. On-Line Remote Catalog Access and Circulation Control System. Part I: Functional Specifications. Part II: User's Manual.

    ERIC Educational Resources Information Center

    International Business Machines Corp., Gaithersburg, MD. Data Processing Div.

    The Ohio State University Libraries On-line Remote Catalog Access and Circulation Control System (LCS) began on-line operations with the conversion of one department library in November 1970. By December all 26 libraries had been converted to the automated system and LCS was fully operational one month ahead of schedule. LCS is designed as a…

  8. Rodent heart failure models do not reflect the human circulating microRNA signature in heart failure.

    PubMed

    Vegter, Eline L; Ovchinnikova, Ekaterina S; Silljé, Herman H W; Meems, Laura M G; van der Pol, Atze; van der Velde, A Rogier; Berezikov, Eugene; Voors, Adriaan A; de Boer, Rudolf A; van der Meer, Peter

    2017-01-01

    We recently identified a set of plasma microRNAs (miRNAs) that are downregulated in patients with heart failure in comparison with control subjects. To better understand their meaning and function, we sought to validate these circulating miRNAs in 3 different well-established rat and mouse heart failure models, and correlated the miRNAs to parameters of cardiac function. The previously identified let-7i-5p, miR-16-5p, miR-18a-5p, miR-26b-5p, miR-27a-3p, miR-30e-5p, miR-199a-3p, miR-223-3p, miR-423-3p, miR-423-5p and miR-652-3p were measured by means of quantitative real time polymerase chain reaction (qRT-PCR) in plasma samples of 8 homozygous TGR(mREN2)27 (Ren2) transgenic rats and 8 (control) Sprague-Dawley rats, 6 mice with angiotensin II-induced heart failure (AngII) and 6 control mice, and 8 mice with ischemic heart failure and 6 controls. Circulating miRNA levels were compared between the heart failure animals and healthy controls. Ren2 rats, AngII mice and mice with ischemic heart failure showed clear signs of heart failure, exemplified by increased left ventricular and lung weights, elevated end-diastolic left ventricular pressures, increased expression of cardiac stress markers and reduced left ventricular ejection fraction. All miRNAs were detectable in plasma from rats and mice. No significant differences were observed between the circulating miRNAs in heart failure animals when compared to the healthy controls (all P>0.05) and no robust associations with cardiac function could be found. The previous observation that miRNAs circulate in lower levels in human patients with heart failure could not be validated in well-established rat and mouse heart failure models. These results question the translation of data on human circulating miRNA levels to experimental models, and vice versa the validity of experimental miRNA data for human heart failure.

  9. 30 CFR 75.223 - Evaluation and revision of roof control plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., or coal or rock bursts; or (2) When accident and injury experience at the mine indicates the plan is...) Each unplanned roof fall and rib fall and coal or rock burst that occurs in the active workings shall...

  10. Numerical Modeling of Permeability Enhancement by Hydroshearing: the Case of Phase I Reservoir Creation at Fenton Hill

    NASA Astrophysics Data System (ADS)

    Rutqvist, J.; Rinaldi, A. P.

    2017-12-01

    The exploitation of a geothermal system is one of the most promising clean and almost inexhaustible forms of energy production. However, the exploitation of hot dry rock (HDR) reservoirs at depth requires circulation of a large amount of fluids. Indeed, the conceptual model of an Enhanced Geothermal System (EGS) requires that the circulation is enhanced by fluid injection. The pioneering experiments at Fenton Hill demonstrated the feasibility of EGS by producing the world's first HDR reservoirs. Such pioneering project demonstrated that the fluid circulation can be effectively enhanced by stimulating a preexisting fracture zone. The so-called "hydroshearing" involving shear activation of preexisting fractures is recognized as one of the main processes effectively enhancing permeability. The goal of this work is to quantify the effect of shear reactivation on permeability by proposing a model that accounts for fracture opening and shearing. We develop a case base on a pressure stimulation experiment at Fenton Hill, in which observation suggest that a fracture was jacked open by pressure increase. The proposed model can successfully reproduce such a behavior, and we compare the base case of pure elastic opening with the hydroshearing model to demonstrate that this latter could have occurred at the field, although no "felt" seismicity was observed. Then we investigate on the sensitivity of the proposed model by varying some of the critical parameters such as the maximum aperture, the dilation angle, as well as the fracture density.

  11. Quantification of free circulating tumor DNA as a diagnostic marker for breast cancer.

    PubMed

    Catarino, Raquel; Ferreira, Maria M; Rodrigues, Helena; Coelho, Ana; Nogal, Ana; Sousa, Abreu; Medeiros, Rui

    2008-08-01

    To determine whether the amounts of circulating DNA could discriminate between breast cancer patients and healthy individuals by using real-time PCR quantification methodology. Our standard protocol for quantification of cell-free plasma DNA involved 175 consecutive patients with breast cancer and 80 healthy controls. We found increased levels of circulating DNA in breast cancer patients compared to control individuals (105.2 vs. 77.06 ng/mL, p < 0.001). We also found statistically significant differences in circulating DNA amounts in patients before and after breast surgery (105.2 vs. 59.0 ng/mL, p = 0.001). Increased plasma cell-free DNA concentration was a strong risk factor for breast cancer, conferring an increased risk for the presence of this disease (OR, 12.32; 95% CI, 2.09-52.28; p < 0.001). Quantification of circulating DNA by real-time PCR may be a good and simple tool for detection of breast cancer with a potential to clinical applicability together with other current methods used for monitoring the disease.

  12. Review of Studies of Mechanoelectrical Transformations in Rocks in Russia and Abroad

    NASA Astrophysics Data System (ADS)

    Pomishin, E.; Yavorovich, L.

    2016-06-01

    The problem of monitoring and forecast of dynamic manifestations of rock masses becomes immediate in the mining industry because of the growth of mining work intensity and changeover to the mining operations in deeper levels. The article presents a short review of the scientific works of foreign researchers for more complete and in-depth study of geophysical methods of control of the stress-strain state and bump hazard of rock masses.

  13. Processes of high-T fluid-rock interaction during gold mineralization in carbonate-bearing metasediments: the Navachab gold deposit, Namibia

    NASA Astrophysics Data System (ADS)

    Dziggel, A.; Wulff, K.; Kolb, J.; Meyer, F. M.

    2009-08-01

    The Navachab gold deposit in the Damara belt of central Namibia is hosted by a near-vertical sequence of amphibolite facies shelf-type metasediments, including marble, calc-silicate rock, and biotite schist. Petrologic and geochemical data were collected in the ore, alteration halos, and the wall rock to evaluate transport of elements and interaction between the wall rock and the mineralizing fluid. The semi-massive sulfide lenses and quartz-sulfide veins are characterized by a complex polymetallic ore assemblage, comprising pyrrhotite, chalcopyrite, sphalerite, and arsenopyrite, native bismuth, gold, bismuthinite, and bismuth tellurides. Mass balance calculations indicate the addition of up to several orders of magnitude of Au, Bi, As, Ag, and Cu. The mineralized zones also record up to eightfold higher Mn and Fe concentrations. The semi-massive sulfide lenses are situated in the banded calc-silicate rock. Petrologic and textural data indicate that they represent hydraulic breccias that contain up to 50 vol.% ore minerals, and that are dominated by a high-temperature (T) alteration assemblage of garnet-clinopyroxene-K-feldspar-quartz. The quartz-sulfide veins crosscut all lithological units. Their thickness and mineralogy is strongly controlled by the composition and rheological behavior of the wall rocks. In the biotite schist and calc-silicate rock, they are up to several decimeters thick and quartz-rich, whereas in the marble, the same veins are only a few millimeters thick and dominated by sulfides. The associated alteration halos comprise (1) an actinolite-quartz alteration in the biotite schist, (2) a garnet-clinopyroxene-K-feldspar-quartz alteration in the marble and calc-silicate rock, and (3) a garnet-biotite alteration that is recorded in all rock types except the marble. The hydrothermal overprint was associated with large-scale carbonate dissolution and a dramatic increase in CO2 in the ore fluid. Decarbonation of wall rocks, as well as a low REE content of the ore fluid resulted in the mobilization of the REE, and the decoupling of the LREE from the HREE. The alteration halos not only parallel the mineralized zones, but may also follow up single layers away from the mineralization. Alteration is far more pronounced facing upward, indicating that the rocks were steep when veining occurred. The petrologic and geochemical data indicate that the actinolite-quartz- and garnet-clinopyroxene-K-feldspar-quartz alterations formed in equilibrium with a fluid (super-) saturated in Si, and were mainly controlled by the composition of the wall rocks. In contrast, the garnet-biotite alteration formed by interaction with a fluid undersaturated in Si, and was mainly controlled by the fluid composition. This points to major differences in fluid-rock ratios and changes in fluid composition during alteration. The alteration systematics and geometry of the hydrothermal vein system are consistent with cyclic fluctuations in fluid pressure during fault valve action.

  14. Petrophysical Properties (Density and Magnetization) of Rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad Geophysical Profile in Mongolia and Their Implications

    PubMed Central

    Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan

    2013-01-01

    Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data. PMID:24324382

  15. Petrophysical properties (density and magnetization) of rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia and their implications.

