Electrical Lumped Model Examination for Load Variation of Circulation System
NASA Astrophysics Data System (ADS)
Koya, Yoshiharu; Ito, Mitsuyo; Mizoshiri, Isao
Modeling and analysis of the circulation system enables the characteristic decision of circulation system in the body to be made. So, many models of circulation system have been proposed. But, they are complicated because the models include a lot of elements. Therefore, we proposed a complete circulation model as a lumped electrical circuit, which is comparatively simple. In this paper, we examine the effectiveness of the complete circulation model as a lumped electrical circuit. We use normal, angina pectoris, dilated cardiomyopathy and myocardial infarction for evaluation of the ventricular contraction function.
Minimal modeling of the extratropical general circulation
NASA Technical Reports Server (NTRS)
O'Brien, Enda; Branscome, Lee E.
1989-01-01
The ability of low-order, two-layer models to reproduce basic features of the mid-latitude general circulation is investigated. Changes in model behavior with increased spectral resolution are examined in detail. Qualitatively correct time-mean heat and momentum balances are achieved in a beta-plane channel model which includes the first and third meridional modes. This minimal resolution also reproduces qualitatively realistic surface and upper-level winds and mean meridional circulations. Higher meridional resolution does not result in substantial changes in the latitudinal structure of the circulation. A qualitatively correct kinetic energy spectrum is produced when the resolution is high enough to include several linearly stable modes. A model with three zonal waves and the first three meridional modes has a reasonable energy spectrum and energy conversion cycle, while also satisfying heat and momentum budget requirements. This truncation reproduces the basic mechanisms and zonal circulation features that are obtained at higher resolution. The model performance improves gradually with higher resolution and is smoothly dependent on changes in external parameters.
Optimal control of CPR procedure using hemodynamic circulation model
Lenhart, Suzanne M.; Protopopescu, Vladimir A.; Jung, Eunok
2007-12-25
A method for determining a chest pressure profile for cardiopulmonary resuscitation (CPR) includes the steps of representing a hemodynamic circulation model based on a plurality of difference equations for a patient, applying an optimal control (OC) algorithm to the circulation model, and determining a chest pressure profile. The chest pressure profile defines a timing pattern of externally applied pressure to a chest of the patient to maximize blood flow through the patient. A CPR device includes a chest compressor, a controller communicably connected to the chest compressor, and a computer communicably connected to the controller. The computer determines the chest pressure profile by applying an OC algorithm to a hemodynamic circulation model based on the plurality of difference equations.
Safaei, Soroush; Blanco, Pablo J; Müller, Lucas O; Hellevik, Leif R; Hunter, Peter J
2018-01-01
We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data.
Library Circulation Systems -- An Overview.
ERIC Educational Resources Information Center
Surace, Cecily J.
The model circulation system outlined is an on-line real time system in which the circulation file is created from the shelf list and the terminal inquiry system includes the capability to query and browse through the bibliographic system and the circulation subsystem together to determine the availability for circulation of specific documents, or…
The vertical distribution of nutrients and oxygen 18 in the upper Arctic Ocean
NASA Astrophysics Data System (ADS)
BjöRk, GöRan
1990-09-01
The observed vertical nutrient distribution including a maximum at about 100 m depth in the Arctic Ocean is investigated using a one-dimensional time-dependent circulation model together with a simple biological model. The circulation model includes a shelf-forced circulation. This is thought to take place in a box from which the outflow is specified regarding temperature and volume flux at different salinities. It has earlier been shown that the circulation model is able to reproduce the observed mean salinity and temperature stratification in the Arctic Ocean. Before introducing nutrients in the model a test is performed using the conservative tracer δ18 (18O/16O ratio) as one extra state variable in order to verify the circulation model. It is shown that the field measurements can be simulated. The result is, however, rather sensitive to the tracer concentration in the Bering Strait inflow. The nutrients nitrate, phosphate, and silicate are then treated by coupling a simple biological model to the circulation model. The biological model describes some overall effects of production, sinking, and decomposition of organic matter. First a standard case of the biological model is presented. This is followed by some modified cases. It is shown that the observed nutrient distribution including the maximum can be generated. The available nutrient data from the Arctic Ocean are not sufficient to decide which among the cases is the most likely to occur. One case is, however, chosen as the best case. A nutrient budget and estimates of the magnitudes of the new production are presented for this case.
Diagnostics of severe convection and subsynoptic scale ageostrophic circulations
NASA Technical Reports Server (NTRS)
1985-01-01
Diagnostics of severe convection and subsynoptic scale ageostrophic circulations are reported. Mesoscale circulations through forcing of ageostrophic motion by adiabatic, diabatic and frictional processes were studied. The development and application of a hybrid isentropic sigma coordinate numerical model was examined. The numerical model simulates mesoscale ageostrophic circulations associated with propagating jet streaks and severe convection. A complete list of publications and these completed through support of the NASA severe storms research project is included.
Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations
Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.
2018-01-01
We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979
Development of a hydraulic model of the human systemic circulation
NASA Technical Reports Server (NTRS)
Sharp, M. K.; Dharmalingham, R. K.
1999-01-01
Physical and numeric models of the human circulation are constructed for a number of objectives, including studies and training in physiologic control, interpretation of clinical observations, and testing of prosthetic cardiovascular devices. For many of these purposes it is important to quantitatively validate the dynamic response of the models in terms of the input impedance (Z = oscillatory pressure/oscillatory flow). To address this need, the authors developed an improved physical model. Using a computer study, the authors first identified the configuration of lumped parameter elements in a model of the systemic circulation; the result was a good match with human aortic input impedance with a minimum number of elements. Design, construction, and testing of a hydraulic model analogous to the computer model followed. Numeric results showed that a three element model with two resistors and one compliance produced reasonable matching without undue complication. The subsequent analogous hydraulic model included adjustable resistors incorporating a sliding plate to vary the flow area through a porous material and an adjustable compliance consisting of a variable-volume air chamber. The response of the hydraulic model compared favorably with other circulation models.
NASA Astrophysics Data System (ADS)
Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan
2018-04-01
The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional and zonal components of global atmospheric circulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
Recent helioseismology findings, as well as advances in direct numerical simulations of global dynamics of the Sun, have indicated that in each solar hemisphere meridional circulation may form more than one cell along the radius in the convection zone. In particular, recent helioseismology results revealed a double-cell structure of the meridional circulation. We investigate properties of a mean-field solar dynamo with such double-cell meridional circulation. The dynamo model also includes the realistic profile of solar differential rotation (including the tachocline and subsurface shear layer) and takes into account effects of turbulent pumping, anisotropic turbulent diffusivity, and conservation of magnetic helicity.more » Contrary to previous flux-transport dynamo models, we find that the dynamo model can robustly reproduce the basic properties of the solar magnetic cycles for a wide range of model parameters and circulation speeds. The best agreement with observations is achieved when the surface meridional circulation speed is about 12 m s{sup –1}. For this circulation speed, the simulated sunspot activity shows good synchronization with the polar magnetic fields. Such synchronization was indeed observed during previous sunspot Cycles 21 and 22. We compare theoretical and observed phase diagrams of the sunspot number and the polar field strength and discuss the peculiar properties of Cycle 23.« less
Modeling of circulating fluised beds for post-combustion carbon capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.; Shadle, L.; Miller, D.
2011-01-01
A compartment based model for a circulating fluidized bed reactor has been developed based on experimental observations of riser hydrodynamics. The model uses a cluster based approach to describe the two-phase behavior of circulating fluidized beds. Fundamental mass balance equations have been derived to describe the movement of both gas and solids though the system. Additional work is being performed to develop the correlations required to describe the hydrodynamics of the system. Initial testing of the model with experimental data shows promising results and highlights the importance of including end effects within the model.
NASA Astrophysics Data System (ADS)
Häusler, K.; Hagan, M. E.; Baumgaertner, A. J. G.; Maute, A.; Lu, G.; Doornbos, E.; Bruinsma, S.; Forbes, J. M.; Gasperini, F.
2014-08-01
We report on a new source of tidal variability in the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). Lower boundary forcing of the TIME-GCM for a simulation of November-December 2009 based on 3-hourly Modern-Era Retrospective Analysis for Research and Application (MERRA) reanalysis data includes day-to-day variations in both diurnal and semidiurnal tides of tropospheric origin. Comparison with TIME-GCM results from a heretofore standard simulation that includes climatological tropospheric tides from the global-scale wave model reveal evidence of the impacts of MERRA forcing throughout the model domain, including measurable tidal variability in the TIME-GCM upper thermosphere. Additional comparisons with measurements made by the Gravity field and steady-state Ocean Circulation Explorer satellite show improved TIME-GCM capability to capture day-to-day variations in thermospheric density for the November-December 2009 period with the new MERRA lower boundary forcing.
SpaceX Dragon Air Circulation System
NASA Technical Reports Server (NTRS)
Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro
2011-01-01
The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.
Mathematical modelling of the maternal cardiovascular system in the three stages of pregnancy.
Corsini, Chiara; Cervi, Elena; Migliavacca, Francesco; Schievano, Silvia; Hsia, Tain-Yen; Pennati, Giancarlo
2017-09-01
In this study, a mathematical model of the female circulation during pregnancy is presented in order to investigate the hemodynamic response to the cardiovascular changes associated with each trimester of pregnancy. First, a preliminary lumped parameter model of the circulation of a non-pregnant female was developed, including the heart, the systemic circulation with a specific block for the uterine district and the pulmonary circulation. The model was first tested at rest; then heart rate and vascular resistances were individually varied to verify the correct response to parameter alterations characterising pregnancy. In order to simulate hemodynamics during pregnancy at each trimester, the main changes applied to the model consisted in reducing vascular resistances, and simultaneously increasing heart rate and ventricular wall volumes. Overall, reasonable agreement was found between model outputs and in vivo data, with the trends of the cardiac hemodynamic quantities suggesting correct response of the heart model throughout pregnancy. Results were reported for uterine hemodynamics, with flow tracings resembling typical Doppler velocity waveforms at each stage, including pulsatility indexes. Such a model may be used to explore the changes that happen during pregnancy in female with cardiovascular diseases. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kim, J.-H.; Sud, Y. C.
1993-01-01
A 10-year (1979-1988) integration of Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) under Atmospheric Model Intercomparison Project (AMIP) is analyzed and compared with observation. The first momentum fields of circulation variables and also hydrological variables including precipitation, evaporation, and soil moisture are presented. Our goals are (1) to produce a benchmark documentation of the GLA GCM for future model improvements; (2) to examine systematic errors between the simulated and the observed circulation, precipitation, and hydrologic cycle; (3) to examine the interannual variability of the simulated atmosphere and compare it with observation; and (4) to examine the ability of the model to capture the major climate anomalies in response to events such as El Nino and La Nina. The 10-year mean seasonal and annual simulated circulation is quite reasonable compared to the analyzed circulation, except the polar regions and area of high orography. Precipitation over tropics are quite well simulated, and the signal of El Nino/La Nina episodes can be easily identified. The time series of evaporation and soil moisture in the 12 biomes of the biosphere also show reasonable patterns compared to the estimated evaporation and soil moisture.
NASA Technical Reports Server (NTRS)
Entekhabi, D.; Eagleson, P. S.
1989-01-01
Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.
Model-free adaptive control of supercritical circulating fluidized-bed boilers
Cheng, George Shu-Xing; Mulkey, Steven L
2014-12-16
A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
Three-dimensional circulation dynamics of along-channel flow in stratified estuaries
NASA Astrophysics Data System (ADS)
Musiak, Jeffery Daniel
Estuaries are vital because they are the major interface between humans and the oceans and provide valuable habitat for a wide range of organisms. Therefore it is important to model estuarine circulation to gain a better comprehension of the mechanics involved and how people effect estuaries. To this end, this dissertation combines analysis of data collected in the Columbia River estuary (CRE) with novel data processing and modeling techniques to further the understanding of estuaries that are strongly forced by riverflow and tides. The primary hypothesis tested in this work is that the three- dimensional (3-D) variability in along-channel currents in a strongly forced estuary can be largely accounted for by including the lateral variations in density and bathymetry but neglecting the secondary, or lateral, flow. Of course, the forcing must also include riverflow and oceanic tides. Incorporating this simplification and the modeling ideas put forth by others with new modeling techniques and new ideas on estuarine circulation will allow me to create a semi-analytical quasi 3-D profile model. This approach was chosen because it is of intermediate complexity to purely analytical models, that, if tractable, are too simple to be useful, and 3-D numerical models which can have excellent resolution but require large amounts of time, computer memory and computing power. Validation of the model will be accomplished using velocity and density data collected in the Columbia River Estuary and by comparison to analytical solutions. Components of the modeling developed here include: (1) development of a 1-D barotropic model for tidal wave propagation in frictionally dominated systems with strong topography. This model can have multiple tidal constituents and multiply connected channels. (2) Development and verification of a new quasi 3-D semi-analytical velocity profile model applicable to estuarine systems which are strongly forced by both oceanic tides and riverflow. This model includes diurnal and semi-diurnal tidal and non- linearly generated overtide circulation and residual circulation driven by riverflow, baroclinic forcing, surface wind stress and non-linear tidal forcing. (3) Demonstration that much of the lateral variation in along-channel currents is caused by variations in along- channel density forcing and bathymetry.
NASA Technical Reports Server (NTRS)
Mcguirk, James P.
1990-01-01
Satellite data analysis tools are developed and implemented for the diagnosis of atmospheric circulation systems over the tropical Pacific Ocean. The tools include statistical multi-variate procedures, a multi-spectral radiative transfer model, and the global spectral forecast model at NMC. Data include in-situ observations; satellite observations from VAS (moisture, infrared and visible) NOAA polar orbiters (including Tiros Operational Satellite System (TOVS) multi-channel sounding data and OLR grids) and scanning multichannel microwave radiometer (SMMR); and European Centre for Medium Weather Forecasts (ECHMWF) analyses. A primary goal is a better understanding of the relation between synoptic structures of the area, particularly tropical plumes, and the general circulation, especially the Hadley circulation. A second goal is the definition of the quantitative structure and behavior of all Pacific tropical synoptic systems. Finally, strategies are examined for extracting new and additional information from existing satellite observations. Although moisture structure is emphasized, thermal patterns are also analyzed. Both horizontal and vertical structures are studied and objective quantitative results are emphasized.
Temperature field study of hot water circulation pump shaft system
NASA Astrophysics Data System (ADS)
Liu, Y. Y.; Kong, F. Y.; Daun, X. H.; Zhao, R. J.; Hu, Q. L.
2016-05-01
In the process of engineering application under the condition of hot water circulation pump, problems of stress concentration caused by the temperature rise may happen. In order to study the temperature field in bearing and electric motor chamber of the hot water circulation pump and optimize the structure, in present paper, the model of the shaft system is created through CREO. The model is analyzed by ANSYS workbench, in which the thermal boundary conditions are applied to calculate, which include the calorific values from the bearings, the thermal loss from electric motor and the temperature from the transporting medium. From the result, the finite element model can reflect the distribution of thermal field in hot water circulation pump. Further, the results show that the maximum temperature locates in the bearing chamber.The theoretical guidance for the electric motor heat dissipation design of the hot water circulation pump can be achieved.
NASA Astrophysics Data System (ADS)
Pithan, Felix; Shepherd, Theodore G.; Zappa, Giuseppe; Sandu, Irina
2016-07-01
State-of-the art climate models generally struggle to represent important features of the large-scale circulation. Common model deficiencies include an equatorward bias in the location of the midlatitude westerlies and an overly zonal orientation of the North Atlantic storm track. Orography is known to strongly affect the atmospheric circulation and is notoriously difficult to represent in coarse-resolution climate models. Yet how the representation of orography affects circulation biases in current climate models is not understood. Here we show that the effects of switching off the parameterization of drag from low-level orographic blocking in one climate model resemble the biases of the Coupled Model Intercomparison Project Phase 5 ensemble: An overly zonal wintertime North Atlantic storm track and less European blocking events, and an equatorward shift in the Southern Hemispheric jet and increase in the Southern Annular Mode time scale. This suggests that typical circulation biases in coarse-resolution climate models may be alleviated by improved parameterizations of low-level drag.
Stratosphere-resolving CMIP5 models simulate different changes in the Southern Hemisphere
NASA Astrophysics Data System (ADS)
Rea, Gloria; Riccio, Angelo; Fierli, Federico; Cairo, Francesco; Cagnazzo, Chiara
2018-03-01
This work documents long-term changes in the Southern Hemisphere circulation in the austral spring-summer season in the Coupled Intercomparison Project Phase 5 models, showing that those changes are larger in magnitude and closer to ERA-Interim and other reanalyses if models include a dynamical representation of the stratosphere. Specifically, models with a high-top and included dynamical and—in some cases—chemical feedbacks within the stratosphere better simulate the lower stratospheric cooling observed over 1979-2001 and strongly driven by ozone depletion, when compared to the other models. This occurs because high-top models can fully capture the stratospheric large scale circulation response to the ozone-induced cooling. Interestingly, this difference is also found at the surface for the Southern Annular Mode (SAM) changes, even though all model categories tend to underestimate SAM trends over those decades. In this analysis, models including a proper dynamical stratosphere are more sensitive to lower stratospheric cooling in their tropospheric circulation response. After a brief discussion of two RCP scenarios, our study confirms that at least for large changes in the extratropical regions, stratospheric changes induced by external forcing have to be properly simulated, as they are important drivers of tropospheric climate variations.
On a sparse pressure-flow rate condensation of rigid circulation models
Schiavazzi, D. E.; Hsia, T. Y.; Marsden, A. L.
2015-01-01
Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol’ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219
Bui, T D; Dabdub, D; George, S C
1998-06-01
The steady-state exchange of inert gases across an in situ canine trachea has recently been shown to be limited equally by diffusion and perfusion over a wide range (0.01-350) of blood solubilities (betablood; ml . ml-1 . atm-1). Hence, we hypothesize that the exchange of ethanol (betablood = 1,756 at 37 degrees C) in the airways depends on the blood flow rate from the bronchial circulation. To test this hypothesis, the dynamics of the bronchial circulation were incorporated into an existing model that describes the simultaneous exchange of heat, water, and a soluble gas in the airways. A detailed sensitivity analysis of key model parameters was performed by using the method of Latin hypercube sampling. The model accurately predicted a previously reported experimental exhalation profile of ethanol (R2 = 0.991) as well as the end-exhalation airstream temperature (34.6 degrees C). The model predicts that 27, 29, and 44% of exhaled ethanol in a single exhalation are derived from the tissues of the mucosa and submucosa, the bronchial circulation, and the tissue exterior to the submucosa (which would include the pulmonary circulation), respectively. Although the concentration of ethanol in the bronchial capillary decreased during inspiration, the three key model outputs (end-exhaled ethanol concentration, the slope of phase III, and end-exhaled temperature) were all statistically insensitive (P > 0.05) to the parameters describing the bronchial circulation. In contrast, the model outputs were all sensitive (P < 0.05) to the thickness of tissue separating the core body conditions from the bronchial smooth muscle. We conclude that both the bronchial circulation and the pulmonary circulation impact soluble gas exchange when the entire conducting airway tree is considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khangaonkar, Tarang; Long, Wen; Xu, Wenwei
The Salish Sea consisting of Puget Sound and Georgia Basin in U.S and Canadian waters has been the subject of several independent data collection and modeling studies. However, these interconnected basins and their hydrodynamic interactions have not received attention as a contiguous unit. The Strait of Juan de Fuca is the primary pathway through which Pacific Ocean water enters the Salish Sea but the role played by Johnstone Strait and the complex channels northeast of Vancouver Island, connecting the Salish Sea and the Pacific Ocean, on overall Salish Sea circulation has not been characterized. In this paper we present amore » modeling-based assessment of the two-layer circulation and transport through the multiple interconnected sub-basins within the Salish Sea including the effect of exchange via Johnstone Strait and Discovery Islands. The Salish Sea Model previously developed using the finite volume community ocean model (FVCOM) was expanded over the continental shelf for this assessment encircling Vancouver Island, including Discovery Islands, Johnstone Strait, Broughton Archipelago and the associated waterways. A computational technique was developed to allow summation of volume fluxes across arbitrary transects through unstructured finite volume cells. Tidally averaged volume fluxes were computed at multiple transects. The results were used to validate the classic model of Circulation in Embracing Sills for Puget Sound and to provide quantitative estimates of the lateral distribution of tidally averaged transport through the system. Sensitivity tests with and without exchanges through Johnstone Strait demonstrate that it is a pathway for Georgia Basin runoff and Fraser River water to exit the Salish Sea and for Pacific Ocean inflow. However the relative impact of this exchange on circulation and flushing in Puget Sound Basin is small.« less
NASA Astrophysics Data System (ADS)
Cifuentes-Lorenzen, A.; O'Donnell, J.; Howard-Strobel, M. M.; Fake, T.; McCardell, G.
2016-12-01
Accurate hydrodynamic-wave coupled coastal circulation models aid the prediction of storm impacts, particularly in areas where data is absent, and can inform mitigation options. They are essential everywhere to account for the effects of climate change. Here, the Finite Volume Community Ocean Model (FVCOM) was used to estimate the residual circulation inside a small urban estuary, Long Island Sound, during three severe weather events of different magnitude (i.e. 1/5, 1/25 and 1/50 year events). The effect of including wave coupling using a log-layer bottom boundary and the bottom wave-current coupling, following the approach of Madsen (1994) on the simulated residual circulation was assessed. Significant differences in the solutions were constrained to the near surface (s>-0.3) region. No significant difference in the depth-averaged residual circulation was detected. When the Madsen (1994) bottom boundary layer model for wave-current interaction was employed, differences in residual circulation resulted. The bottom wave-current interaction also plays an important role in the wave dynamics. Significant wave heights along the northern Connecticut shoreline were enhanced by up to 15% when the bottom wave-current interaction was included in the simulations. The wave-induced bottom drag enhancement has a substantial effect on tides in the Sound, possibly because it is nearly resonant at semidiurnal frequencies. This wave-current interaction current leads to severe tidal dampening ( 40% amplitude reduction) at the Western end of the estuary in the modeled sea surface displacement. The potential magnitude of these effects means that wave current interaction should be included and carefully evaluated in models of estuaries that are useful.
Accelerated Edge-Preserving Image Restoration Without Boundary Artifacts
Matakos, Antonios; Ramani, Sathish; Fessler, Jeffrey A.
2013-01-01
To reduce blur in noisy images, regularized image restoration methods have been proposed that use non-quadratic regularizers (like l1 regularization or total-variation) that suppress noise while preserving edges in the image. Most of these methods assume a circulant blur (periodic convolution with a blurring kernel) that can lead to wraparound artifacts along the boundaries of the image due to the implied periodicity of the circulant model. Using a non-circulant model could prevent these artifacts at the cost of increased computational complexity. In this work we propose to use a circulant blur model combined with a masking operator that prevents wraparound artifacts. The resulting model is non-circulant, so we propose an efficient algorithm using variable splitting and augmented Lagrangian (AL) strategies. Our variable splitting scheme, when combined with the AL framework and alternating minimization, leads to simple linear systems that can be solved non-iteratively using FFTs, eliminating the need for more expensive CG-type solvers. The proposed method can also efficiently tackle a variety of convex regularizers including edge-preserving (e.g., total-variation) and sparsity promoting (e.g., l1 norm) regularizers. Simulation results show fast convergence of the proposed method, along with improved image quality at the boundaries where the circulant model is inaccurate. PMID:23372080
NASA Technical Reports Server (NTRS)
Shukla, Sonali P.; Puma, Michael J.; Cook, Benjamin I.
2013-01-01
Agricultural intensification in South Asia has resulted in the expansion and intensification of surface irrigation over the twentieth century. The resulting changes to the surface energy balance could affect the temperature contrasts between the South Asian land surface and the equatorial Indian Ocean, potentially altering the South Asian Summer Monsoon (SASM) circulation. Prior studies have noted apparent declines in the monsoon intensity over the twentieth century and have focused on how altered surface energy balances impact the SASM rainfall distribution. Here, we use the coupled Goddard Institute for Space Studies ModelE-R general circulation model to investigate the impact of intensifying irrigation on the large-scale SASM circulation over the twentieth century, including how the effect of irrigation compares to the impact of increasing greenhouse gas (GHG) forcing. We force our simulations with time-varying, historical estimates of irrigation, both alone and with twentieth century GHGs and other forcings. In the irrigation only experiment, irrigation rates correlate strongly with lower and upper level temperature contrasts between the Indian sub-continent and the Indian Ocean (Pearson's r = -0.66 and r = -0.46, respectively), important quantities that control the strength of the SASM circulation. When GHG forcing is included, these correlations strengthen: r = -0.72 and r = -0.47 for lower and upper level temperature contrasts, respectively. Under irrigated conditions, the mean SASM intensity in the model decreases only slightly and insignificantly. However, in the simulation with irrigation and GHG forcing, inter-annual variability of the SASM circulation decreases by *40 %, consistent with trends in the reanalysis products. This suggests that the inclusion of irrigation may be necessary to accurately simulate the historical trends and variability of the SASM system over the last 50 years. These findings suggest that intensifying irrigation, in concert with increased GHG forcing, is capable of reducing the variability of the simulated SASM circulation and altering the regional moisture transport by limiting the surface warming and reducing land-sea temperature gradients.
Decision Support Tool Evaluation Report for General NOAA Oil Modeling Environment(GNOME) Version 2.0
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Hall, Callie; Zanoni, Vicki; Blonski, Slawomir; D'Sa, Eurico; Estep, Lee; Holland, Donald; Moore, Roxzana F.; Pagnutti, Mary; Terrie, Gregory
2004-01-01
NASA's Earth Science Applications Directorate evaluated the potential of NASA remote sensing data and modeling products to enhance the General NOAA Oil Modeling Environment (GNOME) decision support tool. NOAA's Office of Response and Restoration (OR&R) Hazardous Materials (HAZMAT) Response Division is interested in enhancing GNOME with near-realtime (NRT) NASA remote sensing products on oceanic winds and ocean circulation. The NASA SeaWinds sea surface wind and Jason-1 sea surface height NRT products have potential, as do sea surface temperature and reflectance products from the Moderate Resolution Imaging Spectroradiometer and sea surface reflectance products from Landsat and the Advanced Spaceborne Thermal Emission and Reflectance Radiometer. HAZMAT is also interested in the Advanced Circulation model and the Ocean General Circulation Model. Certain issues must be considered, including lack of data continuity, marginal data redundancy, and data formatting problems. Spatial resolution is an issue for near-shore GNOME applications. Additional work will be needed to incorporate NASA inputs into GNOME, including verification and validation of data products, algorithms, models, and NRT data.
Eddy Resolving Global Ocean Prediction including Tides
2013-09-30
atlantic meridional overturning circulation in the subpolar North Atlantic . Journal of Geophysical Research vol 118, doi:10.1002/jgrc,20065. [published, refereed] ...global ocean circulation model was examined using results from years 2005-2009 of a seven and a half year 1/12.5° global simulation that resolves...internal tides, along with barotropic tides and the eddying general circulation . We examined tidal amplitudes computed using 18 183-day windows that
The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model
NASA Astrophysics Data System (ADS)
Rodríguez, José M.; Milton, Sean F.; Marzin, Charline
2017-10-01
In this study the low-level monsoon circulation and observed sources of moisture responsible for the maintenance and seasonal evolution of the East Asian monsoon are examined, studying the detailed water budget components. These observational estimates are contrasted with the Met Office Unified Model (MetUM) climate simulation performance in capturing the circulation and water cycle at a variety of model horizontal resolutions and in fully coupled ocean-atmosphere simulations. We study the role of large-scale circulation in determining the hydrological cycle by analyzing key systematic errors in the model simulations. MetUM climate simulations exhibit robust circulation errors, including a weakening of the summer west Pacific Subtropical High, which leads to an underestimation of the southwesterly monsoon flow over the region. Precipitation and implied diabatic heating biases in the South Asian monsoon and Maritime Continent region are shown, via nudging sensitivity experiments, to have an impact on the East Asian monsoon circulation. By inference, the improvement of these tropical biases with increased model horizontal resolution is hypothesized to be a factor in improvements seen over East Asia with increased resolution. Results from the annual cycle of the hydrological budget components in five domains show a good agreement between MetUM simulations and ERA-Interim reanalysis in northern and Tibetan domains. In simulations, the contribution from moisture convergence is larger than in reanalysis, and they display less precipitation recycling over land. The errors are closely linked to monsoon circulation biases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burtis, M.D.; Razuvaev, V.N.; Sivachok, S.G.
1996-10-01
This report presents English-translated abstracts of important Russian-language literature concerning general circulation models as they relate to climate change. Into addition to the bibliographic citations and abstracts translated into English, this report presents the original citations and abstracts in Russian. Author and title indexes are included to assist the reader in locating abstracts of particular interest.
NASA Astrophysics Data System (ADS)
Rafkin, Scot C. R.; Soto, Alejandro; Michaels, Timothy I.
2016-10-01
A newly developed general circulation model (GCM) for Pluto is used to investigate the impact of a heterogeneous distribution of nitrogen surface ice and large scale topography on Pluto's atmospheric circulation. The GCM is based on the GFDL Flexible Modeling System (FSM). Physics include a gray model radiative-conductive scheme, subsurface conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4 and CO, including non-local thermodynamic equilibrium effects. including non-local thermodynamic equilibrium effects. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Further, the circulation, and the thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over substantial and variable topography. To produce such an ice distribution, the atmospheric circulation and volatile transport must be more complex than previously envisioned. Simulations where topography, surface ice distributions, and volatile cycle physics are added individually and in various combinations are used to individually quantify the importance of the general circulation, topography, surface ice distributions, and condensation flows. It is shown that even regional patches of ice or large craters can have global impacts on the atmospheric circulation, the volatile cycle, and hence, the distribution of surface ices. The work demonstrates that explaining Pluto's volatile cycle and the expression of that cycle in the surface ice distributions requires consideration of atmospheric processes beyond simple vapor pressure equilibrium arguments.
Can increased poleward oceanic heat flux explain the warm Cretaceous climate?
NASA Astrophysics Data System (ADS)
Schmidt, Gavin A.; Mysak, Lawrence A.
1996-10-01
The poleward transport of heat in the mid-Cretaceous (100 Ma) is examined using an idealized coupled ocean-atmosphere model. The oceanic component consists of two zonally averaged basins representing the proto-Pacific and proto-Indian oceans and models the dynamics of the meridional thermohaline circulation. The atmospheric component is a simple energy and moisture balance model which includes the diffusive meridional transport of sensible heat and moisture. The ocean model is spun up with a variety of plausible Cretaceous surface temperature and salinity profiles, and a consistent atmosphere is objectively derived based on the resultant sea surface temperature and the surface heat and freshwater fluxes. The coupled model does not exhibit climate drift. Multiple equilibria of the coupled model are found that break the initial symmetry of the ocean circulation; several of these equilibria have one-cell (northern or southern sinking) thermohaline circulation patterns. Two main classes of circulation are found: circulations where the densest water is relatively cool and is formed at the polar latitudes and circulations where the densest water is warm, but quite saline, and the strongest sinking occurs at the tropics. In all cases, significant amounts of warm, saline bottom water are formed in the proto-Indian basin which modify the deepwater characteristics in the larger (proto-Pacific) basin. Temperatures in the deep ocean are warm, 10°-17°C, in agreement with benthic foraminiferal oxygen isotope data. The poleward transport of heat in the modeled Cretaceous oceans is larger than in some comparable models of the present day thermohaline circulation and significantly larger than estimates of similar processes in the present-day ocean. It is consistently larger in the polar sinking cases when compared with that seen in the tropical sinking cases, but this represents an increase of only 10%. The largest increase over present-day model transports is in the atmospheric latent heat transport, where an increased hydrological cycle (especially in the tropical sinking cases) contributes up to an extra 1 PW of poleward heat transport. Better constraints on the oceanic deepwater circulation during this period are necessary before the meridional circulation can be unambiguously described.
Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models
NASA Astrophysics Data System (ADS)
Dietmüller, Simone; Eichinger, Roland; Garny, Hella; Birner, Thomas; Boenisch, Harald; Pitari, Giovanni; Mancini, Eva; Visioni, Daniele; Stenke, Andrea; Revell, Laura; Rozanov, Eugene; Plummer, David A.; Scinocca, John; Jöckel, Patrick; Oman, Luke; Deushi, Makoto; Kiyotaka, Shibata; Kinnison, Douglas E.; Garcia, Rolando; Morgenstern, Olaf; Zeng, Guang; Stone, Kane Adam; Schofield, Robyn
2018-05-01
The stratospheric age of air (AoA) is a useful measure of the overall capabilities of a general circulation model (GCM) to simulate stratospheric transport. Previous studies have reported a large spread in the simulation of AoA by GCMs and coupled chemistry-climate models (CCMs). Compared to observational estimates, simulated AoA is mostly too low. Here we attempt to untangle the processes that lead to the AoA differences between the models and between models and observations. AoA is influenced by both mean transport by the residual circulation and two-way mixing; we quantify the effects of these processes using data from the CCM inter-comparison projects CCMVal-2 (Chemistry-Climate Model Validation Activity 2) and CCMI-1 (Chemistry-Climate Model Initiative, phase 1). Transport along the residual circulation is measured by the residual circulation transit time (RCTT). We interpret the difference between AoA and RCTT as additional aging by mixing. Aging by mixing thus includes mixing on both the resolved and subgrid scale. We find that the spread in AoA between the models is primarily caused by differences in the effects of mixing and only to some extent by differences in residual circulation strength. These effects are quantified by the mixing efficiency, a measure of the relative increase in AoA by mixing. The mixing efficiency varies strongly between the models from 0.24 to 1.02. We show that the mixing efficiency is not only controlled by horizontal mixing, but by vertical mixing and vertical diffusion as well. Possible causes for the differences in the models' mixing efficiencies are discussed. Differences in subgrid-scale mixing (including differences in advection schemes and model resolutions) likely contribute to the differences in mixing efficiency. However, differences in the relative contribution of resolved versus parameterized wave forcing do not appear to be related to differences in mixing efficiency or AoA.
Themes on circulation in the third world.
Chapman, M; Prothero, R M
1983-01-01
"This article focuses upon circulation, or reciprocal flows of people, with specific reference to Third World societies." Aspects considered include attempts to standardize terminology and to formulate typologies of population movement; the development of explanatory models of circulation and modernization, social networks, family welfare, and capitalism; and "the transfer of methods and concepts to societies and populations different from those from which they initially evolved and in which they were first tested." excerpt
NASA Astrophysics Data System (ADS)
Sofianos, Sarantis S.; Johns, William E.
2003-03-01
The three-dimensional circulation of the Red Sea is studied using a set of Miami Isopycnic Coordinate Ocean Model (MICOM) simulations. The model performance is tested against the few available observations in the basin and shows generally good agreement with the main observed features of the circulation. The main findings of this analysis include an intensification of the along-axis flow toward the coasts, with a transition from western intensified boundary flow in the south to eastern intensified flow in the north, and a series of strong seasonal or permanent eddy-like features. Model experiments conducted with different forcing fields (wind-stress forcing only, surface buoyancy forcing only, or both forcings combined) showed that the circulation produced by the buoyancy forcing is stronger overall and dominates the wind-driven part of the circulation. The main circulation pattern is related to the seasonal buoyancy flux (mostly due to the evaporation), which causes the density to increase northward in the basin and produces a northward surface pressure gradient associated with the downward sloping of the sea surface. The response of the eastern boundary to the associated mean cross-basin geostrophic current depends on the stratification and β-effect. In the northern part of the basin this results in an eastward intensification of the northward surface flow associated with the presence of Kelvin waves while in the south the traditional westward intensification due to Rossby waves takes place. The most prominent gyre circulation pattern occurs in the north where a permanent cyclonic gyre is present that is involved in the formation of Red Sea Outflow Water (RSOW). Beneath the surface boundary currents are similarly intensified southward undercurrents that carry the RSOW to the sill to flow out of the basin into the Indian Ocean.
Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank
NASA Astrophysics Data System (ADS)
Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao
2003-03-01
The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.
