Superconducting FCL using a combined inducted magnetic field trigger and shunt coil
Tekletsadik, Kasegn D.
2007-10-16
A single trigger/shunt coil is utilized for combined induced magnetic field triggering and shunt impedance. The single coil connected in parallel with the high temperature superconducting element, is designed to generate a circulating current in the parallel circuit during normal operation to aid triggering the high temperature superconducting element to quench in the event of a fault. The circulating current is generated by an induced voltage in the coil, when the system current flows through the high temperature superconducting element.
Numerical simulation of magnetic convection ferrofluid flow in a permanent magnet-inserted cavity
NASA Astrophysics Data System (ADS)
Ashouri, Majid; Behshad Shafii, Mohammad
2017-11-01
The magnetic convection heat transfer in an obstructed two-dimensional square cavity is investigated numerically. The walls of the cavity are heated with different constant temperatures at two sides, and isolated at two other sides. The cavity is filled with a high Prandtl number ferrofluid. The convective force is induced by a magnetic field gradient of a thermally insulated square permanent magnet located at the center of the cavity. The results are presented in the forms of streamlines, isotherms, and Nusselt number for various values of magnetic Rayleigh numbers and permanent magnet size. Two major circulations are generated in the cavity, clockwise flow in the upper half and counterclockwise in the lower half. In addition, strong circulations are observed around the edges of the permanent magnet surface. The strength of the circulations increase monotonically with the magnetic Rayleigh number. The circulations also increase with the permanent magnet size, but eventually, are suppressed for larger sizes. It is found that there is an optimum size for the permanent magnet due to the contrary effects of the increase in magnetic force and the increase in flow resistance by increasing the size. By increasing the magnetic Rayleigh number or isothermal walls temperature ratio, the heat transfer rate increases.
NASA Astrophysics Data System (ADS)
Borisevich, V. D.; Potanin, E. P.
2017-07-01
The possibility of using a rotating magnetic field (RMF) in a plasma centrifuge (PC), with axial circulation to multiply the radial separation effect in an axial direction, is considered. For the first time, a traveling magnetic field (TMF) is proposed to drive an axial circulation flow in a PC. The longitudinal separation effect is calculated for a notional model, using specified operational parameters and the properties of a plasma, comprising an isotopic mixture of 20Ne-22Ne and generated by a high frequency discharge. The optimal intensity of a circulation flow, in which the longitudinal separation effect reaches its maximum value, is studied. The optimal parameters of the RMF and TMF for effective separation, as well as the centrifuge performance, are calculated.
Depth of origin of ocean-circulation-induced magnetic signals
NASA Astrophysics Data System (ADS)
Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik
2018-01-01
As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.
Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression
NASA Astrophysics Data System (ADS)
Varshnay, N. K.; Singh, A.; Benerji, N. S.
2017-02-01
Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression suitable for material processing applications are presented here. The laser incorporates in-built compact gas circulation and gas cooling to ensure fresh gas mixture between the electrodes for repetitive operation. A magnetically coupled tangential blower is used for gas circulation inside the laser chamber for repetitive operation. The exciter consists of C-C energy transfer circuit and thyratron is used as a high-voltage main switch with single-stage magnetic pulse compression (MPC) between thyratron and the laser electrodes. Low inductance of the laser head and uniform and intense pre-ionization are the main features of the electric circuit used in the laser. A 250 ns rise time voltage pulse was compressed to 100 ns duration with a single-stage magnetic pulse compressor using Ni-Zn ferrite cores. The laser can generate about 150 mJ at ˜100 Hz rep-rate reliably from a discharge volume of 100 cm 3. 2D spatial laser beam profile generated is presented here. The profile shows that the laser beam is completely filled with flat-top which is suitable for material processing applications. The SEM image of the microhole generated on copper target is presented here.
A theoretical model of the variation of the meridional circulation with the solar cycle
NASA Astrophysics Data System (ADS)
Hazra, Gopal; Choudhuri, Arnab Rai
2017-12-01
Observations of the meridional circulation of the Sun, which plays a key role in the operation of the solar dynamo, indicate that its speed varies with the solar cycle, becoming faster during the solar minima and slower during the solar maxima. To explain this variation of the meridional circulation with the solar cycle, we construct a theoretical model by coupling the equation of the meridional circulation (the ϕ component of the vorticity equation within the solar convection zone) with the equations of the flux transport dynamo model. We consider the back reaction due to the Lorentz force of the dynamo-generated magnetic fields and study the perturbations produced in the meridional circulation due to it. This enables us to model the variations of the meridional circulation without developing a full theory of the meridional circulation itself. We obtain results which reproduce the observational data of solar cycle variations of the meridional circulation reasonably well. We get the best results on assuming the turbulent viscosity acting on the velocity field to be comparable to the magnetic diffusivity (i.e. on assuming the magnetic Prandtl number to be close to unity). We have to assume an appropriate bottom boundary condition to ensure that the Lorentz force cannot drive a flow in the subadiabatic layers below the bottom of the tachocline. Our results are sensitive to this bottom boundary condition. We also suggest a hypothesis on how the observed inward flow towards the active regions may be produced.
[The magnetotherapy of chronic prostatitis].
Mokhort, V A; Voshchula, V I
1998-01-01
Low-frequency magnetic field generated by the unit ProSPOK was found more efficient than that of the unit Polyus-1 in physiotherapy of chronic prostatitis. The ProSPOK magnetotherapy stimulates ganglia, improves regeneration and circulation.
Operational experience with the supercritical helium during the TF coils tests campaign of SST-1
NASA Astrophysics Data System (ADS)
Panchal, Rohitkumar Natvarlal; Patel, Rakesh; Tank, Jignesh; Mahesuria, Gaurang; Sonara, Dashrath; Tanna, Vipul; Patel, Jayant; Srikanth, G. L. N.; Singh, Manoj; Patel, Ketan; Christian, Dikens; Garg, Atul; Bairagi, Nitn; Gupta, Manoj Kumar; Nimavat, Hiren; Shah, Pankil; Sharma, Rajiv; Pradhan, Subrata
2012-06-01
Under the 'SST-1 mission mandate' recently, all the sixteen Steady State Superconducting Tokamak (SST-1) Toroidal Field (TF) magnets have been successfully tested at their nominal currents of 10000 A in cold under supercritical helium (SHe) flow conditions. The TF magnets test campaign have begun in an experimental cryostat since June 2010 with the SST-1 Helium cryogenics facility, which is a 1.3 kW at 4.5 K helium refrigerator-cum-liquefier (HRL) system. The HRL provides ~300 g-s-1supercritical helium (SHe) with cold circulator (CC) as well as ~ 60 g-s-1 without cold circulator to fulfill the forced flow cooling requirements of SST- 1 magnets. In case of single TF coil tests, we can adjust HRL process parameters such that an adequate amount of required supercritical helium is available without the cold circulator. In this paper, the complete process is describing the Process Flow Diagram (PFD) of 1.3 kW at 4.5 K HRL, techniques to generate supercritical helium without using the cold-circulator and the results of the cooldown, steady state characteristics and experience of supercritical helium operations during the TF coils test campaign have been discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doose, Charles; Jain, Animesh
The APS-U is planned to be a 4th generation hard X-ray light source utilizing a multi-bend achromat (MBA) magnet lattice. The MBA lattice will be installed in the existing APS storage ring enclosure. The stored electron beam will circulate clockwise when viewed from above. The X-ray beamlines will for the most part exit at the same source points as the present APS. This document defines the signs and conventions related to the APS-U MBA magnets. Included in this document are: the local magnet coordinate system, definitions of mechanical and magnetic centers, definitions of multipole field errors, magnetic roll angle, andmore » magnet polarities.« less
Magnetic Flux Circulation During Dawn-Dusk Oriented Interplanetary Magnetic Field
NASA Technical Reports Server (NTRS)
Mitchell, E. J.; Lopez, R. E.; Fok, M.-C.; Deng, Y.; Wiltberger, M.; Lyon, J.
2010-01-01
Magnetic flux circulation is a primary mode of energy transfer from the solar wind into the ionosphere and inner magnetosphere. For southward interplanetary magnetic field (IMF), magnetic flux circulation is described by the Dungey cycle (dayside merging, night side reconnection, and magnetospheric convection), and both the ionosphere and inner magnetosphere receive energy. For dawn-dusk oriented IMF, magnetic flux circulation is not well understood, and the inner magnetosphere does not receive energy. Several models have been suggested for possible reconnection patterns; the general pattern is: dayside merging; reconnection on the dayside or along the dawn/dusk regions; and, return flow on dayside only. These models are consistent with the lack of energy in the inner magnetosphere. We will present evidence that the Dungey cycle does not explain the energy transfer during dawn-dusk oriented IMF. We will also present evidence of how magnetic flux does circulate during dawn-dusk oriented IMF, specifically how the magnetic flux reconnects and circulates back.
NASA Astrophysics Data System (ADS)
Yoon, Young Dae; Bellan, Paul M.
2018-05-01
An intuitive and physical two-fluid picture of spontaneous 2D collisionless magnetic reconnection and whistler wave generation is presented in the framework of 3D electron-magnetohydrodynamics. In this regime, canonical circulation (Q =me∇×u +qeB ) flux tubes can be defined in analogy to magnetic flux tubes in ideal magnetohydrodynamics. Following the 3D behavior of these Q flux tubes provides a new perspective on collisionless reconnection—a perspective that has been hard to perceive via examinations of 2D projections. This shows that even in a 2D geometry with an ignorable coordinate, a 3D examination is essential for a full comprehension of the process. Intuitive answers are given to three main questions in collisionless reconnection: why is reconnection spontaneous, why do particles accelerate extremely fast, and why are whistler waves generated? Possible extensions to other regimes are discussed.
Wave-Mean Flow Interaction in the Storm-Time Thermosphere Using a Two-Dimensional Model
1990-01-01
Hunsucker, 1982; Richmond, 1978, 1979a; Rees et. al., 1984; Roble et. al., 1978; Testud , 1970). 3) A global meridional circulation driven by the...theory of oscillatory waves. Trans. Cambridge Phil. Snc., 8, 441-455. Testud , J., 1970: Gra.ity waves generated during magnetic substorms. J. Atmos. Terr
Generation of magneto-immersed electron beams
NASA Astrophysics Data System (ADS)
Pikin, A.; Raparia, D.
2018-05-01
There are many applications of electron beams in accelerator facilities: for electron coolers, electron lenses, and electron beam ion sources (EBIS) to mention a few. Most of these applications require magnetic compression of the electron beam to reduce the beam radius with the goal of either matching the circulating ion beam (electron lenses and electron coolers) or increasing the ionization capability for the production of highly charged ions (EBIS). The magnetic compression of the electron beam comes at a cost of increasing share of the transverse component of energy and therefore increased angles of the electron trajectories to the longitudinal axis. Considering the effect of the magnetic mirror, it is highly desirable to produce a laminar electron beam in the electron gun. The analysis of electron guns with different configurations is given in this paper with emphasis on generating laminar electron beams.
Magnetospheric convection during quiet or moderately disturbed times
NASA Technical Reports Server (NTRS)
Caudal, G.; Blanc, M.
1988-01-01
The processes which contribute to the large-scale plasma circulation in the earth's environment during quiet times, or during reasonable stable magnetic conditions are reviewed. The various sources of field-aligned current generation in the solar wind and the magnetosphere are presented. The generation of field-aligned currents on open field lines connected to either polar cap and the generation of closed field lines of the inner magnetosphere are examined. Consideration is given to the hypothesis of Caudal (1987) that loss processes of trapped particles are competing with adiabatic motions in the generation of field-aligned currents in the inner magnetosphere.
Generation of dynamo waves by spatially separated sources in the Earth and other celestial bodies
NASA Astrophysics Data System (ADS)
Popova, E.
2017-12-01
The amplitude and the spatial configuration of the planetary and stellar magnetic field can changing over the years. Celestial bodies can have cyclic, chaotic or unchanging in time magnetic activity which is connected with a dynamo mechanism. This mechanism is based on the consideration of the joint influence of the alpha-effect and differential rotation. Dynamo sources can be located at different depths (active layers) of the celestial body and can have different intensities. Application of this concept allows us to get different forms of solutions and some of which can include wave propagating inside the celestial body. We analytically showed that in the case of spatially separated sources of magnetic field each source generates a wave whose frequency depends on the physical parameters of its source. We estimated parameters of sources required for the generation nondecaying waves. We discus structure of such sources and matter motion (including meridional circulation) in the liquid outer core of the Earth and active layers of other celestial bodies.
Drug accumulation by means of noninvasive magnetic drug delivery system
NASA Astrophysics Data System (ADS)
Chuzawa, M.; Mishima, F.; Akiyama, Y.; Nishijima, S.
2011-11-01
The medication is one of the most general treatment methods, but drugs diffuse in the normal tissues other than the target part by the blood circulation. Therefore, side effect in the medication, particularly for a drug with strong effect such as anti-cancer drug, are a serious issue. Drug Delivery System (DDS) which accumulates the drug locally in the human body is one of the techniques to solve the side-effects. Magnetic Drug Delivery System (MDDS) is one of the active DDSs, which uses the magnetic force. The objective of this study is to accumulate the ferromagnetic drugs noninvasively in the deep part of the body by using MDDS. It is necessary to generate high magnetic field and magnetic gradient at the target part to reduce the side-effects to the tissues with no diseases. The biomimetic model was composed, which consists of multiple model organs connected with diverged blood vessel model. The arrangement of magnetic field was examined to accumulate ferromagnetic drug particles in the target model organ by using a superconducting bulk magnet which can generate high magnetic fields. The arrangement of magnet was designed to generate high and stable magnetic field at the target model organ. The accumulation experiment of ferromagnetic particles has been conducted. In this study, rotating HTS bulk magnet around the axis of blood vessels by centering on the target part was suggested, and the model experiment for magnet rotation was conducted. As a result, the accumulation of the ferromagnetic particles to the target model organ in the deep part was confirmed.
NASA Astrophysics Data System (ADS)
Kumar, Rohit; Jouve, Laurène; Pinto, Rui F.; Rouillard, Alexis P.
2018-01-01
We present a three-dimensional numerical model for the generation and evolution of the magnetic field in the solar convection zone, in which sunspots are produced and contribute to the cyclic reversal of the large-scale magnetic field. We then assess the impact of this dynamo-generated field on the structure of the solar corona and solar wind. This model solves the induction equation in which the velocity field is prescribed. This velocity field is a combination of a solar-like differential rotation and meridional circulation. We develop an algorithm that enables the magnetic flux produced in the interior to be buoyantly transported towards the surface to produce bipolar spots. We find that those tilted bipolar magnetic regions contain a sufficient amount of flux to periodically reverse the polar magnetic field and sustain dynamo action. We then track the evolution of these magnetic features at the surface during a few consecutive magnetic cycles and analyze their effects on the topology of the corona and on properties of the solar wind (distribution of streamers and coronal holes, and of slow and fast wind streams) in connection with current observations of the Sun.
Manipulation of positron orbits in a dipole magnetic field with fluctuating electric fields
NASA Astrophysics Data System (ADS)
Saitoh, H.; Horn-Stanja, J.; Nißl, S.; Stenson, E. V.; Hergenhahn, U.; Pedersen, T. Sunn; Singer, M.; Dickmann, M.; Hugenschmidt, C.; Stoneking, M. R.; Danielson, J. R.; Surko, C. M.
2018-01-01
We report the manipulation of positron orbits in a toroidal dipole magnetic field configuration realized with electric fields generated by segmented electrodes. When the toroidal circulation motion of positrons in the dipole field is coupled with time-varying electric fields generated by azimuthally segmented outer electrodes, positrons undergo oscillations of their radial positions. This enables quick manipulation of the spatial profiles of positrons in a dipole field trap by choosing appropriate frequency, amplitude, phase, and gating time of the electric fields. According to numerical orbit analysis, we applied these electric fields to positrons injected from the NEPOMUC slow positron facility into a prototype dipole field trap experiment with a permanent magnet. Measurements with annihilation γ-rays clearly demonstrated the efficient compression effects of positrons into the strong magnetic field region of the dipole field configuration. This positron manipulation technique can be used as one of essential tools for future experiments on the formation of electron-positron plasmas.
Chertok, Beata; Langer, Robert
2018-01-01
Image-guided and target-selective modulation of drug delivery by external physical triggers at the site of pathology has the potential to enable tailored control of drug targeting. Magnetic microbubbles that are responsive to magnetic and acoustic modulation and visible to ultrasonography have been proposed as a means to realize this drug targeting strategy. To comply with this strategy in vivo, magnetic microbubbles must circulate systemically and evade deposition in pulmonary capillaries, while also preserving magnetic and acoustic activities in circulation over time. Unfortunately, challenges in fabricating magnetic microbubbles with such characteristics have limited progress in this field. In this report, we develop magnetic microbubbles (MagMB) that display strong magnetic and acoustic activities, while also preserving the ability to circulate systemically and evade pulmonary entrapment. Methods: We systematically evaluated the characteristics of MagMB including their pharmacokinetics, biodistribution, visibility to ultrasonography and amenability to magneto-acoustic modulation in tumor-bearing mice. We further assessed the applicability of MagMB for ultrasonography-guided control of drug targeting. Results: Following intravenous injection, MagMB exhibited a 17- to 90-fold lower pulmonary entrapment compared to previously reported magnetic microbubbles and mimicked circulation persistence of the clinically utilized Definity microbubbles (>10 min). In addition, MagMB could be accumulated in tumor vasculature by magnetic targeting, monitored by ultrasonography and collapsed by focused ultrasound on demand to activate drug deposition at the target. Furthermore, drug delivery to target tumors could be enhanced by adjusting the magneto-acoustic modulation based on ultrasonographic monitoring of MagMB in real-time. Conclusions: Circulating MagMB in conjunction with ultrasonography-guided magneto-acoustic modulation may provide a strategy for tailored minimally-invasive control over drug delivery to target tissues. PMID:29290812
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Soumitra; Nandy, Dibyendu
At present, the Babcock–Leighton flux transport solar dynamo models appear to be the most promising models for explaining diverse observational aspects of the sunspot cycle. The success of these flux transport dynamo models is largely dependent upon a single-cell meridional circulation with a deep equatorward component at the base of the Sun’s convection zone. However, recent observations suggest that the meridional flow may in fact be very shallow (confined to the top 10% of the Sun) and more complex than previously thought. Taken together, these observations raise serious concerns on the validity of the flux transport paradigm. By accounting formore » the turbulent pumping of magnetic flux, as evidenced in magnetohydrodynamic simulations of solar convection, we demonstrate that flux transport dynamo models can generate solar-like magnetic cycles even if the meridional flow is shallow. Solar-like periodic reversals are recovered even when meridional circulation is altogether absent. However, in this case, the solar surface magnetic field dynamics does not extend all the way to the polar regions. Very importantly, our results demonstrate that the Parker–Yoshimura sign rule for dynamo wave propagation can be circumvented in Babcock–Leighton dynamo models by the latitudinal component of turbulent pumping, which can generate equatorward propagating sunspot belts in the absence of a deep, equatorward meridional flow. We also show that variations in turbulent pumping coefficients can modulate the solar cycle amplitude and periodicity. Our results suggest the viability of an alternate magnetic flux transport paradigm—mediated via turbulent pumping—for sustaining solar-stellar dynamo action.« less
Vortex circulation and polarity patterns in closely packed cap arrays
Streubel, Robert; Kronast, Florian; Reiche, Christopher F.; ...
2016-01-25
For this work, we studied curvature-driven modifications to the magnetostatic coupling of vortex circulation and polarity in soft-magnetic closely packed cap arrays. A phase diagram for the magnetic remanent/transition states at room temperature as a function of diameter and thickness was assembled. For specimens with vortex remanent state (40 nm-thick Permalloy on 330 nm spherical nanoparticles), both vortex circulation and polarity were visualized. Intercap coupling upon vortex nucleation leads to the formation of vortex circulation patterns in closely packed arrays. The remanent circulation pattern can be tailored choosing the direction of the applied magnetic field with respect to the symmetrymore » axis of the hexagonal array. An even and random distribution of vortex polarity indicates the absence of any circulation-polarity coupling.« less
Motionally-induced electromagnetic fields generated by idealized ocean currents
NASA Astrophysics Data System (ADS)
Tyler, R. H.; Mysak, L. A.
Using the induction equation, we investigate the generation of electromagnetic fields by the motional electromagnetic induction due to ocean currents. In this paper, solutions are presented for a linear induction equation for the magnetic flux density vector which contains prescribed time-independent ocean current and conductivity fields. Once the magnetic flux density is known, the electric field and electric current density are easily obtained by differentiation. Solutions are given for several examples of idealized flow which include: 1) Vertically and horizontally sheared plane-parallel flow with depth-dependent conductivity; 2) A simple Stommel circulation gyre; and 3) Symmetric gyres. The results indicate that typical ocean current features induce magnetic fields with magnitudes reaching 100's of nT within the water and about 1-10 outside of the water. For the case of a field of gyres, the ocean-induced magnetic fields decay away from the ocean on spatial scales set by the horizontal scale of the ocean feature. At the altitudes of magnetic field satellite surveys, ocean-induced magnetic fields may retain values of a few nT, which are strong enough to be detected. Thus it is concluded that satellite observations of the earth's main magnetic field and, in particular, the observed temporal variations, could be affected by the ocean circulation. Summary and discussion In Section 3, we found exact solutions to the induction equation for idealized flows. The results gave magnitudes of about tens to hundreds of nT for the magnetic fields bH, about 10-5 V/m for the electric fields E, and about 10-5 A/m2 for the electric current density J induced by the ocean currents. These figures are in general agreement with the calculations of Lilley et al. (1993). In Section 4.2 we obtained solutions for the magnetic field above the ocean surface for the case of a Stommel gyre and a field of symmetric gyres. It was found in the last case that ocean gyres with a total transport of 100 Sv would have field magnitudes above the ocean of up to 23 nT and more typically between about 1 and 10 nT. The results also indicate that the decay scales for the magnetic field away from the ocean are of the same order as the horizontal scale of the flow. We calculated that flow features with scales of 100 km or more may retain magnitudes that are strong enough (a few nT) to be detected at satellite altitudes (300-500 km). Flows of smaller scale, however, would probably not be detected by current satellites. We have not explicitly solved for the magnetic fields that would be observed at magnetic observations on land since we have only treated cases of horizontally homogeneous conductivity. However, we conjecture that inland magnetic observations will also be affected by the ocean induction. The spatial decay inland from the ocean would again be set by the horizontal scale of the flow except when the electric currents involved in the induction are close to the coast. In this case there is a coastal effect, with the stronger fields decaying over a shorter scale. We have presented arguments which indicate that for uniform ocean conductivity s over a sediment layer of low conductivity, barotropic currents are efficient generators of electric fields but poor generators of electrical current and magnetic fields, while baroclinic currents are efficient generators of electrical current and magnetic fields, and (in our simple examples) poor generators of electric fields. When, however, s varies in the vertical, it appears that virtually all realistic forms of ocean circulation will be reasonably efficient generators of electrical current and magnetic fields. It is conceivable that the geomagnetic record from land and satellite observatories has captured oceanic signals. Another task before ocean and geomagnetic records can be linked, however, is to isolate the oceanic signal from the records which are known to be swarmed with magnetic signals from many other sources. How can we know that measured magnetic variations are due to variations in the ocean induction and not due to sources in the ionosphere or earth's core? This is a difficult problem, but there may be some ways to resolve it. Variations in ocean circulation or conductivity are rather slow compared to the rapid magnetic storms and most other variations due to external sources. Also the external effects at the earth's surface tend to have large spatial scales which allows removal using techniques such as 'remote referencing' as done by Lilley et al. (1993). With regard to sources in the earth's core, the geometric and electromagnetic filtering by the mantle are thought to prevent all but the lowest frequencies from reaching the earth's surface. Hence, it is conceivable that at the earth's surface, magnetic fields due to the earth's core can only appear as relatively smooth, slowly-varying fields with periods of decadal scale and longer. Hence, there is probably a fortuitous 'spectral window' through which we can view interannual variations in the ocean-induced fields. It is also important that the accuracy in measuring the time rate of change of the magnetic field on these time scales is greater than the accuracy of the field values (at least at the land observatories). This is because when differencing the magnetic series, errors in the baseline drift are reduced. Hence, it is probable that fluctuations in the ocean-induced magnetic fields would be easier to detect than the steady-state fields. The results presented here should also be helpful in designing future strategies for numerically modelling the ocean-induced electromagnetic fields. As we mentioned, (73) is similar in principle to the two-dimensional equation solved by Stephenson and Bryan (1992) but is more general, allowing for a more realistic description of conductivity and allowing for horizontal divergence in the conductivity transport. Other results in this paper may be helpful in finding new approaches to the problem of numerically modelling the oceanic induction. The flux form of the induction equation (18) could be a more convenient form to be used in established numerical algorithms using flux conservation. Also, (11) or (18) could be used with the Stokes or Divergence theorems to create a box-model description of global oceanic induction. When the scalar fluid property Λ described in Section 4.2.3 is taken to be a function of the conductivity, equation (76) is greatly simplified, suggesting that a three-dimensional numerical model using constant conductivity layers [similar in essence to the constant-density layer approach used in the OPYC ocean-circulation model written by Joseph Oberhuber (1993)] may be profitably exploited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streubel, Robert; Kronast, Florian; Reiche, Christopher F.
For this work, we studied curvature-driven modifications to the magnetostatic coupling of vortex circulation and polarity in soft-magnetic closely packed cap arrays. A phase diagram for the magnetic remanent/transition states at room temperature as a function of diameter and thickness was assembled. For specimens with vortex remanent state (40 nm-thick Permalloy on 330 nm spherical nanoparticles), both vortex circulation and polarity were visualized. Intercap coupling upon vortex nucleation leads to the formation of vortex circulation patterns in closely packed arrays. The remanent circulation pattern can be tailored choosing the direction of the applied magnetic field with respect to the symmetrymore » axis of the hexagonal array. An even and random distribution of vortex polarity indicates the absence of any circulation-polarity coupling.« less
Millimeter wave complementary metal-oxide-semiconductor on-chip hexagonal nano-ferrite circulator
NASA Astrophysics Data System (ADS)
Chao, Liu; Oukacha, Hassan; Fu, Enjin; Koomson, Valencia Joyner; Afsar, Mohammed N.
2015-05-01
Hexagonal ferrites such as M-type BaFe12O19 and SrFe12O19 have strong uniaxial anisotropic magnetic field and remanent magnetism. The nano-sized ferrite powder exhibits high compatibility and processability in composite material. New magnetic devices using the M-type ferrite materials can work in the tens of GHz frequency range from microwave to millimeter wave without the application of strong external magnetic field. The micro- and nano-sized hexagonal ferrite can be conveniently utilized to fabricate magnetic components integrated in CMOS integrated circuits as thin as several micrometers. The micro-fabrication method of such nano ferrite device is presented in this paper. A circulator working at 60 GHz is designed and integrated into the commercial CMOS process. The circulator exhibits distinct circulation properties in the frequency range from 56 GHz to 58 GHz.
Vortex shaking study of REBCO tape with consideration of anisotropic characteristics
NASA Astrophysics Data System (ADS)
Liang, Fei; Qu, Timing; Zhang, Zhenyu; Sheng, Jie; Yuan, Weijia; Iwasa, Yukikazu; Zhang, Min
2017-09-01
The second generation high temperature superconductor, specifically REBCO, has become a new research focus in the development of a new generation of high-field (>25 T) magnets. One of the main challenges in the application of the magnets is the current screening problem. Previous research shows that for magnetized superconducting stacks and bulks the application of an AC field in plane with the circulating current will lead to demagnetization due to vortex shaking, which provides a possible solution to remove the shielding current. This paper provides an in-depth study, both experimentally and numerically, to unveil the vortex shaking mechanism of REBCO stacks. A new experiment was carried out to measure the demagnetization rate of REBCO stacks exposed to an in-plane AC magnetic field. Meanwhile, 2D finite element models, based on the E-J power law, are developed for simulating the vortex shaking effect of the AC magnetic field. Qualitative agreement was obtained between the experimental and the simulation results. Our results show that the applied in-plane magnetic field leads to a sudden decay of trapped magnetic field in the first half shaking cycle, which is caused by the magnetic field dependence of critical current. Furthermore, the decline of demagnetization rate with the increase of tape number is mainly due to the cross-magnetic field being screened by the top and bottom stacks during the shaking process, which leads to lower demagnetization rate of inner layers. We also demonstrate that the frequency of the applied AC magnetic field has little impact on the demagnetization process. Our modeling tool and findings perfect the vortex shaking theory and provide helpful guidance for eliminating screening current in the new generation REBCO magnets.
Guided self-assembly of magnetic beads for biomedical applications
NASA Astrophysics Data System (ADS)
Gusenbauer, Markus; Nguyen, Ha; Reichel, Franz; Exl, Lukas; Bance, Simon; Fischbacher, Johann; Özelt, Harald; Kovacs, Alexander; Brandl, Martin; Schrefl, Thomas
2014-02-01
Micromagnetic beads are widely used in biomedical applications for cell separation, drug delivery, and hyperthermia cancer treatment. Here we propose to use self-organized magnetic bead structures which accumulate on fixed magnetic seeding points to isolate circulating tumor cells. The analysis of circulating tumor cells is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. Microfluidic chips for isolating circulating tumor cells use either affinity, size or density capturing methods. We combine multiphysics simulation techniques to understand the microscopic behavior of magnetic beads interacting with soft magnetic accumulation points used in lab-on-chip technologies. Our proposed chip technology offers the possibility to combine affinity and size capturing with special antibody-coated bead arrangements using a magnetic gradient field created by Neodymium Iron Boron permanent magnets. The multiscale simulation environment combines magnetic field computation, fluid dynamics and discrete particle dynamics.
Lightweight Magnetic Cooler With a Reversible Circulator
NASA Technical Reports Server (NTRS)
Chen, Weibo; McCormick, John
2011-01-01
A design of a highly efficient and lightweight space magnetic cooler has been developed that can continuously provide remote/distributed cooling at temperatures in the range of 2 K with a heat sink at about 15 K. The innovative design uses a cryogenic circulator that enables the cooler to operate at a high cycle frequency to achieve a large cooling capacity. The ability to provide remote/distributed cooling not only allows flexible integration with a payload and spacecraft, but also reduces the mass of the magnetic shields needed. The active magnetic regenerative refrigerator (AMRR) system is shown in the figure. This design mainly consists of two identical magnetic regenerators surrounded by their superconducting magnets and a reversible circulator. Each regenerator also has a heat exchanger at its warm end to reject the magnetization heat to the heat sink, and the two regenerators share a cold-end heat exchanger to absorb heat from a cooling target. The circulator controls the flow direction, which cycles in concert with the magnetic fields, to facilitate heat transfer. Helium enters the hot end of the demagnetized column, is cooled by the refrigerant, and passes into the cold-end heat exchanger to absorb heat. The helium then enters the cold end of the magnetized column, absorbing heat from the refrigerant, and enters the hot-end heat exchanger to reject the magnetization heat. The efficient heat transfer in the AMRR allows the system to operate at a relatively short cycle period to achieve a large cooling power. The key mechanical components in the magnetic cooler are the reversible circulator and the magnetic regenerators. The circulator uses non-contacting, self-acting gas bearings and clearance seals to achieve long life and vibration- free operation. There are no valves or mechanical wear in this circulator, so the reliability is predicted to be very high. The magnetic regenerator employs a structured bed configuration. The core consists of a stack of thin GGG disks alternating with thin polymer insulating films. The structured bed reduces flow resistance in the regenerator and therefore the pumping work by the cryogenic circulator. This magnetic cooler will enable cryogenic detectors for sensing infrared, x-ray, gamma-ray, and submillimeter radiation in future science satellites, as well as the detector systems in the Constellation-X (Con-X) and the Single Aperture Far-Infrared observatory (SAFIR). Scientific ap p - lica tions for this innovation include cooling for x-ray micro calorimeter spectrometers used for microanalysis, cryogenic particle detectors, and superconducting tunnel junction de tectors for biomolecule mass spectrometry. The cooler can be scaled to provide very large cooling capacities at very low temperatures, ideal for liquid helium and liquid hydrogen productions.
Structure and Dynamics of Fluid Planets
NASA Astrophysics Data System (ADS)
Houben, H.
2014-12-01
Attention to conservation laws gives a comprehensive picture of the structure and dynamics of gas giants: Atmospheric differential rotation is generated by tidal torques (dependent on tropospheric static stability) and is dragged into the interior by turbulent viscosity. The consequent heat dissipation generates baroclinicity and approximate thermal wind balance, not Taylor-Proudman conditions. Magnetic Lorentz forces have no effect on the zonal wind, but generate a meridional wind approximately parallel to field lines. Thus, magnetic field generation in the interior is dominated by the ω-effect (zonal field wound up by differential rotation), with the α-effect (meridional field generated by turbulence) severely limited by the β-effect (turbulence-enhanced resistivity). The meridional circulation quenches the ω-effect so that a steady state is reached and also limits the magnitude of the non-axisymmetric field under certain circumstances. The stability of the steady state requires further study. The magnetic field travels with the E X B drift, rather than the fluid velocity. Work by the fluid on the magnetic field balances work by the magnetic field on the fluid, so the global heat flux is little changed. In conducting regions the meridional density distribution (and gravity field) is most sensitive to the total pressure (gas + magnetic) and the ω-effect. In nonconducting regions, the gas pressure, centrifugal force, and differential rotation dominate. The differential rotation varies at least as fast as r³, so the gravitational signal is small compared to that for differential rotation on cylinders. The entropy minimum near the tropopause allows meteorology to be dominated by (relatively) long-lived, closed potential temperature surfaces, usually called spots, which conserve potential vorticity. All of the above must be taken into account to properly assimilate any available observational data to further specify the interior properties of fluid planets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Junwei; Bogart, R. S.; Kosovichev, A. G.
2013-09-10
Meridional flow in the solar interior plays an important role in redistributing angular momentum and transporting magnetic flux inside the Sun. Although it has long been recognized that the meridional flow is predominantly poleward at the Sun's surface and in its shallow interior, the location of the equatorward return flow and the meridional flow profile in the deeper interior remain unclear. Using the first 2 yr of continuous helioseismology observations from the Solar Dynamics Observatory/Helioseismic Magnetic Imager, we analyze travel times of acoustic waves that propagate through different depths of the solar interior carrying information about the solar interior dynamics.more » After removing a systematic center-to-limb effect in the helioseismic measurements and performing inversions for flow speed, we find that the poleward meridional flow of a speed of 15 m s{sup -1} extends in depth from the photosphere to about 0.91 R{sub Sun }. An equatorward flow of a speed of 10 m s{sup -1} is found between 0.82 and 0.91 R{sub Sun} in the middle of the convection zone. Our analysis also shows evidence of that the meridional flow turns poleward again below 0.82 R{sub Sun }, indicating an existence of a second meridional circulation cell below the shallower one. This double-cell meridional circulation profile with an equatorward flow shallower than previously thought suggests a rethinking of how magnetic field is generated and redistributed inside the Sun.« less
Plasma circulation in Jupiter's magnetosphere
NASA Astrophysics Data System (ADS)
Chané, E.
2017-12-01
We are using our three-dimensional global MHD model of Jupiter's magnetosphere to study the plasma circulation in the magnetodisk. We show that the Iogenic plasma does not travel outward axisymmetrically but rather forms a long spiral arm of high density corotating with the planet. This leads to periodic phenomena in the magnetodisk: for instance, every rotation period, a region of high density is rapidly moving outward on the pre-noon sector. This leads to shearing motions that generate field aligned currents and periodically affect the main oval in this sector.We will also show how the interplanetary magnetic field influences the position of the magnetodisk in our simulations, displacing the current sheet above and below the equatorial plan. We will discuss how this is affecting the depleted flux-tubes returning from the night-side after unloading most of their plasma in the magnetotail (Vasyliunas cycle) and see how they can then move above or below the magnetodisk when arriving at dawn and then reconnect with the interplanetary magnetic field on the day-side.
A new solar cycle model including meridional circulation
NASA Technical Reports Server (NTRS)
Wang, Y.-M.; Sheeley, N. R., Jr.; Nash, A. G.
1991-01-01
A kinematic model is presented for the solar cycle which includes not only the transport of magnetic flux by supergranular diffusion and a poleward bulk flow at the sun's surface, but also the effects of turbulent diffusion and an equatorward 'return flow' beneath the surface. As in the earlier models of Babcock and Leighton, the rotational shearing of a subsurface poloidal field generates toroidal flux that erupts at the surface in the form of bipolar magnetic regions. However, such eruptions do not result in any net loss of toroidal flux from the sun (as assumed by Babcock and Leighton); instead, the large-scale toroidal field is destroyed both by 'unwinding' as the local poloidal field reverses its polarity, and by diffusion as the toroidal flux is transported equatorward by the subsurface flow and merged with its opposite hemisphere counterpart. The inclusion of meridional circulation allows stable oscillations of the magnetic field, accompanied by the equatorward progression of flux eruptions, to be achieved even in the absence of a radial gradient in the angular velocity. An illustrative case in which a subsurface flow speed of order 1 m/s and subsurface diffusion rate of order 10 sq km/s yield 22-yr oscillations in qualitative agreement with observations.
On the Use of Satellite Altimetry to Detect Ocean Circulation's Magnetic Signals
NASA Astrophysics Data System (ADS)
Saynisch, J.; Irrgang, C.; Thomas, M.
2018-03-01
Oceanic magnetic signals are sensitive to ocean velocity, salinity, and heat content. The detection of respective signals with global satellite magnetometers would pose a very valuable source of information. While tidal magnetic fields are already detected, electromagnetic signals of the ocean circulation still remain unobserved from space. We propose to use satellite altimetry to construct proxy magnetic signals of the ocean circulation. These proxy time series could subsequently be fitted to satellite magnetometer data. The fitted data could be removed from the observations or the fitting constants could be analyzed for physical properties of the ocean, e.g., the heat budget. To test and evaluate this approach, synthetic true and proxy magnetic signals are derived from a global circulation model of the ocean. Both data sets are compared in dependence of location and time scale. We study and report when and where the proxy data describe the true signal sufficiently well. Correlations above 0.6 and explained variances of above 80% can be reported for large parts of the Antarctic ocean, thus explaining the major part of the global, subseasonal magnetic signal.
Hybrid Continuous-Flow Total Artificial Heart.
Fox, Carson; Chopski, Steven; Murad, Nohra; Allaire, Paul; Mentzer, Robert; Rossano, Joseph; Arabia, Francisco; Throckmorton, Amy
2018-05-01
Clinical studies using total artificial hearts (TAHs) have demonstrated that pediatric and adult patients derive quality-of-life benefits from this form of therapy. Two clinically-approved TAHs and other pumps under development, however, have design challenges and limitations, including thromboembolic events, neurologic impairment, infection risk due to large size and percutaneous drivelines, and lack of ambulation, to name a few. To address these limitations, we are developing a hybrid-design, continuous-flow, implantable or extracorporeal, magnetically-levitated TAH for pediatric and adult patients with heart failure. This TAH has only two moving parts: an axial impeller for the pulmonary circulation and a centrifugal impeller for the systemic circulation. This device will utilize the latest generation of magnetic bearing technology. Initial geometries were established using pump design equations, and computational modeling provided insight into pump performance. The designs were the basis for prototype manufacturing and hydraulic testing. The study results demonstrate that the TAH is capable of delivering target blood flow rates of 1-6.5 L/min with pressure rises of 1-92 mm Hg for the pulmonary circulation and 24-150 mm Hg for the systemic circulation at 1500-10 000 rpm. This initial design of the TAH was successful and serves as the foundation to continue its development as a novel, more compact, nonthrombogenic, and effective therapeutic alternative for infants, children, adolescents, and adults with heart failure. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sohn, Hyunmin; Liang, Cheng-yen; Nowakowski, Mark E.; Hwang, Yongha; Han, Seungoh; Bokor, Jeffrey; Carman, Gregory P.; Candler, Robert N.
2017-10-01
We demonstrate deterministic multi-step rotation of a magnetic single-domain (SD) state in Nickel nanodisks using the multiferroic magnetoelastic effect. Ferromagnetic Nickel nanodisks are fabricated on a piezoelectric Lead Zirconate Titanate (PZT) substrate, surrounded by patterned electrodes. With the application of a voltage between opposing electrode pairs, we generate anisotropic in-plane strains that reshape the magnetic energy landscape of the Nickel disks, reorienting magnetization toward a new easy axis. By applying a series of voltages sequentially to adjacent electrode pairs, circulating in-plane anisotropic strains are applied to the Nickel disks, deterministically rotating a SD state in the Nickel disks by increments of 45°. The rotation of the SD state is numerically predicted by a fully-coupled micromagnetic/elastodynamic finite element analysis (FEA) model, and the predictions are experimentally verified with magnetic force microscopy (MFM). This experimental result will provide a new pathway to develop energy efficient magnetic manipulation techniques at the nanoscale.
Performance of an on-chip superconducting circulator for quantum microwave systems
NASA Astrophysics Data System (ADS)
Chapman, Benjamin; Rosenthal, Eric; Moores, Bradley; Kerckhoff, Joseph; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; LalumíEre, Kevin; Blais, Alexandre; Lehnert, K. W.
Microwave circulators enforce a single propagation direction for signals in an electrical network. Unfortunately, commercial circulators are bulky, lossy, and cannot be integrated close to superconducting circuits because they require strong ( kOe) magnetic fields produced by permanent magnets. Here we report on the performance of an on-chip, active circulator for superconducting microwave circuits, which uses no permanent magnets. Non-reciprocity is achieved by actively modulating reactive elements around 100 MHz, giving roughly a factor of 50 in the separation between signal and control frequencies, which facilitates filtering. The circulator's active components are dynamically tunable inductors constructed with arrays of dc-SQUIDs in series. Array inductance is tuned by varying the magnetic flux through the SQUIDs with fields weaker than 1 Oe. Although the instantaneous bandwidth of the device is narrow, the operation frequency is tunable between 4 and 8 GHz. This presentation will describe the device's theory of operation and compare its measured performance to design goals. This work is supported by the ARO under contract W911NF-14-1-0079 and the National Science Foundation under Grant Number 1125844.
NASA Technical Reports Server (NTRS)
Kennedy, G. C.; Higgins, G. H.
1973-01-01
Rebuttal of suggestions from various critics attempting to provide an escape from the seeming paradox originated by Higgins and Kennedy's (1971) proposed possibility that the liquid in the outer core was thermally stably stratified and that this stratification might prove a powerful inhibitor to circulation of the outer core fluid of the kind postulated for the generation of the earth's magnetic field. These suggestions are examined and shown to provide no reasonable escape from the core paradox.
Hu, Zhaoyan; Lu, Lijun; Zhang, Tianyi; Chen, Zhenglong; Zhang, Tao
2013-12-01
This paper mainly studies the driving system of centrifugal blood pump for extracorporeal circulation, with the core being disc magnetic coupling. Structure parameters of disc magnetic coupling are related to the ability of transferring magnetic torque. Therefore, it is necessary to carry out disc magnetic coupling permanent magnet pole number (n), air gap length (L(g)), permanent magnet thickness (L(m)), permanent magnet body inside diameter (R(i)) and outside diameter (R(o)), etc. thoroughly. This paper adopts the three-dimensional static magnetic field edge element method of Ansys for numerical calculation, and analyses the relations of magnetic coupling each parameter to transmission magnetic torque. It provides a good theory basis and calculation method for further optimization of the disc magnetic coupling.
Circulation Plasma Centrifuge with Product Flow
NASA Astrophysics Data System (ADS)
Borisevich, V. D.; Potanin, E. P.
2018-05-01
We have analyzed the isotope separation in a high-frequency plasma circulating centrifuge operating with a product flow. The rotation of a weakly ionized plasma is ensured by a rotating magnetic field, while the countercurrent flow (circulation) is produced by a traveling magnetic field. We have calculated the dependences of the enrichment factor and the separative power of the centrifuge on a product flow. The optimal characteristics of the separation unit have been determined.
NASA Astrophysics Data System (ADS)
Oukacha, Hassan
The rapid advancement of Complementary Metal Oxide Semiconductor (CMOS) technology has formed the backbone of the modern computing revolution enabling the development of computationally intensive electronic devices that are smaller, faster, less expensive, and consume less power. This well-established technology has transformed the mobile computing and communications industries by providing high levels of system integration on a single substrate, high reliability and low manufacturing cost. The driving force behind this computing revolution is the scaling of semiconductor devices to smaller geometries which has resulted in faster switching speeds and the promise of replacing traditional, bulky radio frequency (RF) components with miniaturized devices. Such devices play an important role in our society enabling ubiquitous computing and on-demand data access. This thesis presents the design and development of a magnetic circulator component in a standard 180 nm CMOS process. The design approach involves integration of nanoscale ferrite materials on a CMOS chip to avoid using bulky magnetic materials employed in conventional circulators. This device constitutes the next generation broadband millimeter-wave circulator integrated in CMOS using ferrite materials operating in the 60GHz frequency band. The unlicensed ultra-high frequency spectrum around 60GHz offers many benefits: very high immunity to interference, high security, and frequency re-use. Results of both simulations and measurements are presented in this thesis. The presented results show the benefits of this technique and the potential that it has in incorporating a complete system-on-chip (SoC) that includes low noise amplifier, power amplier, and antenna. This system-on-chip can be used in the same applications where the conventional circulator has been employed, including communication systems, radar systems, navigation and air traffic control, and military equipment. This set of applications of circulator shows how crucial this device is to many industries and the need for smaller, cost effective RF components.
Fabrication of thin bulk ceramics for microwave circulator applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ings, J.B.; Simmins, J.J.; May, J.L.
1995-09-01
Planer MMIC circulator applications require the production of thin, flat garnet, spinel, and hexagonal ferrite circulator elements. Fabrication of cira 250 {mu}m circulator elements was done by tape casting and roll compaction. For the garnet, tape cast gave equivalent results to roll compaction. For the spinel and hexaferrite materials, which undergo magnetic flocculation, roll compaction was found to be the preferred fabrication method. Roll compacted lithium ferrite resulted in higher densities and lower {triangle}H and tan{delta} than did the tape case material. Roll compacted barium hexaferrite resulted in higher densities and remanent magnetization than did the tape cast material.
Practical methods for generating alternating magnetic fields for biomedical research
NASA Astrophysics Data System (ADS)
Christiansen, Michael G.; Howe, Christina M.; Bono, David C.; Perreault, David J.; Anikeeva, Polina
2017-08-01
Alternating magnetic fields (AMFs) cause magnetic nanoparticles (MNPs) to dissipate heat while leaving surrounding tissue unharmed, a mechanism that serves as the basis for a variety of emerging biomedical technologies. Unfortunately, the challenges and costs of developing experimental setups commonly used to produce AMFs with suitable field amplitudes and frequencies present a barrier to researchers. This paper first presents a simple, cost-effective, and robust alternative for small AMF working volumes that uses soft ferromagnetic cores to focus the flux into a gap. As the experimental length scale increases to accommodate animal models (working volumes of 100s of cm3 or greater), poor thermal conductivity and volumetrically scaled core losses render that strategy ineffective. Comparatively feasible strategies for these larger volumes instead use low loss resonant tank circuits to generate circulating currents of 1 kA or greater in order to produce the comparable field amplitudes. These principles can be extended to the problem of identifying practical routes for scaling AMF setups to humans, an infrequently acknowledged challenge that influences the extent to which many applications of MNPs may ever become clinically relevant.
New generation of magnetic and luminescent nanoparticles for in vivo real-time imaging
Lacroix, Lise-Marie; Delpech, Fabien; Nayral, Céline; Lachaize, Sébastien; Chaudret, Bruno
2013-01-01
A new generation of optimized contrast agents is emerging, based on metallic nanoparticles (NPs) and semiconductor nanocrystals for, respectively, magnetic resonance imaging (MRI) and near-infrared (NIR) fluorescent imaging techniques. Compared with established contrast agents, such as iron oxide NPs or organic dyes, these NPs benefit from several advantages: their magnetic and optical properties can be tuned through size, shape and composition engineering, their efficiency can exceed by several orders of magnitude that of contrast agents clinically used, their surface can be modified to incorporate specific targeting agents and antifolding polymers to increase blood circulation time and tumour recognition, and they can possibly be integrated in complex architecture to yield multi-modal imaging agents. In this review, we will report the materials of choice based on the understanding of the basic physics of NIR and MRI techniques and their corresponding syntheses as NPs. Surface engineering, water transfer and specific targeting will be highlighted prior to their first use for in vivo real-time imaging. Highly efficient NPs that are safer and target specific are likely to enter clinical application in a near future. PMID:24427542
Exploring a deep meridional flow hypothesis for a circulation dominated solar dynamo model
NASA Astrophysics Data System (ADS)
Guerrero, G. A.; Muñoz, J. D.; de Gouveia dal Pino, E. M.
2005-09-01
Circulation-dominated solar dynamo models, which employ a helioseismic rotation profile and a fixed meridional flow, give a good approximation to the large scale solar magnetic phenomena, such as the 11-year cycle or the so called Hale's law of polarities. Nevertheless, the larger amplitude of the radial shear ∂Ω/∂r at the high latitudes makes the dynamo to produce a strong toroidal magnetic field at high latitudes, in contradiction with the observations of the sunspots (Sporer's Law). A possible solution was proposed by Nandy and Choudhuri in which a deep meridional flow can conduct the magnetic field inside of a stable layer (the radiative core) and then allow that it erupts just at lower latitudes. Although they obtain good results, this hypothesis generates new problems like the mixture of elements in the radiative core (that alters the abundance of the elements) and the transfer of angular momentum. We have recently explored this hypothesis in a different approximation, using the magnetic buoyancy mechanism proposed by Dikpati and Charbonneau (1999) and found that a deep meridional flow pushes the maximum of the toroidal magnetic field towards the solar equator, but, in contrast to Nandy and Choudhuri (2002 ), a second zone of maximum fields remains at the poles. In that work, we have also introduced a bipolytropic density profile in order to better reproduce the stratification in the radiative zone. We here review these results and also discuss a new possible scenario where the tachocline has an ellipsoidal shape, following early helioseismologic observations, and find that the modification of the geometry of the tachocline can lead to results which are in good agreement with observations and opens the possibility to explore in more detail, through the dynamo model, the place where the magnetic field could be really stored.
Liu, A.; Bross, A.; Neuffer, D.
2015-05-28
This paper describes the strategy for optimizing the magnetic horn for the neutrinos from STORed Muons (nuSTORM) facility. The nuSTORM magnetic horn is the primary collection device for the secondary particles generated by bombarding a solid target with 120 GeV protons. As a consequence of the non-conventional beamline designed for nuSTORM, the requirements on the horn are different from those for a conventional neutrino beamline. At nuSTORM, muons decay while circulating in the storage ring, and the detectors are placed downstream of the production straight so as to be exposed to the neutrinos from muon decay. nuSTORM aims at preciselymore » measuring the neutrino cross sections, and providing a definitive statement about the existence of sterile neutrinos. The nuSTORM horn aims at focusing the pions into a certain phase space so that more muons from pion decay can be accepted by the decay ring. The paper demonstrates a numerical method that was developed to optimize the horn design to gain higher neutrino flux from the circulating muons. A Genetic Algorithm (GA) was applied to the simultaneous optimization of the two objectives in this study. In conclusion, the application of the technique discussed in this paper is not limited to either the nuSTORM facility or muon based facilities, but can be used for other neutrino facilities that use magnetic horns as collection devices.« less
NASA Astrophysics Data System (ADS)
Essalhi, Mourad; Sizaret, Stanislas; Barbanson, Luc; Chen, Yan; Branquet, Yannick; Panis, Dominique; Camps, Pierre; Rochette, Pierre; Canals, Angels
2009-01-01
The present study aims to apply the AMS method (Anisotropy of Magnetic Susceptibility) at a regional scale to track the fluid circulation direction that has produced an iron metasomatism within pre-existing dolomite host rock. The Urgonian formations hosting the Zn-Pb mineralizations in La Florida (Cantabria, northern Spain) have been taken as target for this purpose. Sampling was carried out, in addition to ferroan dolomite host rock enclosing the Zn-Pb mineralizations, in dolomite host rock and limestone to make the comparison possible between magnetic signals from mineralized rocks, where fluid circulation occurred, and their surrounding formations. AMS study was coupled with petrofabric analysis carried out by texture goniometry, Scanning Electron Microscopy (SEM) observations and also Shape Preferred Orientation (SPO) statistics. SEM observations of ferroan dolomite host rock illustrate both bright and dark grey ribbons corresponding respectively to Fe enriched and pure dolomites. SPO statistics applied on four images from ferroan dolomite host rock give a well-defined orientation of ribbons related to the intermediate axis of magnetic susceptibility K2. For AMS data, two magnetic fabrics are observed. The first one is observed in ferroan dolomite host rock and characterized by a prolate ellipsoid of magnetic susceptibility with a vertical magnetic lineation. The magnetic susceptibility carrier is Fe-rich dolomite. These features are probably acquired during metasomatic fluid circulations. In Fe-rich dolomite host rock, ‹ c› axes are vertical. As a rule, (0001) planes (i.e. planes perpendicular to ‹ c› axes) are isotropic with respect to crystallographic properties. So, the magnetic anisotropy measured in this plane should reflect crystallographic modification due to fluid circulation. This is confirmed by the texture observed using the SEM. Consequently, AMS results show a dominant NE-SW elongation interpreted as the global circulation direction and a NW-SE secondary elongation that we have considered as sinuosities of the fluid trajectory. The second type of magnetic fabric is essentially observed in the limestone and characterized by an oblate form of the ellipsoid of magnetic susceptibility, a horizontal magnetic foliation and mixed magnetic susceptibility carriers. It is interpreted as a sedimentary fabric.
Experimental Observation of Fermi-Pasta-Ulam Recurrence in a Nonlinear Feedback Ring System
NASA Astrophysics Data System (ADS)
Wu, Mingzhong; Patton, Carl E.
2007-01-01
Fermi-Pasta-Ulam recurrence through soliton dynamics has been realized. The experiment used a magnetic film strip-based active feedback ring. At some ring gain level, a wide spin wave pulse is self-generated in the ring. As the pulse circulates, it separates into two envelop solitons with different speeds. When the fast soliton catches up and collides with the slow soliton, the initial wide pulse is perfectly reconstructed. The repetition of this process leads to periodic recurrences of the initial pulse.
Numerical simulation of magnetic nano drug targeting in a patient-specific coeliac trunk
NASA Astrophysics Data System (ADS)
Boghi, Andrea; Russo, Flavia; Gori, Fabio
2017-09-01
Magnetic nano drug targeting, through the use of an external magnetic field, is a new technique for the treatment of several diseases, which can potentially avoid the dispersion of drugs in undesired locations of the body. Nevertheless, due to the limitations on the intensity of the magnetic field applied, the hydrodynamic forces can reduce the effectiveness of the procedure. This technique is studied in this paper with the Computational Fluid Dynamics (CFD), focusing on the influence of the magnetic probe position, and the direction of the circulating electric current. A single rectangular coil is used to generate the external magnetic field. A patient-specific geometry of the coeliac trunk is reconstructed from DICOM images, with the use of VMTK. A new solver, coupling the Lagrangian dynamics of the nanoparticles with the Eulerian dynamics of the blood, is implemented in OpenFOAM to perform the simulations. The resistive pressure, the Womersley's profile for the inlet velocity and the magnetic field of a rectangular coil are implemented in the software as boundary conditions. The results show the influence of the position of the probe, as well as the limitations associated with the rectangular coil configuration.
Vortex circulation patterns in planar microdisk arrays
Velten, Sven; Streubel, Robert; Farhan, Alan; ...
2017-06-26
We report a magnetic X-ray microscopy study of the pattern formation of circulation in arrays of magnetic vortices ordered in a hexagonal and a honeycomb lattice. In the honeycomb lattice, we observe at remanence an ordered phase of alternating circulations, whereas in the hexagonal lattice, small regions of alternating lines form. A variation in the edge-to-edge distance shows that the size of those regions scales with the magnetostatic interaction. Micromagnetic simulations reveal that the patterns result from the formation of flux closure states during the nucleation process.
A study of natural circulation in the evaporator of a horizontal-tube heat recovery steam generator
NASA Astrophysics Data System (ADS)
Roslyakov, P. V.; Pleshanov, K. A.; Sterkhov, K. V.
2014-07-01
Results obtained from investigations of stable natural circulation in an intricate circulation circuit with a horizontal layout of the tubes of evaporating surface having a negative useful head are presented. The possibility of making a shift from using multiple forced circulation organized by means of a circulation pump to natural circulation in vertical heat recovery steam generator is estimated. Criteria for characterizing the performance reliability and efficiency of a horizontal evaporator with negative useful head are proposed. The influence of various design solutions on circulation robustness is considered. With due regard of the optimal parameters, the most efficient and least costly methods are proposed for achieving more stable circulation in a vertical heat recovery steam generator when a shift is made from multiple forced to natural circulation. A procedure for calculating the circulation parameters and an algorithm for checking evaporator performance reliability are developed, and recommendations for the design of heat recovery steam generator, nonheated parts of natural circulation circuit, and evaporating surface are suggested.