    PubMed

    Yang, Tao; Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan

    2013-01-01

    Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data.

  16. Quantifying rock mass strength degradation in coastal rock cliffs

    NASA Astrophysics Data System (ADS)

    Brain, Matthew; Lim, Michael; Rosser, Nick; Petley, David; Norman, Emma; Barlow, John

    2010-05-01

    Although rock cliffs are generally perceived to evolve through undercutting and cantilever collapse of material, the recent application of high-resolution three-dimensional monitoring techniques has suggested that the volumetric losses recorded from layers above the intertidal zone produce an equally significant contribution to cliff behaviour. It is therefore important to understand the controls on rockfalls in such layers. Here we investigate the progressive influence of subaerial exposure and weathering on the geotechnical properties of the rocks encountered within the geologically complex coastal cliffs of the northeast coast of England, UK. Through a program of continuous in situ monitoring of local environmental and tidal conditions and laboratory rock strength testing, we aim to better quantify the relationships between environmental processes and the geotechnical response of the cliff materials. We have cut fresh (not previously exposed) samples from the three main rock types (sandstone, mudstone and shale) found within the cliff to uniform size, shape and volume, thus minimizing variability and removing previous surface weathering effects. In order to characterise the intact strength of the rocks, we have undertaken unconfined compressive strength and triaxial strength tests using high pressure (400 kN maximum axial load; 64 MPa maximum cell pressure) triaxial testing apparatus. The results outline the peak strength characteristics of the unweathered materials. We then divided the samples of each lithology into different experimental groups. The first set of samples remained in the laboratory at constant temperature and humidity; this group provides our control. Samples from each of the three rock types were located at heights on the cliff face corresponding with the different lithologies: at the base (mudstone), in the mid cliff (shale) and at the top of the cliff (sandstone). This subjected them to the same conditions experienced by the in situ cliff forming materials, which were also monitored using an array of environmental sensors. This experiment forms the basis of a long term investigation into the effects of varying environmental conditions on rock mass strength degradation over time. Ultimately, we aim to develop rock mass strength degradation curves to build a quantitative understanding of the interaction between coastal rock cliff behaviour and environmental processes.

  17. Evolution of strength and physical properties of carbonate and ultramafic rocks under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Lisabeth, Harrison Paul

    Interaction of rocks with fluids can significantly change mineral assemblage and structure. This so-called hydrothermal alteration is ubiquitous in the Earth's crust. Though the behavior of hydrothermally altered rocks can have planet-scale consequences, such as facilitating oceanic spreading along slow ridge segments and recycling volatiles into the mantle at subduction zones, the mechanisms involved in the hydrothermal alteration are often microscopic. Fluid-rock interactions take place where the fluid and rock meet. Fluid distribution, flux rate and reactive surface area control the efficiency and extent of hydrothermal alteration. Fluid-rock interactions, such as dissolution, precipitation and fluid mediated fracture and frictional sliding lead to changes in porosity and pore structure that feed back into the hydraulic and mechanical behavior of the bulk rock. Examining the nature of this highly coupled system involves coordinating observations of the mineralogy and structure of naturally altered rocks and laboratory investigation of the fine scale mechanisms of transformation under controlled conditions. In this study, I focus on fluid-rock interactions involving two common lithologies, carbonates and ultramafics, in order to elucidate the coupling between mechanical, hydraulic and chemical processes in these rocks. I perform constant strain-rate triaxial deformation and constant-stress creep tests on several suites of samples while monitoring the evolution of sample strain, permeability and physical properties. Subsequent microstructures are analyzed using optical and scanning electron microscopy. This work yields laboratory-based constraints on the extent and mechanisms of water weakening in carbonates and carbonation reactions in ultramafic rocks. I find that inundation with pore fluid thereby reducing permeability. This effect is sensitive to pore fluid saturation with respect to calcium carbonate. Fluid inundation weakens dunites as well. The addition of carbon dioxide to pore fluid enhances compaction and partial recovery of strength compared to pure water samples. Enhanced compaction in CO2-rich fluid samples is not accompanied by enhanced permeability reduction. Analysis of sample microstructures indicates that precipitation of carbonates along fracture surfaces is responsible for the partial restrengthening and channelized dissolution of olivine is responsible for permeability maintenance.

  18. In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars

    NASA Technical Reports Server (NTRS)

    Hurowitz, J. A.; McLennan, S. M.; Tosca, N. J.; Arvidson, R. E.; Michalski, J. R.; Ming, D.; Schroeder, C.; Squyres, S. W.

    2006-01-01

    Experimental data for alteration of synthetic Martian basalts at pH=0-1 indicate that chemical fractionations at low pH are vastly different from those observed during terrestrial weathering. Rock analyses from Gusev crater are well described by the relationships apparent from low pH experimental alteration data. A model for rock surface alteration is developed which indicates that a leached alteration zone is present on rock surfaces at Gusev. This zone is not chemically fractionated to a large degree from the underlying rock interior, indicating that the rock surface alteration process has occurred at low fluid-to-rock ratio. The geochemistry of natural rock surfaces analyzed by APXS is consistent with a mixture between adhering soil/dust and the leached alteration zone. The chemistry of rock surfaces analyzed after brushing with the RAT is largely representative of the leached alteration zone. The chemistry of rock surfaces analyzed after grinding with the RAT is largely representative of the interior of the rock, relatively unaffected by the alteration process occurring at the rock surface. Elemental measurements from the Spirit, Opportunity, Pathfinder and Viking 1 landing sites indicate that soil chemistry from widely separated locations is consistent with the low-pH, low fluid to rock ratio alteration relationships developed for Gusev rocks. Soils are affected principally by mobility of FeO and MgO, consistent with alteration of olivine-bearing basalt and subsequent precipitation of FeO and MgO bearing secondary minerals as the primary control on soil geochemistry.

  19. Molecular Analysis of Erection Regulatory Factors in Sickle Cell Disease-Associated Priapism in Human Penis

    PubMed Central

    Lagoda, Gwen; Sezen, Sena F.; Cabrini, Marcelo R.; Musicki, Biljana; Burnett, Arthur L.

    2015-01-01

    Purpose Priapism is a vasculopathy occurring in approximately 40% of patients with SCD. Mouse models have suggested that dysregulated NOS and RhoA/ROCK signaling as well as increased oxidative stress may contribute to mechanisms of SCD-associated priapism. We examined changes in protein expressions of NOS and ROCK signaling pathways and a source of oxidative stress, NADPH oxidase, in penile erectile tissue from patients with priapism histories, etiologically related and unrelated to SCD. Materials and Methods Human penile erectile tissue was obtained from patients with SCD-associated priapism (SCD, n=5) and priapism of other etiologies (non-SCD, n=6) during non-emergent penile prosthesis surgery for ED or priapism management and urethroplasty, and from control patients without priapism histories (Control, n=5) during penectomy for penile cancer. Samples were collected, immediately placed in cold buffer and then frozen in liquid nitrogen. Expressions of PDE5, eNOS, nNOS, iNOS, RhoA, ROCK1, ROCK2, p47phox, p67phox, gp91phox and β-actin were determined by Western blot analysis and NO amount was measured using the Griess reaction. Results In the SCD group, PDE5 (p<0.05), eNOS (p<0.01) and RhoA (p<0.01) expressions were significantly decreased while gp91phox (p<0.05) expression was significantly increased compared to Control group values. In the non-SCD group, eNOS (p<0.05), ROCK1 (p<0.05) and p47phox (p<0.05) expressions were significantly decreased compared to Control group values. Total NO levels were not significantly different across study groups. Conclusions The mechanisms of SCD-associated priapism in the human penis may involve dysfunctional NOS and ROCK signaling and increased oxidative stress associated with NADPH oxidase-mediated signaling. PMID:22982429

  20. ELABELA/APELA levels are not decreased in the maternal circulation or placenta among women with preeclampsia.

    PubMed

    Pritchard, Natasha; Kaitu'u-Lino, Tu'uhevaha J; Gong, Sungsam; Dopierala, Justyna; Smith, Gordon C S; Charnock-Jones, D Stephen; Tong, Stephen

    2018-05-24

    The genetic deletion of Elabela (official name APELA, encoding the peptide hormone apelin receptor early endogenous ligand) produces a preeclampsia-like phenotype in mice. However, evidence linking ELABELA with human disease is lacking. Therefore, we measured placental mRNA and circulating ELABELA in human samples. ELABELA mRNA (measured by RNA-Seq) was unchanged in 82 preeclamptic placentas compared to 82 matched controls (mean difference 0.53 %; 95% CI, -25.9 to 27.0, P = 0.78). We measured circulating ELABELA in 32 women with preterm preeclampsia (delivered <34 weeks' gestation) and 32 matched controls sampled at the same gestational age. There was no difference in circulating ELABELA concentration (median (95% CI) in the preeclamptic cohort 28.5 pg/mL (5.3 to 63.2) vs 20.5 pg/mL (9.2 to 58.0) controls; median difference (95% CI) was 8.0 pg/mL (CI -17.7 to 12.1), P = 0.43). In contrast, soluble FLT1 (sFLT1, a protein with an established association with preeclampsia) mRNA was elevated in placental tissue (mean difference 34.9%; 95% CI, 16.6 to 53.1, P = 0.001), and circulating concentrations were 16.8-fold higher among the preeclamptic cohort (P < 0.0001). In conclusion, we were able to recapitulate the well-recognized association between circulating sFLT1 and preeclampsia but there was no such association with ELABELA. Hence, the speculated clinical relevance of observations in the murine model linking ELABELA to preeclampsia are likely incorrect. Copyright © 2018. Published by Elsevier Inc.