2015-10-01
xenograft models . 12-36 Dr. Engelman Subtask 3: Analyze CTCs for P-4EBP1, P-S6, BIM , Bcl-2, Bcl-xL, and Mcl-1 using ISH and IHC We propose...Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions
NASA Astrophysics Data System (ADS)
Jiang, Mingshun; Charette, Matthew A.; Measures, Christopher I.; Zhu, Yiwu; Zhou, Meng
2013-06-01
The seasonal cycle of circulation and transport in the Antarctic Peninsula shelf region is investigated using a high-resolution (˜2 km) regional model based on the Regional Oceanic Modeling System (ROMS). The model also includes a naturally occurring tracer with a strong source over the shelf (radium isotope 228Ra, t1/2=5.8 years) to investigate the sediment Fe input and its transport. The model is spun-up for three years using climatological boundary and surface forcing and then run for the 2004-2006 period using realistic forcing. Model results suggest a persistent and coherent circulation system throughout the year consisting of several major components that converge water masses from various sources toward Elephant Island. These currents are largely in geostrophic balance, driven by surface winds, topographic steering, and large-scale forcing. Strong off-shelf transport of the Fe-rich shelf waters takes place over the northeastern shelf/slope of Elephant Island, driven by a combination of topographic steering, extension of shelf currents, and strong horizontal mixing between the ACC and shelf waters. These results are generally consistent with recent and historical observational studies. Both the shelf circulation and off-shelf transport show a significant seasonality, mainly due to the seasonal changes of surface winds and large-scale circulation. Modeled and observed distributions of 228Ra suggest that a majority of Fe-rich upper layer waters exported off-shelf around Elephant Island are carried by the shelfbreak current and the Bransfield Strait Current from the shallow sills between Gerlache Strait and Livingston Island, and northern shelf of the South Shetland Islands, where strong winter mixing supplies much of the sediment derived nutrients (including Fe) input to the surface layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khangaonkar, Tarang; Yang, Zhaoqing; Kim, Tae Yun
2011-07-20
Through extensive field data collection and analysis efforts conducted since the 1950s, researchers have established an understanding of the characteristic features of circulation in Puget Sound. The pattern ranges from the classic fjordal behavior in some basins, with shallow brackish outflow and compensating inflow immediately below, to the typical two-layer flow observed in many partially mixed estuaries with saline inflow at depth. An attempt at reproducing this behavior by fitting an analytical formulation to past data is presented, followed by the application of a three-dimensional circulation and transport numerical model. The analytical treatment helped identify key physical processes and parameters,more » but quickly reconfirmed that response is complex and would require site-specific parameterization to include effects of sills and interconnected basins. The numerical model of Puget Sound, developed using unstructured-grid finite volume method, allowed resolution of the sub-basin geometric features, including presence of major islands, and site-specific strong advective vertical mixing created by bathymetry and multiple sills. The model was calibrated using available recent short-term oceanographic time series data sets from different parts of the Puget Sound basin. The results are compared against (1) recent velocity and salinity data collected in Puget Sound from 2006 and (2) a composite data set from previously analyzed historical records, mostly from the 1970s. The results highlight the ability of the model to reproduce velocity and salinity profile characteristics, their variations among Puget Sound subbasins, and tidally averaged circulation. Sensitivity of residual circulation to variations in freshwater inflow and resulting salinity gradient in fjordal sub-basins of Puget Sound is examined.« less
On the validation of a code and a turbulence model appropriate to circulation control airfoils
NASA Technical Reports Server (NTRS)
Viegas, J. R.; Rubesin, M. W.; Maccormack, R. W.
1988-01-01
A computer code for calculating flow about a circulation control airfoil within a wind tunnel test section has been developed. This code is being validated for eventual use as an aid to design such airfoils. The concept of code validation being used is explained. The initial stages of the process have been accomplished. The present code has been applied to a low-subsonic, 2-D flow about a circulation control airfoil for which extensive data exist. Two basic turbulence models and variants thereof have been successfully introduced into the algorithm, the Baldwin-Lomax algebraic and the Jones-Launder two-equation models of turbulence. The variants include adding a history of the jet development for the algebraic model and adding streamwise curvature effects for both models. Numerical difficulties and difficulties in the validation process are discussed. Turbulence model and code improvements to proceed with the validation process are also discussed.
How much rainfall sustained a Green Sahara during the mid-Holocene?
NASA Astrophysics Data System (ADS)
Hopcroft, Peter; Valdes, Paul; Harper, Anna
2016-04-01
The present-day Sahara desert has periodically transformed to an area of lakes and vegetation during the Quaternary in response to orbitally-induced changes in the monsoon circulation. Coupled atmosphere-ocean general circulation model simulations of the mid-Holocene generally underestimate the required monsoon shift, casting doubt on the fidelity of these models. However, the climatic regime that characterised this period remains unclear. To address this, we applied an ensemble of dynamic vegetation model simulations using two different models: JULES (Joint UK Land Environment Simulator) a comprehensive land surface model, and LPJ (Lund-Potsdam-Jena model) a widely used dynamic vegetation model. The simulations are forced with a number of idealized climate scenarios, in which an observational climatology is progressively altered with imposed anomalies of precipitation and other related variables, including cloud cover and humidity. The applied anomalies are based on an ensemble of general circulation model simulations, and include seasonal variations but are spatially uniform across the region. When perturbing precipitation alone, a significant increase of at least 700mm/year is required to produce model simulations with non-negligible vegetation coverage in the Sahara region. Changes in related variables including cloud cover, surface radiation fluxes and humidity are found to be important in the models, as they modify the water balance and so affect plant growth. Including anomalies in all of these variables together reduces the precipitation change required for a Green Sahara compared to the case of increasing precipitation alone. We assess whether the precipitation changes implied by these vegetation model simulations are consistent with reconstructions for the mid-Holocene from pollen samples. Further, Earth System models predict precipitation increases that are significantly smaller than that inferred from these vegetation model simulations. Understanding this difference presents an ongoing challenge.
Risk mapping of West Nile virus circulation in Spain, 2015.
Sánchez-Gómez, Amaya; Amela, Carmen; Fernández-Carrión, Eduardo; Martínez-Avilés, Marta; Sánchez-Vizcaíno, José Manuel; Sierra-Moros, María José
2017-05-01
West Nile fever is an emergent disease in Europe. The objective of this study was to conduct a predictive risk mapping of West Nile Virus (WNV) circulation in Spain based on historical data of WNV circulation. Areas of Spain with evidence of WNV circulation were mapped based on data from notifications to the surveillance systems and a literature review. A logistic regression-based spatial model was used to assess the probability of WNV circulation. Data were analyzed at municipality level. Mean temperatures of the period from June to October, presence of wetlands and presence of Special Protection Areas for birds were considered as potential predictors. Two predictors of WNV circulation were identified: higher temperature [adjusted odds ratio (AOR) 2.07, 95% CI 1.82-2.35, p<0.01] and presence of wetlands (3.37, 95% CI 1.89-5.99, p<0.01). Model validations indicated good predictions: area under the ROC curve was 0.895 (95% CI 0.870-0.919) for internal validation and 0.895 (95% CI 0.840-0.951) for external validation. This model could support improvements of WNV risk- based surveillance in Spain. The importance of a comprehensive surveillance for WNF, including human, animal and potential vectors is highlighted, which could additionally result in model refinements. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Elison Timm, O.; Flamholtz, W. M.; Li, S.; Massa, C.; Beilman, D. W.
2016-12-01
The motivation for this study was sparked by the idea that paleoclimate temperature and precipitation proxies provide sufficient information to make inferences about extratropical atmospheric circulation changes over the North Pacific during the Holocene. Typical targets for the circulation reconstruction problem include the strength and position of the Aleutian Low and the storm tracks. The reconstruction problem was investigated under idealized conditions using model simulation results from the TraCE-21ka transient climate simulation (http://www.cgd.ucar.edu/ccr/TraCE/), which covers the Last Glacial Maximum to present. It is demonstrated that modes of variability found on interannual to multidecadal timescales during the preindustrial era provide inadequate pattern for reconstructing long-term mean changes during the past 22,000 years. Our circulation reconstruction target was the geopotential height field at 500hPa (Z500) over the North Pacific Ocean during winter. We applied a field reconstruction method using Maximum Covariance Analysis (MCA). The MCA was applied to Z500 and surface temperatures as predictor information. The MCA was given model data containing interannual to multidecadal variability from the pre-industrial climate (1000BP-900BP). We worked with ten leading MCA modes in the reconstruction, which can reproduce about 90% of the covariability during the preindustrial period. Within the model simulation, we validated the field reconstructions against the model's circulation states over the last 22,000 years. Spatial skill scores show that the reconstruction skill drops significantly prior to the late Holocene. Reasons for the loss of reconstruction skill are due to the fact that externally forced climate changes do not resemble the internal modes of variability and that covariance between circulation and temperatures on interannual-multidecadal time scales changes with the background climate state. However, the reconstruction can be improved by including data from the early Holocene and the LGM era in the MCA. Based on these results, we advocate that paleoclimate model simulation results should be used define a set of first-guess pattern for the reconstruction of circulation anomalies from sparse and noisy proxy data.
Tropical circulation and precipitation response to ozone depletion and recovery
NASA Astrophysics Data System (ADS)
Brönnimann, Stefan; Jacques-Coper, Martín; Rozanov, Eugene; Fischer, Andreas M.; Morgenstern, Olaf; Zeng, Guang; Akiyoshi, Hideharu; Yamashita, Yousuke
2017-06-01
Among the few well established changes in atmospheric circulation in recent decades are those caused by stratospheric ozone depletion. They include a strengthening and poleward contraction of the westerly atmospheric circulation over the Southern extratropics, i.e. a strengthening Southern Annular Mode (SAM), in austral spring and summer. Associated effects on extratropical temperature and precipitation and more recently subtropical precipitation have been documented and are understood in a zonal mean framework. We present zonally asymmetric effects of ozone depletion that reach into the tropics and affect atmospheric circulation and precipitation, including the South Pacific Convergence Zone (SPCZ), the most important rainband of the Southern Hemisphere. Using observation-based analyses and model simulations we show that over the 1961-1996 period, ozone depletion led to increased precipitation at the northern flank of the SPCZ and to decreased precipitation to the south. The effects originate from a flow pattern over the southwestern Pacific that extends equatorward and alters the propagation of synoptic waves and thus the position of the SPCZ. Model simulations suggest that anticipated stratospheric ozone recovery over the next decades will reverse these effects.
Modeling Newspaper Advertising
ERIC Educational Resources Information Center
Harper, Joseph; And Others
1978-01-01
Presents a mathematical model for simulating a newspaper financial system. Includes the effects of advertising and circulation for predicting advertising linage as a function of population, income, and advertising rate. (RL)
NASA Astrophysics Data System (ADS)
Galperin, Boris; Mellor, George L.
1990-09-01
The three-dimensional model of Delaware Bay, River and adjacent continental shelf was described in Part 1. Here, Part 2 of this two-part paper demonstrates that the model is capable of realistic simulation of current and salinity distributions, tidal cycle variability, events of strong mixing caused by high winds and rapid salinity changes due to high river runoff. The 25-h average subtidal circulation strongly depends on the wind forcing. Monthly residual currents and salinity distributions demonstrate a classical two-layer estuarine circulation wherein relatively low salinity water flows out at the surface and compensating high salinity water from the shelf flows at the bottom. The salinity intrusion is most vigorous along deep channels in the Bay. Winds can generate salinity fronts inside and outside the Bay and enhance or weaken the two-layer circulation pattern. Since the portion of the continental shelf included in the model is limited, the model shelf circulation is locally wind-driven and excludes such effects as coastally trapped waves and interaction with Gulf Stream rings; nevertheless, a significant portion of the coastal elevation variability is hindcast by the model. Also, inclusion of the shelf improves simulation of salinity inside the Bay compared with simulations where the salinity boundary condition is specified at the mouth of the Bay.
Progress toward a circulation atlas for application to coastal water siting problems
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.; Gordon, H. H.
1978-01-01
Circulation data needed to resolve coastal siting problems are assembled from historical hydrographic and remote sensing studies in the form of a Circulation Atlas. Empirical data are used instead of numerical model simulations to achieve fine resolution and include fronts and convergence zones. Eulerian and Langrangian data are collected, transformed, and combined into trajectory maps and current vector maps as a function of tidal phase and wind vector. Initial Atlas development is centered on the Elizabeth River, Hampton Roads, Virgina.
Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS
Haas, Kevin A.; Warner, John C.
2009-01-01
Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales.
Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS
Haas, K.A.; Warner, J.C.
2009-01-01
Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales. ?? 2008 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Lenhart, Hermann J.; Radach, Günther; Backhaus, Jan O.; Pohlmann, Thomas
The rationale is given of how the gross physical features of the circulation and the stratification of the North Sea have been aggregated for inclusion in the ecosystem box model ERSEM. As the ecosystem dynamics are to a large extent determined by small-scale physical events, the ecosystem model is forced with the circulation of a specific year rather than using the long-term mean circulation field. Especially the vertical exchange processes have been explicitly included, because the primary production strongly depends on them. Simulations with a general circulation model (GCM), forced by three-hourly meteorological fields, have been utilized to derive daily horizontal transport values driving ERSEM on boxes of sizes of a few 100 km. The daily vertical transports across a fixed 30-m interface provide the necessary short-term event character of the vertical exchange. For the years 1988 and 1989 the properties of the hydrodynamic flow fields are presented in terms of trajectories of the flow, thermocline depths, of water budgets, flushing times and diffusion rates. The results of the standard simulation with ERSEM show that the daily variability of the circulation, being smoothed by the box integration procedure, is transferred to the chemical and biological state variables to a very limited degree only.
Evaluation of wind induced currents modeling along the Southern Caspian Sea
NASA Astrophysics Data System (ADS)
Bohluly, Asghar; Esfahani, Fariba Sadat; Montazeri Namin, Masoud; Chegini, Fatemeh
2018-02-01
To improve our understanding of the Caspian Sea hydrodynamics, its circulation is simulated with special focus on wind-driven currents of its southern basin. The hydrodynamic models are forced with a newly developed fine resolution wind field to increase the accuracy of current modeling. A 2D shallow water equation model and a 3D baroclinic model are applied separately to examine the performance of each model for specific applications in the Caspian Sea. The model results are validated against recent field measurements including AWAC and temperature observations in the southern continental shelf region. Results show that the 2D model is able to well predict the depth-averaged current speed in storm conditions in narrow area of southern coasts. This finding suggests physical oceanographers apply 2D modeling as a more affordable method for extreme current speed analysis at the continental shelf region. On the other hand the 3D model demonstrates a better performance in reproducing monthly mean circulation and hence is preferable for surface circulation of Caspian Sea. Monthly sea surface circulation fields of the southern basin reveal a dipole cyclonic-anticyclonic pattern, a dominant eastward current along the southern coasts which intensifies from May to November and a dominant southward current along the eastern coasts in all months except February when the flow is northward. Monthly mean wind fields exhibit two main patterns including a north-south pattern occurring at warm months and collision of two wind fronts especially in the cold months. This collision occurs on a narrow region at the southern continental shelf regions. Due to wind field complexities, it leads to a major source of uncertainty in predicting the wind-driven currents. However, this source of uncertainty is significantly alleviated by applying a fine resolution wind field.
Sediment dynamics in the Adriatic Sea investigated with coupled models
Sherwood, Christopher R.; Book, Jeffrey W.; Carniel, Sandro; Cavaleri, Luigi; Chiggiato, Jacopo; Das, Himangshu; Doyle, James D.; Harris, Courtney K.; Niedoroda, Alan W.; Perkins, Henry; Poulain, Pierre-Marie; Pullen, Julie; Reed, Christopher W.; Russo, Aniello; Sclavo, Mauro; Signell, Richard P.; Traykovski, Peter A.; Warner, John C.
2004-01-01
Several large research programs focused on the Adriatic Sea in winter 2002-2003, making it an exciting place for sediment dynamics modelers (Figure 1). Investigations of atmospheric forcing and oceanic response (including wave generation and propagation, water-mass formation, stratification, and circulation), suspended material, bottom boundary layer dynamics, bottom sediment, and small-scale stratigraphy were performed by European and North American researchers participating in several projects. The goal of EuroSTRATAFORM researchers is to improve our ability to understand and simulate the physical processes that deliver sediment to the marine environment and generate stratigraphic signatures. Scientists involved in the Po and Apennine Sediment Transport and Accumulation (PASTA) experiment benefited from other major research programs including ACE (Adriatic Circulation Experiment), DOLCE VITA (Dynamics of Localized Currents and Eddy Variability in the Adriatic), EACE (the Croatian East Adriatic Circulation Experiment project), WISE (West Istria Experiment), and ADRICOSM (Italian nowcasting and forecasting) studies.
Proxy system modeling of tree-ring isotope chronologies over the Common Era
NASA Astrophysics Data System (ADS)
Anchukaitis, K. J.; LeGrande, A. N.
2017-12-01
The Asian monsoon can be characterized in terms of both precipitation variability and atmospheric circulation across a range of spatial and temporal scales. While multicentury time series of tree-ring widths at hundreds of sites across Asia provide estimates of past rainfall, the oxygen isotope ratios of annual rings may reveal broader regional hydroclimate and atmosphere-ocean dynamics. Tree-ring oxygen isotope chronologies from Monsoon Asia have been interpreted to reflect a local 'amount effect', relative humidity, source water and seasonality, and winter snowfall. Here, we use an isotope-enabled general circulation model simulation from the NASA Goddard Institute for Space Science (GISS) Model E and a proxy system model of the oxygen isotope composition of tree-ring cellulose to interpret the large-scale and local climate controls on δ 18O chronologies. Broad-scale dominant signals are associated with a suite of covarying hydroclimate variables including growing season rainfall amounts, relative humidity, and vapor pressure deficit. Temperature and source water influences are region-dependent, as are the simulated tree-ring isotope signals associated with the El Nino Southern Oscillation (ENSO) and large-scale indices of the Asian monsoon circulation. At some locations, including southern coastal Viet Nam, local precipitation isotope ratios and the resulting simulated δ 18O tree-ring chronologies reflect upstream rainfall amounts and atmospheric circulation associated with monsoon strength and wind anomalies.
Yuan, Jing; Wang, Xinguo; Xie, Yudou; Wang, Yuzhi; Dong, Lei; Li, Hong; Zhu, Tongyu
2017-07-04
Patients with preeclampsia have higher circulating asymmetric dimethylarginine (ADMA). However, whether circulating ADMA is elevated before the diagnosis of preeclampsia has not been determined. A meta-analysis of observational studies that reported circulating ADMA level before the onset of preeclampsia was performed. Pubmed and Embase were searched. Standardized mean differences (SMD) with 95% confidence intervals (CI) were used to estimate the differences in circulating ADMA. A random effect model or a fixed effect model was applied depending on the heterogeneity. The predictive efficacy of circulating ADMA for the incidence of preeclampsia was also explored. Eleven comparisons with 1338 pregnant women were included. The pooled results showed that the circulating ADMA was significantly higher in women who subsequently developed preeclampsia as compared with those did not (SMD: 0.71, p < 0.001) with a moderate heterogeneity (I2 = 43%). Stratified analyses suggested elevation of circulating ADMA is more remarkable in studies with GA of ADMA sampling ≥ 20 weeks (SMD: 0.89, p < 0.01) as compared those with GA of ADMA sampling < 20 weeks (SMD: 0.56, p < 0.01; p for subgroup interaction = 0.03). Differences of maternal age, study design, and ADMA measurement methods did not significantly affect the results. Only two studies evaluated the potential predicting ability of circulating ADMA for subsequent preeclampsia, and retrieved moderate predictive efficacy. Circulating ADMA is elevated before the development of preeclampsia. Studies are needed to evaluate the predictive efficacy of ADMA for the incidence of preeclampsia.
NASA Technical Reports Server (NTRS)
Kahre, Melinda A.; Hollingsworth, Jeffery
2012-01-01
The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.
Developments in Coastal Ocean Modeling
NASA Astrophysics Data System (ADS)
Allen, J. S.
2001-12-01
Capabilities in modeling continental shelf flow fields have improved markedly in the last several years. Progress is being made toward the long term scientific goal of utilizing numerical circulation models to interpolate, or extrapolate, necessarily limited field measurements to provide additional full-field information describing the behavior of, and providing dynamical rationalizations for, complex observed coastal flow. The improvement in modeling capabilities has been due to several factors including an increase in computer power and, importantly, an increase in experience of modelers in formulating relevant numerical experiments and in analyzing model results. We demonstrate present modeling capabilities and limitations by discussion of results from recent studies of shelf circulation off Oregon and northern California (joint work with Newberger, Gan, Oke, Pullen, and Wijesekera). Strong interactions between wind-forced coastal currents and continental shelf topography characterize the flow regimes in these cases. Favorable comparisons of model and measured alongshore currents and other variables provide confidence in the model-produced fields. The dependence of the mesoscale circulation, including upwelling and downwelling fronts and flow instabilities, on the submodel used to parameterize the effects of small scale turbulence, is discussed. Analyses of model results to provide explanations for the observed, but previously unexplained, alongshore variability in the intensity of coastal upwelling, which typically results in colder surface water south of capes, and the observed development in some locations of northward currents near the coast in response to the relaxation of southward winds, are presented.
Validation of the BASALT model for simulating off-axis hydrothermal circulation in oceanic crust
NASA Astrophysics Data System (ADS)
Farahat, Navah X.; Archer, David; Abbot, Dorian S.
2017-08-01
Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems appear to produce considerable diversity of circulation behaviors. Circulation of seawater and seawater-derived fluids controls the extent of fluid-rock interaction, resulting in significant geochemical impacts. However, the primary regional characteristics that control how seawater is distributed within upper oceanic crust are still poorly understood. In this paper we present the details of the two-dimensional (2-D) BASALT (Basement Activity Simulated At Low Temperatures) numerical model of heat and fluid transport in an off-axis hydrothermal system. This model is designed to simulate a wide range of conditions in order to explore the dominant controls on circulation. We validate the BASALT model's ability to reproduce observations by configuring it to represent a thoroughly studied transect of the Juan de Fuca Ridge eastern flank. The results demonstrate that including series of narrow, ridge-parallel fractures as subgrid features produces a realistic circulation scenario at the validation site. In future projects, a full reactive transport version of the validated BASALT model will be used to explore geochemical fluxes in a variety of off-axis hydrothermal environments.
Simulating effects of highway embankments on estuarine circulation
Lee, Jonathan K.; Schaffranek, Raymond W.; Baltzer, Robert A.
1994-01-01
A two-dimensional depth-averaged, finite-difference, numerical model was used to simulate tidal circulation and mass transport in the Port Royal Sound. South Carolina, estuarine system. The purpose of the study was to demonstrate the utility of the Surface-Water. Integrated. Flow and Transport model (SWIFT2D) for evaluating changes in circulation patterns and mass transport caused by highway-crossing embankments. A model of subregion of Port Royal Sound including the highway crossings and having a grid size of 61 m (200ft) was derived from a 183-m (600-ft) model of the entire Port Royal Sound estuarine system. The 183-m model was used to compute boundary-value data for the 61-m submodel, which was then used to simulate flow conditions with and without the highway embankments in place. The numerical simulations show that, with the highway embankment in place, mass transport between the Broad River and Battery Creek is reduced and mass transport between the Beaufort River and Battery Creek is increased. The net result is that mass transport into and out of upper Battery Creek is reduced. The presence of the embankments also alters circulation patterns within Battery Creek.
A High-Resolution WRF Tropical Channel Simulation Driven by a Global Reanalysis
NASA Astrophysics Data System (ADS)
Holland, G.; Leung, L.; Kuo, Y.; Hurrell, J.
2006-12-01
Since 2003, NCAR has invested in the development and application of Nested Regional Climate Model (NRCM) based on the Weather Research and Forecasting (WRF) model and the Community Climate System Model, as a key component of the Prediction Across Scales Initiative. A prototype tropical channel model has been developed to investigate scale interactions and the influence of tropical convection on large scale circulation and tropical modes. The model was developed based on the NCAR Weather Research and Forecasting Model (WRF), configured as a tropical channel between 30 ° S and 45 ° N, wide enough to allow teleconnection effects over the mid-latitudes. Compared to the limited area domain that WRF is typically applied over, the channel mode alleviates issues with reflection of tropical modes that could result from imposing east/west boundaries. Using a large amount of available computing resources on a supercomputer (Blue Vista) during its bedding in period, a simulation has been completed with the tropical channel applied at 36 km horizontal resolution for 5 years from 1996 to 2000, with large scale circulation provided by the NCEP/NCAR global reanalysis at the north/south boundaries. Shorter simulations of 2 years and 6 months have also been performed to include two-way nests at 12 km and 4 km resolution, respectively, over the western Pacific warm pool, to explicitly resolve tropical convection in the Maritime Continent. The simulations realistically captured the large-scale circulation including the trade winds over the tropical Pacific and Atlantic, the Australian and Asian monsoon circulation, and hurricane statistics. Preliminary analysis and evaluation of the simulations will be presented.
NASA Astrophysics Data System (ADS)
Zhao, X.; Allen, R.
2017-12-01
In a warming world, the tropical atmospheric overturning circulation-including the Walker Circulation-is expected to weaken due to thermodynamic constraints. Tropical precipitation increases at a slower rate than water vapor-which increases according to Clausius Clapeyron scaling, assuming constant relative humidity-so the tropical overturning circulation slows down. This is supported by both observations and model simulations, which show a slowdown of the Walker Circulation over the 20th century. Model projections suggest a further weakening of the Walker Circulation in the 21st century. However, over the last several decades (1979-2014), multiple observations reveal a robust strengthening of the Walker Circulation. Although coupled CMIP5 simulations are unable to reproduce this strengthening, AMIP simulations-which feature the observed evolution of SSTs-are generally able to reproduce it. Assuming the ensemble mean sea surface temperatures (SSTs) from historical CMIP5 simulations accurately represent the externally forced SST response, the observed SSTs can be decomposed into a forced and an unforced component. CAM5 AMIP-type simulations driven by the unforced component of observed SSTs reproduce the observed strengthening of the Walker Circulation. Corresponding simulations driven by the forced component of observed SSTs yield a weaker Walker Circulation. These results are consistent with the zonal tropical SST gradient and the Bjerknes feedback. The unforced component of SSTs yield an increased SST gradient over tropical Pacific (a La Nina like pattern) and strengthening of the tropical trade winds, which constitute the lower branch of the Walker Circulation. The forced component of SSTs yields a zonally uniform tropical Pacific SST warming and a marginal weakening of the Walker Circulation. Our results suggest significant modulation of the tropical Walker Circulation by natural SST variability over the last several decades.
A global multiscale mathematical model for the human circulation with emphasis on the venous system.
Müller, Lucas O; Toro, Eleuterio F
2014-07-01
We present a global, closed-loop, multiscale mathematical model for the human circulation including the arterial system, the venous system, the heart, the pulmonary circulation and the microcirculation. A distinctive feature of our model is the detailed description of the venous system, particularly for intracranial and extracranial veins. Medium to large vessels are described by one-dimensional hyperbolic systems while the rest of the components are described by zero-dimensional models represented by differential-algebraic equations. Robust, high-order accurate numerical methodology is implemented for solving the hyperbolic equations, which are adopted from a recent reformulation that includes variable material properties. Because of the large intersubject variability of the venous system, we perform a patient-specific characterization of major veins of the head and neck using MRI data. Computational results are carefully validated using published data for the arterial system and most regions of the venous system. For head and neck veins, validation is carried out through a detailed comparison of simulation results against patient-specific phase-contrast MRI flow quantification data. A merit of our model is its global, closed-loop character; the imposition of highly artificial boundary conditions is avoided. Applications in mind include a vast range of medical conditions. Of particular interest is the study of some neurodegenerative diseases, whose venous haemodynamic connection has recently been identified by medical researchers. Copyright © 2014 John Wiley & Sons, Ltd.
Blood circulation in the lower limbs
NASA Astrophysics Data System (ADS)
Pen'kovskiy, V. I.; Korsakova, N. K.
2018-03-01
Blood circulation process in inferior limbs is considered in the terms of the previously proposed mathematical model of sanguimotion in living organism tissues. The model includes the equations of homogeneous fluid flower in heterogeneous medium that consists of two or more interpenetrating continua. The continua (distributing net of arteries and collecting net of veins) interact through ramified capillary net. A volume of blood flowering from arterial net to venous one is proportional to pressure (head) difference in the nets. Some analytical solutions and numerical results are given.
Impact of lakes and wetlands on present and future boreal climate
NASA Astrophysics Data System (ADS)
Poutou, E.; Krinner, G.; Genthon, C.
2002-12-01
Impact of lakes and wetlands on present and future boreal climate The role of lakes and wetlands in present-day high latitude climate is quantified using a general circulation model of the atmosphere. The atmospheric model includes a lake module which is presented and validated. Seasonal and spatial wetland distribution is calculated as a function of the hydrological budget of the wetlands themselves and of continental soil whose runoff feeds them. Wetland extent is simulated and discussed both in simulations forced by observed climate and in general circulation model simulations. In off-line simulations, forced by ECMWF reanalyses, the lake model simulates correctly observed lake ice durations, while the wetland extent is somewhat underestimated in the boreal regions. Coupled to the general circulation model, the lake model yields satisfying ice durations, although the climate model biases have impacts on the modeled lake ice conditions. Boreal wetland extents are overestimated in the general circulation model as simulated precipitation is too high. The impact of inundated surfaces on the simulated climate is strongest in summer when these surfaces are ice-free. Wetlands seem to play a more important role than lakes in cooling the boreal regions in summer and in humidifying the atmosphere. The role of lakes and wetlands in future climate change is evaluated by analyzing simulations of present and future climate with and without prescribed inland water bodies.
NASA Astrophysics Data System (ADS)
Ma, Jian; Chadwick, Robin; Seo, Kyong-Hwan; Dong, Changming; Huang, Gang; Foltz, Gregory R.; Jiang, Jonathan H.
2018-05-01
This review describes the climate change–induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle. We depict the theoretically predicted changes and diagnose physical mechanisms for observational and model-projected trends in large-scale and regional climate. The tropical circulation slows down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a shift of the intertropical convergence zone. Redistributions of regional precipitation consist of thermodynamic and dynamical components, including a strong offset between moisture increase and circulation weakening throughout the tropics. This allows other dynamical processes to dominate local circulation changes, such as a surface warming pattern effect over oceans and multiple mechanisms over land. To improve reliability in climate projections, more fundamental understandings of pattern formation, circulation change, and the balance of various processes redistributing land rainfall are suggested to be important.
A Thermodynamically General Theory for Convective Circulations and Vortices
NASA Astrophysics Data System (ADS)
Renno, N. O.
2007-12-01
Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.
NASA Astrophysics Data System (ADS)
Shan, Shiliang; Sheng, Jinyu; Greenan, Blair John William
2014-01-01
The Sable Gully is a broad deep underwater canyon located to the east of Sable Island on the edge of the Scotian Shelf. Being the home of many marine species including the endangered Northern Bottlenose Whale, the Gully was designated as a marine protected area (MPA) in 2004. Better understanding of physical environmental conditions over this MPA is needed for sustainable ecosystem management. In this study, a multi-nested ocean circulation model and a particle tracking model are used to examine the three-dimensional (3D) circulation and movement of particles carried passively by the flow over the Sable Gully. The 3D circulation model is driven by tides, wind, and surface heat/freshwater fluxes. The model performance is assessed by comparing the results with the previous numerical tidal results and current meter observations made in the Gully. The simulated tidal circulation over the Gully and adjacent waters is relatively strong on shallow banks and relatively weak on the continental slope. Below the depth of the Gully rim ( ˜ 200 m), the tidal currents are constrained by the thalweg of the Gully and amplified toward the Gully head. The simulated subtidal circulation in the Gully has a complex spatial structure and significant seasonal variability. The simulated time-dependent 3D flow fields are then used in a particle tracking model to study the particle movements, downstream and upstream areas, and residence time of the Gully. Based on the movements of particles released at the depth of the Gully rim and tracked forward in time, the e-folding residence time is estimated to be about 7 and 13 days in February and August 2006, respectively. The Gully flanks are identified as high retention areas with the typical residence time of 10 and 20 days in February and August 2006, respectively. Tracking particles with and without tides reveals that tidal circulation reduces the value of residence time in the Gully, particularly along the Gully flanks.
NASA Technical Reports Server (NTRS)
Vincent, Dayton G.; Robertson, Franklin
1993-01-01
The research sponsored by this grant is a continuation and an extension of the work conducted under a previous contract, 'South Pacific Convergence Zone and Global-Scale Circulations'. In the prior work, we conducted a detailed investigation of the South Pacific convergence zone (SPCZ), and documented many of its significant features and characteristics. We also conducted studies of its interaction with global-scale circulation features through the use of both observational and modeling studies. The latter was accomplished toward the end of the contract when Dr. James Hurrell, then a Ph.D. candidate, successfully ported the NASA GLA general circulation model (GCM) to Purdue University. In our present grant, we have expanded our previous research to include studies of other convectively-driven circulation systems in the tropics besides the SPCZ. Furthermore, we have continued to examine the relationship between these convective systems and global-scale circulation patterns. Our recent research efforts have focused on three objectives: (1) determining the periodicity of large-scale bands of organized convection in the tropics, primarily synoptic to intraseasonal time scales in the Southern Hemisphere; (2) examining the relative importance of tropical versus mid-latitude forcing for Southern Hemisphere summertime subtropical jets, particularly over the Pacific Ocean; and (3) estimating tropical precipitation, especially over oceans, using observational and budget methods. A summary list of our most significant accomplishments in the past year is given.
A three-dimensional, finite element model for coastal and estuarine circulation
Walters, R.A.
1992-01-01
This paper describes the development and application of a three-dimensional model for coastal and estuarine circulation. The model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. The model is applied to a study of Delaware Bay, U.S.A., where salinity intrusion is the primary focus. ?? 1991.
NASA Astrophysics Data System (ADS)
Rotstayn, L. D.; Jeffrey, S. J.; Collier, M. A.; Dravitzki, S. M.; Hirst, A. C.; Syktus, J. I.; Wong, K. K.
2012-07-01
We use a coupled atmosphere-ocean global climate model (CSIRO-Mk3.6) to investigate the drivers of trends in summer rainfall and circulation in the vicinity of northern Australia. As part of the Coupled Model Intercomparison Project Phase 5 (CMIP5), we perform a 10-member 21st century ensemble driven by Representative Concentration Pathway 4.5 (RCP4.5). To investigate the roles of different forcing agents, we also perform multiple 10-member ensembles of historical climate change, which are analysed for the period 1951-2010. The historical runs include ensembles driven by "all forcings" (HIST), all forcings except anthropogenic aerosols (NO_AA) and forcing only from long-lived greenhouse gases (GHGAS). Anthropogenic aerosol-induced effects in a warming climate are calculated from the difference of HIST minus NO_AA. CSIRO-Mk3.6 simulates a strong summer rainfall decrease over north-western Australia (NWA) in RCP4.5, whereas simulated trends in HIST are weakly positive (but insignificant) during 1951-2010. The weak rainfall trends in HIST are due to compensating effects of different forcing agents: there is a significant decrease in GHGAS, offset by an aerosol-induced increase. Observations show a significant increase of summer rainfall over NWA during the last few decades. The large magnitude of the observed NWA rainfall trend is not captured by 440 unforced 60-yr trends calculated from a 500-yr pre-industrial control run, even though the model's decadal variability appears to be realistic. This suggests that the observed trend includes a forced component, despite the fact that the model does not simulate the magnitude of the observed rainfall increase in response to "all forcings" (HIST). We investigate the mechanism of simulated and observed NWA rainfall changes by exploring changes in circulation over the Indo-Pacific region. The key circulation feature associated with the rainfall increase in reanalyses is a lower-tropospheric cyclonic circulation trend off the coast of NWA, which enhances the monsoonal flow. The model shows an aerosol-induced cyclonic circulation trend off the coast of NWA in HIST minus NO_AA, whereas GHGAS shows an anticyclonic circulation trend. This explains why the aerosol-induced effect is an increase of rainfall over NWA, and the greenhouse gas-induced effect is of opposite sign. Possible explanations for the cyclonic (anticyclonic) circulation trend in HIST minus NO_AA (GHGAS) involve changes in the Walker circulation or the local Hadley circulation. In either case, a plausible atmospheric mechanism is that the circulation anomaly is a Rossby wave response to convective heating anomalies south of the Equator. We also discuss the possible role of air-sea interactions, e.g. an increase (decrease) of sea-surface temperatures off the coast of NWA in HIST minus NO_AA (GHGAS). Further research is needed to better understand the mechanisms and the extent to which these are model-dependent. In summary, our results suggest that anthropogenic aerosols may have "masked" greenhouse gas-induced changes in rainfall over NWA and in circulation over the wider Indo-Pacific region. Due to the opposing effects of greenhouse gases and anthropogenic aerosols, future trends may be very different from trends observed over the last few decades.
NASA Astrophysics Data System (ADS)
Smith, Katharine A.; Schlag, Zachary; North, Elizabeth W.
2018-07-01
Coupled three-dimensional circulation and biogeochemical models predict changes in water properties that can be used to define fish habitat, including physiologically important parameters such as temperature, salinity, and dissolved oxygen. However, methods for calculating the volume of habitat defined by the intersection of multiple water properties are not well established for coupled three-dimensional models. The objectives of this research were to examine multiple methods for calculating habitat volume from three-dimensional model predictions, select the most robust approach, and provide an example application of the technique. Three methods were assessed: the "Step," "Ruled Surface", and "Pentahedron" methods, the latter of which was developed as part of this research. Results indicate that the analytical Pentahedron method is exact, computationally efficient, and preserves continuity in water properties between adjacent grid cells. As an example application, the Pentahedron method was implemented within the Habitat Volume Model (HabVol) using output from a circulation model with an Arakawa C-grid and physiological tolerances of juvenile striped bass (Morone saxatilis). This application demonstrates that the analytical Pentahedron method can be successfully applied to calculate habitat volume using output from coupled three-dimensional circulation and biogeochemical models, and it indicates that the Pentahedron method has wide application to aquatic and marine systems for which these models exist and physiological tolerances of organisms are known.
VALIDITY OF A TWO-DIMENSIONAL MODEL FOR VARIABLE-DENSITY HYDRODYNAMIC CIRCULATION
A three-dimensional model of temperatures and currents has been formulated to assist in the analysis and interpretation of the dynamics of stratified lakes. In this model, nonlinear eddy coefficients for viscosity and conductivities are included. A two-dimensional model (one vert...
NASA Technical Reports Server (NTRS)
Forget, Francois; Hourdin, F.; Talagrand, O.
1994-01-01
The Mars Pathfinder Meteorological Package (ASI/MET) will measure the local pressure, temperature, and winds at its future landing site, somewhere between the latitudes 0 deg N and 30 deg N. Comparable measurements have already been obtained at the surface of Mars by the Viking Landers at 22 deg N (VL1) and 48 deg N (VL2), providing much useful information on the martian atmosphere. In particular the pressure measurements contain very instructive information on the global atmospheric circulation. At the Laboratoire de Meteorologie Dynamique (LMD), we have analyzed and simulated these measurements with a martian atmospheric global circulation model (GCM), which was the first to simulate the martian atmospheric circulation over more than 1 year. The model is able to reproduce rather accurately many observed features of the martian atmosphere, including the long- and short-period oscillations of the surface pressure observed by the Viking landers. From a meteorological point of view, we think that a landing site located near or at the equator would be an interesting choice.