NASA Astrophysics Data System (ADS)
Wei, Chen-Wei; Xia, Jinjun; Pelivanov, Ivan; Hu, Xiaoge; Gao, Xiaohu; O'Donnell, Matthew
2012-10-01
Results on magnetically trapping and manipulating micro-scale beads circulating in a flow field mimicking metastatic cancer cells in human peripheral vessels are presented. Composite contrast agents combining magneto-sensitive nanospheres and highly optical absorptive gold nanorods were conjugated to micro-scale polystyrene beads. To efficiently trap the targeted objects in a fast stream, a dual magnet system consisting of two flat magnets to magnetize (polarize) the contrast agent and an array of cone magnets producing a sharp gradient field to trap the magnetized contrast agent was designed and constructed. A water-ink solution with an optical absorption coefficient of 10 cm-1 was used to mimic the optical absorption of blood. Magnetomotive photoacoustic imaging helped visualize bead trapping, dynamic manipulation of trapped beads in a flow field, and the subtraction of stationary background signals insensitive to the magnetic field. The results show that trafficking micro-scale objects can be effectively trapped in a stream with a flow rate up to 12 ml/min and the background can be significantly (greater than 15 dB) suppressed. It makes the proposed method very promising for sensitive detection of rare circulating tumor cells within high flow vessels with a highly absorptive optical background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
Recent helioseismology findings, as well as advances in direct numerical simulations of global dynamics of the Sun, have indicated that in each solar hemisphere meridional circulation may form more than one cell along the radius in the convection zone. In particular, recent helioseismology results revealed a double-cell structure of the meridional circulation. We investigate properties of a mean-field solar dynamo with such double-cell meridional circulation. The dynamo model also includes the realistic profile of solar differential rotation (including the tachocline and subsurface shear layer) and takes into account effects of turbulent pumping, anisotropic turbulent diffusivity, and conservation of magnetic helicity.more » Contrary to previous flux-transport dynamo models, we find that the dynamo model can robustly reproduce the basic properties of the solar magnetic cycles for a wide range of model parameters and circulation speeds. The best agreement with observations is achieved when the surface meridional circulation speed is about 12 m s{sup –1}. For this circulation speed, the simulated sunspot activity shows good synchronization with the polar magnetic fields. Such synchronization was indeed observed during previous sunspot Cycles 21 and 22. We compare theoretical and observed phase diagrams of the sunspot number and the polar field strength and discuss the peculiar properties of Cycle 23.« less
[Research on the feasibility of a magnetic-coupling-driven axial flow blood pump].
Yu, Xiaoqing; Ding, Wenxiang; Wang, Wei; Chen, En; Jiang, Zuming; Zou, Wenyan
2004-02-01
A new-designed axial flow blood pump, dived by magnetic coupling and using internal hollow brushless DC motor and inlet and outlet in line with impeller, was tested in mimic circuit. The results showed good performance of the new pump and indicated that its hydrodynamic characteristic can meet the demands of clinical extracorporeal circulation and auxiliary circulation.
Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity.
Dinc, Tolga; Tymchenko, Mykhailo; Nagulu, Aravind; Sounas, Dimitrios; Alu, Andrea; Krishnaswamy, Harish
2017-10-06
Recent research has explored the spatiotemporal modulation of permittivity to break Lorentz reciprocity in a manner compatible with integrated-circuit fabrication. However, permittivity modulation is inherently weak and accompanied by loss due to carrier injection, particularly at higher frequencies, resulting in large insertion loss, size, and/or narrow operation bandwidths. Here, we show that the presence of absorption in an integrated electronic circuit may be counter-intuitively used to our advantage to realize a new generation of magnet-free non-reciprocal components. We exploit the fact that conductivity in semiconductors provides a modulation index several orders of magnitude larger than permittivity. While directly associated with loss in static systems, we show that properly synchronized conductivity modulation enables loss-free, compact and extremely broadband non-reciprocity. We apply these concepts to obtain a wide range of responses, from isolation to gyration and circulation, and verify our findings by realizing a millimeter-wave (25 GHz) circulator fully integrated in complementary metal-oxide-semiconductor technology.Optical non-reciprocity achieved through refractive index modulation can have its challenges and limitations. Here, Dinc et al. introduce the concept of non-reciprocity based on synchronized spatio-temporal modulation of conductivity to achieve different types of non-reciprocal functionality.
On-chip microwave circulators using quantum Hall plasmonics
NASA Astrophysics Data System (ADS)
Mahoney, Alice; Colless, James; Pauka, Sebastian; Hornibrook, John; Doherty, Andrew; Reilly, David; Peeters, Lucas; Fox, Eli; Goldhaber-Gordon, David; Kou, Xuefeng; Pan, Lei; Wang, Kang; Watson, John; Gardner, Geoffrey; Manfra, Michael
Circulators are directional circuit elements integral to technologies including radar systems, microwave communication transceivers and the readout of quantum information devices. Their non-reciprocity commonly arises from the interference of microwaves over the centimetre-scale of the signal wavelength in the presence of bulky magnetic media that breaks time-reversal symmetry. We present a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, `slow-light' response of a GaAs/AlGaAs 2-dimensional electron gas in the quantum Hall regime. Further, by implementing this circulator design on a thin film of a magnetic topological insulator (Cr0.12(Bi0.26Sb0.62)2Te3), we show that similar non-reciprocity can be achieved at zero magnetic field. This additional mode of operation serves as a non-invasive probe of edge states in the quantum anomalous Hall effect, while also extending the possibility for integration with superconducting devices.
Self-organizing magnetic beads for biomedical applications
NASA Astrophysics Data System (ADS)
Gusenbauer, Markus; Kovacs, Alexander; Reichel, Franz; Exl, Lukas; Bance, Simon; Özelt, Harald; Schrefl, Thomas
2012-03-01
In the field of biomedicine magnetic beads are used for drug delivery and to treat hyperthermia. Here we propose to use self-organized bead structures to isolate circulating tumor cells using lab-on-chip technologies. Typically blood flows past microposts functionalized with antibodies for circulating tumor cells. Creating these microposts with interacting magnetic beads makes it possible to tune the geometry in size, position and shape. We developed a simulation tool that combines micromagnetics and discrete particle dynamics, in order to design micropost arrays made of interacting beads. The simulation takes into account the viscous drag of the blood flow, magnetostatic interactions between the magnetic beads and gradient forces from external aligned magnets. We developed a particle-particle particle-mesh method for effective computation of the magnetic force and torque acting on the particles.
A table top experiment to study plasma confined by a dipole magnet
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sudeep; Baitha, Anuj Ram
2016-10-01
There has been a long quest to understand charged particle generation, confinement and underlying complex processes in a plasma confined by a dipole magnet. Our earth's magnetosphere is an example of such a naturally occurring system. A few laboratory experiments have been designed for such investigations, such as the Levitated Dipole Experiment (LDX) at MIT, the Terella experiment at Columbia university, and the Ring Trap-1 (RT-1) experiment at the University of Tokyo. However, these are large scale experiments, where the dipole magnetic field is created with superconducting coils, thereby, necessitating power supplies and stringent cryogenic requirements. We report a table top experiment to investigate important physical processes in a dipole plasma. A strong cylindrical permanent magnet, is employed to create the dipole field inside a vacuum chamber. The magnet is suspended and cooled by circulating chilled water. The plasma is heated by electromagnetic waves of 2.45 GHz and a second frequency in the range 6 - 11 GHz. Some of the initial results of measurements and numerical simulation of magnetic field, visual observations of the first plasma, and spatial measurements of plasma parameters will be presented.
Broadband terahertz generation of metamaterials
Luo, Liang; Wang, Jigang; Koschny, Thomas; Wegener, Martin; Soukoulis, Costas M.
2017-06-20
Provided are systems and methods to generate single-cycle THz pulses from a few tens of nanometers thin layer of split ring resonators (SRRs) via optical rectification of femtosecond laser pulses. The emitted THz radiation, with a spectrum ranging from about 0.1 to 4 THz, arises exclusively from pumping the magnetic-dipole resonance of SRRs around 200 THz. This resonant enhancement, together with pump polarization dependence and power scaling of the THz emission, underpins the nonlinearity from optically induced circulating currents in SRRs, with a huge effective nonlinear susceptibility of 0.8.times.10.sup.-16 m.sup.2/V that far exceeds surface nonlinearities of both thin films and bulk organic/inorganic crystals and sheet nonlinearities of non-centrosymmetric materials such as ZnTe.
Surface functionalized magnetic nanoparticles for cancer therapy applications
NASA Astrophysics Data System (ADS)
Wydra, Robert John
Despite recent advances, cancer remains the second leading cause of deaths in the United States. Magnetic nanoparticles have found various applications in cancer research as drug delivery platforms, enhanced contrast agents for improved diagnostic imaging, and the delivery of thermal energy as standalone therapy. Iron oxide nanoparticles absorb the energy from an alternating magnetic field and convert it into heat through Brownian and Neel relaxations. To better utilize magnetic nanoparticles for cancer therapy, surface functionalization is essential for such factors as decreasing cytotoxicity of healthy tissue, extending circulation time, specific targeting of cancer cells, and manage the controlled delivery of therapeutics. In the first study, iron oxide nanoparticles were coated with a poly(ethylene glycol) (PEG) based polymer shell. The PEG coating was selected to prevent protein adsorption and thus improve circulation time and minimize host response to the nanoparticles. Thermal therapy application feasibility was demonstrated in vitro with a thermoablation study on lung carcinoma cells. Building on the thermal therapy demonstration with iron oxide nanoparticles, the second area of work focused on intracellular delivery. Nanoparticles can be appropriately tailored to enter the cell and deliver energy on the nanoscale eliminating individual cancer cells. The underlying mechanism of action is still under study, and we were interested in determining the role of reactive oxygen species (ROS) catalytically generated from the surface of iron oxide nanoparticles in this measured cytotoxicity. When exposed to an AMF, the nanoscale heating effects are capable of enhancing the Fenton-like generation of ROS determined through a methylene blue degradation assay. To deliver this enhanced ROS effect to cells, monosaccharide coated nanoparticles were developed and successfully internalized by colon cancer cell lines. Upon AMF exposure, there was a measured increase in cellular ROS and apoptosis that was attributed to lysosomal disruption since the surface functionalization selected inhibited the Fenton-like surface chemistry. To overcome this surface inhibition, a biodegradable poly(beta-amino ester) (PBAE) polymer coating was synthesized to deliver bare iron oxide to intracellular components. Delivering enhanced ROS to cancer cells is a promising new route of therapy that deserves future studies.
Subramanian, V. S.; Epel, Boris; Mailer, Colin; Halpern, Howard J.
2009-01-01
In order to protect the low noise amplifier (LNA) in the receive arm of a pulsed 250 MHz EPR bridge, it is necessary to install as much isolation as possible between the power exciting the spin system and the LNA when high power is present in the receive arm of the bridge, while allowing the voltage induced by the magnetization in the spin sample to be passed undistorted and undiminished to the LNA once power is reduced below the level that can cause a LNA damage. We discuss a combination of techniques to accomplish this involving the power-routing circulator in the bridge, a second circulator acting as an isolator with passive shunt PIN diodes immediately following the second circulator. The low resistance of the forward biased PIN diode passively generates an impedance mismatch at the second circulator output port during the high power excitation pulse and resonator ring down. The mismatch reflects the high power to the remaining port of the second circulator, dumping it into a system impedance matched load. Only when the power diminishes below the diode conduction threshold will the resistance of the PIN diode rise to a value much higher than the system impedance. This brings the device into conduction mode. We find that the present design passively limits the output power to 14 dBm independent of the input power. For high input power levels the isolation may exceed 60 dB. This level of isolation is sufficient to fully protect the LNA of pulse EPR bridge. PMID:20052312
Rotationally driven magnetic reconnection in Saturn's dayside
NASA Astrophysics Data System (ADS)
Guo, R. L.; Yao, Z. H.; Wei, Y.; Ray, L. C.; Rae, I. J.; Arridge, C. S.; Coates, A. J.; Delamere, P. A.; Sergis, N.; Kollmann, P.; Grodent, D.; Dunn, W. R.; Waite, J. H.; Burch, J. L.; Pu, Z. Y.; Palmaerts, B.; Dougherty, M. K.
2018-06-01
Magnetic reconnection is a key process that explosively accelerates charged particles, generating phenomena such as nebular flares1, solar flares2 and stunning aurorae3. In planetary magnetospheres, magnetic reconnection has often been identified on the dayside magnetopause and in the nightside magnetodisc, where thin-current-sheet conditions are conducive to reconnection4. The dayside magnetodisc is usually considered thicker than the nightside due to the compression of solar wind, and is therefore not an ideal environment for reconnection. In contrast, a recent statistical study of magnetic flux circulation strongly suggests that magnetic reconnection must occur throughout Saturn's dayside magnetosphere5. Additionally, the source of energetic plasma can be present in the noon sector of giant planetary magnetospheres6. However, so far, dayside magnetic reconnection has only been identified at the magnetopause. Here, we report direct evidence of near-noon reconnection within Saturn's magnetodisc using measurements from the Cassini spacecraft. The measured energetic electrons and ions (ranging from tens to hundreds of keV) and the estimated energy flux of 2.6 mW m-2 within the reconnection region are sufficient to power aurorae. We suggest that dayside magnetodisc reconnection can explain bursty phenomena in the dayside magnetospheres of giant planets, which can potentially advance our understanding of quasi-periodic injections of relativistic electrons6 and auroral pulsations7.
Earhart, Christopher M.; Hughes, Casey E.; Gaster, Richard S.; Ooi, Chin Chun; Wilson, Robert J.; Zhou, Lisa Y.; Humke, Eric W.; Xu, Lingyun; Wong, Dawson J.; Willingham, Stephen B.; Schwartz, Erich J.; Weissman, Irving L.; Jeffrey, Stefanie S.; Neal, Joel W.; Rohatgi, Rajat; Wakelee, Heather A.; Wang, Shan X.
2014-01-01
Detection and characterization of circulating tumor cells (CTCs) may reveal insights into the diagnosis and treatment of malignant disease. Technologies for isolating CTCs developed thus far suffer from one or more limitations, such as low throughput, inability to release captured cells, and reliance on expensive instrumentation for enrichment or subsequent characterization. We report a continuing development of a magnetic separation device, the magnetic sifter, which is a miniature microfluidic chip with a dense array of magnetic pores. It offers high efficiency capture of tumor cells, labeled with magnetic nanoparticles, from whole blood with high throughput and efficient release of captured cells. For subsequent characterization of CTCs, an assay, using a protein chip with giant magnetoresistive nanosensors, has been implemented for mutational analysis of CTCs enriched with the magnetic sifter. The use of these magnetic technologies, which are separate devices, may lead the way to routine preparation and characterization of “liquid biopsies” from cancer patients. PMID:23969419
Tracking Normalization of Brain Tumor Vasculature by Magnetic Imaging and Proangiogenic Biomarkers
Hormigo, Adília; Gutin, Philip H.; Rafii, Shahin
2010-01-01
Clinical assessment of the response to antiangiogenic therapy has been cumbersome. A study in this issue of Cancer Cell demonstrates that a combination of magnetic resonance imaging (MRI) for quantification of normalized vessels with measurements of circulating levels of proangiogenic factors, including FGF2, SDF1, and viable circulating endothelial cells, provides an effective means to evaluate the response of recurrent glioblastoma to a prototypical pan-VEGF receptor tyrosine kinase inhibitor, AZD2171. PMID:17222788
A Review of the Low-Frequency Waves in the Giant Magnetospheres
NASA Astrophysics Data System (ADS)
Delamere, P. A.
2016-02-01
The giant magnetospheres harbor a plethora of low-frequency waves with both internal (i.e., moons) and external (i.e., solar wind) source mechanisms. This chapter summarizes the observation of low-frequency waves at Jupiter and Saturn and postulates the underlying physics based on our understanding of magnetodisc generation mechanisms. The source mechanisms of ULF pulsations at the giant magnetospheres are numerous. The satellite-magnetosphere interactions and mass loading of corotational flows generate many low-frequency waves. Observations of low-frequency bursts of radio emissions serve as an excellent diagnostic for understanding satellite-magnetosphere interactions. The outward radial transport of plasma through the magnetodisc and related magnetic flux circulation is a significant source of ULF pulsations; however, it is uncertain how the radial transport mechanism compares with solar wind induced perturbations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velten, Sven; Streubel, Robert; Farhan, Alan
We report a magnetic X-ray microscopy study of the pattern formation of circulation in arrays of magnetic vortices ordered in a hexagonal and a honeycomb lattice. In the honeycomb lattice, we observe at remanence an ordered phase of alternating circulations, whereas in the hexagonal lattice, small regions of alternating lines form. A variation in the edge-to-edge distance shows that the size of those regions scales with the magnetostatic interaction. Micromagnetic simulations reveal that the patterns result from the formation of flux closure states during the nucleation process.
Method to reduce non-specific tissue heating of small animals in solenoid coils.
Kumar, Ananda; Attaluri, Anilchandra; Mallipudi, Rajiv; Cornejo, Christine; Bordelon, David; Armour, Michael; Morua, Katherine; Deweese, Theodore L; Ivkov, Robert
2013-01-01
Solenoid coils that generate time-varying or alternating magnetic fields (AMFs) are used in biomedical devices for research, imaging and therapy. Interactions of AMF and tissue produce eddy currents that deposit power within tissue, thus limiting effectiveness and safety. We aim to develop methods that minimise excess heating of mice exposed to AMFs for cancer therapy experiments. Numerical and experimental data were obtained to characterise thermal management properties of water using a continuous, custom water jacket in a four-turn simple solenoid. Theoretical data were obtained with method-of-moments (MoM) numerical field calculations and finite element method (FEM) thermal simulations. Experimental data were obtained from gel phantoms and mice exposed to AMFs having amplitude >50 kA/m and frequency of 160 kHz. Water has a high specific heat and thermal conductivity, is diamagnetic, polar, and nearly transparent to magnetic fields. We report at least a two-fold reduction of temperature increase from gel phantom and animal models when a continuous layer of circulating water was placed between the sample and solenoid, compared with no water. Thermal simulations indicate the superior efficiency in thermal management by the developed continuous single chamber cooling system over a double chamber non-continuous system. Further reductions of heating were obtained by regulating water temperature and flow for active cooling. These results demonstrate the potential value of a contiguous layer of circulating water to permit sustained exposure to high intensity alternating magnetic fields at this frequency for research using small animal models exposed to AMFs.
Method to reduce non-specific tissue heating of small animals in solenoid coils
KUMAR, ANANDA; ATTALURI, ANILCHANDRA; MALLIPUDI, RAJIV; CORNEJO, CHRISTINE; BORDELON, DAVID; ARMOUR, MICHAEL; MORUA, KATHERINE; DEWEESE, THEODORE L.; IVKOV, ROBERT
2014-01-01
Purpose Solenoid coils that generate time-varying or alternating magnetic fields (AMFs) are used in biomedical devices for research, imaging and therapy. Interactions of AMF and tissue produce eddy currents that deposit power within tissue, thus limiting effectiveness and safety. We aim to develop methods that minimise excess heating of mice exposed to AMFs for cancer therapy experiments. Materials and methods Numerical and experimental data were obtained to characterise thermal management properties of water using a continuous, custom water jacket in a four-turn simple solenoid. Theoretical data were obtained with method-of-moments (MoM) numerical field calculations and finite element method (FEM) thermal simulations. Experimental data were obtained from gel phantoms and mice exposed to AMFs having amplitude >50kA/m and frequency of 160 kHz. Results Water has a high specific heat and thermal conductivity, is diamagnetic, polar, and nearly transparent to magnetic fields. We report at least a two-fold reduction of temperature increase from gel phantom and animal models when a continuous layer of circulating water was placed between the sample and solenoid, compared with no water. Thermal simulations indicate the superior efficiency in thermal management by the developed continuous single chamber cooling system over a double chamber non-continuous system. Further reductions of heating were obtained by regulating water temperature and flow for active cooling. Conclusions These results demonstrate the potential value of a contiguous layer of circulating water to permit sustained exposure to high intensity alternating magnetic fields at this frequency for research using small animal models exposed to AMFs. PMID:23402327
Calculation of the transverse kicks generated by the bends of a hollow electron lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio
2014-03-25
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam in high-energy accelerators. They were used in the Fermilab Tevatron collider for abort-gap clearing, beam-beam compensation, and halo scraping. A beam-beam compensation scheme based upon electron lenses is currently being implemented in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. This work is in support of a conceptual design of hollow electron beam scraper for the Large Hadron Collider. It also applies to the implementation of nonlinear integrable optics with electron lenses in the Integrable Optics Testmore » Accelerator at Fermilab. We consider the axial asymmetries of the electron beam caused by the bends that are used to inject electrons into the interaction region and to extract them. A distribution of electron macroparticles is deposited on a discrete grid enclosed in a conducting pipe. The electrostatic potential and electric fields are calculated using numerical Poisson solvers. The kicks experienced by the circulating beam are estimated by integrating the electric fields over straight trajectories. These kicks are also provided in the form of interpolated analytical symplectic maps for numerical tracking simulations, which are needed to estimate the effects of the electron lens imperfections on proton lifetimes, emittance growth, and dynamic aperture. We outline a general procedure to calculate the magnitude of the transverse proton kicks, which can then be generalized, if needed, to include further refinements such as the space-charge evolution of the electron beam, magnetic fields generated by the electron current, and longitudinal proton dynamics.« less
Chen, Peng; Huang, Yu-Yen; Bhave, Gauri; Hoshino, Kazunori; Zhang, Xiaojing
2015-01-01
We report an inkjet-printed microscale magnetic structure that can be integrated on regular glass slides for the immunomagnetic screening of rare Circulating Tumor Cells (CTCs). CTCs detach from the primary tumor site, circulate with the bloodstream, and initiate the cancer metastasis process. Therefore, a liquid biopsy in the form of capturing and analyzing CTCs may provide key information for cancer prognosis and diagnosis. Inkjet printing technology provides a non-contact, layer-by-layer and mask-less approach to deposit defined magnetic patterns on an arbitrary substrate. Such thin film patterns, when placed in an external magnetic field, significantly enhance the attractive force in the near-field close to the CTCs to facilitate the separation. We demonstrated the efficacy of the inkjet-print micromagnet array integrated immunomagnetic assay in separating COLO205 (human colorectal cancer cell line) from whole blood samples. The micromagnets increased the capture efficiency by 26% compared with using plain glass slide as the substrate. PMID:26289942
Ooi, Chin Chun; Park, Seung-Min; Wong, Dawson J; Gambhir, Sanjiv S; Wang, Shan X
2017-01-01
Circulating tumor cells (CTCs) are currently widely studied for their potential application as part of a liquid biopsy. These cells are shed from the primary tumor into the circulation, and are postulated to provide insight into the molecular makeup of the actual tumor in a minimally invasive manner. However, they are extremely rare in blood, with typical concentrations of 1-100 in a milliliter of blood; hence, a need exists for a rapid and high-purity method for isolating CTCs from whole blood. Here, we describe the application of a microfabricated magnetic sifter toward isolation of CTCs from whole blood at volumetric flow rates of 10 mL/h, along with the use of a PDMS-based nanowell system for single-cell gene expression profiling. This method allows rapid isolation of CTCs and subsequent integration with downstream genetic profiling methods for clinical applications such as targeted therapy, therapy monitoring, or further biological studies.
Using record player demonstrations as analog models for geophysical fluids
NASA Astrophysics Data System (ADS)
Grannan, A. M.; Cheng, J. S.; Hawkins, E. K.; Ribeiro, A.; Aurnou, J. M.
2015-12-01
All celestial bodies, including stars, planets, satellites, and asteroids, rotate. The influence of rotation on the fluid layers in these bodies plays an important and diverse role, affecting many processes including oceanic and atmospheric circulation at the surface and magnetic field generation occurring in the interior. To better understand these large-scale processes, record players and containers of water are used as analog models to demonstrate the basic interplay between rotation and fluid motions. To contrast between rotating and non-rotating fluid motions, coffee creamer and food coloring are used as fluid tracers to provide a hands-on method of understanding the influence of rotation on the shapes of the planets, weather patterns, and the alignment of magnetic fields with rotational axes. Such simple demonstrations have been successfully employed for children in public outreach events and for adults in graduate level fluid dynamics courses.
MEAN-FIELD SOLAR DYNAMO MODELS WITH A STRONG MERIDIONAL FLOW AT THE BOTTOM OF THE CONVECTION ZONE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
2011-09-01
This paper presents a study of kinematic axisymmetric mean-field dynamo models for the case of meridional circulation with a deep-seated stagnation point and a strong return flow at the bottom of the convection zone. This kind of circulation follows from mean-field models of the angular momentum balance in the solar convection zone. The dynamo models include turbulent sources of the large-scale poloidal magnetic field production due to kinetic helicity and a combined effect due to the Coriolis force and large-scale electric current. In these models the toroidal magnetic field, which is responsible for sunspot production, is concentrated at the bottommore » of the convection zone and is transported to low-latitude regions by a meridional flow. The meridional component of the poloidal field is also concentrated at the bottom of the convection zone, while the radial component is concentrated in near-polar regions. We show that it is possible for this type of meridional circulation to construct kinematic dynamo models that resemble in some aspects the sunspot magnetic activity cycle. However, in the near-equatorial regions the phase relation between the toroidal and poloidal components disagrees with observations. We also show that the period of the magnetic cycle may not always monotonically decrease with the increase of the meridional flow speed. Thus, for further progress it is important to determine the structure of the meridional circulation, which is one of the critical properties, from helioseismology observations.« less
Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stancari, Giulio; Moens, Vince; Redaelli, Stefano
2014-07-01
Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The designmore » of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.« less
Susceptibility cancellation of a microcoil wound with a paramagnetic-liquid-filled copper capillary
NASA Astrophysics Data System (ADS)
Takeda, Kazuyuki; Takasaki, Tomoya; Takegoshi, K.
2015-09-01
Even though microcoils improve the sensitivity of NMR measurement of tiny samples, magnetic-field inhomogeneity due to the bulk susceptibility effect of the coil material can cause serious resonance-line broadening. Here, we propose to fabricate the microcoil using a thin, hollow copper capillary instead of a wire and fill paramagnetic liquid inside the capillary, so as to cancel the diamagnetic contribution of the copper. Susceptibility cancellation is demonstrated using aqueous solution of NiSO4. In addition, the paramagnetic liquid serves as coolant when it is circulated through the copper capillary, effectively transferring the heat generated by radiofrequency pulses.
The Return of Magnetic Flux to the Inner Saturnian Magnetosphere
NASA Astrophysics Data System (ADS)
Lai, Hairong; Russell, Christopher T.; Jia, Yingdong; Masters, Adam; Dougherty, Michele K.
2017-04-01
The addition of plasma to the rotating inner Saturnian magnetosphere drives the circulation of the magnetic flux. The magnetic flux is loaded with cold plasma originating from Enceladus and its plasma torus. It then convects outward to the tail region, is emptied of plasma during reconnection events, and returns buoyantly to the inner magnetosphere. Returning flux tubes carry hot and tenuous plasma that serves as a marker of this type of flux tube. The plasma inside the tubes drifts at different rates depending on energy in the curved and inhomogeneous magnetosphere when the tubes convect inward. This energy dispersion can be used to track the flux tube. With data from MAG and CAPS, we model the energy dispersion of the electrons to determine the age and the point of return of the 'empty' flux tubes. The results show that even the 'fresh' flux tubes are several hours old when seen and they start to return at 19 Saturn radii, near Titan's orbit. This supports the hypothesis that returning flux tubes generated by reconnection in the far-tail region are injected directly into the inner magnetosphere.
Uson, Jacqueline; Loza, Estibaliz; Möller, Ingrid; Acebes, Carlos; Andreu, Jose Luis; Batlle, Enrique; Bueno, Ángel; Collado, Paz; Fernández-Gallardo, Juan Manuel; González, Carlos; Jiménez Palop, Mercedes; Lisbona, María Pilar; Macarrón, Pilar; Maymó, Joan; Narváez, Jose Antonio; Navarro-Compán, Victoria; Sanz, Jesús; Rosario, M Piedad; Vicente, Esther; Naredo, Esperanza
To develop evidence-based recommendations on the use of ultrasound (US) and magnetic resonance imaging in patients with spondyloarthritis, including psoriatic arthritis, and juvenile idiopathic arthritis. Recommendations were generated following a nominal group technique. A panel of experts (15 rheumatologists and 3 radiologists) was established in the first panel meeting to define the scope and purpose of the consensus document, as well as chapters, potential recommendations and systematic literature reviews (we used and updated those from previous EULAR documents). A first draft of recommendations and text was generated. Then, an electronic Delphi process (2 rounds) was carried out. Recommendations were voted from 1 (total disagreement) to 10 (total agreement). We defined agreement if at least 70% of participants voted≥7. The level of evidence and grade or recommendation was assessed using the Oxford Centre for Evidence Based Medicine levels of evidence. The full text was circulated and reviewed by the panel. The consensus was coordinated by an expert methodologist. A total of 12 recommendations were proposed for each disease. They include, along with explanations of the validity of US and magnetic resonance imaging regarding inflammation and damage detection, diagnosis, prediction (structural damage progression, flare, treatment response, etc.), monitoring and the use of US guided injections/biopsies. These recommendations will help clinicians use US and magnetic resonance imaging in patients with spondyloarthritis and juvenile idiopathic arthritis. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.
Extending Counter-Streaming Motion from an Active Region Filament to Sunspot Light Bridge
NASA Astrophysics Data System (ADS)
Wang, Haimin; Liu, Rui; Deng, Na; Liu, Chang; Xu, Yan; Jing, Ju; Wang, Yuming; Cao, Wenda
2017-08-01
In this study, we analyze the high-resolution observations from the 1.6 m New Solar Telescope at Big Bear Solar Observatory that cover an entire active region filament. The southern end of the filament is well defined by a narrow lane situated in the negative magnetic polarity, while the northern end lies in the positive polarity, extending to a much larger area. Counter-streaming motions are clearly seen in the filament. The northern end of the counter-streaming motions extends to a light bridge, forming a spectacular circulation pattern around a sunspot, with clockwise motion in the blue wing and counterclockwise motion in the red wing as observed in H-alpha off-band. The apparent speed of the flow is around 10 km/s. We show that the southern end of the filament is consistent with that of a flux rope in a NLFFF extrapolation model, but the northern ends of the modeled flux rope and observed H-alpha footpoints have a significant spatial mismatch. The most intriguing results are the magnetic structure and the counter-streaming motions in the light bridge. Similar to those in the filament, magnetic fields show a dominant transverse component in the light bridge. However, the filament is located between opposite magnetic polarities, while the light bridge is between strong fields of the same polarity. We studied the correlation coefficients of image sequences of constructed Dopplergrams, and found that the filament and the section of light bridge next to it do not show oscillation motions, while a small section of light bridge shows a prominent oscillation pattern. Therefore, we conclude that the observed circulating counter-streaming motions are largely collections of physical mass flows in the transverse direction from the filament extending to a large section of the light bridge, rather than a form of periodic oscillatory mass motions in line-of-sight direction generated by perturbations omnipresent in the chromosphere.
Meridional Circulation Dynamics from 3D Magnetohydrodynamic Global Simulations of Solar Convection
NASA Astrophysics Data System (ADS)
Passos, Dário; Charbonneau, Paul; Miesch, Mark
2015-02-01
The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 {{R}⊙ }). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.
NASA Astrophysics Data System (ADS)
Yu, Z. J.; Russell, C. T.; Kivelson, M. G.; Khurana, K. K.
2000-10-01
Massloading of the jovian magnetosphere by the addition of ions at the moon Io is the ultimate engine of the circulation of the magnetospheric plasma. In steady state the radial density profile enables the radial outflow velocity to be calculated from the mass addition rate. Some of these ions are lost from the field lines through pitch angle diffusion. Expected loss rates can be calculated from the fluctuation level in the magnetic field. Radial velocities can be calculated from observations of the Europa wake and force balance in the magnetodisk. The resulting transport times are shorter than the pitch angle scattering loss times so that most of the plasma is transported to the tail and lost by magnetic island formation. In turn the island formation process (reconnection) depletes magnetic field lines making them buoyant and allowing them to "float" back to the inner magnetosphere. In the torus these depleted flux tubes can be seen as thin tubes with stronger than the ambient field strength, implying plasma pressures about 2% of the magnetic field and ion temperatures principally in the range 30-150 eV. When the depleted flux tubes reach the orbit of Io where the energy density of the plasma drops these depleted flux tubes become indistinguishable from the ambient plasma, completing the circulation loop.
The modelling of symmetric airfoil vortex generators
NASA Technical Reports Server (NTRS)
Reichert, B. A.; Wendt, B. J.
1996-01-01
An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.
NASA Astrophysics Data System (ADS)
Foerster, M.; Doornbos, E.; Haaland, S.
2016-12-01
Solar wind and IMF interaction with the geomagnetic field sets up a large-scale plasma circulation in the Earth's magnetosphere and the magnetically tightly connected ionosphere. The ionospheric ExB ion drift at polar latitudes accelerates the neutral gas as a nondivergent momentum source primarily in force balance with pressure gradients, while the neutral upper thermosphere circulation is essentially modified by apparent forces due to Earth's rotation (Coriolis and centrifugal forces) as well as advection and viscous forces. The apparent forces affect the dawn and dusk side asymmetrically, favouring a large dusk-side neutral wind vortex, while the non-dipolar portions of the Earth's magnetic field constitute significant hemispheric differences in magnetic flux and field configurations that lead to essential interhemispheric differences of the ion-neutral interaction. We present statistical studies of both the high-latitude ionospheric convection and the upper thermospheric circulation patterns based on measurements of the electron drift instrument (EDI) on board the Cluster satellites and by the accelerometer on board the CHAMP, GOCE, and Swarm spacecraft, respectively.
Cole, Adam J; David, Allan E; Wang, Jianxin; Galbán, Craig J; Hill, Hannah L; Yang, Victor C
2011-03-01
While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, potentially enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140-190 nm) and relative PEG labeling (1.5% of surface amines - A5/D5, 0.4% - A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37 °C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 h) and D20 (11.75 h) showing much longer half-lives than D (0.12 h). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC(0-∞). Sustained tumor exposure over 24 h was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that a polyethylene glycol modified, cross-linked starch-coated MNP is a promising platform for enhanced magnetic tumor targeting, warranting further study in tumor models. Copyright © 2010 Elsevier Ltd. All rights reserved.
Cole, Adam J.; David, Allan E.; Wang, Jianxin; Galbán, Craig J.; Hill, Hannah L.; Yang, Victor C.
2010-01-01
While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140–190 nm) and relative PEG labeling (1.5% of surface amines – A5/D5, 0.4% – A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37°C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 hr) and D20 (11.75 hr) showing much longer half-lives than D (0.12 hr). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC0-∞ Sustained tumor exposure over 24 hours was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that both D5 and D20 are promising MNP platforms for enhanced magnetic tumor targeting, warranting further study in tumor models. PMID:21176955
EFFECTS OF LARGE-SCALE NON-AXISYMMETRIC PERTURBATIONS IN THE MEAN-FIELD SOLAR DYNAMO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
2015-11-10
We explore the response of a nonlinear non-axisymmetric mean-field solar dynamo model to shallow non-axisymmetric perturbations. After a relaxation period, the amplitude of the non-axisymmetric field depends on the initial condition, helicity conservation, and the depth of perturbation. It is found that a perturbation that is anchored at 0.9 R{sub ⊙} has a profound effect on the dynamo process, producing a transient magnetic cycle of the axisymmetric magnetic field, if it is initiated at the growing phase of the cycle. The non-symmetric, with respect to the equator, perturbation results in a hemispheric asymmetry of the magnetic activity. The evolution ofmore » the axisymmetric and non-axisymmetric fields depends on the turbulent magnetic Reynolds number R{sub m}. In the range of R{sub m} = 10{sup 4}–10{sup 6} the evolution returns to the normal course in the next cycle, in which the non-axisymmetric field is generated due to a nonlinear α-effect and magnetic buoyancy. In the stationary state, the large-scale magnetic field demonstrates a phenomenon of “active longitudes” with cyclic 180° “flip-flop” changes of the large-scale magnetic field orientation. The flip-flop effect is known from observations of solar and stellar magnetic cycles. However, this effect disappears in the model, which includes the meridional circulation pattern determined by helioseismology. The rotation rate of the non-axisymmetric field components varies during the relaxation period and carries important information about the dynamo process.« less
2016-01-01
Circulating tumor cells (CTC) are highly heterogeneous in nature due to epithelial–mesenchymal transition (EMT), which is the major obstacle for CTC analysis via “liquid biopsy”. This article reports the development of a new class of multifunctional fluorescent–magnetic multicolor nanoprobes for targeted capturing and accurate identification of heterogeneous CTC. A facile design approach for the synthesis and characterization of bioconjugated multifunctonal nanoprobes that exhibit excellent magnetic properties and emit very bright and photostable multicolor fluorescence at red, green, and blue under 380 nm excitation is reported. Experimental data presented show that the multifunctional multicolor nanoprobes can be used for targeted capture and multicolor fluorescence mapping of heterogeneous CTC and can distinguish targeted CTC from nontargeted cells. PMID:27255574
Circulating PCSK9 in patients with type 2 diabetes and related metabolic disorders.
Ibarretxe, Daiana; Girona, Josefa; Plana, Núria; Cabré, Anna; Ferré, Raimón; Amigó, Núria; Guaita, Sandra; Mallol, Roger; Heras, Mercedes; Masana, Luis
2016-01-01
PCSK9 is a pivotal molecule in the regulation of lipid metabolism. Previous studies have suggested that PCSK9 expression and its function in LDL receptor regulation could be altered in the context of diabetes. The aim was to assess PCSK9 plasma levels in patients with type 2 diabetes (T2DM) and other related metabolic disorders as well as its relation to the metabolomic profile generated by nuclear magnetic resonance (NMR) and glucose homeostasis. There were recruited a total of 457 patients suffering from T2DM and other metabolic disorders (metabolic syndrome (MetS), obesity and atherogenic dyslipidaemia (AD) and other disorders). Anamnesis, anthropometry and physical examinations were conducted, and vascular and abdominal adiposity imaging were carried out. Biochemical studies were performed to determine PCSK9 plasma levels 6 weeks after lipid lowering drug wash-out in treated patients. A complete metabolomic lipid profile was also generated by NMR. The rs505151 and rs11591147 genetic variants of PCSK9 gene were identified in patients. The results showed that PCSK9 levels are increased in patients with T2DM and MetS (14% and 13%; p<0.005, respectively). Circulating PCSK9 levels were correlated with an atherogenic lipid profile and with insulin resistance parameters. PCSK9 levels were also positively associated with AD, as defined by lipoprotein particle number and size. The rs11591147 genetic variant resulted in lower levels of circulating PCSK9 and LDL cholesterol (LDL-C). PCSK9 plasma levels are increased in T2DM and MetS patients and are associated with LDL-C and other parameters of AD and glucose metabolism. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il; Tomsk Polytechnic University, Tomsk, 634050
Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) andmore » in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.« less
Iron oxide and gold nanoparticles in cancer therapy
NASA Astrophysics Data System (ADS)
Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.
2016-08-01
Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.
Nonreciprocal reconfigurable microwave optomechanical circuit.
Bernier, N R; Tóth, L D; Koottandavida, A; Ioannou, M A; Malz, D; Nunnenkamp, A; Feofanov, A K; Kippenberg, T J
2017-09-19
Nonreciprocal microwave devices are ubiquitous in radar and radio communication and indispensable in the readout chains of superconducting quantum circuits. Since they commonly rely on ferrite materials requiring large magnetic fields that make them bulky and lossy, there has been significant interest in magnetic-field-free on-chip alternatives, such as those recently implemented using the Josephson nonlinearity. Here, we realize reconfigurable nonreciprocal transmission between two microwave modes using purely optomechanical interactions in a superconducting electromechanical circuit. The scheme relies on the interference in two mechanical modes that mediate coupling between the microwave cavities and requires no magnetic field. We analyse the isolation, transmission and the noise properties of this nonreciprocal circuit. Finally, we show how quantum-limited circulators can be realized with the same principle. All-optomechanically mediated nonreciprocity demonstrated here can also be extended to directional amplifiers, and it forms the basis towards realizing topological states of light and sound.Nonreciprocal optical devices traditionally rely on magnetic fields and magnetic-free approaches are rather recent. Here, Bernier et al. propose and demonstrate a purely optomechanical circulator with reconfigurable transmission without the need for direct coupling between input and output modes.
Development of a Proof of Concept Low Temperature Superfluid Magnetic Pump with Applications
NASA Astrophysics Data System (ADS)
Jahromi, Amir E.
State of the art particle and photon detectors such as Transition Edge Sensors (TES) and Microwave Kinetic Inductance Detectors (MKID) use large arrays of sensors or detectors for space science missions. As the size of these space science detectors increases, future astrophysics missions will require sub-Kelvin coolers over larger areas. This leads to not only increased cooling power requirements, but also a requirement for distributed sub-Kelvin cooling. Development of a proof of concept Superfluid Magnetic Pump is discussed in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He- 4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, or active magnetic regenerative refrigerators. Due to its superior thermal transport properties this pump can also be used as a simple circulator of sub-Lambda 4He to distribute cooling over large surface areas. The pump discussed in this work was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pascal. This pump worked in an "ideal" thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be put to test in suitable sub Kelvin refrigeration systems. Numerical modeling of an Active Magnetic Regenerative Refrigerator (AMRR) that uses the Superfluid Magnetic Pump (SMP) to circulate liquid 3He-4He through a magnetic regenerator is presented as a potential application of such a pump.
Development of the CSNS Lambertson magnet with very low stray field
NASA Astrophysics Data System (ADS)
Wu, Yuwen; Kang, Wen; Chen, Yuan; Wu, Xi; Li, Shuai; Wang, Lei; Deng, Changdong; Li, Li; Zhou, Jianxin; Liu, Yiqin
2018-02-01
In this paper, the magnetic and mechanical design of Lambertson are studied, and then magnetic field measurements are introduced. The results show that the integral field uniformity and effective length meet the physical requirements. The shielding measures shield the stray field effectively and the stray field along the circulating beam orbit is at a very low level.
MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passos, Dário; Charbonneau, Paul; Miesch, Mark, E-mail: dariopassos@ist.utl.pt
The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone atmore » mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.« less
Optical circulation in a multimode optomechanical resonator.
Ruesink, Freek; Mathew, John P; Miri, Mohammad-Ali; Alù, Andrea; Verhagen, Ewold
2018-05-04
Breaking the symmetry of electromagnetic wave propagation enables important technological functionality. In particular, circulators are nonreciprocal components that can route photons directionally in classical or quantum photonic circuits and offer prospects for fundamental research on electromagnetic transport. Developing highly efficient circulators thus presents an important challenge, especially to realise compact reconfigurable implementations that do not rely on magnetic fields to break reciprocity. We demonstrate optical circulation utilising radiation pressure interactions in an on-chip multimode optomechanical system. Mechanically mediated optical mode conversion in a silica microtoroid provides a synthetic gauge bias for light, enabling four-port circulation that exploits tailored interference between appropriate light paths. We identify two sideband conditions under which ideal circulation is approached. This allows to experimentally demonstrate ~10 dB isolation and <3 dB insertion loss in all relevant channels. We show the possibility of actively controlling the circulator properties, enabling ideal opportunities for reconfigurable integrated nanophotonic circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
A generalized, intuitive two-fluid picture of 2D non-driven collisionless magnetic reconnection is described using results from a full-3D numerical simulation. The relevant two-fluid equations simplify to the condition that the flux associated with canonical circulation Q=m e∇×u e+q eB is perfectly frozen into the electron fluid. In the reconnection geometry, flux tubes defined by Q are convected with the central electron current, effectively stretching the tubes and increasing the magnitude of Q exponentially. This, coupled with the fact that Q is a sum of two quantities, explains how the magnetic fields in the reconnection region reconnect and give rise tomore » strong electron acceleration. The Q motion provides an interpretation for other phenomena as well, such as spiked central electron current filaments. The simulated reconnection rate was found to agree with a previous analytical calculation having the same geometry. Energy analysis shows that the magnetic energy is converted and propagated mainly in the form of the Poynting flux, and helicity analysis shows that the canonical helicity ∫P·Q dV as a whole must be considered when analyzing reconnection. A mechanism for whistler wave generation and propagation is also described, with comparisons to recent spacecraft observations.« less
Formation Flying and the Stellar Imager Mission Concept
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.
2003-01-01
The Stellar Imager (SI) is envisioned as a space-based, W-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5 km. image stars and binaries with sufficient resolution to enable long-term studies of stellar magnetic activity patterns, for comparison with those on the sun. It will also support asteroseismology (acoustic imaging) to probe stellar internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of the magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on time scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. In this paper we briefly describe the scientific goals of the mission, the performance requirements needed to address these goals, and the "enabling technology" development efforts required, with specific attention for this meeting to the formation-flying aspects. It is designed to
Magnetostrophic balance as the optimal state for turbulent magnetoconvection
King, Eric M.; Aurnou, Jonathan M.
2015-01-01
The magnetic fields of Earth and other planets are generated by turbulent convection in the vast oceans of liquid metal within them. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of planetary rotation and magnetic fields through the Coriolis and Lorentz forces. Theory famously predicts that planetary dynamo systems naturally settle into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. Although this magnetostrophic theory correctly predicts the strength of Earth’s magnetic field, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first, to our knowledge, turbulent, magnetostrophic convection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the dynamically optimal magnetostrophic state is the natural expression of turbulent planetary dynamo systems. PMID:25583512
The Stellar Imager (SI) Mission Concept
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Schrijver, Carolus J.; Lyon, Richard G.; Mundy, Lee G.; Allen, Ronald J.; Armstrong, Thomas; Danchi, William C.; Karovska, Margarita; Marzouk, Joe; Mazzuca, Lisa M.;
2002-01-01
The Stellar Imager (SI) is envisioned as a space-based, UV-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5 km. It is designed to image stars and binaries with sufficient resolution to enable long-term studies of stellar magnetic activity patterns, for comparison with those on the sun. It will also support asteroseismology (acoustic imaging) to probe stellar internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of the magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on time scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. In this paper we describe the scientific goals of the mission, the performance requirements needed to address these goals, the "enabling technology" development efforts being pursued, and the design concepts now under study for the full mission and a possible pathfinder mission.
Detoxification of blood using injectable magnetic nanospheres: A conceptual technology description
NASA Astrophysics Data System (ADS)
Kaminski, Michael D.; Rosengart, Axel J.
2005-05-01
We describe injectable magnetic nanospheres as a vehicle for selective detoxification of blood borne toxins. Surface receptors on the freely circulating nanospheres bind to toxins. A hand-held extracorporeal magnetic filter separates the toxin-loaded nanospheres from the clean blood, which is returned to the patient. Details of the technology concept are given and include a state-of-knowledge and research needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Ranu, E-mail: ranu.dutta16@gmail.com; NanoeRA Medicare Private Limited, Uttar Pradesh; Pandey, Avinash C.
Gadolinium chelates and gadolinium based inorganic nanoparticles have been extensively studied, because of the high magnetic moment of gadolinium. Here, metallic gadolinium nanocongregates have been developed. Upon injecting these nanoparticles in the mice, they initially circulate in the blood stream and are localized at the cancer site, which could be visualized upon application of magnetic field hence acting as small magnetic nanosensors searching for even small cancers, detecting cancers at a very early stage.
Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M
2012-01-10
Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.
Biomedical applications of magneto-plasmonic nanoclusters (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sokolov, Konstantin V.; Wu, Chun-Hsien; Cook, Jason; Zal, Tomasz; Emelianov, Stanislav
2016-03-01
Perhaps one of the most intriguing aspects of nanotechnology is the ability to create multimodal and multifunctional nanostructures that can open new venues in solving challenging biomedical problems. Here, we present multimodal magneto-plasmonic nanoparticles (MPNs) with a strong red-NIR absorbance, superparamagnetic properties and a high magnetic moment in an external magnetic field. Our design is based on self-assembly of 6 nm primary particles which consist of 5 nm diameter iron-oxide cores coated with a very thin ca. 0.5 nm gold shell. The assembly results in spherical highly uniform MPNs. We developed antibody targeted MPNs to address two highly challenging applications: (i) development of real-time assays for capture, enumeration and characterization of circulating tumor cells (CTCs), and (ii) enhancement of adoptive cell immunotherapy (ACT). Our results showed that MPNs can be used for simultaneous magnetic capture and photoacoustic (PA) detection of cancer cells in whole blood with no laborious processing steps. Furthermore, we demonstrated that MPNs conjugated with anti-CD8 antibodies, which are specific for cytotoxic T cells used in ATC, label CD8+ T cells with high specificity ex vivo and in vivo. Labeled T cells can be easily manipulated by a small magnet in suspension and under flow conditions. In addition, MPNs generate high contrast in MRI and PA imaging with the potential to detect just few cells per imaging voxel. These results show that immunotargeted MPNs can be explored for simultaneous visualization and magnetic guidance of T cell subsets in vivo for cancer treatment.
Solar Dynamo Driven by Periodic Flow Oscillation
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)
2001-01-01
We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends to increase with the angular momentum of the fluid.
Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
2014-04-10
We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter ofmore » anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.« less
Magnetic forces and localized resonances in electron transfer through quantum rings.
Poniedziałek, M R; Szafran, B
2010-11-24
We study the current flow through semiconductor quantum rings. In high magnetic fields the current is usually injected into the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected into the other arm of the ring. We indicate that the appearance of the anomalous-non-classical-current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows us to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system as a function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both the magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.
Energy transport in cooling device by magnetic fluid
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroshi; Iwamoto, Yuhiro
2017-06-01
Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.
Dynamical systems for modeling evolution of the magnetic field of the Sun, stars and planets
NASA Astrophysics Data System (ADS)
Popova, E.
2016-12-01
The magnetic activity of the Sun, stars and planets are connected with a dynamo process based on the combined action of the differential rotation and the alpha-effect. Application of this concept allows us to get different types of solutions which can describe the magnetic activity of celestial bodies. We investigated the dynamo model with the meridional circulation by the low-mode approach. This approach is based on an assumption that the magnetic field can be described by non-linear dynamical systems with a relatively small number of parameters. Such non-linear dynamical systems are based on the equations of dynamo models. With this method dynamical systems have been built for media which contains the meridional flow and thickness of the spherical shell where dynamo process operates. It was shown the possibility of coexistence of quiasi-biennial oscillations, 22-year cycle, and grand minima of magnetic activity which is consistent with the observational data for the solar activity. We obtained different regimes (oscillations, vacillations, dynamo-bursts) depending on a value of the dynamo-number, the meridional circulation, and thickness of the spherical shell. We discuss features of these regimes and compare them with the observed features of the magnetic fields of the Sun, stars and Earth. We built theoretical paleomagnetic time scale and butterfly-diagrams for the helicity and toroidal magnetic field for different regimes.
The solar dynamo and prediction of sunspot cycles
NASA Astrophysics Data System (ADS)
Dikpati, Mausumi
2012-07-01
Much progress has been made in understanding the solar dynamo since Parker first developed the concepts of dynamo waves and magnetic buoyancy around 1955, and the German school first formulated the solar dynamo using the mean-field formalism. The essential ingredients of these mean-field dynamos are turbulent magnetic diffusivity, a source of lifting of flux, or 'alpha-effect', and differential rotation. With the advent of helioseismic and other observations at the Sun's photosphere and interior, as well as theoretical understanding of solar interior dynamics, solar dynamo models have evolved both in the realm of mean-field and beyond mean-field models. After briefly discussing the status of these models, I will focus on a class of mean-field model, called flux-transport dynamos, which include meridional circulation as an essential additional ingredient. Flux-transport dynamos have been successful in simulating many global solar cycle features, and have reached the stage that they can be used for making solar cycle predictions. Meridional circulation works in these models like a conveyor-belt, carrying a memory of the magnetic fields from 5 to 20 years back in past. The lower is the magnetic diffusivity, the longer is the model's memory. In the terrestrial system, the great-ocean conveyor-belt in oceanic models and Hadley, polar and Ferrel circulation cells in the troposphere, carry signatures from the past climatological events and influence the determination of future events. Analogously, the memory provided by the Sun's meridional circulation creates the potential for flux-transport dynamos to predict future solar cycle properties. Various groups in the world have built flux-transport dynamo-based predictive tools, which nudge the Sun's surface magnetic data and integrated forward in time to forecast the amplitude of the currently ascending cycle 24. Due to different initial conditions and different choices of unknown model-ingredients, predictions can vary; so it is for their cycle 24 forecasts. We all await the peak of cycle 24. I will close by discussing the prospects of improving dynamo-based predictive tools using more sophisticated data-assimilation techniques, such as the Ensemble Kalman Filter method and variational approaches.
Encoders for block-circulant LDPC codes
NASA Technical Reports Server (NTRS)
Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)
2009-01-01
Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.
Wang, Peng-Shuen; Wang, Jia-Siang
2014-01-01
Simultaneous vibration welding of 304 stainless steel was carried out with an eccentric circulating vibrator and a magnetic telescopic vibrator at subresonant (362 Hz and 59.3 Hz) and resonant (376 Hz and 60.9 Hz) frequencies. The experimental results indicate that the temperature gradient can be increased, accelerating nucleation and causing grain refinement during this process. During simultaneous vibration welding primary δ-ferrite can be refined and the morphologies of retained δ-ferrite become discontinuous so that δ-ferrite contents decrease. The smallest content of δ-ferrite (5.5%) occurred using the eccentric circulating vibrator. The diffraction intensities decreased and the FWHM widened with both vibration and no vibration. A residual stress can obviously be increased, producing an excellent effect on stress relief at a resonant frequency. The stress relief effect with an eccentric circulating vibrator was better than that obtained using a magnetic telescopic vibrator. PMID:24605068
The effect of non-zero radial velocity on the impulse and circulation of starting jets
NASA Astrophysics Data System (ADS)
Krieg, Michael; Mohseni, Kamran
2011-11-01
Vortex ring formation dynamics are generally studied using two basic types of vortex generators. Piston cylinder vortex generators eject fluid through a long tube which ensures a purely axial jet; whereas, vortex ring generators which expel fluid through a flat plate with a circular orifice produce 2-D jets (non-zero radial velocity). At the nozzle exit plane of the orifice type vortex generator the radial component of velocity is linearly proportional to the radial distance from the axis of symmetry, reaching a maximum at the edge of the orifice with a magnitude around 10 % of the piston velocity (the ratio of the volume flux and the nozzle area). As the jet advances downstream the radial velocity quickly dissipates, and becomes purely axial less than a diameter away from the nozzle exit plane. The radial velocity gradient in the axial direction plays a key role in the rate at which circulation and impulse are ejected from the vortex generator. Though the radial component of velocity is small compared to the axial velocity, it has a significant effect on both the circulation and impulse of the starting jet because of this gradient. The extent of circulation and impulse enhancement is investigated through experimental DPIV data showing that the orifice device produces nearly double both circulation and energy (with identical piston velocity and stroke ratios).
A Comparative Examination of Plasmoid Structure and Dynamics at Mercury, Earth, Jupiter, and Saturn
NASA Technical Reports Server (NTRS)
Slavin, James A.
2010-01-01
The circulation of plasma and magnetic flux within planetary magnetospheres is governed by the solar wind-driven Dungey and planetary rotation-driven cycles. The Dungey cycle is responsible for all circulation at Mercury and Earth. Jupiter and Saturn's magnetospheres are dominated by the Vasyliunas cycle, but there is evidence for a small Dungey cycle contribution driven by the solar wind. Despite these fundamental differences, all well-observed magnetospheres eject relatively large parcels of the hot plasma, termed plasmoids, down their tails at high speeds. Plasmoids escape from the restraining force of the planetary magnetic field through reconnection in the equatorial current sheet separating the northern and southern hemispheres of the magnetosphere. The reconnection process gives the magnetic field threading plasmoids a helical or flux rope-type topology. In the Dungey cycle reconnection also provides the primary tailward force that accelerates plasmoids to high speeds as they move down the tail. We compare the available observations of plasmoids at Mercury, Earth, Jupiter, and Saturn for the purpose of determining the relative role of plasmoids and the reconnection process in the dynamics these planetary magnetic tails.