  1. Time constraints for post-LGM landscape response to deglaciation in Val Viola, Central Italian Alps

    NASA Astrophysics Data System (ADS)

    Scotti, Riccardo; Brardinoni, Francesco; Crosta, Giovanni Battista; Cola, Giuseppe; Mair, Volkmar

    2017-12-01

    Across the northern European Alps, a long tradition of Quaternary studies has constrained post-LGM (Last Glacial Maximum) landscape history. The same picture remains largely unknown for the southern portion of the orogen. In this work, starting from existing 10Be exposure dating of three boulders in Val Viola, Central Italian Alps, we present the first detailed, post-LGM reconstruction of landscape (i.e., glacial, periglacial and paraglacial) response south of the Alpine divide. We pursue this task through Schmidt-hammer exposure-age dating (SHD) at 34 sites including moraines, rock glaciers, protalus ramparts, rock avalanche deposits and talus cones. In addition, based on the mapping of preserved moraines and on the numerical SHD ages, we reconstruct the glacier extent of four different stadials, including Egesen I (13.1 ± 1.1 ka), Egesen II (12.3 ± 0.6 ka), Kartell (11.0 ± 1.4 ka) and Kromer (9.7 ± 1.4 ka), whose chronologies agree with available counterparts from north of the Alpine divide. Results show that Equilibrium Line Altitude depressions (ΔELAs) associated to Younger Dryas and Early Holocene stadials are smaller than documented at most available sites in the northern Alps. These findings not only support the hypothesis of a dominant north westerly atmospheric circulation during the Younger Dryas, but also suggest that this pattern could have lasted until the Early Holocene. SHD ages on rock glaciers and protalus ramparts indicate that favourable conditions to periglacial landform development occurred during the Younger Dryas (12.7 ± 1.1 ka), on the valley slopes above the glacier, as well as in newly de-glaciated areas, during the Early Holocene (10.7 ± 1.3 and 8.8 ± 1.8 ka). The currently active rock glacier started to develop before 3.7 ± 0.8 ka and can be associated to the Löbben oscillation. Four of the five rock avalanches dated in Val Viola cluster within the Early Holocene, in correspondence of an atmospheric warming phase. By contrast, the timing of the main Val Viola rock avalanche, 7.7 ± 0.3 ka during the Holocene Thermal Optimum, suggests a possible causal linkage to permafrost degradation. Overall, Schmidt-hammer proved to be an effective, inexpensive and versatile tool for improving the spatial resolution of Val Viola post-LGM landscape history, starting from existing numerical age constrains.

  2. Atmospheric circulation patterns and spatial climatic variations in Beringia

    NASA Astrophysics Data System (ADS)

    Mock, Cary J.; Bartlein, Patrick J.; Anderson, Patricia M.

    1998-08-01

    Analyses of more than 40 years of climatic data reveal intriguing spatial variations in climatic patterns for Beringia (North-eastern Siberia and Alaska), aiding the understanding of the hierarchy of climatic controls that operate at different spatial scales within the Arctic. A synoptic climatology, using a subjective classification methodology on January and July sea level pressure, and July 500 hPa height anomaly patterns, identified 13 major atmospheric circulation patterns (26 pairs consisting of 13 synoptic/temperature and 13 synoptic/precipitation comparisons) that occur over Beringia. Composite anomaly maps of circulation, temperature, and precipitation described the spatial variability of surface climatic responses to circulation. Results indicate that nine synoptic pairs yield homogeneous surface climatic anomaly patterns throughout most of Beringia. However, many of the surface climatic responses illustrate heterogeneous anomaly patterns as a result of variations in circulation controls, such as troughing over East Asia and the Pacific subtropical high superimposed over topography, with small shifts in atmospheric circulation dramatically altering spatial variations of anomaly patterns. Distinctive contrasts in climatic responses, as suggested from ten synoptic pairs, are clearly evident for Western Beringia versus Eastern Beringia. These results offer important implications for scholars interested in assessing late Quaternary climatic change in the region from interannual to millennial timescales.

  3. Rho-associated coiled-coil kinase (ROCK) protein controls microtubule dynamics in a novel signaling pathway that regulates cell migration.

    PubMed

    Schofield, Alice V; Steel, Rohan; Bernard, Ora

    2012-12-21

    The two members of the Rho-associated coiled-coil kinase (ROCK1 and 2) family are established regulators of actin dynamics that are involved in the regulation of the cell cycle as well as cell motility and invasion. Here, we discovered a novel signaling pathway whereby ROCK regulates microtubule (MT) acetylation via phosphorylation of the tubulin polymerization promoting protein 1 (TPPP1/p25). We show that ROCK phosphorylation of TPPP1 inhibits the interaction between TPPP1 and histone deacetylase 6 (HDAC6), which in turn results in increased HDAC6 activity followed by a decrease in MT acetylation. As a consequence, we show that TPPP1 phosphorylation by ROCK increases cell migration and invasion via modulation of cellular acetyl MT levels. We establish here that the ROCK-TPPP1-HDAC6 signaling pathway is important for the regulation of cell migration and invasion.

  4. The effectiveness of massage therapy in the treatment of infantile colic symptoms: A randomized controlled trial.

    PubMed

    Sheidaei, Ali; Abadi, Alireza; Zayeri, Farid; Nahidi, Fatemeh; Gazerani, Nafiseh; Mansouri, Anita

    2016-01-01

    Infantile colic, cry-fuss and sleep problems are transient in the initial months of life, but they contribute to maternal depression, parenting stress and family mental health problems. In this randomized clinical trial, we aimed to explore the efficacy of massage therapy compared to rocking in reducing infantile colic symptoms including duration and number of cries, sleep duration and severity of infant colic. This was a single blind RCT study with a one-week follow-up. One hundred colicky infants aged younger than 12 weeks old were randomly assigned into massage and rocking groups. Infants in the massage group received a massage for 15-20 minutes once during a day and once at night before sleeping for a week. In the control group, mothers rocked their infants gently for 5-25 minutes when the symptoms of colic appeared. Parents recorded the details of the colic symptoms in a diary every day. A GEE approach was applied to explore the effect of the intervention. Efficiency of massage therapy was significantly higher than rocking. At the end of the study, the mean number of daily cries was 4.26±1.40 in the massage and 6.9±2.14 the rocking groups (p<0.01). The mean of the severity score was 1.39±0.19 less in the massage group (p<0.01). Moreover, the mean differences of massage and rocking groups were -0.82±0.20 hour (p<0.01) and 0.72±0.35 (p= 0.04) in the duration of cries and duration of sleep, respectively. Massaging significantly improved colic symptoms during a one-week intervention for all outcomes. In addition, significant differences were found between the intervention and control groups in favor of massaging. Therefore, massage therapy is more effective than rocking for treating infant colic symptoms.

  5. Assessment of mechanical rock alteration caused by CO 2 -water mixtures using indentation and scratch experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yuhao; Aman, Michael; Espinoza, D. Nicolas

    CO2 injection into geological formations disturbs the geochemical equilibrium between water and minerals. Thus, some mineral phases are prone to dissolution and precipitation with ensuing changes of petrophysical and geomechanical properties of the host formations. Chemically-assisted degradation of mechanical properties can endanger the structural integrity of the storage formation and must be carefully studied and considered to guarantee safe long-term trapping. Few experimental data sets involving CO2 alteration and mechanical testing of rock samples are available since these experiments are length, expensive, and require specialized equipment and personnel. Autoclave experiments are easier to perform and control but result in amore » limited 'skin depth' of chemically-altered zone near the surface of the sample. This article presents the validation of micro-indentation and micro-scratch tests as efficient tools to assess the alteration of mechanical properties of rocks geochemically altered by CO2-water mixtures. Results from tests on sandstone and siltstone from Crystal Geyser, Utah naturally altered by CO2-acidified water show that mechanical parameters measured with indentation (indentation hardness, Young's modulus and contact creep compliance rate) and scratching (scratch hardness and fracture toughness) consistently indicated weakening of the rock after CO2-induced alteration. Decreases of measured parameters vary from 14% to 87%. Experimental results and analyses show that micromechanical tests are potentially quick and reliable tools to determine the change of mechanical properties of rocks subject to exposure to CO2-acidified water, particularly in well-controlled autoclave experiments. Measured parameters are not intended to provide inputs for coupled reservoir simulation with geomechanics but rather to inform the execution of larger scale tests investigating the susceptibility of rock facies to chemical alteration by CO2-water mixtures. Recognizing this susceptibility of rock facies of CO2 geological storage target formations is critical to controlling undesired emergent behavior associated with CO2 sequestration.« less

  6. Evaluating the effect of lithology on porosity development in ridgetops in the Appalachian Piedmont

    NASA Astrophysics Data System (ADS)

    Marcon, V.; Gu, X.; Fisher, B.; Brantley, S. L.