An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models
NASA Technical Reports Server (NTRS)
Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.
2001-01-01
This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.
Importance of ocean salinity for climate and habitability
Cullum, Jodie; Stevens, David P.; Joshi, Manoj M.
2016-01-01
Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies. PMID:27044090
Importance of ocean salinity for climate and habitability.
Cullum, Jodie; Stevens, David P; Joshi, Manoj M
2016-04-19
Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies.
Tropical atmospheric circulations with humidity effects.
Hsia, Chun-Hsiung; Lin, Chang-Shou; Ma, Tian; Wang, Shouhong
2015-01-08
The main objective of this article is to study the effect of the moisture on the planetary scale atmospheric circulation over the tropics. The modelling we adopt is the Boussinesq equations coupled with a diffusive equation of humidity, and the humidity-dependent heat source is modelled by a linear approximation of the humidity. The rigorous mathematical analysis is carried out using the dynamic transition theory. In particular, we obtain mixed transitions, also known as random transitions, as described in Ma & Wang (2010 Discrete Contin. Dyn. Syst. 26 , 1399-1417. (doi:10.3934/dcds.2010.26.1399); 2011 Adv. Atmos. Sci. 28 , 612-622. (doi:10.1007/s00376-010-9089-0)). The analysis also indicates the need to include turbulent friction terms in the model to obtain correct convection scales for the large-scale tropical atmospheric circulations, leading in particular to the right critical temperature gradient and the length scale for the Walker circulation. In short, the analysis shows that the effect of moisture lowers the magnitude of the critical thermal Rayleigh number and does not change the essential characteristics of dynamical behaviour of the system.
Quasi-Geostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field
NASA Astrophysics Data System (ADS)
Chavanne, C. P.; Klein, P.
2016-02-01
A new quasi-geostrophic model has been developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasi-geostrophic framework considered before since it takes into account the stratification within the surface mixed-layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant-stratification layers : a finite-thickness surface layer (or the mixed-layer) and an infinitely-deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal-wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive-equation numerical simulation. Correlation between simulated and diagnosed vertical velocities are significantly improved in the mixed-layer for the new model compared to the classical surface quasi-geostrophic model, reaching 0.9 near the surface.
NASA Astrophysics Data System (ADS)
Hu, Shujuan; Chou, Jifan; Cheng, Jianbo
2018-04-01
In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.
Heat flow evidence for hydrothermal circulation in the volcanic basement of subducting plates
NASA Astrophysics Data System (ADS)
Harris, R. N.; Spinelli, G. A.; Fisher, A. T.
2017-12-01
We summarize and interpret evidence for hydrothermal circulation in subducting oceanic basement from the Nankai, Costa Rica, south central Chile, Haida Gwaii, and Cascadia margins and explore the influence of hydrothermal circulation on plate boundary temperatures in these settings. Heat flow evidence for hydrothermal circulation in the volcanic basement of incoming plates includes: (a) values that are well below conductive (lithospheric) predictions due to advective heat loss, and (b) variability about conductive predictions that cannot be explained by variations in seafloor relief or thermal conductivity. We construct thermal models of these systems that include an aquifer in the upper oceanic crust that enhances heat transport via a high Nusselt number proxy for hydrothermal circulation. At the subduction zones examined, patterns of seafloor heat flow are not well fit by purely conductive simulations, and are better explained by simulations that include the influence of hydrothermal circulation. This result is consistent with the young basement ages (8-35 Ma) of the incoming igneous crust at these sites as well as results from global heat flow analyses showing a significant conductive heat flow deficit for crustal ages less than 65 Ma. Hydrothermal circulation within subducting oceanic basement can have a profound influence on temperatures close to the plate boundary and, in general, leads to plate boundary temperatures that are cooler than those where fluid flow does not occur. The magnitude of cooling depends on the permeability structure of the incoming plate and the evolution of permeability with depth and time. Resolving complex relationships between subduction processes, the permeability structure in the ocean crust, and the dynamics of hydrothermal circulation remains an interdisciplinary frontier.
Estimation and Validation of Oceanic Mass Circulation from the GRACE Mission
NASA Technical Reports Server (NTRS)
Boy, J.-P.; Rowlands, D. D.; Sabaka, T. J.; Luthcke, S. B.; Lemoine, F. G.
2011-01-01
Since the launch of the Gravity Recovery And Climate Experiment (GRACE) in March 2002, the Earth's surface mass variations have been monitored with unprecedented accuracy and resolution. Compared to the classical spherical harmonic solutions, global high-resolution mascon solutions allows the retrieval of mass variations with higher spatial and temporal sampling (2 degrees and 10 days). We present here the validation of the GRACE global mascon solutions by comparing mass estimates to a set of about 100 ocean bottom pressure (OSP) records, and show that the forward modelling of continental hydrology prior to the inversion of the K-band range rate data allows better estimates of ocean mass variations. We also validate our GRACE results to OSP variations modelled by different state-of-the-art ocean general circulation models, including ECCO (Estimating the Circulation and Climate of the Ocean) and operational and reanalysis from the MERCATOR project.
2010-10-15
cycle under volcanically clean aerosol conditions. Those models that do not reproduce a quasi- biennial oscillation ( QBO ) also include a relaxation...forc- ing toward the observed QBO (Giorgetta and Bengtsson 1999) for the SCN2 simulations. Table 2 summarizes the simulations used in this study and any...However simulations from three of the models included a future solar forcing and two models included an artificial QBO forcing in the tropics (see
Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells
NASA Astrophysics Data System (ADS)
Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi
2016-06-01
During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis.
Understanding and Portraying the Global Atmospheric Circulation.
ERIC Educational Resources Information Center
Harrington, John, Jr.; Oliver, John E.
2000-01-01
Examines teaching models of atmospheric circulation and resultant surface pressure patterns, focusing on the three-cell model and the meaning of meridional circulation as related to middle and high latitudes. Addresses the failure of the three-cell model to explain seasonal variations in atmospheric circulation. Suggests alternative models. (CMK)
Ferrari, G; Kozarski, M; De Lazzari, C; Górczyńska, K; Tosti, G; Darowski, M
2005-07-01
Merging numerical and physical models of the circulation makes it possible to develop a new class of circulatory models defined as hybrid. This solution reduces the costs, enhances the flexibility and opens the way to many applications ranging from research to education and heart assist devices testing. In the prototype described in this paper, a hydraulic model of systemic arterial tree is connected to a lumped parameters numerical model including pulmonary circulation and the remaining parts of systemic circulation. The hydraulic model consists of a characteristic resistance, of a silicon rubber tube to allow the insertion of an Intra-Aortic Balloon Pump (IABP) and of a lumped parameters compliance. Two electro-hydraulic interfaces, realized by means of gear pumps driven by DC motors, connect the numerical section with both terminals of the hydraulic section. The lumped parameters numerical model and the control system (including analog to digital and digital to analog converters)are developed in LabVIEW environment. The behavior of the model is analyzed by means of the ventricular pressure-volume loops and the time courses of arterial and ventricular pressures and flows in different circulatory conditions. A simulated pathological condition was set to test the IABP and verify the response of the system to this type of mechanical circulatory assistance. The results show that the model can represent hemodynamic relationships in different ventricular and circulatory conditions and is able to react to the IABP assistance.
ERIC Educational Resources Information Center
Jantz, Ronald
2001-01-01
Analyzes the implications of electronic book technology (e-books) on academic libraries. Discusses new business models for publishers, including self-publishing, Internet publishing, and partnerships with libraries as publishers; impact on library services, including cataloging, circulation, and digital preservation; user benefits; standards;…
Final Technical Report for DE-SC0005467
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broccoli, Anthony J.
2014-09-14
The objective of this project is to gain a comprehensive understanding of the key atmospheric mechanisms and physical processes associated with temperature extremes in order to better interpret and constrain uncertainty in climate model simulations of future extreme temperatures. To achieve this objective, we first used climate observations and a reanalysis product to identify the key atmospheric circulation patterns associated with extreme temperature days over North America during the late twentieth century. We found that temperature extremes were associated with distinctive signatures in near-surface and mid-tropospheric circulation. The orientations and spatial scales of these circulation anomalies vary with latitude, season,more » and proximity to important geographic features such as mountains and coastlines. We next examined the associations between daily and monthly temperature extremes and large-scale, recurrent modes of climate variability, including the Pacific-North American (PNA) pattern, the northern annular mode (NAM), and the El Niño-Southern Oscillation (ENSO). The strength of the associations are strongest with the PNA and NAM and weaker for ENSO, and also depend upon season, time scale, and location. The associations are stronger in winter than summer, stronger for monthly than daily extremes, and stronger in the vicinity of the centers of action of the PNA and NAM patterns. In the final stage of this project, we compared climate model simulations of the circulation patterns associated with extreme temperature days over North America with those obtained from observations. Using a variety of metrics and self-organizing maps, we found the multi-model ensemble and the majority of individual models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) generally capture the observed patterns well, including their strength and as well as variations with latitude and season. The results from this project indicate that current models are capable of simulating the large-scale meteorological patterns associated with daily temperature extremes and they suggest that such models can be used to evaluate the extent to which changes in atmospheric circulation will influence future changes in temperature extremes.« less
Evaluation of a research circulation control airfoil using Navier-Stokes methods
NASA Technical Reports Server (NTRS)
Shrewsbury, George D.
1987-01-01
The compressible Reynolds time averaged Navier-Stokes equations were used to obtain solutions for flows about a two dimensional circulation control airfoil. The governing equations were written in conservation form for a body-fitted coordinate system and solved using an Alternating Direction Implicit (ADI) procedure. A modified algebraic eddy viscosity model was used to define the turbulent characteristics of the flow, including the wall jet flow over the Coanda surface at the trailing edge. Numerical results are compared to experimental data obtained for a research circulation control airfoil geometry. Excellent agreement with the experimental results was obtained.
NASA Technical Reports Server (NTRS)
Engwirda, Darren
2017-01-01
An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered VoronoiDelaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.
NASA Astrophysics Data System (ADS)
Engwirda, Darren
2017-06-01
An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered Voronoi-Delaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.
Fallon, Nevada FORGE Distinct Element Reservoir Modeling
Blankenship, Doug; Pettitt, Will; Riahi, Azadeh; Hazzard, Jim; Blanksma, Derrick
2018-03-12
Archive containing input/output data for distinct element reservoir modeling for Fallon FORGE. Models created using 3DEC, InSite, and in-house Python algorithms (ITASCA). List of archived files follows; please see 'Modeling Metadata.pdf' (included as a resource below) for additional file descriptions. Data sources include regional geochemical model, well positions and geometry, principal stress field, capability for hydraulic fractures, capability for hydro-shearing, reservoir geomechanical model-stimulation into multiple zones, modeled thermal behavior during circulation, and microseismicity.
NASA Astrophysics Data System (ADS)
Phrampus, Benjamin J.; Harris, Robert N.; Tréhu, Anne M.
2017-09-01
Understanding the thermal structure of the Cascadia subduction zone is important for understanding megathrust earthquake processes and seismogenic potential. Currently our understanding of the thermal structure of Cascadia is limited by a lack of high spatial resolution heat flow data and by poor understanding of thermal processes such as hydrothermal fluid circulation in the subducting basement, sediment thickening and dewatering, and frictional heat generation on the plate boundary. Here, using a data set of publically available seismic lines combined with new interpretations of bottom simulating reflector (BSR) distributions, we derive heat flow estimates across the Cascadia margin. Thermal models that account for hydrothermal circulation predict BSR-derived heat flow bounds better than purely conductive models, but still over-predict surface heat flows. We show that when the thermal effects of in-situ sedimentation and of sediment thickening and dewatering due to accretion are included, models with hydrothermal circulation become consistent with our BSR-derived heat flow bounds.
Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Jones, Greg; Lin, John C.
2011-01-01
Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, C(sub u), of 0:047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the C(sub u) 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.
The Latest on the Venus Thermospheric General Circulation Model: Capabilities and Simulations
NASA Technical Reports Server (NTRS)
Brecht, A. S.; Bougher, S. W.; Parkinson, C. D.
2017-01-01
Venus has a complex and dynamic upper atmosphere. This has been observed many times by ground-based, orbiters, probes, and fly-by missions going to other planets. Two over-arching questions are generally asked when examining the Venus upper atmosphere: (1) what creates the complex structure in the atmosphere, and (2) what drives the varying dynamics. A great way to interpret and connect observations to address these questions utilizes numerical modeling; and in the case of the middle and upper atmosphere (above the cloud tops), a 3D hydrodynamic numerical model called the Venus Thermospheric General Circulation Model (VTGCM) can be used. The VTGCM can produce climatological averages of key features in comparison to observations (i.e. nightside temperature, O2 IR nightglow emission). More recently, the VTGCM has been expanded to include new chemical constituents and airglow emissions, as well as new parameterizations to address waves and their impact on the varying global circulation and corresponding airglow distributions.
Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments
Signell, Richard P.; Beardsley, Robert C.; Graber, H. C.; Capotondi, A.
1990-01-01
The effect of wind waves on the steady wind-driven circulation in a narrow, shallow bay is investigated with a two-dimensional (y, z) circulation model and the Grant and Madsen [1979] bottom-boundary layer model, which includes wave-current interaction. A constant wind stress is applied in the along-channel x direction to a channel with a constant cross-sectional profile h(y). The wind-induced flushing of shallow bays is shown to be sensitive to both the shape of the cross section and the effects of surface waves. The flushing increases with increasing , where h′ is the standard deviation of cross-channel depth and is the mean depth. This is consistent with the findings of Hearn et al. [1987]. The flushing decreases, however, with the inclusion of surface wave effects which act to increase the bottom drag felt by the currents. Increasing effective bottom friction reduces the strength of the circulation, while the along-bay surface slope, bottom stress and the structure of current profiles remain nearly unchanged. An implication of the circulation dependence on wave-current interaction is that low-frequency oscillatory winds may drive a mean circulation when the wave field changes with wind direction.x
Simulation of mesoscale circulation in the Tatar Strait of the Japan Sea
NASA Astrophysics Data System (ADS)
Ponomarev, V. I.; Fayman, P. A.; Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.
2018-06-01
The eddy-resolved ocean circulation model RIAMOM (Lee et al., 2003) is used to analyze seasonal variability of mesoscale circulation in the Tatar Strait of the Japan Sea. The model domain is a vast area including the northern Japan Sea, Okhotsk Sea and adjacent region in the Pacific Ocean. A numerical experiment with a horizontal 1/18° resolution has been carried out under realistic meteorological conditions from the ECMWF ERA-40 reanalysis with restoring of surface temperature and salinity. The simulated seasonal variability of both the current system and mesoscale eddy dynamics in the Tatar Strait is in a good agreement with temperature and salinity distributions of oceanographic observation data collected during various seasons and years. Two general circulation regimes in the Strait have been found. The circulation regime changes from summer to winter due to seasonal change of the North Asian Monsoon. On a synoptic time scale, the similar change of the circulation regime occurs due to change of the southeastern wind to the northwestern one when the meteorological situation with an anticyclone over the Okhotsk Sea changes to that with a strong cyclone. The Lagrangian maps illustrate seasonal changes in direction of the main currents and in polarity and location of mesoscale eddies in the Strait.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, E.J.; McNeilly, G.S.
The existing National Center for Atmospheric Research (NCAR) code in the Hamburg Oceanic Carbon Cycle Circulation Model and the Hamburg Large-Scale Geostrophic Ocean General Circulation Model was modernized and reduced in size while still producing an equivalent end result. A reduction in the size of the existing code from more than 50,000 lines to approximately 7,500 lines in the new code has made the new code much easier to maintain. The existing code in Hamburg model uses legacy NCAR (including even emulated CALCOMP subrountines) graphics to display graphical output. The new code uses only current (version 3.1) NCAR subrountines.
Numerical model of the circulation and dispersion in the east Adriatic coastal waters
NASA Astrophysics Data System (ADS)
Beg Paklar, Gordana; Dzoic, Tomislav; Koracin, Darko; Matijevic, Slavica; Grbec, Branka; Ivatek-Sahdan, Stjepan
2017-04-01
The Regional Ocean Modeling System (ROMS) was implemented to reproduce physical properties of the area around submarine outlet Stobrec in the middle Adriatic coastal area. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and dynamics of the surrounding area imposed at the open boundaries. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Simulated fields from the Adriatic and shelf scale models were used to prescribe the initial and open boundary conditions for fine resolution coastal domain. Model results were compared with available CTD measurements and discussed in the light of the climatological circulation and thermohaline properties of the middle Adriatic coastal area. Variability in the circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the open boundaries. Basic features of the coastal circulation are well reproduced by the ROMS model, as well as temperatures and salinities which are within corresponding seasonal intervals, although with lower stratification than measured ones. In order to reproduce dispersion of the passive tracer the ROMS model was coupled with Lagrangian dispersion model. Multiyear monitoring of the physical, chemical and biological parameters around the sewage outlet was used to assess the quality of the dispersion model results. Among measured parameters, redox potential of the surface sediment layer was selected to be compared with model results as its negative values are direct consequence of increased organic matter input that can be attributed to the sewage system inflow.
Sims, Aaron P; Alapaty, Kiran; Raman, Sethu
2017-01-01
Two mesoscale circulations, the Sandhills circulation and the sea breeze, influence the initiation of deep convection over the Sandhills and the coast in the Carolinas during the summer months. The interaction of these two circulations causes additional convection in this coastal region. Accurate representation of mesoscale convection is difficult as numerical models have problems with the prediction of the timing, amount, and location of precipitation. To address this issue, the authors have incorporated modifications to the Kain-Fritsch (KF) convective parameterization scheme and evaluated these mesoscale interactions using a high-resolution numerical model. The modifications include changes to the subgrid-scale cloud formulation, the convective turnover time scale, and the formulation of the updraft entrainment rates. The use of a grid-scaling adjustment parameter modulates the impact of the KF scheme as a function of the horizontal grid spacing used in a simulation. Results indicate that the impact of this modified cumulus parameterization scheme is more effective on domains with coarser grid sizes. Other results include a decrease in surface and near-surface temperatures in areas of deep convection (due to the inclusion of the effects of subgrid-scale clouds on the radiation), improvement in the timing of convection, and an increase in the strength of deep convection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Taiping; Yang, Zhaoqing
Increased eutrophication and degraded water quality in estuarine and coastal waters have been a worldwide environmental concern. While it is commonly accepted that anthropogenic impact plays a major role in many emerging water quality issues, natural conditions such as restricted water circulations controlled by geometry may also substantially contribute to unfavorable water quality in certain ecosystems. To elucidate the contributions from different factors, a hydrodynamic-water quality model that integrates both physical transport and pollutant loadings is particularly warranted. A preliminary modeling study using the Environmental Fluid Dynamic Code (EFDC) is conducted to investigate hydrodynamic circulation and low dissolved oxygen (DO)more » in Hood Canal, a representative fjord in the U.S. Pacific Northwest. Because the water quality modeling work is still ongoing, this paper focuses on the progress in hydrodynamic modeling component. The hydrodynamic model has been set up using the publicly available forcing data and was calibrated against field observations or NOAA predictions for tidal elevation, current, salinity and temperature. The calibrated model was also used to estimate physical transport timescales such as residence time in the estuary. The preliminary model results demonstrate that the EFDC Hood Canal model is capable of capturing the general circulation patterns in Hood Canal, including weak tidal current and strong vertical stratification. The long residence time (i.e., on the order of 100 days for the entire estuary) also indicates that restricted water circulation could contribute to low DO in the estuary and also makes the system especially susceptible to anthropogenic disturbance, such as excess nutrient input.« less
Radiative-convective equilibrium model intercomparison project
NASA Astrophysics Data System (ADS)
Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki
2018-03-01
RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.
Chuang, Shu-Chun; Rota, Matteo; Gunter, Marc J; Zeleniuch-Jacquotte, Anne; Eussen, Simone J P M; Vollset, Stein Emil; Ueland, Per Magne; Norat, Teresa; Ziegler, Regina G; Vineis, Paolo
2013-10-01
Most epidemiologic studies on folate intake suggest that folate may be protective against colorectal cancer, but the results on circulating (plasma or serum) folate are mostly inconclusive. We conducted a meta-analysis of case-control studies nested within prospective studies on circulating folate and colorectal cancer risk by using flexible meta-regression models to test the linear and nonlinear dose-response relationships. A total of 8 publications (10 cohorts, representing 3,477 cases and 7,039 controls) were included in the meta-analysis. The linear and nonlinear models corresponded to relative risks of 0.96 (95% confidence interval (CI): 0.91, 1.02) and 0.99 (95% CI: 0.96, 1.02), respectively, per 10 nmol/L of circulating folate in contrast to the reference value. The pooled relative risks when comparing the highest with the lowest category were 0.80 (95% CI: 0.61, 0.99) for radioimmunoassay and 1.03 (95% CI: 0.83, 1.22) for microbiological assay. Overall, our analyses suggest a null association between circulating folate and colorectal cancer risk. The stronger association for the radioimmunoassay-based studies could reflect differences in cohorts and study designs rather than assay performance. Further investigations need to integrate more accurate measurements and flexible modeling to explore the effects of folate in the presence of genetic, lifestyle, dietary, and hormone-related factors.
NASA Technical Reports Server (NTRS)
Roble, R. G.
1986-01-01
The NCAR thermospheric general circulation model (TGCM) has been used for a variety of thermospheric dynamic studies. It has also been used to compare model predictions with measurements made from various ground-based Fabry-Perot interferometer stations, incoherent scatter radar stations and the Dynamics Explorer satellites. The various input and output features of the model are described. These include the specification of solar EUV fluxes, and descriptions of empirical models to specify auroral particle precipitation, ion drag, and magnetospheric convection. Results are presented for solstice conditions giving the model perturbation temperature and circulation response to solar heating forcing alone and also with the inclusion of magnetospheric convections for two different dawn-dusk potential drops, 20 and 60 kV respectively. Results at two constant pressure levels Z =+1 at 300 km and Z= -4 at 120 km are presented for both the winter and summer polar cap regions. The circulation over the Northern Hemisphere polar cap in both the upper and lower thermosphere are presented along with a figure showing that the circulation is mainly a non-divergent irrotational flow responding to ion drag. The results of a study made on the Southern Hemisphere polar cap during October 1981 where Dynamics Explorer satellite measurements of winds, temperature and composition are compared to TGCM predictions are also presented. A diagnostic package that has been developed to analyze the balance of forces operating in the TGCM is presented next illustrating that in the F-region ion drag and pressure provide the main force balance and in the E-region ion drag, pressure and the coriolis forces provide the main balance. The TGCM prediction for the June 10, 1983 total solar eclipse are next presented showing a thermospheric disturbance following the path of totality. Finally, results are presented giving the global circulation, temperature and composition structure of the thermosphere for solar minimum conditions at equinox with 60 kV magnetospheric convection forcing at high latitudes.
NASA Astrophysics Data System (ADS)
Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.
1988-03-01
A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.
1988-01-01
A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.
NASA Astrophysics Data System (ADS)
Demissie, Henok K.; Bacopoulos, Peter
2017-05-01
A rich dataset of time- and space-varying velocity measurements for a macrotidal estuary was used in the development of a vector-based formulation of bottom roughness in the Advanced Circulation (ADCIRC) model. The updates to the parallel code of ADCIRC to include directionally based drag coefficient are briefly discussed in the paper, followed by an application of the data assimilation (nudging analysis) to the lower St. Johns River (northeastern Florida) for parameter estimation of anisotropic Manning's n coefficient. The method produced converging estimates of Manning's n values for ebb (0.0290) and flood (0.0219) when initialized with uniform and isotropic setting of 0.0200. Modeled currents, water levels and flows were improved at observation locations where data were assimilated as well as at monitoring locations where data were not assimilated, such that the method increases model skill locally and non-locally with regard to the data locations. The methodology is readily transferrable to other circulation/estuary models, given pre-developed quality mesh/grid and adequate data available for assimilation.
Application of Land Surface Data Assimilation to Simulations of Sea Breeze Circulations
NASA Technical Reports Server (NTRS)
Mackaro, Scott; Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske
2003-01-01
A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite- observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSUNCAR MM5 V3-5 and applied at spatial resolutions of 12- and 4-km. It is recognized that even 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.
NASA Astrophysics Data System (ADS)
Yoshimura, K.; Oki, T.; Ohte, N.; Kanae, S.; Ichiyanagi, K.
2004-12-01
A simple water isotope circulation model on a global scale that includes a Rayleigh equation and the use of _grealistic_h external meteorological forcings estimates short-term variability of precipitation 18O. The results are validated by Global Network of Isotopes in Precipitation (GNIP) monthly observations and by daily observations at three sites in Thailand. This good agreement highlights the importance of large scale transport and mixing of vapor masses as a control factor for spatial and temporal variability of precipitation isotopes, rather than in-cloud micro processes. It also indicates the usefulness of the model and the isotopes observation databases for evaluation of two-dimensional atmospheric water circulation fields in forcing datasets. In this regard, two offline simulations for 1978-1993 with major reanalyses, i.e. NCEP and ERA15, were implemented, and the results show that, over Europe ERA15 better matched observations at both monthly and interannual time scales, mainly owing to better precipitation fields in ERA15, while in the tropics both produced similarly accurate isotopic fields. The isotope analyses diagnose accuracy of two-dimensional water circulation fields in datasets with a particular focus on precipitation processes.
Recent developments of DMI's operational system: Coupled Ecosystem-Circulation-and SPM model.
NASA Astrophysics Data System (ADS)
Murawski, Jens; Tian, Tian; Dobrynin, Mikhail
2010-05-01
ECOOP is a pan- European project with 72 partners from 29 countries around the Baltic Sea, the North Sea, the Iberia-Biscay-Ireland region, the Mediterranean Sea and the Black Sea. The project aims at the development and the integration of the different coastal and regional observation and forecasting systems. The Danish Meteorological Institute DMI coordinates the project and is responsible for the Baltic Sea regional forecasting System. Over the project period, the Baltic Sea system was developed from a purely hydro dynamical model (version V1), running operationally since summer 2009, to a coupled model platform (version V2), including model components for the simulation of suspended particles, data assimilation and ecosystem variables. The ECOOP V2 model is currently tested and validated, and will replace the V1 version soon. The coupled biogeochemical- and circulation model runs operationally since November 2009. The daily forecasts are presented at DMI's homepage http:/ocean.dmi.dk. The presentation includes a short description of the ECOOP forecasting system, discusses the model results and shows the outcome of the model validation.
Atlas of Seasonal Means Simulated by the NSIPP 1 Atmospheric GCM. Volume 17
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Bacmeister, Julio; Pegion, Philip J.; Schubert, Siegfried D.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
This atlas documents the climate characteristics of version 1 of the NASA Seasonal-to-Interannual Prediction Project (NSIPP) Atmospheric General Circulation Model (AGCM). The AGCM includes an interactive land model (the Mosaic scheme), and is part of the NSIPP coupled atmosphere-land-ocean model. The results presented here are based on a 20-year (December 1979-November 1999) "ANIIP-style" integration of the AGCM in which the monthly-mean sea-surface temperature and sea ice are specified from observations. The climate characteristics of the AGCM are compared with the National Centers for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasting (ECMWF) reanalyses. Other verification data include Special Sensor Microwave/Imager (SSNM) total precipitable water, the Xie-Arkin estimates of precipitation, and Earth Radiation Budget Experiment (ERBE) measurements of short and long wave radiation. The atlas is organized by season. The basic quantities include seasonal mean global maps and zonal and vertical averages of circulation, variance/covariance statistics, and selected physics quantities.
Model-free adaptive control of advanced power plants
Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang
2015-08-18
A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
Theoretical analysis of multiphase flow during oil-well drilling by a conservative model
NASA Astrophysics Data System (ADS)
Nicolas-Lopez, Ruben
2005-11-01
In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.
WOCE Working Group on Numerical Modeling
NASA Astrophysics Data System (ADS)
Nowlin, Worth
A U.S. WOCE (World Ocean Circulation Experiment) Working Group on Numerical Modeling has been established to serve as a forum for the discussion of progress in numerical general circulation modeling and its relationship to WOCE design and data analysis and as an advisory body on resource and manpower requirements for large-scale ocean modeling. The first meeting of this working group was held at the National Center for Atmospheric Research in Boulder, Colo., on Monday, December 10, 1984. The working group members who attended were K. Bryan, Y.-J. Han, D. Haidvogel (chairman), W. Holland, H. Hurlburt, J. O'Brien, A. Robinson, B. Semtner, and J. Sarmiento. Observers included F. Bretherton, A. Colin de Verdiere, C. Collins, L. Hua, P. Rizzoli, T. Spence, R. Wall, and S. Wilson.
Using a Gravity Model to Predict Circulation in a Public Library System.
ERIC Educational Resources Information Center
Ottensmann, John R.
1995-01-01
Describes the development of a gravity model based upon principles of spatial interaction to predict the circulation of libraries in the Indianapolis-Marion County Public Library (Indiana). The model effectively predicted past circulation figures and was tested by predicting future library circulation, particularly for a new branch library.…
Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing
NASA Astrophysics Data System (ADS)
Vecchi, Gabriel A.; Soden, Brian J.; Wittenberg, Andrew T.; Held, Isaac M.; Leetmaa, Ants; Harrison, Matthew J.
2006-05-01
Since the mid-nineteenth century the Earth's surface has warmed, and models indicate that human activities have caused part of the warming by altering the radiative balance of the atmosphere. Simple theories suggest that global warming will reduce the strength of the mean tropical atmospheric circulation. An important aspect of this tropical circulation is a large-scale zonal (east-west) overturning of air across the equatorial Pacific Ocean-driven by convection to the west and subsidence to the east-known as the Walker circulation. Here we explore changes in tropical Pacific circulation since the mid-nineteenth century using observations and a suite of global climate model experiments. Observed Indo-Pacific sea level pressure reveals a weakening of the Walker circulation. The size of this trend is consistent with theoretical predictions, is accurately reproduced by climate model simulations and, within the climate models, is largely due to anthropogenic forcing. The climate model indicates that the weakened surface winds have altered the thermal structure and circulation of the tropical Pacific Ocean. These results support model projections of further weakening of tropical atmospheric circulation during the twenty-first century.
NASA Astrophysics Data System (ADS)
Bangalath, Hamza Kunhu; Stenchikov, Georgiy
2015-05-01
To investigate the influence of direct radiative effect of dust on the tropical summer rain belt across the Middle East and North Africa (MENA), the present study utilizes the high-resolution capability of an Atmospheric General Circulation Model, the High-Resolution Atmospheric Model. Ensembles of Atmospheric Model Intercomparison Project style simulations have been conducted with and without dust radiative impacts, to differentiate the influence of dust on the tropical rain belt. The analysis focuses on summer season. The results highlight the role of dust-induced responses in global- and regional-scale circulations in determining the strength and the latitudinal extent of the tropical rain belt. A significant response in the strength and position of the local Hadley circulation is predicted in response to meridionally asymmetric distribution of dust and the corresponding radiative effects. Significant responses are also found in regional circulation features such as African Easterly Jet and West African Monsoon circulation. Consistent with these dynamic responses at various scales, the tropical rain belt across MENA strengthens and shifts northward. Importantly, the summer precipitation over the semiarid strip south of Sahara, including Sahel, increases up to 20%. As this region is characterized by the "Sahel drought," the predicted precipitation sensitivity to the dust loading over this region has a wide range of socioeconomic implications. Overall, the study demonstrates the extreme importance of incorporating dust radiative effects and the corresponding circulation responses at various scales, in the simulations and future projections of this region's climate.
NASA Astrophysics Data System (ADS)
Shaposhnikov, Dmitry S.; Rodin, Alexander V.; Medvedev, Alexander S.; Fedorova, Anna A.; Kuroda, Takeshi; Hartogh, Paul
2018-02-01
We present a new implementation of the hydrological cycle scheme into a general circulation model of the Martian atmosphere. The model includes a semi-Lagrangian transport scheme for water vapor and ice and accounts for microphysics of phase transitions between them. The hydrological scheme includes processes of saturation, nucleation, particle growth, sublimation, and sedimentation under the assumption of a variable size distribution. The scheme has been implemented into the Max Planck Institute Martian general circulation model and tested assuming monomodal and bimodal lognormal distributions of ice condensation nuclei. We present a comparison of the simulated annual variations, horizontal and vertical distributions of water vapor, and ice clouds with the available observations from instruments on board Mars orbiters. The accounting for bimodality of aerosol particle distribution improves the simulations of the annual hydrological cycle, including predicted ice clouds mass, opacity, number density, and particle radii. The increased number density and lower nucleation rates bring the simulated cloud opacities closer to observations. Simulations show a weak effect of the excess of small aerosol particles on the simulated water vapor distributions.
NASA Technical Reports Server (NTRS)
Hourdin, Frederic; Forget, Francois; Talagrand, O.
1993-01-01
We have been developing a General Circulation Model (GCM) of the martian atmosphere since 1989. The model has been described rather extensively elsewhere and only the main characteristics are given here. The dynamical part of the model, adapted from the LMD terrestrial climate model, is based on a finite-difference formulation of the classical 'primitive equations of meteorology.' The radiative transfer code includes absorption and emission by CO2 (carefully validated by comparison to line-by-line calculations) and dust in the thermal range and absorption and scattering by dust in the visible range. Other physical parameterizations are included: modeling of vertical turbulent mixing, dry convective adjustment (in order to prevent vertical unstable temperature profiles), and a multilayer model of the thermal conduction in the soil. Finally, the condensation-sublimation of CO2 is introduced through specification of a pressure-dependent condensation temperature. The atmospheric and surface temperatures are prevented from falling below this critical temperature by condensation and direct precipitation onto the surface of atmospheric CO2. The only prespecified spatial fields are the surface thermal inertia, albedo, and topography.
NASA Astrophysics Data System (ADS)
Burgman, R.; Kirtman, B. P.; Clement, A. C.; Vazquez, H.
2017-12-01
Recent studies suggest that low clouds in the Pacific play an important role in the observed decadal climate variability and future climate change. In this study, we implement a novel modeling experiment designed to isolate how interactions between local and remote feedbacks associated with low cloud, SSTs, and the largescale circulation play a significant role in the observed persistence of tropical Pacific SST and associated North American drought. The modeling approach involves the incorporation of observed patterns of satellite-derived shortwave cloud radiative effect (SWCRE) into the coupled model framework and is ideally suited for examining the role of local and large-scale coupled feedbacks and ocean heat transport in Pacific decadal variability. We show that changes in SWCRE forcing in eastern subtropical Pacific alone reproduces much of the observed changes in SST and atmospheric circulation over the past 16 years, including the observed changes in precipitation over much of the Western Hemisphere.
NASA Astrophysics Data System (ADS)
Kohn, Matthew J.; McKay, Moriah
2010-11-01
Oxygen isotope data provide a key test of general circulation models (GCMs) for the Last Glacial Maximum (LGM) in North America, which have otherwise proved difficult to validate. High δ18O pedogenic carbonates in central Wyoming have been interpreted to indicate increased summer precipitation sourced from the Gulf of Mexico. Here we show that tooth enamel δ18O of large mammals, which is strongly correlated with local water and precipitation δ18O, is lower during the LGM in Wyoming, not higher. Similar data from Texas, California, Florida and Arizona indicate higher δ18O values than in the Holocene, which is also predicted by GCMs. Tooth enamel data closely validate some recent models of atmospheric circulation and precipitation δ18O, including an increase in the proportion of winter precipitation for central North America, and summer precipitation in the southern US, but suggest aridity can bias pedogenic carbonate δ18O values significantly.
NASA Astrophysics Data System (ADS)
Ganachaud, A. S.; Sprintall, J.; Lin, X.; Ando, K.
2016-02-01
The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR (Climate Variability and Predictability). The key objectives are to understand the Southwest Pacific Ocean circulation and Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. It was designed to measure and monitor the ocean circulation, and to validate and improve numerical models. South Pacific oceanic waters are carried from the subtropical gyre centre in the westward flowing South Equatorial Current (SEC), towards the southwest Pacific-a major circulation pathway that redistributes water from the subtropics to the equator and Southern Ocean. Water transit through the Coral and Solomon Seas is potentially of great importance to tropical climate prediction because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate ENSO and produce basin-scale climate feedbacks. On average, the oceanic circulation is driven by the Trade Winds, and subject to substantial variability, related with the SPCZ position and intensity. The circulation is complex, with the SEC splitting into zonal jets upon encountering island archipelagos, before joining either the East Australian Current or the New Guinea Costal UnderCurrent towards the equator. SPICE included large, coordinated in situ measurement programs and high resolution numerical simulations of the area. After 8 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. We will review the recent advancements and discuss our current knowledge gaps and important emerging research directions. In particular we will discuss how SPICE, along with the Northwestern Pacific Ocean Circulation and Climate Experiment (NPOCE) and Indonesian ThroughFlow (ITF) programs could evolve toward an integrative observing system under CLIVAR coordination.