Liang, Po-Chin; Chen, Yung-Chu; Chiang, Chi-Feng; Mo, Lein-Ray; Wei, Shwu-Yuan; Hsieh, Wen-Yuan; Lin, Win-Li
2016-01-01
In this study, we developed functionalized superparamagnetic iron oxide (SPIO) nanoparticles consisting of a magnetic Fe3O4 core and a shell of aqueous stable polyethylene glycol (PEG) conjugated with doxorubicin (Dox) (SPIO-PEG-D) for tumor magnetic resonance imaging (MRI) enhancement and chemotherapy. The size of SPIO nanoparticles was ~10 nm, which was visualized by transmission electron microscope. The hysteresis curve, generated with vibrating-sample magnetometer, showed that SPIO-PEG-D was superparamagnetic with an insignificant hysteresis. The transverse relaxivity (r 2) for SPIO-PEG-D was significantly higher than the longitudinal relaxivity (r 1) (r 2/r 1 >10). The half-life of Dox in blood circulation was prolonged by conjugating Dox on the surface of SPIO with PEG to reduce its degradation. The in vitro experiment showed that SPIO-PEG-D could cause DNA crosslink more serious, resulting in a lower DNA expression and a higher cell apoptosis for HT-29 cancer cells. The Prussian blue staining study showed that the tumors treated with SPIO-PEG-D under a magnetic field had a much higher intratumoral iron density than the tumors treated with SPIO-PEG-D alone. The in vivo MRI study showed that the T2-weighted signal enhancement was stronger for the group under a magnetic field, indicating that it had a better accumulation of SPIO-PEG-D in tumor tissues. In the anticancer efficiency study for SPIO-PEG-D, the results showed that there was a significantly smaller tumor size for the group with a magnetic field than the group without. The in vivo experiments also showed that this drug delivery system combined with a local magnetic field could reduce the side effects of cardiotoxicity and hepatotoxicity. The results showed that the developed SPIO-PEG-D nanoparticles own a great potential for MRI-monitoring magnet-enhancing tumor chemotherapy.
Impact of Data Assimilation And Resolution On Modeling The Gulf Stream Pathway
2011-11-18
currents could be generated by either the Deep Western Boundary Current (DWBC) associated with the Meridional Overturning Circulation (MOC) or by...abyssal gyre centered directly beneath the surface gyre. Figure 7. Meridional overturning circulation stream function for four 1/12° global HYCOM... circulation and have a weak overturning circulation . The Gulf Stream path is poorly simulated without the steering by the abyssal circulation . A
Qureshi, M. Umar; Vaughan, Gareth D.A.; Sainsbury, Christopher; Johnson, Martin; Peskin, Charles S.; Olufsen, Mette S.; Hill, N.A.
2014-01-01
A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen and coworkers (Ottesen et al., 2003; Olufsen et al., 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ‘large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ‘smaller’ arteries and veins of radii ≥ 50µm. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment of circulatory diseases within the lung. PMID:24610385
Spanwise Spacing Effects on the Initial Structure and Decay of Axial Vortices
NASA Technical Reports Server (NTRS)
Wendt, B. J.; Reichert, B. A.
1996-01-01
The initial structure and axial decay of an array of streamwise vortices embedded in a turbulent pipe boundary layer is experimentally investigated. The vortices are shed in counter-rotating fashion from an array of equally-spaced symmetric airfoil vortex generators. Vortex structure is quantified in terms of crossplane circulation and peak streamwise vorticity. Flow conditions are subsonic and incompressible. The focus of this study is on the effect of the initial spacing between the parent vortex generators. Arrays with vortex generators spaced at 15 and 30 degrees apart are considered. When the spacing between vortex generators is decreased the circulation and peak vorticity of the shed vortices increases. Analysis indicates this strengthening results from regions of fluid acceleration in the vicinity of the vortex generator array. Decreased spacing between the constituent vortices also produces increased rates of circulation and peak vorticity decay.
Next-generation pacemakers: from small devices to biological pacemakers.
Cingolani, Eugenio; Goldhaber, Joshua I; Marbán, Eduardo
2018-03-01
Electrogenesis in the heart begins in the sinoatrial node and proceeds down the conduction system to originate the heartbeat. Conduction system disorders lead to slow heart rates that are insufficient to support the circulation, necessitating implantation of electronic pacemakers. The typical electronic pacemaker consists of a subcutaneous generator and battery module attached to one or more endocardial leads. New leadless pacemakers can be implanted directly into the right ventricular apex, providing single-chamber pacing without a subcutaneous generator. Modern pacemakers are generally reliable, and their programmability provides options for different pacing modes tailored to specific clinical needs. Advances in device technology will probably include alternative energy sources and dual-chamber leadless pacing in the not-too-distant future. Although effective, current electronic devices have limitations related to lead or generator malfunction, lack of autonomic responsiveness, undesirable interactions with strong magnetic fields, and device-related infections. Biological pacemakers, generated by somatic gene transfer, cell fusion, or cell transplantation, provide an alternative to electronic devices. Somatic reprogramming strategies, which involve transfer of genes encoding transcription factors to transform working myocardium into a surrogate sinoatrial node, are furthest along in the translational pipeline. Even as electronic pacemakers become smaller and less invasive, biological pacemakers might expand the therapeutic armamentarium for conduction system disorders.
The Nature of Grand Minima and Maxima from Fully Nonlinear Flux Transport Dynamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inceoglu, Fadil; Arlt, Rainer; Rempel, Matthias, E-mail: finceoglu@aip.de
We aim to investigate the nature and occurrence characteristics of grand solar minimum and maximum periods, which are observed in the solar proxy records such as {sup 10}Be and {sup 14}C, using a fully nonlinear Babcock–Leighton type flux transport dynamo including momentum and entropy equations. The differential rotation and meridional circulation are generated from the effect of turbulent Reynolds stress and are subjected to back-reaction from the magnetic field. To generate grand minimum- and maximum-like periods in our simulations, we used random fluctuations in the angular momentum transport process, namely the Λ-mechanism, and in the Babcock–Leighton mechanism. To characterize themore » nature and occurrences of the identified grand minima and maxima in our simulations, we used the waiting time distribution analyses, which reflect whether the underlying distribution arises from a random or a memory-bearing process. The results show that, in the majority of the cases, the distributions of grand minima and maxima reveal that the nature of these events originates from memoryless processes. We also found that in our simulations the meridional circulation speed tends to be smaller during grand maximum, while it is faster during grand minimum periods. The radial differential rotation tends to be larger during grand maxima, while it is smaller during grand minima. The latitudinal differential rotation, on the other hand, is found to be larger during grand minima.« less
OVERMODED HIGH-POWER RF MAGNETIC SWITCHES AND CIRCULATORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tantawi, Sami
2002-08-20
We present design methodology for active rf magnetic components which are suitable for pulse compression systems of future X-band linear colliders. These components comprise an array of active elements arranged together so that the total electromagnetic field is reduced and the power handling capabilities are increased. The active element of choice is a magnetic material (garnet), which can be switched by changing a biasing magnetic field. A novel design allows these components to operate in the low loss circular waveguide mode TE{sub 01}. We describe the design methodology, the switching elements and circuits.
Pattern formation in a monolayer of magnetic spheres
NASA Astrophysics Data System (ADS)
Stambaugh, Justin; Lathrop, Daniel P.; Ott, Edward; Losert, Wolfgang
2003-08-01
Pattern formation is investigated for a vertically vibrated monolayer of magnetic spheres. The spheres of diameter D encase cylindrical magnetic cores of length l. For large D/l, we find that the particles form a hexagonal-close-packed pattern in which the particles’ dipole vectors assume a macroscopic circulating vortical pattern. For smaller D/l, the particles form concentric rings. The static configurational magnetic energy (which depends on D/l) appears to be a determining factor in pattern selection even though the experimental system is driven and dissipative.
NASA Astrophysics Data System (ADS)
Gilev, S. D.; Prokopiev, V. S.
2017-07-01
A method of generation of electromagnetic energy and magnetic flux in a magnetic cumulation generator is proposed. The method is based on dynamic variation of the circuit coupling coefficient. This circuit is compared with other available circuits of magnetic energy generation with the help of magnetic cumulation (classical magnetic cumulation generator, generator with transformer coupling, and generator with a dynamic transformer). It is demonstrated that the proposed method allows obtaining high values of magnetic energy. The proposed circuit is found to be more effective than the known transformer circuit. Experiments on electromagnetic energy generation are performed, which demonstrate the efficiency of the proposed method.
Lapin, Morten; Tjensvoll, Kjersti; Oltedal, Satu; Javle, Milind; Smaaland, Rune; Gilje, Bjørnar; Nordgård, Oddmund
2017-05-31
Single-cell mRNA profiling of circulating tumour cells may contribute to a better understanding of the biology of these cells and their role in the metastatic process. In addition, such analyses may reveal new knowledge about the mechanisms underlying chemotherapy resistance and tumour progression in patients with cancer. Single circulating tumour cells were isolated from patients with locally advanced or metastatic pancreatic cancer with immuno-magnetic depletion and immuno-fluorescence microscopy. mRNA expression was analysed with single-cell multiplex RT-qPCR. Hierarchical clustering and principal component analysis were performed to identify expression patterns. Circulating tumour cells were detected in 33 of 56 (59%) examined blood samples. Single-cell mRNA profiling of intact isolated circulating tumour cells revealed both epithelial-like and mesenchymal-like subpopulations, which were distinct from leucocytes. The profiled circulating tumour cells also expressed elevated levels of stem cell markers, and the extracellular matrix protein, SPARC. The expression of SPARC might correspond to an epithelial-mesenchymal transition in pancreatic circulating tumour cells. The analysis of single pancreatic circulating tumour cells identified distinct subpopulations and revealed elevated expression of transcripts relevant to the dissemination of circulating tumour cells to distant organ sites.
None, None
2017-05-05
A generalized, intuitive two-fluid picture of 2D non-driven collisionless magnetic reconnection is described using results from a full-3D numerical simulation. The relevant two-fluid equations simplify to the condition that the flux associated with canonical circulation Q=m e∇×u e+q eB is perfectly frozen into the electron fluid. In the reconnection geometry, flux tubes defined by Q are convected with the central electron current, effectively stretching the tubes and increasing the magnitude of Q exponentially. This, coupled with the fact that Q is a sum of two quantities, explains how the magnetic fields in the reconnection region reconnect and give rise tomore » strong electron acceleration. The Q motion provides an interpretation for other phenomena as well, such as spiked central electron current filaments. The simulated reconnection rate was found to agree with a previous analytical calculation having the same geometry. Energy analysis shows that the magnetic energy is converted and propagated mainly in the form of the Poynting flux, and helicity analysis shows that the canonical helicity ∫P·Q dV as a whole must be considered when analyzing reconnection. A mechanism for whistler wave generation and propagation is also described, with comparisons to recent spacecraft observations.« less
On the Terminal Rotation Rates of Giant Planets
NASA Astrophysics Data System (ADS)
Batygin, Konstantin
2018-04-01
Within the general framework of the core-nucleated accretion theory of giant planet formation, the conglomeration of massive gaseous envelopes is facilitated by a transient period of rapid accumulation of nebular material. While the concurrent build-up of angular momentum is expected to leave newly formed planets spinning at near-breakup velocities, Jupiter and Saturn, as well as super-Jovian long-period extrasolar planets, are observed to rotate well below criticality. In this work, we demonstrate that the large luminosity of a young giant planet simultaneously leads to the generation of a strong planetary magnetic field, as well as thermal ionization of the circumplanetary disk. The ensuing magnetic coupling between the planetary interior and the quasi-Keplerian motion of the disk results in efficient braking of planetary rotation, with hydrodynamic circulation of gas within the Hill sphere playing the key role of expelling spin angular momentum to the circumstellar nebula. Our results place early-stage giant planet and stellar rotation within the same evolutionary framework, and motivate further exploration of magnetohydrodynamic phenomena in the context of the final stages of giant planet formation.
Global Response to Local Ionospheric Mass Ejection
NASA Technical Reports Server (NTRS)
Moore, T. E.; Fok, M.-C.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.
2010-01-01
We revisit a reported "Ionospheric Mass Ejection" using prior event observations to guide a global simulation of local ionospheric outflows, global magnetospheric circulation, and plasma sheet pressurization, and comparing our results with the observed global response. Our simulation framework is based on test particle motions in the Lyon-Fedder-Mobarry (LFM) global circulation model electromagnetic fields. The inner magnetosphere is simulated with the Comprehensive Ring Current Model (CRCM) of Fok and Wolf, driven by the transpolar potential developed by the LFM magnetosphere, and includes an embedded plasmaspheric simulation. Global circulation is stimulated using the observed solar wind conditions for the period 24-25 Sept 1998. This period begins with the arrival of a Coronal Mass Ejection, initially with northward, but later with southward interplanetary magnetic field. Test particles are launched from the ionosphere with fluxes specified by local empirical relationships of outflow to electrodynamic and particle precipitation imposed by the MIlD simulation. Particles are tracked until they are lost from the system downstream or into the atmosphere, using the full equations of motion. Results are compared with the observed ring current and a simulation of polar and auroral wind outflows driven globally by solar wind dynamic pressure. We find good quantitative agreement with the observed ring current, and reasonable qualitative agreement with earlier simulation results, suggesting that the solar wind driven global simulation generates realistic energy dissipation in the ionosphere and that the Strangeway relations provide a realistic local outflow description.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Hong Seo; Lee, Hyun Min; Kim, Won-Tae
Highlights: • This study generates a monoclonal antibody CA27 against the mycoplasmal p37 protein. • CA27 isolates circulating tumor cells (CTCs) from the blood of liver cancer patients. • Results show the first evidence for mycoplasma infected-CTCs in cancer patients. - Abstract: Many studies have shown that persistent infections of bacteria promote carcinogenesis and metastasis. Infectious agents and their products can modulate cancer progression through the induction of host inflammatory and immune responses. The presence of circulating tumor cells (CTCs) is considered as an important indicator in the metastatic cascade. We unintentionally produced a monoclonal antibody (MAb) CA27 against themore » mycoplasmal p37 protein in mycoplasma-infected cancer cells during the searching process of novel surface markers of CTCs. Mycoplasma-infected cells were enriched by CA27-conjugated magnetic beads in the peripheral blood mononuclear cells in patients with hepatocellular carcinoma (HCC) and analyzed by confocal microscopy with anti-CD45 and CA27 antibodies. CD45-negative and CA27-positive cells were readily detected in three out of seven patients (range 12–30/8.5 ml blood), indicating that they are mycoplasma-infected circulating epithelial cells. CA27-positive cells had larger size than CD45-positive hematological lineage cells, high nuclear to cytoplasmic ratios and irregular nuclear morphology, which identified them as CTCs. The results show for the first time the existence of mycoplasma-infected CTCs in patients with HCC and suggest a possible correlation between mycoplasma infection and the development of cancer metastasis.« less
Papp, Lajos
2008-08-03
For hundreds of years, universal medical practice has depicted the heart to be the central organ, showing the heart's function as the primary source of energy for blood circulation, paying particular importance to the role of the heart valves. At present the generally accepted paradigm: the main force component of blood circulation is the pressure-gradient generated by the working heart. In serious combined illnesses of heart valves, the function of the valve is almost nonexistent. Based on the value of pressure in the chambers of the heart and in the great arteries and veins, blood flows from a place of high pressure to lower pressure, and should work the other way around as well. It is a fact, however, that even in such cases the circulation of blood is directed from the main arteries towards the veins: without the function of the valves--seemingly opposing the basic laws of physics--it keeps its original direction. Therefore we can justifiably infer that it isn't the work of the heart muscle that provides the source of energy for blood circulation. The heart has an essential function in the maintenance of blood circulation: pulse generation. The principal role of the heart is to generate pulses and not pressure.
NASA Astrophysics Data System (ADS)
Belucz, Bernadett; Dikpati, Mausumi; Forgács-Dajka, Emese
2015-06-01
Babcock-Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock-Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belucz, Bernadett; Forgács-Dajka, Emese; Dikpati, Mausumi, E-mail: bbelucz@astro.elte.hu, E-mail: dikpati@ucar.edu
Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterflymore » diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.« less
NASA Astrophysics Data System (ADS)
Maryanto, Sukir
2017-11-01
Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.
Multi-stage circulating fluidized bed syngas cooling
Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang
2016-10-11
A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.
Interhemispheric differences in ionospheric convection: Cluster EDI observations revisited
NASA Astrophysics Data System (ADS)
Förster, M.; Haaland, S.
2015-07-01
The interaction between the interplanetary magnetic field and the geomagnetic field sets up a large-scale circulation in the magnetosphere. This circulation is also reflected in the magnetically connected ionosphere. In this paper, we present a study of ionospheric convection based on Cluster Electron Drift Instrument (EDI) satellite measurements covering both hemispheres and obtained over a full solar cycle. The results from this study show that average flow patterns and polar cap potentials for a given orientation of the interplanetary magnetic field can be very different in the two hemispheres. In particular during southward directed interplanetary magnetic field conditions, and thus enhanced energy input from the solar wind, the measurements show that the southern polar cap has a higher cross polar cap potential. There are persistent north-south asymmetries, which cannot easily be explained by the influence of external drivers. These persistent asymmetries are primarily a result of the significant differences in the strength and configuration of the geomagnetic field between the Northern and Southern Hemispheres. Since the ionosphere is magnetically connected to the magnetosphere, this difference will also be reflected in the magnetosphere in the form of different feedback from the two hemispheres. Consequently, local ionospheric conditions and the geomagnetic field configuration are important for north-south asymmetries in large regions of geospace.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, D; Mutic, S; Shvartsman, S
Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placedmore » in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.« less
ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heng, Kevin; Workman, Jared, E-mail: kevin.heng@csh.unibe.ch, E-mail: jworkman@coloradomesa.edu
2014-08-01
Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. Thismore » near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.« less
The Sun's Meridional Circulation - not so Deep
NASA Astrophysics Data System (ADS)
Hathaway, David H.
2011-05-01
The Sun's global meridional circulation is evident as a slow poleward flow at its surface. This flow is observed to carry magnetic elements poleward - producing the Sun's polar magnetic fields as a key part of the 11-year sunspot cycle. Flux Transport Dynamo models for the sunspot cycle are predicated on the belief that this surface flow is part of a circulation which sinks inward at the poles and returns to the equator in the bottom half of the convection zone - at depths between 100 and 200 Mm. Here I use the advection of the supergranule cells by the meridional flow to map the flow velocity in latitude and depth. My measurements show that the equatorward return flow begins at a depth of only 35 Mm - the base of the Sun's surface shear layer. This is the first clear (10 sigma) detection of the meridional return flow. While the shallow depth of the return flow indicates a false foundation for Flux Transport Dynamo models it helps to explain the different meridional flow rates seen for different features and provides a mechanism for selecting the characteristic size of supergranules.
NASA Astrophysics Data System (ADS)
Rockley, Graham J.
2001-03-01
The overwhelming introduction of magnetic devices and other alternative therapies into the health care market prompts the need for objective evaluation of these techniques through the use of infrared thermal imaging. Many of these therapies are reported to promote the stimulation of blood flow or the relief of pain conditions. Infrared imaging is an efficient tool to assess such changes in the physiological state. Therefore, a thermal imager can help document and substantiate whether these therapies are in fact providing an effective change to the local circulation. Thermal images may also indicate whether the change is temporary or sustained. As a specific case example, preliminary findings will be presented concerning the use of magnets and the effect they have on peripheral circulation. This will include a discussion of the recommended protocols for this type of infrared testing. This test model can be applied to the evaluation of other devices and therapeutic procedures which are reputed to affect circulation such as electro acupuncture, orthopedic footwear and topical ointments designed to relieve pain or inflammation.
2010-01-01
Truncus arteriosus (TA) is a rare congenital condition defined as a single arterial vessel arising from the heart that gives origin to the systemic, pulmonary and coronary circulations. We discuss the unique case of a 28 year-old female patient with unrepaired TA and interruption of the aortic arch who underwent cardiovascular magnetic resonance (CMR). PMID:20307275
Preliminary validation of a new magnetic wireless blood pump.
Kim, Sung Hoon; Ishiyama, Kazushi; Hashi, Shuichiro; Shiraishi, Yasuyuki; Hayatsu, Yukihiro; Akiyama, Masatoshi; Saiki, Yoshikatsu; Yambe, Tomoyuki
2013-10-01
In general, a blood pump must be small, have a simple configuration, and have sufficient hydrodynamic performance. Herein, we introduce new mechanisms for a wireless blood pump that is small and simple and provides wireless and battery-free operation. To achieve wireless and battery-free operation, we implement magnetic torque and force control methods that use two external drivers: an external coil and a permanent magnet with a DC-motor, respectively. Power harvesting can be used to drive an electronic circuit for wireless monitoring (the observation of the pump conditions and temperature) without the use of an internal battery. The power harvesting will be used as a power source to drive other electronic devices, such as various biosensors with their driving circuits. To have both a compact size and sufficient pumping capability, the fully magnetic impeller has five stages and each stage includes four backward-curved blades. The pump has total and inner volumes of 20 and 9.8 cc, respectively, and weighs 52 g. The pump produces a flow rate of approximately 8 L/min at 80 mm Hg and the power generator produces 0.3 W of electrical power at 120 Ω. The pump also produces a minimum flow rate of 1.5 L/min and a pressure of 30 mm Hg for circulation at a maximum distance of 7.5 cm. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
Newton, Haley S.; Niles, Scott D.; Ploessl, James; Richenbacher, Wayne
2007-01-01
Abstract: The development of electrostatic potentials generated during cardiopulmonary bypass (CPB) procedures using polyvinylchloride (PVC) tubing in conjunction with roller pumps has been previously documented. The resulting damage from the electrostatic discharge (ESD) has been reported to affect gas transfer devices, but details of potential damage to electronic components commonly used during extracorporeal circulation have not been similarly described. The purpose of this study was to measure the ability of a triboelectric potential to be generated from a primed, circulating, adult CPB pump before the initiation of CPB. Two identical adult CPB circuits were assembled: one incorporating a roller pump and the second incorporating a centrifugal pump mechanism. Primed pumps were circulated (1–6 LPM), and evidence of generated triboelectric potentials was evaluated using a digital multimeter (Fluke 8062 A). The ESD generated from an adult CPB circuit using a roller head configuration elicited a charge in excess of 600 DC V. An identical circuit constructed with a centrifugal pump mechanism did not produce any measurable charge. Sensitive electrical components in the CPB hardware platform may be damaged by ESD potential spikes of this magnitude. Preventative measures, such as circuit charge dissipation, may reduce the potential for such damage when using PVC tubing. PMID:17486872
On-chip integration of a superconducting microwave circulator and a Josephson parametric amplifier
NASA Astrophysics Data System (ADS)
Rosenthal, Eric I.; Chapman, Benjamin J.; Moores, Bradley A.; Kerckhoff, Joseph; Malnou, Maxime; Palken, D. A.; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; Lehnert, K. W.
Recent progress in microwave amplification based on parametric processes in superconducting circuits has revolutionized the measurement of feeble microwave signals. These devices, which operate near the quantum limit, are routinely used in ultralow temperature cryostats to: readout superconducting qubits, search for axionic dark matter, and characterize astrophysical sensors. However, these amplifiers often require ferrite circulators to separate incoming and outgoing traveling waves. For this reason, measurement efficiency and scalability are limited. In order to facilitate the routing of quantum signals we have created a superconducting, on-chip microwave circulator without permanent magnets. We integrate our circulator on-chip with a Josephson parametric amplifier for the purpose of near quantum-limited directional amplification. In this talk I will present a design overview and preliminary measurements.
MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail
NASA Technical Reports Server (NTRS)
Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.;
2010-01-01
During MESSENGER's third flyby of Mercury, a series of 2-3 minute long enhancements of the magnetic field in the planet's magnetotail were observed. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approximately 10 times less and the durations are 1 hr. These observations of extreme loading imply that the relative intensity of substorms at Mercury must be much larger than at Earth. The correspondence between the duration of tail enhancements and the calculated approximately 2 min Dungey cycle, which describes plasma circulation through Mercury's magnetosphere, suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles. Such signatures are puzzlingly absent from the MESSENGER flyby measurements.
MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail
NASA Technical Reports Server (NTRS)
Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.;
2010-01-01
During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetotail increased by factors of 2 to 3.5 over intervals of 2 to 3 min. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approx.10 times less and typical durations are approx.1 hour. The extreme tail loading observed at Mercury implies that the relative intensity of sub storms must be much larger than at Earth. The correspondence between the duration of tail field enhancements and the characteristic time for the Dungey cycle, which describes plasma circulation through Mercury's magnetosphere. suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles, but no acceleration signatures were seen during the MESSENGER flyby.
Jovian magnetic fields is complex, Pioneer 11 shows
NASA Technical Reports Server (NTRS)
Panagakos, N.; Waller, P.
1975-01-01
An analysis of the magnetic field of the planet Jupiter is presented. The data are based on the information returned by Pioneer 11 space probe. It was determined that the magnetic field stretches across 9 million miles of space at some times and shrinks in volume by three-fourths or more at other times. It was also determined that electrons trapped in the magnetic field of Jupiter are 10,000 times more intense than those in the Van Allen radiation belts which circle the earth. Additional data were obtained on the polar regions, atmospheric circulation, and the nature of the moons.
NASA Technical Reports Server (NTRS)
Studer, P. A. (Inventor)
1982-01-01
A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.
Wu, Ling-Ling; Wen, Cong-Ying; Hu, Jiao; Tang, Man; Qi, Chu-Bo; Li, Na; Liu, Cui; Chen, Lan; Pang, Dai-Wen; Zhang, Zhi-Ling
2017-08-15
Detecting viable circulating tumor cells (CTCs) without disruption to their functions for in vitro culture and functional study could unravel the biology of metastasis and promote the development of personalized anti-tumor therapies. However, existing CTC detection approaches commonly include CTC isolation and subsequent destructive identification, which damages CTC viability and functions and generates substantial CTC loss. To address the challenge of efficiently detecting viable CTCs for functional study, we develop a nanosphere-based cell-friendly one-step strategy. Immunonanospheres with prominent magnetic/fluorescence properties and extraordinary stability in complex matrices enable simultaneous efficient magnetic capture and specific fluorescence labeling of tumor cells directly in whole blood. The collected cells with fluorescent tags can be reliably identified, free of the tedious and destructive manipulations from conventional CTC identification. Hence, as few as 5 tumor cells in ca. 1mL of whole blood can be efficiently detected via only 20min incubation, and this strategy also shows good reproducibility with the relative standard deviation (RSD) of 8.7%. Moreover, due to the time-saving and gentle processing and the minimum disruption of immunonanospheres to cells, 93.8±0.1% of detected tumor cells retain cell viability and proliferation ability with negligible changes of cell functions, capacitating functional study on cell migration, invasion and glucose uptake. Additionally, this strategy exhibits successful CTC detection in 10/10 peripheral blood samples of cancer patients. Therefore, this nanosphere-based cell-friendly one-step strategy enables viable CTC detection and further functional analyses, which will help to unravel tumor metastasis and guide treatment selection. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of Magnetorheological Resistive Exercise Device for Rowing Machine
Žiliukas, Pranas
2016-01-01
Training equipment used by professional sportsmen has a great impact on their sport performance. Most universal exercisers may help only to improve the general physical condition due to the specific kinematics and peculiar resistance generated by their loading units. Training of effective techniques and learning of psychomotor skills are possible only when exercisers conform to the movements and resistance typical for particular sports kinematically and dynamically. Methodology of developing a magnetorheological resistive exercise device for generating the desired law of passive resistance force and its application in a lever-type rowing machine are described in the paper. The structural parameters of a controllable hydraulic cylinder type device were found by means of the computational fluid dynamics simulation performed by ANSYS CFX software. Parameters describing the magnetorheological fluid as non-Newtonian were determined by combining numerical and experimental research of the resistance force generated by the original magnetorheological damper. A structural scheme of the device control system was developed and the variation of the strength of magnetic field that affects the magnetorheological fluid circulating in the device was determined, ensuring a variation of the resistance force on the oar handle adequate for the resistance that occurs during a real boat rowing stroke. PMID:27293479
Development of Magnetorheological Resistive Exercise Device for Rowing Machine.
Grigas, Vytautas; Šulginas, Anatolijus; Žiliukas, Pranas
2015-01-01
Training equipment used by professional sportsmen has a great impact on their sport performance. Most universal exercisers may help only to improve the general physical condition due to the specific kinematics and peculiar resistance generated by their loading units. Training of effective techniques and learning of psychomotor skills are possible only when exercisers conform to the movements and resistance typical for particular sports kinematically and dynamically. Methodology of developing a magnetorheological resistive exercise device for generating the desired law of passive resistance force and its application in a lever-type rowing machine are described in the paper. The structural parameters of a controllable hydraulic cylinder type device were found by means of the computational fluid dynamics simulation performed by ANSYS CFX software. Parameters describing the magnetorheological fluid as non-Newtonian were determined by combining numerical and experimental research of the resistance force generated by the original magnetorheological damper. A structural scheme of the device control system was developed and the variation of the strength of magnetic field that affects the magnetorheological fluid circulating in the device was determined, ensuring a variation of the resistance force on the oar handle adequate for the resistance that occurs during a real boat rowing stroke.
High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Sawicki, Jerzy T.
2003-01-01
For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.
High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion
NASA Astrophysics Data System (ADS)
Juhasz, Albert J.; Sawicki, Jerzy T.
2004-02-01
For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a ``partial energy conversion'' system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.
High-throughput full-length single-cell mRNA-seq of rare cells.
Ooi, Chin Chun; Mantalas, Gary L; Koh, Winston; Neff, Norma F; Fuchigami, Teruaki; Wong, Dawson J; Wilson, Robert J; Park, Seung-Min; Gambhir, Sanjiv S; Quake, Stephen R; Wang, Shan X
2017-01-01
Single-cell characterization techniques, such as mRNA-seq, have been applied to a diverse range of applications in cancer biology, yielding great insight into mechanisms leading to therapy resistance and tumor clonality. While single-cell techniques can yield a wealth of information, a common bottleneck is the lack of throughput, with many current processing methods being limited to the analysis of small volumes of single cell suspensions with cell densities on the order of 107 per mL. In this work, we present a high-throughput full-length mRNA-seq protocol incorporating a magnetic sifter and magnetic nanoparticle-antibody conjugates for rare cell enrichment, and Smart-seq2 chemistry for sequencing. We evaluate the efficiency and quality of this protocol with a simulated circulating tumor cell system, whereby non-small-cell lung cancer cell lines (NCI-H1650 and NCI-H1975) are spiked into whole blood, before being enriched for single-cell mRNA-seq by EpCAM-functionalized magnetic nanoparticles and the magnetic sifter. We obtain high efficiency (> 90%) capture and release of these simulated rare cells via the magnetic sifter, with reproducible transcriptome data. In addition, while mRNA-seq data is typically only used for gene expression analysis of transcriptomic data, we demonstrate the use of full-length mRNA-seq chemistries like Smart-seq2 to facilitate variant analysis of expressed genes. This enables the use of mRNA-seq data for differentiating cells in a heterogeneous population by both their phenotypic and variant profile. In a simulated heterogeneous mixture of circulating tumor cells in whole blood, we utilize this high-throughput protocol to differentiate these heterogeneous cells by both their phenotype (lung cancer versus white blood cells), and mutational profile (H1650 versus H1975 cells), in a single sequencing run. This high-throughput method can help facilitate single-cell analysis of rare cell populations, such as circulating tumor or endothelial cells, with demonstrably high-quality transcriptomic data.
Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators
NASA Technical Reports Server (NTRS)
Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)
2001-01-01
An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values obtained in isolation. The circulation may be accurately modeled with an expression based on Prandtl's relationship between finite airfoil circulation and airfoil geometry. A correlation for the peak vorticity has been derived from a conservation relationship equating the moment at the airfoil tip to the rate of angular momentum production of the shed vortex, modeled as a Lamb (ideal viscous) vortex. This technique provides excellent qualitative agreement to the observed behavior of peak vorticity for low aspect ratio airfoils typically used as vortex generators.
Ko, Jina; Bhagwat, Neha; Yee, Stephanie S; Black, Taylor; Redlinger, Colleen; Romeo, Janae; O'Hara, Mark; Raj, Arjun; Carpenter, Erica L; Stanger, Ben Z; Issadore, David
2017-09-12
The use of microtechnology for the highly selective isolation and sensitive detection of circulating tumor cells has shown enormous promise. One challenge for this technology is that the small feature sizes - which are the key to this technology's performance - can result in low sample throughput and susceptibility to clogging. Additionally, conventional molecular analysis of CTCs often requires cells to be taken off-chip for sample preparation and purification before analysis, leading to the loss of rare cells. To address these challenges, we have developed a microchip platform that combines fast, magnetic micropore based negative immunomagnetic selection (>10 mL h -1 ) with rapid on-chip in situ RNA profiling (>100× faster than conventional RNA labeling). This integrated chip can isolate both rare circulating cells and cell clusters directly from whole blood and allow individual cells to be profiled for multiple RNA cancer biomarkers, achieving sample-to-answer in less than 1 hour for 10 mL of whole blood. To demonstrate the power of this approach, we applied our device to the circulating tumor cell based diagnosis of pancreatic cancer. We used a genetically engineered lineage-labeled mouse model of pancreatic cancer (KPCY) to validate the performance of our chip. We show that in a cohort of patient samples (N = 25) that this device can detect and perform in situ RNA analysis on circulating tumor cells in patients with pancreatic cancer, even in those with extremely sparse CTCs (<1 CTC mL -1 of whole blood).
Automated Circulation Systems as a Source of Secondary Information.
ERIC Educational Resources Information Center
Chapin, Giny Ziegler
This report looks at the use of public library online circulation systems for the generation of in-house secondary information--such as statistical reports and mailing lists--and also considers problems in maintaining confidentiality of patron records when using online circulation systems. Based on a survey of the literature, general information…
An analytical computation of magnetic field generated from a cylinder ferromagnet
NASA Astrophysics Data System (ADS)
Taniguchi, Tomohiro
2018-04-01
An analytical formulation to compute a magnetic field generated from an uniformly magnetized cylinder ferromagnet is developed. Exact solutions of the magnetic field generated from the magnetization pointing in an arbitrary direction are derived, which are applicable both inside and outside the ferromagnet. The validities of the present formulas are confirmed by comparing them with demagnetization coefficients estimated in earlier works. The results will be useful for designing practical applications, such as high-density magnetic recording and microwave generators, where nanostructured ferromagnets are coupled to each other through the dipole interactions and show cooperative phenomena such as synchronization. As an example, the magnetic field generated from a spin torque oscillator for magnetic recording based on microwave assisted magnetization reversal is studied.
Comparison of different particles and methods for magnetic isolation of circulating tumor cells
NASA Astrophysics Data System (ADS)
Sieben, S.; Bergemann, C.; Lübbe, A.; Brockmann, B.; Rescheleit, D.
2001-01-01
A more effective method for tumor cell separation from peripheral blood was established. The results of optimized magnetic particles verified by analyzing yield, purity and viability of isolated epithelial tumor cells were compared with a commercial kit for immunomagnetic cell separation. Porous silica particles of 230 nm were found to give best recovery rates and high viability of extracted cells.
2009-02-01
the largest zonal current in the world, which links the Atlantic , Indian and Pacific Oceans. The associated Meridional Overturning Circulation (MOC...formed in polar regions (Wunsch and Ferrari, 2004). Mixing is especially important in the Southern Ocean where the Meridional Overturning Circulation ...general circulation of the ocean and an important driver of the lower cell of the Meridional Overturning Circulation . Wunsch (1998) estimated that the
Dynamical systems for modeling the evolution of the magnetic field of stars and Earth
NASA Astrophysics Data System (ADS)
Popova, H.
2016-02-01
The cycles of solar magnetic activity are connected with a solar dynamo that operates in the convective zone. Solar dynamo mechanism is based on the combined action of the differential rotation and the alpha-effect. Application of these concepts allows us to get an oscillating solution as a wave of the toroidal field propagating from middle latitudes to the equator. We investigated the dynamo model with the meridional circulation by the low-mode approach. This approach is based on an assumption that the solar magnetic field can be described by non-linear dynamical systems with a relatively small number of parameters. Such non-linear dynamical systems are based on the equations of dynamo models. With this method dynamical systems have been built for media which contains the meridional flow and thickness of the convection zone of the star. It was shown the possibility of coexistence of quiasi-biennial and 22-year cycle. We obtained the different regimes (oscillations, vacillations, dynamo-bursts) depending on the value of the dynamo-number, the meridional circulation, and thickness of the convection zone. We discuss the features of these regimes and compare them with the observed features of evolution of the solar and geo magnetic fields. We built theoretical paleomagnetic time scale and butterfly-diagrams for the helicity and toroidal magnetic field for different regimes.
NASA Astrophysics Data System (ADS)
Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.
2017-07-01
Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.
An original valveless artificial heart providing pulsatile flow tested in mock circulatory loops.
Tozzi, Piergiorgio; Maertens, Audrey; Emery, Jonathan; Joseph, Samuel; Kirsch, Matthias; Avellan, François
2017-11-24
We present the test bench results of a valveless total artificial heart that is potentially compatible with the pediatric population. The RollingHeart is a valveless volumetric pump generating pulsatile flow. It consists of a single spherical cavity divided into 4 chambers by 2 rotating disks. The combined rotations of both disks produce changes in the volumes of the 4 cavities (suction and ejection). The blood enters/exits the spherical cavity through 4 openings that are symmetrical to the fixed rotation axis of the first disk.Mock circulatory system: The device pumps a 37% glycerin solution through 2 parallel circuits, simulating the pulmonary and systemic circulations. Flow rates are acquired with a magnetic inductive flowmeter, while pressure sensors collect pressure in the left and right outflow and inflow tracts.In vitro test protocol: The pump is run at speeds ranging from 20 to 180 ejections per minute. The waveform of the pressure generated at the inflow and outflow of the 4 chambers and the flow rate in the systemic circulation are measured. At an ejection rate of 178 min-1, the RollingHeart pumps 5.3 L/min for a systemic maximal pressure gradient of 174 mmHg and a pulmonary maximal pressure gradient of 75 mmHg. The power input was 14 W, corresponding to an efficiency of 21%. The RollingHeart represents a new approach in the domain of total artificial heart. This preliminary study endorses the feasibility of a single valveless device acting as a total artificial heart.
Effect of Dimension and Shape of Magnet on the Performance AC Generator with Translation Motion
NASA Astrophysics Data System (ADS)
Indriani, A.; Dimas, S.; Hendra
2018-02-01
The development of power plants using the renewable energy sources is very rapid. Renewable energy sources used solar energy, wind energy, ocean wave energy and other energy. All of these renewable energy sources require a processing device or a change of motion system to become electrical energy. One processing device is a generator which have work principle of converting motion (mechanical) energy into electrical energy with rotary shaft, blade and other motion components. Generator consists of several types of rotation motion and linear motion (translational). The generator have components such as rotor, stator and anchor. In the rotor and stator having magnet and winding coil as an electric generating part of the electric motion force. Working principle of AC generator with linear motion (translation) also apply the principle of Faraday that is using magnetic induction which change iron magnet to produce magnetic flux. Magnetic flux is captured by the stator to be converted into electrical energy. Linear motion generators consist of linear induction machine, wound synchronous machine field, and permanent magnet synchronous [1]. Performance of synchronous generator of translation motion is influenced by magnet type, magnetic shape, coil winding, magnetic and coil spacing and others. In this paper focus on the neodymium magnet with varying shapes, number of coil windings and gap of magnetic distances. This generator work by using pneumatic mechanism (PLTGL) for power plants system. Result testing of performance AC generator translation motion obtained that maximum voltage, current and power are 63 Volt for diameter winding coil 0.15 mm, number of winding coil 13000 and distance of magnet 20 mm. For effect shape of magnet, maximum voltage happen on rectangle magnet 30x20x5 mm with 4.64 Volt. Voltage and power on effect of diameter winding coil is 14.63 V and 17.82 W at the diameter winding coil 0.7 and number of winding coil is 1260 with the distance of magnet 25 mm.
Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits
NASA Astrophysics Data System (ADS)
Chapman, Benjamin J.; Rosenthal, Eric I.; Kerckhoff, Joseph; Moores, Bradley A.; Vale, Leila R.; Mates, J. A. B.; Hilton, Gene C.; Lalumière, Kevin; Blais, Alexandre; Lehnert, K. W.
2017-10-01
We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Nonreciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor microwave bias tones, allowing on-chip integration with other superconducting circuits without the need for high-bandwidth control lines. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW (≈103 circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.
Zhang, Dao Pei; Lu, Gui Feng; Zhang, Jie Wen; Zhang, Shu Ling; Ma, Qian Kun; Yin, Suo
2017-02-01
We aimed in this study to investigate the prevalence of vertebral artery hypoplasia (VAH) in a population with isolated vertigo in association with stroke risk factors, to determine whether VAH is an independent risk factor for posterior circulation infarction (PCI). We sequentially enrolled 245 patients with isolated vertigo with at least 1 vascular risk factor, who were divided into PCI and non-PCI groups, according to present signs of acute infarction on diffusion-weighted magnetic resonance imaging. All patients underwent magnetic resonance angiography and cervical contrast-enhanced magnetic resonance angiography to screen for VAH. Univariate and multivariate logistic regression analyses were performed to identify the significant risk factors for PCI. VAH was found in 64 of 245 patients (26%). VAH (odds ratio [OR] = 2.70, 95%confidence interval [CI] 1.17-6.23, P = .020), median stenosis of the posterior circulation (OR = 7.09, 95%CI = 2.54-19.79, P < .001), and diabetes mellitus (OR = 3.13, 95%CI 1.38-7.12, P = .006) were independent risk factors for PCI. The predominant Trial of Org 10172 in Acute Stroke Treatment subtype in our patients with isolated vertigo with PCI complicated by VAH was mainly small-artery occlusion. Our findings suggest that VAH is an independent risk factor for PCI in patients with isolated vertigo with confirmed risk from stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Biomedical imaging and therapy with physically and physiologically tailored magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Khandhar, Amit Praful
Magnetic particle imaging (MPI) and magnetic fluid hyperthermia (MFH) are emerging imaging and therapy approaches that have the potential to improve diagnostic safety and disease management of heart disease and cancer - the number 1 and 2 leading causes of deaths in the United States. MPI promises real-time, tomographic and quantitative imaging of superparamagnetic iron oxide nanoparticle (SPION) tracers distributed in vivo, and is targeted to offer a safer angiography alternative for its first clinical application. MFH uses ac-fields to dissipate heat from SPIONs that can be delivered locally to promote hyperthermia therapy (~42°C) in cancer cells. Both technologies use safe radiofrequency magnetic fields to exploit the fundamental magnetic relaxation properties of superparamagnetic iron oxide nanoparticles (SPIONs), which must be tailored for optimal imaging in the case of MPI, and maximum hyperthermia potency in the case of MFH. Furthermore, the magnetic core and shell of SPIONs are both central to the optimization process; the shell, in particular, bridges the translational gap between the optimized core and its safe and effective use in the physiological environment. Unfortunately, existing SPIONs that were originally designed as MRI contrast agents lack the basic physical properties that enable the clinical translation of MPI and MFH. In this work, the core and shell of monodisperse SPIONs were optimized in concert to accomplish two equally important objectives: (1) biocompatibility, and (2) MPI and MFH efficacy of SPIONs in physiological environments. Critically, it was found that the physical and physiological responses of SPIONs are coupled, and impacting one can have consequences on the other. It was shown that the poly(ethylene glycol) (PEG)-based shell when properly optimized reduced protein adsorption to SPION surface and phagocytic uptake in macrophages - both prerequisites for designing long-circulating SPIONs. In MPI, tailoring the surface coating reduced protein adsorption and improved colloidal stability, which were critical in retaining the magnetization relaxation properties of the SPIONs. The improvements in surface coatings enabled the use of larger SPION cores (> 20 nm core diameter), which were used to demonstrate benchmark-imaging performance in some of the world's first MPI scanners at Philips Medical Imaging and University of California, Berkeley. In MFH, it was shown for the first time that optimization of heat loss from SPIONs (W/g) is possible by tailoring the core size and size distribution for the given ac-field conditions. Biodistribution and blood circulation studies in mice showed that SPIONs accumulated primarily in the liver and spleen with minimal renal involvement, and demonstrated gradual clearance. Circulation time was evaluated using the MPI signal detected over time in blood, which offered insight on the relevant circulation time for angiography applications. In comparison with carboxy-dextran coated ResovistRTM SPIONs, the PEG-coated SPIONs developed in this work circulated substantially longer; furthermore, reducing the hydrodynamic diameter showed a 4.5x improvement in blood half-life. The work presented in this thesis demonstrates that the combined effort in optimizing the core and shell properties of SPIONs enhances biocompatibility and efficacy, with the in vivo studies providing critical feedback on the success (or failure) of the optimization process. Future work will entail designing functionalized SPIONs for targeting specific disease sites, which will further enable the molecular level diagnosis and therapy of diseases.
Concept of a Cryogenic System for a Cryogen-Free 25 T Superconducting Magnet
NASA Astrophysics Data System (ADS)
Iwai, Sadanori; Takahashi, Masahiko; Miyazaki, Hiroshi; Tosaka, Taizo; Tasaki, Kenji; Hanai, Satoshi; Ioka, Shigeru; Watanabe, Kazuo; Awaji, Satoshi; Oguro, Hidetoshi
A cryogen-free 25 T superconducting magnet using a ReBCO insert coil that generates 11.5 T in a 14 T background field of outer low-temperature superconducting (LTS) coils is currently under development. The AC loss of the insert coil during field ramping is approximately 8.8 W, which is difficult to dissipate at the operating temperature of the LTS coils (4 K). However, since a ReBCO coil can operate at a temperature above 4 K, the ReBCO insert coil is cooled to about 10 K by two GM cryocoolers, and the LTS coils are independently cooled by two GM/JT cryocoolers. Two GM cryocoolers cool a circulating helium gas through heat exchangers, and the gas is transported over a long distance to the cold stage located on the ReBCO insert coil, in order to protect the cryocoolers from the leakage field of high magnetic fields. The temperature difference of the 2nd cold stage of the GM cryocoolers and the insert coil can be reduced by increasing the gas flow rate. However, at the same time, the heat loss of the heat exchangers increases, and the temperature of the second cold stage is raised. Therefore, the gas flow rate is optimized to minimize the operating temperature of the ReBCO insert coil by using a flow controller and a bypass circuit connected to a buffer tank.
Internal split field generator
Thundat,; George, Thomas [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN
2012-01-03
A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.
Looped energy harvester for human motion
NASA Astrophysics Data System (ADS)
Geisler, M.; Boisseau, S.; Gasnier, P.; Willemin, J.; Gobbo, C.; Despesse, G.; Ait-Ali, I.; Perraud, S.
2017-10-01
The development of energy harvesters for smart wearables is a challenging topic, with a difficult combination of ergonomics constraints, lifetime and electrical requirements. In this work, we focus on an inertial inductive structure, composed of a magnetic ball circulating inside a closed-loop guide and converting the kinetic energy of the user’s limbs into electricity during the run. A specific induction issue related to the free self-rotation of the ball is underlined and addressed using a ferromagnetic ‘rail’ component. From a 2 g moving ball, a 5 cm-diameter 21 cm3 prototype generated up to 4.8 mW of average power when worn by someone running at 8 km h-1. This device is demonstrated to charge a 2.4 V NiMH battery and supply an acceleration and temperature Wireless Sensor Node at 20 Hz.
Development of a proof of concept low temperature 4He Superfluid Magnetic Pump
NASA Astrophysics Data System (ADS)
Jahromi, Amir E.; Miller, Franklin K.
2017-03-01
We describe the development and experimental results of a proof of concept Superfluid Magnetic Pump in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He-4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, Stirling, or active magnetic regenerative refrigerators. Due to the superior thermal transport properties of sub-Lambda 4He this pump can also be used as a simple circulator to distribute cooling over large surface areas. Our pump was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pa using only the more common isotope of helium, 4He. This pump worked in an ;ideal; thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be implemented in suitable sub Kelvin refrigeration systems.
Chang, Zhi-Min; Wang, Zheng; Shao, Dan; Yue, Juan; Xing, Hao; Li, Li; Ge, Mingfeng; Li, Mingqiang; Yan, Huize; Hu, Hanze; Xu, Qiaobing; Dong, Wen-Fei
2018-04-04
Magnetic mesoporous silica nanoparticles (M-MSNs) are attractive candidates for the immunomagnetic isolation and detection of circulating tumor cells (CTCs). Understanding of the interactions between the effects of the shape of M-MSNs and CTCs is crucial to maximize the binding capacity and capture efficiency as well as to facilitate the sensitivity and efficiency of detection. In this work, fluorescent M-MSNs were rationally designed with sphere and rod morphologies while retaining their robust fluorescence and uniform surface functionality. After conjugation with the antibody of epithelial cell adhesion molecule (EpCAM), both of the differently shaped M-MSNs-EpCAM obtained achieved efficient enrichment of CTCs and fluorescent-based detection. Importantly, rodlike M-MSNs exhibited faster immunomagnetic isolation as well as better performance in the isolation and detection of CTCs in spiked cells and real clinical blood samples than those of their spherelike counterparts. Our results showed that shape engineering contributes positively toward immunomagnetic isolation, which might open new avenues to the rational design of magnetic-fluorescent nanoprobes for the sensitive and efficient isolation and detection of CTCs.
Thoracic magnetic resonance imaging: pulmonary thromboembolism.
Fink, Christian; Henzler, Thomas; Shirinova, Aysel; Apfaltrer, Paul; Wasser, Klaus
2013-05-01
Ongoing technical developments have substantially improved the potential of magnetic resonance imaging (MRI) in the assessment of the pulmonary circulation. These developments includes improved magnet and hardware design, new k-space sampling techniques (ie, parallel imaging), and alternative contrast materials. With these techniques, not only can pulmonary vessels be visualized by MR angiography with high spatial resolution but also the perfusion of the lungs and its changes in relation to pulmonary thromboembolism (PE) can be assessed. Considering venous thromboembolism as a systemic disease, MR venography might be added for the diagnosis of underlying deep venous thrombosis. A unique advantage of MRI over other imaging tests is its potential to evaluate changes in cardiac function as a result of obstruction of the pulmonary circulation, which may have a significant impact on patient monitoring and treatment. Finally, MRI does not involve radiation, which is advantageous, especially in young patients. Over the years, a number of studies have shown promising results not only for MR angiography but also for MRI of lung perfusion and for MR venography. This review article summarizes and discusses the current evidence on pulmonary MRI for patients with suspected PE.
NASA Astrophysics Data System (ADS)
Asy'ari, Hasyim; Sarjito, Prasetio, Septian Heri
2017-04-01
The aim of the research work describe in this paper was to design and optimize a permanent magnet linear generator for renewable energy power plants. It is cover of first stage of designing stator and rotor permanent magnet linear generator. Stator design involves determining dimensions, number of slots, diameter of wire, and the number of winding in each slot. The design of the rotor includes rotor manufacture of PVC pipe material, 10 pieces of permanent magnet type ferrite 271 mikroweber, and resin. The second stage was to assemble the stator and rotor that has been done in the first stage to be a permanent magnet linear generator. The third stage was to install a permanent magnet linear generator with induction motors. Further stage was to test performance of a permanent magnet linear generator by utilizing of induction motor as a prime mover experimentally. In this study, permanent magnet linear generator with a rotor consists of five pairs of permanent magnets. The stator consists of 6 slots of the stator frame, each slot mounted stator coil of 200, 300, 400, 500, and 800 windings, and dimensions of wire used was 0.4 mm. The stator frame was made from acrylic. Results of the experiment that, permanent magnet linear generator when no load was able to generate a DC voltage of 14.5 volts at 300 rpm, and at the output of the linear generator when it is connected to the DC fan as a load only generated of 6.7 volts. It concludes that permanent magnet linear generator output can be used as an input device hybrid system. Data obtained from this experiment in laboratory scale can be developed in a larger scale by varying the type of magnet being used, the number of windings, and the speed used to generate more power.
NASA Technical Reports Server (NTRS)
Mukkamala, R.; Cohen, R. J.; Mark, R. G.
2002-01-01
Guyton developed a popular approach for understanding the factors responsible for cardiac output (CO) regulation in which 1) the heart-lung unit and systemic circulation are independently characterized via CO and venous return (VR) curves, and 2) average CO and right atrial pressure (RAP) of the intact circulation are predicted by graphically intersecting the curves. However, this approach is virtually impossible to verify experimentally. We theoretically evaluated the approach with respect to a nonlinear, computational model of the pulsatile heart and circulation. We developed two sets of open circulation models to generate CO and VR curves, differing by the manner in which average RAP was varied. One set applied constant RAPs, while the other set applied pulsatile RAPs. Accurate prediction of intact, average CO and RAP was achieved only by intersecting the CO and VR curves generated with pulsatile RAPs because of the pulsatility and nonlinearity (e.g., systemic venous collapse) of the intact model. The CO and VR curves generated with pulsatile RAPs were also practically independent. This theoretical study therefore supports the validity of Guyton's graphical analysis.
Möller, Ingrid; Loza, Estibaliz; Uson, Jacqueline; Acebes, Carlos; Andreu, Jose Luis; Batlle, Enrique; Bueno, Ángel; Collado, Paz; Fernández-Gallardo, Juan Manuel; González, Carlos; Jiménez Palop, Mercedes; Lisbona, María Pilar; Macarrón, Pilar; Maymó, Joan; Narváez, Jose Antonio; Navarro-Compán, Victoria; Sanz, Jesús; Rosario, M Piedad; Vicente, Esther; Naredo, Esperanza
To develop evidence-based recommendations on the use of ultrasound (US) and magnetic resonance imaging (MRI) in patients with rheumatoid arthritis (RA). Recommendations were generated following a nominal group technique. A panel of experts, consisting of 15 rheumatologists and 3 radiologists, was established in the first panel meeting to define the scope and purpose of the consensus document, as well as chapters, potential recommendations and systematic literature reviews (we used and updated those from previous EULAR documents). A first draft of recommendations and text was generated. Then, an electronic Delphi process (2 rounds) was carried out. Recommendations were voted from 1 (total disagreement) to 10 (total agreement). We defined agreement if at least 70% of experts voted ≥7. The level of evidence and grade or recommendation was assessed using the Oxford Centre for Evidence-based Medicine Levels of Evidence. The full text was circulated and reviewed by the panel. The consensus was coordinated by an expert methodologist. A total of 20 recommendations were proposed. They include the validity of US and MRI regarding inflammation and damage detection, diagnosis, prediction (structural damage progression, flare, treatment response, etc.), monitoring and the use of US guided injections/biopsies. These recommendations will help clinicians use US and MRI in RA patients. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.
Targeting the lymphatics using dendritic polymers (dendrimers).
Kaminskas, Lisa M; Porter, Christopher J H
2011-09-10
Dendrimers are unique biomaterials that are constructed by the stepwise addition of layers (generations) of polymer around a central core. They can be constructed with a range of molecular weights and have a polyfunctional surface that facilitates the attachment of drugs and pharmacokinetic modifiers such PEG or targeting moieties. These properties have led to considerable interest in the development of dendrimers for a range of biomedical applications. After subcutaneous administration, larger dendrimers in particular (> 8 nm), preferentially drain from the injection site into the peripheral lymphatic capillaries and therefore have potential as lymphatic imaging agents for magnetic resonance and optical fluorescence lymphangiography and as vectors for drug-targeting to lymphatic sites of disease progression. In general, lymphatic targeting of dendrimers is enhanced by increasing size although ultimately larger constructs may be incompletely absorbed from the injection site. Increasing hydrophilicity and reducing surface charge enhances drainage from subcutaneous injection sites, but the reverse is true of uptake into lymph nodes where charge and hydrophobicity promote retention. Larger hydrophilic dendrimers are also capable of extravasation from the systemic circulation, absorption into the lymphatic system and recirculation into the blood. Lymphatic recirculation may therefore be a characteristic of PEGylated dendrimers with long systemic circulation times. Copyright © 2011 Elsevier B.V. All rights reserved.
A new titration system of a novel split-type superconducting magnet NMR spectrometer.
Kitagawa, Isao; Tanaka, Hideki; Okada, Michiya; Kitaguchi, Hitoshi; Kohzuma, Takamitsu
2008-12-01
A new titration system for studying protein-ligand interactions has been developed. In this system, the sample solution is circulated in the route formed by an access path in a split superconducting magnet to maintain a constant protein concentration during the titration experiments. A concentration-control procedure for the ligand/protein ratio is devised, and the ligand/protein ratio is well controlled by this apparatus.
Curtò, Lorenzo; Trimarchi, Francesco; Cannavo, Salvatore
2017-04-01
Lymphocytic infundibulo-neurohypophysitis is a rare disorder. We report the case of a 29 year-old woman with diabetes insipidus and amenorrhea, in whom the magnetic resonance imaging demonstration of a pituitary stalk lesion was intermittent. We suggest that, in patients with endocrine dysfunction and positivity of circulating antipituitary antibodies at high title, magnetic resonance imaging should be repeated after few months, if negative.