    2016-12-01

    Together, chemical and physical processes transform fresh bedrock into friable weathered material. Even in systems where lithology, tectonic history, and climatic history are all known, it is challenging to predict the depth of weathering because the mechanisms that control the rate of regolith formation are not understood. In the Appalachian Piedmont, where rates of regolith formation and erosion are thought to be in a rough steady state, the depth of weathering varies with lithology. The Piedmont provides a controlled natural environment to isolate the effects of lithology on weathering processes so we can start to understand the mechanisms that initiate and drive weathering. Weathering is deepest over feldspathic rocks (schist/granite) with regolith 20-30m thick and thinnest over mafic and ultramafic rocks (diabase/serpentinite) with regolith <5m thick (Pavich et al., 1989). We are exploring both chemical and physical controls on weathering. For example, when regolith thickness is plotted versus fracture toughness of each lithology, regolith thickness generally increases with decreasing fracture toughness. However, serpentinite, a rheologically weak rock, does not follow this trend with thin soils. To understand this observation, physical weathering parameters (porosity, connectivity, and surface area) were evaluated using neutron scattering on Piedmont rocks at different degrees of weathering. Samples of both weathered diabase and serpentinite are dominated by small pores (<0.1micron), whereas pores in schist are characteristically larger (1-10microns). As serpentinite weathers, porosity is created by serpentinization reactions and lost from collapse during weathering. Serpentinite consists of easily weathered hydrous minerals with little quartz. Comparatively, rocks with more quartz (e.g. schist) have a supportive skeleton as the rock weathers. This quartz skeleton could prevent the collapse of pores and result in isovolumetric weathering. Non-isovolumetric weathering limits infiltration of reactive fluids deeper into the rock, minimizing regolith formation in serpentinite due to its lack of a quartz skeleton. Given this, fracture toughness may be an important parameter to consider in terms of predicting regolith thickness.

  7. Strontium and oxygen isotopic variations in Mesozoic and Tertiary plutons of central Idaho

    USGS Publications Warehouse

    Fleck, R.J.; Criss, R.E.

    1985-01-01

    Regional variations in initial 87Sr/86Sr ratios (ri) of Mesozoic plutons in central Idaho locate the edge of Precambrian continental crust at the boundary between the late Paleozoic-Mesozoic accreted terranes and Precambrian sialic crust in western Idaho. The ri values increase abruptly but continuously from less than 0.704 in the accreted terranes to greater than 0.708 across a narrow, 5 to 15 km zone, characterized by elongate, lens-shaped, highly deformed plutons and schistose metasedimentary and metavolcanic units. The chemical and petrologic character of the plutons changes concomitantly from ocean-arc-type, diorite-tonalite-trondhjemite units to a weakly peraluminous, calcic to calcalkalic tonalite-granodiorite-granite suite (the Idaho batholith). Plutons in both suites yield Late Cretaceous ages, but Permian through Early Cretaceous bodies are confined to the accreted terranes and early Tertiary intrusions are restricted to areas underlain by Precambrian crust. The two major terranes were juxtaposed between 75 and 130 m.y. ago, probably between 80 and 95 m.y. Oxygen and strontium isotopic ratios and Rb and Sr concentrations of the plutonic rocks document a significant upper-crustal contribution to the magmas that intrude Precambrian crust. Magmas intruding the arc terranes were derived from the upper mantle/subducted oceanic lithosphere and may have been modified by anatexis of earlier island-arc volcanic and sedimentary units. Plutons near the edge of Precambrian sialic crust represent simple mixtures of the Precambrian wall-rocks with melts derived from the upper mantle or subducted oceanic lithosphere with ri of 0.7035. Rb/Sr varies linearly with ri, producing "pseudoisochrons" with apparent "ages" close to the age of the wall rocks. Measured ??18O values of the wall rocks are less than those required for the assimilated end-member by Sr-O covariation in the plutons, however, indicating that wall-rock ??18O was reduced significantly by exchange with circulating fluids. Metasedimentary rocks of the Belt Supergroup are similarly affected near the batholith, documenting a systematic depletion in 18O as much as 50 km from the margin of the batholith. Plutons of the Bitterroot lobe of the Idaho batholith are remote from the accreted terranes and represent mixtures of Precambrian wall-rocks with melts dominated by continental lower crust (ri>0.708) rather than mantle. "Pseudoisochrons" resulting from these data are actually mixing lines that yield apparent "ages" less than the true age of the wall rocks and meaningless "ri". Assimilation/ fractional-crystallization models permit only insignificant amounts of crystal fractionation during anatexis and mixing for the majority of plutons of the region. ?? 1985 Springer-Verlag.

  8. Possible Mud Cracks Preserved in Martian Rock

    NASA Image and Video Library

    2017-01-17

    The network of cracks in this Martian rock slab called "Old Soaker" may have formed from the drying of a mud layer more than 3 billion years ago. The view spans about 4 feet (1.2 meters) left-to-right and combines three images taken by the Mars Hand Lens Imager (MAHLI) camera on the arm of NASA's Curiosity Mars rover. Mud cracks would be evidence of a time when dry intervals interrupted wetter periods that supported lakes in the area. Curiosity has found evidence of ancient lakes in older, lower-lying rock layers and also in younger mudstone that is above Old Soaker. MAHLI was positioned about 3 feet (90 centimeters) above the surface when it took the component images on Dec. 31, 2016, during the 1,566th Martian day, or sol, of Curiosity's work on Mars. This observation was planned as part of assessing a hypothesis that the target preserves evidence of drying mud. The location is within an exposure of Murray formation mudstone on lower Mount Sharp inside Gale Crater. The slab bears a network of four- and five-sided polygons about half an inch to 1 inch (1 to 2 centimeters) across, which matches the pattern commonly formed when a thin layer of mud dries. Some edges of the polygons are ridges of material the same color as the surrounding rock. This could result from a three-step process after cracks form due to drying: Wind-blown sediments accumulate in the open cracks. Later, these sediments and the dried mud become rock under the pressure of multiple younger layers that accumulate on top of them. Most recently, after the overlying layers were eroded away by wind, the vein-filling material resists erosion better than the once-muddy material, so the pattern that began as cracks appears as ridges. Note that some of the cracks contain material much brighter than the surrounding rock. These are mineral veins. Curiosity has found such bright veins of calcium sulfate in many rock layers the rover has investigated. These veins form from circulation of mineral-laden groundwater through underground cracks. Rover-team scientists suggest that a likely scenario for the history of Old Soaker is more than one generation of fracturing: mud cracks first, with sediment accumulating in them, then a later episode of underground fracturing and vein forming. The target rock's name comes from the name of an island off the coast of Maine. The names informally assigned by the rover team to features in the area of lower Mount Sharp that includes this slab are from a list of islands, hills and other sites in or near Maine's Bar Harbor. http://photojournal.jpl.nasa.gov/catalog/PIA21261

  9. Chemistry of a serpentinization-controlled hydrothermal system at the Lost City hydrothermal vent field

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Kelley, D. S.; Butterfield, D. A.; Nelson, B. K.; Karson, J. A.

    2003-12-01

    The Lost City Hydrothermal Field (LCHF), at 30° N near the Mid-Atlantic Ridge, is an off-axis, low temperature, high-pH, ultramafic-hosted vent system. Within the field, carbonate chimneys tower up to 60 m above the seafloor, making them the tallest vent structures known. The chemistry of the vent structures and fluids at the LCHF is controlled by reactions between seawater and ultramafic rocks beneath the Atlantis massif. Mixing of warm alkaline vent fluids with seawater causes precipitation of calcium carbonate and growth of the edifaces, which range from tall, graceful pinnacles to fragile flanges and colloform deposits. Geochemical and petrological analyses of the carbonate rocks reveal distinct differences between the active and extinct structures. Actively venting chimneys and flanges are extremely porous, friable formations composed predominantly of aragonite and brucite. These structures provide important niches for well-developed microbial communities that thrive on and within the chimney walls. Some of the active chimneys may also contain the mineral ikaite, an unstable, hydrated form of calcium carbonate. TIMS and ICP-MS analyses of the carbonate chimneys show that the most active chimneys have low Sr isotope values and that they are low in trace metals (e.g., Mn, Ti, Pb). Active structures emit high-pH, low-Mg fluids at 40-90° C. The fluids also have low Sr values, indicating circulation of hydrothermal solutions through the serpentinite bedrock beneath the field. In contrast to the active structures, extinct chimneys are less porous, are well lithified, and they are composed predominantly of calcite that yields Sr isotopes near seawater values. Prolonged lower temperature seawater-hydrothermal fluid interaction within the chimneys results in the conversion of aragonite to calcite and in the enrichment of some trace metals (e.g., Mn, Ti, Co, Zn). It also promotes the incorporation of foraminifera within the outer, cemented walls of the carbonate structures. The Lost City system represents a novel natural laboratory for observing hydrothermal and biological activity in a system controlled by moderate temperature serpentinization reactions. The LCHF is the only vent field of its kind known to date; however, it is likely not unique along the global mid-ocean ridge spreading network.