MEAN-FIELD SOLAR DYNAMO MODELS WITH A STRONG MERIDIONAL FLOW AT THE BOTTOM OF THE CONVECTION ZONE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
2011-09-01
This paper presents a study of kinematic axisymmetric mean-field dynamo models for the case of meridional circulation with a deep-seated stagnation point and a strong return flow at the bottom of the convection zone. This kind of circulation follows from mean-field models of the angular momentum balance in the solar convection zone. The dynamo models include turbulent sources of the large-scale poloidal magnetic field production due to kinetic helicity and a combined effect due to the Coriolis force and large-scale electric current. In these models the toroidal magnetic field, which is responsible for sunspot production, is concentrated at the bottommore » of the convection zone and is transported to low-latitude regions by a meridional flow. The meridional component of the poloidal field is also concentrated at the bottom of the convection zone, while the radial component is concentrated in near-polar regions. We show that it is possible for this type of meridional circulation to construct kinematic dynamo models that resemble in some aspects the sunspot magnetic activity cycle. However, in the near-equatorial regions the phase relation between the toroidal and poloidal components disagrees with observations. We also show that the period of the magnetic cycle may not always monotonically decrease with the increase of the meridional flow speed. Thus, for further progress it is important to determine the structure of the meridional circulation, which is one of the critical properties, from helioseismology observations.« less
NASA Astrophysics Data System (ADS)
Staneva, Joanna; Wahle, Kathrin
2015-04-01
This study addresses the coupling between wind wave and circulation models on the example of the German Bight and its coastal area called the Wadden Sea (the area between the barrier islands and the coast). This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales. The uncertainties in most of the presently used models result from the nonlinear feedback between strong tidal currents and wind-waves, which can no longer be ignored, in particular in the coastal zone where its role seems to be dominant. A nested modelling system is used in the Helmholtz-Zentrum Geesthacht to producing reliable now- and short-term forecasts of ocean state variables, including wind waves and hydrodynamics. In this study we present analysis of wave and hydrographic observations, as well as the results of numerical simulations. The data base includes ADCP observations and continuous measurements from data stations. The individual and collective role of wind, waves and tidal forcing are quantified. The performance of the forecasting system is illustrated for the cases of several extreme events. Effects of ocean waves on coastal circulation and SST simulations are investigated considering wave-dependent stress and wave breaking parameterization during extreme events, e.g. hurricane Xavier in December, 2013. Also the effect which the circulation exerts on the wind waves is tested for the coastal areas using different parameterizations. The improved skill resulting from the new developments in the forecasting system, in particular during extreme events, justifies further enhancements of the coastal pre-operational system for the North Sea and German Bight.
NASA Astrophysics Data System (ADS)
Pla-García, Jorge; Rafkin, Scot C. R.
2015-04-01
The Mars Regional Atmospheric Modeling System (MRAMS) is used to predict meteorological conditions that are likely to be encountered by the Mars 2020 Exploration Rover at several proposed landing sites during entry, descent, and landing (EDL). The meteorology during the EDL window at most of the sites is dynamic. The intense heating of the lower atmosphere drives intense thermals and mesoscale thermal circulations. Moderate mean winds, wind shear, turbulence, and vertical air currents associated with convection are present and potentially hazardous to EDL [1]. Nine areas with specific high-priority landing ellipses of the 2020 Rover, are investigated: NE Syrtis, Nili Fossae, Nili Fossae Carbonates, Jezero Crater Delta, Holden Crater, McLaughlin Crater, Southwest Melas Basin, Mawrth Vallis and East Margaritifer Chloride. MRAMS was applied to the landing site regions using nested grids with a spacing of 330 meters on the innermost grid that is centered over each landing site. MRAMS is ideally suited for this investigation; the model is explicitly designed to simulate Mars' atmospheric thermal circulations at the mesoscale and smaller with realistic, high-resolution surface properties [2, 3]. Horizontal wind speeds, both vertical profiles and vertical cross-sections wind speeds, are studied. For some landing sites simulations, two example configurations -including and not including Hellas basin in the mother domain- were generated, in order to study how the basin affects the innermost grids circulations. Afternoon circulations at all sites pose some risk entry, descent, and landing. Most of the atmospheric hazards are not evident in current observational data and general circulation model simulations and can only be ascertained through mesoscale modeling of the region. Decide where to go first and then design a system that can tolerate the environment would greatly minimize risk. References: [1] Rafkin, S. C. R., and T. I. Michaels (2003), J. Geophys. Res., 108(E12), 8091. [2] Rafkin, S. C. R., R. M. Haberle, and T. I. Michaels (2001), Icarus, 151, 228-256. [3] Rafkin, S. C. R., M. R. V. Sta. Maria, and T. I. Michaels (2002), Nature, 419, 697-699.
In Vitro Simulation and Validation of the Circulation with Congenital Heart Defects
Figliola, Richard S.; Giardini, Alessandro; Conover, Tim; Camp, Tiffany A.; Biglino, Giovanni; Chiulli, John; Hsia, Tain-Yen
2010-01-01
Despite the recent advances in computational modeling, experimental simulation of the circulation with congenital heart defect using mock flow circuits remains an important tool for device testing, and for detailing the probable flow consequences resulting from surgical and interventional corrections. Validated mock circuits can be applied to qualify the results from novel computational models. New mathematical tools, coupled with advanced clinical imaging methods, allow for improved assessment of experimental circuit performance relative to human function, as well as the potential for patient-specific adaptation. In this review, we address the development of three in vitro mock circuits specific for studies of congenital heart defects. Performance of an in vitro right heart circulation circuit through a series of verification and validation exercises is described, including correlations with animal studies, and quantifying the effects of circuit inertiance on test results. We present our experience in the design of mock circuits suitable for investigations of the characteristics of the Fontan circulation. We use one such mock circuit to evaluate the accuracy of Doppler predictions in the presence of aortic coarctation. PMID:21218147
Sun, Yanhua; Gong, Bing; Yuan, Xin; Zheng, Zhe; Wang, Guyan; Chen, Guo; Zhou, Chenghui; Wang, Wei; Ji, Bingyang
2015-08-01
The benefits of minimized extracorporeal circulation (MECC) compared with conventional extracorporeal circulation (CECC) are still in debate. PubMed, EMBASE and the Cochrane Library were searched until November 10, 2014. After quality assessment, we chose a fixed-effects model when the trials showed low heterogeneity, otherwise a random-effects model was used. We performed univariate meta-regression and sensitivity analysis to search for the potential sources of heterogeneity. Cumulative meta-analysis was performed to access the evolution of outcome over time. 41 RCTs enrolling 3744 patients were included after independent article review by 2 authors. MECC significantly reduced atrial fibrillation (RR, 0.76; 95% CI, 0.66 to 0.89; P < 0.001; I2 = 0%), and myocardial infarction (RR, 0.43; 95% CI, 0.26 to 0.71; P = 0.001; I2 = 0%). In addition, the results regarding chest tube drainage, transfusion rate, blood loss, red blood cell transfusion volume, and platelet count favored MECC as well. MECC diminished morbidity of cardiovascular complications postoperatively, conserved blood cells, and reduced allogeneic blood transfusion.
Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001): Users Guide
NASA Technical Reports Server (NTRS)
Justus, C. G.; Johnson, D. L.
2001-01-01
This document presents Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001) and its new features. As with the previous version (mars-2000), all parameterizations fro temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and season (Ls) use input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 70 km. Mars-GRAM 2001 is based on topography from the Mars Orbiter Laser Altimeter (MOLA) and includes new MGCM data at the topographic surface. A new auxiliary program allows Mars-GRAM output to be used to compute shortwave (solar) and longwave (thermal) radiation at the surface and top of atmosphere. This memorandum includes instructions on obtaining Mars-GRAN source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.
NASA Astrophysics Data System (ADS)
Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.
2015-12-01
Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are being simulated for plausible physical reasons, boosting confidence in future projections of temperature extremes. Conversely, where model skill is identified to be lower, caution should be exercised in interpreting future projections.
USDA-ARS?s Scientific Manuscript database
The resolution of General Circulation Models (GCMs) is too coarse to assess the fine scale or site-specific impacts of climate change. Downscaling approaches including dynamical and statistical downscaling have been developed to meet this requirement. As the resolution of climate model increases, it...
Impacts of storms on coastal circulation in Long Bay, South Carolina
NASA Astrophysics Data System (ADS)
Kim, H.; Warner, J. C.; Voulgaris, G.; Work, P.
2006-12-01
We investigate the effects of coastal storms on the regional circulation in Long Bay, South Carolina, using a coupled ROMS (Regional Ocean Modeling System)- SWAN (Simulating WAves Nearshore) model. Meteorological observations during the South Carolina Coastal Erosion Study (October 2003 April 2004) reveal three dominant types of storms in the region warm fronts, cold fronts, and tropical storms. Each storm has a characteristic progression of wind patterns: (1) Warm fronts start with southwestward winds and change to northeastward after the front passes; (2) Cold fronts begin with northeastward winds and shift to southeastward when the front moves out; and (3) Tropical storms change wind directions from the southwest to the southeast during the storm. It is observed the coastal circulation distinctly responds to such atmospheric disturbances in either a upwelling-favorable condition to the northeastward winds or a downwelling-favorable condition to the southwestward winds. The study domain encompasses 300-km of gently arcing shoreline between Cape Romain to Cape Fear, and approximately 100-km offshore to the shelf edge. The model domain is resolved by a 300×130 mesh at 1-km intervals in the horizontal and twenty terrain-following layers in the vertical. The ROMS model is driven by tides and wind stress, and it includes wave-current interactions via dynamic coupling to the surface wave model SWAN. Salinity and temperature along the open boundaries are included by nudging to climatological values. A time period of six months is simulated from October 2003 to April 2004, concurrent with the observation study. Model results are compared to an extensive set of measurements collected at eight sites in the inner part of Long Bay, and are used to identify varying circulation response to each storm type. In addition, we investigate the significance of the Capes on the development of the alongshore pressure gradients, and examine the importance of wave-current interactions in the study region.
The Pelagics Habitat Analysis Module (PHAM): Decision Support Tools for Pelagic Fisheries
NASA Astrophysics Data System (ADS)
Armstrong, E. M.; Harrison, D. P.; Kiefer, D.; O'Brien, F.; Hinton, M.; Kohin, S.; Snyder, S.
2009-12-01
PHAM is a project funded by NASA to integrate satellite imagery and circulation models into the management of commercial and threatened pelagic species. Specifically, the project merges data from fishery surveys, and fisheries catch and effort data with satellite imagery and circulation models to define the habitat of each species. This new information on habitat will then be used to inform population distribution and models of population dynamics that are used for management. During the first year of the project, we created two prototype modules. One module, which was developed for the Inter-American Tropical Tuna Commission, is designed to help improve information available to manage the tuna fisheries of the eastern Pacific Ocean. The other module, which was developed for the Coastal Pelagics Division of the Southwest Fishery Science Center, assists management of by-catch of mako, blue, and thresher sharks along the Californian coast. Both modules were built with the EASy marine geographic information system, which provides a 4 dimensional (latitude, longitude, depth, and time) home for integration of the data. The projects currently provide tools for automated downloading and geo-referencing of satellite imagery of sea surface temperature, height, and chlorophyll concentrations; output from JPL’s ECCO2 global circulation model and its ROM California current model; and gridded data from fisheries and fishery surveys. It also provides statistical tools for defining species habitat from these and other types of environmental data. These tools include unbalanced ANOVA, EOF analysis of satellite imagery, and multivariate search routines for fitting fishery data to transforms of the environmental data. Output from the projects consists of dynamic maps of the distribution of the species that are driven by the time series of satellite imagery and output from the circulation models. It also includes relationships between environmental variables and recruitment. During the talk, we will briefly demonstrate features of the software and present the results of our analyses of habitats.
Numerical Modeling of Ocean Circulation
NASA Astrophysics Data System (ADS)
Miller, Robert N.
2007-01-01
The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details
Regional climates in the GISS global circulation model - Synoptic-scale circulation
NASA Technical Reports Server (NTRS)
Hewitson, B.; Crane, R. G.
1992-01-01
A major weakness of current general circulation models (GCMs) is their perceived inability to predict reliably the regional consequences of a global-scale change, and it is these regional-scale predictions that are necessary for studies of human-environmental response. For large areas of the extratropics, the local climate is controlled by the synoptic-scale atmospheric circulation, and it is the purpose of this paper to evaluate the synoptic-scale circulation of the Goddard Institute for Space Studies (GISS) GCM. A methodology for validating the daily synoptic circulation using Principal Component Analysis is described, and the methodology is then applied to the GCM simulation of sea level pressure over the continental United States (excluding Alaska). The analysis demonstrates that the GISS 4 x 5 deg GCM Model II effectively simulates the synoptic-scale atmospheric circulation over the United States. The modes of variance describing the atmospheric circulation of the model are comparable to those found in the observed data, and these modes explain similar amounts of variance in their respective datasets. The temporal behavior of these circulation modes in the synoptic time frame are also comparable.
Climatic impact of Amazon deforestation - a mechanistic model study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning Zeng; Dickinson, R.E.; Xubin Zeng
1996-04-01
Recent general circulation model (GCM) experiments suggest a drastic change in the regional climate, especially the hydrological cycle, after hypothesized Amazon basinwide deforestation. To facilitate the theoretical understanding os such a change, we develop an intermediate-level model for tropical climatology, including atmosphere-land-ocean interaction. The model consists of linearized steady-state primitive equations with simplified thermodynamics. A simple hydrological cycle is also included. Special attention has been paid to land-surface processes. It generally better simulates tropical climatology and the ENSO anomaly than do many of the previous simple models. The climatic impact of Amazon deforestation is studied in the context of thismore » model. Model results show a much weakened Atlantic Walker-Hadley circulation as a result of the existence of a strong positive feedback loop in the atmospheric circulation system and the hydrological cycle. The regional climate is highly sensitive to albedo change and sensitive to evapotranspiration change. The pure dynamical effect of surface roughness length on convergence is small, but the surface flow anomaly displays intriguing features. Analysis of the thermodynamic equation reveals that the balance between convective heating, adiabatic cooling, and radiation largely determines the deforestation response. Studies of the consequences of hypothetical continuous deforestation suggest that the replacement of forest by desert may be able to sustain a dry climate. Scaling analysis motivated by our modeling efforts also helps to interpret the common results of many GCM simulations. When a simple mixed-layer ocean model is coupled with the atmospheric model, the results suggest a 1{degrees}C decrease in SST gradient across the equatorial Atlantic Ocean in response to Amazon deforestation. The magnitude depends on the coupling strength. 66 refs., 16 figs., 4 tabs.« less
An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skyllingstad, E.D.; Denbo, D.W.
Numerical experiments were performed using a three-dimensional large-eddy simulation model of the ocean surface mixed layer that includes the Craik-Leibovich vortex force to parameterize the interaction of surface waves with mean currents. Results from the experiments show that the vortex force generates Langmuir circulations that can dominate vertical mixing. The simulated vertical velocity fields show linear, small-scale, coherent structures near the surface that extend downwind across the model domain. In the interior of the mixed layer, scales of motion increase to eddy sizes that are roughly equivalent to the mixed-layer depth. Cases with the vortex force have stronger circulations nearmore » the surface in contrast to cases with only heat flux and wind stress, particularly when the heat flux is positive. Calculations of the velocity variance and turbulence dissipation rates for cases with and without the vortex force, surface cooling, and wind stress indicate that wave-current interactions are a dominant mixing process in the upper mixed layer. Heat flux calculations show that the entrainment rate at the mixed-layer base can be up to two times greater when the vortex force is included. In a case with reduced wind stress, turbulence dissipation rates remained high near the surface because of the vortex force interaction with preexisting inertial currents. In deep mixed layers ({approximately}250 m) the simulations show that Langmuir circulations can vertically transport water 145 m during conditions of surface heating. Observations of turbulence dissipation rates and the vertical temperature structure support the model results. 42 refs., 20 figs., 21 tabs.« less
NASA Astrophysics Data System (ADS)
Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.
2018-04-01
Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with ENSO-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of ENSO-ISM teleconnections in G1 models. Warm Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which ENSO-ISM teleconnections are underestimated. On the other hand, many G2 models are able to represent most of large-scale circulation over Indo-Pacific region associated with El Niño and hence provide more realistic ENSO-ISM teleconnections. Therefore, this study advocates the importance of representation/simulation of large-scale circulation patterns during El Niño years in coupled models in order to capture El Niño-monsoon teleconnections well.
Papazyan, Romeo; Liu, Xueqing; Liu, Jingwen; Dong, Bin; Plummer, Emily M; Lewis, Ronald D; Roth, Jonathan D; Young, Mark A
2018-06-01
Obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist that regulates bile acid and lipid metabolism. FXR activation induces distinct changes in circulating cholesterol among animal models and humans. The mechanistic basis of these effects has been elusive because of difficulties in studying lipoprotein homeostasis in mice, which predominantly package circulating cholesterol in HDLs. Here, we tested the effects of OCA in chimeric mice whose livers are mostly composed (≥80%) of human hepatocytes. Chimeric mice exhibited a human-like ratio of serum LDL cholesterol (LDL-C) to HDL cholesterol (HDL-C) at baseline. OCA treatment in chimeric mice increased circulating LDL-C and decreased circulating HDL-C levels, demonstrating that these mice closely model the cholesterol effects of FXR activation in humans. Mechanistically, OCA treatment increased hepatic cholesterol in chimeric mice but not in control mice. This increase correlated with decreased SREBP-2 activity and target gene expression, including a significant reduction in LDL receptor protein. Cotreatment with atorvastatin reduced total cholesterol, rescued LDL receptor protein levels, and normalized serum LDL-C. Treatment with two clinically relevant nonsteroidal FXR agonists elicited similar lipoprotein and hepatic changes in chimeric mice, suggesting that the increase in circulating LDL-C is a class effect of FXR activation.
The circulation of the cerebrospinal fluid (CSF) in the spinal canal
NASA Astrophysics Data System (ADS)
Sanchez, Antonio L.; Martinez-Bazan, Carlos; Lasheras, Juan C.
2016-11-01
Cerebrospinal Fluid (CSF) is secreted in the choroid plexus in the lateral sinuses of the brain and fills the subarachnoid space bathing the external surfaces of the brain and the spinal canal. Absence of CSF circulation has been shown to impede its physiological function that includes, among others, supplying nutrients to neuronal and glial cells and removing the waste products of cellular metabolism. Radionuclide scanning images published by Di Chiro in 1964 showed upward migration of particle tracers from the lumbar region of the spinal canal, thereby suggesting the presence of an active bulk circulation responsible for bringing fresh CSF into the spinal canal and returning a portion of it to the cranial vault. However, the existence of this slow moving bulk circulation in the spinal canal has been a subject of dispute for the last 50 years. To date, there has been no physical explanation for the mechanism responsible for the establishment of such a bulk motion. We present a perturbation analysis of the flow in an idealized model of the spinal canal and show how steady streaming could be responsible for the establishment of such a circulation. The results of this analysis are compared to flow measurements conducted on in-vitro models of the spinal canal of adult humans.
NASA Astrophysics Data System (ADS)
Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Barisevičiūtė, Ruta; Baziukė, Dalia; Ertürk, Ali; Gasiūnaitė, Jovita; Gulbinskas, Saulius; Lubienė, Irma; Maračkinaite, Jurgita; Petkuvienė, Jolita; Pilkaitytė, Renata; Ruginis, Tomas; Zemlys, Petras; Žilius, Mindaugas
2013-04-01
The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by the European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Overall, the project will develop according to 4 main phases: 1) A pilot study to measure the isotope composition of different carbon compounds (dissolved and suspended) in different water bodies that feed water into the central lagoon. Through this pilot study the optimal study sites for the seasonal campaign will be identified as well. 2) Seasonal field campaigns in the monitoring stations identified in phase 1 to measure the carbon isotope ratio. 3) Development of a model that describes the kinetics of carbon isotopes and its transformation. 4) Application of a hydrodynamic model that includes the kinetic model and uses the data in order to describe the overall circulation patterns in the Curonian lagoon. Project activities will be carried out as common co-ordinated effort of field an SI group and the modeling group that will have to calibrate the hydrodynamic model. In this way the expertise of different groups (physicists and oceanographers) will result in added value, providing the best available expertise along the eastern coast of the Baltic.
NASA Technical Reports Server (NTRS)
Douglas, A. R.; Stolarski, R. S.; Schoeberl, M. R.; Jackman, C. H.; Gupta, M. L.; Newman, P. A.; Nielsen, J. E.; Fleming, E. L.
2008-01-01
Model-derived estimates of the annually integrated destruction and lifetime for various ozone depleting substances (ODSs) depend on the simulated stratospheric transport and mixing in the global model used to produce the estimate. Observations in the middle and high latitude lower stratosphere show that the mean age of an air parcel (i.e., the time since its stratospheric entry) is related to the fractional release for the ODs (i.e., the amount of the ODS that has been destroyed relative to the amount at the time of stratospheric entry). We use back trajectory calculations to produce an age spectrum, and explain the relationship between the mean age and the fractional release by showing that older elements in the age spectrum have experienced higher altitudes and greater ODs destruction than younger elements. In our study, models with faster circulations produce distributions for the age-of-air that are 'young' compared to a distribution derived from observations. These models also fail to reproduce the observed relationship between the mean age of air and the fractional release. Models with slower circulations produce both realistic distributions for mean age and a realistic relationship between mean age and fractional release. These models also produce a CFCl3 lifetime of approximately 56 years, longer than the 45 year lifetime used to project future mixing ratios. We find that the use of flux boundary conditions in assessment models would have several advantages, including consistency between ODS evolution and simulated loss even if the simulated residual circulation changes due to climate change.
A 3D, finite element model for baroclinic circulation on the Vancouver Island continental shelf
Walters, R.A.; Foreman, M.G.G.
1992-01-01
This paper describes the development and application of a 3-dimensional model of the barotropic and baroclinic circulation on the continental shelf west of Vancouver Island, Canada. A previous study with a 2D barotropic model and field data revealed that several tidal constituents have a significant baroclinic component (the K1 in particular). Thus we embarked on another study with a 3D model to study the baroclinic effects on the residual and several selected tidal constituents. The 3D model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for density so that density gradient forcing is included in the momentum equations. However, the study presented here describes diagnostic calculations for the baroclinic residual circulation only. The model is sufficiently efficient that it encourages sensitivity testing with a large number of model runs. In this sense, the model is akin to an extension of analytical solutions to the domain of irregular geometry and bottom topography where this parameter space can be explored in some detail. In particular, the consequences of the sigma coordinate system used by the model are explored. Test cases using an idealized representation of the continental shelf, shelf break and shelf slope, lead to an estimation of the velocity errors caused by interpolation errors inherent in the sigma coordinate system. On the basis of these estimates, the computational grid used in the 2D model is found to have inadequate resolution. Thus a new grid is generated with increased accuracy in the region of the shelf break. However, even with increased resolution, spurious baroclinic circulation seaward of the shelf break and in the vicinity of Juan de Fuca canyon remained a significant problem when the pressure gradient terms were evaluated using the ?? coordinate system and using a realistic density profile. With the new grid, diagnostic calculations of the barotropic and baroclinic residual circulation are performed using forcing from the observed ??t (density) field and from the gradient of this field. ?? 1992.
NASA Technical Reports Server (NTRS)
Lettenmaier, Dennis P. (Editor); Rind, D. (Editor)
1992-01-01
The present conference on the hydrological aspects of global climate change discusses land-surface schemes for future climate models, modeling of the land-surface boundary in climate models as a composite of independent vegetation, a land-surface hydrology parameterizaton with subgrid variability for general circulation models, and conceptual aspects of a statistical-dynamical approach to represent landscape subgrid-scale heterogeneities in atmospheric models. Attention is given to the impact of global warming on river runoff, the influence of atmospheric moisture transport on the fresh water balance of the Atlantic drainage basin, a comparison of observations and model simulations of tropospheric water vapor, and the use of weather types to disaggregate the prediction of general circulation models. Topics addressed include the potential response of an Arctic watershed during a period of global warming and the sensitivity of groundwater recharge estimates to climate variability and change.
pyhector: A Python interface for the simple climate model Hector
Willner, Sven N.; Hartin, Corinne; Gieseke, Robert
2017-04-01
Here, pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary productionmore » and respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system. The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2.« less
Slow and Steady: Ocean Circulation. The Influence of Sea Surface Height on Ocean Currents
NASA Technical Reports Server (NTRS)
Haekkinen, Sirpa
2000-01-01
The study of ocean circulation is vital to understanding how our climate works. The movement of the ocean is closely linked to the progression of atmospheric motion. Winds close to sea level add momentum to ocean surface currents. At the same time, heat that is stored and transported by the ocean warms the atmosphere above and alters air pressure distribution. Therefore, any attempt to model climate variation accurately must include reliable calculations of ocean circulation. Unlike movement of the atmosphere, movement of the ocean's waters takes place mostly near the surface. The major patterns of surface circulation form gigantic circular cells known as gyres. They are categorized according to their general location-equatorial, subtropical, subpolar, and polar-and may run across an entire ocean. The smaller-scale cell of ocean circulation is known' as an eddy. Eddies are much more common than gyres and much more difficult to track in computer simulations of ocean currents.
Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 1
NASA Technical Reports Server (NTRS)
Jones, Gregory S. (Editor); Joslin, Ronald D. (Editor)
2005-01-01
As technological advances influence the efficiency and effectiveness of aerodynamic and hydrodynamic applications, designs and operations, this workshop was intended to address the technologies, systems, challenges and successes specific to Coanda driven circulation control in aerodynamics and hydrodynamics. A major goal of this workshop was to determine the 2004 state-of-the-art in circulation control and understand the roadblocks to its application. The workshop addressed applications, CFD, and experiments related to circulation control, emphasizing fundamental physics, systems analysis, and applied research. The workshop consisted of 34 single session oral presentations and written papers that focused on Naval hydrodynamic vehicles (e.g. submarines), Fixed Wing Aviation, V/STOL platforms, propulsion systems (including wind turbine systems), ground vehicles (automotive and trucks) and miscellaneous applications (e.g., poultry exhaust systems and vacuum systems). Several advanced CFD codes were benchmarked using a two-dimensional NCCR circulation control airfoil. The CFD efforts highlighted inconsistencies in turbulence modeling, separation and performance predictions.
NASA Astrophysics Data System (ADS)
Viebahn, Jan; von der Heydt, Anna S.; Dijkstra, Henk A.
2014-05-01
During the past 65 Million (Ma) years, Earth's climate has undergone a major change from warm 'greenhouse' to colder 'icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The Eocene-Oligocene (~34 Ma) and Oligocene-Miocene (~23 Ma) boundaries reflect major transitions in Cenozoic global climate change. Proposed mechanisms of these transitions include reorganization of ocean circulation due to critical gateway opening/deepening, changes in atmospheric CO2-concentration, and feedback mechanisms related to land-ice formation. A long-standing hypothesis is that the formation of the Antarctic Circumpolar Current due to opening/deepening of Southern Ocean gateways led to glaciation of the Antarctic continent. However, while this hypothesis remains controversial, its assessment via coupled climate model simulations depends crucially on the spatial resolution in the ocean component. More precisely, only high-resolution modeling of the turbulent ocean circulation is capable of adequately describing reorganizations in the ocean flow field and related changes in turbulent heat transport. In this study, for the first time results of a high-resolution (0.1° horizontally) realistic global ocean model simulation with a closed Drake Passage are presented. Changes in global ocean temperatures, heat transport, and ocean circulation (e.g., Meridional Overturning Circulation and Antarctic Coastal Current) are established by comparison with an open Drake Passage high-resolution reference simulation. Finally, corresponding low-resolution simulations are also analyzed. The results highlight the essential impact of the ocean eddy field in palaeoclimatic change.
NASA Technical Reports Server (NTRS)
Kurzeja, R. J.; Haggard, K. V.; Grose, W. L.
1984-01-01
The distribution of ozone below 60 km altitude has been simulated in two experiments employing a nine-layer quasi-geostrophic spectral model and linear parameterization of ozone photochemistry, the first of which included thermal and orographic forcing of the planetary scale waves, while the second omitted it. The first experiment exhibited a high latitude winter ozone buildup which was due to a Brewer-Dodson circulation forced by large amplitude (planetary scale) waves in the winter lower stratosphere. Photochemistry was also found to be important down to lower altitudes (20 km) in the summer stratosphere than had previously been supposed.
NASA Astrophysics Data System (ADS)
Qian, Y.; Wang, L.; Leung, L. R.; Lin, G.; Lu, J.; Gao, Y.; Zhang, Y.
2017-12-01
Projecting precipitation changes is challenging because of incomplete understanding of the climate system and biases and uncertainty in climate models. In East Asia where summer precipitation is dominantly influenced by the monsoon circulation and the global models from Coupled Model Intercomparison Project Phase 5 (CMIP5), however, give various projection of precipitation change for 21th century. It is critical for community to know which models' projection are more reliable in response to natural and anthropogenic forcings. In this study we defined multiple-dimensional metrics, measuring the model performance in simulating the present-day of large-scale circulation, regional precipitation and relationship between them. The large-scale circulation features examined in this study include the lower tropospheric southwesterly winds, the western North Pacific subtropical high, the South China Sea Subtropical High, and the East Asian westerly jet in the upper troposphere. Each of these circulation features transport moisture to East Asia, enhancing the moist static energy and strengthening the Meiyu moisture front that is the primary mechanism for precipitation generation in eastern China. Based on these metrics, 30 models in CMIP5 ensemble are classified into three groups. Models in the top performing group projected regional precipitation patterns that are more similar to each other than the bottom or middle performing group and consistently projected statistically significant increasing trends in two of the large-scale circulation indices and precipitation. In contrast, models in the bottom or middle performing group projected small drying or no trends in precipitation. We also find the models that only reasonably reproduce the observed precipitation climatology does not guarantee more reliable projection of future precipitation because good simulation skill could be achieved through compensating errors from multiple sources. Herein the potential for more robust projections of precipitation changes at regional scale is demonstrated through the use of discriminating metric to subsample the multi-model ensemble. The results from this study provides insights for how to select models from CMIP ensemble to project regional climate and hydrological cycle changes.
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator); Davis, G.; Wang, H.
1975-01-01
The author has identified the following significant results. An inexpensive, integrated drogue-aircraft-satellite approach was developed which is based on the Lagrangian technique and employs remotely tracked drogues and dyes together with satellite observation of natural tracers, such as suspended sediment. Results include current circulation studies in Delaware Bay in support of an oil slick movement model; investigations of the dispersion and movement of acid wastes dumped 40 miles off the Delaware coast; and coastal current circulation. In each case, the integrated drogue-aircraft-satellite approach compares favorably with other techniques on the basis of accuracy, cost effectiveness, and performance under severe weather conditions.
A large ozone-circulation feedback and its implications for global warming assessments.
Nowack, Peer J; Abraham, N Luke; Maycock, Amanda C; Braesicke, Peter; Gregory, Jonathan M; Joshi, Manoj M; Osprey, Annette; Pyle, John A
2015-01-01
State-of-the-art climate models now include more climate processes which are simulated at higher spatial resolution than ever 1 . Nevertheless, some processes, such as atmospheric chemical feedbacks, are still computationally expensive and are often ignored in climate simulations 1,2 . Here we present evidence that how stratospheric ozone is represented in climate models can have a first order impact on estimates of effective climate sensitivity. Using a comprehensive atmosphere-ocean chemistry-climate model, we find an increase in global mean surface warming of around 1°C (~20%) after 75 years when ozone is prescribed at pre-industrial levels compared with when it is allowed to evolve self-consistently in response to an abrupt 4×CO 2 forcing. The difference is primarily attributed to changes in longwave radiative feedbacks associated with circulation-driven decreases in tropical lower stratospheric ozone and related stratospheric water vapour and cirrus cloud changes. This has important implications for global model intercomparison studies 1,2 in which participating models often use simplified treatments of atmospheric composition changes that are neither consistent with the specified greenhouse gas forcing scenario nor with the associated atmospheric circulation feedbacks 3-5 .
Garcia-Canadilla, Patricia; Rudenick, Paula A.; Crispi, Fatima; Cruz-Lemini, Monica; Palau, Georgina; Camara, Oscar; Gratacos, Eduard; Bijens, Bart H.
2014-01-01
Intrauterine growth restriction (IUGR) due to placental insufficiency is associated with blood flow redistribution in order to maintain delivery of oxygenated blood to the brain. Given that, in the fetus the aortic isthmus (AoI) is a key arterial connection between the cerebral and placental circulations, quantifying AoI blood flow has been proposed to assess this brain sparing effect in clinical practice. While numerous clinical studies have studied this parameter, fundamental understanding of its determinant factors and its quantitative relation with other aspects of haemodynamic remodeling has been limited. Computational models of the cardiovascular circulation have been proposed for exactly this purpose since they allow both for studying the contributions from isolated parameters as well as estimating properties that cannot be directly assessed from clinical measurements. Therefore, a computational model of the fetal circulation was developed, including the key elements related to fetal blood redistribution and using measured cardiac outflow profiles to allow personalization. The model was first calibrated using patient-specific Doppler data from a healthy fetus. Next, in order to understand the contributions of the main parameters determining blood redistribution, AoI and middle cerebral artery (MCA) flow changes were studied by variation of cerebral and peripheral-placental resistances. Finally, to study how this affects an individual fetus, the model was fitted to three IUGR cases with different degrees of severity. In conclusion, the proposed computational model provides a good approximation to assess blood flow changes in the fetal circulation. The results support that while MCA flow is mainly determined by a fall in brain resistance, the AoI is influenced by a balance between increased peripheral-placental and decreased cerebral resistances. Personalizing the model allows for quantifying the balance between cerebral and peripheral-placental remodeling, thus providing potentially novel information to aid clinical follow up. PMID:24921933
Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere-ocean model
NASA Astrophysics Data System (ADS)
Tolstykh, M. A.; Diansky, N. A.; Gusev, A. V.; Kiktev, D. B.
2014-03-01
A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989-2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997-1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.
Optimal Geoid Modelling to determine the Mean Ocean Circulation - Project Overview and early Results
NASA Astrophysics Data System (ADS)
Fecher, Thomas; Knudsen, Per; Bettadpur, Srinivas; Gruber, Thomas; Maximenko, Nikolai; Pie, Nadege; Siegismund, Frank; Stammer, Detlef
2017-04-01
The ESA project GOCE-OGMOC (Optimal Geoid Modelling based on GOCE and GRACE third-party mission data and merging with altimetric sea surface data to optimally determine Ocean Circulation) examines the influence of the satellite missions GRACE and in particular GOCE in ocean modelling applications. The project goal is an improved processing of satellite and ground data for the preparation and combination of gravity and altimetry data on the way to an optimal MDT solution. Explicitly, the two main objectives are (i) to enhance the GRACE error modelling and optimally combine GOCE and GRACE [and optionally terrestrial/altimetric data] and (ii) to integrate the optimal Earth gravity field model with MSS and drifter information to derive a state-of-the art MDT including an error assessment. The main work packages referring to (i) are the characterization of geoid model errors, the identification of GRACE error sources, the revision of GRACE error models, the optimization of weighting schemes for the participating data sets and finally the estimation of an optimally combined gravity field model. In this context, also the leakage of terrestrial data into coastal regions shall be investigated, as leakage is not only a problem for the gravity field model itself, but is also mirrored in a derived MDT solution. Related to (ii) the tasks are the revision of MSS error covariances, the assessment of the mean circulation using drifter data sets and the computation of an optimal geodetic MDT as well as a so called state-of-the-art MDT, which combines the geodetic MDT with drifter mean circulation data. This paper presents an overview over the project results with focus on the geodetic results part.
Stability of the Atlantic meridional overturning circulation: A model intercomparison
NASA Astrophysics Data System (ADS)
Weaver, Andrew J.; Sedláček, Jan; Eby, Michael; Alexander, Kaitlin; Crespin, Elisabeth; Fichefet, Thierry; Philippon-Berthier, Gwenaëlle; Joos, Fortunat; Kawamiya, Michio; Matsumoto, Katsumi; Steinacher, Marco; Tachiiri, Kaoru; Tokos, Kathy; Yoshimori, Masakazu; Zickfeld, Kirsten
2012-10-01
The evolution of the Atlantic Meridional Overturning Circulation (MOC) in 30 models of varying complexity is examined under four distinct Representative Concentration Pathways. The models include 25 Atmosphere-Ocean General Circulation Models (AOGCMs) or Earth System Models (ESMs) that submitted simulations in support of the 5th phase of the Coupled Model Intercomparison Project (CMIP5) and 5 Earth System Models of Intermediate Complexity (EMICs). While none of the models incorporated the additional effects of ice sheet melting, they all projected very similar behaviour during the 21st century. Over this period the strength of MOC reduced by a best estimate of 22% (18%-25% 5%-95% confidence limits) for RCP2.6, 26% (23%-30%) for RCP4.5, 29% (23%-35%) for RCP6.0 and 40% (36%-44%) for RCP8.5. Two of the models eventually realized a slow shutdown of the MOC under RCP8.5, although no model exhibited an abrupt change of the MOC. Through analysis of the freshwater flux across 30°-32°S into the Atlantic, it was found that 40% of the CMIP5 models were in a bistable regime of the MOC for the duration of their RCP integrations. The results support previous assessments that it is very unlikely that the MOC will undergo an abrupt change to an off state as a consequence of global warming.
NASA Technical Reports Server (NTRS)
Bougher, S. W.; Gerard, J. C.; Stewart, A. I. F.; Fesen, C. G.
1990-01-01
The mechanism responsible for the Venus nitric oxide (0,1) delta band nightglow observed in the Pioneer Venus Orbiter UV spectrometer (OUVS) images was investigated using the Venus Thermospheric General Circulation Model (Dickinson et al., 1984), modified to include simple odd nitrogen chemistry. Results obtained for the solar maximum conditions indicate that the recently revised dark-disk average NO intensity at 198.0 nm, based on statistically averaged OUVS measurements, can be reproduced with minor modifications in chemical rate coefficients. The results imply a nightside hemispheric downward N flux of (2.5-3) x 10 to the 9th/sq cm sec, corresponding to the dayside net production of N atoms needed for transport.