NASA Astrophysics Data System (ADS)
Stadler, Timothy J.; Tominaga, Masako
2015-09-01
Understanding intraplate volcanism is a key to deciphering the Earth's magmatic history. One of the largest intraplate volcanic events occurred during the mid-Cretaceous, roughly 75-125 Ma in the western Pacific. To investigate the origin of this volcanism we present the first comprehensive study of volcanism in the Pigafetta Basin using seismic surveys, magnetic and gravity modeling, and Ocean Drilling Program (ODP) drill core and well log data from Site 801. Our results show that intraplate volcanism in the Pigafetta Basin coincides with the rest of the western Pacific seamount provinces, supporting the previously suggested plumelets scenario for the origin of intraplate volcanism during the mid-Cretaceous volcanic events. Our magnetic modeling suggests that the late-stage volcanism does not overprint the remanant magnetization acquired by the Jurassic ocean crust in the Pigafetta Basin, and hence, marine magnetic anomalies recorded in the Jurassic basement are preserved. Also, the formerly identified Rough-Smooth Boundary (RSB) is indistinguishable from any other rough-smooth topographic boundaries throughout the survey area suggesting that the RSB is unlikely to be a Cretaceous sill-Jurassic basement boundary. Lastly, the apparent ages and spatial distribution of volcanic features suggests a dynamic history of hydrothermal circulation in the Pigafetta Basin, indicating that hydrothermal circulation was ongoing well past 100 Ma.
Meridional Transect of Atlantic Overturning Circulation across the Mid-Pleistocene Transition
NASA Astrophysics Data System (ADS)
Goldstein, S. L.; Pena, L. D.; Seguí, M. J.; Kim, J.; Yehudai, M.; Farmer, J. R.; Ford, H. L.; Haynes, L.; Hoenisch, B.; Raymo, M. E.; Ferretti, P.; Bickert, T.
2016-12-01
The Mid-Pleistocene Transition (MPT) marked a major transition in glacial-interglacial periodicity from dominantly 41 kyr to 100 kyr cycles between 1.3-0.7 Ma. From Nd isotope records in the South Atlantic, Pena and Goldstein (Science, 2014) concluded that the Atlantic overturning circulation circulation experienced major weakening between 950-850 ka (MIS 25-21), which generated the climatic conditions that intensified cold periods, prolonged their duration, and stabilized 100 kyr cycles. Such weakening would provide a mechanism for decreased atmospheric CO2 (Hönisch et al., Science, 2009) by allowing for additional atmospheric CO2 to be stored in the deep ocean. We present a summary of work in-progress to generate two dimensional representations of the Atlantic meridional overturning circulation, from the north Atlantic to the Southern Ocean, at different time slices over the past 2Ma, including the MPT, based on Nd isotope ratios measured on Fe-Mn-oxide encrusted foraminifera and fish debris. Thus far we are analyzing samples from DSDP/ODP Sites 607, 1063 from the North Atlantic, 926 from the Equatorial Atlantic, 1264, 1267, 1088, 1090 in the South Atlantic, and 1094 from the Southern Ocean. Our data generated thus far support important changes in the overturning circulation during the MPT, and greater glacial-interglacial variability in the 100 kyr world compared with the 40 kyr world. In addition, the data indicate a North Atlantic-sourced origin for the ocean circulation disruption during the MPT. Comparison with ɛNd records in different ocean basins and with benthic foraminiferal δ13C and B/Ca ratios will also allow us to understand the links between deep ocean circulation changes and the global carbon cycle.
Corrosion and protection of NdFeB type magnets
NASA Astrophysics Data System (ADS)
Cavalloti, P.; Bozzini, B.; Cecchini, R.; Bava, G. F.; Davies, H. A.; Hoggarth, C.
1992-02-01
A general mechanism for the corrosion behaviour of NdFeB magnets is presented, related to the magnet heterogeneity with the presence of different phases. Cathodic control is outlined. An electrochemical method to assess the corrosion resistance of magnets, with and without coatings, is proposed; it is based on the study of the transient voltage at the magnet surface after a second cathodic current pulse in a suitable aggressive solution and its dependence on the amount of cathodic current circulating. Suitable pretreatments have been tried and interesting results obtained with passivation pretreatments, giving phosphorous Nd at grain boundaries. Coatings if sintered and plastic magnets have been tried using several methods. Good results are obtained with Zn-Co layers on sintered magnets and a sol-gel glass on powders for plastic magnets. Improved ACS (Autocatalytic Chemical Deposition) Ni=P coatings have been realized, with an alkaline brass flash plating to start ACD deposition.
NASA Technical Reports Server (NTRS)
Choi, S. D.
1974-01-01
Switch, which uses only two p-i-n diodes on microstrip substrate, has been developed for application in spacecraft radio systems. Switch features improved power drain, weight, volume, magnetic cleanliness, and reliability, over currently-used circulator and electromechanical switches.
Skin temperature changes induced by strong static magnetic field exposure.
Ichioka, Shigeru; Minegishi, Masayuki; Iwasaka, Masakazu; Shibata, Masahiro; Nakatsuka, Takashi; Ando, Joji; Ueno, Shoogo
2003-09-01
High intensity static magnetic fields, when applied to the whole body of the anesthetized rat, have previously been reported to decrease skin temperature. The hypothesis of the present study was that in diamagnetic water, molecules in the air play significant roles in the mechanism of skin temperature decrease. We used a horizontal cylindrical superconducting magnet. The magnet produced 8 T at its center. A thermistor probe was inserted in a subcutaneous pocket of the anesthetized rats to measure skin temperature. Animals (n=10) were placed in an open plastic holder in which the ambient air was free to move in any direction (group I). Animals (n=10) were placed in a closed holder in which the air circulation toward the direction of weak magnetic field was restricted (group II). Each holder was connected to a hydrometer to measure humidity around the animal in the holder. The data acquisition phase consisted of a 5 min baseline interval, followed by inserting the animal together with the holder into the center of the magnet bore for a 5 min exposure and a 5 min postexposure period outside the bore. In group I, skin temperature and humidity around the animal significantly decreased during exposure, followed by recovery after exposure. In group II, skin temperature and humidity did not decrease during the measurement. The skin temperature decrease was closely related to the decrease in humidity around the body of the animal in the holder, and the changes were completely blocked by restricting the air circulation in the direction of the bore entrance. Possible mechanisms responsible for the decrease in skin temperature may be associated with magnetically induced movement of water vapor at the skin surface, leading to skin temperature decrease. Copyright 2003 Wiley-Liss, Inc.
Encoders for block-circulant LDPC codes
NASA Technical Reports Server (NTRS)
Andrews, Kenneth; Dolinar, Sam; Thorpe, Jeremy
2005-01-01
In this paper, we present two encoding methods for block-circulant LDPC codes. The first is an iterative encoding method based on the erasure decoding algorithm, and the computations required are well organized due to the block-circulant structure of the parity check matrix. The second method uses block-circulant generator matrices, and the encoders are very similar to those for recursive convolutional codes. Some encoders of the second type have been implemented in a small Field Programmable Gate Array (FPGA) and operate at 100 Msymbols/second.
Chen, Yu-Hsiang; Hancock, Bradley A; Solzak, Jeffrey P; Brinza, Dumitru; Scafe, Charles; Miller, Kathy D; Radovich, Milan
2017-01-01
Next-generation sequencing to detect circulating tumor DNA is a minimally invasive method for tumor genotyping and monitoring therapeutic response. The majority of studies have focused on detecting circulating tumor DNA from patients with metastatic disease. Herein, we tested whether circulating tumor DNA could be used as a biomarker to predict relapse in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy. In this study, we analyzed samples from 38 early-stage triple-negative breast cancer patients with matched tumor, blood, and plasma. Extracted DNA underwent library preparation and amplification using the Oncomine Research Panel consisting of 134 cancer genes, followed by high-coverage sequencing and bioinformatics. We detected high-quality somatic mutations from primary tumors in 33 of 38 patients. TP53 mutations were the most prevalent (82%) followed by PIK3CA (16%). Of the 33 patients who had a mutation identified in their primary tumor, we were able to detect circulating tumor DNA mutations in the plasma of four patients (three TP53 mutations, one AKT1 mutation, one CDKN2A mutation). All four patients had recurrence of their disease (100% specificity), but sensitivity was limited to detecting only 4 of 13 patients who clinically relapsed (31% sensitivity). Notably, all four patients had a rapid recurrence (0.3, 4.0, 5.3, and 8.9 months). Patients with detectable circulating tumor DNA had an inferior disease free survival ( p < 0.0001; median disease-free survival: 4.6 mos. vs. not reached; hazard ratio = 12.6, 95% confidence interval: 3.06-52.2). Our study shows that next-generation circulating tumor DNA sequencing of triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy can predict recurrence with high specificity, but moderate sensitivity. For those patients where circulating tumor DNA is detected, recurrence is rapid.
Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.
Danieli, E; Perlo, J; Blümich, B; Casanova, F
2013-05-03
Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.
Anne E. Egger,; Glen, Jonathan; McPhee, Darcy K.
2014-01-01
Faults and fractures play an important role in the circulation of geothermal fluids in the crust, and the nature of that role varies according to structural setting and state of stress. As a result, detailed geologic and geophysical mapping that relates thermal springs to known structural features is essential to modeling geothermal systems. Published maps of Surprise Valley in northeastern California suggest that the “Lake City fault” or “Lake City fault zone” is a significant structural feature, cutting obliquely across the basin and connecting thermal springs across the valley. Newly acquired geophysical data (audio-magnetotelluric, gravity, and magnetic), combined with existing geochemical and geological data, suggest otherwise. We examine potential field profiles and resistivity models that cross the mapped Lake City fault zone. While there are numerous geophysical anomalies that suggest subsurface structures, they mostly do not coincide with the mapped traces of the Lake City fault zone, nor do they show a consistent signature in gravity, magnetics, or resistivities that would suggest a through-going fault that would promote connectivity through lateral fluid flow. Instead of a single, continuous fault, we propose the presence of a deformation zone associated with the growth of the range-front Surprise Valley fault. The implication for geothermal circulation is that this is a zone of enhanced porosity but lacks length-wise connectivity that could conduct fluids across the valley. Thermal fluid circulation is most likely controlled primarily by interactions between N-S–trending normal faults.
NASA Astrophysics Data System (ADS)
Foerster, M.; Cnossen, I.; Haaland, S.
2015-12-01
Recent observations have shown that the ionospheric/thermospheric response to solar wind and IMF dependent processes in the magnetosphere can be very dissimilar in the Northern and Southern polar regions. We present statistical studies of both the high-latitude ionospheric convection and the upper thermospheric circulation patterns obtained over almost a full solar cycle during the first decade of this century by measurements of the electron drift instrument (EDI) on board the Cluster satellites and by the accelerometer on board the CHAMP spacecraft, respectively. The asymmetries are attributed to the non-dipolar portions of the Earth's magnetic field that constitute hemispheric differences in magnetic flux densities, different offsets of the invariant geomagnetic poles, and generally in different field configurations of both hemispheres. Seasonal and solar cycle effects of the asymmetries are considered and first trials to explain the effects by numerical modeling are presented.
NASA Astrophysics Data System (ADS)
Jahromi, Amir E.; Miller, Franklin K.
2016-03-01
A sub Kelvin Active Magnetic Regenerative Refrigerator (AMRR) is being developed at the University of Wisconsin - Madison. This AMRR consists of two circulators, two regenerators, one superleak, one cold heat exchanger, and two warm heat exchangers. The circulators are novel non-moving part pumps that reciprocate a superfluid mixture of 4He-3He in the system. Heat from the mixture is removed within the two regenerators of this tandem system. An accurate model of the regenerators in this AMRR is necessary in order to predict the performance of these components, which in turn helps predicting the overall performance of the AMRR system. This work presents modeling methodology along with results from a 1-D transient numerical model of the regenerators of an AMRR capable of removing 2.5 mW at 850 mK at cyclic steady state.
Nanomagnet-based removal of lead and digoxin from living rats
NASA Astrophysics Data System (ADS)
Herrmann, Inge K.; Schlegel, Andrea; Graf, Rolf; Schumacher, Christoph M.; Senn, Nico; Hasler, Melanie; Gschwind, Sabrina; Hirt, Ann-Marie; Günther, Detlef; Clavien, Pierre-Alain; Stark, Wendelin J.; Beck-Schimmer, Beatrice
2013-08-01
In a number of clinical conditions such as intoxication, bacteraemia or autoimmune diseases the removal of the disease-causing factor from blood would be the most direct cure. However, physicochemical characteristics of the target compounds limit the applicability of classical filtration and diffusion-based processes. In this work, we present a first in vivo magnetic blood purification rodent animal model and demonstrate its ability to rapidly clear toxins from blood circulation using two model toxins with stable plasma levels (lead (Pb2+) and digoxin). Ultra-strong functionalized metal nanomagnets are employed to eliminate the toxin from whole blood in an extracorporeal circuit. In the present experimental demonstration over 40% of the toxin (i.e. lead or digoxin) was removed within the first 10 minutes and over 75% within 40 minutes. After capturing the target substance, a magnetic trap prevents the toxin-loaded nanoparticles from entering the blood circulation. Elemental analysis and magnetic hysteresis measurements confirm full particle recovery by simple magnetic separation (residual particle concentration below 1 μg mL-1 (detection limit)). We demonstrate that magnetic separation-based blood purification offers rapid blood cleaning from noxious agents, germs or other deleterious materials with relevance to a number of clinical conditions. Based on this new approach, current blood purification technologies can be extended to efficiently remove disease-causing factors, e.g. overdosed drugs, bacteria or cancer cells without being limited by filter cut-offs or column surface saturation.
NASA Astrophysics Data System (ADS)
Oros Pop, Susana Teodora; Berinde, Ioan; Vadan, Ioan
2015-12-01
This paper presents the design and analysis of a permanent magnet moving coil type generator driven by a free piston Stirling engine. This assemble free piston Stirling engine - permanent magnet moving coil type generator will be used in a combined heat and power (CHP) system for producing heat and power in residential area. The design procedure for moving coil type linear generator starts from the rated power imposed and finally uses the Faraday law of induction. The magneto-static magnetic field generated by permanent magnets is analyzed by means of Reluctance method and Finite Element Method in order to evaluate the magnetic flux density in the air gap, which is a design data imposed in the design stage, and the results are compared.
Does Bicarbonate Correct Coagulation Function Impaired by Acidosis in Swine?
2006-07-01
requires sufficient fibrinogen available in the circulation . At any time, fibrinogen availabil- Fig. 4. Thrombin generation kinetics at baseline (T0... circulation can potentially impact physiologic function. As the precursor in the coagulation process, fibrinogen is primarily involved in maintaining...with different proteins. It is also possible that following acidosis insult, some of the albumin loss from the circulation was compensated for by
Goulay, Romain; Flament, Julien; Gauberti, Maxime; Naveau, Michael; Pasquet, Nolwenn; Gakuba, Clement; Emery, Evelyne; Hantraye, Philippe; Vivien, Denis; Aron-Badin, Romina; Gaberel, Thomas
2017-08-01
Subarachnoid hemorrhage (SAH) is a devastating form of stroke with neurological outcomes dependent on the occurrence of delayed cerebral ischemia. It has been shown in rodents that some of the mechanisms leading to delayed cerebral ischemia are related to a decreased circulation of the cerebrospinal fluid (CSF) within the brain parenchyma. Here, we evaluated the cerebral circulation of the CSF in a nonhuman primate in physiological condition and after SAH. We first evaluated in physiological condition the circulation of the brain CSF in Macaca facicularis , using magnetic resonance imaging of the temporal DOTA-Gd distribution after its injection into the CSF. Then, animals were subjected to a minimally invasive SAH before an MRI evaluation of the impact of SAH on the brain parenchymal CSF circulation. We first demonstrate that the CSF actively penetrates the brain parenchyma. Two hours after injection, almost the entire brain is labeled by DOTA-Gd. We also show that our model of SAH in nonhuman primate displays the characteristics of SAH in humans and leads to a dramatic impairment of the brain parenchymal circulation of the CSF. The CSF actively penetrates within the brain parenchyma in the gyrencephalic brain, as described for the glymphatic system in rodent. This parenchymal CSF circulation is severely impaired by SAH. © 2017 American Heart Association, Inc.
Development of energy-harvesting system using deformation of magnetic elastomer
NASA Astrophysics Data System (ADS)
Shinoda, Hayato; Tsumori, Fujio
2018-06-01
In this paper, we propose a power generation method using the deformation of a magnetic elastomer for vibration energy harvesting. The magnetic flux lines in the structure of the magnetic elastomer could be markedly changed if the properly designed structure was expanded and contracted in a static magnetic field. We set a coil on the magnetic elastomer to generate electricity by capturing this change in magnetic flux flow. We fabricated a centimeter-scale device and demonstrated that it generated 10.5 mV of maximum voltage by 10 Hz vibration. We also simulated the change in the magnetic flux flow using finite element analysis, and compared the result with the experimental data. Furthermore, we evaluated the power generation of a miniaturized device.
Methods and apparatus for cooling wind turbine generators
Salamah, Samir A [Niskayuna, NY; Gadre, Aniruddha Dattatraya [Rexford, NY; Garg, Jivtesh [Schenectady, NY; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Alplaus, NY; Carl, Jr., Ralph James
2008-10-28
A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.
NASA Astrophysics Data System (ADS)
Li, Xingfu; Shi, Qing; Wang, Huaping; Sun, Tao; Huang, Qiang; Fukuda, Toshio
2017-12-01
In this paper, a magnetically-guided assembly method is proposed to methodically construct diverse modules with a microfiber-based network for promoting nutrient circulation and waste excretion of cell culture. The microfiber is smoothly spun from the microfluidic device via precise control of the volumetric flow rate, and superparamagnetic nanoparticles within the alginate solution of the microfluidic fiber enable its magnetic response. The magnetized device is used to effectively capture the microfiber using its powerful magnetic flux density and high magnetic field gradient. Subsequently, the dot-matrix magnetic flux density is used to distribute the microfibers in an orderly fashion that depends on the array structure of the magnetized device. Furthermore, the magnetic microfluidic fibers are spatially organized into desired locations and are cross-aligned to form highly interconnected netlike modules in a liquid environment. Therefore, the experimental results herein demonstrate the structural controllability and stability of various modules and establish the effectiveness of the proposed method.
Fluorescent lamp with static magnetic field generating means
Moskowitz, Philip E.; Maya, Jakob
1987-01-01
A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed.
Fluorescent lamp with static magnetic field generating means
Moskowitz, P.E.; Maya, J.
1987-09-08
A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.
Substantially parallel flux uncluttered rotor machines
Hsu, John S.
2012-12-11
A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gertjerenken, B.; Kevrekidis, P. G.; Carretero-González, R.
Here, we numerically investigate an experimentally viable method for generating and manipulating on-demand several vortices in a highly oblate atomic Bose-Einstein condensate (BEC) in order to initialize complex vortex distributions for studies of vortex dynamics. The method utilizes moving laser beams to generate, capture, and transport vortices inside and outside the BEC. This methodology is examined in detail and shows a wide parameter range of applicability for the prototypical two-vortex case, as well as case examples of producing and manipulating several vortices for which there is no net circulation, corresponding to equal numbers of positive and negative circulation vortices, andmore » cases for which there is one net quantum of circulation. We also find that the presence of dissipation can help stabilize the pinning of the vortices on their respective laser beam pinning sites. Finally, we illustrate how to utilize laser beams as repositories that hold large numbers of vortices and how to deposit individual vortices in a sequential fashion in the repositories in order to construct superfluid flows about the repository beams with several quanta of circulation.« less
Gertjerenken, B.; Kevrekidis, P. G.; Carretero-González, R.; ...
2016-02-01
Here, we numerically investigate an experimentally viable method for generating and manipulating on-demand several vortices in a highly oblate atomic Bose-Einstein condensate (BEC) in order to initialize complex vortex distributions for studies of vortex dynamics. The method utilizes moving laser beams to generate, capture, and transport vortices inside and outside the BEC. This methodology is examined in detail and shows a wide parameter range of applicability for the prototypical two-vortex case, as well as case examples of producing and manipulating several vortices for which there is no net circulation, corresponding to equal numbers of positive and negative circulation vortices, andmore » cases for which there is one net quantum of circulation. We also find that the presence of dissipation can help stabilize the pinning of the vortices on their respective laser beam pinning sites. Finally, we illustrate how to utilize laser beams as repositories that hold large numbers of vortices and how to deposit individual vortices in a sequential fashion in the repositories in order to construct superfluid flows about the repository beams with several quanta of circulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-01
BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses nomore » ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.« less
Vlasov analysis of microbunching instability for magnetized beams
Tsai, C. -Y.; Derbenev, Ya. S.; Douglas, D.; ...
2017-05-19
For a high-brightness electron beam with low energy and high bunch charge traversing a recirculation beamline, coherent synchrotron radiation and space charge effect may result in the microbunching instability (MBI). Both tracking simulation and Vlasov analysis for an early design of Circulator Cooler Ring for the Jefferson Lab Electron Ion Collider reveal significant MBI. It is envisioned these could be substantially suppressed by using a magnetized beam. In this work, we extend the existing Vlasov analysis, originally developed for a non-magnetized beam, to the description of transport of a magnetized beam including relevant collective effects. As a result, the newmore » formulation will be further employed to confirm prediction of microbunching suppression for a magnetized beam transport in a recirculating machine design.« less
Deng, Zhengyu; Yuan, Shuai; Xu, Ronald X; Liang, Haojun; Liu, Shiyong
2018-05-16
A dilemma exists between the circulation stability and cargo release/mass diffusion at desired sites for designing delivery nanocarriers and in vivo nanoreactors. We herein report disulfide-crosslinked (DCL) micelles exhibiting reduction-triggered switching of crosslinking modules and synchronized hydrophobic-to-hydrophilic transition. Tumor cell-targeted DCL micelles undergo cytoplasmic milieu-triggered disulfide cleavage and cascade self-immolative decaging reactions at chemically adjustable rates, generating primary amine moieties. Extensive amidation reactions with neighboring ester moieties then occur due to high local concentrations and suppression of apparent amine pKa within hydrophobic cores, leading to the transformation of crosslinking modules and formation of tracelessly crosslinked (TCL) micelles with hydrophilic cores inside live cells. We further integrate this design principle with theranostic nanocarriers for selective intracellular drug transport guided by enhanced magnetic resonance (MR) imaging performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Azimuthal swirl in liquid metal electrodes and batteries
NASA Astrophysics Data System (ADS)
Ashour, Rakan; Kelley, Douglas
2016-11-01
Liquid metal batteries consist of two molten metals with different electronegativity separated by molten salt. In these batteries, critical performance related factors such as the limiting current density are governed by fluid mixing in the positive electrode. In this work we present experimental results of a swirling flow in a layer of molten lead-bismuth alloy driven by electrical current. Using in-situ ultrasound velocimetery, we show that poloidal circulation appears at low current density, whereas azimuthal swirl becomes dominant at higher current density. The presence of thermal gradients produces buoyant forces, which are found to compete with those produced by current injection. Taking the ratio of the characteristic electromagnetic to buoyant flow velocity, we are able to predict the current density at which the flow becomes electromagnetically driven. Scaling arguments are also used to show that swirl is generated through self-interaction between the electrical current in the electrode with its own magnetic field.
Tecchio, Franca; Assenza, Giovanni; Zappasodi, Filippo; Mariani, Stefania; Salustri, Carlo; Squitti, Rosanna
2011-01-01
Objective. To verify whether markers of metal homeostasis are related to a magnetoencephalographic index representative of glutamate-mediated excitability of the primary somatosensory cortex. The index is identified as the source strength of the earliest component (M20) of the somatosensory magnetic fields (SEFs) evoked by right median nerve stimulation at wrist. Method. Thirty healthy right-handed subjects (51 ± 22 years) were enrolled in the study. A source reconstruction algorithm was applied to assess the amount of synchronously activated neurons subtending the M20 and the following SEF component (M30), which is generated by two independent contributions of gabaergic and glutamatergic transmission. Serum copper, ceruloplasmin, iron, transferrin, transferrin saturation, and zinc levels were measured. Results. Total copper and ceruloplasmin negatively correlated with the M20 source strength. Conclusion. This pilot study suggests that higher level of body copper reserve, as marked by ceruloplasmin variations, parallels lower cortical glutamatergic responsiveness. PMID:22145081
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Circulating fluidized-bed (CFB) boilers have ben used for years in Scandinavia to burn refuse-derived fuel (RDF). Now, Foster Wheeler Power Systems, Inc., (Clinton, N.J.) is bringing the technology to the US. Touted as the world`s largest waste-to-energy plant to use CFB technology, the Robbins (III.) Resource Recovery Facility will have the capacity to process 1,600 tons/d of municipal solid waste (MSW) when it begins operation in early 1997. The facility will have two materials-separation and RDF-processing trains, each with dual trommel screens, magnetic and eddy current separators, and shredders. About 25% of the incoming MSW will be sorted and removedmore » for recycling, while 75% of it will be turned into fuel, with a heat value of roughly 6,170 btu/lb. Once burned in the twin CFB boilers the resulting steam will be routed through a single turbine generator to produce 50,000 mW of electric power.« less
Radiation damage studies of soft magnetic metallic glasses irradiated with high-energy heavy ions
NASA Astrophysics Data System (ADS)
Pavlovič, Márius; Miglierini, Marcel; Mustafin, Edil; Ensinger, Wolfgang; Šagátová, Andrea; Šoka, Martin
2015-01-01
Some soft magnetic metallic glasses are considered for use in magnetic cores of accelerator radio frequency cavities. Due to losses of the circulating ion beam, they may be exposed to irradiation by different ions at different energies. This paper presents data and review results of irradiation experiments concerning the influence of high-energy heavy ions on magnetic susceptibility of VITROPERM®-type metallic glasses. Samples of the VITROPERM® magnetic ribbons were irradiated by Au, Xe and U ions at 11.1 MeV/A (per nucleon) and 5.9 MeV/A, respectively. Irradiation fluences from 1 × 1011 up to 1 × 1013 ions/cm2 were applied. In case of the Au and U ions, the total fluence was accumulated in one beamtime, whereas two separate beamtimes were used to accumulate the final fluence in case of the Xe ions. Relative change in the samples' magnetic susceptibility after and before irradiation was evaluated as a function of the irradiation fluence. The irradiation experiments were performed with the UNILAC accelerator at GSI Helmholtzzentrum für Schwerionenforschung GmbH. They were simulated in SRIM2010 in order to obtain ionization densities (electronic stopping, dE/dx) and dpa (displacements per atom) caused by the ion beams in the sample material. This paper focuses mainly on the results collected in experiments with the Xe ions and compares them with data obtained in earlier experiments using Au and U ions. Radiation hardness of VITROPERM® is compared with radiation hardness of VITROVAC® that was studied in previous experiments. The VITROPERM® samples showed less drop in magnetic susceptibility in comparison with the VITROVAC® ones, and this drop occurred at higher fluences. This indicates higher radiation hardness of VITROPERM® compared with VITROVAC®. In addition, heavier ions cause bigger change in magnetic susceptibility than the lighter ones. The effect can be roughly scaled with electronic stopping, which suggests that the main mechanism of radiation damage is associated with swift electrons generated in the material via ionization by primary heavy ions.
External split field generator
Thundat, Thomas George [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN
2012-02-21
A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.
Performance evaluation approach for the supercritical helium cold circulators of ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaghela, H.; Sarkar, B.; Bhattacharya, R.
2014-01-29
The ITER project design foresees Supercritical Helium (SHe) forced flow cooling for the main cryogenic components, namely, the superconducting (SC) magnets and cryopumps (CP). Therefore, cold circulators have been selected to provide the required SHe mass flow rate to cope with specific operating conditions and technical requirements. Considering the availability impacts of such machines, it has been decided to perform evaluation tests of the cold circulators at operating conditions prior to the series production in order to minimize the project technical risks. A proposal has been conceptualized, evaluated and simulated to perform representative tests of the full scale SHe coldmore » circulators. The objectives of the performance tests include the validation of normal operating condition, transient and off-design operating modes as well as the efficiency measurement. A suitable process and instrumentation diagram of the test valve box (TVB) has been developed to implement the tests at the required thermodynamic conditions. The conceptual engineering design of the TVB has been developed along with the required thermal analysis for the normal operating conditions to support the performance evaluation of the SHe cold circulator.« less
Solar Surface Velocity in the Large Scale estimated by Magnetic Element Tracking Method
NASA Astrophysics Data System (ADS)
Fujiyama, M.; Imada, S.; Iijima, H.; Machida, S.
2017-12-01
The 11years variation in the solar activity is one of the important sources of decadal variation in the solar-terrestrial environment. Therefore, predicting the solar cycle activity is crucial for the space weather. To build the prediction schemes for the next solar cycle is a key for the long-term space weather study. Recently, the relationship between polar magnetic field at the solar minimum and next solar cycle activity is intensively discussed. Nowadays, many people believe that the polar magnetic field at the solar minimum is one of the best predictor for the next solar cycle. To estimate polar magnetic field, Surface Flux Transport (SFT) model have been often used. On the other hand, SFT model needs several parameters, for example Meridional circulation, differential rotation, turbulent diffusion etc.. So far, those parameters have not been fully understood, and their uncertainties may affect the accuracy of the prediction. In this study, we try to discuss the parameters which are used in SFT model. We focus on two kinds of the solar surface motions, Differential rotation and Meridional circulation. First, we have developed Magnetic Element Tracking (MET) module, which is able to obtain the surface velocity by using the magnetic field data. We have used SOHO/MDI and SDO/HMI for the magnetic field data. By using MET, we study the solar surface motion over 2 cycle (nearly 24 years), and we found that the velocity variation is related to the active region belt. This result is consistent with [Hathaway et al., 2011]. Further, we apply our module to the Hinode/SOT data which spatial resolution is high. Because of its high resolution, we can discuss the surface motion close to the pole which has not been discussed enough. Further, we discuss the relationship between the surface motion and the magnetic field strength and the location of longitude.
Sorber, L; Zwaenepoel, K; Deschoolmeester, V; Van Schil, P E Y; Van Meerbeeck, J; Lardon, F; Rolfo, C; Pauwels, P
2017-05-01
Lung cancer is the predominant cause of cancer-related mortality in the world. The majority of patients present with locally advanced or metastatic non-small-cell lung cancer (NSCLC). Treatment for NSCLC is evolving from the use of cytotoxic chemotherapy to personalized treatment based on molecular alterations. Unfortunately, the quality of the available tumor biopsy and/or cytology material is not always adequate to perform the necessary molecular testing, which has prompted the search for alternatives. This review examines the use of circulating cell-free nucleic acids (cfNA), consisting of both circulating cell-free (tumoral) DNA (cfDNA-ctDNA) and RNA (cfRNA), as a liquid biopsy in lung cancer. The development of sensitive and accurate techniques such as Next-Generation Sequencing (NGS); Beads, Emulsion, Amplification, and Magnetics (BEAMing); and Digital PCR (dPCR), have made it possible to detect the specific genetic alterations (e.g. EGFR mutations, MET amplifications, and ALK and ROS1 translocations) for which targeted therapies are already available. Moreover, the ability to detect and quantify these tumor mutations has enabled the follow-up of tumor dynamics in real time. Liquid biopsy offers opportunities to detect resistance mechanisms, such as the EGFR T790M mutation in the case of EGFR TKI use, at an early stage. Several studies have already established the predictive and prognostic value of measuring ctNA concentration in the blood. To conclude, using ctNA analysis as a liquid biopsy has many advantages and allows for a variety of clinical and investigational applications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Intraventricular vortex properties in nonischemic dilated cardiomyopathy
Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Martínez-Legazpi, Pablo; del Villar, Candelas Pérez; Pérez-David, Esther; González-Mansilla, Ana; Santa-Marta, Cristina; Barrio, Alicia; Fernández-Avilés, Francisco; del Álamo, Juan C.
2014-01-01
Vortices may have a role in optimizing the mechanical efficiency and blood mixing of the left ventricle (LV). We aimed to characterize the size, position, circulation, and kinetic energy (KE) of LV main vortex cores in patients with nonischemic dilated cardiomyopathy (NIDCM) and analyze their physiological correlates. We used digital processing of color-Doppler images to study flow evolution in 61 patients with NIDCM and 61 age-matched control subjects. Vortex features showed a characteristic biphasic temporal course during diastole. Because late filling contributed significantly to flow entrainment, vortex KE reached its maximum at the time of the peak A wave, storing 26 ± 20% of total KE delivered by inflow (range: 1–74%). Patients with NIDCM showed larger and stronger vortices than control subjects (circulation: 0.008 ± 0.007 vs. 0.006 ± 0.005 m2/s, respectively, P = 0.02; KE: 7 ± 8 vs. 5 ± 5 mJ/m, P = 0.04), even when corrected for LV size. This helped confining the filling jet in the dilated ventricle. The vortex Reynolds number was also higher in the NIDCM group. By multivariate analysis, vortex KE was related to the KE generated by inflow and to chamber short-axis diameter. In 21 patients studied head to head, Doppler measurements of circulation and KE closely correlated with phase-contract magnetic resonance values (intraclass correlation coefficient = 0.82 and 0.76, respectively). Thus, the biphasic nature of filling determines normal vortex physiology. Vortex formation is exaggerated in patients with NIDCM due to chamber remodeling, and enlarged vortices are helpful for ameliorating convective pressure losses and facilitating transport. These findings can be accurately studied using ultrasound. PMID:24414062
Global exosome transcriptome profiling reveals biomarkers for multiple sclerosis.
Selmaj, Igor; Cichalewska, Maria; Namiecinska, Magdalena; Galazka, Grazyna; Horzelski, Wojciech; Selmaj, Krzysztof W; Mycko, Marcin P
2017-05-01
Accumulating evidence supports a role for exosomes in immune regulation. In this study, we investigated the total circulating exosome transcriptome in relapsing-remitting multiple sclerosis (RRMS) patients and healthy controls (HC). Next generation sequencing (NGS) was used to define the global RNA profile of serum exosomes in 19 RRMS patients (9 in relapse, 10 in remission) and 10 HC. We analyzed 5 million reads and >50,000 transcripts per sample, including a detailed analysis of microRNAs (miRNAs) differentially expressed in RRMS. The discovery set data were validated by quantification using digital quantitative polymerase chain reaction with an independent cohort of 63 RRMS patients (33 in relapse, 30 in remission) and 32 HC. Exosomal RNA NGS revealed that of 15 different classes of transcripts detected, 4 circulating exosomal sequences within the miRNA category were differentially expressed in RRMS patients versus HC: hsa-miR-122-5p, hsa-miR-196b-5p, hsa-miR-301a-3p, and hsa-miR-532-5p. Serum exosomal expression of these miRNAs was significantly decreased during relapse in RRMS. These miRNAs were also decreased in patients with a gadolinium enhancement on brain magnetic resonance imaging. In vitro secretion of these miRNAs by peripheral blood mononuclear cells was also significantly impaired in RRMS. These data show that circulating exosomes have a distinct RNA profile in RRMS. Because putative targets for these miRNAs include the signal transducer and activator of transcription 3 and the cell cycle regulator aryl hydrocarbon receptor, the data suggest a disturbed cell-to-cell communication in this disease. Thus, exosomal miRNAs might represent a useful biomarker to distinguish multiple sclerosis relapse. Ann Neurol 2017;81:703-717. © 2017 American Neurological Association.
Design and Operation of the RHIC 80-K Cooler
NASA Astrophysics Data System (ADS)
Nicoletti, A.; Reuter, A.; Sidi-Yekhlef, A.; Talty, P.; Quimby, E.
2004-06-01
A stand-alone cryogenic system designed to maintain the magnets of the Relativistic Heavy Ion Collider (RHIC) at between 80 and 100 K during accelerator shutdown periods has been conceived and designed at Brookhaven National Laboratory and built by PHPK Technologies of Columbus, Ohio. Since most thermal contraction occurs above this temperature, this unit, referred to as the 80-K Cooler, will eliminate the stresses associated with thermal cycling. The cooling system will provide the necessary refrigeration by circulating cooled helium gas at approximately 1500 kPA through the RHIC heat shields and magnets. This helium is cooled by heat exchange with liquid nitrogen and circulated via three cold centrifugal pumps. The nominal delivered cooling capacity required to maintain the magnets at temperature is approximately 36 kW, primarily intercepted at the heat shield. The system also has separate heat exchangers for use as a pre-cooler from room temperature to 82 K. Selection of sextant or sextants for pre-cooling is designed into the RHIC cryogenic distribution system. Topics covered include Cooler design decisions, details of the Cooler as built, integration into the existing RHIC cryogenic system and initial operating experience.
NASA Astrophysics Data System (ADS)
Xu, Jin
2017-12-01
When an electric field is applied on a topological insulator, not only the electric field is generated, but also the magnetic field is generated, vice versa. I designed topological insulator and superconductor bi-layer magnetic cloak, derived the electric field and magnetic field inside and outside the topological insulator and superconductor sphere. Simulation and calculation results show that the applied magnetic field is screened by the topological insulator and superconductor bi-layer, and the electric field is generated in the cloaked region.
Reflux cooling experiments on the NCSU scaled PWR facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doster, J.M.; Giavedoni, E.
1993-01-01
Under loss of forced circulation, coupled with the loss or reduction in primary side coolant inventory, horizontal stratified flows can develop in the hot and cold legs of pressurized water reactors (PWRs). Vapor produced in the reactor vessel is transported through the hot leg to the steam generator tubes where it condenses and flows back to the reactor vessel. Within the steam generator tubes, the flow regimes may range from countercurrent annular flow to single-phase convection. As a result, a number of heat transfer mechanisms are possible, depending on the loop configuration, total heat transfer rate, and the steam flowmore » rate within the tubes. These include (but are not limited to) two-phase natural circulation, where the condensate flows concurrent to the vapor stream and is transported to the cold leg so that the entire reactor coolant loop is active, and reflux cooling, where the condensate flows back down the interior of the coolant tubes countercurrent to the vapor stream and is returned to the reactor vessel through the hot leg. While operating in the reflux cooling mode, the cold leg can effectively be inactive. Heat transfer can be further influenced by noncondensables in the vapor stream, which accumulate within the upper regions of the steam generator tube bundle. In addition to reducing the steam generator's effective heat transfer area, under these conditions operation under natural circulation may not be possible, and reflux cooling may be the only viable heat transfer mechanism. The scaled PWR (SPWR) facility in the nuclear engineering department at North Carolina State Univ. (NCSU) is being used to study the effectiveness of two-phase natural circulation and reflux cooling under conditions associated with loss of forced circulation, midloop coolant levels, and noncondensables in the primary coolant system.« less
Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles.
Putman, Nathan F; Verley, Philippe; Endres, Courtney S; Lohmann, Kenneth J
2015-04-01
During long-distance migrations, animals navigate using a variety of sensory cues, mechanisms and strategies. Although guidance mechanisms are usually studied under controlled laboratory conditions, such methods seldom allow for navigation behavior to be examined in an environmental context. Similarly, although realistic environmental models are often used to investigate the ecological implications of animal movement, explicit consideration of navigation mechanisms in such models is rare. Here, we used an interdisciplinary approach in which we first conducted lab-based experiments to determine how hatchling loggerhead sea turtles (Caretta caretta) respond to magnetic fields that exist at five widely separated locations along their migratory route, and then studied the consequences of the observed behavior by simulating it within an ocean circulation model. Magnetic fields associated with two geographic regions that pose risks to young turtles (due to cold wintertime temperatures or potential displacement from the migratory route) elicited oriented swimming, whereas fields from three locations where surface currents and temperature pose no such risk did not. Additionally, at locations with fields that elicited oriented swimming, simulations indicate that the observed behavior greatly increases the likelihood of turtles advancing along the migratory pathway. Our findings suggest that the magnetic navigation behavior of sea turtles is intimately tied to their oceanic ecology and is shaped by a complex interplay between ocean circulation and geomagnetic dynamics. © 2015. Published by The Company of Biologists Ltd.
A Two-Stage Microfluidic Device for the Isolation and Capture of Circulating Tumor Cells
NASA Astrophysics Data System (ADS)
Cook, Andrew; Belsare, Sayali; Giorgio, Todd; Mu, Richard
2014-11-01
Analysis of circulating tumor cells (CTCs) can be critical for studying how tumors grow and metastasize, in addition to personalizing treatment for cancer patients. CTCs are rare events in blood, making it difficult to remove CTCs from the blood stream. Two microfluidic devices have been developed to separate CTCs from blood. The first is a double spiral device that focuses cells into streams, the positions of which are determined by cell diameter. The second device uses ligand-coated magnetic nanoparticles that selectively attach to CTCs. The nanoparticles then pull CTCs out of solution using a magnetic field. These two devices will be combined into a single 2-stage microfluidic device that will capture CTCs more efficiently than either device on its own. The first stage depletes the number of blood cells in the sample by size-based separation. The second stage will magnetically remove CTCs from solution for study and culturing. Thus far, size-based separation has been achieved. Research will also focus on understanding the equations that govern fluid dynamics and magnetic fields in order to determine how the manipulation of microfluidic parameters, such as dimensions and flow rate, will affect integration and optimization of the 2-stage device. NSF-CREST: Center for Physics and Chemistry of Materials. HRD-0420516; Department of Defense, Peer Reviewed Medical Research Program Award W81XWH-13-1-0397.
Spaceborne studies of ocean circulation
NASA Technical Reports Server (NTRS)
Patzert, W. C.
1984-01-01
The history and near-term future of ocean remote sensing to study ocean circulation are examined. Seasat provided the first-ever global data sets of sea surface topography (altimeter) and marine winds (scatterometer) and laid the foundation for the next generation of satellite missions planned for the late 1980s. The future missions are the next generation of altimeter and scatterometer to be flown aboard TOPEX (TOPography EXperiment) and NROSS (Navy Remote Sensing System), respectively. The data from these satellites will be coordinated with measurements made at sea to determine the driving forces of ocean circulation and to study the oceans' role in climate variability. The significance of such studies to such matters as climatic changes, fisheries, commerce, waste disposal, and national defense is noted.
Arterial Wall Imaging in Pediatric Stroke.
Dlamini, Nomazulu; Yau, Ivanna; Muthusami, Prakash; Mikulis, David J; Elbers, Jorina; Slim, Mahmoud; Askalan, Rand; MacGregor, Daune; deVeber, Gabrielle; Shroff, Manohar; Moharir, Mahendranath
2018-04-01
Arteriopathy is common in childhood arterial ischemic stroke (AIS) and predicts stroke recurrence. Currently available vascular imaging techniques mainly image the arterial lumen rather than the vessel wall and have a limited ability to differentiate among common arteriopathies. We aimed to investigate the value of a magnetic resonance imaging-based technique, namely noninvasive arterial wall imaging (AWI), for distinguishing among arteriopathy subtypes in a consecutive cohort of children presenting with AIS. Children with confirmed AIS and magnetic resonance angiography underwent 3-Tesla AWI including T1-weighted 2-dimensional fluid-attenuated inversion recovery fast spin echo sequences pre- and post-gadolinium contrast. AWI characteristics, including wall enhancement, wall thickening, and luminal stenosis, were documented for all. Twenty-six children with AIS had AWI. Of these, 9 (35%) had AWI enhancement. AWI enhancement was associated with anterior circulation magnetic resonance angiography abnormality and cortical infarction in 8 of 9 (89%) children and normal magnetic resonance angiography with posterior circulation subcortical infarction in 1 (1 of 9; 11%) child. AWI enhancement was not seen in 17 (65%), 10 (59%) of whom had an abnormal magnetic resonance angiography. Distinct patterns of pre- and postcontrast signal abnormality were demonstrated in the vessel wall in the region of interest in children with transient cerebral arteriopathy, arterial dissection, primary central nervous system angiitis, dissecting aneurysm, and cardioembolic stroke. AWI is a noninvasive, high-resolution magnetic resonance AWI technique, which can be successfully used in children presenting with AIS. Patterns of AWI enhancement are recognizable and associated with specific AIS pathogeneses. Further studies are required to assess the additional diagnostic utility of AWI over routine vascular imaging techniques, in childhood AIS. © 2018 American Heart Association, Inc.
Fabrication and test of model superconducting inflector for g-2 at FNAL
Krave, Steven; Kashikhin, Vladimir S.; Strauss, Thomas
2017-03-01
The new FNAL g-2 experiment is based on the muon storage ring previously used at BNL. The 1.45 T dipole magnetic field in the storage ring is required to have very high (1 ppm) homogeneity. The muon beam injected into the ring must be transported through the magnet yoke and the main superconducting coil cryostat with minimal distortions. The old inflector magnet shielded the main dipole fringe field inside the muon transport beam pipe, with an outer NbTi superconducting screen, and did not disturb the field in the area of circulating beam. Nevertheless, this magnet had coils with closed endsmore » in which a large fraction of muon beam particles were lost. A new magnet is envisioned utilizing the same cross section as the original with open ends for improved beam transport. A model magnet has been wound utilizing 3d printed parts to verify the magnetic behavior of the magnet at room temperature and validate winding of the complicated geometry required for the magnet ends. Finally, room temperature magnetic measurements have been performed and confirm the magnetic design« less
Feasibility Study of Jupiter Icy Moons Orbiter Permanent Magnet Alternator Start Sequence
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Tokars, Roger P.
2006-01-01
The Jupiter Icy Moons Orbiter (JIMO) mission was a proposed, (recently cancelled) long duration science mission to study three moons of Jupiter: Callisto, Ganymede, and Europa. One design of the JIMO spacecraft used a nuclear heat source in conjunction with a Brayton rotating machine to generate electrical power for the electric thrusters and the spacecraft bus. The basic operation of the closed cycle Brayton system was as follows. The working fluid, a heliumxenon gas mixture, first entered a compressor, then went through a recuperator and hot-side heat exchanger, then expanded across a turbine that drove an alternator, then entered the cold-side of the recuperator and heat exchanger and finally returned to the compressor. The spacecraft was to be launched with the Brayton system off-line and the nuclear reactor shut down. Once the system was started, the helium-xenon gas would be circulated into the heat exchangers as the nuclear reactors were activated. Initially, the alternator unit would operate as a motor so as to drive the turbine and compressor to get the cycle started. This report investigated the feasibility of the start up sequence of a permanent magnet (PM) machine, similar in operation to the alternator unit, without any position or speed feedback sensors ("sensorless") and with a variable load torque. It is found that the permanent magnet machine can start with sensorless control and a load torque of up to 30 percent of the rated value.
Zharkova, V. V.; Shepherd, S. J.; Popova, E.; Zharkov, S. I.
2015-01-01
We derive two principal components (PCs) of temporal magnetic field variations over the solar cycles 21–24 from full disk magnetograms covering about 39% of data variance, with σ = 0.67. These PCs are attributed to two main magnetic waves travelling from the opposite hemispheres with close frequencies and increasing phase shift. Using symbolic regeression analysis we also derive mathematical formulae for these waves and calculate their summary curve which we show is linked to solar activity index. Extrapolation of the PCs backward for 800 years reveals the two 350-year grand cycles superimposed on 22 year-cycles with the features showing a remarkable resemblance to sunspot activity reported in the past including the Maunder and Dalton minimum. The summary curve calculated for the next millennium predicts further three grand cycles with the closest grand minimum occurring in the forthcoming cycles 26–27 with the two magnetic field waves separating into the opposite hemispheres leading to strongly reduced solar activity. These grand cycle variations are probed by α − Ω dynamo model with meridional circulation. Dynamo waves are found generated with close frequencies whose interaction leads to beating effects responsible for the grand cycles (350–400 years) superimposed on a standard 22 year cycle. This approach opens a new era in investigation and confident prediction of solar activity on a millenium timescale. PMID:26511513
Ganju, Neil K.; Lentz, Steven J.; Kirincich, Anthony R.; Farrar, J. Thomas
2011-01-01
Inner-shelf circulation is governed by the interaction between tides, baroclinic forcing, winds, waves, and frictional losses; the mean circulation ultimately governs exchange between the coast and ocean. In some cases, oscillatory tidal currents interact with bathymetric features to generate a tidally rectified flow. Recent observational and modeling efforts in an overlapping domain centered on the Martha's Vineyard Coastal Observatory (MVCO) provided an opportunity to investigate the spatial and temporal complexity of circulation on the inner shelf. ADCP and surface radar observations revealed a mean circulation pattern that was highly variable in the alongshore and cross-shore directions. Nested modeling incrementally improved representation of the mean circulation as grid resolution increased and indicated tidal rectification as the generation mechanism of a counter-clockwise gyre near the MVCO. The loss of model skill with decreasing resolution is attributed to insufficient representation of the bathymetric gradients (Δh/h), which is important for representing nonlinear interactions between currents and bathymetry. The modeled momentum balance was characterized by large spatial variability of the pressure gradient and horizontal advection terms over short distances, suggesting that observed inner-shelf momentum balances may be confounded. Given the available observational and modeling data, this work defines the spatially variable mean circulation and its formation mechanism—tidal rectification—and illustrates the importance of model resolution for resolving circulation and constituent exchange near the coast. The results of this study have implications for future observational and modeling studies near the MVCO and other inner-shelf locations with alongshore bathymetric variability.
Regional climates in the GISS general circulation model: Surface air temperature
NASA Technical Reports Server (NTRS)
Hewitson, Bruce
1994-01-01
One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.
NASA Astrophysics Data System (ADS)
Matsumoto, Tadafumi; Sekiguchi, Jun'ichi; Asai, Tomohiko
In the formation of magnetized plasmoid by a magnetized coaxial plasma gun (MCPG), the magnetic helicity content of the generated plasmoid is one of the critical parameters. Typically, the bias coil to generate a poloidal flux is mounted either on the outer electrode or inside the inner electrode. However, most of the flux generated in the conventional method spreads even radially outside of the formation region. Thus, only a fraction of the total magnetic flux is actually exploited for helicity generation in the plasmoid. In the proposed system, the plasma gun incorporates a copper shell mounted on the outer electrode. By changing the rise time of the discharge bias coil current and the geometrical structure of the shell, the magnetic field structure and its time evolution can be controlled. The effect of the copper shell has been numerically simulated for the actual gun structure, and experimentally confirmed. This may increase the magnetic helicity content results, through increased poloidal magnetic field.
Test Bench for Coupling and Shielding Magnetic Fields
NASA Astrophysics Data System (ADS)
Jordan, J.; Esteve, V.; Dede, E.; Sanchis, E.; Maset, E.; Ferreres, A.; Ejea, J. B.; Cases, C.
2016-05-01
This paper describes a test bench for training purposes, which uses a magnetic field generator to couple this magnetic field to a victim circuit. It can be very useful to test for magnetic susceptibility as well. The magnetic field generator consists of a board, which generates a variable current that flows into a printed circuit board with spiral tracks (noise generator). The victim circuit consists of a coaxial cable concentric with the spiral tracks and its generated magnetic field. The coaxial cable is part of a circuit which conducts a signal produced by a signal generator and a resistive load. In the paper three cases are studied. First, the transmitted signal from the signal generator uses the central conductor of the coaxial cable and the shield is floating. Second, the shield is short circuited at its ends (and thus forming a loop). Third, when connecting the shield in series with the inner conductor and therefore having the current flowing into the coax via the inner conductor and returning via the shield.
Design of portable electric and magnetic field generators
NASA Astrophysics Data System (ADS)
Stewart, M. G.; Siew, W. H.; Campbell, L. C.; Stewart, M. G.; Siew, W. H.
2000-11-01
Electric and magnetic field generators capable of producing high-amplitude output are not readily available. This presents difficulties for electromagnetic compatibility testing of new measurement systems where these systems are intended to operate in a particularly hostile electromagnetic environment. A portable electric and a portable magnetic field generator having high pulsed field output are described in this paper. The output of these generators were determined using an electromagnetic-compatible measurement system. These generators allow immunity testing in the laboratory of electronic systems to very high electrical fields, as well as for functional verification of the electronic systems on site. In the longer term, the basic design of the magnetic field generator may be developed as the generator to provide the damped sinusoid magnetic field specified in IEC 61000-4-10, which is adopted in BS EN 61000-4-10.
NASA Astrophysics Data System (ADS)
Zhou, Jianxin; Kang, Wen; Li, Shuai; Liu, Yudong; Liu, Yiqin; Xu, Shouyan; Guo, Xiaoling; Wu, Xi; Deng, Changdong; Li, Li; Wu, Yuwen; Wang, Sheng
2018-02-01
The China Spallation Neutron Source (CSNS) has two major accelerator systems, a linear accelerator and a rapid cycling synchrotron (RCS). The RCS accelerator is used to accumulate and accelerate protons from the energy of 80 MeV to the design energy of 1.6 GeV at the repetition rate of 25 Hz, and extract the high energy beam to the target. The main magnets of the RCS accelerator are excited by AC current with DC bias. The magnetic field quality is very important for the RCS accelerator operation, since it should guarantee and focus a circulating beam. In order to characterize the AC magnets, a small flip coil measurement system has been developed and one of each type of AC magnets has been studied. The measurement system and selected measurement results are presented in this paper.
How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity
NASA Technical Reports Server (NTRS)
Hathaway, D. H.
2004-01-01
Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.
The Earth: Kinda like a Mai Tai?
NASA Astrophysics Data System (ADS)
Jellinek, M.
2005-12-01
Many problems in the Earth sciences involve fluid flow. Examples include the formation and differentiation of planets, mantle convection, plate tectonics, the generation of planetary magnetic fields, the generation, rise, and chemical differentiation of magmas, crystal nucleation and growth, sedimentation and mechanical erosion at riverbeds, and circulation in the atmosphere and oceans. In each of these situations fluid motions arise as a result of balances among body forces (e.g. effects of gravitational and magnetic fields) and (or) surface forces (e.g. effects of surface tension, shear and pressure gradients). Processes in which such force balance arise naturally are examples of ``Natural convection''. Familiar examples of natural convection include thermally-driven motions above a radiator in a cold room or inside a pot of pasta sauce warmed on a stove. Analog fluid mechanics experiments are a useful and fun way to isolate and learn about the mechanics of such processes. Experiments need not be done in a fluid dynamics laboratory. Indeed some of the most interesting occur in your favorite cocktails. In this demonstration I first use household materials from the kitchen and from the liquor cabinet to isolate and build understanding of individual examples of convection driven by thermal, compositional and surface tension effects over a range of conditions. Next, using more complicated experiments with actual and analog bar drinks I will present and analyze a number of coupled convective processes and also address the role of the rheology of the working fluids. In particular, the structure, transport and mixing properties of the motions are investigated.
Witek, Małgorzata A; Aufforth, Rachel D; Wang, Hong; Kamande, Joyce W; Jackson, Joshua M; Pullagurla, Swathi R; Hupert, Mateusz L; Usary, Jerry; Wysham, Weiya Z; Hilliard, Dawud; Montgomery, Stephanie; Bae-Jump, Victoria; Carey, Lisa A; Gehrig, Paola A; Milowsky, Matthew I; Perou, Charles M; Soper, John T; Whang, Young E; Yeh, Jen Jen; Martin, George; Soper, Steven A
2017-01-01
Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges.
METHOD AND APPARATUS FOR TRAPPING IONS IN A MAGNETIC FIELD
Luce, J.S.
1962-04-17
A method and apparatus are described for trapping ions within an evacuated container and within a magnetic field utilizing dissociation and/or ionization of molecular ions to form atomic ions and energetic neutral particles. The atomic ions are magnetically trapped as a result of a change of charge-to- mass ratio. The molecular ions are injected into the container and into the path of an energetic carbon arc discharge which dissociates and/or ionizes a portion of the molecular ions into atomic ions and energetic neutrals. The resulting atomic ions are trapped by the magnetic field to form a circulating beam of atomic ions, and the energetic neutrals pass out of the system and may be utilized in a particle accelerator. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, C. -Y.; Derbenev, Ya. S.; Douglas, D.
For a high-brightness electron beam with low energy and high bunch charge traversing a recirculation beamline, coherent synchrotron radiation and space charge effect may result in the microbunching instability (MBI). Both tracking simulation and Vlasov analysis for an early design of Circulator Cooler Ring for the Jefferson Lab Electron Ion Collider reveal significant MBI. It is envisioned these could be substantially suppressed by using a magnetized beam. In this work, we extend the existing Vlasov analysis, originally developed for a non-magnetized beam, to the description of transport of a magnetized beam including relevant collective effects. As a result, the newmore » formulation will be further employed to confirm prediction of microbunching suppression for a magnetized beam transport in a recirculating machine design.« less
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2017-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2014-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
Seasonal Dependence of Geomagnetic Active-Time Northern High-Latitude Upper Thermospheric Winds
NASA Astrophysics Data System (ADS)
Dhadly, Manbharat S.; Emmert, John T.; Drob, Douglas P.; Conde, Mark G.; Doornbos, Eelco; Shepherd, Gordon G.; Makela, Jonathan J.; Wu, Qian; Nieciejewski, Richard J.; Ridley, Aaron J.