  10. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures

    NASA Astrophysics Data System (ADS)

    Brideau, Marc-André; Yan, Ming; Stead, Doug

    2009-01-01

    Rock slope failures are frequently controlled by a complex combination of discontinuities that facilitate kinematic release. These discontinuities are often associated with discrete folds, faults, and shear zones, and/or related tectonic damage. The authors, through detailed case studies, illustrate the importance of considering the influence of tectonic structures not only on three-dimensional kinematic release but also in the reduction of rock mass properties due to induced damage. The case studies selected reflect a wide range of rock mass conditions. In addition to active rock slope failures they include two major historic failures, the Hope Slide, which occurred in British Columbia in 1965 and the Randa rockslides which occurred in Switzerland in 1991. Detailed engineering geological mapping combined with rock testing, GIS data analysis and for selected case numerical modelling, have shown that specific rock slope failure mechanisms may be conveniently related to rock mass classifications such as the Geological Strength Index (GSI). The importance of brittle intact rock fracture in association with pre-existing rock mass damage is emphasized though a consideration of the processes involved in the progressive-time dependent development not only of though-going failure surfaces but also lateral and rear-release mechanisms. Preliminary modelling data are presented to illustrate the importance of intact rock fracture and step-path failure mechanisms; and the results are discussed with reference to selected field observations. The authors emphasize the importance of considering all forms of pre-existing rock mass damage when assessing potential or operative failure mechanisms. It is suggested that a rock slope rock mass damage assessment can provide an improved understanding of the potential failure mode, the likely hazard presented, and appropriate methods of both analysis and remedial treatment.

  11. Microseismic Precursory Characteristics of Rock Burst Hazard in Mining Areas Near a Large Residual Coal Pillar: A Case Study from Xuzhuang Coal Mine, Xuzhou, China

    NASA Astrophysics Data System (ADS)

    Cao, An-ye; Dou, Lin-ming; Wang, Chang-bin; Yao, Xiao-xiao; Dong, Jing-yuan; Gu, Yu

    2016-11-01

    Identification of precursory characteristics is a key issue for rock burst prevention. The aim of this research is to provide a reference for assessing rock burst risk and determining potential rock burst risk areas in coal mining. In this work, the microseismic multidimensional information for the identification of rock bursts and spatial-temporal pre-warning was investigated in a specific coalface which suffered high rock burst risk in a mining area near a large residual coal pillar. Firstly, microseismicity evolution prior to a disastrous rock burst was qualitatively analysed, and the abnormal clustering of seismic sources, abnormal variations in daily total energy release, and event counts can be regarded as precursors to rock burst. Secondly, passive tomographic imaging has been used to locate high seismic activity zones and assess rock burst hazard when the coalface passes through residual pillar areas. The results show that high-velocity or velocity anomaly regions correlated well with strong seismic activities in future mining periods and that passive tomography has the potential to describe, both quantitatively and periodically, hazardous regions and assess rock burst risk. Finally, the bursting strain energy index was further used for short-term spatial-temporal pre-warning of rock bursts. The temporal sequence curve and spatial contour nephograms indicate that the status of the danger and the specific hazardous zones, and levels of rock burst risk can be quantitatively and rapidly analysed in short time and in space. The multidimensional precursory characteristic identification of rock bursts, including qualitative analysis, intermediate and short-time quantitative predictions, can guide the choice of measures implemented to control rock bursts in the field, and provides a new approach to monitor and forecast rock bursts in space and time.

  12. Continued Development and Application of Circulation Control Pneumatic Technology to Advanced Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1998-01-01

    Personnel of the Georgia Tech Research Institute (GTRI) Aerospace and Transportation Lab have completed a four-year grant program to develop and evaluate the pneumatic aerodynamic technology known as Circulation Control (CC) or Circulation Control Wing (CCW) for advanced transport aircraft. This pneumatic technology, which employs low-level blowing from tangential slots over round or near-round trailing edges of airfoils, greatly augments the circulation around a lifting or control surface and thus enhances the aerodynamic forces and moments generated by that surface. Two-dimensional force augmentations as high as 80 times the input blowing momentum coefficient have been recorded experimentally for these blown devices, thus providing returns of 8000% on the jet momentum expended. A further benefit is the absence of moving parts such as mechanical flaps, slats, spoilers, ailerons, elevators and rudders from these pneumatic surfaces, or the use of only very small, simple, blown aerodynamic surfaces on synergistic designs which integrate the lift, drag and control surfaces. The application of these devices to advanced aircraft can offer significant benefits in their performance, efficiency, simplicity, reliability, economic cost of operation, noise reduction, and safety of flight. To further develop and evaluate this potential, this research effort was conducted by GTRI under grant for the NASA Langley Research Center, Applied Aerodynamics Division, Subsonic Aerodynamics Branch, between June 14, 1993 and May 31, 1997.

  13. Effect of ground control mesh on dust sampling and explosion mitigation.

    PubMed

    Alexander, D W; Chasko, L L

    2015-07-01

    Researchers from the National Institute for Occupational Safety and Health's Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries.

  14. Effect of ground control mesh on dust sampling and explosion mitigation

    PubMed Central

    Alexander, D.W.; Chasko, L.L.

    2017-01-01

    Researchers from the National Institute for Occupational Safety and Health’s Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries. PMID:28936000

  15. Modeling transport kinetics in clinoptilolite-phosphate rock systems

    NASA Technical Reports Server (NTRS)

    Allen, E. R.; Ming, D. W.; Hossner, L. R.; Henninger, D. L.

    1995-01-01

    Nutrient release in clinoptilolite-phosphate rock (Cp-PR) systems occurs through dissolution and cation-exchange reactions. Investigating the kinetics of these reactions expands our understanding of nutrient release processes. Research was conducted to model transport kinetics of nutrient release in Cp-PR systems. The objectives were to identify empirical models that best describe NH4, K, and P release and define diffusion-controlling processes. Materials included a Texas clinoptilolite (Cp) and North Carolina phosphate rock (PR). A continuous-flow thin-disk technique was used. Models evaluated included zero order, first order, second order, parabolic diffusion, simplified Elovich, Elovich, and power function. The power-function, Elovich, and parabolic-diffusion models adequately described NH4, K, and P release. The power-function model was preferred because of its simplicity. Models indicated nutrient release was diffusion controlled. Primary transport processes controlling nutrient release for the time span observed were probably the result of a combination of several interacting transport mechanisms.

  16. Fault rock mineralogy and fluid flow in the Coso Geothermal Field, CA

    NASA Astrophysics Data System (ADS)

    Davatzes, N. C.; Hickman, S. H.

    2005-12-01

    The minerals that comprise fault rock, their grain shapes, and packing geometry are important controls on fault zone properties such as permeability, frictional strength, and slip behavior. In this study we examine the role of mineralogy and deformation microstructures on fluid flow in a fault-hosted, fracture-dominated geothermal system contained in granitic rocks in the Coso Geothermal Field, CA. Initial examination of the mineralogy and microstructure of fault rock obtained from core and surface outcrops reveals three fault rock types. (1) Fault rock consisting of kaolinite and amorphous silica that contains large connected pores, dilatant brittle fractures, and dissolution textures. (2) Fault rock consisting of foliated layers of chlorite and illite-smectite separated by slip surfaces. (3) Fault rock consisting of poorly sorted angular grains, characterized by large variations in grain packing (pore size), and crack-seal textures. These different fault rocks are respectively associated with a high permeability upper boiling zone for the geothermal system, a conductively heated "caprock" at moderate to shallow depth associated with low permeability, and a deeper convectively heated region associated with enhanced permeability. Outcrop and hand-sample scale mapping, XRD analysis, and SEM secondary electron images of fault gouge and slip surfaces at different stages of development (estimated shear strain) are used to investigate the processes responsible for the development and physical properties of these distinct fault rocks. In each type of fault rock, mineral dissolution and re-precipitation in conjunction with the amount and geometry of porosity changes induced by dilation or compaction are the key controls on fault rock development. In addition, at the contacts between slip surfaces, abrasion and resulting comminution appear to influence grain size, sorting, and packing. Macroscopically, we expect the frictional strength of these characteristic fault rocks to differ because the processes that accommodate deformation depend strongly on mineralogy. Frictional strength of quartz-dominated fault rocks in the near surface and in the reservoir should be greater (~0.6) than that in the clay-dominated cap rock (~0.2-0.4). Similarly, permeability should be much lower in foliated clay-rich fault rocks than in quartz-rich fault rocks as evidenced by larger, more connected pores imaged in quartz-rich gouge. Mineral stability is a function of loading, strain rate, temperature, and fluid flow conditions. Which minerals form, and the rates at which they grow is also a key element in determining variations in the magnitude and anisotropy of fault zone properties at Coso. Consequently, we suggest that the development of fault-zone properties depends on the feedback between deformation, resulting changes in permeability, and large-scale fluid flow and the leading to dissolution/precipitation of minerals in the fault rock and adjacent host rock. The implication for Coso is that chemical alteration of otherwise low-porosity crystalline rocks appears to determine the distribution and temporal evolution of permeability in the actively deforming fracture network at small to moderate scales as well as along major, reservoir-penetrating fault zones.