Detection of greenhouse-gas-induced climatic change. Progress report, July 1, 1994--July 31, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, P.D.; Wigley, T.M.L.
1995-07-21
The objective of this research is to assembly and analyze instrumental climate data and to develop and apply climate models as a basis for detecting greenhouse-gas-induced climatic change, and validation of General Circulation Models. In addition to changes due to variations in anthropogenic forcing, including greenhouse gas and aerosol concentration changes, the global climate system exhibits a high degree of internally-generated and externally-forced natural variability. To detect the anthropogenic effect, its signal must be isolated from the ``noise`` of this natural climatic variability. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics.more » To facilitate this, available land and marine data bases will be updated and expanded. The data will be analyzed to determine the potential effects on climate of greenhouse gas and aerosol concentration changes and other factors. Analyses will be guided by a variety of models, from simple energy balance climate models to coupled atmosphere ocean General Circulation Models. These analyses are oriented towards obtaining early evidence of anthropogenic climatic change that would lead either to confirmation, rejection or modification of model projections, and towards the statistical validation of General Circulation Model control runs and perturbation experiments.« less
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)
2000-01-01
A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model were determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (>1000 km) model chlorophyll seasonal distributions were statistically positively correlated with CZCS chlorophyll in 10 of 12 major oceanographic regions, and with SeaWiFS in all 12. Notable disparities in magnitudes occurred, however, in the tropical Pacific, the spring/summer bloom in the Antarctic, autumn in the northern high latitudes, and during the southwest monsoon in the North Indian Ocean. Synoptic scale (100-1000 km) comparisons of satellite and in situ data exhibited broad agreement, although occasional departures were apparent. Model nitrate distributions agreed with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicated that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on basin and synoptic scales.
Multi-scale coupled modelling of waves and currents on the Catalan shelf.
NASA Astrophysics Data System (ADS)
Grifoll, M.; Warner, J. C.; Espino, M.; Sánchez-Arcilla, A.
2012-04-01
Catalan shelf circulation is characterized by a background along-shelf flow to the southwest (including some meso-scale features) plus episodic storm driven patterns. To investigate these dynamics, a coupled multi-scale modeling system is applied to the Catalan shelf (North-western Mediterranean Sea). The implementation consists of a set of increasing-resolution nested models, based on the circulation model ROMS and the wave model SWAN as part of the COAWST modeling system, covering from the slope and shelf region (~1 km horizontal resolution) down to a local area around Barcelona city (~40 m). The system is initialized with MyOcean products in the coarsest outer domain, and uses atmospheric forcing from other sources for the increasing resolution inner domains. Results of the finer resolution domains exhibit improved agreement with observations relative to the coarser model results. Several hydrodynamic configurations were simulated to determine dominant forcing mechanisms and hydrodynamic processes that control coastal scale processes. The numerical results reveal that the short term (hours to days) inner-shelf variability is strongly influenced by local wind variability, while sea-level slope, baroclinic effects, radiation stresses and regional circulation constitute second-order processes. Additional analysis identifies the significance of shelf/slope exchange fluxes, river discharge and the effect of the spatial resolution of the atmospheric fluxes.
Library Circulation Systems: An Overview
ERIC Educational Resources Information Center
Surace, Cecily J.
1972-01-01
The model circulation system outlined is an on-line real time system in which the circulation file is created from the shelf list. The model extends beyond the operational limits of most existing circulation systems and can be considered a reflection of the current state of the art. (36 references) (Author/NH)
Physical oceanography of the US Atlantic and eastern Gulf of Mexico. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milliman, J.D.; Imamura, E.
The report provides a summary of the physical oceanography of the U.S. Atlantic and Eastern Gulf of Mexico and its implication to offshore oil and gas exploration and development. Topics covered in the report include: meteorology and air-sea interactions, circulation on the continental shelf, continental slope and rise circulation, Gulf Stream, Loop Current, deep-western boundary current, surface gravity-wave climatology, offshore engineering implications, implications for resource commercialization, and numerical models of pollutant dispersion.
Scale-up on basis of structured mixing models: A new concept.
Mayr, B; Moser, A; Nagy, E; Horvat, P
1994-02-05
A new scale-up concept based upon mixing models for bioreactors equipped with Rushton turbines using the tanks-in-series concept is presented. The physical mixing model includes four adjustable parameters, i.e., radial and axial circulation time, number of ideally mixed elements in one cascade, and the volume of the ideally mixed turbine region. The values of the model parameters were adjusted with the application of a modified Monte-Carlo optimization method, which fitted the simulated response function to the experimental curve. The number of cascade elements turned out to be constant (N = 4). The model parameter radial circulation time is in good agreement with the one obtained by the pumping capacity. In case of remaining parameters a first or second order formal equation was developed, including four operational parameters (stirring and aeration intensity, scale, viscosity). This concept can be extended to several other types of bioreactors as well, and it seems to be a suitable tool to compare the bioprocess performance of different types of bioreactors. (c) 1994 John Wiley & Sons, Inc.
Climate modeling. [for use in understanding earth's radiation budget
NASA Technical Reports Server (NTRS)
1978-01-01
The requirements for radiation measurements suitable for the understanding, improvement, and verification of models used in performing climate research are considered. Both zonal energy balance models and three dimensional general circulation models are considered, and certain problems are identified as common to all models. Areas of emphasis include regional energy balance observations, spectral band observations, cloud-radiation interaction, and the radiative properties of the earth's surface.
Numerical Model Studies of the Martian Mesoscale Circulations
NASA Technical Reports Server (NTRS)
Segal, Moti; Arritt, Raymond W.
1997-01-01
The study objectives were to evaluate by numerical modeling various possible mesoscale circulation on Mars and related atmospheric boundary layer processes. The study was in collaboration with J. Tillman of the University of Washington (who supported the study observationally). Interaction has been made with J. Prusa of Iowa State University in numerical modeling investigation of dynamical effects of topographically-influenced flow. Modeling simulations included evaluations of surface physical characteristics on: (i) the Martian atmospheric boundary layer and (ii) their impact on thermally and dynamically forced mesoscale flows. Special model evaluations were made in support of selection of the Pathfinder landing sites. J. Tillman's finding of VL-2 inter-annual temperature difference was followed by model simulations attempting to point out the forcing for this feature. Publication of the results in the reviewed literature in pending upon completion of the manuscripts in preparation as indicated later.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willner, Sven N.; Hartin, Corinne; Gieseke, Robert
Here, pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary productionmore » and respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system. The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2.« less
Cardiopulmonary Circuit Models for Predicting Injury to the Heart
NASA Astrophysics Data System (ADS)
Ward, Richard; Wing, Sarah; Bassingthwaighte, James; Neal, Maxwell
2004-11-01
Circuit models have been used extensively in physiology to describe cardiopulmonary function. Such models are being used in the DARPA Virtual Soldier (VS) Project* to predict the response to injury or physiological stress. The most complex model consists of systemic circulation, pulmonary circulation, and a four-chamber heart sub-model. This model also includes baroreceptor feedback, airway mechanics, gas exchange, and pleural pressure influence on the circulation. As part of the VS Project, Oak Ridge National Laboratory has been evaluating various cardiopulmonary circuit models for predicting the effects of injury to the heart. We describe, from a physicist's perspective, the concept of building circuit models, discuss both unstressed and stressed models, and show how the stressed models are used to predict effects of specific wounds. *This work was supported by a grant from the DARPA, executed by the U.S. Army Medical Research and Materiel Command/TATRC Cooperative Agreement, Contract # W81XWH-04-2-0012. The submitted manuscript has been authored by the U.S. Department of Energy, Office of Science of the Oak Ridge National Laboratory, managed for the U.S. DOE by UT-Battelle, LLC, under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purpose.
Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations
NASA Astrophysics Data System (ADS)
Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan
2017-11-01
Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of circulations may be revealed from a collocation of space-borne sensors, including the Global Precipitation Measurement (GPM) and upcoming Aeolus missions.
Stratospheric temperatures and tracer transport in a nudged 4-year middle atmosphere GCM simulation
NASA Astrophysics Data System (ADS)
van Aalst, M. K.; Lelieveld, J.; Steil, B.; Brühl, C.; Jöckel, P.; Giorgetta, M. A.; Roelofs, G.-J.
2005-02-01
We have performed a 4-year simulation with the Middle Atmosphere General Circulation Model MAECHAM5/MESSy, while slightly nudging the model's meteorology in the free troposphere (below 113 hPa) towards ECMWF analyses. We show that the nudging 5 technique, which leaves the middle atmosphere almost entirely free, enables comparisons with synoptic observations. The model successfully reproduces many specific features of the interannual variability, including details of the Antarctic vortex structure. In the Arctic, the model captures general features of the interannual variability, but falls short in reproducing the timing of sudden stratospheric warmings. A 10 detailed comparison of the nudged model simulations with ECMWF data shows that the model simulates realistic stratospheric temperature distributions and variabilities, including the temperature minima in the Antarctic vortex. Some small (a few K) model biases were also identified, including a summer cold bias at both poles, and a general cold bias in the lower stratosphere, most pronounced in midlatitudes. A comparison 15 of tracer distributions with HALOE observations shows that the model successfully reproduces specific aspects of the instantaneous circulation. The main tracer transport deficiencies occur in the polar lowermost stratosphere. These are related to the tropopause altitude as well as the tracer advection scheme and model resolution. The additional nudging of equatorial zonal winds, forcing the quasi-biennial oscillation, sig20 nificantly improves stratospheric temperatures and tracer distributions.
Operation of a cascade air conditioning system with two-phase loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yinshan; Wang, Jinliang; Zhao, Futao
A method of operating a heat transfer system includes starting operation of a first heat transfer fluid vapor/compression circulation loop including a fluid pumping mechanism, a heat exchanger for rejecting thermal energy from a first heat transfer fluid, and a heat absorption side of an internal heat exchanger. A first conduit in a closed fluid circulation loop circulates the first heat transfer fluid therethrough. Operation of a second two-phase heat transfer fluid circulation loop is started after starting operation of the first heat transfer fluid circulation loop. The second heat transfer fluid circulation loop transfers heat to the first heatmore » transfer fluid circulation loop through the internal heat exchanger and includes a heat rejection side of the internal heat exchanger, a liquid pump, and a heat exchanger evaporator. A second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough.« less
NASA Astrophysics Data System (ADS)
Voigt, A.
2017-12-01
Climate models project that global warming will lead to substantial changes in extratropical jet streams. Yet, many quantitative aspects of warming-induced jet stream changes remain uncertain, and recent work has indicated an important role of clouds and their radiative interactions. Here, I will investigate how cloud-radiative changes impact the zonal-mean extratropical circulation response under global warming using a hierarchy of global atmosphere models. I will first focus on aquaplanet setups with prescribed sea-surface temperatures (SSTs), which reproduce the model spread found in realistic simulations with interactive SSTs. Simulations with two CMIP5 models MPI-ESM and IPSL-CM5A and prescribed clouds show that half of the circulation response can be attributed to cloud changes. The rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud changes and is qualitatively reproduced in a dry Held-Suarez model, although the latter is too sensitive because of its simplified treatment of diabatic processes. I will then show that the aquaplanet results also hold when the models are used in a realistic setup that includes continents and seasonality. I will further juxtapose these prescribed-SST simulations with interactive-SST simulations and show that atmospheric and surface cloud-radiative interactions impact the jet poleward jet shifts in about equal measure. Finally, I will discuss the cloud impact on regional and seasonal circulation changes.
Modeling tides and their influence on the circulation in Prince William Sound, Alaska
NASA Astrophysics Data System (ADS)
Wang, Xiaochun; Chao, Yi; Zhang, Hongchun; Farrara, John; Li, Zhijin; Jin, Xin; Park, Kyungeen; Colas, Francois; McWilliams, James C.; Paternostro, Chris; Shum, C. K.; Yi, Yuchan; Schoch, Carl; Olsson, Peter
2013-07-01
In the process of developing a real-time data-assimilating coastal ocean forecasting system for Prince William Sound, Alaska, tidal signal was added to a three-domain nested model for the region. The model, which is configured from the Regional Ocean Modeling System (ROMS), has 40 levels in the vertical direction and horizontal resolutions of 10.6km, 3.6km and 1.2km for its three nested domains, respectively. In the present research, the ROMS tidal solution was validated using data from coastal tide gauges, satellite altimeters, high-frequency coastal radars, and Acoustic Doppler Current Profiler (ADCP) current surveys. The error of barotropic tides, as measured by the total root mean square discrepancy of eight major tidal constituents is 5.3cm, or 5.6% of the tidal sea surface height variability in the open ocean. Along the coastal region, the total discrepancy is 9.6cm, or 8.2% of the tidal sea surface height variability. Model tidal currents agree reasonably well with the observations. The influence of tides on the circulation was also investigated using numerical experiments. Besides tides, other types of forcing fields (heat flux, wind stress, evaporation minus precipitation, and freshwater discharge) were also included in the model. Our results indicate that tides play a significant role in shaping the mean circulation of the region. For the summer months, the tidal residual circulation tends to generate a cyclonic gyre in the central Sound. The net transport into the Sound through Hinchinbrook Entrance is reduced. Tides also increase the mixed layer depth in the Sound, especially during the winter months.
Transient Atmospheric Circulation Changes in a Grand ensemble of Idealized CO2 Increase Experiments
NASA Astrophysics Data System (ADS)
Karpechko, A.; Manzini, E.; Kornblueh, L.
2017-12-01
The yearly evolution with increasing forcing of the large-scale atmospheric circulation is examined in a 68-member ensemble of 1pctCO2 scenario experiments performed with the MPI-ESM model. Each member of the experiment ensemble is integrated for 155 years, from initial conditions taken from a 2000-yr long pre-industrial control climate experiment. The 1pctCO2 scenario experiments are conducted following the protocol of including as external forcing only a CO2 concentration increase at 1%/year, till quadrupling of CO2 concentrations. MPI-ESM is the Max-Planck-Institute Earth System Model (including coupling between the atmosphere, ocean and seaice). By averaging over the 68 members (ensemble mean), atmospheric variability is greatly reduced. Thus, it is possible to investigate the sensitivity to the climate state of the atmospheric response to CO2 doubling. Indicators of global change show the expected monotonic evolution with increasing CO2 and a weak dependence of the thermodynamical response to CO2 doubling on the climate state. The surface climate response of the atmospheric circulation, diagnosed for instance by the pressure at sea level, and the eddy-driven jet response show instead a marked dependence to the climate state, for the Northern winter season. We find that as the CO2 concentration increases above doubling, Northern winter trends in some indicators of atmospheric circulation changes decrease or even reverse, posing the question on what are the causes of this nonlinear behavior. The investigation of the role of stationary waves, the meridional overturning circulation, the decrease in Arctic sea ice and the stratospheric vortex points to the latter as a plausible cause of such nonlinear response.
The dynamics behind Titan's methane clouds.
Mitchell, Jonathan L; Pierrehumbert, Raymond T; Frierson, Dargan M W; Caballero, Rodrigo
2006-12-05
We present results of an axisymmetric global circulation model of Titan with a simplified suite of atmospheric physics forced by seasonally varying insolation. The recent discovery of midlatitude tropospheric clouds on Titan has caused much excitement about the roles of surface sources of methane and the global circulation in forming clouds. Although localized surface sources, such as methane geysers or "cryovolcanoes," have been invoked to explain these clouds, we find in this work that clouds appear in regions of convergence by the mean meridional circulation and over the poles during solstices, where the solar forcing reaches its seasonal maximum. Other regions are inhibited from forming clouds because of dynamical transports of methane and strong subsidence. We find that for a variety of moist regimes, i.e., with the effect of methane thermodynamics included, the observed cloud features can be explained by the large-scale dynamics of the atmosphere. Clouds at the solsticial pole are found to be a robust feature of Titan's dynamics, whereas isolated midlatitude clouds are present exclusively in a variety of moist dynamical regimes. In all cases, even without including methane thermodynamics, our model ceases to produce polar clouds approximately 4-6 terrestrial years after solstices.
The computation of the post-stall behavior of a circulation controlled airfoil
NASA Technical Reports Server (NTRS)
Linton, Samuel W.
1993-01-01
The physics of the circulation controlled airfoil is complex and poorly understood, particularly with regards to jet stall, which is the eventual breakdown of lift augmentation by the jet at some sufficiently high blowing rate. The present paper describes the numerical simulation of stalled and unstalled flows over a two-dimensional circulation controlled airfoil using a fully implicit Navier-Stokes code, and the comparison with experimental results. Mach numbers of 0.3 and 0.5 and jet total to freestream pressure ratios of 1.4 and 1.8 are investigated. The Baldwin-Lomax and k-epsilon turbulence models are used, each modified to include the effect of strong streamline curvature. The numerical solutions of the post-stall circulation controlled airfoil show a highly regular unsteady periodic flowfield. This is the result of an alternation between adverse pressure gradient and shock induced separation of the boundary layer on the airfoil trailing edge.
NASA Astrophysics Data System (ADS)
Inderbitzen, K. E.; Wheat, C. G.; Baker, P. A.; Fisher, A. T.
2014-12-01
Currently, fluid circulation patterns and the evolution of rock/fluid compositions as circulation occurs in subseafloor hydrothermal systems are poorly constrained. Sedimented spreading centers provide a unique opportunity to study subsurface flow because sediment acts as an insulating blanket that traps heat from the cooling magma body and limits: (a) potential flow paths for seawater to recharge the aquifer in permeable upper basaltic basement and (b) points of altered fluid egress. This also allows for a range of thermal and geochemical gradients to exist near the sediment-water interface. Models of fluid circulation patterns in this type of hydrologic setting have been generated (eg. Stein and Fisher, 2001); however fluid chemistry datasets have not previously been used to test the model's viability. We address this issue by integrating the existing circulation model with fluid compositional data collected from sediment pore waters and high temperature hydrothermal vents located in Middle Valley on the Juan de Fuca Ridge. Middle Valley hosts a variety of hydrologic regimes: including areas of fluid recharge (Site 855), active venting (Site 858/1036; Dead Dog vent field), recent venting (Site 856/1035; Bent Hill Massive Sulfide deposit) and a section of heavily sedimented basement located between recharge and discharge sites (Site 857). We will present new results based on thermal and geochemical data from the area of active venting (Sites 858 and 1036), that was collected during Ocean Drilling Program Legs 139 and 169 and a subsequent heat flow/gravity coring effort. These results illuminate fine scale controls on secondary recharge and fluid flow within the sediment section at Site 858/1036. The current status of high temperature vents in this area (based on observations made in July, 2014) will also be outlined.
Bathymetric Changes Shaped by Longshore Currents on a Natural Beach
NASA Astrophysics Data System (ADS)
Reilly, W. L.; Slinn, D.; Plant, N.
2004-12-01
The goal of the project is to simulate beach morphology on time scales of hours to days. Our approach is to develop finite difference solutions from a coupled modeling system consisting of existing nearshore circulation, wave, and sediment flux models. We initialize the model with bathymetry from a dense data set north of the pier at the Field Research Facility (FRF) in Duck, NC. We integrate the model system forward in time and compare the results of the hind-cast of the beach evolution with the field observations. The model domain extends 1000 meters in the alongshore direction and 500 meters in the cross-shore direction with 5 meter grid spacing. The bathymetry is interpolated and filtered from CRAB transects. A second-degree exponential smoothing method is used to return the cross-shore beach profile near the edges of the modeled domain back to the mean alongshore profile, because the circulation model implements periodic boundary conditions in the alongshore direction. The offshore wave height and direction are taken from the 8-meter bipod at the FRF and input to the wave-model, SWAN (Spectral Wave Nearshore), with a Gaussian-shaped frequency spectrum and a directional spreading of 5 degrees. A constant depth induced wave breaking parameter of 0.73 is used. The resulting calculated wave induced force per unit surface area (gradient of the radiation stress) output from SWAN is used to drive the currents in the circulation model. The circulation model is based on the free-surface non-linear shallow water equations and uses the fourth order compact scheme to calculate spatial derivatives and a third order Adams-Bashforth time discretization scheme. Free slip, symmetry boundary conditions are applied at both the shoreline and offshore boundaries. The time averaged sediment flux is calculated at each location after one hour of circulation. The sediment flux model is based on the approach of Bagnold and includes approximations for both bed-load and suspended load. The bathymetry is then updated by computing the divergence of the time averaged sediment fluxes. The process is then repeated using the updated bathymetry in both SWAN and the circulation model. The cycle continues for a simulation of 10 hours. The results of bathymetric change vary for different time-dependent wave conditions and initial bathymetric profiles. Typical results indicate that for wave heights on the order of one meter, shoreline advancement and sandbar evolution is observed on the order of tens of centimeters.
Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 2
NASA Technical Reports Server (NTRS)
Jones, Gregory S. (Editor); Joslin, Ronald D. (Editor)
2005-01-01
This conference proceeding is comprised of papers that were presented at the NASA/ONR Circulation Control Workshop held 16-17 March 2004 at the Radisson-Hampton in Hampton, VA. Over two full days, 30 papers and 4 posters were presented with 110 scientists and engineers in attendance, representing 3 countries. As technological advances influence the efficiency and effectiveness of aerodynamic and hydrodynamic applications, designs, and operations, this workshop was intended to address the technologies, systems, challenges and successes specific to Coanda driven circulation control in aerodynamics and hydrodynamics. A major goal of this workshop was to determine the state-of-the-art in circulation control and to assess the future directions and applications for circulation control. The 2004 workshop addressed applications, experiments, computations, and theories related to circulation control, emphasizing fundamental physics, systems analysis, and applied research. The workshop consisted of single session oral presentations, posters, and written papers that are documented in this unclassified conference proceeding. The format of this written proceeding follows the agenda of the workshop. Each paper is followed with the presentation given at the workshop. the editors compiled brief summaries for each effort that is at the end of this proceeding. These summaries include the paper, oral presentation, and questions or comments that occurred during the workshop. The 2004 Circulation Control Workshop focused on applications including Naval vehicles (Surface and Underwater vehicles), Fixed Wing Aviation (general aviation, commercial, cargo, and business aircraft); V/STOL platforms (helicopters, military aircraft, tilt rotors); propulsion systems (propellers, jet engines, gas turbines), and ground vehicles (automotive, trucks, and other); wind turbines, and other nontraditional applications (e.g., vacuum cleaner, ceiling fan). As part of the CFD focus area of the 2004 CC Workshop, CFD practitioners were invited to compute a two-dimensional benchmark problem for which geometry, flow conditions, grids, and experimental data were available before the workshop. The purpose was to accumulate a database of simulations for a single problem using a range of CFD codes, turbulence models, and grid strategies so as to expand knowledge of model performance/requirements and guide simulation of practical CC configurations.
A blood circulation model for reference man
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, R.W.; Eckerman, K.F.; Williams, L.R.
This paper describes a dynamic blood circulation model that predicts the movement and gradual dispersal of a bolus of material in the circulation after its intravascular injection into an adult human. The main purpose of the model is to improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The total blood volume is partitioned into the blood contents of 24 separate organs or tissues, right heart chambers, left heart chambers, pulmonary circulation, arterial outflow to the systemic tissues (aorta and large arteries), and venous return from the systemic tissues (large veins). As amore » compromise between physical reality and computational simplicity, the circulation of blood is viewed as a system of first-order transfers between blood pools, with the delay time depending on the mean transit time across the pool. The model allows consideration of incomplete, tissue-dependent extraction of material during passage through the circulation and return of material from tissues to plasma.« less
Solar related waves in the Venusian atmosphere from the cloud tops to 100 km
NASA Technical Reports Server (NTRS)
Elson, L. S.
1983-01-01
A quasi-linear diagnostic model using observed solar-related temperatures and a specified solar mean circulation and surface structure to find the solar-related circulation above the clouds of Venus is presented. Despite the greater dependence of model-derived, solar-related circulation on the mean flow than is the case for terrestrial tides, as well as the uncertainty concerning this mean flow, significant conclusions are drawn for the solar-related circulation and thermal structure of Venus. An anomalously large response is found in the polar regions, due to the model's requirement of a process such as dissipation which will act as a major sink for momentum. Dissipation is specified in the model as Rayleigh friction with an unknown free parameter coefficient. In view of this, dissipation is either very efficient by terrestrial standards and accompanied by small solar-related circulation, or similar to that of earth and possessed of a circulation large enough to have an impact on the mean circulation.
The Extratropical Tropopause Inversion Layer
NASA Astrophysics Data System (ADS)
Ming, Alison; Haynes, Peter
2013-04-01
The extratropical tropopause inversion layer (TIL) is studied by analyzing numerical simulations with a dry idealized global circulation model. The model temperature field is relaxed towards different restoration profiles. We demonstrate that in simulations with the Held and Suarez restoration profile, a TIL is present in the steady state, whereas for a different restoration profile no TIL arises. Neither restoration profile includes a TIL-like structure and if an enhancement in the static stability occurs, it is a result of the model dynamics. We consider the mechanisms by which the TIL forms following previous work in attributing the formation to the structure of the residual circulation, but by further examining the relation of the residual circulation to the structure of the Eliassen-Palm flux convergence using the downward control principle. The presence of two separate regions of convergence of the Eliassen-Palm flux, one in the troposphere and the other in the stratosphere, is found to be necessary to the formation of the TIL. We also discuss the relations to other theories that emphasize the role of vertical gradients in radiatively active species.
Low helium flux from the mantle inferred from simulations of oceanic helium isotope data
NASA Astrophysics Data System (ADS)
Bianchi, Daniele; Sarmiento, Jorge L.; Gnanadesikan, Anand; Key, Robert M.; Schlosser, Peter; Newton, Robert
2010-09-01
The high 3He/ 4He isotopic ratio of oceanic helium relative to the atmosphere has long been recognized as the signature of mantle 3He outgassing from the Earth's interior. The outgassing flux of helium is frequently used to normalize estimates of chemical fluxes of elements from the solid Earth, and provides a strong constraint to models of mantle degassing. Here we use a suite of ocean general circulation models and helium isotope data obtained by the World Ocean Circulation Experiment to constrain the flux of helium from the mantle to the oceans. Our results suggest that the currently accepted flux is overestimated by a factor of 2. We show that a flux of 527 ± 102 mol year - 1 is required for ocean general circulation models that produce distributions of ocean ventilation tracers such as radiocarbon and chlorofluorocarbons that match observations. This new estimate calls for a reevaluation of the degassing fluxes of elements that are currently tied to the helium fluxes, including noble gases and carbon dioxide.
NASA Astrophysics Data System (ADS)
Zhang, G. J.; Song, X.
2017-12-01
The double ITCZ bias has been a long-standing problem in coupled atmosphere-ocean models. A previous study indicates that uncertainty in the projection of global warming due to doubling of CO2 is closely related to the double ITCZ biases in global climate models. Thus, reducing the double ITCZ biases is not only important to getting the current climate features right, but also important to narrowing the uncertainty in future climate projection. In this work, we will first review the possible factors contributing to the ITCZ problem. Then, we will focus on atmospheric convection, presenting recent progress in alleviating the double ITCZ problem and its sensitivity to details of convective parameterization, including trigger conditions for convection onset, convective memory, entrainment rate, updraft model and closure in the NCAR CESM1. These changes together can result in dramatic improvements in the simulation of ITCZ. Results based on both atmospheric only and coupled simulations with incremental changes of convection scheme will be shown to demonstrate the roles of convection parameterization and coupled interaction between convection, atmospheric circulation and ocean circulation in the simulation of ITCZ.
Anisotropic shear dispersion parameterization for ocean eddy transport
NASA Astrophysics Data System (ADS)
Reckinger, Scott; Fox-Kemper, Baylor
2015-11-01
The effects of mesoscale eddies are universally treated isotropically in global ocean general circulation models. However, observations and simulations demonstrate that the mesoscale processes that the parameterization is intended to represent, such as shear dispersion, are typified by strong anisotropy. We extend the Gent-McWilliams/Redi mesoscale eddy parameterization to include anisotropy and test the effects of varying levels of anisotropy in 1-degree Community Earth System Model (CESM) simulations. Anisotropy has many effects on the simulated climate, including a reduction of temperature and salinity biases, a deepening of the southern ocean mixed-layer depth, impacts on the meridional overturning circulation and ocean energy and tracer uptake, and improved ventilation of biogeochemical tracers, particularly in oxygen minimum zones. A process-based parameterization to approximate the effects of unresolved shear dispersion is also used to set the strength and direction of anisotropy. The shear dispersion parameterization is similar to drifter observations in spatial distribution of diffusivity and high-resolution model diagnosis in the distribution of eddy flux orientation.
The Potential for Predicting Precipitation on Seasonal-to-Interannual Timescales
NASA Technical Reports Server (NTRS)
Koster, R. D.
1999-01-01
The ability to predict precipitation several months in advance would have a significant impact on water resource management. This talk provides an overview of a project aimed at developing this prediction capability. NASA's Seasonal-to-Interannual Prediction Project (NSIPP) will generate seasonal-to-interannual sea surface temperature predictions through detailed ocean circulation modeling and will then translate these SST forecasts into forecasts of continental precipitation through the application of an atmospheric general circulation model and a "SVAT"-type land surface model. As part of the process, ocean variables (e.g., height) and land variables (e.g., soil moisture) will be updated regularly via data assimilation. The overview will include a discussion of the variability inherent in such a modeling system and will provide some quantitative estimates of the absolute upper limits of seasonal-to-interannual precipitation predictability.
NASA Technical Reports Server (NTRS)
Salby, Murry
1998-01-01
A 3-dimensional model was developed to support mechanistic studies. The model solves the global primitive equations in isentropic coordinates, which directly characterize diabatic processes forcing the Brewer-Dobson circulation of the middle atmosphere. It's numerical formulation is based on Hough harmonics, which partition horizontal motion into its rotational and divergent components. These computational features, along with others, enable 3D integrations to be performed practically on RISC computer architecture, on which they can be iterated to support mechanistic studies. The model conserves potential vorticity quite accurately under adiabatic conditions. Forced by observed tropospheric structure, in which integrations are anchored, the model generates a diabatic circulation that is consistent with satellite observations of tracer behavior and diabatic cooling rates. The model includes a basic but fairly complete treatment of gas-phase photochemistry that represents some 20 chemical species and 50 governing reactions with diurnally-varying shortwave absorption. The model thus provides a reliable framework to study transport and underlying diabatic processes, which can then be compared against chemical and dynamical structure observed and in GCM integrations. Integrations with the Langley GCM were performed to diagnose feedback between simulated convection and the tropical circulation. These were studied in relation to tropospheric properties controlling moisture convergence and environmental conditions supporting deep convection, for comparison against mechanistic integrations of wave CISK that successfully reproduce the Madden-Julian Oscillation (MJO) of the tropical circulation. These comparisons were aimed at identifying and ultimately improving aspects of the convective simulation, with the objective of recovering a successful simulation of the MJO in the Langley GCM, behavior that should be important to budgets of upper-tropospheric water vapor and chemical species.
A High-Resolution Model of Water Mass Transformation and Transport in the Weddell Sea
NASA Astrophysics Data System (ADS)
Hazel, J.; Stewart, A.
2016-12-01
The ocean circulation around the Antarctic margins has a pronounced impact on the global ocean and climate system. One of these impacts includes closing the global meridional overturning circulation (MOC) via formation of dense Antarctic Bottom Water (AABW), which ventilates a large fraction of the subsurface ocean. AABW is also partially composed of modified Circumpolar Deep Water (CDW), a warm, mid-depth water mass whose transport towards the continent has the potential to induce rapid retreat of marine-terminating glaciers. Previous studies suggest that these water mass exchanges may be strongly influenced by high-frequency processes such as downslope gravity currents, tidal flows, and mesoscale/submesoscale eddy transport. However, evaluating the relative contributions of these processes to near-Antarctic water mass transports is hindered by the region's relatively small scales of motion and the logistical difficulties in taking measurements beneath sea ice.In this study we develop a regional model of the Weddell Sea, the largest established source of AABW. The model is forced by an annually-repeating atmospheric state constructed from the Antarctic Mesoscale Prediction System data and by annually-repeating lateral boundary conditions constructed from the Southern Ocean State Estimate. The model incorporates the full Filchner-Ronne cavity and simulates the thermodynamics and dynamics of sea ice. To analyze the role of high-frequency processes in the transport and transformation of water masses, we compute the model's overturning circulation, water mass transformations, and ice sheet basal melt at model horizontal grid resolutions ranging from 1/2 degree to 1/24 degree. We temporally decompose the high-resolution (1/24 degree) model circulation into components due to mean, eddy and tidal flows and discuss the geographical dependence of these processes and their impact on water mass transformation and transport.
Responses of estuarine circulation and salinity to the loss of intertidal flats – A modeling study
Yang, Zhaoqing; Wang, Taiping
2015-08-25
Intertidal flats in estuaries are coastal wetlands that provide critical marine habitats to support wide ranges of marine species. Over the last century many estuarine systems have experienced significant loss of intertidal flats due to anthropogenic impacts. This paper presents a modeling study conducted to investigate the responses of estuarine hydrodynamics to the loss of intertidal flats caused by anthropogenic actions in Whidbey Basin of Puget Sound on the northwest coast of North America. Changes in salinity intrusion limits in the estuaries, salinity stratification, and circulation in intertidal flats and estuaries were evaluated by comparing model results under the existingmore » baseline condition and the no-flat condition. Model results showed that loss of intertidal flats results in an increase in salinity intrusion, stronger mixing, and a phase shift in salinity and velocity fields in the bay front areas. Model results also indicated that loss of intertidal flats enhances two-layer circulation, especially the bottom water intrusion. Loss of intertidal flats increases the mean salinity but reduces the salinity range in the subtidal flats over a tidal cycle because of increased mixing. Salinity intrusion limits extend upstream in all three major rivers discharging into Whidbey Basin when no intertidal flats are present. Changes in salinity intrusion and estuarine circulation patterns due to loss of intertidal flats affect the nearshore habitat and water quality in estuaries and potentially increase risk of coastal hazards, such as storm surge and coastal flooding. Furthermore, model results suggested the importance of including intertidal flats and the wetting-and-drying process in hydrodynamic simulations when intertidal flats are present in the model domain.« less
NASA Astrophysics Data System (ADS)
Cosoli, Simone; Licer, Matjaz; Malacic, Vlado; Papapostolou, Alexandros; Axaopoulos, Panagiotis
2015-04-01
During the last decade high-frequency (HF) radar systems have been installed operationally throughout the world, and extensive validation efforts have proven their reliability in mapping near-surface currents at high spatial and temporal resolutions. Nowadays, they are considered as a reliable benchmark for the validation of numerical circulation models and of tidal current models. Similarly to HFR data, ocean circulation models are now considered reliable tools that are routinely put into operational use to provide a wide range of products of public interest. To insure the scientific integrity, assessing the skill of the model products is a crucial point, especially in coastal areas where tidal processes (such as currents or mixing) are important, bathymetry and changes in the vertical and horizontal structure of temperature, salinity, and density due either to seasonal variations or impulsive-type freshwater input are also critical. Here we present the case of the Gulf of Trieste, northern Adriatic Sea, a complex coastal region in which circulation is controlled by a number of complex processes that include tides, wind, waves and variations in river discharge with significant temporal variability. By comparing radar observations, data from moorings and coastal tide gauges, with the output of different circulation models (NAPOM -an operational version of Princeton Ocean Model (POM) for the Northern Adriatic; and OTPS, a barotropic tidal model for the Northern Adriatic), we show that: HFR observations and model simulations are complementary tools in complex coastal regions, in the sense that they reciprocally help accounting for their intrinsic limitations (i.e., lack of vertical resolution in HFR data; areas with significant topographic gradients for models); tidal models accurately describe tidal features in the region; and that existing intrinsic data-model discrepancies can be interpreted and used to propose correction to the models.
Luria, Oded; Bar, Jacob; Kovo, Michal; Malinger, Gustavo; Golan, Abraham; Barnea, Ofer
2012-04-01
Fetal growth restriction (FGR) elicits hemodynamic compensatory mechanisms in the fetal circulation. These mechanisms are complex and their effect on the cerebral oxygen availability is not fully understood. To quantify the contribution of each compensatory mechanism to the fetal cerebral oxygen availability, a mathematical model of the fetal circulation was developed. The model was based on cardiac-output distribution in the fetal circulation. The compensatory mechanisms of FGR were simulated and their effects on cerebral oxygen availability were analyzed. The mathematical analysis included the effects of cerebral vasodilation, placental resistance to blood flow, degree of blood shunting by the ductus venosus and the effect of maternal-originated placental insufficiency. The model indicated a unimodal dependency between placental blood flow and cerebral oxygen availability. Optimal cerebral oxygen availability was achieved when the placental blood flow was mildly reduced compared to the normal flow. This optimal ratio was found to increase as the hypoxic state of FGR worsens. The model indicated that cerebral oxygen availability is increasingly dependent on the cardiac output distribution as the fetus gains weight. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
SASSYS pretest analysis of the THORS-SHRS experiments. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordner, G.L.; Dunn, F.E.
The THORS Facility at ORNL was recently modified to allow the testing of two parallel 19-pin simulated fueled subassemblies under natural circulation conditions similar to those that might occur during a partial failure of the shutdown heat removal system (SHRS) of a liquid-metal fast breeder reactor. The planned experimental program included a series of tests at various inlet plenum temperatures to determine boiling threshold power levels and the power range for stable boiling during natural circulation operation. Pretest calculations were performed at ANL, which supplement those carried out at ORNL for the purposes of validating the SASSYS model in themore » natural circulation regime and of providing data which would be useful in planning the experiments.« less
NASA Astrophysics Data System (ADS)
Zhou, W.; Zhao, C. S.; Duan, L. B.; Qu, C. R.; Lu, J. Y.; Chen, X. P.