2018-01-01
This study is focused on improving the poorly understood seasonal dependence of northern high-latitude F region thermospheric winds under active geomagnetic conditions. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. With current observational facilities, it is infeasible to construct a synoptic picture of thermospheric winds, but enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis. We use long-term data from eight ground-based and two space-based instruments to derive climatological wind patterns as a function of magnetic local time, magnetic latitude, and season. These diverse data sets possess different geometries and different spatial and solar activity coverage. The major challenge is to combine these disparate data sets into a coherent picture while overcoming the sampling limitations and biases among them. In our previous study (focused on quiet time winds), we found bias in the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) cross-track winds. Here we empirically quantify the GOCE bias and use it as a correction profile for removing apparent bias before empirical wind formulation. The assimilated wind patterns exhibit all major characteristics of high-latitude neutral circulation. The latitudinal extent of duskside circulation expands almost 10∘ from winter to summer. The dawnside circulation subsides from winter to summer. Disturbance winds derived from geomagnetic active and quiet winds show strong seasonal and latitudinal variability. Comparisons between wind patterns derived here and Disturbance Wind Model (DWM07) (which have no seasonal dependence) suggest that DWM07 is skewed toward summertime conditions.
Effects of Small-Scale Bathymetric Roughness on the Global Internal Wave Field
2008-09-30
Navy. Much of the interest stems from the suggestion by Munk and Wunsch (1998) that the strength of the meridional overturning circulation is controlled... meridional overturning circulation . Journal of Physical Oceanography 32, 3578-3595. St. Laurent, L.C., 1999. Diapycnal advection by double diffusion...waves generated by flows over the rough seafloor. On the time scales of internal waves, mesoscale eddies and the general circulation can be regarded as
Spin currents and spin-orbit torques in ferromagnetic trilayers.
Baek, Seung-Heon C; Amin, Vivek P; Oh, Young-Wan; Go, Gyungchoon; Lee, Seung-Jae; Lee, Geun-Hee; Kim, Kab-Jin; Stiles, M D; Park, Byong-Guk; Lee, Kyung-Jin
2018-06-01
Magnetic torques generated through spin-orbit coupling 1-8 promise energy-efficient spintronic devices. For applications, it is important that these torques switch films with perpendicular magnetizations without an external magnetic field 9-14 . One suggested approach 15 to enable such switching uses magnetic trilayers in which the torque on the top magnetic layer can be manipulated by changing the magnetization of the bottom layer. Spin currents generated in the bottom magnetic layer or its interfaces transit the spacer layer and exert a torque on the top magnetization. Here we demonstrate field-free switching in such structures and show that its dependence on the bottom-layer magnetization is not consistent with the anticipated bulk effects 15 . We describe a mechanism for spin-current generation 16,17 at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence. This other-layer-generated spin-orbit torque is relevant to energy-efficient control of spintronic devices.
Putman, Nathan F; Verley, Philippe; Shay, Thomas J; Lohmann, Kenneth J
2012-06-01
Young loggerhead sea turtles (Caretta caretta) from eastern Florida, USA, undertake a transoceanic migration in which they gradually circle the Sargasso Sea before returning to the North American coast. Loggerheads possess a 'magnetic map' in which regional magnetic fields elicit changes in swimming direction along the migratory pathway. In some geographic areas, however, ocean currents move more rapidly than young turtles can swim. Thus, the degree to which turtles can control their migratory movements has remained unclear. In this study, the movements of young turtles were simulated within a high-resolution ocean circulation model using several different behavioral scenarios, including one in which turtles drifted passively and others in which turtles swam briefly in accordance with experimentally derived data on magnetic navigation. Results revealed that small amounts of oriented swimming in response to regional magnetic fields profoundly affected migratory routes and endpoints. Turtles that engaged in directed swimming for as little as 1-3 h per day were 43-187% more likely than passive drifters to reach the Azores, a productive foraging area frequented by Florida loggerheads. They were also more likely to remain within warm-water currents favorable for growth and survival, avoid areas on the perimeter of the migratory route where predation risk and thermal conditions pose threats, and successfully return to the open-sea migratory route if carried into coastal areas. These findings imply that even weakly swimming marine animals may be able to exert strong effects on their migratory trajectories and open-sea distributions through simple navigation responses and minimal swimming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, P.
A model of the solar chromosphere that consists of two fundamentally different regions, a lower region and an upper region, is proposed. The lower region is covered mostly by weak locally closed magnetic field and small network areas of extremely strong, locally open field. The field in the upper region is relatively uniform and locally open, connecting to the corona. The chromosphere is heated by strong collisional damping of Alfvén waves, which are driven by turbulent motions below the photosphere. The heating rate depends on the field strength, wave power from the photosphere, and altitude in the chromosphere. The wavesmore » in the internetwork area are mostly damped in the lower region, supporting radiation in the lower chromosphere. The waves in the network area, carrying more Poynting flux, are only weakly damped in the lower region. They propagate into the upper region. As the thermal pressure decreases with height, the network field expands to form the magnetic canopy where the damping of the waves from the network area supports radiation in the whole upper region. Because of the vertical stratification and horizontally nonuniform distribution of the magnetic field and heating, one circulation cell is formed in each of the upper and lower regions. The two circulation cells distort the magnetic field and reinforce the funnel-canopy-shaped magnetic geometry. The model is based on classical processes and is semi-quantitative. The estimates are constrained according to observational knowledge. No anomalous process is invoked or needed. Overall, the heating mechanism is able to damp 50% of the total wave energy.« less
Enamorado, Michel; Iborra, Salvador; Priego, Elena; Cueto, Francisco J.; Quintana, Juan A.; Martínez-Cano, Sarai; Mejías-Pérez, Ernesto; Esteban, Mariano; Melero, Ignacio; Hidalgo, Andrés; Sancho, David
2017-01-01
The goal of successful anti-tumoural immunity is the development of long-term protective immunity to prevent relapse. Infiltration of tumours with CD8+ T cells with a resident memory (Trm) phenotype correlates with improved survival. However, the interplay of circulating CD8+ T cells and Trm cells remains poorly explored in tumour immunity. Using different vaccination strategies that fine-tune the generation of Trm cells or circulating memory T cells, here we show that, while both subsets are sufficient for anti-tumour immunity, the presence of Trm cells improves anti-tumour efficacy. Transferred central memory T cells (Tcm) generate Trm cells following viral infection or tumour challenge. Anti-PD-1 treatment promotes infiltration of transferred Tcm cells within tumours, improving anti-tumour immunity. Moreover, Batf3-dependent dendritic cells are essential for reactivation of circulating memory anti-tumour response. Our findings show the plasticity, collaboration and requirements for reactivation of memory CD8+ T cells subsets needed for optimal tumour vaccination and immunotherapy. PMID:28714465
Wireless Electrical Device Using Open-Circuit Elements Having No Electrical Connections
NASA Technical Reports Server (NTRS)
Taylor, Bryant Douglas (Inventor); Woodard, Stanley E. (Inventor)
2012-01-01
A wireless electrical device includes an electrically unconnected electrical conductor and at least one electrically unconnected electrode spaced apart from the electrical conductor. The electrical conductor is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. Each electrode is at a location lying within the magnetic field response so-generated and is constructed such that a linear movement of electric charges is generated in each electrode due to the magnetic field response so-generated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.M. Jr.; Stormshak, F.; Thompson, J.M.
This study determined whether chronic exposure of female lambs to the electric and magnetic fields (EMF) of a high voltage transmission line can alter pineal secretion of melatonin and the normal occurrence of puberty. Twenty female Suffolk lambs were assigned randomly in equal numbers to a control and a treatment group. Treatment from 2 to 10 mo of age consisted of continuous exposure within the electrical environment of a 500-kV transmission line (mean electric field 6 kV/m, mean magnetic field 40 mG). Treated lambs were penned directly beneath the transmission line; control lambs were maintained in a pen of similarmore » construction 229 m from the line where EMF were at ambient levels (mean electric field < 10 V/m, mean magnetic field < 0.3 mG). Melatonin was analyzed by RIA in serum of blood samples collected at 0.5-3-h intervals over eight 48-h periods. To assess attainment of puberty, serum concentrations of progesterone were determined by RIA from blood samples collected twice weekly beginning at 19 wk of age. Concentrations of circulating melatonin in control and treated lambs were low during daylight hours and increased during nighttime hours. The characteristic pattern of melatonin secretion during nighttime (amplitude, phase, and duration) did not differ between control and treatment groups. Age at puberty and number of subsequent estrous cycles also did not differ between groups. These data suggest that chronic exposure of developing female sheep to 60-Hz environmental EMF does not affect the mechanisms underlying the generation of the circadian pattern of melatonin secretion or the mechanisms involved in the onset of reproductive activity.« less
Effect of metallic walls on dynamos generated by laminar boundary-driven flow in a spherical domain.
Guervilly, Céline; Wood, Toby S; Brummell, Nicholas H
2013-11-01
We present a numerical study of dynamo action in a conducting fluid encased in a metallic spherical shell. Motions in the fluid are driven by differential rotation of the outer metallic shell, which we refer to as "the wall." The two hemispheres of the wall are held in counter-rotation, producing a steady, axisymmetric interior flow consisting of differential rotation and a two-cell meridional circulation with radial inflow in the equatorial plane. From previous studies, this type of flow is known to maintain a stationary equatorial dipole by dynamo action if the magnetic Reynolds number is larger than about 300 and if the outer boundary is electrically insulating. We vary independently the thickness, electrical conductivity, and magnetic permeability of the wall to determine their effect on the dynamo action. The main results are the following: (a) Increasing the conductivity of the wall hinders the dynamo by allowing eddy currents within the wall, which are induced by the relative motion of the equatorial dipole field and the wall. This processes can be viewed as a skin effect or, equivalently, as the tearing apart of the dipole by the differential rotation of the wall, to which the field lines are anchored by high conductivity. (b) Increasing the magnetic permeability of the wall favors dynamo action by constraining the magnetic field lines in the fluid to be normal to the wall, thereby decoupling the fluid from any induction in the wall. (c) Decreasing the wall thickness limits the amplitude of the eddy currents, and is therefore favorable for dynamo action, provided that the wall is thinner than the skin depth. We explicitly demonstrate these effects of the wall properties on the dynamo field by deriving an effective boundary condition in the limit of vanishing wall thickness.
Design and analysis of a novel doubly salient permanent- magnet generator
NASA Astrophysics Data System (ADS)
Sarlioglu, Bulent
Improvements in permanent magnets and power electronics technologies have made it possible to devise different configurations of electrical machines which were not previously possible to implement. In this dissertation, a novel Doubly Salient Permanent Magnet (DSPM) generator has been designed, analyzed, and tested. The DSPM generator has four stator poles and six rotor poles. Two high density permanent magnets are located in the stator yoke. Since there are no windings or permanent magnets in the rotor, the DSPM generator has several advantages: the rotor has low inertia, no copper loss, no PM attachments, no brushes, and no slip rings. This type of rotor can be manufactured easily, and can be run at very high speeds as in the case of a switched reluctance machine. Compared to induction and switched reluctance machines, the DSPM generator can produce more power from the same geometry. Moreover, the efficiency of the DSPM generator is higher, since there is no copper loss associated with excitation of the machine. Another advantage of the DSPM generator is that the output AC voltage can easily be rectified by a diode bridge rectifier, while in the case of the switched reluctance machine one needs to use active semiconductor switches for power generation. If greater utilization and control of power production capability are desired, the AC output of the DSPM generator can be rectified using an active converter. In this dissertation, a novel doubly salient permanent magnet generator is introduced. First, the theory of the DSPM generator is given. Later, this novel generator is investigated using conventional magnetic circuits, nonlinear finite element analysis, and simulations with first order approximations and nonlinear modeling. It is compared with other generators. Static and no-load testing of the prototype DSPM generator are presented, and generator performance is evaluated with various power electronic circuits.
Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C
2016-01-01
We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.
Thermal properties of a large-bore cryocooled 10 T superconducting magnet for a hybrid magnet
NASA Astrophysics Data System (ADS)
Ishizuka, M.; Hamajima, T.; Itou, T.; Sakuraba, J.; Nishijima, G.; Awaji, S.; Watanabe, K.
2010-11-01
A cryocooled 10 T superconducting magnet with a 360 mm room temperature bore has been developed for a hybrid magnet. The superconducting magnet cooled by four Gifford-McMahon cryocoolers has been designed to generate a magnetic field of 10 T. Since superconducting wires composed of coils were subjected to large hoop stress over 150 MPa and Nb3Sn superconducting wires particularly showed a low mechanical strength due to those brittle property, Nb3Sn wires strengthened by NbTi-filaments were developed for the cryocooled superconducting magnet. We have already reported that the hybrid magnet could generate the resultant magnetic field of 27.5 T by adding 8.5 T from the superconducting magnet and 19 T from a water-cooled Bitter resistive magnet, after the water-cooled resistive magnet was inserted into the 360 mm room temperature bore of the cryocooled superconducting magnet. When the hybrid magnet generated the field of 27.5 T, it achieved the high magnetic-force field (B × ∂Bz/∂z) of 4500 T2/m, which was useful for magneto-science in high fields such as materials levitation research. In this paper, we particularly focus on the cause that the cryocooled superconducting magnet was limited to generate the designed magnetic field of 10 T in the hybrid magnet operation. As a result, it was found that there existed mainly two causes as the limitation of the magnetic field generation. One was a decrease of thermal conductive passes due to exfoliation from the coil bobbin of the cooling flange. The other was large AC loss due to both a thick Nb3Sn layer and its large diameter formed on Nb-barrier component in Nb3Sn wires.
Simulation of magnetic active polymers for versatile microfluidic devices
NASA Astrophysics Data System (ADS)
Gusenbauer, Markus; Özelt, Harald; Fischbacher, Johann; Reichel, Franz; Exl, Lukas; Bance, Simon; Kataeva, Nadezhda; Binder, Claudia; Brückl, Hubert; Schrefl, Thomas
2013-01-01
We propose to use a compound of magnetic nanoparticles (20-100 nm) embedded in a flexible polymer (Polydimethylsiloxane PDMS) to filter circulating tumor cells (CTCs). The analysis of CTCs is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. The combination of experiments and simulations lead to a versatile microfluidic lab-on-chip device. Simulations are essential to understand the influence of the embedded nanoparticles in the elastic PDMS when applying a magnetic gradient field. It combines finite element calculations of the polymer, magnetic simulations of the embedded nanoparticles and the fluid dynamic calculations of blood plasma and blood cells. With the use of magnetic active polymers a wide range of tunable microfluidic structures can be created. The method can help to increase the yield of needed isolated CTCs.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.
2006-01-01
We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.
On the Origin of the Double-cell Meridional Circulation in the Solar Convection Zone
NASA Astrophysics Data System (ADS)
Pipin, V. V.; Kosovichev, A. G.
2018-02-01
Recent advances in helioseismology, numerical simulations and mean-field theory of solar differential rotation have shown that the meridional circulation pattern may consist of two or more cells in each hemisphere of the convection zone. According to the mean-field theory the double-cell circulation pattern can result from the sign inversion of a nondiffusive part of the radial angular momentum transport (the so-called Λ-effect) in the lower part of the solar convection zone. Here, we show that this phenomenon can result from the radial inhomogeneity of the Coriolis number, which depends on the convective turnover time. We demonstrate that if this effect is taken into account then the solar-like differential rotation and the double-cell meridional circulation are both reproduced by the mean-field model. The model is consistent with the distribution of turbulent velocity correlations determined from observations by tracing motions of sunspots and large-scale magnetic fields, indicating that these tracers are rooted just below the shear layer.
Permanent magnet machine with windings having strand transposition
Qu, Ronghai; Jansen, Patrick Lee
2009-04-21
This document discusses, among other things, a stator with transposition between the windings or coils. The coils are free from transposition to increase the fill factor of the stator slots. The transposition at the end connections between an inner coil and an outer coil provide transposition to reduce circulating current loss. The increased fill factor reduces further current losses. Such a stator is used in a dual rotor, permanent magnet machine, for example, in a compressor pump, wind turbine gearbox, wind turbine rotor.
Time-Distance Helioseismology with f Modes as a Method for Measurement of Near-Surface Flows
NASA Technical Reports Server (NTRS)
Duvall, Thomas L., Jr.; Gizon, Laurent
1999-01-01
Travel times measured for the f mode have been used to study flows near the solar surface in conjunction with simultaneous measurements of the magnetic field. Previous flow measurements of doppler surface rotation, small magnetic feature rotation, supergranular pattern rotation, and surface meridional circulation have been confirmed. In addition, the flow in supergranules due to Coriolis forces has been measured. The spatial and temporal power spectra for a six-day observing sequence has been measured.
Low pressure arc discharge lamp apparatus with magnetic field generating means
Grossman, Mark W.; George, William A.; Maya, Jakob
1987-01-01
A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25.degree. C.
Portable radiography system using a relativistic electron beam
Hoeberling, Robert F.
1990-01-01
A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment.
Portable radiography system using a relativistic electron beam
Hoeberling, R.F.
1987-09-22
A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment. 8 figs.
NASA Astrophysics Data System (ADS)
Shikin, A. M.; Rybkina, A. A.; Estyunin, D. A.; Sostina, D. M.; Voroshnin, V. Yu.; Klimovskikh, I. I.; Rybkin, A. G.; Surnin, Yu. A.; Kokh, K. A.; Tereshchenko, O. E.; Petaccia, L.; Di Santo, G.; Skirdkov, P. N.; Zvezdin, K. A.; Zvezdin, A. K.; Kimura, A.; Chulkov, E. V.; Krasovskii, E. E.
2018-06-01
Possibility of in-plane and out-of-plane magnetization generated by synchrotron radiation (SR) in magnetically doped and pristine topological insulators (TIs) is demonstrated and studied by angle-resolved photoemission spectroscopy. We show experimentally and by ab initio calculations how nonequal depopulation of the Dirac cone (DC) states with opposite momenta in V-doped and pristine TIs generated by linearly polarized SR leads to the hole-generated uncompensated spin accumulation followed by the SR-induced magnetization via spin-torque effect. Moreover, the photoexcitation of the DC is asymmetric, and it varies with the photon energy. We find a relation between the photoexcitation asymmetry, the generated spin accumulation, and the induced in-plane and out-of-plane magnetic field. Experimentally the SR-generated in-plane and out-of-plane magnetization is confirmed by the k∥ shift of the DC position and by the gap opening at the Dirac point even above the Curie temperature. Theoretical predictions and estimations of the measurable physical quantities substantiate the experimental results.
Tang, Man; Wen, Cong-Ying; Wu, Ling-Ling; Hong, Shao-Li; Hu, Jiao; Xu, Chun-Miao; Pang, Dai-Wen; Zhang, Zhi-Ling
2016-04-07
The detection of circulating tumor cells (CTCs), a kind of "liquid biopsy", represents a potential alternative to noninvasive detection, characterization and monitoring of carcinoma. Many previous studies have shown that the number of CTCs has a significant relationship with the stage of cancer. However, CTC enrichment and detection remain notoriously difficult because they are extremely rare in the bloodstream. Herein, aided by a microfluidic device, an immunomagnetic separation system was applied to efficiently capture and in situ identify circulating tumor cells. Magnetic nanospheres (MNs) were modified with an anti-epithelial-cell-adhesion-molecule (anti-EpCAM) antibody to fabricate immunomagnetic nanospheres (IMNs). IMNs were then loaded into the magnetic field controllable microfluidic chip to form uniform IMN patterns. The IMN patterns maintained good stability during the whole processes including enrichment, washing and identification. Apart from its simple manufacture process, the obtained microfluidic device was capable of capturing CTCs from the bloodstream with an efficiency higher than 94%. The captured cells could be directly visualized with an inverted fluorescence microscope in situ by immunocytochemistry (ICC) identification, which decreased cell loss effectively. Besides that, the CTCs could be recovered completely just by PBS washing after removal of the permanent magnets. It was observed that all the processes showed negligible influence on cell viability (viability up to 93%) and that the captured cells could be re-cultured for more than 5 passages after release without disassociating IMNs. In addition, the device was applied to clinical samples and almost all the samples from patients showed positive results, which suggests it could serve as a valuable tool for CTC enrichment and detection in the clinic.
Computational Simulation of Explosively Generated Pulsed Power Devices
2013-03-21
to practical applications. These are the magnetic flux compression generators (FCG), ferromagnetic generators (FMG) and ferroelectric generators (FEG...The first device works on the concept of field interaction between a conducting medium and a magnetic field. The last two devices make use of either... magnetic or electric fields stored in a prepared material (4). This research will focus on the ferroelectric generator as a high voltage source for
An Experimental Study on the Darrieus-Savonius Turbine for the Tidal Current Power Generation
NASA Astrophysics Data System (ADS)
Kyozuka, Yusaku
The Darrieus turbine is popular for tidal current power generation in Japan. It is simple in structure with straight wings rotating around a vertical axis, so that it has no directionality against the motion of tidal flow which changes its direction twice a day. However, there is one defect in the Darrieus turbine; its small starting torque. Once it stops, a Darrieus turbine is hard to re-start until a fairly fast current is exerted on it. To improve the starting torque of the Darrieus turbine used for tidal power generation, a hybrid turbine, composed of a Darrieus turbine and a Savonius rotor is proposed. Hydrodynamic characteristics of a semi-circular section used for the Savonius bucket were measured in a wind tunnel. The torque of a two bucket Savonius rotor was measured in a circulating water channel, where four different configurations of the bucket were compared. A combined Darrieus and Savonius turbine was tested in the circulating water channel, where the effect of the attaching angle between Darrieus wing and Savonius rotor was studied. Finally, power generation experiments using a 48 pole electric generator were conducted in a towing tank and the power coefficients were compared with the results of experiments obtained in the circulating water channel.
Kamitakahara, Masanobu; Ohtoshi, Naohiro; Kawashita, Masakazu; Ioku, Koji
2016-05-01
Spherical porous granules of hydroxyapatite (HA) containing magnetic nanoparticles would be suitable for the hyperthermia treatment of bone tumor, because porous HA granules act as a scaffold for bone regeneration, and magnetic nanoparticles generate sufficient heat to kill tumor cells under an alternating magnetic field. Although magnetic nanoparticles are promising heat generators, their small size makes them difficult to support in porous HA ceramics. We prepared micrometer-sized composites of magnetic and HA nanoparticles, and then supported them in porous HA granules composed of rod-like particles. The spherical porous HA granules containing the composites of magnetic and HA nanoparticle were successfully prepared using a hydrothermal process without changing the crystalline phase and heat generation properties of the magnetic nanoparticles. The obtained granules generated sufficient heat for killing tumor cells under an alternating magnetic field (300 Oe at 100 kHz). The obtained granules are expected to be useful for the hyperthermia treatment of bone tumors.
NASA Astrophysics Data System (ADS)
Musgrave, R. J.; Kars, M. A. C.; Kodama, K.
2014-12-01
During the northern Spring 2014 (April-May), IODP Expedition 350 drilled a 1806.5 m deep hole at Site U1437 in the Izu-Bonin rear arc, in order to understand, among other objectives, the compositional evolution of the arc since the Miocene and track the missing half of the subduction factory. The good recovery of mostly fine grained sediments at this site enables a high resolution paleomagnetic and rock magnetic study. Particularly, variations in magnetic properties and mineralogy are well documented. The onboard magnetostratigraphy established from the study of the archive halves highlighted remagnetized intervals that produced "ghost" repetitions of geomagnetic reversals ~10's meters below their actual stratigraphic position in specific intervals. Onboard paleo- and rock magnetic analyses showed that remagnetization is probably due to a chemical remanence carried by iron sulfides (putatively identified as greigite). The rock magnetic parameters, SIRM/k and the S-ratio are consistent with the presence of ferromagnetic iron sulfides in Site U1437. A mixture of iron oxides and iron sulfides was found within the sulfate reduction zone, which was identified by onboard pore water analyses at ~50-60 meters below sea floor (mbsf) by a minimum in sulfate (~5 mM) coupled with a maximum in alkalinity. Below 50 mbsf, the sulfate content increases up to ~29 mM at ~460 mbsf. The particular downhole profile of the sulfate content in Site U1437 is probably triggered by fluid circulation. Evolution of sulfate content, pyritization process and fluid circulation are closely linked. Onshore research is focusing on further downhole characterization of the iron sulfides including their abundance, grain size and composition. Routine magnetic properties (NRM, magnetic susceptibility) and rock magnetic analyses at high resolution (every ~20-50 cm), including hysteresis properties and low temperature magnetic measurements, have been conducted on about 400 discrete samples in the first 200 m of Hole 1437B (Cores 1H to 30X). As suggested by the onboard data, hysteresis measurements showed the occurrence of both single domain-pseudo single domain iron oxides and iron sulfides in the sulfate reduction zone. Preliminary results will be compared with the geochemical data.
How Large Scales Flows May Influence Solar Activity
NASA Technical Reports Server (NTRS)
Hathaway, D. H.
2004-01-01
Large scale flows within the solar convection zone are the primary drivers of the Sun's magnetic activity cycle and play important roles in shaping the Sun's magnetic field. Differential rotation amplifies the magnetic field through its shearing action and converts poloidal field into toroidal field. Poleward meridional flow near the surface carries magnetic flux that reverses the magnetic poles at about the time of solar maximum. The deeper, equatorward meridional flow can carry magnetic flux back toward the lower latitudes where it erupts through the surface to form tilted active regions that convert toroidal fields into oppositely directed poloidal fields. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun's rotation on convection produce velocity correlations that can maintain both the differential rotation and the meridional circulation. These convective motions can also influence solar activity directly by shaping the magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.
NASA Astrophysics Data System (ADS)
Li, Y. B.; Yang, Z. X.; Chen, W.; He, Q. Y.
2017-11-01
The functional performance, such as magnetic flux leakage, power density and efficiency, is related to the structural characteristics and design technique for the disc permanent magnet synchronous generators (PMSGs). Halbach array theory-based magnetic circuit structure is developed, and Maxwell3D simulation analysis approach of PMSG is proposed in this paper for integrated starter generator (ISG). The magnetization direction of adjacent permanent magnet is organized in difference of 45 degrees for focusing air gap side, and improving the performance of the generator. The magnetic field distribution and functional performance in load and/or unload conditions are simulated by Maxwell3D module. The proposed approach is verified by simulation analysis, the air gap flux density is 0.66T, and the phase voltage curve has the characteristics of a preferable sinusoidal wave and the voltage amplitude 335V can meet the design requirements while the disc coreless PMSG is operating at rated speed. And the developed magnetic circuit structure can be used for engineering design of the disc coreless PMSG to the integrated starter generator.
Low pressure arc discharge lamp apparatus with magnetic field generating means
Grossman, M.W.; George, W.A.; Maya, J.
1987-10-06
A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.
System and method for storing energy
Yarger, Eric Jay [Rigby, ID; Morrison, John [Butte, MT; Richardson, John Grant [Idaho Falls, ID; Spencer, David Frazer [Idaho Falls, ID; Christiansen, Dale W [Blackfoot, ID
2010-03-30
A self-recharging battery comprising a generator and an energy storage device contained within the battery case. The generator comprises a magnetic structure configured to generate a compressed magnetic field and a coil configured to focus the compressed magnetic field in electrical conductive elements of the coil.
A multifunctional energy-saving magnetic field generator.
Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua
2018-03-01
To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.
A multifunctional energy-saving magnetic field generator
NASA Astrophysics Data System (ADS)
Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua
2018-03-01
To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.
Magnetic attitude control torque generation of a gravity gradient stabilized satellite
NASA Astrophysics Data System (ADS)
Suhadis, N. M.; Salleh, M. B.; Rajendran, P.
2018-05-01
Magnetic torquer is used to generate a magnetic dipole moment onboard satellites whereby a control torque for attitude control purposes is generated when it couples with the geomagnetic field. This technique has been considered very attractive for satellites operated in Low Earth Orbit (LEO) as the strength of the geomagnetic field is relatively high below the altitude of 1000 km. This paper presents the algorithm used to generate required magnetic dipole moment by 3 magnetic torquers mounted onboard a gravity gradient stabilized satellite operated at an altitude of 540 km with nadir pointing mission. As the geomagnetic field cannot be altered and its magnitude and direction vary with respect to the orbit altitude and inclination, a comparison study of attitude control torque generation performance with various orbit inclination is performed where the structured control algorithm is simulated for 13°, 33° and 53° orbit inclinations to see how the variation of the satellite orbit affects the satellite's attitude control torque generation. Results from simulation show that the higher orbit inclination generates optimum magnetic attitude control torque for accurate nadir pointing mission.
Tuning Bacterial Hydrodynamics with Magnetic Fields: A Path to Bacterial Robotics
NASA Astrophysics Data System (ADS)
Pierce, Christopher; Mumper, Eric; Brangham, Jack; Wijesinghe, Hiran; Lower, Stephen; Lower, Brian; Yang, Fengyuan; Sooryakumar, Ratnasingham
Magnetotactic Bacteria (MTB) are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nano-particles. In this study, the innate magnetism of these flagellated swimmers is exploited to explore their hydrodynamics near confining surfaces, using the magnetic field as a tuning parameter. With weak (Gauss), uniform, external, magnetic ?elds and the field gradients arising from micro-magnetic surface patterns, the relative strength of hydrodynamic, magnetic and ?agellar force components is tuned through magnetic control of the bacteria's orientation and position. In addition to direct measurement of several hydrodynamic quantities related to the motility of individual cells, their tunable dynamics reveal a number of novel, highly controllable swimming behaviors with potential value in micro-robotics applications. Specifically, the experiments permit the MTB cells to be directed along parallel or divergent trajectories, suppress their flagellar forces through magnetic means, and induce transitions between planar, circulating trajectories and drifting, vertically oriented ``top-like'' motion. The implications of the work for fundamental hydrodynamics research as well as bacterially driven robotics applications will be discussed.
On-chip cell sorting via patterned magnetic traps
NASA Astrophysics Data System (ADS)
Byvank, Tom; Prikockis, Michael; Chen, Aaron; Miller, Brandon; Chalmers, Jeffrey; Sooryakumar, Ratnasingham
2015-03-01
Due to their importance in research for the diagnosis and treatment of cancer, numerous schemes have been developed to sort rare cell populations, e.g., circulating tumor cells (CTCs), from a larger ensemble of cells. Here, we improve upon a previously developed microfluidic device (Lab Chip 13, 1172, (2013)) to increase throughput and sorting purity of magnetically labeled cells. The separation mechanism involves controlling magnetic forces by manipulating the magnetic domain structures of embedded permalloy microdisks with weak external fields. These forces move labeled cells from the input flow stream into an adjacent buffer flow stream. Such magnetically activated transfer separates the magnetic entities from their non-magnetic counterparts as the two flow streams split apart and move toward their respective outputs. Purity of the magnetic output is modulated by the withdrawal rate of the non-magnetic output relative to the inputs. A proof of concept shows that CTCs from metastatic breast cancer patients can be sorted, recovered from the device, and confirmed as CTCs using separate immunofluorescence staining and analysis. With further optimizations, the channel could become a useful device for high purity final sorting of enriched patient cell samples.
Generation of dynamo magnetic fields in the primordial solar nebula
NASA Technical Reports Server (NTRS)
Stepinski, Tomasz F.
1992-01-01
The present treatment of dynamo-generated magnetic fields in the primordial solar nebula proceeds in view of the ability of the combined action of Keplerian rotation and helical convention to generate, via alpha-omega dynamo, large-scale magnetic fields in those parts of the nebula with sufficiently high, gas-and magnetic field coupling electrical conductivity. Nebular gas electrical conductivity and the radial distribution of the local dynamo number are calculated for both a viscous-accretion disk model and the quiescent-minimum mass nebula. It is found that magnetic fields can be easily generated and maintained by alpha-omega dynamos occupying the inner and outer parts of the nebula.
Control of Meridional Flow in Circular Cylinders by a Travelling Axial Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Ramachandran, N.; Volz, M. P.
1999-01-01
Convective flow in a Bridgman or float zone configuration significantly affects the interface shape and segregation phenomena. While the primary causative factor for this flow is buoyancy induced convection in an enclosed Bridgman melt, the presence of a free surface gives rise to surface tension driven flows in the floating zone processing of melts. It is of interest to curtail these flows in order to realize near quiescent growth conditions that have shown to result in crystals with good longitudinal and radial homogeneity and thereby of better overall quality. While buoyancy effects can be reduced by careful processing in a low gravity (space) environment, the reduction of Marangoni flows due to surface tension variations is not that straight forward. Attempts have been made with some limited success with the use of external fields to affect the melt thermo-fluid behavior. The use of a static magnetic field that reduces convective contamination through the effects of a non-intrusively induced, dissipative Lorentz force in an electrically conducting melt is one such approach. Experiments have shown that axial fields of the order of 5 Tesla can significantly eliminate convection and yield close to diffusion limited crystal growth conditions. The generation and use of such high magnetic fields require substantial hardware and incur significant costs for its operation. Lately, the use of rotating magnetic fields has been tested in semiconductor crystal growth. The method is fairly well known and commonly used in metal processing but its adaptation to crystal growth of semiconductors is fairly recent. The elegance of the technique rests in its low power requirement (typically 10-20 milli-Tesla at 50-400 Hz) and its efficacy in curtailing deleterious temperature fluctuations in the melt. A rotating magnetic field imposes a rotational force and thereby induces a circulation within the melt that tends to dominate other sporadic convective effects. Thus a known low level of convective flow is introduced into the system. A new novel variation of the Lorentz force mechanism is proposed and investigated in this study. Since one of the desired process conditions in melt crystal growth is the minimization of convective effects, this investigation examines the use of an external field of magnetic origin to counteract existing convective flow within the melt. This is accomplished by utilizing a running or traveling axial magnetic wave in the system. The concept is similar to the use of vibrational means in order to induce streaming flows that oppose buoyant or surface tension driven convection in the system. The rotation direction as well as the magnitude (strength) of this circulation can be easily controlled by external inputs thus affording a direct means of controlling the developing shape of the crystallizing front (interface). The theoretical model of this technique is fully developed and presented in this paper. Results from the solution of the developed governing equations and boundary conditions are also presented. An experimental demonstration of the concept is presented through the suppression of natural convective flow in a mercury column. Implications to crystal growth systems will be fully explored in the final manuscript.
Magnetic-free non-reciprocity based on staggered commutation
Reiskarimian, Negar; Krishnaswamy, Harish
2016-01-01
Lorentz reciprocity is a fundamental characteristic of the vast majority of electronic and photonic structures. However, non-reciprocal components such as isolators, circulators and gyrators enable new applications ranging from radio frequencies to optical frequencies, including full-duplex wireless communication and on-chip all-optical information processing. Such components today dominantly rely on the phenomenon of Faraday rotation in magneto-optic materials. However, they are typically bulky, expensive and not suitable for insertion in a conventional integrated circuit. Here we demonstrate magnetic-free linear passive non-reciprocity based on the concept of staggered commutation. Commutation is a form of parametric modulation with very high modulation ratio. We observe that staggered commutation enables time-reversal symmetry breaking within very small dimensions (λ/1,250 × λ/1,250 in our device), resulting in a miniature radio-frequency circulator that exhibits reduced implementation complexity, very low loss, strong non-reciprocity, significantly enhanced linearity and real-time reconfigurability, and is integrated in a conventional complementary metal–oxide–semiconductor integrated circuit for the first time. PMID:27079524
Kim, Youngho; Lee, Sang Ho; Kim, Byungkyu
2009-12-01
Under the assumption that separation efficiencies are mainly affected by the velocity of flow-induced circulation due to buffer injection in a pendent drop, this paper describes an analysis of the separation efficiency of a droplet-based magnetically activated cell separation (DMACS) system. To investigate the velocity of the flow-induced circulation, we supposed that numerous flows in a pendent drop could be considered as a "theoretically normalized" flow (or conceptually normalized flow, CNF) based on the Cauchy-Goursat theorem. With the morphological characteristics (length and duration time) of a pendent drop depending on the initial volume, we obtained the velocities of the CNF. By measuring the separation efficiencies for different initial volumes and by analyzing the separation efficiency in terms of the velocity of the CNF, we found that the separation efficiencies (in the case of a low rate of buffer injection; 5 and 15 microl x min(-1)) are mainly affected by the velocity of the CNF. Moreover, we confirmed that the phenomenological features of a pendent drop cause a fluctuation of its separation efficiencies over a range of specific volumes (initial volumes ranging from 40 to 80 microl), because of the "sweeping-off" phenomenon, that is, positive cells gathered into the positive fraction are forced to move away from the magnetic side by flow-induced circulation due to buffer injection. In addition, from the variation of the duration time, that is, the interval between the beginning of injection of the buffer solution and the time at which a pendent drop detaches, it could also be confirmed that a shorter duration time leads to decrease of the number of positive cells in negative fraction regardless of the rate of buffer injection (5, 15, and 50 microl x min(-1)). Therefore, if a DMACS system is operated with a 15 microl x min(-1) buffer injection flow rate and an initial volume of 80 microl or more, we would have the best efficiency of separation in the negative fraction.
NASA Astrophysics Data System (ADS)
Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.
2017-12-01
Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of ice stream behavior. The crustal boundary governs the interaction between these systems exerts a fundamental control on the stability of the Ross Ice Shelf.
Vegh, Viktor; Reutens, David C.
2016-01-01
Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886
Kohn, Gabriel; Hicho, George; Swartzendruber, Lydon
1997-01-01
A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment.
Kohn, G.; Hicho, G.; Swartzendruber, L.
1997-04-08
A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment. 7 figs.
Circulating FABP4 is a marker of metabolic and cardiovascular risk in SLE patients.
Parra, S; Cabré, A; Marimon, F; Ferré, R; Ribalta, J; Gonzàlez, M; Heras, M; Castro, A; Masana, L
2014-03-01
The aim of this study is to determine if circulating fatty acid-binding protein 4 (FABP4) plasma levels are a possible marker of metabolic risk in SLE patients. Circulating levels of adipose FABP4 are associated with adiposity, insulin resistance (IR), metabolic syndrome, diabetes and cardiovascular diseases. Patients affected by systemic lupus erythematosus (SLE) show an accelerated atherosclerosis that cannot be entirely explained by traditional cardiovascular risk factors. Sixty consecutive patients with SLE and 34 non-SLE age-matched controls were recruited for the study. Total plasma lipids and circulating FABP4 were determined. Subclinical atherosclerosis was evaluated by measuring carotid intimae-media thickness (c-IMT) by sonography, and the distribution of lipoprotein subclasses was analysed by nuclear magnetic resonance (NMR) spectroscopy. In the SLE group, FABP4 was associated with IR, atherogenic dyslipidaemia, as measured by NMR, and the presence of subclinical atherosclerosis. In multivariate analyses FABP4 was associated with increased c-IMT independent of the inflammatory state of the patient. In sum, circulating FABP4 is involved in the metabolic disturbances of SLE affecting lipid metabolism and IR, and it could be a biomarker of atherosclerosis in this population.
On-Chip Microwave Quantum Hall Circulator
NASA Astrophysics Data System (ADS)
Mahoney, A. C.; Colless, J. I.; Pauka, S. J.; Hornibrook, J. M.; Watson, J. D.; Gardner, G. C.; Manfra, M. J.; Doherty, A. C.; Reilly, D. J.
2017-01-01
Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1 /1000 th the wavelength by exploiting the chiral, "slow-light" response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330 μ m diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.
NASA Astrophysics Data System (ADS)
Fujii, M.; Okino, K.; Honsho, C.; Mochizuki, N.; Szitkar, F.; Dyment, J.
2013-12-01
Near-bottom magnetic profiling using submersible, deep-tow, Remotely Operated Vehicle (ROV) and Autonomous Underwater Vehicle (AUV) make possible to conduct high-resolution surveys and depict detailed magnetic features reflecting, for instance, the presence of fresh lavas or hydrothermal alteration, or geomagnetic paleo-intensity variations. We conducted near-bottom three component magnetic measurements onboard submersible Shinkai 6500 in the Southern Mariana Trough, where five active hydrothermal vent fields (Snail, Yamanaka, Archean, Pica, and Urashima sites) have been found in both on- and off-axis areas of the active back-arc spreading center, to detect signals from hydrothermally altered rock and to distinguish old and new submarine lava flows. Fourteen dives were carried out at an altitude of 1-40 m during the R/V Yokosuka YK10-10 and YK10-11 cruises in 2010. We carefully corrected the effect of the induced and permanent magnetizations of the submersible by applying the correction method for the shipboard three-component magnetometer measurement modified for deep-sea measurement, and subtracted the IGRF values from the corrected data to obtain geomagnetic vector anomalies along the dive tracks. We then calculated the synthetic magnetic vector field produced by seafloor, assumed to be uniformly magnetized, using three dimensional forward modeling. Finally, values of the absolute magnetizations were estimated by using a linear transfer function in the Fourier domain from the observed and synthetic magnetic anomalies. The distribution of estimated absolute magnetization generally shows low values around the five hydrothermal vent sites. This result is consistent with the equivalent magnetization distribution obtained from previous AUV survey data. The areas of low magnetization are also consistent with hydrothermal deposits identified in video records. These results suggest that low magnetic signals are due to hydrothermal alteration zones where host rocks are demagnetized by hydrothermal circulation. The low magnetization zones around the off-axis vent sites are about ten times wider than those surrounding the on-axis sites, possibly reflecting the longer duration of hydrothermal circulation at these sites. Another interesting result is that the absolute magnetization shows extremely high intensities (>80 A/m) at the neo volcanic zones (NVZ) and relatively low intensities (<10 A/m) two to five kilometers away from the NVZ. These variations are quite consistent with those of the Natural Remanent Magnetization measured on basalt samples, suggesting that the low-temperature oxidation of host rock due to the reaction with seawater has completed within a few kilometers distance from the spreading axis. We conclude that the magnetization of the uppermost oceanic crust decreases with age due to the combination of the both hydrothermal rapid alteration and the low-temperature gradual alteration processes.
Physical properties of compact toroids generated by a coaxial source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henins, I.; Hoida, H.W.; Jarboe, T.R.
1980-01-01
In the CTX experiments we have been studying CTs generated with a magnetized coaxial plasma gun. CTs have been generated in prolate and oblate cylindrically symmetric metallic flux conservers. The plasma and magnetic field properties are studied through the use of magnetic probes, Thomson scattering, interferometry, and spectroscopy.
Krienin, Frank
1990-01-01
A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.
NASA Astrophysics Data System (ADS)
Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Rashchikov, V. I.; Shatokhin, V. L.
2018-04-01
A model for acceleration of deuterons and generation of neutrons in a compact laser-plasma diode with electron isolation using magnetic field generated by a hollow cylindrical permanent magnet is presented. Experimental and computer-simulated neutron yields are compared for the diode structure under study. An accelerating neutron tube with a relatively high neutron generation efficiency can be constructed using suppression of electron conduction with the aid of a magnet placed in the vacuum volume.
NASA Astrophysics Data System (ADS)
Wang, Siqi; Li, Decai
2015-09-01
This paper describes the design and characterization of a plane vibration-based electromagnetic generator that is capable of converting low-frequency vibration energy into electrical energy. A magnetic spring is formed by a magnetic attractive force between fixed and movable permanent magnets. The ferrofluid is employed on the bottom of the movable permanent magnet to suspend it and reduce the mechanical damping as a fluid lubricant. When the electromagnetic generator with a ferrofluid of 0.3 g was operated under a resonance condition, the output power reached 0.27 mW, and the power density of the electromagnetic generator was 5.68 µW/cm2. The electromagnetic generator was also used to harvest energy from human motion. The measured average load powers of the electromagnetic generator from human waist motion were 0.835 mW and 1.3 mW during walking and jogging, respectively.
Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishikawa, K.-I.; Hardee, P. E.; Duţan, I.
2014-09-20
We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas, we find generation of strong large-scale DC currents and magnetic fields that extend over the entire shear surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas, we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shearmore » surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates a transverse structure similar to that produced by the Weibel instability.« less
Summer circulation in the Mexican tropical Pacific
NASA Astrophysics Data System (ADS)
Trasviña, A.; Barton, E. D.
2008-05-01
The main components of large-scale circulation of the eastern tropical Pacific were identified in the mid 20th century, but the details of the circulation at length scales of 10 2 km or less, the mesoscale field, are less well known particularly during summer. The winter circulation is characterized by large mesoscale eddies generated by intense cross-shore wind pulses. These eddies propagate offshore to provide an important source of mesoscale variability for the eastern tropical Pacific. The summer circulation has not commanded similar attention, the main reason being that the frequent generation of hurricanes in the area renders in situ observations difficult. Before the experiment presented here, the large-scale summer circulation of the Gulf of Tehuantepec was thought to be dominated by a poleward flow along the coast. A drifter-deployment experiment carried out in June 2000, supported by satellite altimetry and wind data, was designed to characterize this hypothesized Costa Rica Coastal Current. We present a detailed comparison between altimetry-estimated geostrophic and in situ currents estimated from drifters. Contrary to expectation, no evidence of a coherent poleward coastal flow across the gulf was found. During the 10-week period of observations, we documented a recurrent pattern of circulation within 500 km of shore, forced by a combination of local winds and the regional-scale flow. Instead of the Costa Rica Coastal Current, we found a summer eddy field capable of influencing large areas of the eastern tropical Pacific. Even in summer, the cross-isthmus wind jet is capable of inducing eddy formation.
The spatial distribution and time evolution of impact-generated magnetic fields
NASA Technical Reports Server (NTRS)
Crawford, D. A.; Schultz, P. H.
1991-01-01
The production of magnetic fields was revealed by laboratory hypervelocity impacts in easily vaporized targets. As quantified by pressure measurements, high frame-rate photography, and electrostatic probes, these impacts tend to produce large quantities of slightly ionized vapor, which is referred to as impact-generated plasma. Nonaligned electron density and temperature gradients within this plasma may lead to production of the observed magnetic fields. Past experiments were limited to measuring a single component of the impact-generated magnetic fields at only a few locations about the developing impact crater and consequently gave little information about the field production mechanism. To understand this mechanism, the techniques were extended to map the three components of the magnetic field both in space and time. By conducting many otherwise identical experiments with arrayed magnetic detectors, a preliminary 3-D picture was produced of impact-generated magnetic fields as they develop through time.
Schwarz-Christoffel Conformal Mapping based Grid Generation for Global Oceanic Circulation Models
NASA Astrophysics Data System (ADS)
Xu, Shiming
2015-04-01
We propose new grid generation algorithms for global ocean general circulation models (OGCMs). Contrary to conventional, analytical forms based dipolar or tripolar grids, the new algorithm are based on Schwarz-Christoffel (SC) conformal mapping with prescribed boundary information. While dealing with the conventional grid design problem of pole relocation, it also addresses more advanced issues of computational efficiency and the new requirements on OGCM grids arisen from the recent trend of high-resolution and multi-scale modeling. The proposed grid generation algorithm could potentially achieve the alignment of grid lines to coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the generated grids are still orthogonal curvilinear, they can be readily 10 utilized in existing Bryan-Cox-Semtner type ocean models. The proposed methodology can also be applied to the grid generation task for regional ocean modeling when complex land-ocean distribution is present.
KAHVE Laboratory RF circulator and transmission line project
NASA Astrophysics Data System (ADS)
Cetinkaya, Hakan; ćaǧlar, Aslıhan; ćiçek, Cihan; Özbey, Aydın; Sunar, Ezgi; Türemen, Görkem; Yıldız, Hüseyin; Yüncü, Alperen; Özcan, Erkcan; Ünel, Gökhan; Yaman, Fatih
2018-02-01
An 800 MHz RF circulator and transmission line project has recently started at the newly commissioned Kandilli Detector, Accelerator and Instrumentation (KAHVE) Laboratory at the Boğaziçi University. The aims are to design, build and construct an RF circulator and transmission line in Turkey for high power and high frequency applications. The project consists of 8 transmission line elements: 800 MHz RF generator with 60 kW power (klystron), klystron to waveguide converter, waveguides, E and H bends, 3-port circulator and waveguide to coaxial converter to transmit RF power to a pillbox RF cavity. Design studies and details of the ongoing project will be presented.
Gridded thermionic gun and integral superconducting ballistic bunch compression cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultheiss, Thomas
Electron-Ion colliders such as the Medium energy Electron Ion Collider (MEIC) being developed by JLAB require high current electrons with low energy spread for electron cooling of the collider ring. Accelerator techniques for improving bunch charge, average current, emittance, and energy spread are required for Energy Recovery Linacs (ERLs) and Circulator Rings (CR) for next generation colliders for nuclear physics experiments. Example candidates include thermionic-cathode electron guns with RF accelerating structures. Thermionic cathodes are known to produce high currents and have excellent lifetime. The success of the IR and THz Free-Electron Laser (FEL) designed and installed by Advanced Energy Systemsmore » at the Fritz Haber Institute (FHI) of the Max Planck Society in Berlin [1,2] demonstrates that gridded thermionic cathodes and rf systems be considered for next generation collider technology. In Phase 1 Advanced Energy Systems (AES) developed and analyzed a design concept using a superconducting cavity pair and gridded thermionic cathode. Analysis included Beam Dynamics and thermal analysis to show that a design of this type is feasible. The latest design goals for the MEIC electron cooler were for electron bunches of 420 pC at a frequency of 952.6 MHz with a magnetic field on the cathode of 2kG. This field magnetizes the beam imparting angular momentum that provides for helical motion of the electrons in the cooling solenoid. The helical motion increases the interaction time and improves the cooling efficiency. A coil positioned around the cathode providing 2kG field was developed. Beam dynamics simulations were run to develop the particle dynamics near the cathode and grid. Lloyd Young added capability to Tstep to include space charge effects between two plates and include image charge effects from the grid. He also added new pepper-pot geometry capability to account for honeycomb grids. These additions were used to develop the beam dynamics for this gun. The general design is a modified ballistic compression cavity pair with two independently powered cells [3]. The first is a cathode cell that includes the thermionic cathode and grid to provide for beam bunching. The second is a full cell with independent phasing and field levels designed to minimize energy spread. The primary goal for Phase II is to manufacture a superconducting gun with a thermionic cathode and imbedded coil. The system developed here is applicable to many high current electron accelerators. The analysis and design constraints imposed by the magnetized cathode make the cathode system developed here more complicated and limited than one without the magnetized beam constraints. High power ERLs would benefit by a gun with the capabilities shown here, 400 mA or more of current. ERLs hold great promise for electron cooling experiments, advanced light sources and Free Electron Lasers. This high current electron injector is a technological advance that will place the requirements for an ERL capable of providing quality bunches needed for cooling within the MEIC circulator ring within reach. This injector would have application to future ERLs around the world.« less
Design and modeling of energy generated magneto rheological damper
NASA Astrophysics Data System (ADS)
Ahamed, Raju; Rashid, Muhammad Mahbubur; Ferdaus, Md Meftahul; Yusof, Hazlina Md.
2016-02-01
In this paper an energy generated mono tube MR damper model has been developed for vehicle suspension systems. A 3D model of energy generated MR damper is developed in Solid Works electromagnetic simulator (EMS) where it is analyzed extensively by finite element method. This dynamic simulation clearly illustrates the power generation ability of the damper. Two magnetic fields are induced inside this damper. One is in the outer coil of the power generator and another is in the piston head coils. The complete magnetic isolation between these two fields is accomplished here, which can be seen in the finite element analysis. The induced magnetic flux densities, magnetic field intensities of this damper are analyzed for characterizing the damper's power generation ability. Finally, the proposed MR damper's energy generation ability was studied experimentally.
Kangas, Antti J; Soininen, Pasi; Lawlor, Debbie A; Davey Smith, George; Ala-Korpela, Mika
2017-01-01
Abstract Detailed metabolic profiling in large-scale epidemiologic studies has uncovered novel biomarkers for cardiometabolic diseases and clarified the molecular associations of established risk factors. A quantitative metabolomics platform based on nuclear magnetic resonance spectroscopy has found widespread use, already profiling over 400,000 blood samples. Over 200 metabolic measures are quantified per sample; in addition to many biomarkers routinely used in epidemiology, the method simultaneously provides fine-grained lipoprotein subclass profiling and quantification of circulating fatty acids, amino acids, gluconeogenesis-related metabolites, and many other molecules from multiple metabolic pathways. Here we focus on applications of magnetic resonance metabolomics for quantifying circulating biomarkers in large-scale epidemiology. We highlight the molecular characterization of risk factors, use of Mendelian randomization, and the key issues of study design and analyses of metabolic profiling for epidemiology. We also detail how integration of metabolic profiling data with genetics can enhance drug development. We discuss why quantitative metabolic profiling is becoming widespread in epidemiology and biobanking. Although large-scale applications of metabolic profiling are still novel, it seems likely that comprehensive biomarker data will contribute to etiologic understanding of various diseases and abilities to predict disease risks, with the potential to translate into multiple clinical settings. PMID:29106475
Immunomagnetic Nano-Screening Chip for Circulating Tumor Cells Detection in Blood
NASA Astrophysics Data System (ADS)
Horton, A. P.; Lane, N.; Tam, J.; Sokolov, K.; Garner, H. R.; Uhr, J. W.; Zhang, X. J.
2010-03-01
We present a novel method towards diagnose cancer at an early stage via a blood test. Early diagnosis is high on the future agenda of oncologists because of significant evidence that it will result in a higher cure rate. Capture of circulating tumor cells (CTCs) which are known to escape from carcinomas at an early stage offers such an opportunity. We design, fabricate and optimize the nanomagnetic-screening chip that captures the CTCs in microfluid, and further integrate the nano-chip with the new multispectral imaging system so that it can quantify different tumor markers and automate the entire instrument. Specifically, hybrid plasmonic (Fe2O3-core Au shell) nanoparticles, conjugated a collection of antibodies especially chosen to target breast cancer CTCs, with high magnetic susceptibility will be used for effective immunomagnetic CTC isolation. Greatly increased sensitivity over previous attempts is demonstrated by decreasing the length scale for interactions between the magnetic-nanoparticle-tagged CTCs and the isolative magnetic field, while increasing the effective cross-sectional area over which this interaction takes place. The screening chip is integrated with a novel hyperspectral microscopic imaging (HMI) platform capable of recording the entire emission spectra in a single pass evaluation. The combined system will precisely quantify up to 10 tumor markers on CTCs.
Vacuum system of the compact Energy Recovery Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honda, T., E-mail: tohru.honda@kek.jp; Tanimoto, Y.; Nogami, T.
2016-07-27
The compact Energy Recovery Linac (cERL), a test accelerator to establish important technologies demanded for future ERL-based light sources, was constructed in late 2013 at KEK. The accelerator was successfully commissioned in early 2014, and demonstrated beam circulation with energy recovery. In the cERL vacuum system, low-impedance vacuum components are required to circulate high-intensity, low-emittance and short-bunch electron beams. We therefore developed ultra-high-vacuum (UHV)-compatible flanges that can connect beam tubes seamlessly, and employed retractable beam monitors, namely, a movable Faraday cup and screen monitors. In most parts of the accelerator, pressures below 1×10{sup −7} Pa are required to mitigate beam-gasmore » interactions. Particularly, near the photocathode electron gun and the superconducting (SC) cavities, pressures below 1×10{sup −8} Pa are required. The beam tubes in the sections adjoining the SC cavities were coated with non-evaporable getter (NEG) materials, to reduce gas condensation on the cryo-surfaces. During the accelerator commissioning, stray magnetic fields from the permanent magnets of some cold cathode gauges (CCGs) were identified as a source of the disturbance to the beam orbit. Magnetic shielding was specially designed as a remedy for this issue.« less
Magnetic fields in an expanding universe
NASA Astrophysics Data System (ADS)
Kastor, David; Traschen, Jennie
2014-04-01
We find a solution to 4D Einstein-Maxwell theory coupled to a massless dilaton field, for all values of the dilaton coupling, describing a Melvin magnetic field in an expanding universe with ‘stiff matter’ equation of state parameter w = +1. As the universe expands, magnetic flux becomes more concentrated around the symmetry axis for dilaton coupling a\\lt1/\\sqrt{3} and more dispersed for a\\gt1/\\sqrt{3}. An electric field circulates around the symmetry axis in the direction determined by Lenz's law. For a = 0 the magnetic flux through a disc of fixed comoving radius is proportional to the proper area of the disc. This result disagrees with the usual expectation based on a test magnetic field that this flux should be constant, and we show why this difference arises. We also find a Melvin solution in an accelerating universe with w = -7/9 for a dilaton field with a certain exponential potential.
Post, R.F.; Taylor, C.E.
1963-05-21
A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)
System and method for heating ferrite magnet motors for low temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang
A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly.more » The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.« less
System and method for heating ferrite magnet motors for low temperatures
Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang
2017-07-04
A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly. The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.
Formation and plasma circulation of solar prominences and coronal rains
NASA Astrophysics Data System (ADS)
Xia, C.