  17. Mixing-controlled uncertainty in long-term predictions of acid rock drainage from heterogeneous waste-rock piles

    NASA Astrophysics Data System (ADS)

    Pedretti, D.; Beckie, R. D.; Mayer, K. U.

    2015-12-01

    The chemistry of drainage from waste-rock piles at mine sites is difficult to predict because of a number of uncertainties including heterogeneous reactive mineral content, distribution of minerals, weathering rates and physical flow properties. In this presentation, we examine the effects of mixing on drainage chemistry over timescales of 100s of years. We use a 1-D streamtube conceptualization of flow in waste rocks and multicomponent reactive transport modeling. We simplify the reactive system to consist of acid-producing sulfide minerals and acid-neutralizing carbonate minerals and secondary sulfate and iron oxide minerals. We create multiple realizations of waste-rock piles with distinct distributions of reactive minerals along each flow path and examine the uncertainty of drainage geochemistry through time. The limited mixing of streamtubes that is characteristic of the vertical unsaturated flow in many waste-rock piles, allows individual flowpaths to sustain acid or neutral conditions to the base of the pile, where the streamtubes mix. Consequently, mixing and the acidity/alkalinity balance of the streamtube waters, and not the overall acid- and base-producing mineral contents, control the instantaneous discharge chemistry. Our results show that the limited mixing implied by preferential flow and the heterogeneous distribution of mineral contents lead to large uncertainty in drainage chemistry over short and medium time scales. However, over longer timescales when one of either the acid-producing or neutralizing primary phases is depleted, the drainage chemistry becomes less controlled by mixing and in turn less uncertain. A correct understanding of the temporal variability of uncertainty is key to make informed long-term decisions in mining settings regarding the management of waste material.

  18. Rapid formation of rock armour for soil - rock fragment mixture during simulated rainfall

    NASA Astrophysics Data System (ADS)

    Poultney, E.; McGrath, G. S.; Hinz, C.

    2009-04-01

    Preventing erosion is an important issue in disturbed semi-arid and arid landscapes. This is in particular of highest importance for mining companies while undertaking land rehabilitation. An onsite investigation of the impact of surface rock fragments on erosion was conducted at Telfer goldmine in the Great Sandy Desert, Western Australia. The study site is a waste rock dump designed to mimic the concave slope of a natural mesa to both discourage erosion and blend in with its natural surroundings. Four treatments were used to construct the slope: two are topsoil mixed with rock fragments, and two are unmixed topsoil. A field study investigating erosion rills, particle size distribution, rock fragment coverage surface roughness and vegetation was carried out to determine changes down and across slope. The treatments constructed by mixing topsoil and rock fragments are more stable and show rock fragment distributions that more closely resemble patterns found on natural mesas surrounding Telfer. A controlled study using trays of topsoil mixed with rock fragment volumes of 50%, 60%, 70% and 80% were used to investigate how varying mixtures of rock fragments and topsoil erode using rainfall intensities between 20 and 100 mm h-1. Two runs of 25 minutes each were used to assess the temporal evolution of rock armouring. Surface coverage results converged for the 50%, 60% and 70% mixtures after the first run to coverage of about 90%, suggesting that fine sediment proportion does not affect rate and degree of rock armouring.

  19. Bioimpedance harmonic analysis as a tool to simultaneously assess circulation and nervous control.

    PubMed

    Mudraya, I S; Revenko, S V; Nesterov, A V; Gavrilov, I Yu; Kirpatovsky, V I

    2011-07-01

    Multicycle harmonic (Fourier) analysis of bioimpedance was employed to simultaneously assess circulation and neural activity in visceral (rat urinary bladder) and somatic (human finger) organs. The informative value of the first cardiac harmonic of the bladder impedance as an index of bladder circulation is demonstrated. The individual reactions of normal and obstructive bladders in response to infusion cystometry were recorded. The potency of multicycle harmonic analysis of bioimpedance to assess sympathetic and parasympathetic neural control in urinary bladder is discussed. In the human finger, bioimpedance harmonic analysis revealed three periodic components at the rate of the heart beat, respiration and Mayer wave (0.1 Hz), which were observed under normal conditions and during blood flow arrest in the hand. The revealed spectrum peaks were explained by the changes in systemic blood pressure and in regional vascular tone resulting from neural vasomotor control. During normal respiration and circulation, two side cardiac peaks were revealed in a bioimpedance amplitude spectrum, whose amplitude reflected the depth of amplitude respiratory modulation of the cardiac output. During normal breathing, the peaks corresponding to the second and third cardiac harmonics were split, reflecting frequency respiratory modulation of the heart rate. Multicycle harmonic analysis of bioimpedance is a novel potent tool to examine the interaction between the respiratory and cardiovascular system and to simultaneously assess regional circulation and neural influences in visceral and somatic organs.

  20. Low levels of circulating platelet factor 4 (PF4, CXCL4) in subclinically hypothyroid autoimmune thyroiditis.

    PubMed

    Görar, S; Ademoğlu, E; Çarlıoğlu, A; Alioğlu, B; Bekdemir, H; Sağlam, B; Candan, Z; Üçler, R; Culha, C; Aral, Y

    2016-02-01

    Chemokines play an important role in the pathogenesis of autoimmune thyroid diseases. Platelet factor 4 (PF4, CXCL4) released from activated platelets is a chemokine. However, its clinical importance in autoimmune thyroiditis remains unknown. This study is intended to determine circulating levels of PF4 levels in patients with autoimmune thyroiditis (AIT). Circulating levels of PF4 were measured in 34 consecutive patients with newly diagnosed AIT and 18 euthyroid controls. Among AIT group, 16 patients were euthyroid and 18 had subclinic hypothyroidism. Controls and individuals with AIT were similar in terms of age. Serum levels of PF4 were comparable in patients with AIT and in controls. Among patients with AIT, PF4 was significantly lower in those with subclinical hypothyroidism than in euthyroid individuals (p = 0.001). In correlation analysis, PF4 was negatively correlated with TSH (r = -0.663, p = 0.000) and positively correlated with free T4 (r = 0.428, p = 0.012). There was not any significant correlation between PF4 and AbTPO, AbTg. The present study demonstrated for the first time that circulating PF4 levels are decreased in subclinically hypothyroid AIT. This result draws attention to the circulating PF4 levels in subclinically hypothyroid AIT and may shed light on further researches at this topic.

  1. Computation of porosity redistribution resulting from thermal convection in slanted porous layers

    NASA Astrophysics Data System (ADS)

    Gouze, Phillippe; Coudrain-Ribstein, Anne; Bernard, Dominique

    1994-01-01

    Unlike fluid displacement due to regional hydraulic head, thermoconvetive motions are generally slow. The thermal impacts of such movements are very weak, whereas their chemical impacts may be significant because of their cumulated effects over geologic time. For nonhorizontal thick sedimentary reservoirs, the fluid velocity due to thermal convection can be accurately approximated by an explicit function of the dip of the reservior, the permeability and the difference in thermal conductivity between the aquifer and the confining beds. The latter parameter controls the rotation direction of the flow and, for clastic reservoirs bounded by impervious clayey media, fluid moves up the slope along the caprock layer. As the fluid velocity is small, the major rock-forming minerals control the fluid composition by thermodynamic equilibrium. Thus, whereas the volume of redistributed mineral depends on the volume of water circulated, the localization of porosity enhancement is strongly controlled by the reservoir mineralogy. With realistic values of permeability and layer thickness, several per cent of secondary porosity per million years can be created or lost at shallow depth (less than 2 km), depending on the chlorinity, the set of representative minerals and the temperature. In sandstone resevoirs and high-chlorinity calcarenite resoervoirs, the porosity decreases under the caprock where hydrocarbons can accumulate. In chlorinity calcarenite resevoirs, the porosity decreases under the caprock where hydrocarbons can accumulate. In chloride-depleted carbonate aquifers, the simulataneous control by carbonates, silica and aluminosilicates can produce a decrease of porosity above the bedrock and an enhancement of porosity under the caprock. However, computations show that the quality of the upper part of the reservoir is mainly reduced by the precipitation of silica and clays.

  2. Thermal inertia and reversing buoyancy in flow in porous media

    NASA Astrophysics Data System (ADS)

    Menand, Thierry; Raw, Alan; Woods, Andrew W.