Oxy-fuel circulating fluidized bed (CFB) combustion technology is in the stage of initial development for carbon capture and storage (CCS). Numerical simulation is helpful to better understanding the combustion process and will be significant for CFB scale-up. In this paper, a computational fluid dynamics (CFD) model was employed to simulate the hydrodynamics of gas-solid flow in a CFB riser based on the Eulerian-Granular multiphase model. The cold model predicted the main features of the complex gas-solid flow, including the cluster formation of the solid phase along the walls, the flow structure of up-flow in the core and downward flow in the annular region. Furthermore, coal devolatilization, char combustion and heat transfer were considered by coupling semi-empirical sub-models with CFD model to establish a comprehensive model. The gas compositions and temperature profiles were predicted and the outflow gas fractions are validated with the experimental data in air combustion. With the experimentally validated model being applied, the concentration and temperature distributions in O2/CO2 combustion were predicted. The model is useful for the further development of a comprehensive model including more sub-models, such as pollutant emissions, and better understanding the combustion process in furnace.
NASA Technical Reports Server (NTRS)
Kalnay, E.; Balgovind, R.; Chao, W.; Edelmann, D.; Pfaendtner, J.; Takacs, L.; Takano, K.
1983-01-01
Volume 3 of a 3-volume technical memoranda which contains documentation of the GLAS fourth order genera circulation model is presented. The volume contains the CYBER 205 scalar and vector codes of the model, list of variables, and cross references. A dictionary of FORTRAN variables used in the Scalar Version, and listings of the FORTRAN Code compiled with the C-option, are included. Cross reference maps of local variables are included for each subroutine.
A numerical circulation model with topography for the Martian Southern Hemisphere
NASA Technical Reports Server (NTRS)
Mass, C.; Sagan, C.
1975-01-01
A quasi-geostrophic numerical model, including friction, radiation, and the observed planetary topography, is applied to the general circulation of the Martian atmosphere in the Southern Hemisphere at latitudes south of about 35 deg. Near equilibrium weather systems developed after about 5 model days. To avoid violating the quasi-geostrophic approximation, only 0.8 of the already smoothed relief was employed. Weather systems and velocity fields are strikingly tied to topography. A 2mb middle latitude jet stream is found of remarkably terrestrial aspect. Highest surface velocities, both horizontal and vertical, are predicted in western Hellas Planitia and eastern Argyre Planitia, which are observed to be preferred sites of origin of major Martian dust storms. Mean horizontal velocities and vertical velocities are found just above the surface velocity boundary layer.
NASA Astrophysics Data System (ADS)
Roman, Michael; Rauscher, Emily
2017-11-01
Motivated by observational evidence of inhomogeneous clouds in exoplanetary atmospheres, we investigate how proposed simple cloud distributions can affect atmospheric circulations and infrared emission. We simulated temperatures and winds for the hot Jupiter Kepler-7b using a three-dimensional atmospheric circulation model that included a simplified aerosol radiative transfer model. We prescribed fixed cloud distributions and scattering properties based on results previously inferred from Kepler-7b optical phase curves, including inhomogeneous aerosols centered along the western terminator and hypothetical cases in which aerosols additionally extended across much of the planet’s nightside. In all cases, a strong jet capable of advecting aerosols from a cooler nightside to dayside was found to persist, but only at the equator. Colder temperatures at mid and polar latitudes might permit aerosol to form on the dayside without the need for advection. By altering the deposition and redistribution of heat, aerosols along the western terminator produced an asymmetric heating that effectively shifts the hottest spot further east of the substellar point than expected for a uniform distribution. The addition of opaque high clouds on the nightside can partly mitigate this enhanced shift by retaining heat that contributes to warming west of the hotspot. These expected differences in infrared phase curves could place constraints on proposed cloud distributions and their infrared opacities for brighter hot Jupiters.
A heuristic simulation model of Lake Ontario circulation and mass balance transport
McKenna, J.E.; Chalupnicki, M.A.
2011-01-01
The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.
West Florida shelf circulation and temperature budget for the 1998 fall transition
NASA Astrophysics Data System (ADS)
He, Ruoying; Weisberg, Robert H.
2003-05-01
Mid-latitude continental shelves undergo a fall transition as the net heat flux changes from warming to cooling. Using in situ data and a numerical model we investigate the circulation on the west Florida shelf (WFS) for the fall transition of 1998. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind, air pressure, and heat flux fields, plus river inflows. After comparison with observations the model is used to draw inferences on the seasonal and synoptic scale features of the shelf circulation. By running twin experiments, one without and the other with an idealized Loop Current (LC), we explore the relative importance of local versus deep-ocean forcing. We find that local forcing largely controls the inner-shelf circulation, including changes from the Florida Panhandle in the north to regions farther south. The effects of the LC in fall 1998 are to reinforce the mid-shelf currents and to increase the across-shelf transports in the bottom Ekman layer, thereby accentuating the shoreward transport of cold, nutrient rich water of deep-ocean origin. A three-dimensional analysis of the temperature budget reveals that surface heat flux largely controls both the seasonal and synoptic scale temperature variations. Surface cooling leads to convective mixing that rapidly alters temperature gradients. One interesting consequence is that upwelling can result in near-shore warming as warmer offshore waters are advected landward. The temperature balances on the shelf are complex and fully three-dimensional.
The effects of atmospheric cloud radiative forcing on climate
NASA Technical Reports Server (NTRS)
Randall, David A.
1989-01-01
In order to isolate the effects of atmospheric cloud radiative forcing (ACRF) on climate, the general circulation of an ocean-covered earth called 'Seaworld' was simulated using the Colorado State University GCM. Most current climate models, however, do not include an interactive ocean. The key simplifications in 'Seaworld' are the fixed boundary temperature with no land points, the lack of mountains and the zonal uniformity of the boundary conditions. Two 90-day 'perpetual July' simulations were performed and analyzed the last sixty days of each. The first run included all the model's physical parameterizations, while the second omitted the effects of clouds in both the solar and terrestrial radiation parameterizations. Fixed and identical boundary temperatures were set for the two runs, and resulted in differences revealing the direct and indirect effects of the ACRF on the large-scale circulation and the parameterized hydrologic processes.
Ganju, Neil K.; Lentz, Steven J.; Kirincich, Anthony R.; Farrar, J. Thomas
2011-01-01
Inner-shelf circulation is governed by the interaction between tides, baroclinic forcing, winds, waves, and frictional losses; the mean circulation ultimately governs exchange between the coast and ocean. In some cases, oscillatory tidal currents interact with bathymetric features to generate a tidally rectified flow. Recent observational and modeling efforts in an overlapping domain centered on the Martha's Vineyard Coastal Observatory (MVCO) provided an opportunity to investigate the spatial and temporal complexity of circulation on the inner shelf. ADCP and surface radar observations revealed a mean circulation pattern that was highly variable in the alongshore and cross-shore directions. Nested modeling incrementally improved representation of the mean circulation as grid resolution increased and indicated tidal rectification as the generation mechanism of a counter-clockwise gyre near the MVCO. The loss of model skill with decreasing resolution is attributed to insufficient representation of the bathymetric gradients (Δh/h), which is important for representing nonlinear interactions between currents and bathymetry. The modeled momentum balance was characterized by large spatial variability of the pressure gradient and horizontal advection terms over short distances, suggesting that observed inner-shelf momentum balances may be confounded. Given the available observational and modeling data, this work defines the spatially variable mean circulation and its formation mechanism—tidal rectification—and illustrates the importance of model resolution for resolving circulation and constituent exchange near the coast. The results of this study have implications for future observational and modeling studies near the MVCO and other inner-shelf locations with alongshore bathymetric variability.
An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1998-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical 'cores' of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical 'simple physics' parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1998-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Cen- ter and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical "cores" of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. ne two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical "simple physics" parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
Ponce, R; Armstrong, K; Andrews, K; Hensler, J; Waggie, K; Heffernan, J; Reynolds, T; Rogge, M
2005-01-01
Factor XIII (FXIII) is a thrombin-activated plasma coagulation factor critical for blood clot stabilization and longevity. Administration of exogenous FXIII to replenish depleted stores after major surgery, including cardiopulmonary bypass, may reduce bleeding complications and transfusion requirements. Thus, a model of extracorporeal circulation (ECC) was developed in adult male cynomolgus monkeys (Macaca fascicularis) to evaluate the nonclinical safety of recombinant human FXIII (rFXIII). The hematological and coagulation profile in study animals during and after 2 h of ECC was similar to that reported for humans during and after cardiopulmonary bypass, including observations of anemia, thrombocytopenia, and activation of coagulation and platelets. Intravenous slow bolus injection of 300 U/kg (2.1 mg/kg) or 1000 U/kg (7 mg/kg) rFXIII after 2 h of ECC was well tolerated in study animals, and was associated with a dose-dependent increase in FXIII activity. No clinically significant effects in respiration, ECG, heart rate, blood pressure, body temperature, clinical chemistry, hematology (including platelet counts), or indicators of thrombosis (thrombin:anti-thrombin complex and D-Dimer) or platelet activation (platelet factor 4 and beta-thromboglobulin) were related to rFXIII administration. Specific examination of brain, heart, lung, liver, and kidney from rFXIII-treated animals provided no evidence of histopathological alterations suggestive of subclinical hemorrhage or thrombosis. Taken as a whole, the results demonstrate the ECC model suitably replicated the clinical presentation reported for humans during and after cardiopulmonary bypass surgery, and do not suggest significant concerns regarding use of rFXIII in replacement therapy after extracorporeal circulation.
An Isopycnal Box Model with predictive deep-ocean structure for biogeochemical cycling applications
NASA Astrophysics Data System (ADS)
Goodwin, Philip
2012-07-01
To simulate global ocean biogeochemical tracer budgets a model must accurately determine both the volume and surface origins of each water-mass. Water-mass volumes are dynamically linked to the ocean circulation in General Circulation Models, but at the cost of high computational load. In computationally efficient Box Models the water-mass volumes are simply prescribed and do not vary when the circulation transport rates or water mass densities are perturbed. A new computationally efficient Isopycnal Box Model is presented in which the sub-surface box volumes are internally calculated from the prescribed circulation using a diffusive conceptual model of the thermocline, in which upwelling of cold dense water is balanced by a downward diffusion of heat. The volumes of the sub-surface boxes are set so that the density stratification satisfies an assumed link between diapycnal diffusivity, κd, and buoyancy frequency, N: κd = c/(Nα), where c and α are user prescribed parameters. In contrast to conventional Box Models, the volumes of the sub-surface ocean boxes in the Isopycnal Box Model are dynamically linked to circulation, and automatically respond to circulation perturbations. This dynamical link allows an important facet of ocean biogeochemical cycling to be simulated in a highly computationally efficient model framework.
Tawhai, Merryn H.; Clark, Alys R.; Burrowes, Kelly S.
2011-01-01
Biophysically-based computational models provide a tool for integrating and explaining experimental data, observations, and hypotheses. Computational models of the pulmonary circulation have evolved from minimal and efficient constructs that have been used to study individual mechanisms that contribute to lung perfusion, to sophisticated multi-scale and -physics structure-based models that predict integrated structure-function relationships within a heterogeneous organ. This review considers the utility of computational models in providing new insights into the function of the pulmonary circulation, and their application in clinically motivated studies. We review mathematical and computational models of the pulmonary circulation based on their application; we begin with models that seek to answer questions in basic science and physiology and progress to models that aim to have clinical application. In looking forward, we discuss the relative merits and clinical relevance of computational models: what important features are still lacking; and how these models may ultimately be applied to further increasing our understanding of the mechanisms occurring in disease of the pulmonary circulation. PMID:22034608
Altimetry in Marginal, Semi-Enclosed and Coastal Seas. Part 1; Marginal and Semi-Enclosed Seas
NASA Technical Reports Server (NTRS)
Kantha, Lakshmi H.; Beitzell, Diane M.; Harper, Scott L.; Leben, Robert R.
1994-01-01
The objective of this research is to deduce subtidal sea level anomalies in marginal, semi enclosed and coastal seas around the world from altimetric observations so that this data resource can be used both by itself and in conjunction with numerical circulation models to better understand and predict the circulation in these seas. The regions of interest include bodies of water that form the periphery of the principal ocean basins, both here and abroad as shown in the world bathymetry map.
NASA Astrophysics Data System (ADS)
Allison, Lesley; Hawkins, Ed; Woollings, Tim
2015-01-01
Many previous studies have shown that unforced climate model simulations exhibit decadal-scale fluctuations in the Atlantic meridional overturning circulation (AMOC), and that this variability can have impacts on surface climate fields. However, the robustness of these surface fingerprints across different models is less clear. Furthermore, with the potential for coupled feedbacks that may amplify or damp the response, it is not known whether the associated climate signals are linearly related to the strength of the AMOC changes, or if the fluctuation events exhibit nonlinear behaviour with respect to their strength or polarity. To explore these questions, we introduce an objective and flexible method for identifying the largest natural AMOC fluctuation events in multicentennial/multimillennial simulations of a variety of coupled climate models. The characteristics of the events are explored, including their magnitude, meridional coherence and spatial structure, as well as links with ocean heat transport and the horizontal circulation. The surface fingerprints in ocean temperature and salinity are examined, and compared with the results of linear regression analysis. It is found that the regressions generally provide a good indication of the surface changes associated with the largest AMOC events. However, there are some exceptions, including a nonlinear change in the atmospheric pressure signal, particularly at high latitudes, in HadCM3. Some asymmetries are also found between the changes associated with positive and negative AMOC events in the same model. Composite analysis suggests that there are signals that are robust across the largest AMOC events in each model, which provides reassurance that the surface changes associated with one particular event will be similar to those expected from regression analysis. However, large differences are found between the AMOC fingerprints in different models, which may hinder the prediction and attribution of such events in reality.
Parallel Computation of the Regional Ocean Modeling System (ROMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, P; Song, Y T; Chao, Y
2005-04-05
The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds ofmore » processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.« less
Land Surface Data Assimilation and the Northern Gulf Coast Land/Sea Breeze
NASA Technical Reports Server (NTRS)
Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske; Arnold, James E. (Technical Monitor)
2002-01-01
A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSU/NCAR MM5 V3-4 and applied on a 4-km domain for this particular application. It is recognized that a 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.
Secular trends and climate drift in coupled ocean-atmosphere general circulation models
NASA Astrophysics Data System (ADS)
Covey, Curt; Gleckler, Peter J.; Phillips, Thomas J.; Bader, David C.
2006-02-01
Coupled ocean-atmosphere general circulation models (coupled GCMs) with interactive sea ice are the primary tool for investigating possible future global warming and numerous other issues in climate science. A long-standing problem with such models is that when different components of the physical climate system are linked together, the simulated climate can drift away from observation unless constrained by ad hoc adjustments to interface fluxes. However, 11 modern coupled GCMs, including three that do not employ flux adjustments, behave much better in this respect than the older generation of models. Surface temperature trends in control run simulations (with external climate forcing such as solar brightness and atmospheric carbon dioxide held constant) are small compared with observed trends, which include 20th century climate change due to both anthropogenic and natural factors. Sea ice changes in the models are dominated by interannual variations. Deep ocean temperature and salinity trends are small enough for model control runs to extend over 1000 simulated years or more, but trends in some regions, most notably the Arctic, differ substantially among the models and may be problematic. Methods used to initialize coupled GCMs can mitigate climate drift but cannot eliminate it. Lengthy "spin-ups" of models, made possible by increasing computer power, are one reason for the improvements this paper documents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feijoo, M.; Mestre, F.; Castagnaro, A.
This study evaluates the potential effect of climate change on Dry-bean production in Argentina, combining climate models, a crop productivity model and a yield response model estimation of climate variables on crop yields. The study was carried out in the North agricultural regions of Jujuy, Salta, Santiago del Estero and Tucuman which include the largest areas of Argentina where dry beans are grown as a high input crop. The paper combines the output from a crop model with different techniques of analysis. The scenarios used in this study were generated from the output of two General Circulation Models (GCMs): themore » Goddard Institute for Space Studies model (GISS) and the Canadian Climate Change Model (CCCM). The study also includes a preliminary evaluation of the potential changes in monetary returns taking into account the possible variability of yields and prices, using mean-Gini stochastic dominance (MGSD). The results suggest that large climate change may have a negative impact on the Argentine agriculture sector, due to the high relevance of this product in the export sector. The difference negative effect depends on the varieties of dry bean and also the General Circulation Model scenarios considered for double levels of atmospheric carbon dioxide.« less
From global circulation to flood loss: Coupling models across the scales
NASA Astrophysics Data System (ADS)
Felder, Guido; Gomez-Navarro, Juan Jose; Bozhinova, Denica; Zischg, Andreas; Raible, Christoph C.; Ole, Roessler; Martius, Olivia; Weingartner, Rolf
2017-04-01
The prediction and the prevention of flood losses requires an extensive understanding of underlying meteorological, hydrological, hydraulic and damage processes. Coupled models help to improve the understanding of such underlying processes and therefore contribute the understanding of flood risk. Using such a modelling approach to determine potentially flood-affected areas and damages requires a complex coupling between several models operating at different spatial and temporal scales. Although the isolated parts of the single modelling components are well established and commonly used in the literature, a full coupling including a mesoscale meteorological model driven by a global circulation one, a hydrologic model, a hydrodynamic model and a flood impact and loss model has not been reported so far. In the present study, we tackle the application of such a coupled model chain in terms of computational resources, scale effects, and model performance. From a technical point of view, results show the general applicability of such a coupled model, as well as good model performance. From a practical point of view, such an approach enables the prediction of flood-induced damages, although some future challenges have been identified.
NASA Technical Reports Server (NTRS)
Pawson, S.; Stolarski, R.S.; Nielsen, J.E.; Perlwitz, J.; Oman, L.; Waugh, D.
2009-01-01
This study will document the behavior of the polar vortices in two versions of the GEOS CCM. Both versions of the model include the same stratospheric chemistry, They differ in the underlying circulation model. Version 1 of the GEOS CCM is based on the Goddard Earth Observing System, Version 4, general circulation model which includes the finite-volume (Lin-Rood) dynamical core and physical parameterizations from Community Climate Model, Version 3. GEOS CCM Version 2 is based on the GEOS-5 GCM that includes a different tropospheric physics package. Baseline simulations of both models, performed at two-degree spatial resolution, show some improvements in Version 2, but also some degradation, In the Antarctic, both models show an over-persistent stratospheric polar vortex with late breakdown, but the year-to-year variations that are overestimated in Version I are more realistic in Version 2. The implications of this for the interactions with tropospheric climate, the Southern Annular Mode, will be discussed. In the Arctic both model versions show a dominant dynamically forced variabi;ity, but Version 2 has a persistent warm bias in the low stratosphere and there are seasonal differences in the simulations. These differences will be quantified in terms of climate change and ozone loss. Impacts of model resolution, using simulations at one-degree and half-degree, and changes in physical parameterizations (especially the gravity wave drag) will be discussed.
Seasonal overturning circulation in the Red Sea: 2. Winter circulation
NASA Astrophysics Data System (ADS)
Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Köhl, Armin; Gopalakrishnan, Ganesh; Rivas, David
2014-04-01
The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.
NASA Astrophysics Data System (ADS)
Frederiksen, Carsten; Grainger, Simon; Zheng, Xiaogu; Sisson, Janice
2013-04-01
ENSO variability is an important driver of the Southern Hemisphere (SH) atmospheric circulation. Understanding the observed and projected changes in ENSO variability is therefore important to understanding changes in Australian surface climate. Using a recently developed methodology (Zheng et al., 2009), the coherent patterns, or modes, of ENSO-related variability in the SH atmospheric circulation can be separated from modes that are related to intraseasonal variability or to changes in radiative forcings. Under this methodology, the seasonal mean SH 500 hPa geopotential height is considered to consist of three components. These are: (1) an intraseasonal component related to internal dynamics on intraseasonal time scales; (2) a slow-internal component related to internal dynamics on slowly varying (interannual or longer) time scales, including ENSO; and (3) a slow-external component related to external (i.e. radiative) forcings. Empirical Orthogonal Functions (EOFs) are used to represent the modes of variability of the interannual covariance of the three components. An assessment is first made of the modes in models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) dataset for the SH summer and winter seasons in the 20th century. In reanalysis data, two EOFs of the slow component (which includes the slow-internal and slow-external components) have been found to be related to ENSO variability (Frederiksen and Zheng, 2007). In SH summer, the CMIP5 models reproduce the leading ENSO mode very well when the structures of the EOF and the associated SST, and associated variance are considered. There is substantial improvement in this mode when compared with the CMIP3 models shown in Grainger et al. (2012). However, the second ENSO mode in SH summer has a poorly reproduced EOF structure in the CMIP5 models, and the associated variance is generally underestimated. In SH winter, the performance of the CMIP5 models in reproducing the structure and variance is similar for both ENSO modes, with the associated variance being generally underestimated. Projected changes in the modes in the 21st century are then investigated using ensembles of CMIP5 models that reproduce well the 20th century slow modes. The slow-internal and slow-external components are examined separately, allowing the projected changes in the response to ENSO variability to be separated from the response to changes in greenhouse gas concentrations. By using several ensembles, the model-dependency of the projected changes in the ENSO-related slow-internal modes is examined. Frederiksen, C. S., and X. Zheng, 2007: Variability of seasonal-mean fields arising from intraseasonal variability. Part 3: Application to SH winter and summer circulations. Climate Dyn., 28, 849-866. Grainger, S., C. S. Frederiksen, and X. Zheng, 2012: Modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP3 models: Assessment and Projections. Climate Dyn., in press. Zheng, X., D. M. Straus, C. S. Frederiksen, and S. Grainger, 2009: Potentially predictable patterns of extratropical tropospheric circulation in an ensemble of climate simulations with the COLA AGCM. Quart. J. Roy. Meteor. Soc., 135, 1816-1829.
Tracer transport by the diabatic circulation deduced from satellite observations
NASA Technical Reports Server (NTRS)
Solomon, S.; Kiehl, J. T.; Garcia, R. R.; Grose, W.
1986-01-01
Nimbus-7 sensor data were used to track the diabatic circulation in the stratosphere to study the advective transport of CH4 and N2O as tracer species. Advective transport by the mean circulation was found to be a function of the temperature field and associated deviations from radiative equilibrium. A photochemical model was applied to account for the disappearance of the tracer species from the stratosphere. Comparisons between the SAMS data and modeling on the basis of the chemical loss rates of the tracers and the LIMS circulation data showed that the model predictions underestimated the resident abundances, although the global distributions and circulations exhibited a good match.
Tsushima, Yoko; Brient, Florent; Klein, Stephen A.; ...
2017-11-27
The CFMIP Diagnostic Codes Catalogue assembles cloud metrics, diagnostics and methodologies, together with programs to diagnose them from general circulation model (GCM) outputs written by various members of the CFMIP community. This aims to facilitate use of the diagnostics by the wider community studying climate and climate change. Here, this paper describes the diagnostics and metrics which are currently in the catalogue, together with examples of their application to model evaluation studies and a summary of some of the insights these diagnostics have provided into the main shortcomings in current GCMs. Analysis of outputs from CFMIP and CMIP6 experiments willmore » also be facilitated by the sharing of diagnostic codes via this catalogue. Any code which implements diagnostics relevant to analysing clouds – including cloud–circulation interactions and the contribution of clouds to estimates of climate sensitivity in models – and which is documented in peer-reviewed studies, can be included in the catalogue. We very much welcome additional contributions to further support community analysis of CMIP6 outputs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsushima, Yoko; Brient, Florent; Klein, Stephen A.
The CFMIP Diagnostic Codes Catalogue assembles cloud metrics, diagnostics and methodologies, together with programs to diagnose them from general circulation model (GCM) outputs written by various members of the CFMIP community. This aims to facilitate use of the diagnostics by the wider community studying climate and climate change. Here, this paper describes the diagnostics and metrics which are currently in the catalogue, together with examples of their application to model evaluation studies and a summary of some of the insights these diagnostics have provided into the main shortcomings in current GCMs. Analysis of outputs from CFMIP and CMIP6 experiments willmore » also be facilitated by the sharing of diagnostic codes via this catalogue. Any code which implements diagnostics relevant to analysing clouds – including cloud–circulation interactions and the contribution of clouds to estimates of climate sensitivity in models – and which is documented in peer-reviewed studies, can be included in the catalogue. We very much welcome additional contributions to further support community analysis of CMIP6 outputs.« less
Does coupled ocean enhance ozone-hole-induced Southern Hemisphere circulation changes?
NASA Astrophysics Data System (ADS)
Son, S. W.; Han, B. R.; Kim, S. Y.; Park, R.
2017-12-01
The ozone-hole-induced Southern Hemisphere (SH) circulation changes, such as poleward shift of westerly jet and Hadley cell widening, have been typically explored with either coupled general circulation models (CGCMs) prescribing stratospheric ozone or chemistry-climate models (CCMs) prescribing surface boundary conditions. Only few studies have utilized ocean-coupled CCMs with a relatively coarse resolution. To better quantify the role of interactive chemistry and coupled ocean in the ozone-hole-induced SH circulation changes, the present study examines a set of CGCM and CCM simulations archived for the Coupled Model Intercomparison Project phase 5 (CMIP5) and CCM initiative (CCMI). Although inter-model spread of Antarctic ozone depletion is substantially large especially in the austral spring, both CGCMs with relatively simple ozone chemistry and CCMs with fully interactive comprehensive chemistry reasonably well reproduce long-term trends of Antarctic ozone and the associated polar-stratospheric temperature changes. Most models reproduce a poleward shift of SH jet and Hadley-cell widening in the austral summer in the late 20th century as identified in reanalysis datasets. These changes are quasi-linearly related with Antarctic ozone changes, confirming the critical role of Antarctic ozone depletion in the austral-summer zonal-mean circulation changes. The CGCMs with simple but still interactive ozone show slightly stronger circulation changes than those with prescribed ozone. However, the long-term circulation changes in CCMs are largely insensitive to the coupled ocean. While a few models show the enhanced circulation changes when ocean is coupled, others show essentially no changes or even weakened circulation changes. This result suggests that the ozone-hole-related stratosphere-troposphere coupling in the late 20th century may be only weakly sensitive to the coupled ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackman, C.H.; Douglass, A.R., Chandra, S.; Stolarski, R.S.
1991-03-20
Eight years of NMC (National Meteorological Center) temperature and SBUV (solar backscattered ultraviolet) ozone data were used to calculate the monthly mean heating rates and residual circulation for use in a two-dimensional photochemical model in order to examine the interannual variability of modeled ozone. Fairly good correlations were found in the interannual behavior of modeled and measured SBUV ozone in the upper stratosphere at middle to low latitudes, where temperature dependent photochemistry is thought to dominate ozone behavior. The calculated total ozone is found to be more sensitive to the interannual residual circulation changes than to the interannual temperature changes.more » The magnitude of the modeled ozone variability is similar to the observed variability, but the observed and modeled year to year deviations are mostly uncorrelated. The large component of the observed total ozone variability at low latitudes due to the quasi-biennial oscillation (QBO) is not seen in the modeled total ozone, as only a small QBO signal is present in the heating rates, temperatures, and monthly mean residual circulation. Large interanual changes in tropospheric dynamics are believed to influence the interannual variability in the total ozone, especially at middle and high latitudes. Since these tropospheric changes and most of the QBO forcing are not included in the model formulation, it is not surprising that the interannual variability in total ozione is not well represented in the model computations.« less
U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model
2008-09-30
major contributors to the strength of the Gulf Stream, (1) the wind forcing, (2) the Atlantic meridional overturning circulation (AMOC), and (3) a...convergence and sensitivity studies with North Atlantic circulation models. Part I. The western boundary current system. Ocean Model., 16, 141-159...a baroclinic version of ADvanced CIRCulation (ADCIRC), the latter an unstructured grid model for baroclinic coastal/estuarian applications. NCOM is
Global Reference Atmosphere Model (GRAM)
NASA Technical Reports Server (NTRS)
Woodrum, A. W.
1989-01-01
GRAM series of four-dimensional atmospheric model validated by years of data. GRAM program, still available. More current are Gram 86, which includes atmospheric data from 1986 and runs on DEC VAX, and GRAM 88, which runs on IBM 3084. Program generates altitude profiles of atmospheric parameters along any simulated trajectory through atmosphere, and also useful for global circulation and diffusion studies.
The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations
Anderson, J.L.; Balaji, V.; Broccoli, A.J.; Cooke, W.F.; Delworth, T.L.; Dixon, K.W.; Donner, L.J.; Dunne, K.A.; Freidenreich, S.M.; Garner, S.T.; Gudgel, R.G.; Gordon, C.T.; Held, I.M.; Hemler, R.S.; Horowitz, L.W.; Klein, S.A.; Knutson, T.R.; Kushner, P.J.; Langenhost, A.R.; Lau, N.-C.; Liang, Z.; Malyshev, S.L.; Milly, P.C.D.; Nath, M.J.; Ploshay, J.J.; Ramaswamy, V.; Schwarzkopf, M.D.; Shevliakova, E.; Sirutis, J.J.; Soden, B.J.; Stern, W.F.; Thompson, L.A.; Wilson, R.J.; Wittenberg, A.T.; Wyman, B.L.
2004-01-01
The configuration and performance of a new global atmosphere and land model for climate research developed at the Geophysical Fluid Dynamics Laboratory (GFDL) are presented. The atmosphere model, known as AM2, includes a new gridpoint dynamical core, a prognostic cloud scheme, and a multispecies aerosol climatology, as well as components from previous models used at GFDL. The land model, known as LM2, includes soil sensible and latent heat storage, groundwater storage, and stomatal resistance. The performance of the coupled model AM2-LM2 is evaluated with a series of prescribed sea surface temperature (SST) simulations. Particular focus is given to the model's climatology and the characteristics of interannual variability related to El Nin??o-Southern Oscillation (ENSO). One AM2-LM2 integration was perfor med according to the prescriptions of the second Atmospheric Model Intercomparison Project (AMIP II) and data were submitted to the Program for Climate Model Diagnosis and Intercomparison (PCMDI). Particular strengths of AM2-LM2, as judged by comparison to other models participating in AMIP II, include its circulation and distributions of precipitation. Prominent problems of AM2-LM2 include a cold bias to surface and tropospheric temperatures, weak tropical cyclone activity, and weak tropical intraseasonal activity associated with the Madden-Julian oscillation. An ensemble of 10 AM2-LM 2 integrations with observed SSTs for the second half of the twentieth century permits a statistically reliable assessment of the model's response to ENSO. In general, AM2-LM2 produces a realistic simulation of the anomalies in tropical precipitation and extratropical circulation that are associated with ENSO. ?? 2004 American Meteorological Society.
A New Multiscale Model for the Madden-Julian Oscillation.
NASA Astrophysics Data System (ADS)
Biello, Joseph A.; Majda, Andrew J.
2005-06-01
A multiscale model of the MJO is developed here that accounts, in a simplified fashion, for both the upscale transfer from synoptic to planetary scales of momentum and temperature from wave trains of thermally driven equatorial synoptic-scale circulations in a moving convective envelope as well as direct mean heating on planetary scales. This model involves idealized thermally driven congestus synoptic-scale fluctuations in the eastern part of the moving wave envelope and convective superclusters in the western part of the envelope. The model self-consistently reproduces qualitatively many of the detailed structural features of the planetary circulation in the observations of the MJO, including the vertical structure in both the westerly onset region and the strong westerly wind burst region, as well as the horizontal quadrupole planetary vortex structure. The westerly midlevel inflow in the strong westerly region and the quadrupole vortex are largely produced in the model by the upscale transport of momentum to the planetary scales, while the midlevel easterly jet in the westerly onset region is substantially strengthened by this process. The role of wave trains of tilted organized synoptic-scale circulations is crucial for this fidelity with observations. The appeal of the multiscale models developed below is their firm mathematical underpinnings, simplicity, and analytic tractability while remaining self-consistent with many of the features of the observational record.
Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000): Users Guide
NASA Technical Reports Server (NTRS)
Justus, C. G.; James, B. F.
2000-01-01
This report presents Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000) and its new features. All parameterizations for temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and L(sub s) have been replaced by input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 170 km. A modified Stewart thermospheric model is still used for higher altitudes and for dependence on solar activity. "Climate factors" to tune for agreement with GCM data are no longer needed. Adjustment of exospheric temperature is still an option. Consistent with observations from Mars Global Surveyor, a new longitude-dependent wave model is included with user input to specify waves having 1 to 3 wavelengths around the planet. A simplified perturbation model has been substituted for the earlier one. An input switch allows users to select either East or West longitude positive. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.
A zonally averaged, three-basin ocean circulation model for climate studies
NASA Astrophysics Data System (ADS)
Hovine, S.; Fichefet, T.
1994-09-01
A two-dimensional, three-basin ocean model suitable for long-term climate studies is developed. The model is based on the zonally averaged form of the primitive equations written in spherical coordinates. The east-west density difference which arises upon averaging the momentum equations is taken to be proportional to the meridional density gradient. Lateral exchanges of heat and salt between the basins are explicitly resolved. Moreover, the model includes bottom topography and has representations of the Arctic Ocean and of the Weddell and Ross seas. Under realistic restoring boundary conditions, the model reproduces the global conveyor belt: deep water is formed in the Atlantic between 60 and 70°N at a rate of about 17 Sv (1 Sv=106 m3 s-1) and in the vicinity of the Antarctic continent, while the Indian and Pacific basins show broad upwelling. Superimposed on this thermohaline circulation are vigorous wind-driven cells in the upper thermocline. The simulated temperature and salinity fields and the computed meridional heat transport compare reasonably well with the observational estimates. When mixed boundary conditions (i.e., a restoring condition on sea-surface temperature and flux condition on sea-surface salinity) are applied, the model exhibits an irregular behavior before reaching a steady state characterized by self-sustained oscillations of 8.5-y period. The conveyor-belt circulation always results at this stage. A series of perturbation experiments illustrates the ability of the model to reproduce different steady-state circulations under mixed boundary conditions. Finally, the model sensitivity to various factors is examined. This sensitivity study reveals that the bottom topography and the presence of a submarine meridional ridge in the zone of the Drake Passage play a crucial role in determining the properties of the model bottom-water masses. The importance of the seasonality of the surface forcing is also stressed.
Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations
NASA Astrophysics Data System (ADS)
Satoh, M.; Matsuno, T.; Tomita, H.; Miura, H.; Nasuno, T.; Iga, S.
2008-03-01
A new type of ultra-high resolution atmospheric global circulation model is developed. The new model is designed to perform "cloud resolving simulations" by directly calculating deep convection and meso-scale circulations, which play key roles not only in the tropical circulations but in the global circulations of the atmosphere. Since cores of deep convection have a few km in horizontal size, they have not directly been resolved by existing atmospheric general circulation models (AGCMs). In order to drastically enhance horizontal resolution, a new framework of a global atmospheric model is required; we adopted nonhydrostatic governing equations and icosahedral grids to the new model, and call it Nonhydrostatic ICosahedral Atmospheric Model (NICAM). In this article, we review governing equations and numerical techniques employed, and present the results from the unique 3.5-km mesh global experiments—with O(10 9) computational nodes—using realistic topography and land/ocean surface thermal forcing. The results show realistic behaviors of multi-scale convective systems in the tropics, which have not been captured by AGCMs. We also argue future perspective of the roles of the new model in the next generation atmospheric sciences.
On the quasi-steady aerodynamics of normal hovering flight part I: the induced power factor
Nabawy, Mostafa R. A.; Crowther, William J.
2014-01-01
An analytical treatment to quantify the losses captured in the induced power factor, k, is provided for flapping wings in normal hover, including the effects of non-uniform downwash, tip losses and finite flapping amplitude. The method is based on a novel combination of actuator disc and lifting line blade theories that also takes into account the effect of advance ratio. The model has been evaluated against experimental results from the literature and qualitative agreement obtained for the effect of advance ratio on the lift coefficient of revolving wings. Comparison with quantitative experimental data for the circulation as a function of span for a fruitfly wing shows that the model is able to correctly predict the circulation shape of variation, including both the magnitude of the peak circulation and the rate of decay in circulation towards zero. An evaluation of the contributions to induced power factor in normal hover for eight insects is provided. It is also shown how Reynolds number can be accounted for in the induced power factor, and good agreement is obtained between predicted span efficiency as a function of Reynolds number and numerical results from the literature. Lastly, it is shown that for a flapping wing in hover k owing to the non-uniform downwash effect can be reduced to 1.02 using an arcsech chord distribution. For morphologically realistic wing shapes based on beta distributions, it is shown that a value of 1.07 can be achieved for a radius of first moment of wing area at 40% of wing length. PMID:24522785
On the quasi-steady aerodynamics of normal hovering flight part I: the induced power factor.
Nabawy, Mostafa R A; Crowther, William J
2014-04-06
An analytical treatment to quantify the losses captured in the induced power factor, k, is provided for flapping wings in normal hover, including the effects of non-uniform downwash, tip losses and finite flapping amplitude. The method is based on a novel combination of actuator disc and lifting line blade theories that also takes into account the effect of advance ratio. The model has been evaluated against experimental results from the literature and qualitative agreement obtained for the effect of advance ratio on the lift coefficient of revolving wings. Comparison with quantitative experimental data for the circulation as a function of span for a fruitfly wing shows that the model is able to correctly predict the circulation shape of variation, including both the magnitude of the peak circulation and the rate of decay in circulation towards zero. An evaluation of the contributions to induced power factor in normal hover for eight insects is provided. It is also shown how Reynolds number can be accounted for in the induced power factor, and good agreement is obtained between predicted span efficiency as a function of Reynolds number and numerical results from the literature. Lastly, it is shown that for a flapping wing in hover k owing to the non-uniform downwash effect can be reduced to 1.02 using an arcsech chord distribution. For morphologically realistic wing shapes based on beta distributions, it is shown that a value of 1.07 can be achieved for a radius of first moment of wing area at 40% of wing length.