2016-12-01
Solar prominences are long-lived cool and dense plasma curtains in the hot and rarefied corona. The physical mechanism responsible for their formation and especially for their internal plasma circulation has been uncertain for decades. The observed ubiquitous down flows in quiescent prominences are difficult to interpret as plasma with high conductivity seems to move across horizontal magnetic field lines. Here we present three-dimensional (3D) numerical simulations of prominence formation and evolution in an elongated magnetic flux rope as a result of in-situ plasma condensations fueled by continuous plasma evaporation from the solar chromosphere. The prominence is born and maintained in a fragmented, highly dynamic state with continuous reappearance of multiple blobs and thread structures that move mainly downward dragging along mass-loaded field lines. The prominence plasma circulation is characterized by the dynamic balance between the drainage of prominence plasma back to the chromosphere and the formation of prominence plasma via continuous condensation. Plasma evaporates from the chromosphere, condenses into the prominence in the corona, and drains back to the chromosphere, establishing a stable chromosphere-corona plasma cycle. Another form of cool and dense plasma in the corona is coronal rain, which forms in-situ and drain down arched pathways along loops near active regions. We present 3D simulations of coronal rain in a bipolar arcade and compare it with observational results.
A linear magnetic motor and generator
NASA Technical Reports Server (NTRS)
Studer, P. A.
1980-01-01
In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.
NASA Astrophysics Data System (ADS)
Wang, Huijun; Qu, Zheng; Tang, Shaofei; Pang, Mingqi; Zhang, Mingju
2017-08-01
In this paper, electromagnetic design and permanent magnet shape optimization for permanent magnet synchronous generator with hybrid excitation are investigated. Based on generator structure and principle, design outline is presented for obtaining high efficiency and low voltage fluctuation. In order to realize rapid design, equivalent magnetic circuits for permanent magnet and iron poles are developed. At the same time, finite element analysis is employed. Furthermore, by means of design of experiment (DOE) method, permanent magnet is optimized to reduce voltage waveform distortion. Finally, the validity of proposed design methods is validated by the analytical and experimental results.
The Atlantic Multidecadal Oscillation without a role for ocean circulation.
Clement, Amy; Bellomo, Katinka; Murphy, Lisa N; Cane, Mark A; Mauritsen, Thorsten; Rädel, Gaby; Stevens, Bjorn
2015-10-16
The Atlantic Multidecadal Oscillation (AMO) is a major mode of climate variability with important societal impacts. Most previous explanations identify the driver of the AMO as the ocean circulation, specifically the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the main features of the observed AMO are reproduced in models where the ocean heat transport is prescribed and thus cannot be the driver. Allowing the ocean circulation to interact with the atmosphere does not significantly alter the characteristics of the AMO in the current generation of climate models. These results suggest that the AMO is the response to stochastic forcing from the mid-latitude atmospheric circulation, with thermal coupling playing a role in the tropics. In this view, the AMOC and other ocean circulation changes would be largely a response to, not a cause of, the AMO. Copyright © 2015, American Association for the Advancement of Science.
Kwak, Bongseop; Lee, Jaehun; Lee, Dongkyu; Lee, Kangho; Kwon, Ohwon; Kang, Shinwon; Kim, Youngwoo
2017-02-15
Relocation mechanisms of the circulating tumor cells (CTCs) from the primary site to the secondary site through the blood vessel network cause tumor metastasis. Despite of the importance to diagnose the cancer metastasis by CTCs, still it is formidable challenge to use in the clinical purpose because of the rarity and the heterogeneity of CTCs in the cancer patient's peripheral blood sample. In this study we have developed magnetic force gradient based microfluidic chip (Mag-Gradient Chip) for isolating the total number of CTCs in the sample and characterizing the state of CTCs simultaneously with respect to the epithelial cell adhesion molecule (EpCAM) expression level. We have synthesized magnetic nanoparticles (MNPs) using hydrothermal method and functionalized anti-EpCAM on their surface for the specific binding with CTCs. The Mag-Gradient Chip designed to isolate and classify the CTCs by isolating at the different location in the chip using magnetic force differences depending on the EpCAM expression level. We observed 95.7% of EpCAM positive and 79.3% of EpCAM negative CTCs isolated in the Mag-Gradient Chip. At the same time, the 71.3% of isolated EpCAM positive CTCs were isolated at the first half area whereas the 76.9% of EpCAM negative CTCs were collected at the latter half area. The Mag-Gradient Chip can isolate the 3ml of heterogeneous CTCs sample in 1h with high isolating yield. The EpCAM expression level dose not means essential condition of the metastatic CTCs, but the Mag-Gradient Chip can shorten the date to diagnose the cancer metastasis in clinic. Copyright © 2016 Elsevier B.V. All rights reserved.
Micromachined Active Magnetic Regenerator for Low-Temperature Magnetic Coolers
NASA Technical Reports Server (NTRS)
Chen, Weibo; Jaeger, Michael D.
2013-01-01
A design of an Active Magnetic Regenerative Refrigeration (AMRR) system has been developed for space applications. It uses an innovative 3He cryogenic circulator to provide continuous remote/distributed cooling at temperatures in the range of 2 K with a heat sink at about 15 K. A critical component technology for this cooling system is a highly efficient active magnetic regenerator, which is a regenerative heat exchanger with its matrix material made of magnetic refrigerant gadolinium gallium garnet (GGG). Creare Inc. is developing a microchannel GGG regenerator with an anisotropic structured bed for high system thermal efficiency. The regenerator core consists of a stack of thin, single-crystal GGG disks alternating with thin polymer insulating layers. The insulating layers help minimize the axial conduction heat leak, since GGG has a very high thermal conductivity in the regenerator s operating temperature range. The GGG disks contain micro channels with width near 100 micrometers, which enhance the heat transfer between the circulating flow and the refrigerant bed. The unique flow configuration of the GGG plates ensures a uniform flow distribution across the plates. The main fabrication challenges for the regenerator are the machining of high-aspect-ratio microchannels in fragile, single-crystal GGG disks and fabrication and assembly of the GGG insulation layers. Feasibility demonstrations to date include use of an ultrashort- pulse laser to machine microchannels without producing unacceptable microcracking or deposition of recast material, as shown in the figure, and attachment of a thin insulation layer to a GGG disk without obstructing the flow paths. At the time of this reporting, efforts were focused on improving the laser machining process to increase machining speed and further reduce microcracking.
Stability Analysis of Flow Induced by the Traveling Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin
2003-01-01
Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.
Stability Analysis of Flow Induced by the Traveling Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin
2003-01-01
Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.
Phase-space dynamics of runaway electrons in magnetic fields
Guo, Zehua; McDevitt, Christopher Joseph; Tang, Xian-Zhu
2017-02-16
Dynamics of runaway electrons in magnetic fields are governed by the competition of three dominant physics: parallel electric field acceleration, Coulomb collision, and synchrotron radiation. Examination of the energy and pitch-angle flows reveals that the presence of local vortex structure and global circulation is crucial to the saturation of primary runaway electrons. Models for the vortex structure, which has an O-point to X-point connection, and the bump of runaway electron distribution in energy space have been developed and compared against the simulation data. Lastly, identification of these velocity-space structures opens a new venue to re-examine the conventional understanding of runawaymore » electron dynamics in magnetic fields.« less
NASA Astrophysics Data System (ADS)
Kückelhaus, S.; Tedesco, A. C.; Oliveira, D. M.; Morais, P. C.; Boaventura, G. R.; Lacava, Z. G. M.
2005-05-01
This study reports on the biodistribution investigation of two magnetic samples both based on cobalt-ferrite nanoparticles, a magnetic fluid sample (CoMF) and a stealth magnetoliposome polyethylene glycol-monolaurate (PEG-ML). Morphology observations and iron and cobalt concentrations were evaluated after treatment of mice upon intravenous injection. Both magnetic samples had an extended distribution throughout all investigated organs. CoMF was quickly eliminated mainly by the fecal via whereas PEG-ML was retained longer in the circulation and slowly eliminated. These differences are probably due to the presence of polyethylene glycol on the PEG-ML surface, recognized to be responsible for the internalization delay of nanoparticles.
A mechanism to account for well known peculiarities of low mass AGB star nucleosynthesis
NASA Astrophysics Data System (ADS)
Palmerini, Sara; Trippella, Oscar; Vescovi, Diego; Busso, Maurizio
2018-01-01
We present here the application of a model for a mass circulation mechanism induced by the stellar magnetic field to study peculiar aspects of AGB star nucleosynthesis. The mixing scheme is based on a previously suggested magnetic-buoyancy process [1, 2] and here shown to account adequately for the formation of the 13C neutron source for s-processes. In particular our analysis results are focused on addressing the constrains to AGB nucleosynthesis coming from the isotopic composition of presolar grains recovered in meteorites. It turns out that n-captures driven by the magnetically-induced mixing can account for the isotopic abundance ratios of s-elements recorded.
Self-driven cooling loop for a large superconducting magnet in space
NASA Technical Reports Server (NTRS)
Mord, A. J.; Snyder, H. A.
1992-01-01
Pressurized cooling loops in which superfluid helium circulation is driven by the heat being removed have been previously demonstrated in laboratory tests. A simpler and lighter version which eliminates a heat exchanger by mixing the returning fluid directly with the superfluid helium bath was analyzed. A carefully designed flow restriction must be used to prevent boiling in this low-pressure system. A candidate design for Astromag is shown that can keep the magnet below 2.0 K during magnet charging. This gives a greater margin against accidental quench than approaches that allow the coolant to warm above the lambda point. A detailed analysis of one candidate design is presented.
Assessment of Advanced Logistics Delivery System (ALDS) Launch Systems Concepts
2004-10-01
highest force vs. rotor weight required, allows much higher magnetic field generation than the linear induction or linear permanent magnet motors , and...provides the highest force vs. rotor weight required, allows much higher magnetic generation than the linear induction or linear permanent magnet motors , and
Ma, Qingyu; He, Bin
2007-08-21
A theoretical study on the magnetoacoustic signal generation with magnetic induction and its applications to electrical conductivity reconstruction is conducted. An object with a concentric cylindrical geometry is located in a static magnetic field and a pulsed magnetic field. Driven by Lorentz force generated by the static magnetic field, the magnetically induced eddy current produces acoustic vibration and the propagated sound wave is received by a transducer around the object to reconstruct the corresponding electrical conductivity distribution of the object. A theory on the magnetoacoustic waveform generation for a circular symmetric model is provided as a forward problem. The explicit formulae and quantitative algorithm for the electrical conductivity reconstruction are then presented as an inverse problem. Computer simulations were conducted to test the proposed theory and assess the performance of the inverse algorithms for a multi-layer cylindrical model. The present simulation results confirm the validity of the proposed theory and suggest the feasibility of reconstructing electrical conductivity distribution based on the proposed theory on the magnetoacoustic signal generation with magnetic induction.
Library Specifications for a New Circulation System for Concordia University Libraries.
ERIC Educational Resources Information Center
Tallon, James
This study of library requirements for a new circulation system is organized into three sections: (1) items required for initial implementation in July 1982; (2) items relating to notice generation and activity statistics, with implementation expected by fall 1982; and (3) items provided in the system as initially implemented, with additional…
Solid-Cryogen Cooling Technique for Superconducting Magnets of NMR and MRI
NASA Astrophysics Data System (ADS)
Iwasa, Yukikazu; Bascuñán, Juan; Hahn, Seungyong; Park, Dong Keun
This paper describes a solid-cryogen cooling technique currently being developed at the M.I.T. Francis Bitter Magnet Laboratory for application to superconducting magnets of NMR and MRI. The technique is particularly appropriate for "dry" magnets that do not rely on liquid cryogen, e.g., liquid helium (LHe), as their primary cooling sources. In addition, the advantages of a cryocirculator (a combination of a cryocooler and a working fluid circulator) over a cryocooler as the primary cooling source for dry magnets are described. The four magnets described here, all incorporating this cooling technique described and currently being developed at the FBML, are: 1) a solid-nitrogen (SN2)-cooled Nb3Sn 500-MHz/200-mm MRI magnet with an operating temperature range between 4.2 K (nominal) and 6.0 K (maximum with its primary cooling source off); 2) an SN2-cooled MgB2 0.5-T/800-mm MRI magnet, 1015 K; 3) an SN2-cooled compact YBCO "annulus" 100-MHz/9-mm NMR magnet, 10-15 K; 4) an SN2-cooled 1.5T/75-mm NbTi magnet for slow magic-angle-spinning NMR/MRI, 4.5-5.5 K.
NASA Astrophysics Data System (ADS)
Andalib, T.; Martin, J. W.; Bidinosti, C. P.; Mammei, R. R.; Jamieson, B.; Lang, M.; Kikawa, T.
2017-09-01
Future experiments seeking to measure the neutron electric dipole moment (nEDM) require stable and homogeneous magnetic fields. Normally these experiments use a coil internal to a passively magnetically shielded volume to generate the magnetic field. The stability of the magnetic field generated by the coil within the magnetically shielded volume may be influenced by a number of factors. The factor studied here is the dependence of the internally generated field on the magnetic permeability μ of the shield material. We provide measurements of the temperature-dependence of the permeability of the material used in a set of prototype magnetic shields, using experimental parameters nearer to those of nEDM experiments than previously reported in the literature. Our measurements imply a range of 1/μ dμ/dT from 0-2.7%/K. Assuming typical nEDM experiment coil and shield parameters gives μ/B0 dB0/dμ = 0.01, resulting in a temperature dependence of the magnetic field in a typical nEDM experiment of dB0/dT = 0 - 270 pT/K for B0 = 1 μT. The results are useful for estimating the necessary level of temperature control in nEDM experiments.
Interlayer-coupled spin vortex pairs and their response to external magnetic fields
NASA Astrophysics Data System (ADS)
Wintz, Sebastian; Bunce, Christopher; Banholzer, Anja; Körner, Michael; Strache, Thomas; Mattheis, Roland; McCord, Jeffrey; Raabe, Jörg; Quitmann, Christoph; Erbe, Artur; Fassbender, Jürgen
2012-06-01
We report on the response of multilayer spin textures to static magnetic fields. Coupled magnetic vortex pairs in trilayer elements (ferromagnetic/nonmagnetic/ferromagnetic) are imaged directly by means of layer-selective magnetic x-ray microscopy. We observe two different circulation configurations with parallel and opposing senses of magnetization rotation at remanence. Upon application of a field, all of the vortex pairs investigated react with a displacement of their cores. For purely dipolar coupled pairs, the individual core displacements are similar to those of an isolated single-layer vortex, but also a noticeable effect of the mutual stray fields is detected. Vortex pairs that are linked by an additional interlayer exchange coupling (IEC), which is either ferromagnetic or antiferromagnetic, mainly exhibit a layer-congruent response. We find that, apart from a possible decoupling at higher fields, these strict IEC vortex pairs can be described by a single-layer model with effective material parameters. This result implies the possibility to design multilayer spin structures with arbitrary effective magnetization.
Methods of high current magnetic field generator for transcranial magnetic stimulation application
NASA Astrophysics Data System (ADS)
Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.
2015-05-01
This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/-20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.
Methods of high current magnetic field generator for transcranial magnetic stimulation application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouda, N. R., E-mail: nybouda@iastate.edu; Pritchard, J.; Weber, R. J.
This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG{sub 1}) and MOSFET circuits (HCMFG{sub 2}) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.
78 FR 734 - Medical Imaging Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
..., LLC. The proposed indication (use) for this product is for magnetic resonance imaging in brain...) to detect and visualize areas with disruption of the blood brain barrier (specialized tissues that help protect the brain) and/or abnormal vascularity (abnormal blood circulation). FDA intends to make...
Reanalyzing the Ampere-Maxwell Law
ERIC Educational Resources Information Center
Hill, S. Eric
2011-01-01
In a recent "TPT" article, I addressed a common miscommunication about Faraday's law, namely, that introductory texts often say the law expresses a causal relationship between the magnetic fields time variation and the electric fields circulation. In that article, I demonstrated that these field behaviors share a common cause in a time-varying…
Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis
Lacroix, Romaric; Plawinski, Laurent; Robert, Stéphane; Doeuvre, Loïc; Sabatier, Florence; Martinez de Lizarrondo, Sara; Mezzapesa, Anna; Anfosso, Francine; Leroyer, Aurelie S.; Poullin, Pascale; Jourde, Noémie; Njock, Makon-Sébastien; Boulanger, Chantal M.; Anglés-Cano, Eduardo; Dignat-George, Françoise
2012-01-01
Background We recently assigned a new fibrinolytic function to cell-derived microparticles in vitro. In this study we explored the relevance of this novel property of microparticles to the in vivo situation. Design and Methods Circulating microparticles were isolated from the plasma of patients with thrombotic thrombocytopenic purpura or cardiovascular disease and from healthy subjects. Microparticles were also obtained from purified human blood cell subpopulations. The plasminogen activators on microparticles were identified by flow cytometry and enzyme-linked immunosorbent assays; their capacity to generate plasmin was quantified with a chromogenic assay and their fibrinolytic activity was determined by zymography. Results Circulating microparticles isolated from patients generate a range of plasmin activity at their surface. This property was related to a variable content of urokinase-type plasminogen activator and/or tissue plasminogen activator. Using distinct microparticle subpopulations, we demonstrated that plasmin is generated on endothelial and leukocyte microparticles, but not on microparticles of platelet or erythrocyte origin. Leukocyte-derived microparticles bear urokinase-type plasminogen activator and its receptor whereas endothelial microparticles carry tissue plasminogen activator and tissue plasminogen activator/inhibitor complexes. Conclusions Endothelial and leukocyte microparticles, bearing respectively tissue plasminogen activator or urokinase-type plasminogen activator, support a part of the fibrinolytic activity in the circulation which is modulated in pathological settings. Awareness of this blood-borne fibrinolytic activity conveyed by microparticles provides a more comprehensive view of the role of microparticles in the hemostatic equilibrium. PMID:22733025
The Stellar Imager (SI) Mission Concept: Imaging the Surfaces and Interiors of Other Stars
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Oegerle, William R. (Technical Monitor)
2002-01-01
The Stellar Imager (SI) is envisioned as a space-based, uv-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum. baseline of 0.5-km and providing a resolution of 60 micro-arcseconds at 1550 A. It will image stars and binaries with one hundred to one thousand resolution elements on their surface and enable long-term studies of stellar magnetic activity patterns and their evolution with time, for comparison with those on the sun. It will also sound their interiors through asteroseismology to image internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamic the stars in which these dynamos operate. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on times scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the universe. The road to that goal will revolutionize our understanding of stars and stellar systems, the building blocks of the universe. Fitting naturally within the NASA and ESA long-term time lines, SI complements defined missions, and with them will show us entire other solar systems, from the central star to their orbiting planets. in this paper we describe the scientific goals of the mission, the performance requirements needed to address those goals, and the design concepts now under study.
NASA Astrophysics Data System (ADS)
Tormoen, Garth W.; Khader, Ayesha; Gruber, András; McCarty, Owen J. T.
2013-06-01
Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation factor levels and TF particle concentration. Clotting times increased when pooled plasma was mixed at or above a ratio of 4:6 with PBS. Clotting times increased when pooled plasma was mixed at or above a ratio of 8:2 with factor VII-depleted plasma, 7:3 with factor IX- or factor X-depleted plasmas, or 2:8 with factor II-, V- or VIII-depleted plasmas. Addition of coagulation factors VII, X, IX, V and II to depleted plasmas shortened clotting and enzyme initiation times, and increased enzyme generation rates in a concentration-dependent manner. Only additions of factors IX and X from low-normal to high-normal levels shortened clotting times and increased enzyme generation rates. Our results demonstrate that coagulation kinetics for TF particles are controlled by factor IX and X levels within the normal physiological range. We hypothesize that individual patient factor IX and X levels may be prognostic for susceptibility to circulating TF-induced thrombosis.
NASA Technical Reports Server (NTRS)
Engwirda, Darren
2017-01-01
An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered VoronoiDelaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.
NASA Astrophysics Data System (ADS)
Engwirda, Darren
2017-06-01
An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered Voronoi-Delaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.
Spin-current emission governed by nonlinear spin dynamics.
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-10-16
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.
Spin-current emission governed by nonlinear spin dynamics
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-01-01
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712
Cycloconverter on the all-electric airplane
NASA Astrophysics Data System (ADS)
Webb, R. C.
1983-06-01
This paper discusses the application of a cycloconverter to a permanent magnet generator. Recent developments, advanced concepts, and advanced technology systems will be covered. Recent developments include permanent magnets, permanent magnet motors and generators, and power semiconductors.
NASA Astrophysics Data System (ADS)
Scarlat, Raluca Olga
This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling approach to the PB-FHR annular pebble bed core cooled by fluoride salt mixtures generated a model that is called Pod. Pod. was used to show the resilience of the PB-FHR core to generation of hot spots or cold spots, due to the effect of buoyancy on the flow and temperature distribution in the packed bed. Pod. was used to investigate the PB-FHR response to ATWS transients. Based on the functional requirements for the core, Pod. was used to generate an optimized design of the flow distribution in the core. An analysis of natural circulation loops cooled by single-phase Boussinesq fluids is presented here, in the context of reactor design that relies on natural circulation decay heat removal, and design of scaled experiments. The scaling arguments are established for a transient natural circulation loop, for loops that have long fluid residence time, and negligible contribution of fluid inertia to the momentum equation. The design of integral effects tests for the loss of forced circulation (LOFC) for PB-FHR is discussed. The special case of natural circulation decay heat removal from a pebble bed reactor was analyzed. A way to define the Reynolds number in a multi-dimensional pebble bed was identified. The scaling methodology for replicating pebble bed friction losses using an electrically resistance heated annular pipe and a needle valve was developed. The thermophysical properties of liquid fluoride salts lead to design of systems with low flow velocities, and hence long fluid residence times. A comparison among liquid coolants for the performance of steady state natural circulation heat removal from a pebble bed was performed. Transient natural circulation experimental data with simulant fluids for fluoride salts is given here. The low flow velocity and the relatively high viscosity of the fluoride salts lead to low Reynolds number flows, and a low Reynolds number in conjunction with a sufficiently high coefficient of thermal expansion makes the system susceptible to local buoyancy effects Experiments indicate that slow exchange of stagnant fluid in static legs can play a significant role in the transient response of natural circulation loops. The effect of non-linear temperature profiles on the hot or cold legs or other segments of the flow loop, which may develop during transient scenarios, should be considered when modeling the performance of natural circulation loops. The data provided here can be used for validation of the application of thermal-hydraulic systems codes to the modeling of heat removal by natural circulation with liquid fluoride salts and its simulant fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hold, A.
An advanced nonlinear transient model for calculating steady-state and dynamic behaviors of characteristic parameters of a Kraftwerk Union-type vertical natural-circulation U-tube steam generator and its main steam system is presented. This model has been expanded due to the increasing need for safety-related accident research studies. It now takes into consideration the possibilities of dryout and superheating along the secondary side of the steam generator. The resulting theoretical model is the basis of the digital code UTSG-2, which can be used both by itself and in combination with other pressurized water reactor transient codes, such as ALMOD-3.4, AMOD-4, and ATHLET.
Demonstration of nonreciprocity in a microwave cavity optomechanical circuit
NASA Astrophysics Data System (ADS)
Peterson, Gabriel; Lecocq, Florent; Kotler, Shlomi; Cicak, Katarina; Simmonds, Raymond; Aumentado, Jose; Teufel, John
The ability to engineer nonreciprocal interactions is essential for many applications including quantum signal processing and quantum transduction. While attributes such as high efficiency and low added noise are always beneficial, for quantum applications these metrics are crucial. Here we present recent experimental results on a parametric, nonreciprocal microwave circuit based on the optomechanical interaction between a superconducting microwave resonator and a mechanically compliant vacuum gap capacitor. Unlike standard Faraday-based circulators, this parametric interaction does not require magnetic fields, and the direction of circulation can be controlled dynamically in situ. Looking forward, such devices could enable programmable, high-efficiency connections between disparate nodes of a quantum network.
Tutarel, Oktay; Dangwal, Seema; Bretthauer, Julia; Westhoff-Bleck, Mechthild; Roentgen, Philipp; Anker, Stefan D; Bauersachs, Johann; Thum, Thomas
2013-07-15
Recently, the microRNA miR-423_5p was identified as a biomarker for left ventricular heart failure. Its role in patients with a systemic right ventricle and reduced ejection fraction after atrial repair for transposition of the great arteries has not been evaluated. In 41 patients and 10 age- and sex-matched healthy controls circulating miR-423_5p concentration was measured and correlated to clinical parameters, cardiac functional parameters assessed by magnetic resonance imaging, and cardiopulmonary exercise testing. Levels of circulating miR-423_5p showed no difference between patients and controls. Further, there was no correlation between miR-423_5p and parameters of cardiopulmonary exercise testing or imaging findings. In patients with a systemic right ventricle and reduced ejection fraction miR-423_5p levels are not elevated. Therefore, circulating miR-423_5p is not a useful biomarker for heart failure in this patient group. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Clauss, R. C.; Quinn, R. B. (Inventor)
1980-01-01
A dielectrically loaded four port waveguide circulator is used with a reflected wave maser connected to a second port between first and third ports to form one of a plurality of cascaded maser waveguide structures. The fourth port is connected to a waveguide loaded with microwave energy absorbing material. The third (output signal) port of one maser waveguide structure is connected by a waveguide loaded with dielectric material to the first (input) port of an adjacent maser waveguide structure, and the second port is connected to a reflected wave maser by a matching transformer which passes the signal to be amplified into and out of the reflected wavemaser and blocks pumping energy in the reflected wave maser from entering the circulator. A number of cascaded maser waveguide structures are thus housed in a relatively small volume of conductive material placed within a cryogenically cooled magnet assembly.
Hybrid magnet program at the Francis Bitter National Magnet Laboratory MIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leupold, M.J.; Weggel, R.J.
1992-01-01
Resistive water-cooled magnets can generate field according to how much power is available. The authors have developed the hybrid concept for generating fields beyond a power limit, up to 45 T. Along the way the authors have progressed through five successively more adventurous designs. This paper chronicles the evolution of hybrid magnets built at the Francis Bitter National Magnet Laboratory.
A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage.
Choi, Young-Man; Lee, Moon G; Gweon, Dae-Gab; Jeong, Jaehwa
2009-04-01
Next-generation lithography requires a high precision stage, which is compatible with a high vacuum condition. A magnetic levitation stage with six degrees-of-freedom is considered state-of-the-art technology for a high vacuum condition. The noncontact characteristic of magnetic levitation enables high precision positioning as well as no particle generation. To position the stage against gravity, z-directional electromagnetic levitation mechanisms are widely used. However, if electromagnetic actuators for levitation are used, heat is inevitably generated, which deforms the structures and degrades accuracy of the stage. Thus, a gravity compensator is required. In this paper, we propose a new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage. The novel Halbach magnetic bearing exerts a force four times larger than a conventional magnetic bearing with the same volume. We also discuss the complementary characteristics of the two magnetic bearings. By modifying the height of the center magnet in a Halbach magnetic bearing, a performance compromise between levitating force density and force uniformity is obtained. The Halbach linear active magnetic bearing can be a good solution for magnetic levitation stages because of its large and uniform levitation force.
NASA Astrophysics Data System (ADS)
Xu, Peifeng; Shi, Kai; Sun, Yuxin; Zhua, Huangqiu
2017-05-01
Dual rotor permanent magnet (DRPM) wind power generator using ferrite magnets has the advantages of low cost, high efficiency, and high torque density. How to further improve the performance and reduce the cost of the machine by proper choice of pole number and slot number is an important problem to be solved when performing preliminarily design a DRPM wind generator. This paper presents a comprehensive performance comparison of a DRPM wind generator using ferrite magnets with different slot and pole number combinations. The main winding factors are calculated by means of the star of slots. Under the same machine volume and ferrite consumption, the flux linkage, back-electromotive force (EMF), cogging torque, output torque, torque pulsation, and losses are investigated and compared using finite element analysis (FEA). The results show that the slot and pole number combinations have an important impact on the generator properties.
Laser-generated magnetic fields in quasi-hohlraum geometries
NASA Astrophysics Data System (ADS)
Pollock, Bradley; Turnbull, David; Ross, Steven; Hazi, Andrew; Ralph, Joseph; Lepape, Sebastian; Froula, Dustin; Haberberger, Dan; Moody, John
2014-10-01
Laser-generated magnetic fields of 10--40 T have been produced with 100--4000 J laser drives at Omega EP and Titan. The fields are generated using the technique described by Daido et al. [Phys. Rev. Lett. 56, 846 (1986)], which works by directing a laser through a hole in one plate to strike a second plate. Hot electrons generated in the laser-produced plasma on the second plate collect on the first plate. A strap connects the two plates allowing a current of 10 s of kA to flow and generate a solenoidal magnetic field. The magnetic field is characterized using Faraday rotation, b-dot probes, and proton radiography. Further experiments to study the effect of the magnetic field on hohlraum performance are currently scheduled for Omega. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA-27344.
NASA Astrophysics Data System (ADS)
Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin
2018-02-01
The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.
NASA Astrophysics Data System (ADS)
Matsumoto, S.; Kiyoshi, T.; Otsuka, A.; Hamada, M.; Maeda, H.; Yanagisawa, Y.; Nakagome, H.; Suematsu, H.
2012-02-01
High-temperature superconducting (HTS) magnets are believed to be a practical option in the development of high field nuclear magnetic resonance (NMR) systems. The development of a 600 MHz NMR system that uses an HTS magnet and a probe with an HTS radio frequency coil is underway. The HTS NMR magnet is expected to reduce the volume occupied by the magnet and to encourage users to install higher field NMR systems. The tolerance to high tensile stress is expected for HTS conductors in order to reduce the magnet in volume. A layer-wound Gd-Ba-Cu-O (GdBCO) insert coil was fabricated in order to investigate its properties under a high electromagnetic force in a high magnetic field. The GdBCO insert coil was successfully operated at a current of up to 321 A and an electromagnetic force BJR of 408 MPa in an external magnetic field generated by Nb3Sn and Nb-Ti low-temperature superconducting coils. The GdBCO insert coil also managed to generate a magnetic field of 6.8 T at the center of the coil in an external magnetic field of 17.2 T. The superconducting magnet consisting of GdBCO, Nb3Sn and Nb-Ti coils successfully generated a magnetic field of 24.0 T at 4.2 K, which represents a new record for a superconducting magnet.
Impurity bound states in mesoscopic topological superconducting loops
NASA Astrophysics Data System (ADS)
Jin, Yan-Yan; Zha, Guo-Qiao; Zhou, Shi-Ping
2018-06-01
We study numerically the effect induced by magnetic impurities in topological s-wave superconducting loops with spin-orbit interaction based on spin-generalized Bogoliubov-de Gennes equations. In the case of a single magnetic impurity, it is found that the midgap bound states can cross the Fermi level at an appropriate impurity strength and the circulating spin current jumps at the crossing point. The evolution of the zero-energy mode can be effectively tuned by the located site of a single magnetic impurity. For the effect of many magnetic impurities, two independent midway or edge impurities cannot lead to the overlap of zero modes. The multiple zero-energy modes can be effectively realized by embedding a single Josephson junction with impurity scattering into the system, and the spin current displays oscillatory feature with increasing the layer thickness.
Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response.
Shcherbakov, Maxim R; Neshev, Dragomir N; Hopkins, Ben; Shorokhov, Alexander S; Staude, Isabelle; Melik-Gaykazyan, Elizaveta V; Decker, Manuel; Ezhov, Alexander A; Miroshnichenko, Andrey E; Brener, Igal; Fedyanin, Andrey A; Kivshar, Yuri S
2014-11-12
We observe enhanced third-harmonic generation from silicon nanodisks exhibiting both electric and magnetic dipolar resonances. Experimental characterization of the nonlinear optical response through third-harmonic microscopy and spectroscopy reveals that the third-harmonic generation is significantly enhanced in the vicinity of the magnetic dipole resonances. The field localization at the magnetic resonance results in two orders of magnitude enhancement of the harmonic intensity with respect to unstructured bulk silicon with the conversion efficiency limited only by the two-photon absorption in the substrate.
Magnetic water-in-water droplet microfluidics
NASA Astrophysics Data System (ADS)
Navi, Maryam; Abbasi, Niki; Tsai, Scott
2017-11-01
Aqueous two-phase systems (ATPS) have shown to be ideal candidates for replacing the conventional water-oil systems used in droplet microfluidics. We use an ATPS of Polyethylene Glycol (PEG) and Dextran (DEX) for microfluidic generation of magnetic water-in-water droplets. As ferrofluid partitions to DEX phase, there is no significant diffusion of ferrofluid at the interface of the droplets, rendering generation of magnetic DEX droplets in a non-magnetic continuous phase of PEG possible. In this system, both phases are water-based and highly biocompatible. We microfluidically generate magnetic DEX droplets at a flow-focusing junction in a jetting regime. We sort the droplets based on their size by placing a permanent magnet downstream of the droplet generation region, and show that the deflection of droplets is in good agreement with a mathematical model. We also show that the magnetic DEX droplets can be stabilized by lysozyme and be used for separation of single cell containing water-in-water droplets. This system of magnetic water-in-water droplet manipulation may find biomedical applications such as single-cell studies and drug delivery.
Sediment dynamics in the Adriatic Sea investigated with coupled models
Sherwood, Christopher R.; Book, Jeffrey W.; Carniel, Sandro; Cavaleri, Luigi; Chiggiato, Jacopo; Das, Himangshu; Doyle, James D.; Harris, Courtney K.; Niedoroda, Alan W.; Perkins, Henry; Poulain, Pierre-Marie; Pullen, Julie; Reed, Christopher W.; Russo, Aniello; Sclavo, Mauro; Signell, Richard P.; Traykovski, Peter A.; Warner, John C.
2004-01-01
Several large research programs focused on the Adriatic Sea in winter 2002-2003, making it an exciting place for sediment dynamics modelers (Figure 1). Investigations of atmospheric forcing and oceanic response (including wave generation and propagation, water-mass formation, stratification, and circulation), suspended material, bottom boundary layer dynamics, bottom sediment, and small-scale stratigraphy were performed by European and North American researchers participating in several projects. The goal of EuroSTRATAFORM researchers is to improve our ability to understand and simulate the physical processes that deliver sediment to the marine environment and generate stratigraphic signatures. Scientists involved in the Po and Apennine Sediment Transport and Accumulation (PASTA) experiment benefited from other major research programs including ACE (Adriatic Circulation Experiment), DOLCE VITA (Dynamics of Localized Currents and Eddy Variability in the Adriatic), EACE (the Croatian East Adriatic Circulation Experiment project), WISE (West Istria Experiment), and ADRICOSM (Italian nowcasting and forecasting) studies.
Doppler radar with multiphase modulation of transmitted and reflected signal
NASA Technical Reports Server (NTRS)
Shores, Paul W. (Inventor); Griffin, John W. (Inventor); Kobayashi, Herbert S. (Inventor)
1989-01-01
A microwave radar signal is generated and split by a circulator. A phase shifter introduces a series of phase shifts into a first part of the split signal which is then transmitted by antenna. A like number of phase shifts is introduced by the phase shifter into the return signal from the target. The circulator delivers the phase shifted return signal and the leakage signal from the circulator to a mixer which generates an IF signal output at the Doppler frequency. The IF signal is amplified, filtered, counted per unit of time, and the result displayed to provide indications of target sense and range rate. An oscillator controls rate of phase shift in the transmitted and received radar signals and provides a time base for the counter. The phase shift magnitude increases may be continuous and linear or discrete functions of time.
Generation of a Large-scale Magnetic Field in a Convective Full-sphere Cross-helicity Dynamo
NASA Astrophysics Data System (ADS)
Pipin, V. V.; Yokoi, N.
2018-05-01
We study the effects of the cross-helicity in the full-sphere large-scale mean-field dynamo models of a 0.3 M ⊙ star rotating with a period of 10 days. In exploring several dynamo scenarios that stem from magnetic field generation by the cross-helicity effect, we found that the cross-helicity provides the natural generation mechanisms for the large-scale scale axisymmetric and nonaxisymmetric magnetic field. Therefore, the rotating stars with convective envelopes can produce a large-scale magnetic field generated solely due to the turbulent cross-helicity effect (we call it γ 2-dynamo). Using mean-field models we compare the properties of the large-scale magnetic field organization that stems from dynamo mechanisms based on the kinetic helicity (associated with the α 2 dynamos) and cross-helicity. For the fully convective stars, both generation mechanisms can maintain large-scale dynamos even for the solid body rotation law inside the star. The nonaxisymmetric magnetic configurations become preferable when the cross-helicity and the α-effect operate independently of each other. This corresponds to situations with purely γ 2 or α 2 dynamos. The combination of these scenarios, i.e., the γ 2 α 2 dynamo, can generate preferably axisymmetric, dipole-like magnetic fields at strengths of several kGs. Thus, we found a new dynamo scenario that is able to generate an axisymmetric magnetic field even in the case of a solid body rotation of the star. We discuss the possible applications of our findings to stellar observations.
Magnetization-induced second- and third-harmonic generation in transparent magnetic films
NASA Astrophysics Data System (ADS)
Ohkoshi, Shin-Ichi; Shimura, Jusuke; Ikeda, Katsuyoshi; Hashimoto, Kazuhito
2005-01-01
We describe the magnetization-induced second-harmonic (SH) generation in (FeIIxCrII1-x)1.5[CrIII(CN)6]. 7.5H2O and the magnetization-induced third-harmonic (TH) generation in Y1.5Bi1.5Fe3.8Al1.2O12 (Bi, Al:YIG). The polarization plane of a SH wave from a (FeIIxCrII1-x)1.5[CrIII(CN)6].7.5H2O film was rotated by an applied external magnetic field. This SH rotation is ascribed to the interaction between the electric polarization along the out-of-plane and spontaneous magnetizations. In particular, the magnetic linear term χijkLmagn(1) contributed to the SH rotation. Applying a longitudinal external magnetic field to a Bi,Al:YIG magnetic film rotated the polarization plane of the TH wave. This TH rotation is understood by the contribution of the magnetic term of χyxxxZmagn(1) in a third-order nonlinear optical susceptibility.
Crystal structure, magnetic properties and advances in hexaferrites: A brief review
NASA Astrophysics Data System (ADS)
Jotania, Rajshree
2014-10-01
Hexaferrites are hard magnetic materials and specifically ferri-magnetic oxides with hexagonal magnetoplumbite type crystallographic structure. Hexagonal ferrites are used as permanent magnets, high-density perpendicular and magneto-optical recording media, and microwave devices like resonance isolators, filters, circulators, phase shifters because of their high magnetic permeability, high electrical resistivity and moderable permittivity. In addition to these; hexagonal ferrites have excellent chemical stability, mechanical hardness and low eddy current loss at high frequencies. The preparation of hexaferrites is a complicated process. Various experimental techniques like standard ceramic techniques, solvent free synthesis route, co precipitation, salt-melt, ion exchange, sol-gel, citrate synthesis, hydrothermal synthesis, spray drying, water-in-oil microemulsion, reverse micelle etc are used to prepare hexaferrite materials. Structural, dielectric and magnetic properties, crystallite size of hexaferrites depend upon nature of substituted ions, method of preparation, sintering temperature and time. The recent interest is nanotechnology, the development of hexaferrite fibres and composites with carbon nano tubes (CNT). Magnetic properties of some doped and un-doped hexaferrites are discussed here. Recent advances in hexaferrites also highlighted in present paper.
NASA Technical Reports Server (NTRS)
Burrage, M. D.; Abreu, V. J.; Fesen, C. G.
1990-01-01
Atmosphere Explorer E (AE-E) measurements of the O(1D) 6300-A emission in the nighttime equatorial thermosphere are used to infer the height of the F2 layer peak as a function of latitude and local time. The investigation is conducted both for northern hemisphere winter solstice and for spring equinox, under solar maximum conditions. The layer heights are used to derive magnetic meridional components of the transequatorial neutral wind, in conjunction with the MSIS-86 model and previous Jicamarca incoherent scatter measurements of the zonal electric field. The AE-E wind estimates indicate a predominant summer to winter flow for the winter solstice case. Comparisons are made with the empirical horizontal wind model HWM87 and with winds generated by the thermospheric general circulation model. The model predictions and experimental results are generally in good agreement, confirming the applicability of visible airglow data to studies of the global neutral wind pattern.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Herrero, F. A.; Varosi, F.
1984-01-01
A transfer function approach is taken in constructing a spectral model of the acoustic-gravity wave response in a multiconstituent thermosphere. The model is then applied to describing the thermospheric response to various sources around the globe. Zonal spherical harmonics serve to model the horizontal variations in propagating waves which, when integrated with respect to height, generate a transfer function for a vertical source distribution in the thermosphere. Four wave components are characterized as resonance phenomena and are associated with magnetic activity and ionospheric disturbances. The waves are either trapped or propagate, the latter becoming significant when possessing frequencies above 3 cycles/day. The energy input is distributed by thermospheric winds. The disturbances decay slowly, mainly due to heat conduction and diffusion. Gravity waves appear abruptly and are connected to a sudden switching on or off of a source. Turn off of a source coincides with a reversal of the local atmospheric circulation.
Extragalactic magnetic fields unlikely generated at the electroweak phase transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagstaff, Jacques M.; Banerjee, Robi, E-mail: jwagstaff@hs.uni-hamburg.de, E-mail: banerjee@hs.uni-hamburg.de
2016-01-01
In this paper we show that magnetic fields generated at the electroweak phase transition are most likely too weak to explain the void magnetic fields apparently observed today unless they have considerable helicity. We show that, in the simplest estimates, the helicity naturally produced in conjunction with the baryon asymmetry is too small to explain observations, which require a helicity fraction at least of order 10{sup −14}–10{sup −10} depending on the void fields constraint used. Therefore new mechanisms to generate primordial helicity are required if magnetic fields generated during the electroweak phase transition should explain the extragalactic fields.
Magnetic-field-dependent shear modulus of a magnetorheological elastomer based on natural rubber
NASA Astrophysics Data System (ADS)
Yang, In-Hyung; Yoon, Ji-Hyun; Jeong, Jae-Eun; Jeong, Un-Chang; Kim, Jin-Su; Chung, Kyung Ho; Oh, Jae-Eung
2013-01-01
A magnetorheological elastomer (MRE) is a smart material that has a reversible and variable modulus in a magnetic field. Natural rubber, which has better physical properties than silicone matrices, was used as a matrix in the fabrication of the MREs used in this study. Carbonyl iron powder (CIP), which has a rapid magnetic reaction, was selected as a magnetic material to generate the magnetic-field-dependent modulus in the MREs. The MRE specimens were cured in an anisotropic mold, which could be used to induce a uniaxial magnetic field via permanent magnets, to control the orientation of the CIP, and the shear modulus of the MREs was evaluated under a magnetic field induced by using a magnetic flux generator (MFG). Because the use of a conventional evaluation system to determine the magnetic-field-dependent shear modulus of the MREs was difficult, an evaluation system based on single degree-of-freedom vibration and electromagnetics that included an MFG, which is a device that generates a magnetic field via a variable induced current, was designed. An electromagnetic finite element method (FEM) analysis and design of experiments (DoE) techniques were employed to optimize the magnetic flux density generated by the MFG. The optimized system was verified over the range to determine the magnetic flux density generated by the MFG in order to use a magnetic circuit analysis to identify the existence of magnetic saturation. A variation in the shear modulus was observed with increasing CIP volume fraction and induced current. The experimental results revealed that the maximum variation in the shear modulus was 76.3% for 40 vol% CIP at an induced current of 4 A. With these results, the appropriate CIP volume fraction, induced current, and design procedure of the MFG can be proposed as guidelines for applications of MREs based on natural rubber.
Laser-pulse shape effects on magnetic field generation in underdense plasmas
NASA Astrophysics Data System (ADS)
Gopal, Krishna; Raja, Md. Ali; Gupta, Devki Nandan; Avinash, K.; Sharma, Suresh C.
2018-07-01
Laser pulse shape effect has been considered to estimate the self-generated magnetic field in laser-plasma interaction. A ponderomotive force based physical mechanism has been proposed to investigate the self-generated magnetic field for different spatial profiles of the laser pulse in inhomogeneous plasmas. The spatially inhomogeneous electric field of a laser pulse imparts a stronger ponderomotive force on plasma electrons. Thus, the stronger ponderomotive force associated with the asymmetric laser pulse generates a stronger magnetic field in comparison to the case of a symmetric laser pulse. Scaling laws for magnetic field strength with the laser and plasma parameters for different shape of the pulse have been suggested. Present study might be helpful to understand the plasma dynamics relevant to the particle trapping and injection in laser-plasma accelerators.
The project team has theoretically studied the mechanism of magnetohydrodynamic generator, the coupling of heat transfer and buoyancy-driven free convection, and radiation heat transfer. A number of ideas for the projects have been brainstormed in the team. The underline physi...
NASA Astrophysics Data System (ADS)
Fox, W.; Bhattacharjee, A.; Fiksel, G.
2016-10-01
Colliding plasmas are ubiquitous in astrophysical environments and allow conversion of kinetic energy into heat and, most importantly, the acceleration of particles to extremely high energies to form the cosmic ray spectrum. In collisionless astrophysical plasmas, kinetic plasma processes govern the interaction and particle acceleration processes, including shock formation, self-generation of magnetic fields by kinetic plasma instabilities, and magnetic field compression and reconnection. How each of these contribute to the observed spectra of cosmic rays is not fully understood, in particular both shock acceleration processes and magnetic reconnection have been proposed. We will review recent results of laboratory astrophysics experiments conducted at high-power, inertial-fusion-class laser facilities, which have uncovered significant results relevant to these processes. Recent experiments have now observed the long-sought Weibel instability between two interpenetrating high temperature plasma plumes, which has been proposed to generate the magnetic field necessary for shock formation in unmagnetized regimes. Secondly, magnetic reconnection has been studied in systems of colliding plasmas using either self-generated magnetic fields or externally applied magnetic fields, and show extremely fast reconnection rates, indicating fast destruction of magnetic energy and further possibilities to accelerate particles. Finally, we highlight kinetic plasma simulations, which have proven to be essential tools in the design and interpretation of these experiments.
NASA Astrophysics Data System (ADS)
Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd
2018-04-01
Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. There were several parameters analysed using the JMAG Designer. Transient response analysis was used in the JMAG Designer. The parameters analysed were the number of coil turns per phase, gap distance between the magnet pairs as well as the magnet grade used. These few parameters were analysed under the open circuit condition. Results showed with the increasing of gap distance, output voltage produced decreased. The increment of number of turns in the coils and higher magnet grades used, these increased the output voltage of the generator. With the help of these results, a reference point is established to get optimum design parameter for fabrication of working prototype.
Magnetically insulated transmission line oscillator
Bacon, Larry D.; Ballard, William P.; Clark, M. Collins; Marder, Barry M.
1988-01-01
A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.
Magnetically insulated transmission line oscillator
Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.
1987-05-19
A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.
NASA Technical Reports Server (NTRS)
Christidis, Z. D.; Spar, J.
1980-01-01
Spherical harmonic analysis was used to analyze the observed climatological (C) fields of temperature at 850 mb, geopotential height at 500 mb, and sea level pressure. The spherical harmonic method was also applied to the corresponding "model climatological" fields (M) generated by a general circulation model, the "GISS climate model." The climate model was initialized with observed data for the first of December 1976 at 00. GMT and allowed to generate five years of meteorological history. Monthly means of the above fields for the five years were computed and subjected to spherical harmonic analysis. It was found from the comparison of the spectral components of both sets, M and C, that the climate model generated reasonable 500 mb geopotential heights. The model temperature field at 850 mb exhibited a generally correct structure. However, the meridional temperature gradient was overestimated and overheating of the continents was observed in summer.
NASA Astrophysics Data System (ADS)
Khan, M. Ijaz; Hayat, Tasawar; Alsaedi, Ahmed
2018-02-01
This modeling and computations present the study of viscous fluid flow with variable properties by a rotating stretchable disk. Rotating flow is generated through nonlinear rotating stretching surface. Nonlinear thermal radiation and heat generation/absorption are studied. Flow is conducting for a constant applied magnetic field. No polarization is taken. Induced magnetic field is not taken into account. Attention is focused on the entropy generation rate and Bejan number. The entropy generation rate and Bejan number clearly depend on velocity and thermal fields. The von Kármán approach is utilized to convert the partial differential expressions into ordinary ones. These expressions are non-dimensionalized, and numerical results are obtained for flow variables. The effects of the magnetic parameter, Prandtl number, radiative parameter, heat generation/absorption parameter, and slip parameter on velocity and temperature fields as well as the entropy generation rate and Bejan number are discussed. Drag forces (radial and tangential) and heat transfer rates are calculated and discussed. Furthermore the entropy generation rate is a decreasing function of magnetic variable and Reynolds number. The Bejan number effect on the entropy generation rate is reverse to that of the magnetic variable. Also opposite behavior of heat transfers is observed for varying estimations of radiative and slip variables.
Post, Richard F.
2001-01-01
An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.
Electricity and Magnetism 3, Circulation Laws and Their Consequences.
ERIC Educational Resources Information Center
Mara, Richard T.
This monograph was written for the Conference on the New Instructional Materials in Physics, held at the University of Washington in summer, 1965. It is intended for use by college students who are non-physics majors. The approach is phenomenological and macroscopic. The monograph contains three chapters. Chapter 1 discusses Faraday's experiments…
Transient boiling in two-phase helium natural circulation loops
NASA Astrophysics Data System (ADS)
Furci, H.; Baudouy, B.; Four, A.; Meuris, C.
2014-01-01
Two-phase helium natural circulation loops are used for cooling large superconducting magnets, as CMS for LHC. During normal operation or in the case of incidents, transients are exerted on the cooling system. Here a cooling system of this type is studied experimentally. Sudden power changes are operated on a vertical-heated-section natural convection loop, simulating a fast increase of heat deposition on magnet cooling pipes. Mass flow rate, heated section wall temperature and pressure drop variations are measured as a function of time, to assess the time behavior concerning the boiling regime according to the values of power injected on the heated section. The boiling curves and critical heat flux (CHF) values have been obtained in steady state. Temperature evolution has been observed in order to explore the operating ranges where heat transfer is deteriorated. Premature film boiling has been observed during transients on the heated section in some power ranges, even at appreciably lower values than the CHF. A way of attenuating these undesired temperature excursions has been identified through the application of high enough initial heating power.
Ma, Shaohua; Zhan, Xiaohui; Yang, Minggang; Lan, Fang; Wu, Yao; Gu, Zhongwei
2018-04-01
Circulating tumor cells (CTCs) played a significant role in early diagnosis and prognosis of carcinomas, and efficient capture of CTCs was highly desired to provide important and reliable evidence for clinical diagnosis. In present work, we successfully synthesized functional magnetic Fe3O4/P(MMA-AA) composite nanoparticles (FCNPs) inspired by a counterbalance concept for recognition and capture of CTCs. This counterbalance, composed of polyethylene glycol (PEG) suppressing cell adhesion and anti-epithelial-cell-adhesion-molecule (anti-EpCAM) antibody targeting tumor cells, could both enhance the specific capture of tumor cells and reduce unspecific adhesion of normal cells. The study showed that the PEG density on the surface of the FCNPs affected the specificity of the materials, and a density of ca. 15% was efficient for reducing the unspecific adhesion. After incubation with the mixture of HepG2 cells and Jurkat T cells, the FCNPs reached a capture efficiency as high as about 86.5% of the cancer cells, suggesting great potential on detection of CTCs in the diagnoses and prognoses of cancer metastasis.
NASA Astrophysics Data System (ADS)
Perrier, M.; Gallud, A.; Ayadi, A.; Kennouche, S.; Porredon, C.; Gary-Bobo, M.; Larionova, J.; Goze-Bac, Ch.; Zanca, M.; Garcia, M.; Basile, I.; Long, J.; de Lapuente, J.; Borras, M.; Guari, Y.
2015-07-01
Cyano-bridged Gd3+/[Fe(CN)6]3- coordination polymer nanoparticles of 3-4 nm stabilized with d-mannitol presenting a high r1 relaxivity value of 11.4 mM-1 s-1 were investigated in vivo as contrast agents (CA) for Magnetic Resonance Imaging (MRI). They allow an increase of the MR image contrast and can act as an efficient intravascular T1 CA with a relatively long blood-circulation lifetime (60 min) without specific toxicity.Cyano-bridged Gd3+/[Fe(CN)6]3- coordination polymer nanoparticles of 3-4 nm stabilized with d-mannitol presenting a high r1 relaxivity value of 11.4 mM-1 s-1 were investigated in vivo as contrast agents (CA) for Magnetic Resonance Imaging (MRI). They allow an increase of the MR image contrast and can act as an efficient intravascular T1 CA with a relatively long blood-circulation lifetime (60 min) without specific toxicity. Electronic supplementary information (ESI) available: Experimental details and procedures, toxicological data, physical characterization. See DOI: 10.1039/c5nr01557j
Dumas, F; Le Gendre, R; Thomas, Y; Andréfouët, S
2012-01-01
Hydrodynamic functioning and water circulation of the semi-closed deep lagoon of Ahe atoll (Tuamotu Archipelago, French Polynesia) were investigated using 1 year of field data and a 3D hydrodynamical model. Tidal amplitude averaged less than 30 cm, but tide generated very strong currents (2 ms(-1)) in the pass, creating a jet-like circulation that partitioned the lagoon into three residual circulation cells. The pass entirely flushed excess water brought by waves-induced radiation stress. Circulation patterns were computed for climatological meteorological conditions and summarized with stream function and flushing time. Lagoon hydrodynamics and general overturning circulation was driven by wind. Renewal time was 250 days, whereas the e-flushing time yielded a lagoon-wide 80-days average. Tide-driven flush through the pass and wind-driven overturning circulation designate Ahe as a wind-driven, tidally and weakly wave-flushed deep lagoon. The 3D model allows studying pearl oyster larvae dispersal in both realistic and climatological conditions for aquaculture applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cyclonic circulation of Saturn's atmosphere due to tilted convection
NASA Astrophysics Data System (ADS)
Afanasyev, Y. D.; Zhang, Y.
2018-03-01
Saturn displays cyclonic vortices at its poles and the general atmospheric circulation at other latitudes is dominated by embedded zonal jets that display cyclonic circulation. The abundance of small-scale convective storms suggests that convection plays a role in producing and maintaining Saturn's atmospheric circulation. However, the dynamical influence of small-scale convection on Saturn's general circulation is not well understood. Here we present laboratory analogue experiments and propose that Saturn's cyclonic circulation can be explained by tilted convection in which buoyancy forces do not align with the planet's rotation axis. In our experiments—conducted with a cylindrical water tank that is heated at the bottom, cooled at the top and spun on a rotating table—warm rising plumes and cold sinking water generate small anticyclonic and cyclonic vortices that are qualitatively similar to Saturn's convective storms. Numerical simulations complement the experiments and show that this small-scale convection leads to large-scale cyclonic flow at the surface and anticyclonic circulation at the base of the fluid layer, with a polar vortex forming from the merging of smaller cyclonic storms that are driven polewards.
Generation of large-scale magnetic fields by small-scale dynamo in shear flows
Squire, J.; Bhattacharjee, A.
2015-10-20
We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic naturemore » of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.« less
Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.
Squire, J; Bhattacharjee, A
2015-10-23
We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.
Thermo-magnetic instabilities in Nb 3Sn superconducting accelerator magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordini, Bernardo
2006-09-01
The advance of High Energy Physics research using circulating accelerators strongly depends on increasing the magnetic bending field which accelerator magnets provide. To achieve high fields, the most powerful present-day accelerator magnets employ NbTi superconducting technology; however, with the start up of Large Hadron Collider (LHC) in 2007, NbTi magnets will have reached the maximum field allowed by the intrinsic properties of this superconductor. A further increase of the field strength necessarily requires a change in superconductor material; the best candidate is Nb 3Sn. Several laboratories in the US and Europe are currently working on developing Nb 3Sn accelerator magnets,more » and although these magnets have great potential, it is suspected that their performance may be fundamentally limited by conductor thermo-magnetic instabilities: an idea first proposed by the Fermilab High Field Magnet group early in 2003. This thesis presents a study of thermo-magnetic instability in high field Nb 3Sn accelerator magnets. In this chapter the following topics are described: the role of superconducting magnets in High Energy Physics; the main characteristics of superconductors for accelerator magnets; typical measurements of current capability in superconducting strands; the properties of Nb 3Sn; a description of the manufacturing process of Nb 3Sn strands; superconducting cables; a typical layout of superconducting accelerator magnets; the current state of the art of Nb 3Sn accelerator magnets; the High Field Magnet program at Fermilab; and the scope of the thesis.« less
Hart, Edward J.; Leeman, James E.; MacDougall, Hugh R.; Marron, John J.; Smith, Calvin C.
1976-01-01
An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.
Structural investigation of chemically synthesized ferrite magnetic nanomaterials
NASA Astrophysics Data System (ADS)
Uyanga, E.; Sangaa, D.; Hirazawa, H.; Tsogbadrakh, N.; Jargalan, N.; Bobrikov, I. A.; Balagurov, A. M.