    2003-03-01

    The displacement of fluids through porous rocks is fundamental for the recharge of geothermal and hydrocarbon reservoirs [Grant et al., 1982; Lake, 1989], for contaminant dispersal through the groundwater [Bear, 1972] and in controlling mineral reactions in permeable rocks [Phillips, 1991]. In many cases, the buoyancy force associated with density differences between the formation fluid and the displacing fluid controls the rate and pattern of flow through the permeable rock [Phillips, 1991; Barenblatt, 1996; Turcotte and Schubert, 2002]. Here, using new laboratory experiments, we establish that a striking range of different flow patterns may develop depending on whether this density contrast is associated with differences in temperature and/or composition between the two fluids. Owing to the effects of thermal inertia in a porous rock, thermal fronts lag behind compositional fronts [Woods and Fitzgerald, 1993; Turcotte and Schubert, 2002], so that two zones of different density develop in the region flooded with injected fluid. This can lead to increasing, decreasing or even reversing buoyancy in the injected liquid; in the latter case it may then form a double-flood front, spreading along both the upper and lower boundary of the rock. Recognition of these different flow regimes is key for predicting sweep efficiency and dispersal patterns in natural and engineered flows, and offers new opportunities for the enhanced recovery of natural resources in porous rocks.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad Ghassemi

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of themore » large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.« less

  4. Biostratigraphy and structure of paleozoic host rocks and their relationship to Carlin-type gold deposits in the Jerritt Canyon mining district, Nevada

    USGS Publications Warehouse

    Peters, S.G.; Armstrong, A.K.; Harris, A.G.; Oscarson, R.L.; Noble, P.J.

    2003-01-01

    The Jerritt Canyon mining district in the northern Independence Range, northern Nevada, contains multiple, nearly horizontal, thrust masses of platform carbonate rocks that are exposed in a series of north- to northeast-elongated, tectonic windows through rocks of the Roberts Mountains allochthon. The Roberts Mountains allochthon was emplaced during the Late Devonian to Early Mississippian Antler orogeny. These thrust masses contain structurally and stratigraphically controlled Carlin-type gold deposits. The gold deposits are hosted in tectonically truncated units of the Silurian to Devonian Hanson Creek and Roberts Mountains Formations that lie within structural slices of an Eastern assemblage of Cambrian to Devonian carbonate rocks. In addition, these multiply thrust-faulted and folded host rocks are structurally interleaved with Mississippian siliciclastic rocks and are overlain structurally by Cambrian to Devonian siliciclastic units of the Roberts Mountains allochthon. All sedimentary rocks were involved in thrusting, high-angle faulting, and folding, and some of these events indicate substantial late Paleozoic and/or Mesozoic regional shortening. Early Pennsylvanian and late Eocene dikes also intrude the sedimentary rocks. These rocks all were uplifted into a northeast-trending range by subsequent late Cenozoic Basin and Range faulting. Eocene sedimentary and volcanic rocks flank part of the range. Pathways of hydrothermal fluid flow and locations of Carlin-type gold orebodies in the Jerritt Canyon mining district were controlled by structural and host-rock geometries within specific lithologies of the stacked thrust masses of Eastern assemblage rocks. The gold deposits are most common proximal to intersections of northeast-striking faults, northwest-striking dikes, and thrust planes that lie adjacent to permeable stratigraphic horizons. The host stratigraphic units include carbonate sequences that contained primary intercrystalline permeability, which provided initial pathways for fluid flow and later served as precipitation sites for ore minerals. Alteration, during, and perhaps prior to mineralization, enhanced primary permeability by dissolution, by removal of calcite, and by formation of dolomite. Ore-stage sulfide minerals and alteration minerals commonly precipitated in pore spaces among dolomite grains. Microveinlets and microbrecciation in zones of intense alteration also provided networks of secondary permeability that further enhanced fluid flux and produced additional sites for ore deposition.

  5. Structural analysis of Precambrian rocks at the Hot Dry Rock Site at Fenton Hill, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, K.L.; Potter, R.M.

    1995-01-01

    The subcrop of basement rock at Fenton HIll comprises Precambrian gneiss, schist, amphibolite, pegmatite, and granitoids with affinities in metamorphic and structural history to surface outcrops in the Tusas and Picuris Ranges. Televiewer measurements of structures were analyzed by taking advantage of the spatial continuity of foliations. Folds in the foliation are predominantly conical forms due to interference between structures formed in F2 and F3 tectonic events. Field observations of outcrops in the Picuris Range show that the fractures are predominantly an X-T network controlled by the lithological layering, and statistical evidence indicates that this layer-controlled network persists to depthmore » at Fenton Hill.« less

  6. Ground penetrating radar imaging of cap rock, caliche and carbonate strata

    USGS Publications Warehouse

    Kruse, S.E.; Schneider, J.C.; Campagna, D.J.; Inman, J.A.; Hickey, T.D.

    2000-01-01

    Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to ~3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to ~2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (~5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida. (C) 2000 Elsevier Science B.V. All rights reserved.Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to approx. 3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to approx. 2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (approx. 5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida.

  7. The role of initial coherence and path materials in the dynamics of three rock avalanche case histories

    USGS Publications Warehouse

    Aaron, Jordan; McDougall, Scott; Moore, Jeffrey R.; Coe, Jeffrey A.; Hungr, Oldrich

    2017-01-01

    BackgroundRock avalanches are flow-like landslides that can travel at extremely rapid velocities and impact surprisingly large areas. The mechanisms that lead to the unexpected mobility of these flows are unknown and debated. Mechanisms proposed in the literature can be broadly classified into those that rely on intrinsic characteristics of the rock avalanche material, and those that rely on extrinsic factors such as path material. In this work a calibration-based numerical model is used to back-analyze three rock avalanche case histories. The results of these back-analyses are then used to infer factors that govern rock avalanche motionResultsOur study has revealed two key insights that must be considered when analyzing rock avalanches. Results from two of the case histories demonstrate the importance of accounting for the initially coherent phase of rock avalanche motion. Additionally, the back-analyzed basal resistance parameters, as well as the best-fit rheology, are different for each case history. This suggests that the governing mechanisms controlling rock avalanche motion are unlikely to be intrinsic. The back-analyzed strength parameters correspond well to those that would be expected by considering the path material that the rock avalanches overran.ConclusionOur results show that accurate simulation of rock avalanche motion must account for the initially coherent phase of movement, and that the mechanisms governing rock avalanche motion are unlikely to be intrinsic to the failed material. Interaction of rock avalanche debris with path materials is the likely mechanism that governs the motion of many rock avalanches.

  8. Reappraisal of hydrocarbon biomarkers in Archean rocks

    PubMed Central

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-01-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  9. Monte Carlo simulations of the gamma-ray exposure rates of common rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, Daniel A.; Malchow, Russell L.; Burnley, Pamela C.

    Monte Carlo simulations have been performed to model the gamma ray emission and attenuation properties of common rocks. In geologic materials, 40K, 238U, and 232Th are responsible for most gamma ray production. If the concentration of these radioelements and attenuation factors such as degree of water saturation are known, an estimate of the gamma-ray exposure rate can be made. The results show that there are no significant differences in gamma-ray screening between major rock types. If the total number of radionuclide atoms are held constant then the major controlling factor is density of the rock. Finally, the thickness of regolithmore » or soil overlying rock can be estimated by modeling the exposure rate if the radionuclide contents of both materials are known.« less

  10. Monte Carlo simulations of the gamma-ray exposure rates of common rocks

    DOE PAGES

    Haber, Daniel A.; Malchow, Russell L.; Burnley, Pamela C.

    2016-11-24

    Monte Carlo simulations have been performed to model the gamma ray emission and attenuation properties of common rocks. In geologic materials, 40K, 238U, and 232Th are responsible for most gamma ray production. If the concentration of these radioelements and attenuation factors such as degree of water saturation are known, an estimate of the gamma-ray exposure rate can be made. The results show that there are no significant differences in gamma-ray screening between major rock types. If the total number of radionuclide atoms are held constant then the major controlling factor is density of the rock. Lastly, the thickness of regolithmore » or soil overlying rock can be estimated by modeling the exposure rate if the radionuclide contents of both materials are known.« less

  11. Monte Carlo simulations of the gamma-ray exposure rates of common rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, Daniel A.; Malchow, Russell L.; Burnley, Pamela C.

    Monte Carlo simulations have been performed to model the gamma ray emission and attenuation properties of common rocks. In geologic materials, 40K, 238U, and 232Th are responsible for most gamma ray production. If the concentration of these radioelements and attenuation factors such as degree of water saturation are known, an estimate of the gamma-ray exposure rate can be made. The results show that there are no significant differences in gamma-ray screening between major rock types. If the total number of radionuclide atoms are held constant then the major controlling factor is density of the rock. Lastly, the thickness of regolithmore » or soil overlying rock can be estimated by modeling the exposure rate if the radionuclide contents of both materials are known.« less

  12. Failure of cap-rock seals as determined from mechanical stratigraphy, stress history, and tensile-failure analysis of exhumed analogs

    DOE PAGES

    Petrie, E. S.; Evans, J. P.; Bauer, S. J.