Atmospheric circulation of extrasolar giant planets
NASA Astrophysics Data System (ADS)
Showman, A. P.
2012-12-01
Of the many known extrasolar planets, over 100 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.
Atmospheric circulation of extrasolar giant planets
NASA Astrophysics Data System (ADS)
Showman, A. P.
2011-12-01
Of the many known extrasolar planets, nearly 200 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.
NASA Technical Reports Server (NTRS)
Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.
2003-01-01
The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In the tropics, only with the AD parameterization can the model produce realistic semiannual oscillations.
Kramann, Rafael; Machado, Flavia; Wu, Haojia; Kusaba, Tetsuro; Hoeft, Konrad; Schneider, Rebekka K; Humphreys, Benjamin D
2018-05-03
Fibrosis is the common final pathway of virtually all chronic injury to the kidney. While it is well accepted that myofibroblasts are the scar-producing cells in the kidney, their cellular origin is still hotly debated. The relative contribution of proximal tubular epithelium and circulating cells, including mesenchymal stem cells, macrophages, and fibrocytes, to the myofibroblast pool remains highly controversial. Using inducible genetic fate tracing of proximal tubular epithelium, we confirm that the proximal tubule does not contribute to the myofibroblast pool. However, in parabiosis models in which one parabiont is genetically labeled and the other is unlabeled and undergoes kidney fibrosis, we demonstrate that a small fraction of genetically labeled renal myofibroblasts derive from the circulation. Single-cell RNA sequencing confirms this finding but indicates that these cells are circulating monocytes, express few extracellular matrix or other myofibroblast genes, and express many proinflammatory cytokines. We conclude that this small circulating myofibroblast progenitor population contributes to renal fibrosis by paracrine rather than direct mechanisms.
NASA Astrophysics Data System (ADS)
Rose, Brian E. J.
2015-02-01
Ongoing controversy about Neoproterozoic Snowball Earth events motivates a theoretical study of stability and hysteresis properties of very cold climates. A coupled atmosphere-ocean-sea ice general circulation model (GCM) has four stable equilibria ranging from 0% to 100% ice cover, including a "Waterbelt" state with tropical sea ice. All four states are found at present-day insolation and greenhouse gas levels and with two idealized ocean basin configurations. The Waterbelt is stabilized against albedo feedback by intense but narrow wind-driven ocean overturning cells that deliver roughly 100 W m-2 heating to the ice edges. This requires three-way feedback between winds, ocean circulation, and ice extent in which circulation is shifted equatorward, following the baroclinicity at the ice margins. The thermocline is much shallower and outcrops in the tropics. Sea ice is snow-covered everywhere and has a minuscule seasonal cycle. The Waterbelt state spans a 46 W m-2 range in solar constant, has a significant hysteresis, and permits near-freezing equatorial surface temperatures. Additional context is provided by a slab ocean GCM and a diffusive energy balance model, both with prescribed ocean heat transport (OHT). Unlike the fully coupled model, these support no more than one stable ice margin, the position of which is slaved to regions of rapid poleward decrease in OHT convergence. Wide ranges of different climates (including the stable Waterbelt) are found by varying the magnitude and spatial structure of OHT in both models. Some thermodynamic arguments for the sensitivity of climate, and ice extent to OHT are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilpinen, P.; Kallio, S.; Hupa, M.
1999-07-01
This paper describes work-in-progress aimed at developing an emission model for circulating fluidized bed combustors using detailed homogeneous and heterogeneous chemical kinetics. The main emphasis is on nitrogen oxides (NO{sub x}, N{sub 2}O) but also unburned gases (CO, C{sub x}H{sub y}) and sulfur dioxide (SO{sub 2}) will be investigated in the long run. The hydrodynamics is described by a 1.5-dimensional model where the riser is divided into three regions: a dense bubbling bed at the bottom, a vigorously mixed splash zone, and a transport zone. The two latter zones are horizontally split into a core region and an annular region.more » The solids circulation rate is calculated from the known solids inventory and the pressure and mass balances over the entire circulation loop. The solids are divided into classes according to size and type or particle. The model assumes instantaneous fuel devolatilization at the bottom and an even distribution of volatiles in the suspension phase of the dense bed. For addition of secondary air, a complete penetration and an instantaneous mixing with the combustor gases in the core region is assumed. The temperature distribution is assumed to be known, and no energy balance is solved. A comprehensive kinetic scheme of about 300 elementary gas-phase reactions is used to describe the homogeneous oxidation of the volatiles including both hydrocarbon and volatile-nitrogen components (NH{sub 3}, HCN). Heterogeneous char combustion to CO and CO{sub 2}, and char-nitrogen conversion to NO, N{sub 2}O, and N{sub 2} are described by a single particle model that includes 15 reaction steps given in the form of 6 net reaction paths. In the paper, the model is briefly described. A special emphasis is put on the evaluation of chemistry submodels. Modeling results on nitrogen oxides' formation are compared with measured concentration profiles in a 12 MW CFBC riser from literature. The importance of accurate chemistry description on predictions is illustrated by comparing modeling results using detailed kinetics to those obtained when hydrocarbon and volatile-nitrogen oxidation are described with empirical, global kinetic rate expressions from literature. Submodels that need further improvements are discussed.« less
Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene.
Burls, Natalie J; Fedorov, Alexey V; Sigman, Daniel M; Jaccard, Samuel L; Tiedemann, Ralf; Haug, Gerald H
2017-09-01
An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world's largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400-ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.
Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM
NASA Astrophysics Data System (ADS)
Jackson, L. C.; Kahana, R.; Graham, T.; Ringer, M. A.; Woollings, T.; Mecking, J. V.; Wood, R. A.
2015-12-01
The impacts of a hypothetical slowdown in the Atlantic Meridional Overturning Circulation (AMOC) are assessed in a state-of-the-art global climate model (HadGEM3), with particular emphasis on Europe. This is the highest resolution coupled global climate model to be used to study the impacts of an AMOC slowdown so far. Many results found are consistent with previous studies and can be considered robust impacts from a large reduction or collapse of the AMOC. These include: widespread cooling throughout the North Atlantic and northern hemisphere in general; less precipitation in the northern hemisphere midlatitudes; large changes in precipitation in the tropics and a strengthening of the North Atlantic storm track. The focus on Europe, aided by the increase in resolution, has revealed previously undiscussed impacts, particularly those associated with changing atmospheric circulation patterns. Summer precipitation decreases (increases) in northern (southern) Europe and is associated with a negative summer North Atlantic Oscillation signal. Winter precipitation is also affected by the changing atmospheric circulation, with localised increases in precipitation associated with more winter storms and a strengthened winter storm track. Stronger westerly winds in winter increase the warming maritime effect while weaker westerlies in summer decrease the cooling maritime effect. In the absence of these circulation changes the cooling over Europe's landmass would be even larger in both seasons. The general cooling and atmospheric circulation changes result in weaker peak river flows and vegetation productivity, which may raise issues of water availability and crop production.
Understanding variability of the Southern Ocean overturning circulation in CORE-II models
NASA Astrophysics Data System (ADS)
Downes, S. M.; Spence, P.; Hogg, A. M.
2018-03-01
The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.
Three-dimensional hydrodynamic modelling study of reverse estuarine circulation: Kuwait Bay.
Alosairi, Y; Pokavanich, T; Alsulaiman, N
2018-02-01
Hydrodynamics and associated environmental processes have always been of major concern to coastal-dependent countries, such as Kuwait. This is due to the environmental impact that accompanies the economic and commercial activities along the coastal areas. In the current study, a three-dimensional numerical model is utilized to unveil the main dynamic and physical properties of Kuwait Bay during the critical season. The model performance over the summer months (June, July and August 2012) is assessed against comprehensive field measurements of water levels, velocity, temperature and salinity data before using the model to describe the circulation as driven by tides, gravitational convection and winds. The results showed that the baroclinic conditions in the Bay are mainly determined by the horizontal salinity gradient and to much less extent temperature gradient. The gradients stretched over the southern coast of the Bay where dense water is found at the inner and enclosed areas, while relatively lighter waters are found near the mouth of the Bay. This gradient imposed a reversed estuarine circulation at the main axis of the Bay, particularly during neap tides when landward flow near the surface and seaward flow near the bed are most evident. The results also revealed that the shallow areas, including Sulaibikhat and Jahra Bays, are well mixed and generally flow in the counter-clockwise direction. Clockwise circulations dominated the northern portion of the Bay, forming a sort of large eddy, while turbulent fields associated with tidal currents were localized near the headlands. Copyright © 2017 Elsevier Ltd. All rights reserved.
2006-12-01
on specific short term problems. 1.1.1 Dynamic Physiological Modeling The oxygenation of the blood by the lung through respiration is a critical...tests as apnea , reduced arterial saturation, and may even be linked to long term CNS deficits. Inhalation of toxic gases can dramatically affect the...of TGAS model the respiration , circulation, and metabolic processes and include models of the ventilation and cardiac output control due to 3
NASA Astrophysics Data System (ADS)
Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.
2017-12-01
Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.
Response of Ocean Circulation to Different Wind Forcing in Puerto Rico and US Virgin Islands
NASA Astrophysics Data System (ADS)
Solano, Miguel; Garcia, Edgardo; Leonardi, Stafano; Canals, Miguel; Capella, Jorge
2013-11-01
The response of the ocean circulation to various wind forcing products has been studied using the Regional Ocean Modeling System. The computational domain includes the main islands of Puerto Rico, Saint John and Saint Thomas, located on the continental shelf dividing the Caribbean Sea and the Atlantic Ocean. Data for wind forcing is provided by an anemometer located in a moored buoy, the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) model and the National Digital Forecast Database (NDFD). Hindcast simulations have been validated using hydrographic data at different locations in the area of study. Three cases are compared to quantify the impact of high resolution wind forcing on the ocean circulation and the vertical structure of salinity, temperature and velocity. In the first case a constant wind velocity field is used to force the model as measured by an anemometer on top of a buoy. In the second case, a forcing field provided by the Navy's COAMPS model is used and in the third case, winds are taken from NDFD in collaboration with the National Centers for Environmental Prediction. Validated results of ocean currents against data from Acoustic Doppler Current Profilers at different locations show better agreement using high resolution wind data as expected. Thanks to CariCOOS and NOAA.
The Dynamics of Hadley Circulation Variability and Change
NASA Astrophysics Data System (ADS)
Davis, Nicholas Alexander
The Hadley circulation exerts a dominant control on the surface climate of earth's tropical belt. Its converging surface winds fuel the tropical rains, while subsidence in the subtropics dries and stabilizes the atmosphere, creating deserts on land and stratocumulus decks over the oceans. Because of the strong meridional gradients in temperature and precipitation in the subtropics, any shift in the Hadley circulation edge could project as major changes in surface climate. While climate model simulations predict an expansion of the Hadley cells in response to greenhouse gas forcings, the mechanisms remain elusive. An analysis of the climatology, variability, and response of the Hadley circulation to radiative forcings in climate models and reanalyses illuminates the broader landscape in which Hadley cell expansion is realized. The expansion is a fundamental response of the atmosphere to increasing greenhouse gas concentrations as it scales with other key climate system changes, including polar amplification, increasing static stability, stratospheric cooling, and increasing global-mean surface temperatures. Multiple measures of the Hadley circulation edge latitudes co-vary with the latitudes of the eddy-driven jets on all timescales, and both exhibit a robust poleward shift in response to forcings. Further, across models there is a robust coupling between the eddy-driving on the Hadley cells and their width. On the other hand, the subtropical jet and tropopause break latitudes, two common observational proxies for the tropical belt edges, lack a strong statistical relationship with the Hadley cell edges and have no coherent response to forcings. This undermines theories for the Hadley cell width predicated on angular momentum conservation and calls for a new framework for understanding Hadley cell expansion. A numerical framework is developed within an idealized general circulation model to isolate the mean flow and eddy responses of the global atmosphere to radiative forcings. It is found that it is primarily the eddy response to greenhouse-gas-like forcings that causes Hadley cell expansion. However, the mean flow changes in the Hadley circulation itself crucially mediate this eddy response such that the full response comes about due to eddy-mean flow interactions. A theoretical scaling for the Hadley cell width based on moist static energy is developed to provide an improved framework to understand climate change responses of the general circulation. The scaling predicts that expansion is driven by increases in the surface latent heat flux and the width of the rising branch of the circulation and opposed by increases in tropospheric radiative cooling. A reduction in subtropical moist static energy flux divergence by the eddies is key, as it tilts the energetic balance in favor of expansion.
NASA Astrophysics Data System (ADS)
Rotstayn, L. D.; Jeffrey, S. J.; Collier, M. A.; Dravitzki, S. M.; Hirst, A. C.; Syktus, J. I.; Wong, K. K.
2012-02-01
We use a coupled atmosphere-ocean global climate model (CSIRO-Mk3.6) to investigate the roles of different forcing agents as drivers of summer rainfall trends in the Australasian region. Our results suggest that anthropogenic aerosols have contributed to the observed multi-decadal rainfall increase over north-western Australia. As part of the Coupled Model Intercomparison Project Phase 5 (CMIP5), we performed multiple 10-member ensembles of historical climate change, which are analysed for the period 1951-2010. The historical runs include ensembles driven by "all forcings" (HIST), all forcings except anthropogenic aerosols (NO_AA) and forcing only from long-lived greenhouse gases (GHGAS). Anthropogenic aerosol-induced effects in a warming climate are calculated from the difference of HIST minus NO_AA. We also compare a 10-member 21st century ensemble driven by Representative Concentration Pathway 4.5 (RCP4.5). Simulated aerosol-induced rainfall trends over the Indo-Pacific region for austral summer and boreal summer show a distinct contrast. In boreal summer, there is a southward shift of equatorial rainfall, consistent with the idea that anthropogenic aerosols have suppressed Asian monsoonal rainfall, and caused a southward shift of the local Hadley circulation. In austral summer, the aerosol-induced response more closely resembles a westward shift and strengthening of the upward branch of the Walker circulation, rather than a coherent southward shift of regional tropical rainfall. Thus the mechanism by which anthropogenic aerosols may affect Australian summer rainfall is unclear. Focusing on summer rainfall trends over north-western Australia (NWA), we find that CSIRO-Mk3.6 simulates a strong rainfall decrease in RCP4.5, whereas simulated trends in HIST are weak and insignificant during 1951-2010. The weak rainfall trends in HIST are due to compensating effects of different forcing agents: there is a significant decrease in GHGAS, offset by an aerosol-induced increase in HIST minus NO_AA. However, the magnitude of the observed NWA rainfall trend is not captured by the ensemble mean of HIST minus NO_AA, or by 440 unforced 60-yr trends calculated from a 500-yr pre-industrial control run. This suggests that the observed trend includes both a forced and unforced component. We investigate the mechanism of simulated and observed NWA rainfall changes by exploring changes in circulation over the Indo-Pacific region. The key circulation feature associated with the rainfall increase is a lower-tropospheric cyclonic circulation trend off the coast of NWA. In the model, it induces moisture convergence and upward motion over NWA. The cyclonic anomaly is present in trends calculated from HIST minus NO_AA and from reanalyses. Further analysis suggests that the cyclonic circulation trend in HIST minus NO_AA may be initiated as a Rossby wave response to positive convective heating anomalies south of the equator during November, when the aerosol-induced response of the model over the Indian Ocean still resembles that in boreal summer (i.e. a southward shift of equatorial rainfall). The aerosol-induced enhancement of the cyclonic circulation and associated monsoonal rainfall becomes progressively stronger from December to March, suggesting that there is a positive feedback between the source of latent heat (the Australian monsoon) and the cyclonic circulation. CSIRO-Mk3.6 indicates that anthropogenic aerosols may have masked greenhouse gas-induced changes in rainfall over NWA and in circulation over the wider Indo-Pacific region: simulated trends in RCP4.5 resemble a stronger version of those in GHGAS, and are very different from those in HIST. Further research is needed to better understand the mechanisms and the extent to which these findings are model-dependent.
Evaluation and Sensitivity Analysis of an Ocean Model Response to Hurricane Ivan (PREPRINT)
2009-05-18
analysis of upper-limb meridional overturning circulation interior ocean pathways in the tropical/subtropical Atlantic . In: Interhemispheric Water...diminishing returns are encountered when either resolution is increased. 3 1. Introduction Coupled ocean-atmosphere general circulation models have become...northwest Caribbean Sea 4 and GOM. Evaluation is difficult because ocean general circulation models incorporate a large suite of numerical algorithms
Numerical simulation of terrain-induced mesoscale circulation in the Chiang Mai area, Thailand
NASA Astrophysics Data System (ADS)
Sathitkunarat, Surachai; Wongwises, Prungchan; Pan-Aram, Rudklao; Zhang, Meigen
2008-11-01
The regional atmospheric modeling system (RAMS) was applied to Chiang Mai province, a mountainous area in Thailand, to study terrain-induced mesoscale circulations. Eight cases in wet and dry seasons under different weather conditions were analyzed to show thermal and dynamic impacts on local circulations. This is the first study of RAMS in Thailand especially investigating the effect of mountainous area on the simulated meteorological data. Analysis of model results indicates that the model can reproduce major features of local circulation and diurnal variations in temperatures. For evaluating the model performance, model results were compared with observed wind speed, wind direction, and temperature monitored at a meteorological tower. Comparison shows that the modeled values are generally in good agreement with observations and that the model captured many of the observed features.
Impact of Stratospheric Ozone Distribution on Features of Tropospheric Circulation
NASA Astrophysics Data System (ADS)
Barodka, Siarhei; Krasouski, Aliaksandr; Mitskevich, Yaroslav; Shalamyansky, Arkady
2016-04-01
In this work we study connections between stratospheric ozone distribution and general circulation patterns in the troposphere and aim to investigate the causal relationship between them, including the practical side of the influence of stratospheric ozone on tropospheric medium-range weather and regional climate. Analysis of several decades of observational data, which has been performed at the A.I. Voeikov Main Geophysical Observatory, suggests a clear relation between the stratospheric ozone distribution, upper stratospheric temperature field and planetary-scale air-masses boundaries in the troposphere [1]. Furthermore, it has been shown that each global air-mass, which can be attributed to the corresponding circulation cell in a conceptual model of tropospheric general circulation, has a distinct "regime" of ozone vertical distribution in the stratosphere [1-3]. Proceeding from atmospheric reanalyses combined with satellite and ground-based observations, we study time evolution of the upper-level frontal zones (stationary fronts) with the relevant jet streams, which can be treated as boundaries of global air-masses, in connection with the tropopause height and distribution of ozone in the stratosphere. For that, we develop an algorithm for automated identification of jet streams, stationary fronts and tropopause surface from gridded data (reanalyses or modelling results), and apply it for several cases associated with rapid changes in the stratospheric temperature and ozone fields, including SSW events over Eastern Siberia. Aiming to study the causal relationship between the features of tropospheric circulation and changes in the stratospheric ozone field, we estimate the time lag between these categories of processes on different time scales. Finally, we discuss the possibility to use the elementary circulation mechanisms classification (by B.L. Dzerdzeevski) in connection with analysis of the stratospheric ozone field and the relevant stratosphere-troposphere interactions. [1] Shalamyansky A.M., Proceedings of Voeikov MGO, St. Petersburg, V. 568, pp. 173-194, 2013 [2] R.D. Hudson et al, J. Atmos. Sci., V. 60, pp. 1669-1677, 2003 [3] R.D. Hudson et al, Atmos. Chem. Phys., V. 6, pp. 5183-5191, 2006
Future Changes in Autumn Flood Type and Frequency in Pacific Northwest North America
NASA Astrophysics Data System (ADS)
Menounos, B.; Cannon, A. J.; Radic, V.; Moore, R. D.; Dery, S. J.; Jackson, P. L.; Anslow, F. S.
2013-12-01
During the 20th and early 21st century, autumn storms in the Pacific Northwest of North America - PNWNA (coastal British Columbia and Washington) caused widespread flooding and landslides. Understanding how these intense storms are likely to change in the future is important given their potential to harm people and cause widespread damage, but assessing these changes using climate models is difficult. Parameterization of precipitation in general circulation and regional climate models (GCM, RCM) is prone to error, especially in the mountainous terrain of the PNWNA. High computational demands of RCMs also limits their use in assessing changes in flood type and frequency for a suite of GCM and emission scenarios. We instead focus our efforts on understanding atmospheric circulation patterns responsible for historical autumn flooding (15 August - 31 December) and examine how these synoptic conditions are likely to change under future emission scenarios. Our analysis includes identification of extreme events (runoff and precipitation) in streamflow and precipitation records from coastal Washington and British Columbia for the period 1948-2010. Our methods to link the instrumental record of extreme autumn events to atmospheric conditions (500 and 850 hPa geopotential height and integrated vapor transport obtained from NCEP and CFSR reanalysis) include: (1) compositing of streamflow and precipitation events (environment-to-circulation); (2) self organizing map synoptic classification (circulation-to-environment); and (3) regression tree synoptic classification (hybrid of environment-to-circulation and circulation-to-environment). We then evaluate changes in flood-generating synoptic types in the CMIP5 ensemble over the period 2010-2100. Our analysis indicates that, as expected, most floods are associated with atmospheric river events that are commonly associated with upper level, quasi stationary low- and high-pressure systems respectively located in the Gulf of Alaska and east of the PNWNA. Based on our initial analysis of the CMIP5 data, we note an increase in autumn flood-producing synoptic weather types for the PNWNA. We discuss the implications of increased autumn flooding to communities and infrastructure.
Correlations between the modelled potato crop yield and the general atmospheric circulation
NASA Astrophysics Data System (ADS)
Sepp, Mait; Saue, Triin
2012-07-01
Biology-related indicators do not usually depend on just one meteorological element but on a combination of several weather indicators. One way to establish such integral indicators is to classify the general atmospheric circulation into a small number of circulation types. The aim of present study is to analyse connections between general atmospheric circulation and potato crop yield in Estonia. Meteorologically possible yield (MPY), calculated by the model POMOD, is used to characterise potato crop yield. Data of three meteorological stations and the biological parameters of two potato sorts were applied to the model, and 73 different classifications of atmospheric circulation from catalogue 1.2 of COST 733, domain 05 are used to qualify circulation conditions. Correlation analysis showed that there is at least one circulation type in each of the classifications with at least one statistically significant (99%) correlation with potato crop yield, whether in Kuressaare, Tallinn or Tartu. However, no classifications with circulation types correlating with MPY in all three stations at the same time were revealed. Circulation types inducing a decrease in the potato crop yield are more clearly represented. Clear differences occurred between the observed geographical locations as well as between the seasons: derived from the number of significant circulation types, summer and Kuressaare stand out. Of potato varieties, late 'Anti' is more influenced by circulation. Analysis of MSLP maps of circulation types revealed that the seaside stations (Tallinn, Kuressaare) suffer from negative effects of anti-cyclonic conditions (drought), while Tartu suffers from the cyclonic activity (excessive water).
Wu, Q; Li, J V; Seyfried, F; le Roux, C W; Ashrafian, H; Athanasiou, T; Fenske, W; Darzi, A; Nicholson, J K; Holmes, E; Gooderham, N J
2015-07-01
Bariatric surgery offers sustained marked weight loss and often remission of type 2 diabetes, yet the mechanisms of establishment of these health benefits are not clear. We mapped the coordinated systemic responses of gut hormones, the circulating miRNAome and the metabolome in a rat model of Roux-en-Y gastric bypass (RYGB) surgery. The response of circulating microRNAs (miRNAs) to RYGB was striking and selective. Analysis of 14 significantly altered circulating miRNAs within a pathway context was suggestive of modulation of signaling pathways including G protein signaling, neurodegeneration, inflammation, and growth and apoptosis responses. Concomitant alterations in the metabolome indicated increased glucose transport, accelerated glycolysis and inhibited gluconeogenesis in the liver. Of particular significance, we show significantly decreased circulating miRNA-122 levels and a more modest decline in hepatic levels, following surgery. In mechanistic studies, manipulation of miRNA-122 levels in a cell model induced changes in the activity of key enzymes involved in hepatic energy metabolism, glucose transport, glycolysis, tricarboxylic acid cycle, pentose phosphate shunt, fatty-acid oxidation and gluconeogenesis, consistent with the findings of the in vivo surgery-mediated responses, indicating the powerful homeostatic activity of the miRNAs. The close association between energy metabolism, neuronal signaling and gut microbial metabolites derived from the circulating miRNA, plasma, urine and liver metabolite and gut hormone correlations further supports an enhanced gut-brain signaling, which we suggest is hormonally mediated by both traditional gut hormones and miRNAs. This transomic approach to map the crosstalk between the circulating miRNAome and metabolome offers opportunities to understand complex systems biology within a disease and interventional treatment setting.
Wu, Q; Li, J V; Seyfried, F; le Roux, C W; Ashrafian, H; Athanasiou, T; Fenske, W; Darzi, A; Nicholson, J K; Holmes, E; Gooderham, N J
2015-01-01
Background/Objectives: Bariatric surgery offers sustained marked weight loss and often remission of type 2 diabetes, yet the mechanisms of establishment of these health benefits are not clear. Subjects/Methods: We mapped the coordinated systemic responses of gut hormones, the circulating miRNAome and the metabolome in a rat model of Roux-en-Y gastric bypass (RYGB) surgery. Results: The response of circulating microRNAs (miRNAs) to RYGB was striking and selective. Analysis of 14 significantly altered circulating miRNAs within a pathway context was suggestive of modulation of signaling pathways including G protein signaling, neurodegeneration, inflammation, and growth and apoptosis responses. Concomitant alterations in the metabolome indicated increased glucose transport, accelerated glycolysis and inhibited gluconeogenesis in the liver. Of particular significance, we show significantly decreased circulating miRNA-122 levels and a more modest decline in hepatic levels, following surgery. In mechanistic studies, manipulation of miRNA-122 levels in a cell model induced changes in the activity of key enzymes involved in hepatic energy metabolism, glucose transport, glycolysis, tricarboxylic acid cycle, pentose phosphate shunt, fatty-acid oxidation and gluconeogenesis, consistent with the findings of the in vivo surgery-mediated responses, indicating the powerful homeostatic activity of the miRNAs. Conclusions: The close association between energy metabolism, neuronal signaling and gut microbial metabolites derived from the circulating miRNA, plasma, urine and liver metabolite and gut hormone correlations further supports an enhanced gut-brain signaling, which we suggest is hormonally mediated by both traditional gut hormones and miRNAs. This transomic approach to map the crosstalk between the circulating miRNAome and metabolome offers opportunities to understand complex systems biology within a disease and interventional treatment setting. PMID:25783038
On the Vertical Distribution of Local and Remote Sources of Water for Precipitation
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.
2001-01-01
The vertical distribution of local and remote sources of water for precipitation and total column water over the United States are evaluated in a general circulation model simulation. The Goddard Earth Observing System (GEOS) general circulation model (GCM) includes passive constituent tracers to determine the geographical sources of the water in the column. Results show that the local percentage of precipitable water and local percentage of precipitation can be very different. The transport of water vapor from remote oceanic sources at mid and upper levels is important to the total water in the column over the central United States, while the access of locally evaporated water in convective precipitation processes is important to the local precipitation ratio. This result resembles the conceptual formulation of the convective parameterization. However, the formulations of simple models of precipitation recycling include the assumption that the ratio of the local water in the column is equal to the ratio of the local precipitation. The present results demonstrate the uncertainty in that assumption, as locally evaporated water is more concentrated near the surface.
Is Polar Amplification Deeper and Stronger than Dynamicists Assume?
NASA Astrophysics Data System (ADS)
Scheff, J.; Maroon, E.
2017-12-01
In the CMIP multi-model mean under strong future warming, Arctic amplification is confined to the lower troposphere, so that the meridional gradient of warming reverses around 500 mb and the upper troposphere is characterized by strong "tropical amplification" in which warming weakens with increasing latitude. This model-derived pattern of warming maxima in the upper-level tropics and lower-level Arctic has become a canonical assumption driving theories of the large-scale circulation response to climate change. Yet, several lines of evidence and reasoning suggest that Arctic amplification may in fact extend through the entire depth of the troposphere, and/or may be stronger than commonly modeled. These include satellite Microwave Sounding Unit (MSU) temperature trends as a function of latitude and vertical level, the recent discovery that the extratropical negative cloud phase feedback in models is largely spurious, and the very strong polar amplification observed in past warm and lukewarm climates. Such a warming pattern, with deep, dominant Arctic amplification, would have very different implications for the circulation than a canonical CMIP-like warming: instead of slightly shifting poleward and strengthening, eddies, jets and cells might shift equatorward and considerably weaken. Indeed, surface winds have been mysteriously weakening ("stilling") at almost all stations over the last half-century or so, there has been no poleward shift in northern hemisphere circulation metrics, and past warm climates' subtropics were apparently quite wet (and their global ocean circulations were weak.) To explore these possibilities more deeply, we examine the y-z structure of warming and circulation changes across a much broader range of models, scenarios and time periods than the CMIP future mean, and use an MSU simulator to compare them to the satellite warming record. Specifically, we examine whether the use of historical (rather than future) forcing, AMIP (rather than CMIP) configuration, individual GCMs, and/or individual ensemble members can better reproduce the structure of the MSU and surface-wind observations. Figure 1 already shows that tropical amplification is absent in the CESM1 historical ensemble (1979-2012). The results of these analyses will guide our future modeling work on these topics.
On the Freshwater Sensitivity of the Arctic-Atlantic Thermohaline Circulation
NASA Astrophysics Data System (ADS)
Lambert, E.; Eldevik, T.; Haugan, P.
2016-02-01
The North Atlantic thermohaline circulation (THC) carries heat and salt toward the Arctic. This circulation is generally believed to be inhibited by northern freshwater input as indicated by the `box-model' of Stommel (1961). The inferred freshwater-sensitivity of the THC, however, varies considerably between studies, both quantitatively and qualitatively. The northernmost branch of the Atlantic THC, which forms a double estuarine circulation in the Arctic Mediterranean, is one example where both strengthening and weakening of the circulation may occur due to increased freshwater input. We have accordingly built on Stommel's original concept to accomodate a THC similar to that in the Arctic Mediterranean. This model consists of three idealized basins, or boxes, connected by two coupled branches of circulation - the double estuary. The net transport of these two branches represents the extension of the Gulf Stream toward the Arctic. Its sensitivity to a change in freshwater forcing depends largely on the distribution of freshwater over the two northern basins. Varying this distribution opens a spectrum of qualitative behaviours ranging from Stommel's original freshwater-inhibited overturning circulation to a freshwater-facilitated estuarine circulation. Between these limiting cases, a Hopf and a cusp bifurcation divide the spectrum into three qualitative regions. In the first region, the circulation behaves similarly to Stommel's circulation, and sufficient freshwater input can induce an abrupt transition into a reversed flow; in the second, a similar transition can be found, although it does not reverse the circulation; in the third, no transition can occur and the circulation is generally facilitated by the northern freshwater input. Overall, the northern THC appears more stable than what would be inferred based on Stommel's model; it requires a larger amount and more localized freshwater input to `collapse' it, and a double estuary circulation is less prone to flow reversal.
Dietary and circulating lycopene and stroke risk: a meta-analysis of prospective studies
LI, Xinli; XU, Jiuhong
2014-01-01
Epidemiological studies support a protective role of lycopene against stroke occurrence or mortality, but the results have been conflicting. We conducted a meta-analysis to assess the relationship between dietary or circulating lycopene and stroke risk (including stroke occurrence or mortality). Relevant papers were collected by screening the PubMed database through October 2013. Only prospective studies providing relative risk estimates with 95% confidence intervals for the association between lycopene and stroke were included. A random-effects model was used to calculate the pooled estimate. Subgroup analysis was conducted to investigate the effects of various factors on the final results. The pooled analysis of seven prospective studies, with 116,127 participants and 1,989 cases, demonstrated that lycopene decreased stroke risk by 19.3% (RR = 0.807, 95% CI = 0.680–0.957) after adjusting for confounding factors. No heterogeneity was observed (p = 0.234, I2 = 25.5%). Circulating lycopene, not dietary lycopene, was associated with a statistically significant decrease in stroke risk (RR = 0.693, 95% CI = 0.503–0.954). Lycopene could protect European, or males against stroke risk. Duration of follow-up had no effect on the final results. There was no evidence of publication bias. Lycopene, especially circulating lycopene, is negatively associated with stroke risk. PMID:24848940
Trends of atmospheric circulation during singular hot days in Europe
NASA Astrophysics Data System (ADS)
Jézéquel, Aglaé; Cattiaux, Julien; Naveau, Philippe; Radanovics, Sabine; Ribes, Aurélien; Vautard, Robert; Vrac, Mathieu; Yiou, Pascal
2018-05-01
The influence of climate change on mid-latitudes atmospheric circulation is still very uncertain. The large internal variability makes it difficult to extract any statistically significant signal regarding the evolution of the circulation. Here we propose a methodology to calculate dynamical trends tailored to the circulation of specific days by computing the evolution of the distances between the circulation of the day of interest and the other days of the time series. We compute these dynamical trends for two case studies of the hottest days recorded in two different European regions (corresponding to the heat-waves of summer 2003 and 2010). We use the NCEP reanalysis dataset, an ensemble of CMIP5 models, and a large ensemble of a single model (CESM), in order to account for different sources of uncertainty. While we find a positive trend for most models for 2003, we cannot conclude for 2010 since the models disagree on the trend estimates.
Nicolas, Gaëlle; Chevalier, Véronique; Tantely, Luciano Michaël; Fontenille, Didier; Durand, Benoît
2014-12-01
Rift Valley fever (RVF) is a vector-borne zoonotic disease that causes high morbidity and mortality in ruminants. In 2008-2009, a RVF outbreak affected the whole Madagascar island, including the Anjozorobe district located in Madagascar highlands. An entomological survey showed the absence of Aedes among the potential RVF virus (RVFV) vector species identified in this area, and an overall low abundance of mosquitoes due to unfavorable climatic conditions during winter. No serological nor virological sign of infection was observed in wild terrestrial mammals of the area, suggesting an absence of wild RVF virus (RVFV) reservoir. However, a three years serological and virological follow-up in cattle showed a recurrent RVFV circulation. The objective of this study was to understand the key determinants of this unexpected recurrent transmission. To achieve this goal, a spatial deterministic discrete-time metapopulation model combined with cattle trade network was designed and parameterized to reproduce the local conditions using observational data collected in the area. Three scenarios that could explain the RVFV recurrent circulation in the area were analyzed: (i) RVFV overwintering thanks to a direct transmission between cattle when viraemic cows calve, vectors being absent during the winter, (ii) a low level vector-based circulation during winter thanks to a residual vector population, without direct transmission between cattle, (iii) combination of both above mentioned mechanisms. Multi-model inference methods resulted in a model incorporating both a low level RVFV winter vector-borne transmission and a direct transmission between animals when viraemic cows calve. Predictions satisfactorily reproduced field observations, 84% of cattle infections being attributed to vector-borne transmission, and 16% to direct transmission. These results appeared robust according to the sensitivity analysis. Interweaving between agricultural works in rice fields, seasonality of vector proliferation, and cattle exchange practices could be a key element for understanding RVFV circulation in this area of Madagascar highlands.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)
2000-01-01
A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.
van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B
2017-07-01
Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO 2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.
Abnormal arterial flows by a distributed model of the fetal circulation.
van den Wijngaard, Jeroen P H M; Westerhof, Berend E; Faber, Dirk J; Ramsay, Margaret M; Westerhof, Nico; van Gemert, Martin J C
2006-11-01
Modeling the propagation of blood pressure and flow along the fetoplacental arterial tree may improve interpretation of abnormal flow velocity waveforms in fetuses. The current models, however, either do not include a wide range of gestational ages or do not account for variation in anatomical, vascular, or rheological parameters. We developed a mathematical model of the pulsating fetoumbilical arterial circulation using Womersley's oscillatory flow theory and viscoelastic arterial wall properties. Arterial flow waves are calculated at different arterial locations from which the pulsatility index (PI) can be determined. We varied blood viscosity, placental and brain resistances, placental compliance, heart rate, stiffness of the arterial wall, and length of the umbilical arteries. The PI increases in the umbilical artery and decreases in the cerebral arteries, as a result of increasing placental resistance or decreasing brain resistance. Both changes in resistance decrease the flow through the placenta. An increased arterial stiffness increases the PIs in the entire fetoplacental circulation. Blood viscosity and peripheral bed compliance have limited influence on the flow profiles. Bradycardia and tachycardia increase and decrease the PI in all arteries, respectively. Umbilical arterial length has limited influence on the PI but affects the mean arterial pressure at the placental cord insertion. The model may improve the interpretation of arterial flow pulsations and thus may advance both the understanding of pathophysiological processes and clinical management.
This program is part of a larger program called ECOHAB: Florida that includes this study as well as physical oceanography, circulation patterns, and shelf scale modeling for predicting the occurrence and transport of Karenia brevis (=Gymnodinium breve) red tides. The physical par...
2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation
NASA Technical Reports Server (NTRS)
Englar, Robert J.; Jones, Gregory S.; Allan, Brian G.; Lin, Johb C.