2018-05-01
In recent times, interest in ferrite magnetic nanomaterials has considerably grown, mainly due to their highly promising medical and biological applications. Spinel ferrite powder samples, with high heat generation abilities in AC magnetic fields, were studied for their application to the hyperthermia treatment of cancer tumors. These properties of ferrites strongly depend on their chemical composition, ion distribution between crystallographic positions, magnetic structure and method of preparation. In this study, crystal and magnetic structures of several magnetic spinels were investigated by neutron diffraction. The explanation of the mechanism triggering the heat generation ability in the magnetic materials, and the electronic and magnetic states of ferrite-spinel type structures, were theoretically defined by a first-principles method. Ferrites with the composition of CuxMg1-xFe2O4 have been investigated as a heat generating magnetic nanomaterial. Atomic fraction of copper in ferrite was varied between 0 and 100% (that is, x between 0 and 1.0 with 0.2 steps), with the copper dope limit corresponding to appear a tetragonal phase.
Passive magnetic bearing for a motor-generator
Post, Richard F [Walnut Creek, CA
2006-07-18
Conductive lap windings are interleaved with conventional loops in the stator of a motor-generator. The rotor provides magnetic induction lines that, when rotated, cut across the lap windings and the loops. When the rotor is laterally displaced from its equilibrium axis of rotation, its magnetic lines of induction induce a current in the interleaved lap windings. The induced current interacts with the magnetic lines of induction of the rotor in accordance with Lenz's law to generate a radial force that returns the rotor to its equilibrium axis of rotation.
Fluorescent lamp unit with magnetic field generating means
Grossman, Mark W.; George, William A.
1989-01-01
A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope.
Fluorescent lamp unit with magnetic field generating means
Grossman, M.W.; George, W.A.
1989-08-08
A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope. 4 figs.
Simulation of seasonal cloud forcing anomalies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randall, D.A.
1990-08-01
One useful way to classify clouds is according to the processes that generate them. There are three main cloud-formation agencies: deep convection; surface evaporation; large-scale lifting in the absence of conditional instability. Although traditionally clouds have been viewed as influencing the atmospheric general circulation primarily through the release of latent heat, the atmospheric science literature contains abundant evidence that, in reality, clouds influence the general circulation through four more or less equally important effects: interactions with the solar and terrestrial radiation fields; condensation and evaporation; precipitation; small-scale circulations within the atmosphere. The most advanced of the current generation of GCMsmore » include parameterizations of all four effects. Until recently there has been lingering skepticism, in the general circulation modeling community, that the radiative effects of clouds significantly influence the atmospheric general circulation. GCMs have provided the proof that the radiative effects of clouds are important for the general circulation of the atmosphere. An important concept in analysis of the effects of clouds on climate is the cloud radiative forcing (CRF), which is defined as the difference between the radiative flux which actually occurs in the presence of clouds, and that which would occur if the clouds were removed but the atmospheric state were otherwise unchanged. We also use the term CRF to denote warming or cooling tendencies due to cloud-radiation interactions. Cloud feedback is the change in CRF that accompanies a climate change. The present study concentrates on the planetary CRF and its response to external forcing, i.e. seasonal change.« less
Shih, Chun-Liang; Chong, Kowit-Yu; Hsu, Shih-Che; Chien, Hsin-Jung; Ma, Ching-Ting; Chang, John Wen-Cheng; Yu, Chia-Jung; Chiou, Chiuan-Chian
2016-01-25
Cells release different types of extracellular vesicles (EVs). These EVs contain biomolecules, including proteins and nucleic acids, from their parent cells, which can be useful for diagnostic applications. The aim of this study was to develop a convenient procedure to collect circulating EVs with detectable mRNA or other biomolecules. Magnetic beads coated with annexin A5 (ANX-beads), which bound to phosphatidylserine moieties on the surfaces of most EVs, were tested for their ability to capture induced apoptotic bodies in vitro and other phosphatidylserine-presenting vesicles in body fluids. Our results show that up to 60% of induced apoptotic bodies could be captured by the ANX-beads. The vesicles captured from cultured media or plasma contained amplifiable RNA. Suitable blood samples for EV collection included EDTA-plasma and serum but not heparin-plasma. In addition, EVs in plasma were labile to freeze-and-thaw cycles. In rodents xenografted with human cancer cells, tumor-derived mRNA could be detected in EVs captured from serum samples. Active proteins could be detected in EVs captured from ascites but not from plasma. In conclusion, we have developed a magnetic bead-based procedure for the collection of EVs from body fluids and proved that captured EVs contain biomolecules from their parent cells, and therefore have great potential for disease diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.
Helium Catalyzed D-D Fusion in a Levitated Dipole
NASA Astrophysics Data System (ADS)
Kesner, J.; Bromberg, L.; Garnier, D. T.; Hansen, A.; Mauel, M. E.
2003-10-01
Fusion research has focused on the goal of deuterium and tritium (D-T) fusion power because the reaction rate is large compared with the other fusion fuels: D-D or D-He3. Furthermore, the D-D cycle is difficult in traditional confinement devices, such as tokamaks, because good energy confinement is accompanied by good particle confinement which leads to an accumulation of ash. Fusion reactors based on the D-D reaction would be advantageous to D-T based reactors since they do not require the breeding of tritium and can reduce the flux of energetic neutrons that cause material damage. We propose a fusion power source based on the levitated dipole fusion concept that uses a "helium catalyzed D-D" fuel cycle, where rapid circulation of plasma allows the removal of tritium and the re-injection of the He3 decay product, eliminating the need for a massive blanket and shield. Stable dipole confinement derives from plasma compressibility instead of the magnetic shear and average good curvature. As a result, a dipole magnetic field can stabilize plasma at high beta while allowing large-scale adiabatic particle circulation. These properties may make the levitated dipole uniquely capable of achieving good energy confinement with low particle confinement. We find that a dipole based D-D power source can provide better utilization of magnetic field energy with a comparable mass power density to a D-T based tokamak power source.
Wang, Chao; Ye, Min; Cheng, Liang; Li, Rui; Zhu, Wenwen; Shi, Zhen; Fan, Chunhai; He, Jinkang; Liu, Jian; Liu, Zhuang
2015-06-01
The development of sensitive and convenient methods for detection, enrichment, and analysis of circulating tumor cells (CTCs), which serve as an importance diagnostic indicator for metastatic progression of cancer, has received tremendous attention in recent years. In this work, a new approach characteristic of simultaneous CTC capture and detection is developed by integrating a microfluidic silicon nanowire (SiNW) array with multifunctional magnetic upconversion nanoparticles (MUNPs). The MUNPs were conjugated with anti-EpCAM antibody, thus capable to specifically recognize tumor cells in the blood samples and pull them down under an external magnetic field. The capture efficiency of CTCs was further improved by the integration with a microfluidic SiNW array. Due to the autofluorescence free nature in upconversion luminescence (UCL) imaging, our approach allows for highly sensitive detection of small numbers of tumor cells, which afterward could be collected for further analysis and re-culturing. We have further demonstrated that this approach can be applied to detect CTCs in clinical blood samples from lung cancer patients, and obtained consistent results by analyzing the UCL signals and the clinical outcomes of lung cancer metastasis. Therefore our approach represents a promising platform in CTC capture and detection with potential clinical utilization in cancer diagnosis and prognosis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Applying Magneto-rheology to Reduce Blood Viscosity and Suppress Turbulence to Prevent Heart Attacks
NASA Astrophysics Data System (ADS)
Tao, R.
Heart attacks are the leading causes of death in USA. Research indicates one common thread, high blood viscosity, linking all cardiovascular diseases. Turbulence in blood circulation makes different regions of the vasculature vulnerable to development of atherosclerotic plaque. Turbulence is also responsible for systolic ejection murmurs and places heavier workload on heart, a possible trigger of heart attacks. Presently, neither medicine nor method is available to suppress turbulence. The only method to reduce the blood viscosity is to take medicine, such as aspirin. However, using medicine to reduce the blood viscosity does not help suppressing turbulence. In fact, the turbulence gets worse as the Reynolds number goes up with the viscosity reduction by the medicine. Here we report our new discovery: application of a strong magnetic field to blood along its flow direction, red blood cells are polarized in the magnetic field and aggregated into short chains along the flow direction. The blood viscosity becomes anisotropic: Along the flow direction the viscosity is significantly reduced, but in the directions perpendicular to the flow the viscosity is considerably increased. In this way, the blood flow becomes laminar, turbulence is suppressed, the blood circulation is greatly improved, and the risk for heart attacks is reduced. While these effects are not permanent, they last for about 24 hours after one magnetic therapy treatment.
[Hot topics of circulating tumor DNA testing in breast cancer].
Liu, Y H; Zhou, B; Xu, L; Xin, L
2017-02-01
The progress of gene detection technologies represented by next generation sequencing (NGS) and digital PCR laid a foundation for studies of circulating tumor DNA (ctDNA) in breast cancer. In 2014, the NGS workgroup organized by the College of American Pathologists (CAP) published the College of American Pathologists ' Laboratory Standards for Next - Generation Sequencing Clinical Tests, which provides a blueprint for the standardization of gene testing. In 2015, the Guidelines for Diagnostic Next - generation Sequencing published by the European Society of Human Genetics claimed that NGS is unacceptable in clinical practice before studies guided by guidelines are approved. Although existing studies show the benefits of ctDNA testing in disease monitoring and prognosis analyzing, we have a ways to go to normalize the procedure and build strict detection criteria.
Hayden, M. E.; Häfeli, U. O.
2017-01-01
Magnetic forces and curvature-induced hydrodynamic drag have both been studied and employed in continuous microfluidic particle separation and enrichment schemes. Here we combine the two. We investigate consequences of applying an outwardly directed magnetic force to a dilute suspension of magnetic microspheres circulating in a spiral microfluidic channel. This force is realized with an array of permanent magnets arranged to produce a magnetic field with octupolar symmetry about the spiral axis. At low flow rates particles cluster around an apparent streamline of the flow near the outer wall of the turn. At high flow rates this equilibrium is disrupted by the induced secondary (Dean) flow and a new equilibrium is established near the inner wall of the turn. A model incorporating key forces involved in establishing these equilibria is described, and is used to extract quantitative information about the magnitude of local Dean drag forces from experimental data. Steady-state fractionation of suspensions by particle size under the combined influence of magnetic and hydrodynamic forces is demonstrated. Extensions of this work could lead to new continuous microscale particle sorting and enrichment processes with improved fidelity and specificity. PMID:28107472
Xu, Xiaowei; Jiang, Li; Luo, Man; Li, Jiaoxing; Li, Weidong; Sheng, Wenli
2015-06-01
The etiology of isolated vertigo has been a substantial diagnostic challenge for both neurologists and otolaryngologists. This study was designed to detect recurrent isolated vertigo due to cerebral hypoperfusion using perfusion-weighted magnetic resonance imaging (PWI). We recruited isolated vertigo patients whose clinical condition was suspected to be caused by hypodynamics of the brain; these individuals formed the case group. We generated two additional groups: a negative group composed of vertigo patients whose symptoms were caused by problems associated with the ear and a healthy control group. Each subject underwent PWI, and seven regions of interest (ROIs) were chosen. The relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and mean transit time (MTT) were obtained from each ROI. We further calculated the absolute difference of relative parameter values between two mirrored ROIs. The significant difference in the relative MTT from the mirrored cerebellar ROI (|rMTTleft-right|) of the case group was larger than those from the negative and healthy control groups (p = 0.026 and p = 0.038, respectively). Signal differences in |rrCBVleft-right| and |rrCBFleft-right| were not found among the three groups. In summary, disequilibrium in the rMTT of the bilateral cerebellum in the case group implied that hypoperfusion of the posterior circulation could trigger recurrent isolated vertigo and could be shown efficiently using PWI.
Is there a connection between Earth's core and climate at multidecadal time scales?
NASA Astrophysics Data System (ADS)
Lambert, Sébastien; Marcus, Steven; de Viron, Olivier
2017-04-01
The length-of-day (LOD) undergoes multidecadal variations of several milliseconds (ms) attributed to changes in the fluid outer core angular momentum. These variations resemble a quasi-periodic oscillation of duration 60 to 70 years, although the periodicity (and its accurate length) are disputable because of the relatively short observational time span and the lower quality of the observations before the 20th century. Interestingly, similar variations show up in various measured or reconstructed climate indices including the sea surface (SST) and surface air (SAT) temperatures. It has been shown in several studies that LOD variations lead SST and SAT variations by a few years. No clear scenarios have been raised so far to explain the link between external, astronomical forcing (e.g., Solar wind), Earth's rotation (core-driven torsional) oscillations, and Earth's surface processes (climate variations) at these time scales. Accumulating evidence, however, suggests the centrifugal tides generated by multidecadal LOD variations as a 'valve' to control the transfer of thermal energy from the lithosphere to the surface via geothermal fluxes. This hypothesis is supported by recent studies reporting significant correlations between tidal and rotational excitation and seafloor and surface volcanism. In this study, we extend recent works from us and other independent authors by re-assessing the correlations between multidecadal LOD, climate indices, Solar and magnetic activities, as well as gridded data including SST, SAT, and cloud cover. We pay a special attention to the time lags: when a significant correlation is found, the value of the lag may help to discriminate between various possible scenarios. We locate some `hot spots', particularly in the Atlantic ocean and along the trajectory of the upper branch of the Atlantic meridional overturning circulation (AMOC), where the 70-yr oscillation is strongly marked. In addition, we discuss the possibility for centrifugal tides generated by multidecadal LOD variations to activate geothermal activity on the seafloor or to affect the global conveyor belt circulation.
NASA Astrophysics Data System (ADS)
Trejo-Núñez, A. D.; Pérez-Chávez, F.; García-Sánchez, C.; Serrano-Luna, G.; Cañendo-Dorantes, L.
2008-08-01
This study was designed to, investigate the healing effects of extremely low frequency electromagnetic fields (ELF-EMF) on diabetic foot ulcers and test two different exposure systems aimed at reducing the ELF-EMF exposure time of patients. In the first system the ELF-EMF were applied to the arm where only 3% of the total blood volume/min circulates at any given time. In the second system the ELF-EMF were applied to the thorax where more than 100% of the total blood volume/minute circulates at any given time. Twenty-six diabetic patients, with superficial neuropathic ulcers unresponsive to medical treatment were included in this preliminary report. In the first group (17 patients), the arm was exposed two hours twice a week to a extremely low frequency electromagnetic field of 0.45-0.9 mTrms, 120 Hz generated inside a solenoid coil of 10.1 cm by 20.5 cm long. In the second group the thorax of 7 patients was exposed 25 minutes twice a week to an electromagnetic field of 0.4-0.85 mTrms, 120 Hz generated in the center of a squared quasi-Helmholtz coil 52 cm by side. One patient was assigned to a placebo configuration of each exposure system with identical appearance as the active equipment but without magnetic field. Patients with deep ulcers, infected ulcers, cancer, or auto-immune disease were excluded. These preliminary results showed that the two exposure systems accelerate the healing process of neuropathic ulcers. Complete healing of the ulcer had a median duration of 90 days in both exposure systems. Therefore thorax exposure where more blood is exposed to ELF-EMF per unit of time was able to reduce 4.8 times the patient treatment time. In those patients assigned to the placebo equipment no healing effects were observed. This study will continue with a parallel, double blind placebo controlled protocol.
2012-09-30
oscillation (SAO) and quasi-biennial oscillation ( QBO ) of stratospheric equatorial winds in long-term (10-year) nature runs. The ability of these new schemes...to generate and maintain tropical SAO and QBO circulations in Navy models for the first time is an important breakthrough, since these circulations
NASA Astrophysics Data System (ADS)
Bykov, Andrei M.; Toptygin, Igor'N.
2007-02-01
A system of MHD equations for the description of a magnetized nonequilibrium astrophysical plasma with neutral atoms and suprathermal (in particular, relativistic) particles is formulated. The instabilities of such a plasma, which arise from the presence of neutral and relativistic components, are considered. It is shown that the presence of nonthermal particles interacting with the thermal plasma component via regular and fluctuating electromagnetic fields is responsible for the emergence of specific mechanisms of MHD wave generation. The main generation mechanisms of static and turbulent magnetic fields near shock wave fronts in the Galaxy and interplanetary space are analyzed. We discuss the application of the generation effects of long-wave magnetic fluctuations to the problems of magnetic field origin and relativistic particle acceleration in astrophysical objects of various natures.
Brewer, H B
1979-01-01
Lebistes reticulatus (guppy) was subjected to a continuous treatment of a 500-G homogeneous magnetic field within a specially designed horseshoe magnet encompassing a small aquarium. The experiment was carried through several generations with the following results: in the first generation, the brood size was normal but the gestation period was reduced by 30%; the second generation had an average reduction of spawn rate of 50% and a reduction of the gestation period of 30%; and in the third generation, reproduction was completely inhibited as long as the fish remained within the magnetic field. Images FIGURE 5 FIGURE 6 PMID:262552
NASA Astrophysics Data System (ADS)
Buczek, C. R.; Joseph, L. H.
2017-12-01
Studies of grain size, magnetic fabric, and terrigenous mass accumulation rates (MAR) on oceanic sediment can provide insights into climatic conditions present at or near the time of deposition by helping to delineate changes in rainfall and oceanic circulation intensities. The fairly homogenous hemipelagic nannofossil clays and clayey nannofossil oozes collected in the upper portion of Ocean Drilling Program (ODP) Site 1242 provide a 1.4 million year sediment record from the Cocos Ridge, in relatively shallow waters of the eastern tropical Pacific Ocean, off the coast of present day Central and South America. Information about shifts in rainfall and oceanic circulation provided by this study may be helpful in understanding changes in the location and behavior of the Intertropical Convergence Zone (ITCZ), and/or other climatic factors, in this area during the Pleistocene and Holocene Epochs. Approximately 130 paired side-by-side samples were selected at approximately evenly spaced intervals throughout the uppermost 190 mcd of the core. To obtain terrigenous grain size and MARs, one set of sediment samples was subject to a five-step chemical extraction process to dissolve any oxy-hydroxy coatings, remove the biogenic carbonate and silicate components, and sieve out grains larger than 63 µm. The pre- and post-extraction weights were compared to calculate a terrigenous weight percent (%) from which the terrigenous MAR values were then calculated, with the use of linear sediment rates and dry bulk density measurements determined from shipboard ODP 1242 analyses. Magnetic fabric, or anisotropy of magnetic susceptibility (AMS), was analyzed on a KLY4S-Kappabridge using the second set of samples taken in pmag cubes. Terrigenous MAR values range between 3.1 and 10.9 g/cm2/kyr, while P' (AMS) values range between 1.004 and 1.04 SI. A distinctive trend is noted in both factors, with both exhibiting relatively high initial values that then decrease from the beginning of the record until 1.0-0.8 Ma, and then remain fairly constant (and relatively low) up-core. The initial decline potentially represents a drying of continental climates and a slowing of oceanic currents during the early Pleistocene, possibly due to shifts in the ITCZ or other factors affecting circulation.
Effect of 1. 5 tesla nuclear magnetic resonance imaging scanner on implanted permanent pacemakers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, D.L.; Holmes, D.R. Jr.; Gray, J.E.
1987-10-01
Patients with a permanent pacemaker are currently restricted from diagnostic nuclear magnetic resonance (NMR) imaging because of potential adverse effects on the pacemaker by the magnet. Previous work has shown that NMR imaging will result in asynchronous pacing of the pulse generator within a given distance of the magnet. The radiofrequency signal generated by the system may also result in rapid cardiac pacing, which may have deleterious effects. This study utilized a 1.5 tesla unit in an in vivo laboratory animal to evaluate the unit's effects on eight different pulse generators from two manufacturers. All pacemakers functioned in an asynchronousmore » mode when placed within a certain distance of the magnet. In addition, transient reed switch inhibition was observed. Seven of the eight pulse generators paced rapidly when exposed to the radiofrequency signal and there was a dramatic decrease in arterial blood pressure. Whether effective rapid cardiac pacing would occur could not be predicted before exposure to the magnetic resonance unit. Nuclear magnetic resonance imaging with high magnetic fields in patients with a pacemaker should continue to be avoided until the mechanism of the rapid cardiac pacing can be further delineated and either predicted or prevented.« less
NASA Astrophysics Data System (ADS)
Zheng, Jigui; Huang, Yuping; Wu, Hongxing; Zheng, Ping
2016-07-01
Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system, however it is restricted for large application because of low and complex process. A novel type of cylindrical, non-overlapping, transverse-flux, and permanent-magnet linear motor(TFPLM) is investigated, furthermore, a high power factor and less process complexity structure research is developed. The impact of magnetic leakage factor on power factor is discussed, by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM, an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor. The relation between power factor and structure parameter is investigated, and a structure parameter optimization method is proposed taking power factor maximum as a goal. At last, the test bench is founded, starting experimental and generating experimental are performed, and a good agreement of simulation and experimental is achieved. The power factor is improved and the process complexity is decreased. This research provides the instruction to design high-power factor permanent-magnet linear generator.
NASA Astrophysics Data System (ADS)
Makida, Y.; Ohhata, H.; Okamura, T.; Suzuki, S.; Araoka, O.; Ogitsu, T.; Kimura, N.; Nakamoto, T.; Sasaki, K.; Kaneda, S.; Takahashi, T.; Ito, A.; Nagami, M.; Kumaki, T.; Nakashima, T.
2010-04-01
A helium cryogenic plant has been constructed in the proton accelerator research complex, J-PARC, to cool a string of superconducting magnets in the neutrino beam line since 2005. It consists of a screw compressor with a capacity of 160 g/s at 1.4 MPa, a 1.5 kW refrigerator, a centrifugal SHE pump with a flow rate of 300 g/s and peripherals. After system integration, performance tests have been carried out. In a preliminary cooling test without magnets, the cryogenic system attained a cooling capacity of 522 W by circulating supercritical helium flow of 300 g/s at 0.4 MPa and at 4.5 K. Afterwards a full system test with the magnets was carried out. The magnets were successfully charged up to an ultimate current of 5000 A beyond a nominal current of 4400 A. This paper describes the plant design and the result of performance measurements.
Magnetically insulated diode for generating pulsed neutron and gamma ray emissions
Kuswa, G.W.; Leeper, R.J.
1984-08-16
A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating a nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a /sup 7/Li(p,..gamma..)/sup 8/Be reaction to produce 16.5 MeV gamma emission.
Magnetically insulated diode for generating pulsed neutron and gamma ray emissions
Kuswa, Glenn W.; Leeper, Ramon J.
1987-01-01
A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating an nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a .sup.7 Li(p,.gamma.).sup.8 Be reaction to produce 16.5 MeV gamma emission.
Development of a High-Throughput Magnetic Separation Device for Malaria-infected Erythrocytes
Martin, A. Blue; Wu, Wei-Tao; Kameneva, Marina V.; Antaki, James F.
2017-01-01
This study describes a non-dilutive high-gradient magnetic separation (HGMS) device intended to continuously remove malaria-infected red blood cells (iRBCs) from the circulation. A mesoscale prototype device with disposable photo-etched ferromagnetic grid and reusable permanent magnet was designed with a computationally-optimized magnetic force. The prototype device was evaluated in-vitro using a non-pathogenic analog for malaria-infected blood, comprised of 24% healthy RBCs, 6% human methemoglobin RBCs (metRBCs), and 70% phosphate buffer solution (PBS). The device provided a 27.0 ± 2.2% reduction of metRBCs in a single pass at a flow rate of 77 μL min−1. This represents a clearance rate over 380 times greater throughput than microfluidic devices reported previously. These positive results encourage development of a clinical scale system that would economize time and donor blood for treating severe malaria. PMID:28924724
Development of a High-Throughput Magnetic Separation Device for Malaria-Infected Erythrocytes.
Blue Martin, A; Wu, Wei-Tao; Kameneva, Marina V; Antaki, James F
2017-12-01
This study describes a non-dilutive high-gradient magnetic separation (HGMS) device intended to continuously remove malaria-infected red blood cells (iRBCs) from the circulation. A mesoscale prototype device with disposable photo-etched ferromagnetic grid and reusable permanent magnet was designed with a computationally-optimized magnetic force. The prototype device was evaluated in vitro using a non-pathogenic analog for malaria-infected blood, comprised of 24% healthy RBCs, 6% human methemoglobin RBCs (metRBCs), and 70% phosphate buffer solution (PBS). The device provided a 27.0 ± 2.2% reduction of metRBCs in a single pass at a flow rate of 77 μL min -1 . This represents a clearance rate over 380 times greater throughput than microfluidic devices reported previously. These positive results encourage development of a clinical scale system that would economize time and donor blood for treating severe malaria.
Free-energy landscapes in magnetic systems from metadynamics
NASA Astrophysics Data System (ADS)
Tóbik, Jaroslav; MartoÅák, Roman; Cambel, Vladimír
2017-10-01
The knowledge of the free-energy barriers separating different states is critically important for the assessment of the long-term stability of information stored in magnetic devices. This information, however, is not directly accessible by standard simulations of microscopic models because of the ubiquitous time-scale problem, related to the fact that the transitions among different free-energy minima are characteristic of rare events. Here, we show that by employing the metadynamics algorithm based on suitably chosen collective variables, namely, helicity and circulation, it is possible to reliably recover the free-energy landscape. We demonstrate the effectiveness of this approach on an example of a vortex nucleation process in a magnetic nanodot with lowered spatial symmetry. With the help of reconstructed free-energy surfaces, we show the origin of symmetry broken vortex nucleation, where one polarity of the nucleated vortex core is preferred, even though only an in-plane magnetic field is present.
Jeong, Daniel; Anagnostopoulos, Petros V; Roldan-Alzate, Alejandro; Srinivasan, Shardha; Schiebler, Mark L; Wieben, Oliver; François, Christopher J
2015-05-01
Ventricular kinetic energy measurements may provide a novel imaging biomarker of declining ventricular efficiency in patients with repaired tetralogy of Fallot. Our purpose was to assess differences in ventricular kinetic energy with 4-dimensional flow magnetic resonance imaging between patients with repaired tetralogy of Fallot and healthy volunteers. Cardiac magnetic resonance, including 4-dimensional flow magnetic resonance imaging, was performed at rest in 10 subjects with repaired tetralogy of Fallot and 9 healthy volunteers using clinical 1.5T and 3T magnetic resonance imaging scanners. Right and left ventricular kinetic energy (KERV and KELV), main pulmonary artery flow (QMPA), and aortic flow (QAO) were quantified using 4-dimensional flow magnetic resonance imaging data. Right and left ventricular size and function were measured using standard cardiac magnetic resonance techniques. Differences in peak systolic KERV and KELV in addition to the QMPA/KERV and QAO/KELV ratios between groups were assessed. Kinetic energy indices were compared with conventional cardiac magnetic resonance parameters. Peak systolic KERV and KELV were higher in patients with repaired tetralogy of Fallot (6.06 ± 2.27 mJ and 3.55 ± 2.12 mJ, respectively) than in healthy volunteers (5.47 ± 2.52 mJ and 2.48 ± 0.75 mJ, respectively), but were not statistically significant (P = .65 and P = .47, respectively). The QMPA/KERV and QAO/KELV ratios were lower in patients with repaired tetralogy of Fallot (7.53 ± 5.37 mL/[cycle mJ] and 9.65 ± 6.61 mL/[cycle mJ], respectively) than in healthy volunteers (19.33 ± 18.52 mL/[cycle mJ] and 35.98 ± 7.66 mL/[cycle mJ], respectively; P < .05). QMPA/KERV and QAO/KELV were weakly correlated to ventricular size and function. Greater ventricular kinetic energy is necessary to generate flow in the pulmonary and aortic circulations in repaired tetralogy of Fallot. Quantification of ventricular kinetic energy in patients with repaired tetralogy of Fallot is a new observation. Future studies are needed to determine whether changes in ventricular kinetic energy can provide earlier evidence of ventricular dysfunction and guide future medical and surgical interventions. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Charge neutralization apparatus for ion implantation system
Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.
1992-01-01
Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.
NASA Astrophysics Data System (ADS)
Ivanov, V. V.; Maximov, A. V.; Betti, R.; Wiewior, P. P.; Hakel, P.; Sherrill, M. E.
2017-08-01
Dynamics of laser produced plasma in a strong magnetic field was studied using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2-2.5 MG magnetic field was generated on the surface of a rod load 0.8-1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 1015 W cm-2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1-3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magnetic field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s-1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.
Analysis of magnetic gradients to study gravitropism.
Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan
2013-01-01
Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.
3 GeV Booster Synchrotron Conceptual Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedemann, Helmut
2009-06-02
Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.
STEAM GENERATOR FOR GAS COOLED NUCLEAR REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-03-14
A steam generator for a gas-cooled nuclear reactor is disposed inside the same pressure vessel as the reactor and has a tube system heated by the gas circulating through the reactor; the pressure vessel is double-walled, and the interspace between these two walls is filled with concrete serving as radiation shielding. The steam generator has a cylindricaIly shaped vertical casing, through which the heating gas circulates, while the tubes are arranged in a plurality of parallel horizontal planes and each of them have the shape of an involute of a circle. The tubes are uniformly distributed over the available surfacemore » in the plane, all the tubes of the same plane being connected in parallel. The exterior extremities of these involute-shaped tubes are each connected with similar tubes disposed in the adjacent lower situated plane, while the interior extremities are connected with tubes in the adjacent higher situated plane. The alimentation of the tubes is performed over annular headers. The tube system is self-supporting, the tubes being joined together by welded spacers. The fluid flow in the tubes is performed by forced circulation. (NPO)« less
Magnetically focused liquid drop radiator
Botts, Thomas E.; Powell, James R.; Lenard, Roger
1986-01-01
A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.
Magnetically focused liquid drop radiator
Botts, T.E.; Powell, J.R.; Lenard, R.
1984-12-10
A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.
Thermal and high magnetic field treatment of materials and associated apparatus
Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail
2010-06-29
An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.
Thermal and high magnetic field treatment of materials and associated apparatus
Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail
2007-01-09
An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.
Photonic modes in synthetic photonic lattices localized due to nontrivial gauge field circulation
NASA Astrophysics Data System (ADS)
Pankov, Artem; Vatnik, Ilya; Churkin, Dmitry; Sukhorukov, Andrey A.
2017-10-01
One of concepts giving opportunities for studying of topological insulators in non-magnetic materials, or creating scattering-immune in optical waveguides is creation of synthetic gauge fields in photonic systems. It was shown that gauge fields shift the band-gaps of optical waves, which can be applied to implement one-way nonreciprocal waveguides, even though both the waveguide core and cladding are in a topologically trivial state [1]. In our work we propose a method to create a gauge field in a synthetic photonic mesh lattice - an optical device proved its high versatility for optical experiments [2]. We demonstrate presence of localized modes due to nontrivial gauge field circulation.
2005-01-01
The results of preoperative preparation were analysed in 59 patients with prostatic benign hyperplasia (PBH) subjected to TUR. Treatment outcomes were assessed by transrectal ultrasound (color Doppler mapping) in two groups of patients. Group 1 received combined therapy including transrectal laser radiation of the prostate, group 2--transrectal magnetotherapy. The analysis showed that laser radiation reduced insignificantly the size of the prostate and adenomatous node, improved microcirculation and circulation in the prostate. This resulted in relief of inflammation and reduction of the number of postoperative inflammatory complications. Transrectal magnetotherapy has a positive effect on vascularization and hemodynamics of the prostate, local immunity, contamination of the tissues with pathogenic flora.
Effective capture and release of circulating tumor cells using core-shell Fe3O4@MnO2 nanoparticles
NASA Astrophysics Data System (ADS)
Xiao, Liang; He, Zhao-Bo; Cai, Bo; Rao, Lang; Cheng, Long; Liu, Wei; Guo, Shi-Shang; Zhao, Xing-Zhong
2017-01-01
Circulating tumor cells (CTCs) have been believed to hold significant insights for cancer diagnosis and therapy. Here, we developed a simple and effective method to capture and release viable CTCs using core-shell Fe3O4@MnO2 nanoparticles. Fe3O4@MnO2 nanoparticles bioconjugated with anti-EpCAM antibody have characteristics of specific recognition, magnetic-driven cell isolation and oxalic acid-assisted cell release. The capture and release efficiency of target cancer cells were ∼83% and ∼55%, respectively. And ∼70% of released cells kept good viability, which could facilitate the subsequent cellular analysis.
Reconfigurable optomechanical circulator and directional amplifier.
Shen, Zhen; Zhang, Yan-Lei; Chen, Yuan; Sun, Fang-Wen; Zou, Xu-Bo; Guo, Guang-Can; Zou, Chang-Ling; Dong, Chun-Hua
2018-05-04
Non-reciprocal devices, which allow non-reciprocal signal routing, serve as fundamental elements in photonic and microwave circuits and are crucial in both classical and quantum information processing. The radiation-pressure-induced coupling between light and mechanical motion in travelling-wave resonators has been exploited to break the Lorentz reciprocity, enabling non-reciprocal devices without magnetic materials. Here, we experimentally demonstrate a reconfigurable non-reciprocal device with alternative functions as either a circulator or a directional amplifier via optomechanically induced coherent photon-phonon conversion or gain. The demonstrated device exhibits considerable flexibility and offers exciting opportunities for combining reconfigurability, non-reciprocity and active properties in single photonic devices, which can also be generalized to microwave and acoustic circuits.
Additive manufacturing of permanent magnets
Paranthaman, M. P.; Nlebedim, I. C.; Johnson, F.; ...
2016-10-28
Here, permanent magnets enable energy conversion. Motors and generators are used to convert both electrical to mechanical energy and mechanical to electrical energy, respectively. They are precharged (magnetized) prior to being used in an application and must remain magnetized during operation. In addition, they should generate sufficient magnetic flux for a given application. Nevertheless permanent magnets can be demagnetized (discharged of their magnetization) by other magnetic materials in their service vicinity, temperature changes (thermal demagnetization), microstructural degradations and the magnet’s internal demagnetizing field. Therefore a permanent magnet can be qualified based on the properties that measure its ability to withstandmore » demagnetization and to supply sufficient magnetic flux required for a given application. Some of those properties are further discussed below. Additive manufacturing followed by exchange spring magnets will be discussed afterwards.« less
Numerical Simulation and Performance Optimization of a Magnetophoretic Bio-separation chip
NASA Astrophysics Data System (ADS)
Golozar, Matin; Darabi, Jeff; Molki, Majid
Separation of micro/nanoparticles is important in biomedicine and biotechnology. This research presents the modeling and optimization of a magnetophoretic bio-separation chip for the isolation of biomaterials, such as circulating tumor cells (CTCs) from the peripheral blood. The chip consists of a continuous flow through microfluidic channels that contains locally engineered magnetic field gradients. The high gradient magnetic field produced by the magnets is spatially non-uniform and gives rise to an attractive force on magnetic particles that move through the flow channel. The computational model takes into account the magnetic and fluidic forces as well as the effect of the volume fraction of particles on the continuous phase. The model is used to investigate the effect of two-way particle-fluid coupling on both the capture efficiency and the flow pattern in the separation chip. The results show that the microfluidic device has the capability of separating CTCs from their native environment. Additionally, a parametric study is performed to investigate the effects of the channel height, substrate thickness, magnetic bead size, bioparticle size, and the number of beads per cell on the cell separation performance.
Permanent magnet edge-field quadrupole
Tatchyn, R.O.
1997-01-21
Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.
Permanent magnet edge-field quadrupole
Tatchyn, Roman O.
1997-01-01
Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.
Generation of helical magnetic field in a viable scenario of inflationary magnetogenesis
NASA Astrophysics Data System (ADS)
Sharma, Ramkishor; Subramanian, Kandaswamy; Seshadri, T. R.
2018-04-01
We study the generation of helical magnetic fields in a model of inflationary magnetogenesis which is free from the strong coupling and backreaction problems. To generate helical magnetic fields, we add an f2F˜μ νFμ ν term to the Lagrangian of the Ratra model. The strong coupling and backreaction problems are avoided if we take a particular behavior of coupling function f , in which f increases during inflation and decreases postinflation to reheating. The generated magnetic field is fully helical and has a blue spectrum, d ρB/d ln k ∝k4. This spectrum is obtained when coupling function f ∝a2 during inflation. The scale of reheating in our model has to be lower than 4000 GeV to avoid backreaction postinflation. The generated magnetic field spectrum satisfies the γ -ray bound for all the possible scales of reheating. The comoving magnetic field strength and its correlation length are ˜4 ×10-11 G and 70 kpc respectively, if reheating takes place at 100 GeV. For reheating at the QCD scales of 150 MeV, the field strength increases to ˜ nano gauss, with coherence scale of 0.6 Mpc.
Bayliss, R A; Forest, C B; Nornberg, M D; Spence, E J; Terry, P W
2007-02-01
The role of turbulence in current generation and self-excitation of magnetic fields has been studied in the geometry of a mechanically driven, spherical dynamo experiment, using a three-dimensional numerical computation. A simple impeller model drives a flow that can generate a growing magnetic field, depending on the magnetic Reynolds number Rm=micro0sigmaVa and the fluid Reynolds number Re=Vanu of the flow. For Re<420, the flow is laminar and the dynamo transition is governed by a threshold of Rmcrit=100, above which a growing magnetic eigenmode is observed that is primarily a dipole field transverse to the axis of symmetry of the flow. In saturation, the Lorentz force slows the flow such that the magnetic eigenmode becomes marginally stable. For Re>420 and Rm approximately 100 the flow becomes turbulent and the dynamo eigenmode is suppressed. The mechanism of suppression is a combination of a time varying large-scale field and the presence of fluctuation driven currents (such as those predicted by the mean-field theory), which effectively enhance the magnetic diffusivity. For higher Rm, a dynamo reappears; however, the structure of the magnetic field is often different from the laminar dynamo. It is dominated by a dipolar magnetic field aligned with the axis of symmetry of the mean-flow, which is apparently generated by fluctuation-driven currents. The magnitude and structure of the fluctuation-driven currents have been studied by applying a weak, axisymmetric seed magnetic field to laminar and turbulent flows. An Ohm's law analysis of the axisymmetric currents allows the fluctuation-driven currents to be identified. The magnetic fields generated by the fluctuations are significant: a dipole moment aligned with the symmetry axis of the mean-flow is generated similar to those observed in the experiment, and both toroidal and poloidal flux expulsion are observed.
Levitated Duct Fan (LDF) Aircraft Auxiliary Generator
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Emerson, Dawn C.; Gallo, Christopher A.; Thompson, William K.
2011-01-01
This generator concept includes a novel stator and rotor architecture made from composite material with blades attached to the outer rotating shell of a ducted fan drum rotor, a non-contact support system between the stator and rotor using magnetic fields to provide levitation, and an integrated electromagnetic generation system. The magnetic suspension between the rotor and the stator suspends and supports the rotor within the stator housing using permanent magnets attached to the outer circumference of the drum rotor and passive levitation coils in the stator shell. The magnets are arranged in a Halbach array configuration.
Magnetic droplet solitons generated by pure spin currents
NASA Astrophysics Data System (ADS)
Divinskiy, B.; Urazhdin, S.; Demidov, V. E.; Kozhanov, A.; Nosov, A. P.; Rinkevich, A. B.; Demokritov, S. O.
2017-12-01
Magnetic droplets are dynamical solitons that can be generated by locally suppressing the dynamical damping in magnetic films with perpendicular anisotropy. To date, droplets have been observed only in nanocontact spin-torque oscillators operated by spin-polarized electrical currents. Here, we experimentally demonstrate that magnetic droplets can be nucleated and sustained by pure spin currents in nanoconstriction-based spin Hall devices. Micromagnetic simulations support our interpretation of the data, and indicate that in addition to the stationary droplets, propagating solitons can be also generated in the studied system, which can be utilized for the information transmission in spintronic applications.
Thermal to electricity conversion using thermal magnetic properties
West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID
2010-04-27
A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.
38. VIEW OF COTTRELL MAGNETIC IMPULSE GENERATOR ADJACENT TO SIX ...
38. VIEW OF COTTRELL MAGNETIC IMPULSE GENERATOR ADJACENT TO SIX GAP ROTARY RECTIFIER. THIS UNIT GENERATED A MAGNETIC PULSE WHICH WAS TRANSMITTED TO THE COLLECTION PLATES IN THE ELECTROSTATIC PRECIPITATOR CHAMBER. THESE PERIODIC PULSES VIBRATE THE PLATES AND CAUSE PRECIPITATED ARTICLES OF SMOKE AND FLY ASH TO FALL TO THE BOTTOM OF THE PRECIPITATOR CHAMBER. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT
Trapped field internal dipole superconducting motor generator
Hull, John R.
2001-01-01
A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.
Simulation of Dynamo Action Generated by a Precession Driven Flow.
NASA Astrophysics Data System (ADS)
Giesecke, A.; Vogt, T.; Gundrum, T.; Stefani, F.
2017-12-01
Since many years precession is regarded as an alternative flow drivingmechanism that may account, e.g., for remarkable features of theancient lunar magnetic field [Dwyer 2011; Noir 2013; Weiss 2014] or asa complementary power source for the geodynamo [Malkus 1968; Vanyo1991]. Precessional forcing is also of great interest from theexperimental point of view because it represents a natural forcingmechanism that allows an efficient driving of conducting fluid flowson the laboratory scale without making use of propellers orpumps. Within the project DRESDYN (DREsden Sodium facility for DYNamoand thermohydraulic studies) a dynamo experiment is under developmentat Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in which a precessiondriven flow of liquid sodium with a magnetic Reynolds number of up toRm=700 will be used to drive dynamo action.Our present study addresses preparative numerical simulations and flowmeasurements at a small model experiment running with water. Theresulting flow pattern and amplitude provide the essential ingredientsfor kinematic dynamo models that are used to estimate whether theparticular flow is able to drive a dynamo. In the strongly non-linearregime the flow essentially consists of standing inertial waves (see Figure). Most remarkable feature is the occurrence of a resonant-like axisymmetricmode which emerges around a precession ratio of Ωp/Ωc = 0.1on top of the directly forced re-circulation flow. The combination ofthis axisymmetric mode and the forced m=1 Kelvin mode is indeedcapable of driving a dynamo at a critical magnetic Reynolds number ofRmc=430 which is well within the range achievable in theexperiment. However, the occurrence of the axisymmetric mode slightlydepends on the absolute rotation rate of the cylinder and futureexperiments are required to indicate whether it persists at theextremely large Re that will be obtained in the large scale sodiumexperiment.
Self-consistent simulations of a von Kármán type dynamo in a spherical domain with metallic walls.
Guervilly, Céline; Brummell, Nicholas H
2012-10-01
We have performed numerical simulations of boundary-driven dynamos using a three-dimensional nonlinear magnetohydrodynamical model in a spherical shell geometry. A conducting fluid of magnetic Prandtl number Pm=0.01 is driven into motion by the counter-rotation of the two hemispheric walls. The resulting flow is of von Kármán type, consisting of a layer of zonal velocity close to the outer wall and a secondary meridional circulation. Above a certain forcing threshold, the mean flow is unstable to non-axisymmetric motions within an equatorial belt. For fixed forcing above this threshold, we have studied the dynamo properties of this flow. The presence of a conducting outer wall is essential to the existence of a dynamo at these parameters. We have therefore studied the effect of changing the material parameters of the wall (magnetic permeability, electrical conductivity, and thickness) on the dynamo. In common with previous studies, we find that dynamos are obtained only when either the conductivity or the permeability is sufficiently large. However, we find that the effect of these two parameters on the dynamo process are different and can even compete to the detriment of the dynamo. Our self-consistent approach allow us to analyze in detail the dynamo feedback loop. The dynamos we obtain are typically dominated by an axisymmetric toroidal magnetic field and an axial dipole component. We show that the ability of the outer shear layer to produce a strong toroidal field depends critically on the presence of a conducting outer wall, which shields the fluid from the vacuum outside. The generation of the axisymmetric poloidal field, on the other hand, occurs in the equatorial belt and does not depend on the wall properties.
[Liquid biopsies, a revolution in oncology?].
Jordan, Bertrand
2015-01-01
The detection and analysis of circulating tumour DNA and/or circulating tumour cells in the blood of cancer patients open new possibilities for cancer characterisation and management. The approach has generated much commercial interest, but still requires more proof of clinical utility; it is however likely to play an important role in monitoring the evolution of cancer cells during therapy. © 2015 médecine/sciences – Inserm.
Climate Change Planning for Military Installations: Findings and Implications
2010-10-01
Meridional Overturning Circulation ARFORGEN Army Force Generation BASH Bird Aircraft Strike Hazard BLM Bureau of Land Management BOR Bureau of Reclamation...Cover and Land Use Change LLNL Lawrence Livermore National Laboratory MOC Meridional Overturning Circulation NASA National Aeronautics and Space...to discern effects of climate change. D.7.9 Bureau of Land Management BLM is responsible for managing much of the federal land affected by
Minnealloy: a new magnetic material with high saturation flux density and low magnetic anisotropy
NASA Astrophysics Data System (ADS)
Mehedi, Md; Jiang, Yanfeng; Suri, Pranav Kumar; Flannigan, David J.; Wang, Jian-Ping
2017-09-01
We are reporting a new soft magnetic material with high saturation magnetic flux density, and low magnetic anisotropy. The new material is a compound of iron, nitrogen and carbon, α‧-Fe8(NC), which has saturation flux density of 2.8 ± 0.15 T and magnetic anisotropy of 46 kJ m-3. The saturation flux density is 27% higher than pure iron, a widely used soft magnetic material. Soft magnetic materials are very important building blocks of motors, generators, inductors, transformers, sensors and write heads of hard disk. The new material will help in the miniaturization and efficiency increment of the next generation of electronic devices.
Application of classical thermodynamic principles to the study of oceanic overturning circulation
NASA Astrophysics Data System (ADS)
Gade, Herman G.; Gustafsson, Karin E.
2004-08-01
Stationary deep-reaching overturning circulation in the ocean is studied by means of classical thermodynamic methods employing closed cycles in pV-space (p, pressure; V, volume). From observed (or computed) density fields, the pV-method may be used to infer the power required for driving a circulation with a given mass flux, or, if the available power is known, the resulting mass flux of the circulation may be assessed. Here, the circulation is assumed to be driven by diapycnal mixing caused by internal disturbances of meteorological and tidal origin and from transfer of geothermal heat through the ocean bottom. The analysis is developed on the basis that potential energy produced by any of these mechanisms is available for driving a circulation of the water masses above its level of generation. The method also takes into account secondary generated potential energy resulting from turbulence developed by the ensuing circulation.Models for different types of circulation are developed and applied to four types of hemispheric circulation with deep-water formation, convection and sinking in an idealized North Atlantic. Our calculations show that the energy input must exceed 15 J kg
1 for a cycle to the bottom to exist. An energy supply of 2 TW would in that case support a constant vertical mass flux of 3.2 G kg s
1 (3.1 Sv). Computed mass fluxes reaching the surface in the subtropics, corresponding to the same energy input, range between 2.3 5.2 G kg s
1, depending on the type of convection/sinking involved. Much higher flux values ensue with ascending water masses reaching the surface at higher geographical latitudes.The study reveals also that compressibility of sea water does not enhance the circulation. An incompressible system, operating within the same mass flux and temperature range, would require about 25% less energy supply, provided that the circulation comprises the same water masses. It is furthermore shown that the meridional distribution of surface salinity, with higher values in the tropics and lower values in regions of deep-water formation, actually enhances the circulation in comparison with one of a more uniform surface salinity. With a homohaline North Atlantic, operating within the same temperature range as presently observed, an increase of 66% of power supply would be required in order that the mass flux of the overturning circulation should remain the same.
Development of the High-Temperature Dew-Point Generator Over the Past 15 Years
NASA Astrophysics Data System (ADS)
Bosma, R.; Nielsen, J.; Peruzzi, A.
2017-10-01
At VSL a humidity generator was designed and constructed in the early 1990s. This generator was of the re-circulating-single-pressure type. Over the years, the generator has been thoroughly revised and several critical components have been replaced. Among others the pre-saturator and the change from re-circulation to single-pass mode. Validating experiments showed that the range of the new setup could be extended from 70 {°}C to 95 {°}C dew-point temperature, and the last modification allows an uncertainty of 0.048 {°}C (k = 2) at the maximum temperature. In 2009 the setup was used in the Euramet-T-K8 humidity intercomparison at temperatures up to 95 {°}C. In the period from 2003 to 2015, four state-of-the-art chilled mirror hygrometers were regularly calibrated with the generator. One of these was also calibrated with the primary dew-point standards of several other European National Metrology Institutes, which made it possible to link the VSL generator to the generators used in these institutes. An analysis of the results of these calibrations shows an agreement in calibration capabilities within 0.01 {°}C with PTB and NPL.
New color-magnetic defects in dense quark matter
NASA Astrophysics Data System (ADS)
Haber, Alexander; Schmitt, Andreas
2018-06-01
Color-flavor locked (CFL) quark matter expels color-magnetic fields due to the Meissner effect. One of these fields carries an admixture of the ordinary abelian magnetic field and therefore flux tubes may form if CFL matter is exposed to a magnetic field, possibly in the interior of neutron stars or in quark stars. We employ a Ginzburg–Landau approach for three massless quark flavors, which takes into account the multi-component nature of color superconductivity. Based on the weak-coupling expressions for the Ginzburg–Landau parameters, we identify the regime where CFL is a type-II color superconductor and compute the radial profiles of different color-magnetic flux tubes. Among the configurations without baryon circulation we find a new solution that is energetically preferred over the flux tubes previously discussed in the literature in the parameter regime relevant for compact stars. Within the same setup, we also find a new defect in the 2SC phase, namely magnetic domain walls, which emerge naturally from the previously studied flux tubes if a more general ansatz for the order parameter is used. Color-magnetic defects in the interior of compact stars allow for sustained deformations of the star, potentially strong enough to produce detectable gravitational waves.
Design of pulsed guiding magnetic field for high power microwave generators.
Ju, J-C; Zhang, H; Zhang, J; Shu, T; Zhong, H-H
2014-09-01
In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields.
Magnetic Field Design for a Strongly Improved PHALL Thruster
NASA Astrophysics Data System (ADS)
Martins, Alexandre A.; Rodrigo, Miranda; Ferreira, José Leonardo
2017-10-01
In this article, we are going to go through some steps that we took in the refining of engineering work related to the development of a permanent magnet Hall thruster. The use of permanent magnets in these thrusters is mainly related to the decrease of used power for propulsion, especially important for low power thrusters as for micro-satellites. The advantage of our chosen configuration is that the magnetic field can be used either perpendicular or parallel to the thruster channel walls, whereas in the last case the generated erosion forces are strongly reduced by at least three orders of magnitude. We are going to show how each magnetic field configuration affects the generated plasma and consequently the generated propulsion force and efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagier, B.; Rousset, B.; Hoa, C.
Superconducting magnets used in tokamaks undergo periodic heat load caused by cycling plasma operations inducing AC losses, neutrons fluxes and eddy currents in magnet structures. In the cryogenic system of JT60-SA tokamak, the Auxiliary Cold Box (ACB) distributes helium from the refrigerator to the cryogenic users and in particular to the superconducting magnets. ACB comprises a saturated helium bath with immersed heat exchangers, extracting heat from independent cooling loops. The supercritical helium flow in each cooling loop is driven by a cold circulator. In order to safely operate the refrigerator during plasma pulses, the interface between the ACB and themore » refrigerator shall be as stable as possible, with well-balanced bath inlet and outlet mass flows during cycling operation. The solution presented in this paper relies on a combination of regulations to smooth pulsed heat loads and to keep a constant refrigeration power during all the cycle. Two smoothing strategies are presented, both regulating the outlet mass flow of the bath: the first one using the bath as a thermal buffer and the second one storing energy in the loop by varying the cold circulator speed. The bath outlet mass flow is also controlled by an immersed resistive heater which enables a constant evaporation rate in the bath when power coming from the loops is decreasing. The refrigeration power is controlled so that the compensating power remains within an acceptable margin. Experimental validation is achieved using the HELIOS facility. This facility running at CEA Grenoble since 2010 is a scaled down model of the ACB bath and Central Solenoid magnet cooling loop of the JT60-SA tokamak. Test results show performances and robustness of the regulations.« less
Rotational viscometer for high-pressure high-temperature fluids
Carr, Kenneth R.
1985-01-01
The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer includes a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. An output is generated indicative of the phase difference between the two waveforms.
Generation Mechanism for Interlinked Flux Tubes on the Magnetopause
NASA Astrophysics Data System (ADS)
Farinas Perez, G.; Cardoso, F. R.; Sibeck, D.; Gonzalez, W. D.; Facskó, G.; Coxon, J. C.; Pembroke, A. D.
2018-02-01
We use a global magnetohydrodynamics simulation to analyze transient magnetic reconnection processes at the magnetopause. The solar wind conditions have been kept constant, and an interplanetary magnetic field with large duskward BY and southward BZ components has been imposed. Five flux transfer events (FTEs) with clear bipolar magnetic field signatures have been observed. We observed a peculiar structure defined as interlinked flux tubes (IFTs) in the first and fourth FTE, which had very different generation mechanisms. The first FTE originates as an IFTs and remains with this configuration until its final moment. However, the fourth FTE develops as a classical flux rope but changes its 3-D magnetic configuration to that of IFTs. This work studies the mechanism for generating IFTs. The growth of the resistive tearing instability has been identified as the cause for the first IFTs formation. We believe that the instability has been triggered by the accumulation of interplanetary magnetic field at the subsolar point where the grid resolution is very high. The evidence shows that two new reconnection lines form northward and southward of the subsolar region. The IFTs have been generated with all the classical signatures of a single flux rope. The other IFTs detected in the fourth FTE developed as a result of magnetic reconnection inside its complex and twisted magnetic fields, which leads to a change in the magnetic configuration from a flux rope of twisted magnetic field lines to IFTs.
Progress Towards a Time-Dependent Theory of Solar Meridional Flows
NASA Astrophysics Data System (ADS)
Shirley, James H.
2017-08-01
Large-scale meridional motions of solar materials play an important role in flux transport dynamo models. Meridional flows transport surface magnetic flux to polar regions of the Sun, where it may later be subducted and conveyed back towards the equatorial region by a deep return flow in the convection zone. The transported flux may thereafter lead to the generation of new toroidal fields, thereby completing the dynamo cycle. More than two decades of observations have revealed that meridional flow speeds vary substantially with time. Further, a complex morphological variability of meridional flow cells is now recognized, with multiple cell structures detected both in latitude and in depth. ‘Countercells’ with reversed flow directions have been detected at various times. Flow speeds are apparently influenced by the proximity of flows to active regions. This complexity represents a considerable challenge to dynamo modeling efforts. Flows morphology and speed changes may be arbitrarily prescribed in models, but physical realism of model outputs may be questionable, and elusive: The models are ‘trying to hit a moving target.’ Considerations such as these led Belucz et al. (2013; Ap. J. 806:169) to call for “time-dependent theories that can tell us theoretically how this circulation may change its amplitude and form in each hemisphere.” Such a theory now exists for planetary atmospheres (Shirley, 2017; Plan. Sp. Sci. 141, 1-16). Proof of concept for the non-tidal orbit-spin coupling hypothesis of Shirley (2017) was obtained through numerical modeling of the atmospheric circulation of Mars (Mischna & Shirley, 2017; Plan. Sp. Sci. 141, 45-72). Much-improved correspondence of numerical modeling outcomes with observations was demonstrated. In this presentation we will briefly review the physical hypothesis and some prior evidence of its possible role in solar dynamo excitation. We show a strong correlation between observed meridional flow speeds of magnetic features in Cycle 23 with the putative dynamical forcing function. We will also briefly discuss the potential for incorporating orbit-spin coupling accelerations within existing numerical solar dynamo models.
NASA Astrophysics Data System (ADS)
Bertani, C.; Falcone, N.; Bersano, A.; Caramello, M.; Matsushita, T.; De Salve, M.; Panella, B.
2017-11-01
High safety and reliability of advanced nuclear reactors, Generation IV and Small Modular Reactors (SMR), have a crucial role in the acceptance of these new plants design. Among all the possible safety systems, particular efforts are dedicated to the study of passive systems because they rely on simple physical principles like natural circulation, without the need of external energy source to operate. Taking inspiration from the second Decay Heat Removal system (DHR2) of ALFRED, the European Generation IV demonstrator of the fast lead cooled reactor, an experimental facility has been built at the Energy Department of Politecnico di Torino (PROPHET facility) to study single and two-phase flow natural circulation. The facility behavior is simulated using the thermal-hydraulic system code RELAP5-3D, which is widely used in nuclear applications. In this paper, the effect of the initial water inventory on natural circulation is analyzed. The experimental time behaviors of temperatures and pressures are analyzed. The experimental matrix ranges between 69 % and 93%; the influence of the opposite effects related to the increase of the volume available for the expansion and the pressure raise due to phase change is discussed. Simulations of the experimental tests are carried out by using a 1D model at constant heat power and fixed liquid and air mass; the code predictions are compared with experimental results. Two typical responses are observed: subcooled or two phase saturated circulation. The steady state pressure is a strong function of liquid and air mass inventory. The numerical results show that, at low initial liquid mass inventory, the natural circulation is not stable but pulsated.