    2014-11-01

    In this study, the sedimentologic and tectonic histories of clastic cap rocks and their inherent mechanical properties control the nature of permeable fractures within them. The migration of fluid through mm- to cm-scale fracture networks can result in focused fluid flow allowing hydrocarbon production from unconventional reservoirs or compromising the seal integrity of fluid traps. To understand the nature and distribution of subsurface fluid-flow pathways through fracture networks in cap-rock seals we examine four exhumed Paleozoic and Mesozoic seal analogs in Utah. We combine these outcrop analyses with subsidence analysis, paleoloading histories, and rock-strength testing data in modified Mohr–Coulomb–Griffith analysesmore » to evaluate the effects of differential stress and rock type on fracture mode.« less

  13. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: II. Some general geologic applications

    USGS Publications Warehouse

    Hemley, J.J.; Hunt, J.P.

    1992-01-01

    The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors

  14. Terrigenous sediment supply along the Chilean continental margin: modern regional patterns of texture and composition

    NASA Astrophysics Data System (ADS)

    Lamy, F.; Hebbeln, D.; Wefer, G.

    The regional patterns of texture and composition of modern continental slope and pelagic sediments off Chile between 25°S and 43°S reflect the latitudinal segmentation of geological, morphological, and climatic features of the continental hinterland. Grain-size characteristics are controlled by the grain-size of source rocks, the weathering regime, and mode of sediment input (eolian off northern Chile vs fluvial further south). Bulk-mineral assemblages reveal a low grade of maturity. Regional variations are governed by the source-rock composition of the different geological terranes and the relative source-rock contribution of the Coastal Range and Andes, as controlled by the continental hydrology. The relative abundance of clay minerals is also predominantly influenced by the source-rock composition and partly by continental smectite neoformation. Latitudinal variations of illite crystallinities along the Chilean continental slope (and west of the Peru-Chile trench) clearly reflect modifications of the weathering regime which correspond to the strong climatic zonation of Chile.

  15. Lithospheric thickness controlled compositional variations in potassic basalts of Northeast China by melt-rock interactions

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Qiang; Chen, Li-Hui; Zeng, Gang; Wang, Xiao-Jun; Zhong, Yuan; Yu, Xun

    2016-03-01

    Melt-rock interaction is a common mantle process; however, it remains unclear how this process affects the composition of potassic basalt. Here we present a case study to highlight the link between compositional variations in the potassic basalts and melt-rock interaction in cold lithosphere. Cenozoic potassic basalts in Northeast China are strongly enriched in incompatible elements and show EM1-type Sr-Nd-Pb isotopes, suggesting an enriched mantle source. These rocks show good correlations between 87Sr/86Sr and K2O/Na2O and Rb/Nb. Notably, these ratios decrease with increasing lithospheric thickness, which may reflect melt-lithosphere interaction. Phlogopite precipitated when potassic melts passed through the lithospheric mantle, and K and Rb contents of the residual melts decreased over time. The thicker the lithosphere, the greater the loss of K and Rb from the magma. Therefore, the compositions of potassic basalts were controlled by both their enriched sources and reactions with lithospheric mantle.

  16. Heavy Metal Contamination and Salt Efflorescence Associated With Decorative Landscaping Rocks, Las Vegas, Nevada: The Need for Regulations

    NASA Astrophysics Data System (ADS)

    Mrozek, S. A.; Buck, B. J.; Brock, A. L.

    2004-12-01

    Las Vegas, Nevada is one of the fastest growing cities in the United States. Faced with water restrictions, decorative rock xeroscaping has become a very popular form of landscaping. Currently, there are no regulations controlling the geochemistry of the decorative rocks that can be used for these purposes. In this study, we examined three sites containing two different decorative rock products. The landscaping rocks, underlying soil, and surface salt crusts were analyzed to determine their mineralogy and chemistry. Methods of analysis include scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP), thin section analysis, and laser particle size analysis (LPSA). Preliminary results indicate the presence of halite (NaCl), bloedite (Na2Mg(SO4)2 4H2O), a hydrated magnesium sulfate, and possibly copper sulfate and copper chloride mineral phases in the surface salt crusts. Both copper minerals are regarded as hazardous substances by the Occupational Safety and Health Administration (OSHA) and the Environmental Protection Agency (EPA); these agencies have established minimum exposure limits for human contact with these substances. Copper sulfate and copper chloride are not naturally occurring minerals in the soils of the Las Vegas Valley, and analyses indicate that their formation may be attributed to the mineralogy of the decorative landscaping rocks. Further testing is needed to characterize this potential health hazard; however the preliminary results of this study demonstrate the need for regulations controlling the geochemistry of decorative rocks used for urban landscaping.

  17. Effects of Small-Scale Bathymetric Roughness on the Global Internal Wave Field

    DTIC Science & Technology

    2008-09-30

    Navy. Much of the interest stems from the suggestion by Munk and Wunsch (1998) that the strength of the meridional overturning circulation is controlled... meridional overturning circulation . Journal of Physical Oceanography 32, 3578-3595. St. Laurent, L.C., 1999. Diapycnal advection by double diffusion...waves generated by flows over the rough seafloor. On the time scales of internal waves, mesoscale eddies and the general circulation can be regarded as

  18. Tertiary volcanic rocks of the Mineral Mountain and Teapot Mountain quadrangles, Pinal County, Arizona

    USGS Publications Warehouse

    Keith, William J.; Theodore, Ted G.

    1979-01-01

    The widespread distribution of Tertiary volcanic rocks in south-central Arizona is controlled in part by prevolcanic structures along which volcanic vents were localized. Volcanic rocks in the Mineral Mountain and Teapot Mountain quadrangles mark the site of a major northwest-trending structural hingeline. This hingeline divides an older Precambrian X terrane on the west from intensely deformed sequences of rock as young as Pennsylvanian on the east, suggesting increased westerly uplift. The volcanic rocks consist of a pile of complexly interlayered rhyolite, andesite, dacite, flows and intrusive rocks, water-laid tuffs, and very minor olivine basalt. Although the rocks erupted from several different vents, time relations, space relations, and chemistry each give strong evidence of a single source for all the rocks. Available data (by the K-Ar dating method) on hornblende and biotite separates from the volcanic rocks range from 14 to 19 m.y. and establish the pre-middle Miocene age of major dislocations along the structural hingeline. Most of the volcanic rocks contain glass, either at the base of the flows or as an envelope around the intrusive phases. One of the intrusive rhyolites, however, seems to represent one of the final eruptions. Intense vesiculation of the intrusive rhyolite suggests a large content of volatiles at the time of its eruption. Mineralization is associated with the more silicic of these middle Miocene volcanic rocks; specifically, extensive fissure quartz veins contain locally significant amounts of silver, lead, and zinc and minor amounts of gold. Many of the most productive deposits are hosted by the volcanic rocks, although others occur in the Precambrian rocks. Magnetic data correspond roughly to the geology in outlining the overall extent of the volcanic rocks as a magnetic low.

  19. Detecting a Defective Casing Seal at the Top of a Bedrock Aquifer.

    PubMed

    Richard, Sandra K; Chesnaux, Romain; Rouleau, Alain

    2016-03-01

    An improperly sealed casing can produce a direct hydraulic connection between two or more originally isolated aquifers with important consequences regarding groundwater quantity and quality. A recent study by Richard et al. (2014) investigated a monitoring well installed in a fractured rock aquifer with a defective casing seal at the soil-bedrock interface. A hydraulic short circuit was detected that produced some leakage between the rock and the overlying deposits. A falling-head permeability test performed in this well showed that the usual method of data interpretation is not valid in this particular case due to the presence of a piezometric error. This error is the direct result of the preferential flow originating from the hydraulic short circuit and the subsequent re-equilibration of the piezometric levels of both aquifers in the vicinity of the inlet and the outlet of the defective seal. Numerical simulations of groundwater circulation around the well support the observed impact of the hydraulic short circuit on the results of the falling-head permeability test. These observations demonstrate that a properly designed falling-head permeability test may be useful in the detection of defective casing seals. © 2015, National Ground Water Association.

  20. Radon emanation from giant landslides of Koefels (Tyrol, Austria) and Langtang Himal (Nepal)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purtscheller, F.; Pirchl, T.; Sieder, G.

    1995-07-01

    The identification of extremely high indoor radon concentrations in the village Umhausen (Tyrol, Austria) initiated a scientific program to get information about the source and distribution of this noble gas. The high concentrations can not be related to U anomalies or large-scale fault zones. The nearby giant landslide of Koefels, with its highly fractured and crushed orthogneisses, are the only possible source of radon, despite the fact that the U and Ra content of the rocks is by no means exceptional. The reasons for the high emanation rates from the landslide are discussed and compared to results gained from amore » similar examination of the giant landslide of Langtang Himal (Nepal). The exceptional geologic situation in both cases, as well as the spatial distribution of different concentration levels, indicate that both landslides must be considered as the production sites of radon. Independent of the U and Ra contents of the rocks, the most important factors producing high emanation rates are the production of a high active surface area in circulation pathways for Rn-enriched soil air by brittle deformation due to the impact of the landslidemass. 37 refs., 4 figs., 1 tab.« less

Top