NASA Astrophysics Data System (ADS)
Fortkamp, F. P.; Lozano, J. A.; Barbosa, J. R.
2017-12-01
This work presents a parametric analysis of the performance of nested permanent magnet Halbach cylinders intended for applications in magnetic refrigeration and heat pumping. An analytical model for the magnetic field generated by the cylinders is used to systematically investigate the influence of their geometric parameters. The proposed configuration generates two poles in the air gap between the cylinders, where active magnetic regenerators are positioned for conversion of magnetic work into cooling capacity or heat power. A sample geometry based on previous designs of magnetic refrigerators is investigated, and the results show that the magnetic field in the air gap oscillates between 0 to approximately 1 T, forming a rectified cosine profile along the circumference of the gap. Calculations of the energy density of the magnets indicate the need to operate at a low energy (particular the inner cylinder) in order to generate a magnetic profile suitable for a magnetic cooler. In practice, these low-energy regions of the magnet can be potentially replaced by soft ferromagnetic material. A parametric analysis of the air gap height has been performed, showing that there are optimal values which maximize the magnet efficiency parameter Λcool . Some combinations of cylinder radii resulted in magnetic field changes that were too small for practical purposes. No demagnetization of the cylinders has been found for the range of parameters considered.
MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity
NASA Astrophysics Data System (ADS)
Mehrez, Zouhaier; El Cafsi, Afif; Belghith, Ali; Le Quéré, Patrick
2015-01-01
The present numerical work investigates the effect of an external oriented magnetic field on heat transfer and entropy generation of Cu-water nanofluid flow in an open cavity heated from below. The governing equations are solved numerically by the finite-volume method. The study has been carried out for a wide range of solid volume fraction 0≤φ≤0.06, Hartmann number 0≤Ha≤100, Reynolds number 100≤Re≤500 and Richardson number 0.001≤Ri≤1 at three inclination angles of magnetic field γ: 0°, 45° and 90°. The numerical results are given by streamlines, isotherms, average Nusselt number, average entropy generation and Bejan number. The results show that flow behavior, temperature distribution, heat transfer and entropy generation are strongly affected by the presence of a magnetic field. The average Nusselt number and entropy generation, which increase by increasing volume fraction of nanoparticles, depend mainly on the Hartmann number and inclination angle of the magnetic field. The variation rates of heat transfer and entropy generation while adding nanoparticles or applying a magnetic field depend on the Richardson and Reynolds numbers.
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Rosner, R.
1988-01-01
Magnetohydrodynamic (MHD) wave energy fluxes for late-type stars are calculated, using previously obtained formulae for the source functions for the generation of MHD waves in a stratified, but otherwise uniform, turbulent atmosphere; the magnetic fields in the wave generation region are assumed to be homogeneous. In contradiction to previous results, it is shown that in this uniform magnetic field case there is no significant increase in the efficiency of MHD wave generation, at least within the theory's limits of applicability. The major results are that the MHD energy fluxes calculated for late-type stars are less than those obtained for compressible modes in the magnetic field-free case, and that these MHD energy fluxes do not vary enough for a given spectral type to explain the observed range of UV and X-ray fluxes from such stars. It is therefore concluded that MHD waves in stellar atmospheres with homogeneous magnetic fields in the wave generation region cannot explain the observed stellar coronal emissions; if such MHD waves are responsible for a significant component of stellar coronal heating, then nonuniform fields within the generation region must be appealed to.
Wiggler magnetic field assisted third harmonic generation in expanding clusters
NASA Astrophysics Data System (ADS)
Vij, Shivani
2018-04-01
A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.
1982-07-01
waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed
Paulsamy, Sivachandran
2014-01-01
In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions. PMID:25202746
Paulsamy, Sivachandran
2014-01-01
In wind energy systems employing permanent magnet generator, there is an imperative need to reduce the cogging torque for smooth and reliable cut in operation. In a permanent magnet generator, cogging torque is produced due to interaction of the rotor magnets with slots and teeth of the stator. This paper is a result of an ongoing research work that deals with various methods to reduce cogging torque in dual rotor radial flux permanent magnet generator (DRFPMG) for direct coupled stand alone wind energy systems (SAWES). Three methods were applied to reduce the cogging torque in DRFPMG. The methods were changing slot opening width, changing magnet pole arc width and shifting of slot openings. A combination of these three methods was applied to reduce the cogging torque to a level suitable for direct coupled SAWES. Both determination and reduction of cogging torque were carried out by finite element analysis (FEA) using MagNet Software. The cogging torque of DRFPMG has been reduced without major change in induced emf. A prototype of 1 kW, 120 rpm DRFPMG was fabricated and tested to validate the simulation results. The test results have good agreement with the simulation predictions.
Experimental Design of a Magnetic Flux Compression Experiment
NASA Astrophysics Data System (ADS)
Fuelling, Stephan; Awe, Thomas J.; Bauer, Bruno S.; Goodrich, Tasha; Lindemuth, Irvin R.; Makhin, Volodymyr; Siemon, Richard E.; Atchison, Walter L.; Reinovsky, Robert E.; Salazar, Mike A.; Scudder, David W.; Turchi, Peter J.; Degnan, James H.; Ruden, Edward L.
2007-06-01
Generation of ultrahigh magnetic fields is an interesting topic of high-energy-density physics, and an essential aspect of Magnetized Target Fusion (MTF). To examine plasma formation from conductors impinged upon by ultrahigh magnetic fields, in a geometry similar to that of the MAGO experiments, an experiment is under design to compress magnetic flux in a toroidal cavity, using the Shiva Star or Atlas generator. An initial toroidal bias magnetic field is provided by a current on a central conductor. The central current is generated by diverting a fraction of the liner current using an innovative inductive current divider, thus avoiding the need for an auxiliary power supply. A 50-mm-radius cylindrical aluminum liner implodes along glide planes with velocity of about 5 km/s. Inward liner motion causes electrical closure of the toroidal chamber, after which flux in the chamber is conserved and compressed, yielding magnetic fields of 2-3 MG. Plasma is generated on the liner and central rod surfaces by Ohmic heating. Diagnostics include B-dot probes, Faraday rotation, radiography, filtered photodiodes, and VUV spectroscopy. Optical access to the chamber is provided through small holes in the walls.
NASA Astrophysics Data System (ADS)
Buz, J.; Weiss, B. P.; Garrick-Bethell, I.
2010-12-01
Although the Moon today does not have a core dynamo magnetic field [1], paleomagnetic analyses of Apollo samples and spacecraft magnetometry measurements of the lunar crust show magnetization and suggest there were magnetic fields on the Moon > 3 billion years ago [2]. It is unclear whether this magnetization is the product of an ancient core dynamo or that of impact-generated plasmas [3,4,5]. A key way to distinguish between these two hypotheses is to conduct paleomagnetic analyses of lunar impact glasses that formed after any putative core dynamo. Here we present a paleomagnetic study of Apollo 12 basalt 12017. This sample consists of a 3.2 billion year old basalt covered by ~9000 year old impact glass [6,7,8]. We have found that both the rock and glass are magnetized, but in widely divergent directions. The intensity of the fields which magnetized the rock and glass were 40 μT and 1 μT, respectively. Given the near certain absence of a lunar dynamo 9000 years ago, we have two hypotheses to explain the magnetization of the glass: magnetization by an impact-generated field and magnetization by magnetic fields generated by the rock underneath. The long cooling time of the glass (~10 s) relative to that expected for impact-generated field (milliseconds) suggests that impact-generated magnetization is highly improbable. We are currently modeling the magnetic fields of the underlying rock in order to determine whether it had sufficient strength and appropriate orientation to explain the magnetization of the glass. Initial calculations suggest that this is possible. [1] Russell et al., JGR, 79, 1105-1109, 1974 [2] Garrick-Bethell et al., Science,323, 356-359, 2009 [3] Wieczorek et al., Reviews in Mineralogy and Geochemistry, 60, 221-364, 2006 [4] Crawford and Schultz, International Journal of Impact Engineering, 23, 169-180, 1999 [5] Hood and Artemieva, Icarus, 193, 485-502, 2007 [6] Horn et al., Meteoritical Society, 417-418, 1975 [7] Morrisson et al., Proceedings of the 3rd Lunar Science Conference, 3, 2767-2791, 1973 [8] Fleischer et al., Proceedings of the 2nd Lunar Science Conference, 2, 2559-2568, 1971
He, Jing; Tsai, Louis M; Leong, Yew Ann; Hu, Xin; Ma, Cindy S; Chevalier, Nina; Sun, Xiaolin; Vandenberg, Kirsten; Rockman, Steve; Ding, Yan; Zhu, Lei; Wei, Wei; Wang, Changqi; Karnowski, Alexander; Belz, Gabrielle T; Ghali, Joanna R; Cook, Matthew C; Riminton, D Sean; Veillette, André; Schwartzberg, Pamela L; Mackay, Fabienne; Brink, Robert; Tangye, Stuart G; Vinuesa, Carola G; Mackay, Charles R; Li, Zhanguo; Yu, Di
2013-10-17
Follicular B helper T (Tfh) cells support high affinity and long-term antibody responses. Here we found that within circulating CXCR5⁺ CD4⁺ T cells in humans and mice, the CCR7(lo)PD-1(hi) subset has a partial Tfh effector phenotype, whereas CCR7(hi)PD-1(lo) cells have a resting phenotype. The circulating CCR7(lo)PD-1(hi) subset was indicative of active Tfh differentiation in lymphoid organs and correlated with clinical indices in autoimmune diseases. Thus the CCR7(lo)PD-1(hi) subset provides a biomarker to monitor protective antibody responses during infection or vaccination and pathogenic antibody responses in autoimmune diseases. Differentiation of both CCR7(hi)PD-1(lo) and CCR7(lo)PD-1(hi) subsets required ICOS and BCL6, but not SAP, suggesting that circulating CXCR5⁺ helper T cells are primarily generated before germinal centers. Upon antigen reencounter, CCR7(lo)PD-1(hi) CXCR5⁺ precursors rapidly differentiate into mature Tfh cells to promote antibody responses. Therefore, circulating CCR7(lo)PD-1(hi) CXCR5⁺ CD4⁺ T cells are generated during active Tfh differentiation and represent a new mechanism of immunological early memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Hernández-Pérez, María; Puig, Josep; Blasco, Gerard; Pérez de la Ossa, Natalia; Dorado, Laura; Dávalos, Antoni; Munuera, Josep
2016-02-01
Contrary to usual static vascular imaging techniques, contrast-enhanced dynamic magnetic resonance angiography (dMRA) enables dynamic study of cerebral vessels. We evaluated dMRA ability to assess arterial occlusion, cerebral hemodynamics, and collateral circulation in acute ischemic stroke. Twenty-five acute ischemic stroke patients with proximal anterior circulation occlusion underwent dMRA on a 3T scanner within 12 hours of symptoms onset. Diffusion weighted imaging, Tmax6 s lesion volumes and hypoperfusion intensity ratio as volume of Tmax>6 s/volume of Tmax>10 s were measured. Site and grade of occlusion (Thrombolysis in Myocardial Infarction criteria) were evaluated on time-of-flight MRA and dMRA. Leptomeningeal collaterality (American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology [ASITN/SIR] Scale) and asymmetries in venous clearance were assessed exclusively on dMRA. Collateral filling was dichotomized into incomplete (ASITN/SIR 0-2) or complete (ASITN/SIR 3-4). On dMRA, site of occlusion was M1 in 21 patients, tandem internal carotid artery/M1 in 2 and tandem internal carotid artery/terminal internal carotid artery in 2 patients. Three tandem occlusions were not detected on time-of-flight-MRA. All patients had Thrombolysis in Myocardial Infarction 0 to 1 on time-of-flight-MRA, but three of them had Thrombolysis in Myocardial Infarction 2 on dMRA. Complete collateral filling (n=12, 48%) was associated with smaller diffusion weighted imaging lesion volume (P=0.039), smaller hypoperfused volume (P=0.018), and lower hypoperfusion intensity ratio (P=0.006). Patients with symmetrical clearance of transverse sinuses (52%) were more likely to have complete collateral filling (P=0.015). As a fast, direct, feasible, noninvasive, and reliable method to assess site of occlusion, collateral circulation and hemodynamic alterations, dMRA provides profound insights in acute stroke. © 2015 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.
A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.
Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems
NASA Astrophysics Data System (ADS)
Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani
2018-05-01
Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.
Ouyang, Wen; Tchida, Colin
2017-05-02
Static torque, no load, constant speed, and sinusoidal oscillation test data for a 10hp, 300rpm magnetically-geared generator prototype using either an adjustable load bank for a fixed resistance or an output power converter.
Ha, Yong H; Han, Byung H; Lee, Soo Y
2010-02-01
We introduce a square coil system for remote magnetic navigation of a magnetic device without any physical movements of the coils. We used three square-Helmholtz coils and a square-Maxwell coil for magnetic propulsion of a small magnet along the desired path. All the square coils are mountable on a cubic frame that has an opening to accommodate a living subject. The square-Helmholtz coils control the magnetic propulsion direction by generating uniform magnetic field along the desired direction while the square-Maxwell coil controls the propulsion force by generating magnetic gradient field. We performed magnetic propulsion experiments with a down-scaled coil set and a three-channel coil driver. Experimental results demonstrate that we can use the square coil set for magnetic navigation of a magnetic device without any physical movements of the coils.
Circularly polarized attosecond pulse generation and applications to ultrafast magnetism
NASA Astrophysics Data System (ADS)
Bandrauk, André D.; Guo, Jing; Yuan, Kai-Jun
2017-12-01
Attosecond science is a growing new field of research and potential applications which relies on the development of attosecond light sources. Achievements in the generation and application of attosecond pulses enable to investigate electron dynamics in the nonlinear nonperturbative regime of laser-matter interactions on the electron’s natural time scale, the attosecond. In this review, we describe the generation of circularly polarized attosecond pulses and their applications to induce attosecond magnetic fields, new tools for ultrafast magnetism. Simulations are performed on aligned one-electron molecular ions by using nonperturbative nonlinear solutions of the time-dependent Schrödinger equation. We discuss how bichromatic circularly polarized laser pulses with co-rotating or counter-rotating components induce electron-parent ion recollisions, thus producing circularly polarized high-order harmonic generation, the source of circularly polarized attosecond pulses. Ultrafast quantum electron currents created by the generated attosecond pulses give rise to attosecond magnetic field pulses. The results provide a guiding principle for producing circularly polarized attosecond pulses and ultrafast magnetic fields in complex molecular systems for future research in ultrafast magneto-optics.
Design of a Nb3Sn Magnet for a 4th Generation ECR Ion Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prestemon, S,; Trillaud, F.; Caspi, S.
2008-08-17
The next generation of Electron Cyclotron Resonant (ECR) ion sources are expected to operate at a heating radio frequency greater than 40 GHz. The existing 3rd generation systems, exemplified by the state of the art system VENUS, operate in the 10-28 GHz range, and use NbTi superconductors for the confinement coils. The magnetic field needed to confine the plasma scales with the rf frequency, resulting in peak fields on the magnets of the 4th generation system in excess of 10 T. High field superconductors such as Nb{sub 3}Sn must therefore be considered. The magnetic design of a 4th. generation ECRmore » ion source operating at an rf frequency of 56 GHz is considered. The analysis considers both internal and external sextupole configurations, assuming commercially available Nb{sub 3}Sn material properties. Preliminary structural design issues are discussed based on the forces and margins associated with the coils in the different configurations, leading to quantitative data for the determination of a final magnet design.« less
Diagnostics Systems for Permanent Hall Thrusters Development
NASA Astrophysics Data System (ADS)
Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela
This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall-Effect Thruster (PMHET), developed at the Plasma Physics Laboratory of UnB. The idea of using an array of permanent magnets, instead of an electromagnet, to produce a radial magnetic field inside the cylindrical plasma drift channel of the thruster is very attractive, especially because of the possibility of developing a HET with power consumption low enough to be used in small satellites or medium-size satellites with low on board power. Hall-Effect Thrusters are now a very good option for spacecraft primary propulsion and also for station-keeping of medium and large satellites. This is because of their high specific impulse, efficient use of propellant mass and combined low and precise thrust capabilities, which are related to an economy in terms of propellant mass utilization , longer satellite lifetime and easier spacecraft maneuvering in microgravity environment. The first HETs were developed in the mid 1950’s, and they were first called Closed Drift Thrusters. Today, the successful use of electric thrusters for attitude control and orbit modification on hundreds of satellites shows the advanced stage of development of this technology. In addition to this, after the success of space missions such as Deep Space One and Dawn (NASA), Hayabusa (JAXA) and Smart-1 (ESA), the employment of electric thrusters is also consolidated for the primary propulsion of spacecraft. This success is mainly due to three factors: reliability of this technology; efficiency of propellant utilization, and therefore reduction of the initial mass of the ship; possibility of operation over long time intervals, with practically unlimited cycling and restarts. This thrusting system is designed to be used in satellite attitude control and long term space missions. One of the greatest advantage of this kind of thruster is the production of a steady state magnetic field by permanent magnets providing electron trapping and Hall current generation within a significant decrease on the electric energy supply and thus turning this thruster into a specially good option when it comes to space usage for longer and deep space missions, where solar panels and electric energy storage on batteries is a limiting factor. Two prototype models of permanent magnets Hall Thrusters PHALL I and II were already developed and tested with different permanent magnets systems. From the first studies in Russia (former USSR) soon it became clear that the closed electron drift current (Hall current) inside the source channel was generated by the crossed electric and magnetic (radial) field configuration inside the cylindrical channel. The radial magnetic field action on the circular Hall current inside the channel, combined with the electric field action on the ions, is believed to be the main physical process responsible for plasma acceleration. However a good understanding of the acceleration mechanism and the steady-state plasma dynamics is still missing, and many issues concerning the role of electron transport, plasma fluctuations and instabilities are still open. In this work we describe an integrated diagnostic system used to elucidate these aspects such. Ion energy spectrum, plasma potential profiles, plasma instabilities spectrum, and electron distribution function are some of the plasma diagnosticis needed to undestand the main physics issues on Permanent Magnet Hall Thrusters.
NASA Astrophysics Data System (ADS)
Luong, Hung Truyen; Goo, Nam Seo
2011-03-01
We introduce a design for a magnetic force exciter that applies vibration to a piezo-composite generating element (PCGE) for a small-scale windmill to convert wind energy into electrical energy. The windmill can be used to harvest wind energy in urban regions. The magnetic force exciter consists of exciting magnets attached to the device's input rotor, and a secondary magnet that is fixed at the tip of the PCGE. Under an applied wind force, the input rotor rotates to create a magnetic force interaction to excite the PCGE. Deformation of the PCGE enables it to generate the electric power. Experiments were performed to test power generation and battery charging capabilities. In a battery charging test, the charging time for a 40 mAh battery is approximately 1.5 hours for a wind speed of 2.5 m/s. Our experimental results show that the prototype can harvest energy in urban areas with low wind speeds, and convert the wasted wind energy into electricity for city use.
REBCO tape performance under high magnetic field
NASA Astrophysics Data System (ADS)
Benkel, Tara; Miyoshi, Yasuyuki; Chaud, Xavier; Badel, Arnaud; Tixador, Pascal
2017-08-01
New improvements in high temperature superconductors (HTS) make them a promising candidate for building the next generation of high field magnets. As the conductors became recently available in long length, new projects such as NOUGAT (new magnet generation to generate Tesla at low cost) were started. This project aims at designing and building an HTS magnet prototype generating 10 T inside a 20 T resistive magnet. In this configuration, severe mechanical stress is applied on the insert and its extremities are subject to a high transverse component of the field. Because the conductor has anisotropic properties, it has to be studied carefully under similar conditions as the final prototype. First, this paper presents both the NOUGAT project and its context. Then, it shows the experimental results on short HTS tapes studied under high magnetic field up to 23 T with varying orientation. These results allow validating the current margin of the prototype. Finally, a first wound prototype is presented with experimental results up to 200 A under 16 T. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek
Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators
NASA Astrophysics Data System (ADS)
Parks, Bradley; Bapna, Mukund; Igbokwe, Julianne; Almasi, Hamid; Wang, Weigang; Majetich, Sara A.
2018-05-01
Superparamagnetic perpendicular magnetic tunnel junctions are fabricated and analyzed for use in random number generators. Time-resolved resistance measurements are used as streams of bits in statistical tests for randomness. Voltage control of the thermal stability enables tuning the average speed of random bit generation up to 70 kHz in a 60 nm diameter device. In its most efficient operating mode, the device generates random bits at an energy cost of 600 fJ/bit. A narrow range of magnetic field tunes the probability of a given state from 0 to 1, offering a means of probabilistic computing.
Analysis of No-load Iron Losses of Turbine Generators by 3D Magnetic Field Analysis
NASA Astrophysics Data System (ADS)
Nakahara, Akihito; Mogi, Hisashi; Takahashi, Kazuhiko; Ide, Kazumasa; Kaneda, Junya; Hattori, Ken'Ichi; Watanabe, Takashi; Kaido, Chikara; Minematsu, Eisuke; Hanzawa, Kazufumi
This paper focuses on no-load iron losses of turbine generators. To calculate iron losses of turbine generators a program was developed. In the program, core loss curves of materials used for stator core were reproduced precisely by using tables of loss coefficients. Accuracy of calculation by this method was confirmed by comparing calculated values with measured in a model stator core. The iron loss of a turbine generator estimated with considering three-dimensional distribution of magnetic fluxes. And additional losses included in measured iron loss was evaluated with three-dimensional magnetic field analysis.
Magnetoencephalography - a noninvasive brain imaging method with 1 ms time resolution
NASA Astrophysics Data System (ADS)
DelGratta, Cosimo; Pizzella, Vittorio; Tecchio, Franca; Luca Romani, Gian
2001-12-01
The basics of magnetoencephalography (MEG), i.e. the measurement and the analysis of the tiny magnetic fields generated outside the scalp by the working human brain, are reviewed. Three main topics are discussed: (1) the relationship between the magnetic field and its generators, including on one hand the neurophysiological basis and the physical theory of magnetic field generation, and on the other hand the techniques for the estimation of the sources from the magnetic field measurements; (2) the instrumental techniques and the laboratory practice of neuromagnetic field measurement and (3) the main applications of MEG in basic neurophysiology as well as in clinical neurology.
Eslaminejad, Touba; Nematollahi-Mahani, Seyed Noureddin; Ansari, Mehdi
2017-01-01
Blood-brain barrier (BBB) separates the neural tissue from circulating blood because of its high selectivity. This study focused on the in vitro application of magnetic nanoparticles to deliver Tp53 as a gene of interest to glioblastoma (U87) cells across a simulated BBB model that comprised KB cells. After magnetic and non-magnetic nanoparticles were internalized by KB cells, their location in these cells was examined by transmission electron microscopy. Transfection efficiency of DNA to U87 cells was evaluated by fluorescence microscopy, real time PCR, flowcytometry, and Western immuno-blotting. When a magnetic field was applied, a large number of magnetic nanoparticles accumulated in KB cells, appearing as black dots scattered in the cytoplasm of cells. Fluorescence microscope examination showed that transfection of the DNA to U87 target cells was highest in cells treated with magnetic nanoparticles and exposed to a magnetic field. Also it was reflected in significantly increased mRNA level while the p53 protein level was decreased. It could be concluded that a significant increase in total apoptosis was induced in cells by magnetic nanoparticles, coupled with exposure to a magnetic force (p ≤0.01) as compared with cells that were not exposed to magnetism. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Pettibone, Joseph S.; Wheeler, Paul C.
1983-01-01
An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.
Pettibone, J.S.; Wheeler, P.C.
1981-06-08
An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.
Drag and Lift Forces Between a Rotating Conductive Sphere and a Cylindrical Magnet
NASA Technical Reports Server (NTRS)
Nurge, Mark A.; Youngquist, Robert C.
2017-01-01
Modeling the interaction between a non-uniform magnetic field and a rotating conductive object allows study of the drag force which is used in applications such as eddy current braking and linear induction motors as well as the transition to a repulsive force that is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two step mathematics process is developed to find a closed form solution in terms of only two eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.
Drag and lift forces between a rotating conductive sphere and a cylindrical magnet
NASA Astrophysics Data System (ADS)
Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.
2018-06-01
Modeling the interaction between a non-uniform magnetic field and a rotating conductive object provides insight into the drag force, which is used in applications such as eddy current braking and linear induction motors, as well as the transition to a repulsive force, which is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two-step mathematical process is developed to find a closed-form solution in terms of only three eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate-level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.
Investigation of Anisotropic Bonded Magnets in Permanent Magnet Machine Applications
NASA Astrophysics Data System (ADS)
Khazdozian, H. A.; McCall, S. K.; Kramer, M. J.; Paranthaman, M. P.; Nlebedim, I. C.
Rare earth elements (REE) provide the high energy product necessary for permanent magnets, such as sintered Nd2Fe14B, in many applications like wind energy generators. However, REEs are considered critical materials due to risk in their supply. To reduce the use of critical materials in permanent magnet machines, the performance of anisotropic bonded NdFeB magnets, aligned under varying magnetic field strength, was simulated using 3D finite element analysis in a 3MW direct-drive permanent magnet generator (DDPMG), with sintered N42 magnets used as a baseline for comparison. For direct substitution of the anisotropic bonded magnets, approximately 85% of the efficiency of the baseline model was achieved, irrespective of the alignment field. The torque and power generation of the DDPMG was not found to vary significantly with increase in the alignment field. Finally, design changes were studied to allow for the achievement of rated torque and power with the use of anisotropic bonded magnets, demonstrating the potential for reduction of critical materials in permanent magnets for renewable energy applications. This work was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.
NASA Technical Reports Server (NTRS)
Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.; Gaeta, R.
2005-01-01
Circulation Control technology is a very effective way of achieving high lift forces required by aircraft during take-off and landing. This technology can also directly control the flow field over the wing. Compared to a conventional high-lift system, a Circulation Control Wing (CCW) can generate comparable or higher lift forces during take-off/landing with fewer or no moving parts and much less complexity. In this work, an unsteady three-dimensional Navier-Stokes analysis procedure has been developed and applied to Circulation Control Wing configurations. The effects of 2-D steady jets and 2-D pulsed jets on the aerodynamic performance of CCW airfoils have been investigated. It is found that a steady jet can generate very high lift at zero angle of attack without stall, and that a small amount of blowing can eliminate vortex shedding at the trailing edge, a potential noise source. It is also found that a pulsed jet can achieve the same high lift as a steady jet at lower mass flow rates, especially at a high frequency, and that the Strouhal number has a more dominant effect on the pulsed jet performance than just the frequency or the free-stream velocity.
NASA Astrophysics Data System (ADS)
Segal, M.; Garratt, J. R.; Pielke, R. A.; Ye, Z.
1991-04-01
Consideration of the sensible heat flux characteristics over a snow surface suggests a significant diminution in the magnitude of the flux, compared to that over a snow-free surface under the same environmental conditions. Consequently, the existence of snow-covered mesoscale areas adjacent to snow-free areas produces horizontal thermal gradients in the lower atmosphere during the daytime, possibly resulting in a `snow breeze.' In addition, suppression of the daytime thermally induced upslope flow over snow-covered slopes is likely to occur. The present paper provides scaling and modeling evaluations of these situations, with quantification of the generated and modified circulations. These evaluations suggest that under ideal situations involved with uniform snow cover over large areas, particularly in late winter and early spring, a noticeable `snow breeze' is likely to develop. Additionally: suppression of the daytime thermally induced upslope flow is significant and may even result in a daytime drainage flow. The effects of bare ground patchiness in the snow cover on these circulations are also explored, both for flat terrain and slope-flow situations. A patchiness fraction greater than 0.5 is found to result in a noticeably reduced snow-breeze circulation, while a patchiness fraction of only 0.1 caused the simulated daytime drainage flow over slopes to he reversed.
Low and room temperature magnetic features of the traffic related urban airborne PM
NASA Astrophysics Data System (ADS)
Winkler, A.; Sagnotti, L.
2012-04-01
We used magnetic measurements and analyses - such as hysteresis loops and FORCs both at room temperature and at 10K, isothermal remanent magnetization (IRM) vs temperature curves (from 10K to 293K) and IRM vs time decay curves - to characterize the magnetic properties of the traffic related airborne particulate matter (PM) in Rome. This study was specifically addressed to the identification of the ultrafine superparamagnetic (SP) particles, which are particularly sensitive to thermal relaxation effects, and on the eventual detection of low temperature phase transitions which may affect various magnetic minerals. We compared the magnetic properties at 10K and at room temperature of Quercus ilex leaves, disk brakes, diesel and gasoline exhaust pipes powders collected from vehicles circulating in Rome. The magnetic properties of the investigated powders significantly change upon cooling, and no clear phase transition occurs, suggesting that the thermal dependence is mainly triggered by the widespread presence of ultrafine SP particles. The contribution of the SP fraction to the total remanence of traffic related PM samples was quantified at room temperature measuring the decay of a IRM 100 s after the application of a saturation magnetic field. This same method has been also tested at 10K to investigate the temperature dependence of the observed time decay.
Magnetoacoustic Tomography with Magnetic Induction: A Rigorous Theory
Ma, Qingyu; He, Bin
2013-01-01
We have proposed a new theory on mechanism of the magnetoacoustic signal generation with magnetic induction for an object with an arbitrary shape. An object under a static magnetic field emits acoustic signals when excited by a time-varying magnetic field, and that the acoustic waveform is mainly generated at the conductivity boundaries within the object. The proposed theory on the magnetoacoustic tomography with magnetic induction produced highly consistent results among computational and experimental paradigms in a two-layer sample phantom and suggests the potential applications for bioimpedance imaging. PMID:18270025
Model-free adaptive control of supercritical circulating fluidized-bed boilers
Cheng, George Shu-Xing; Mulkey, Steven L
2014-12-16
A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
Fragmentation of a Filamentary Cloud Permeated by a Perpendicular Magnetic Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanawa, Tomoyuki; Kudoh, Takahiro; Tomisaka, Kohji
We examine the linear stability of an isothermal filamentary cloud permeated by a perpendicular magnetic field. Our model cloud is assumed to be supported by gas pressure against self-gravity in the unperturbed state. For simplicity, the density distribution is assumed to be symmetric around the axis. Also for simplicity, the initial magnetic field is assumed to be uniform, and turbulence is not taken into account. The perturbation equation is formulated to be an eigenvalue problem. The growth rate is obtained as a function of the wavenumber for fragmentation along the axis and the magnetic field strength. The growth rate dependsmore » critically on the outer boundary. If the displacement vanishes in regions very far from the cloud axis (fixed boundary), cloud fragmentation is suppressed by a moderate magnetic field, which means the plasma beta is below 1.67 on the cloud axis. If the displacement is constant along the magnetic field in regions very far from the cloud, the cloud is unstable even when the magnetic field is infinitely strong. The cloud is deformed by circulation in the plane perpendicular to the magnetic field. The unstable mode is not likely to induce dynamical collapse, since it is excited even when the whole cloud is magnetically subcritical. For both boundary conditions, the magnetic field increases the wavelength of the most unstable mode. We find that the magnetic force suppresses compression perpendicular to the magnetic field especially in regions of low density.« less
Recombination era magnetic fields from axion dark matter
Banik, Nilanjan; Christopherson, Adam J.
2016-02-04
We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ~10 kpc and have a magnitude of the order of B~10 –23G today. Lastly, the field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.
Neutrino trigger of the magnetorotational mechanism of a natal-pulsar kick
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, A. V., E-mail: avkuzn@uniyar.ac.ru; Mikheev, N. V., E-mail: mikheev@uniyar.ac.ru
2013-10-15
A mechanism generating a natal-neutron-star kick and involving only standard neutrinos is discussed. In this mechanism, the neutrino effect on the plasma of the supernova-core envelope in a magnetorotational explosion accompanied by the generation of a strong toroidal magnetic field leads to a redistribution of the magnetic field B in the 'upper' and 'lower' hemispheres of the supernova-core envelope. The emerging asymmetry of the magnetic-field pressure may generate a natal-pulsar kick.
1997-08-01
77,719 TITLE OF THE INVENTION NUCLEAR QUADRUPOLE RESONANCE ( NQR ) METHOD AND PROBE FOR GENERATING RF MAGNETIC FIELDS IN DIFFERENT DIRECTIONS TO...DISTINGUISH NQR FROM ACOUSTIC RINGING INDUCED IN A SAMPLE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a...nuclear quadrupole 15 resonance ( NQR ) method and probe for generating RF magnetic fields in different directions towards a sample. More specifically
NASA Astrophysics Data System (ADS)
Tao, W.; Tao, C.; Li, H.; Zhaocai, W.; Jinhui, Z.; Qinzhu, C.; Shili, L.
2014-12-01
Mid-ocean ridges, largely present far from the continental plates, are characterized by complex geological structures and numerous hydrothermal systems with complex controlling factors. Exploring seafloor sulfide resources for industrial and scientific applications is a challenge. With the advent of geophysical surveys for seabed investigation, near-bottom magnetic prospecting, which yields shallow geological structure, is an efficient method for investigating active and inactive hydrothermal fields and for researching the structure of hydrothermal systems (Tivey et al., 1993, 1996;German et al., 2008). We collected near-bottom magnetic data in the Longqi hydrothermal area, located in the southwest Indian ridge (49.6° E; Zhu et al., 2010; Tao et al., 2014), using the autonomous benthic explorer, an autonomous underwater vehicle, during the second leg of the Chinese cruise DY115-19 on board R/V DaYangYiHao. Based on the results of the intensity of the spatial differential vector method (Seaman et al., 1993), we outline the hydrothermal alternation zone. By building models, we subsequently infer a fault along the discovered hydrothermal vents; this fault line may be connected to a detachment fault (Zhao et al., 2013). In addition, we discuss the channels of the hydrothermal circulation system (Figure 1), and presume that heat was conducted to the sea subsurface by the detachment fault; the aqueous fluid that infiltrated the fault is heated and conveyed to the seafloor, promoting the circulation of the hydrothermal system.
MEASUREMENTS OF THE SUN'S HIGH-LATITUDE MERIDIONAL CIRCULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rightmire-Upton, Lisa; Hathaway, David H.; Kosak, Katie, E-mail: lar0009@uah.edu, E-mail: david.hathaway@nasa.gov, E-mail: mkosak2011@my.fit.edu
2012-12-10
The meridional circulation at high latitudes is crucial to the buildup and reversal of the Sun's polar magnetic fields. Here, we characterize the axisymmetric flows by applying a magnetic feature cross-correlation procedure to high-resolution magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. We focus on Carrington rotations 2096-2107 (2010 April to 2011 March)-the overlap interval between HMI and the Michelson Doppler Imager (MDI). HMI magnetograms averaged over 720 s are first mapped into heliographic coordinates. Strips from these maps are then cross-correlated to determine the distances in latitude and longitude that the magneticmore » element pattern has moved, thus providing meridional flow and differential rotation velocities for each rotation of the Sun. Flow velocities were averaged for the overlap interval and compared to results obtained from MDI data. This comparison indicates that these HMI images are rotated counterclockwise by 0.{sup 0}075 with respect to the Sun's rotation axis. The profiles indicate that HMI data can be used to reliably measure these axisymmetric flow velocities to at least within 5 Degree-Sign of the poles. Unlike the noisier MDI measurements, no evidence of a meridional flow counter-cell is seen in either hemisphere with the HMI measurements: poleward flow continues all the way to the poles. Slight north-south asymmetries are observed in the meridional flow. These asymmetries should contribute to the observed asymmetries in the polar fields and the timing of their reversals.« less
Generation of large-scale magnetic fields by small-scale dynamo in shear flows
NASA Astrophysics Data System (ADS)
Squire, Jonathan; Bhattacharjee, Amitava
2015-11-01
A new mechanism for turbulent mean-field dynamo is proposed, in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the ``shear-current'' effect. The dynamo is studied using a variety of computational and analytic techniques, both when the magnetic fluctuations arise self-consistently through the small-scale dynamo and in lower Reynolds number regimes. Given the inevitable existence of non-helical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help to explain generation of large-scale magnetic fields across a wide range of astrophysical objects. This work was supported by a Procter Fellowship at Princeton University, and the US Department of Energy Grant DE-AC02-09-CH11466.
Evolution of the magnetic field generated by the Kelvin-Helmholtz instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modestov, M.; Bychkov, V.; Brodin, G.
2014-07-15
The Kelvin-Helmholtz instability in an ionized plasma is studied with a focus on the magnetic field generation via the Biermann battery (baroclinic) mechanism. The problem is solved by using direct numerical simulations of two counter-directed flows in 2D geometry. The simulations demonstrate the formation of eddies and their further interaction and merging resulting in a large single vortex. In contrast to general belief, it is found that the instability generated magnetic field may exhibit significantly different structures from the vorticity field, despite the mathematically identical equations controlling the magnetic field and vorticity evolution. At later stages of the nonlinear instabilitymore » development, the magnetic field may keep growing even after the hydrodynamic vortex strength has reached its maximum and started decaying due to dissipation.« less
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.
2006-01-01
Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.
Magnetic and mineralogical properties of central Baffin Bay sediments since the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Simon, Q.; St-Onge, G.; Hillaire-Marcel, C.
2011-12-01
Magnetic and mineralogical properties of terrigenous sediments from the deep central Baffin Bay (HU2008-029-016PC - 70°46,14N/-64°65,77W - 2063 m) were analyzed as a means of linking sedimentological changes to ice-margin dynamics along the surrounding coastlines of W. Greenland, E. Baffin Island and N.E. Ellesmere Island since the Last Glacial Maximum (LGM). A chronology based on relative paleointensity (RPI) and secular variation (PSV) in sections where magnetism properties were suitable has been set. The age-model yields a low mean sedimentation rate varying between 4 - 8 cm/kyr along the core and illustrates a significant increase during Termination 1. Carbonate content increases drastically from 16 ka due to increasing supplies of dolomitic material from dolostone rocks outcropping in the Canadian Arctic Archipelago and associated with inputs from the Innuitian Ice Sheet margin. The magnetic properties demonstrate major changes during the deglaciation and especially during Heinrich event 1 (H1), the Younger Dryas (YD) and throughout the Holocene. Very low median destructive field (MDF) of the natural remanent magnetization (NRM) values are observed during the 11.5 - 12.6 ka (YD) and 14.8 - 16 (H1) ka intervals, and are reflecting coarser magnetic grains. Similarly, the kARM/kLF grain-size ratio shows coarser magnetic grain size during the H1 and YD intervals, and finer magnetic grains during the LGM (19 - 22 ka). During the LGM, "glacial flour" formed by mechanical grinding of rocks by ice sheets released finer magnetic grains from lateral source (e.g., Greenland continental shelf). On the contrary, during the YD and H1 periods, icebergs released coarser magnetic grains from a northern source (axial source). The Holocene is marked by the highest median destructive field (MDF) and ARM20mT/ARM0mT values of the core, indicating an increased proportion of finer magnetic grains during this interval. Together with the large increase in the silt fraction, these different proxies tend to demonstrate the establishment of the modern Baffin Bay oceanic circulation that followed the deglaciation and the opening of Lancaster Sound, Jones Sound and Nares Strait, and the onset of the Western Greenland Current. These data provide strong marine evidence of 1) increasing supplies of sedimentary material coming from the rapid retreat of ice streams in the northern part of Baffin Bay starting at 16 ka and 2) the ice-margin dynamics (Innuitian vs. Greenland ice sheets) since the LGM. The study enables to document these sedimentological changes with regard to regional and Northern Hemisphere climatic variability, and highlights the importance of Baffin Bay for the establishment of modern oceanic circulation.
Alric, Christophe; Taleb, Jacqueline; Le Duc, Géraldine; Mandon, Céline; Billotey, Claire; Le Meur-Herland, Alice; Brochard, Thierry; Vocanson, Francis; Janier, Marc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier
2008-05-07
Functionalized gold nanoparticles were applied as contrast agents for both in vivo X-ray and magnetic resonance imaging. These particles were obtained by encapsulating gold cores within a multilayered organic shell which is composed of gadolinium chelates bound to each other through disulfide bonds. The contrast enhancement in MRI stems from the presence of gadolinium ions which are entrapped in the organic shell, whereas the gold core provides a strong X-ray absorption. This study revealed that these particles suited for dual modality imaging freely circulate in the blood vessels without undesirable accumulation in the lungs, spleen, and liver.
Cryogenic expansion joint for large superconducting magnet structures
Brown, Robert L.
1978-01-01
An expansion joint is provided that accommodates dimensional changes occurring during the cooldown and warm-up of large cryogenic devices such as superconducting magnet coils. Flattened tubes containing a refrigerant such as gaseous nitrogen (N.sub.2) are inserted into expansion spaces in the structure. The gaseous N.sub.2 is circulated under pressure and aids in the cooldown process while providing its primary function of accommodating differential thermal contraction and expansion in the structure. After lower temperatures are reached and the greater part of the contraction has occured, the N.sub.2 liquefies then solidifies to provide a completely rigid structure at the cryogenic operating temperatures of the device.
Becker, Svetlana; Florian, Anca; Patrascu, Alexandru; Rösch, Sabine; Waltenberger, Johannes; Sechtem, Udo; Schwab, Matthias; Schaeffeler, Elke; Yilmaz, Ali
2016-05-06
Duchenne and Becker muscular dystrophy (DMD and BMD) are X-chromosomal recessive neuromuscular disorders that are caused by mutations in the dystrophin gene and characterized by cardiac involvement. Circulating microRNAs (miRNAs) have been proposed as diagnostic biomarkers for various cardiovascular diseases. However, circulating miRNAs reflecting the presence and/or disease severity of cardiac involvement in DMD/BMD patients have not been described so far. Sixty-three male patients with known MD and 26 age-matched healthy male controls were prospectively enrolled. All MD patients and controls underwent comprehensive cardiovascular magnetic resonance (CMR) studies as well as venous blood sampling on the same day. An impaired left ventricular (LV) systolic function (defined as LV-EF <55 %) was detected in 29 (46 %) and presence of late gadolinium enhancement (LGE) indicative of myocardial fibrosis in 48 (76 %) MD patients with an exclusively non-ischemic pattern. Whereas no significant differences were observed for the 27 selected circulating miRNAs in MD patients with abnormal CMR findings (comprising structural and/or functional impairments) compared to those with completely normal CMR studies, a significant up-regulation of three miRNAs was observed in LGE-positive MD patients compared to LGE-negative ones: miR-222 (1.8-fold, p = 0.035), miR-26a (2.1-fold, p = 0.03) and miR-378a-5p (2.4-fold, p = 0.026). A signature of these three miRNAs (miR-26a, miR-222 and miR-378a-5p) resulted in an area under the curve (AUC) value of 0.74 for the diagnosis of LGE-positive MD patients. In a multivariable model, three independent predictors for LGE presence were identified comprising not only clinical and laboratory markers (LV-EF: OR 0.47, 95 % CI 0.24-0.89, p = 0.021 and elevated hs-Trop: OR 2559, 95 % CI 2.97-22.04*10(5), p = 0.023) but also the circulating miR-222 (OR 938, 95 % CI 938.46, 3.56-24.73*10(4), p = 0.016). Up-regulation of circulating miRNAs miR-222, miR-26a and miR-378a-5p indicates the presence of myocardial scars in MD patients. Plasma miR-222 appears to be a promising novel biomarker reflecting structural - but not functional - cardiac alterations in MD patients.
Hamiltonian structure of the guiding center plasma model
NASA Astrophysics Data System (ADS)
Burby, J. W.; Sengupta, W.
2018-02-01
The guiding center plasma model (also known as kinetic MHD) is a rigorous sub-cyclotron-frequency closure of the Vlasov-Maxwell system. While the model has been known for decades and it plays a fundamental role in describing the physics of strongly magnetized collisionless plasmas, its Hamiltonian structure has never been found. We provide explicit expressions for the model's Poisson bracket and Hamiltonian and thereby prove that the model is an infinite-dimensional Hamiltonian system. The bracket is derived in a manner which ensures that it satisfies the Jacobi identity. We also report on several previously unknown circulation theorems satisfied by the guiding center plasma model. Without knowledge of the Hamiltonian structure, these circulation theorems would be difficult to guess.
ERIC Educational Resources Information Center
Zha, Qiang
2016-01-01
As part of globalisation, academics have become more mobile and are tempted to move to institutions that have the most favourable research funding and work environment. The university is now viewed as a global magnet for academic talent and a key institution that enhances competitiveness by connecting cities and nations to global flows of…
Generation of strong pulsed magnetic fields using a compact, short pulse generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanuka, D.; Efimov, S.; Nitishinskiy, M.
2016-04-14
The generation of strong magnetic fields (∼50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ∼3.6 kJ, discharge current amplitude of ∼220 kA, and rise time of ∼1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma bymore » either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.« less
Generation of strong pulsed magnetic fields using a compact, short pulse generator
NASA Astrophysics Data System (ADS)
Yanuka, D.; Efimov, S.; Nitishinskiy, M.; Rososhek, A.; Krasik, Ya. E.
2016-04-01
The generation of strong magnetic fields (˜50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ˜3.6 kJ, discharge current amplitude of ˜220 kA, and rise time of ˜1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma by either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.
NASA Astrophysics Data System (ADS)
Li, Zaoyang; Qi, Xiaofang; Liu, Lijun; Zhou, Genshu
2018-02-01
The alternating current (AC) in the resistance heater for generating heating power can induce a magnetic field in the silicon melt during directional solidification (DS) of silicon ingots. We numerically study the influence of such a heater-generating magnetic field on the silicon melt flow and temperature distribution in an industrial DS process. 3D simulations are carried out to calculate the Lorentz force distribution as well as the melt flow and heat transfer in the entire DS furnace. The pattern and intensity of silicon melt flow as well as the temperature distribution are compared for cases with and without Lorentz force. The results show that the Lorentz force induced by the heater-generating magnetic field is mainly distributed near the top and side surfaces of the silicon melt. The melt flow and temperature distribution, especially those in the upper part of the silicon region, can be influenced significantly by the magnetic field.
On the Effect of IMF Turning on Ion Dynamics at Mercury
NASA Technical Reports Server (NTRS)
Delcourt, D. C.; Moore, T. E.; Fok, M.-C. H.
2011-01-01
We investigate the effect of a rotation of the Interplanetary Magnetic Field (IMF) on the transport of magnetospheric ion populations at Mercury. We focus on ions of planetary origin and investigate their large-scale circulation using three-dimensional single-particle simulations. We show that a nonzero Bx component of the IMF leads to a pronounced asymmetry in the overall circulation pattern . In particular, we demonstrate that the centrifugal acceleration due to curvature of the E x B drift paths is more pronounced in one hemisphere than the other, leading to filling of the magnetospheric lobes and plasma sheet with more or less energetic material depending upon the hemisphere of origin. Using a time-varying electric and magnetic field model, we investigate the response of ions to rapid (a few tens of seconds) re-orientation of the IMF. We show that, for ions with gyroperiods comparable to the field variation time scale, the inductive electric field should lead to significant nonadiabatic energization, up to several hundreds of eVs or a few keVs. It thus appears that IMP turning at Mercury should lead to localized loading of the magnetosphere with energetic material of planetary origin (e.g., Na+).
NASA Astrophysics Data System (ADS)
Javed, Tariq; Mehmood, Z.; Abbas, Z.
2017-02-01
This article contains numerical results for free convection through square enclosure enclosing ferrofluid saturated porous medium when uniform magnetic field is applied upon the flow along x-axis. Heat is provided through bottom wall and a square blockage placed near left or right bottom corner of enclosure as a heat source. Left and right vertical boundaries of the cavity are considered insulated while upper wall is taken cold. The problem is modelled in terms of system of nonlinear partial differential equations. Finite element method has been adopted to compute numerical simulations of mathematical problem for wide range of pertinent flow parameters including Rayleigh number, Hartman number, Darcy number and Prandtl number. Analysis of results reveals that the strength of streamline circulation is an increasing function of Darcy and Prandtl number where convection heat transfer is dominant for large values of these parameters whereas increase in Hartman number has opposite effects on isotherms and streamline circulations. Thermal conductivity and hence local heat transfer rate of fluid gets increased when ferroparticles are introduced in the fluid. Average Nusselt number increases with increase in Darcy and Rayleigh numbers while it is decreases when Hartman number is increased.
Subseafloor processes in mid-ocean ridge hydrothennal systems
NASA Astrophysics Data System (ADS)
Alt, Jeffrey C.
Convective circulation of seawater through oceanic crust at mid-ocean ridges (MOR) and on ridge flanks has wide-ranging effects on heat transport, the chemical and isotopic compositions of ocean crust and seawater, mineralization of the crust, and on the physical properties of oceanic basement. Submarine hydrothermal systems remove about 30% of the heat lost from oceanic crust [Selater et al., 1981; Stein and Stein, 1994], and chemical and isotopic exchange between seawater and basement rocks exerts important controls on the composition of seawater [Edmond et al., 1979a; Thompson, 1983]. The composition of altered crust is also changed and, when subducted, this altered crust can contribute to chemical and isotopic heterogeneities in the mantle [Zindler and Hart, 1986] and may affect the compositions of volcanic rocks in island arcs [Perfit et al., 1980; Tatsumi, 1989]. Mineralization of ocean crust occurs where metals, leached from large volumes of altered crust at depth, are concentrated at or near the surface by hydrothermal circulation [Hannington, 1995]. Hydrothermal alteration of magnetic minerals may affect the source of marine magnetic anomalies [Pariso and Johnson, 1991], and the formation of secondary minerals influences the density, porosity, and seismic velocity structure of the crust [Wilkens et al., 1991; Jacobson, 1992].
Ionospheric convection signatures observed by DE 2 during northward interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Heelis, R. A.; Hanson, W. B.; Reiff, P. H.; Winningham, J. D.
1986-01-01
Observations of the ionospheric convection signature at high latitudes are examined during periods of prolonged northward interplanetary magnetic field (IMF). The data from Dynamics Explorer 2 show that a four-cell convection pattern can frequently be observed in a region that is displaced to the sunward side of the dawn-dusk meridian regardless of season. In the eclipsed ionosphere, extremely structured or turbulent flow exists with no identifiable connection to a more coherent pattern that may simultaneously exist in the dayside region. The two highest-latitude convection cells that form part of the coherent dayside pattern show a dependence on the y component of the IMF. This dependence is such that a clockwise circulating cell displaced toward dawn dominates the high-latitude region when B(Y) is positive. Anti-clockwise circulation displaced toward dusk dominates the highest latitudes when B(Y) is negative. Examination of the simultaneously observed energetic particle environment suggests that both open and closed field lines may be associated with the high-latitude convection cells. On occasions these entire cells can exist on open field lines. The existence of closed field lines in regions of sunward flow is also apparent in the data.
Mei, Ting; Lu, Xuewen; Sun, Ning; Li, Xiaomei; Chen, Jitao; Liang, Min; Zhou, Xinke; Fang, Zhiyuan
2018-06-05
The level of circulating tumor cell (CTCs) is a reliable marker for tumor burden and malignant progression. Quantification of CTCs remains technically challenging due to the rarity of these cells in peripheral blood. In the present study, we established a real-time quantitative PCR (Q-PCR) based method for sensitive detection of CTCs without DNA extraction. Blood sample was first turned to erythrocyte lyses and then incubated with two antibodies, tag-DNA modified CK-19 antibody and magnetic beads conjugated EpCAM antibody. Tumor cells were further enriched by magnetic separation. Tag-DNA that immobilized on tumor cells through CK-19 antibodies were also retrieved, which was further quantified by Q-PCR. This assay was able to detect single tumor cell in a 5 mL blood sample. The detection rate of clinical tumor blood sample was 92.3%. Furthermore, CTC count in patient was correlated with tumor stage and tumor status. The signal amplification was based on tag DNA rather than tumor gene, which was independent of nucleic acid extraction. With high sensitivity and convenience, this method can be a good alternative for the determination of cancer progress. Copyright © 2018 Elsevier B.V. All rights reserved.
Watanabe, Toru; Mashiko, Takuma; Maftukhah, Rizki; Kaku, Nobuo; Pham, Dong Duy; Ito, Hiroaki
2017-02-01
This study aims at improving the performance of the cultivating system of rice for animal feed with circulated irrigation of treated municipal wastewater by applying a larger amount of wastewater, as well as adding a microbial fuel cell (MFC) to the system. The results of bench-scale experiments indicate that this modification has increased the rice yield, achieving the target for the rice cultivar used in the experiment. In addition, an assessment of protein content of the harvested rice showed that the value of the rice as animal fodder has improved. Compared with normal one-way irrigation, circulated irrigation significantly enhanced the plant growth and rice production. The direction of the irrigation (bottom-to-top or top-to-bottom) in the soil layer had no significant effect. This modified system demonstrated >96% for nitrogen removal from the treated wastewater used for the irrigation, with approximately 40% of the nitrogen being used for rice plant growth. The MFC installed in the system facilitated power generation comparable with that reported for normal paddy fields. The power generation appeared to be enhanced by bottom-to-top irrigation, which could provide organic-rich treated wastewater directly to the bacterial community living on the anode of the MFC set in the soil layer.
Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris
2015-07-17
Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation.
Computer Generated Snapshot of Our Sun's Magnetic Field
NASA Technical Reports Server (NTRS)
2003-01-01
These banana-shaped loops are part of a computer-generated snapshot of our sun's magnetic field. The solar magnetic-field lines loop through the sun's corona, break through the sun's surface, and cornect regions of magnetic activity, such as sunspots. This image --part of a magnetic-field study of the sun by NASA's Allen Gary -- shows the outer portion (skins) of interconnecting systems of hot (2 million degrees Kelvin) coronal loops within and between two active magnetic regions on opposite sides of the sun's equator. The diameter of these coronal loops at their foot points is approximately the same size as the Earth's radius (about 6,000 kilometers).
Chiral magnetic effect in condensed matter systems
Li, Qiang; Kharzeev, Dmitri E.
2016-12-01
The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions. In the quark-gluon plasma, the axial anomaly induces topological charge changing transition that results in the generation of electrical current along the magnetic field. In condensed matter systems, the chiral magnetic effect was first predicted in the gapless semiconductors with tow energy bands having pointlike degeneracies. In addition, thirty years later after this prediction, the chiral magnetic effect was finally observed in the 3Dmore » Dirac/Weyl semimetals.« less
Large-scale vortices in compressible turbulent medium with the magnetic field
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Dimitrov, B. G.
1990-08-01
An averaged equation which describes the large scale vortices and Alfven waves generation in a compressible helical turbulent medium with a constant magnetic field is presented. The presence of the magnetic field leads to anisotropization of the vortex generation. Possible applications of the anisotropic vortex dynamo effect are accretion disks of compact objects.
60-Hz electric and magnetic fields generated by a distribution network.
Héroux, P
1987-01-01
From a mobile unit, 60-Hz electric and magnetic fields generated by Hydro-Québec's distribution network were measured. Nine runs, representative of various human environments, were investigated. Typical values were 32 V/m and 0.16 microT. The electrical distribution networks investigated were major contributors to the electric and magnetic environments.
3D Visualization of Global Ocean Circulation
NASA Astrophysics Data System (ADS)
Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.
2015-12-01
Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.
Novel design configurations for permanent magnet wind generators
NASA Astrophysics Data System (ADS)
Chen, Yicheng
2004-12-01
The aim of this research is to search for optimal designs of permanent magnet (PM) wind generators of different topologies. The dissertation deals with the development of analytical design equations and formulas for PM wind generators of different topologies, including equivalent magnetic circuit model for magnets, calculation of leakage flux, influence of d-q axis armature reaction, flux waveform analysis, as well as performance verification. 3-D and simplified 2-D finite element analysis is used to enhance the design precision, by which analytical formulas are modified. A new and improved formula is proposed for lamination loss calculations, based on a large experimental data set provided by steel manufacturers. The temperature stability of NdFeB magnets is analyzed and some proposals for eliminating irreversible demagnetization are presented. Two existing experimental machines are used to validate the design equations. The genetic algorithms are used to investigate the multi-objective design optimization of PM wind generators for a high efficiency and light-weight design. The reasoning behind the selection of the objective functions, design variables and constraints are given as guidance for the PM wind generator optimum design. The implementation of the genetic algorithm is also given. A comparison of PM wind generators of different topologies is presented. Conclusions are drawn for topology selections of PM wind generators. The group of soft magnetic composites (SMC) has recently been expanded by the introduction of new materials with significantly improved frequency properties. This has made SMC a viable alternative to steel laminations for a range of new applications, especially axial-flux wind generators. The isotropic nature of the SMC combined with the unique shaping possibilities opens up new design solutions for axial-flux wind generators. Through careful design, an axial-flux PM wind generator with SMC core is built and tested, demonstrating the advantages of better performance, reduced size and weight, fewer parts and lower cost.
Rotational viscometer for high-pressure, high-temperature fluids
Carr, K.R.
1983-06-06
The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer include a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. Means are provided to generate an output indicative of the phase difference between the two waveforms. The viscometer is comparatively simple, inexpensive, rugged, and does not require shaft seals.