2009-01-01
A current NASA Research Announcement (NRA) project being conducted by Georgia Tech Research Institute (GTRI) personnel and NASA collaborators includes the development of Circulation Control (CC) blown airfoils to improve subsonic aircraft high-lift and cruise performance. The emphasis of this program is the development of CC active flow control concepts for both high-lift augmentation, drag control, and cruise efficiency. A collaboration in this project includes work by NASA research engineers, whereas CFD validation and flow physics experimental research are part of NASA s systematic approach to developing design and optimization tools for CC applications to fixed-wing aircraft. The design space for CESTOL type aircraft is focusing on geometries that depend on advanced flow control technologies that include Circulation Control aerodynamics. The ability to consistently predict advanced aircraft performance requires improvements in design tools to include these advanced concepts. Validation of these tools will be based on experimental methods applied to complex flows that go beyond conventional aircraft modeling techniques. This paper focuses on recent/ongoing benchmark high-lift experiments and CFD efforts intended to provide 2-D CFD validation data sets related to NASA s Cruise Efficient Short Take Off and Landing (CESTOL) study. Both the experimental data and related CFD predictions are discussed.
Performance of computer vision in vivo flow cytometry with low fluorescence contrast
NASA Astrophysics Data System (ADS)
Markovic, Stacey; Li, Siyuan; Niedre, Mark
2015-03-01
Detection and enumeration of circulating cells in the bloodstream of small animals are important in many areas of preclinical biomedical research, including cancer metastasis, immunology, and reproductive medicine. Optical in vivo flow cytometry (IVFC) represents a class of technologies that allow noninvasive and continuous enumeration of circulating cells without drawing blood samples. We recently developed a technique termed computer vision in vivo flow cytometry (CV-IVFC) that uses a high-sensitivity fluorescence camera and an automated computer vision algorithm to interrogate relatively large circulating blood volumes in the ear of a mouse. We detected circulating cells at concentrations as low as 20 cells/mL. In the present work, we characterized the performance of CV-IVFC with low-contrast imaging conditions with (1) weak cell fluorescent labeling using cell-simulating fluorescent microspheres with varying brightness and (2) high background tissue autofluorescence by varying autofluorescence properties of optical phantoms. Our analysis indicates that CV-IVFC can robustly track and enumerate circulating cells with at least 50% sensitivity even in conditions with two orders of magnitude degraded contrast than our previous in vivo work. These results support the significant potential utility of CV-IVFC in a wide range of in vivo biological models.
The modelling of symmetric airfoil vortex generators
NASA Technical Reports Server (NTRS)
Reichert, B. A.; Wendt, B. J.
1996-01-01
An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.
On Lagrangian residual currents with applications in south San Francisco Bay, California
Cheng, Ralph T.; Casulli, Vincenzo
1982-01-01
The Lagrangian residual circulation has often been introduced as the sum of the Eulerian residual circulation and the Stokes' drift. Unfortunately, this definition of the Lagrangian residual circulation is conceptually incorrect because both the Eulerian residual circulation and the Stokes' drift are Eulerian variables. In this paper a classification of various residual variables are reviewed and properly defined. The Lagrangian residual circulation is then studied by means of a two-stage formulation of a computer model. The tidal circulation is first computed in a conventional Eulerian way, and then the Lagrangian residual circulation is determined by a method patterned after the method of markers and cells. To demonstrate properties of the Lagrangian residual circulation, application of this approach in South San Francisco Bay, California, is considered. With the aid of the model results, properties of the Eulerian and Lagrangian residual circulation are examined. It can be concluded that estimation of the Lagrangian residual circulation from Eulerian data may lead to unacceptable error, particularly in a tidal estuary where the tidal excursion is of the same order of magnitude as the length scale of the basin. A direction calculation of the Lagrangian residual circulation must be made and has been shown to be feasible.
The Influence of Ice-Ocean Interactions on Europa's Overturning Circulation
NASA Astrophysics Data System (ADS)
Zhu, P.; Manucharyan, G. E.; Thompson, A. F.; Goodman, J. C.; Vance, S.
2016-12-01
Jupiter's moon Europa appears to have a global liquid ocean, which is located beneath an ice shell that covers the moon's entire surface. Linking ocean dynamics and ice-ocean interactions is crucial to understanding observed surface features on Europa as well as other satellite measurements. Ocean properties and circulation may also provide clues as to whether the moon has the potential to support extraterrestrial life through chemical transport governed by ice-ocean interactions. Previous studies have identified a Hadley cell-like overturning circulation extending from the equator to mid latitudes. However, these model simulations do not consider ice-ocean interactions. In this study, our goal is to investigate how the ocean circulation may be affected by ice. We study two ice-related processes by building idealized models. One process is horizontal convection driven by an equator-to-pole buoyancy difference due to latitudinal ice transport at the ocean surface, which is found to be much weaker than the convective overturning circulation. The second process we consider is the freshwater layer formed by ice melting at the equator. A strong buoyancy contrast between the freshwater layer and the underlying water suppresses convection and turbulent mixing, which may modify the surface heat flux from the ocean to the bottom of the ice. We find that the salinity of the ocean below the freshwater layer tends to be homogeneous both vertically and horizontally with the presence of an overturning circulation. Critical values of circulation strength constrain the freshwater layer depth, and this relationship is sensitive to the average salinity of the ocean. Further coupling of temperature and salinity of the ice and the ocean that includes mutual influences between the surface heat flux and the freshwater layer may provide additional insights into the ice-ocean feedback, and its influence on the latitudinal difference of heat transport.
McCabe, G.J.; Dettinger, M.D.
1995-01-01
General circulation model (GCM) simulations of atmospheric circulation are more reliable than GCM simulations of temperature and precipitation. In this study, temporal correlations between 700 hPa height anomalies simulated winter precipitation at eight locations in the conterminous United States are compared with corresponding correlations in observations. The objectives are to 1) characterize the relations between atmospheric circulation and winter precipitation simulated by the GFDL, GCM for selected locations in the conterminous USA, ii) determine whether these relations are similar to those found in observations of the actual climate system, and iii) determine if GFDL-simulated precipitation is forced by the same circulation patterns as in the real atmosphere. -from Authors
Dumas, F; Le Gendre, R; Thomas, Y; Andréfouët, S
2012-01-01
Hydrodynamic functioning and water circulation of the semi-closed deep lagoon of Ahe atoll (Tuamotu Archipelago, French Polynesia) were investigated using 1 year of field data and a 3D hydrodynamical model. Tidal amplitude averaged less than 30 cm, but tide generated very strong currents (2 ms(-1)) in the pass, creating a jet-like circulation that partitioned the lagoon into three residual circulation cells. The pass entirely flushed excess water brought by waves-induced radiation stress. Circulation patterns were computed for climatological meteorological conditions and summarized with stream function and flushing time. Lagoon hydrodynamics and general overturning circulation was driven by wind. Renewal time was 250 days, whereas the e-flushing time yielded a lagoon-wide 80-days average. Tide-driven flush through the pass and wind-driven overturning circulation designate Ahe as a wind-driven, tidally and weakly wave-flushed deep lagoon. The 3D model allows studying pearl oyster larvae dispersal in both realistic and climatological conditions for aquaculture applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Alomari, Mahmoud A; Shqair, Dana M; Khabour, Omar F; Alawneh, Khaldoon; Nazzal, Mahmoud I; Keewan, Esraa F
2012-01-01
Exercise testing is associated with barriers prevent using cardiovascular (CV) endurance (CVE) measure frequently. A recent nonexercise model (NM) is alleged to estimate CVE without exercise. This study examined CVE relationships, using the NM model, with measures of obesity, physical fitness (PF), blood glucose and lipid, and circulation in 188 asymptomatic young (18-40 years) adults. Estimated CVE correlated favorably with measures of PF (r = 0.4 - 0.5) including handgrip strength, distance in 6 munities walking test, and shoulder press, and leg extension strengths, obesity (r = 0.2 - 0.7) including % body fat, body water content, fat mass, muscle mass, BMI, waist and hip circumferences and waist/hip ratio, and circulation (r = 0.2 - 0.3) including blood pressures, blood flow, vascular resistance, and blood (r = 0.2 - 0.5) profile including glucose, total cholesterol, LDL-C, HDL-C, and triglycerides. Additionally, differences (P < 0.05) in examined measures were found between the high, average, and low estimated CVE groups. Obviously the majority of these measures are CV disease risk factors and metabolic syndrome components. These results enhance the NM scientific value, and thus, can be further used in clinical and nonclinical settings.
Social hierarchy modulates responses of fish exposed to contaminants of emerging concern
Many organisms, including the fathead minnow (Pimephales promelas), a toxicological model organism, establish social hierarchies. The social rank of each male in a population is under the control of the hypothalamic-pituitary-gonadal (HPG) axis mainly through regulation of circul...
A Model of Cooperation: The VALNet Project.
ERIC Educational Resources Information Center
Oberg, Larry R.
1986-01-01
Description of VALNet (Valley Library Consortium), a consortium of public, academic, and school libraries in Idaho, highlights proposed online public access union catalog which would include nonbibliographic and referral files and circulation and serials control modules. The political climate, marketing, needs assessment, support and consultation,…
Effects of wave-induced forcing on a circulation model of the North Sea
NASA Astrophysics Data System (ADS)
Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian
2017-01-01
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution Nucleus for European Modelling of the Ocean (NEMO) model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force, the sea-state-dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water-level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state-dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water-level and current predictions.
Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed
NASA Astrophysics Data System (ADS)
Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.
2018-02-01
Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.
Regional climates in the GISS general circulation model: Surface air temperature
NASA Technical Reports Server (NTRS)
Hewitson, Bruce
1994-01-01
One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.
Angular circulation speed of tablets in a vibratory tablet coating pan.
Kumar, Rahul; Wassgren, Carl
2013-03-01
In this work, a single tablet model and a discrete element method (DEM) computer simulation are developed to obtain the angular circulation speed of tablets in a vibratory tablet coating pan for range of vibration frequencies and amplitudes. The models identify three important dimensionless parameters that influence the speed of the tablets: the dimensionless amplitude ratio (a/R), the Froude number (aω2/g), and the tablet-wall friction coefficient, where a is the peak vibration amplitude at the drum center, ω is the vibration angular frequency, R is the drum radius, and g is the acceleration due to gravity. The models predict that the angular circulation speed of tablets increases with an increase in each of these parameters. The rate of increase in the angular circulation speed is observed to decrease for larger values of a/R. The angular circulation speed reaches an asymptote beyond a tablet-wall friction coefficient value of about 0.4. Furthermore, it is found that the Froude number should be greater than one for the tablets to start circulating. The angular circulation speed increases as Froude number increases but then does not change significantly at larger values of the Froude number. Period doubling, where the motion of the bed is repeated every two cycles, occurs at a Froude number larger than five. The single tablet model, although much simpler than the DEM model, is able to predict the maximum circulation speed (the limiting case for a large value of tablet-wall friction coefficient) as well as the transition to period doubling.
The impact of ARM on climate modeling
Randall, David A.; Del Genio, Anthony D.; Donner, Lee J.; ...
2016-07-15
Climate models are among humanity’s most ambitious and elaborate creations. They are designed to simulate the interactions of the atmosphere, ocean, land surface, and cryosphere on time scales far beyond the limits of deterministic predictability and including the effects of time-dependent external forcings. The processes involved include radiative transfer, fluid dynamics, microphysics, and some aspects of geochemistry, biology, and ecology. The models explicitly simulate processes on spatial scales ranging from the circumference of Earth down to 100 km or smaller and implicitly include the effects of processes on even smaller scales down to a micron or so. In addition, themore » atmospheric component of a climate model can be called an atmospheric global circulation model (AGCM).« less
NASA Astrophysics Data System (ADS)
Santhanakrishnan, Arvind; Johnson, Jacob; Kotz, Monica; Tang, Elaine; Khiabani, Reza; Yoganathan, Ajit; Maher, Kevin
2012-11-01
The Fontan procedure is a palliative surgery performed on patients with single ventricle (SV) congenital heart defects. The SV is used for systemic circulation and the venous return from the inferior vena cava (IVC) and superior vena cava (SVC) is routed to the pulmonary arteries (PA), resulting in a total cavopulmonary connection (TCPC). Hepatic venous hypertension is commonly manifested in the Fontan circulation, leading to long-term complications including liver congestion and cirrhosis. Respiratory intrathoracic pressure changes affect the venous return from the IVC to the PA. Using a physical model of an idealized TCPC, we examine placement of a unidirectional bovine venous valve within the IVC as a method of alleviating hepatic venous hypertension. A piston pump is used to provide pulsatility in the internal flow through the TCPC, while intrathoracic pressure fluctuations are imposed on the external walls of the model using a pair of linear actuators. When implanted in the extrathoracic position, the hepatic venous pressure is lowered from baseline condition. The effects of changing caval flow distribution and intrathoracic pressure on TCPC hemodynamics will be examined.
Numerical Issues for Circulation Control Calculations
NASA Technical Reports Server (NTRS)
Swanson, Roy C., Jr.; Rumsey, Christopher L.
2006-01-01
Steady-state and time-accurate two-dimensional solutions of the compressible Reynolds-averaged Navier- Stokes equations are obtained for flow over the Lockheed circulation control (CC) airfoil and the General Aviation CC (GACC) airfoil. Numerical issues in computing circulation control flows such as the effects of grid resolution, boundary and initial conditions, and unsteadiness are addressed. For the Lockheed CC airfoil computed solutions are compared with detailed experimental data, which include velocity and Reynolds stress profiles. Three turbulence models, having either one or two transport equations, are considered. Solutions are obtained on a sequence of meshes, with mesh refinement primarily concentrated on the airfoil circular trailing edge. Several effects related to mesh refinement are identified. For example, sometimes sufficient mesh resolution can exclude nonphysical solutions, which can occur in CC airfoil calculations. Also, sensitivities of the turbulence models with mesh refinement are discussed. In the case of the GACC airfoil the focus is on the difference between steady-state and time-accurate solutions. A specific objective is to determine if there is self-excited vortex shedding from the jet slot lip.
Simulations of the general circulation of the Martian atmosphere. II - Seasonal pressure variations
NASA Technical Reports Server (NTRS)
Pollack, James B.; Haberle, Robert M.; Murphy, James R.; Schaeffer, James; Lee, Hilda
1993-01-01
The CO2 seasonal cycle of the Martian atmosphere and surface is simulated with a hybrid energy balance model that incorporates dynamical and radiation information from a large number of general circulation model runs. This information includes: heating due to atmospheric heat advection, the seasonally varying ratio of the surface pressure at the two Viking landing sites to the globally averaged pressure, the rate of CO2 condensation in the atmosphere, and solar heating of the atmosphere and surface. The predictions of the energy balance model are compared with the seasonal pressure variations measured at the two Viking landing sites and the springtime retreat of the seasonal polar cap boundaries. The following quantities are found to have a strong influence on the seasonal pressures at the Viking landing sites: albedo of the seasonal CO2 ice deposits, emissivity of this deposit, atmospheric heat advection, and the pressure ratio.
MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed
Li, Tingwen; Dietiker, Jean-François; Shahnam, Mehrdad
2012-12-01
In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numericalmore » results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.« less
A numerical world ocean general circulation model Part I. Basic design and barotropic experiment
NASA Astrophysics Data System (ADS)
Han, Young-June
1984-08-01
A new six-layer world ocean general circulation model based on the primitive system of equations is described in detail and its performance in the case of a homogeneous ocean is described. These test integrations show that the model is capable of reproducing the observed mean barotropic or vertically-integrated transport, as well as the seasonal variability of the major ocean gyres. The surface currents, however, are dominated by the Ekman transport, and such non-linear features as the western boundary currents and the equatorial countercurrents are poorly represented. The abyssal boundary countercurrents are also absent due to the lack of thermohaline forcing. The most conspicuous effect of the bottom topography on a homogeneous ocean is seen in the Southern ocean where the calculated Antarctic circumpolar transport through the Drake passage ( ≈ 10 Sv, with bathymetry included) greatly underestimates the observed transport (≈ 100 Sv).
Parrish, Judith T.; Peterson, F.
1988-01-01
Wind directions for Middle Pennsylvanian through Jurassic time are predicted from global circulation models for the western United States. These predictions are compared with paleowind directions interpreted from eolian sandstones of Middle Pennsylvanian through Jurassic age. Predicted regional wind directions correspond with at least three-quarters of the paleowind data from the sandstones; the rest of the data may indicate problems with correlation, local effects of paleogeography on winds, and lack of resolution of the circulation models. The data and predictions suggest the following paleoclimatic developments through the time interval studied: predominance of winter subtropical high-pressure circulation in the Late Pennsylvanian; predominance of summer subtropical high-pressure circulation in the Permian; predominance of summer monsoonal circulation in the Triassic and earliest Jurassic; and, during the remainder of the Jurassic, influence of both summer subtropical and summer monsoonal circulation, with the boundary between the two systems over the western United States. This sequence of climatic changes is largely owing to paleogeographic changes, which influenced the buildup and breakdown of the monsoonal circulation, and possibly owing partly to a decrease in the global temperature gradient, which might have lessened the influence of the subtropical high-pressure circulation. The atypical humidity of Triassic time probably resulted from the monsoonal circulation created by the geography of Pangaea. This circulation is predicted to have been at a maximum in the Triassic and was likely to have been powerful enough to draw moisture along the equator from the ocean to the west. ?? 1988.
Large Scale Eocene Ocean Circulation Transition Could Help Antarctic Glaciation.
NASA Astrophysics Data System (ADS)
Baatsen, M.
2016-12-01
The global climate underwent major changes going from the Eocene into the Oligocene, including the formation of a continental-scale Antarctic ice sheet. In addition to a gradual drawdown of CO2 since the Early Eocene, the changing background geography of the earth may also have played a crucial role in setting the background oceanic circulation pattern favorable to ice growth. On the other hand, the ocean circulation may have changed only after the ice sheet started growing, with a similar climatic imprint. It is, therefore, still under debate what the primary forcing or trigger of this transition was. Using an ocean general circulation model (POP) and two different geography reconstruc-tions for the middle-late Eocene, we find two distinctly different patterns of the oceanic circulation to be possible under the same forcing. The first one features deep-water formation and warmer SSTs in the Southern Pacific while in the second, deep water forms in the North Pacific Ocean and Southern Ocean SSTs are colder. The presence of a double equilibrium shows that the ocean circulation was highly susceptible to large scale transitions during the middle-late Eocene. Additionally, changes in benthic oxygen and Neodymium isotopes depict significant changes during the same period. We suggest that a transition in the global meridional overturing circulation can explain the observed changes and preconditions the global climate for the two-step transition into an Icehouse state at the Eocene-Oligocene boundary.
Quantifying the Aerosol Semi-Direct Effect in the NASA GEOS-5 AGCM
NASA Technical Reports Server (NTRS)
Randles, Cynthia A.; Colarco, Peter R.; daSilva, Arlindo
2011-01-01
Aerosols such as black carbon, dust, and some organic carbon species both scatter and absorb incoming solar radiation. This direct aerosol radiative forcing (DARF) redistributes solar energy both by cooling the surface and warming the atmosphere. As a result, these aerosols affect atmospheric stability and cloud cover (the semi-direct effect, or SDE). Furthermore, in regions with persistent high loadings of absorbing aerosols (e.g. Asia), regional circulation patterns may be altered, potentially resulting in changes in precipitation patterns. Here we investigate aerosol-climate coupling using the NASA Goddard Earth Observing System model version 5 (GEOS-5) atmospheric general circulation model (AGCM), in which we have implemented an online version of the Goddard Chemistry, Aerosol, Radiation and Transport (GOCART) model. GOCART includes representations of the sources, sinks, and chemical transformation of externally mixed dust, sea salt, sulfate, and carbonaceous aerosols. We examine a series of free-running ensemble climate simulations of the present-day period (2000-2009) forced by observed sea surface temperatures to determine the impact of aerosols on the model climate. The SDE and response of each simulation is determined by differencing with respect to the control simulation (no aerosol forcing). In a free-running model, any estimate of the SDE includes changes in clouds due both to atmospheric heating from aerosols and changes in circulation. To try and quantify the SDE without these circulation changes we then examine the DARF and SDE in GEOS-5 with prescribed meteorological analyses introduced by the MERRA analysis. By doing so, we are able to examine changes in model clouds that occur on shorter scales (six hours). In the GEOS-5 data assimilation system (DAS), the analysis is defined as the best estimate of the atmospheric state at any given time, and it is determined by optimally combining a first-guess short-term GCM forecast with all available observations. The Incremental Analysis Update (IAU) is added to the model forecast tendencies to align them with the analysis every six hours, thus preventing longer timescale feedbacks due to the aerosol forcing. We calculate the SDE by comparing model runs with and without aerosols, and the difference in the IAU between these runs is a useful metric with which to evaluate the impact of the SDE on the model atmosphere and clouds. Decreasing the IAU indicates that the aerosol direct and semi-direct effects act to reduce the bias between the model and observations and vice versa.
NASA Astrophysics Data System (ADS)
Chowdary, J. S.; Chaudhari, H. S.; Gnanaseelan, C.; Parekh, Anant; Suryachandra Rao, A.; Sreenivas, P.; Pokhrel, S.; Singh, P.
2014-04-01
This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India.
NASA Astrophysics Data System (ADS)
Fajber, R. A.; Kushner, P. J.; Laliberte, F. B.
2017-12-01
In the midlatitude atmosphere, baroclinic eddies are able to raise warm, moist air from the surface into the midtroposphere where it condenses and warms the atmosphere through latent heating. This coupling between dynamics and moist thermodynamics motivates using a conserved moist thermodynamic variable, such as the equivalent potential temperature, to study the midlatitude circulation and associated heat transport since it implicitly accounts for latent heating. When the equivalent potential temperature is used to zonally average the circulation, the moist isentropic circulation takes the form of a single cell in each hemisphere. By utilising the statistical transformed Eulerian mean (STEM) circulation we are able to parametrize the moist isentropic circulation in terms of second order dynamic and moist thermodynamic statistics. The functional dependence of the STEM allows us to analytically calculate functional derivatives that reveal the spatially varying sensitivity of the moist isentropic circulation to perturbations in different statistics. Using the STEM functional derivatives as sensitivity kernels we interpret changes in the moist isentropic circulation from two experiments: surface heating in an idealised moist model, and a climate change scenario in a comprehensive atmospheric general circulation model. In both cases we find that the changes in the moist isentropic circulation are well predicted by the functional sensitivities, and that the total heat transport is more sensitive to changes in dynamical processes driving local changes in poleward heat transport than it is to thermodynamic and/or radiative processes driving changes to the distribution of equivalent potential temperature.
A Transgenic Mouse Model of Poliomyelitis.
Koike, Satoshi; Nagata, Noriyo
2016-01-01
Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.
Circulating 25-hydroxyvitamin D level and risk of developing rheumatoid arthritis
Arkema, Elizabeth V.; Cui, Jing; Malspeis, Susan; Costenbader, Karen H.; Karlson, Elizabeth W.
2014-01-01
Objective. The aim of this study was to examine the relationship between preclinical circulating 25-hydroxyvitamin D [25(OH)D] and RA in two nested case–control studies within the prospective cohort Nurses’ Health Study (NHS) and NHS II (NHSII). Methods. We included 166 women with RA and blood specimens collected 3 months to 16 years prior to the first RA symptom and 490 matched controls (3:1, matched on age, date of blood draw, hormonal factors). We calculated the odds ratio (OR) and 95% CI for incident RA using conditional logistic regression multivariable adjusted models, including additional covariates for smoking status, parity and breastfeeding, alcohol consumption, BMI, median income and region of residence in the USA. We repeated analyses stratified by time from blood draw to RA diagnosis (3 months to <4 years or ≥4 years) and meta-analysed estimates from the two cohorts using fixed effects models. Results. Incident RA was confirmed in 120 NHS [mean age 63.8 years (s.d. 8.2)] and 46 NHSII participants [mean age 48.5 years (s.d. 4.7)]. Mean time from blood draw to RA diagnosis was 7.8 years (s.d. 4.2) for NHS and 4.2 years (s.d. 2.0) for NHSII participants. Meta-analysis of crude and multivariable-adjusted conditional logistic models did not show significant associations between circulating 25(OH)D and RA. However, among NHSII women with blood drawn between 3 months and <4 years prior to RA diagnosis, there was a 20% decreased risk of RA associated with each 1 ng/ml increase in 25(OH)D [OR 0.80 (95% CI 0.64, 0.99)]. Conclusion. We did not observe a significant association between circulating 25(OH)D levels and RA, except for among a small subset of NHSII women with levels measured closest to RA diagnosis. PMID:25065001
NASA Astrophysics Data System (ADS)
Hartmann, Carolin; Patil, Roshani; Lin, Charles P.; Niedre, Mark
2018-01-01
There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immunology, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most currently used methods require drawing and enriching blood samples from the body, but these suffer from a number of limitations. In contrast, ‘in vivo flow cytometry’ (IVFC) refers to set of technologies that allow study of cells directly in the bloodstream of the organism in vivo. In recent years the IVFC field has grown significantly and new techniques have been developed, including fluorescence microscopy, multi-photon, photo-acoustic, and diffuse fluorescence IVFC. In this paper we review recent technical advances in IVFC, with emphasis on instrumentation, contrast mechanisms, and detection sensitivity. We also describe key applications in biomedical research, including cancer research and immunology. Last, we discuss future directions for IVFC, as well as prospects for broader adoption by the biomedical research community and translation to humans clinically.
Hartmann, Carolin; Patil, Roshani; Lin, Charles P; Niedre, Mark
2017-12-14
There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immunology, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most currently used methods require drawing and enriching blood samples from the body, but these suffer from a number of limitations. In contrast, 'in vivo flow cytometry' (IVFC) refers to set of technologies that allow study of cells directly in the bloodstream of the organism in vivo. In recent years the IVFC field has grown significantly and new techniques have been developed, including fluorescence microscopy, multi-photon, photo-acoustic, and diffuse fluorescence IVFC. In this paper we review recent technical advances in IVFC, with emphasis on instrumentation, contrast mechanisms, and detection sensitivity. We also describe key applications in biomedical research, including cancer research and immunology. Last, we discuss future directions for IVFC, as well as prospects for broader adoption by the biomedical research community and translation to humans clinically.
Blood money: Harvey's De motu cordis (1628) as an exercise in accounting.
Neuss, Michael J
2018-04-13
William Harvey's famous quantitative argument from De motu cordis (1628) about the circulation of blood explained how a small amount of blood could recirculate and nourish the entire body, upending the Galenic conception of the blood's motion. This paper argues that the quantitative argument drew on the calculative and rhetorical skills of merchants, including Harvey's own brothers. Modern translations of De motu cordis obscure the language of accountancy that Harvey himself used. Like a merchant accounting for credits and debits, intake and output, goods and moneys, Harvey treated venous and arterial blood as essentially commensurate, quantifiable and fungible. For Harvey, the circulation (and recirculation) of blood was an arithmetical necessity. The development of Harvey's circulatory model followed shifts in the epistemic value of mercantile forms of knowledge, including accounting and arithmetic, also drawing on an Aristotelian language of reciprocity and balance that Harvey shared with mercantile advisers to the royal court. This paper places Harvey's calculations in a previously underappreciated context of economic crisis, whose debates focused largely on questions of circulation.
To study the circulation and water quality in the Tillamook Bay, Oregon, a high-resolution estuarine model that covers the shallow bay and the surrounding wetland has been developed. The estuarine circulation at Tillamook Bay is mainly driven by the tides and the river flows and ...
NASA Astrophysics Data System (ADS)
Totz, Sonja; Eliseev, Alexey V.; Petri, Stefan; Flechsig, Michael; Caesar, Levke; Petoukhov, Vladimir; Coumou, Dim
2018-02-01
We present and validate a set of equations for representing the atmosphere's large-scale general circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been implemented in Aeolus 1.0, which is a statistical-dynamical atmosphere model (SDAM) and includes radiative transfer and cloud modules (Coumou et al., 2011; Eliseev et al., 2013). The statistical dynamical approach is computationally efficient and thus enables us to perform climate simulations at multimillennia timescales, which is a prime aim of our model development. Further, this computational efficiency enables us to scan large and high-dimensional parameter space to tune the model parameters, e.g., for sensitivity studies.Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0.We optimize the dynamical core parameter values by tuning all relevant dynamical fields to ERA-Interim reanalysis data (1983-2009) forcing the dynamical core with prescribed surface temperature, surface humidity and cumulus cloud fraction. We test the model's performance in reproducing the seasonal cycle and the influence of the El Niño-Southern Oscillation (ENSO). We use a simulated annealing optimization algorithm, which approximates the global minimum of a high-dimensional function.With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean circulation, planetary waves and storm tracks. The simulated annealing optimization improves in particular the model's representation of the Northern Hemisphere jet stream and storm tracks as well as the Hadley circulation.The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower troposphere mass flux show good results in particular in the Northern Hemisphere. In the Southern Hemisphere, the model tends to produce too-weak zonal-mean zonal winds and a too-narrow Hadley circulation. We discuss possible reasons for these model biases as well as planned future model improvements and applications.
Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators
NASA Technical Reports Server (NTRS)
Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)
2001-01-01
An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values obtained in isolation. The circulation may be accurately modeled with an expression based on Prandtl's relationship between finite airfoil circulation and airfoil geometry. A correlation for the peak vorticity has been derived from a conservation relationship equating the moment at the airfoil tip to the rate of angular momentum production of the shed vortex, modeled as a Lamb (ideal viscous) vortex. This technique provides excellent qualitative agreement to the observed behavior of peak vorticity for low aspect ratio airfoils typically used as vortex generators.
NASA Astrophysics Data System (ADS)
Olson, R.; An, S. I.
2016-12-01
Atlantic Meridional Overturning Circulation (AMOC) in the ocean might slow down in the future, which can lead to a host of climatic effects in North Atlantic and throughout the world. Despite improvements in climate models and availability of new observations, AMOC projections remain uncertain. Here we constrain CMIP5 multi-model ensemble output with observations of a recently developed AMOC index to provide improved Bayesian predictions of future AMOC. Specifically, we first calculate yearly AMOC index loosely based on Rahmstorf et al. (2015) for years 1880—2004 for both observations, and the CMIP5 models for which relevant output is available. We then assign a weight to each model based on a Bayesian Model Averaging method that accounts for differential model skill in terms of both mean state and variability. We include the temporal autocorrelation in climate model errors, and account for the uncertainty in the parameters of our statistical model. We use the weights to provide future weighted projections of AMOC, and compare them to un-weighted ones. Our projections use bootstrapping to account for uncertainty in internal AMOC variability. We also perform spectral and other statistical analyses to show that AMOC index variability, both in models and in observations, is consistent with red noise. Our results improve on and complement previous work by using a new ensemble of climate models, a different observational metric, and an improved Bayesian weighting method that accounts for differential model skill at reproducing internal variability. Reference: Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in atlantic ocean overturning circulation. Nature Climate Change, 5(5), 475-480. doi:10.1038/nclimate2554
NASA Technical Reports Server (NTRS)
Farrara, John D.; Drummond, Leroy A.; Mechoso, Carlos R.; Spahr, Joseph A.
1998-01-01
The design, implementation and performance optimization on the CRAY T3E of an atmospheric general circulation model (AGCM) which includes the transport of, and chemical reactions among, an arbitrary number of constituents is reviewed. The parallel implementation is based on a two-dimensional (longitude and latitude) data domain decomposition. Initial optimization efforts centered on minimizing the impact of substantial static and weakly-dynamic load imbalances among processors through load redistribution schemes. Recent optimization efforts have centered on single-node optimization. Strategies employed include loop unrolling, both manually and through the compiler, the use of an optimized assembler-code library for special function calls, and restructuring of parts of the code to improve data locality. Data exchanges and synchronizations involved in coupling different data-distributed models can account for a significant fraction of the running time. Therefore, the required scattering and gathering of data must be optimized. In systems such as the T3E, there is much more aggregate bandwidth in the total system than in any particular processor. This suggests a distributed design. The design and implementation of a such distributed 'Data Broker' as a means to efficiently couple the components of our climate system model is described.
Calibrating the ECCO ocean general circulation model using Green's functions
NASA Technical Reports Server (NTRS)
Menemenlis, D.; Fu, L. L.; Lee, T.; Fukumori, I.
2002-01-01
Green's functions provide a simple, yet effective, method to test and calibrate General-Circulation-Model(GCM) parameterizations, to study and quantify model and data errors, to correct model biases and trends, and to blend estimates from different solutions and data products.
Impact of GODAE Products on Nested HYCOM Simulations of the West Florida Shelf
2009-01-20
circulation and the Atlantic Meridional Overturning Circulation . For temperature, the non-assimilative outer model had a cold...associated with the basin-scale wind-driven gyres and with the Atlantic Meridional Overturning Circulation is incor- rectly represented. In contrast...not contain realistic LC transport variability associated with the wind-driven gyre circulation and the Atlantic Meridio- nal Overturning Circulation
NASA Astrophysics Data System (ADS)
Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A. D.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; Tsigaridis, K.
2017-07-01
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.
NASA Technical Reports Server (NTRS)
Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.;
2017-01-01
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth's, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.
Effects of wave-induced forcing on a circulation model of the North Sea
NASA Astrophysics Data System (ADS)
Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian
2017-04-01
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution NEMO model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force and the sea-state dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water level and current predictions.
A theoretical model of the variation of the meridional circulation with the solar cycle
NASA Astrophysics Data System (ADS)
Hazra, Gopal; Choudhuri, Arnab Rai
2017-12-01
Observations of the meridional circulation of the Sun, which plays a key role in the operation of the solar dynamo, indicate that its speed varies with the solar cycle, becoming faster during the solar minima and slower during the solar maxima. To explain this variation of the meridional circulation with the solar cycle, we construct a theoretical model by coupling the equation of the meridional circulation (the ϕ component of the vorticity equation within the solar convection zone) with the equations of the flux transport dynamo model. We consider the back reaction due to the Lorentz force of the dynamo-generated magnetic fields and study the perturbations produced in the meridional circulation due to it. This enables us to model the variations of the meridional circulation without developing a full theory of the meridional circulation itself. We obtain results which reproduce the observational data of solar cycle variations of the meridional circulation reasonably well. We get the best results on assuming the turbulent viscosity acting on the velocity field to be comparable to the magnetic diffusivity (i.e. on assuming the magnetic Prandtl number to be close to unity). We have to assume an appropriate bottom boundary condition to ensure that the Lorentz force cannot drive a flow in the subadiabatic layers below the bottom of the tachocline. Our results are sensitive to this bottom boundary condition. We also suggest a hypothesis on how the observed inward flow towards the active regions may be produced.
Implications of summertime marine stratocumulus on the North American climate
NASA Technical Reports Server (NTRS)
Clark, John H. E.
1994-01-01
This study focuses on the effects of summertime stratocumulus over the eastern Pacific. This cloud is linked to the semi-permanent sub-tropical highs that dominate the low-level circulation over the Pacific and Atlantic. Subsidence on the eastern flank of these highs creates an inversion based about 800 m above sea level that caps moist air near the surface. This air overlies cool waters driven by upwelling along the coastal regions of North America. Strong surface north-westerlies mix the boundary layer enough to saturate the air just below the capping inversion. Widespread stratocumulus is thus formed. All calculations were carried out using the GENESIS general circulation model that was run at MSFC. Among the more important properties of the model is that it includes radiative forcing due to absorption of solar radiation and the emission of infrared radiation, interactive clouds (both stratocumulus and cumulus types), exchanges of heat and moisture with the lower boundary. Clouds are interactive in the sense that they impact the circulation by modifying the fields of radiative heating and turbulent fluxes of heat and moisture in the boundary layer. In turn, clouds are modified by the winds through the advection of moisture. In order to isolate the effects of mid- and high-latitude stratocumulus, two runs were made with the model: one with and the other without stratocumulus. The runs were made for a year, but with perpetual July conditions, i.e., solar forcing was fixed. The diurnal solar cycle, however, was allowed for. The sea surface temperature distribution was fixed in both runs to represent climatological July conditions. All dependent variables were represented at 12 surfaces of constant sigma = p/p(sub O), where p is pressure and p(sub O) is surface pressure. To facilitate analysis, model output was transformed to constant pressure surfaces. Structures no smaller in size than 7.5 degrees longitude and 4.5 degrees in latitude were resolved. Smaller features of the circulation were parameterized. The model thus captures synoptic- and planetary-scale circulation features.
The environmental fluid dynamics code (EFDC) was used to study the three dimensional (3D) circulation, water quality, and ecology in Narragansett Bay, RI. Predictions of the Bay hydrodynamics included the behavior of the water surface elevation, currents, salinity, and temperatur...
NASA Astrophysics Data System (ADS)
Taghavi, M.; Cautenet, S.
2003-04-01
The ESCOMPTE Campaign has been conducted over Southern France (Provence region including the Marseille, Aix and Toulon cities and the Fos-Berre industrial center) in June and July of 2001. In order to study the redistribution of the pollutants emitted by anthropic and biogenic emissions and their impact on the atmospheric chemistry, we used meso-scale modeling (RAMS model, paralleled version 4.3, coupled on line with chemical modules : MOCA2.2 (Poulet et al, 2002) including 29 gaseous species). The hourly high resolution emissions were obtained from ESCOMPTE database (Ponche et al, 2002). The model was coupled with the dry deposition scheme (Walmsley and Weseley,1996). In this particular case of complex circulation (sea breeze associated with topography), the processes involving peaks of pollution were strongly non linear, and the meso scale modeling coupled on line with chemistry module was an essential step for a realistic redistribution of chemical species. Two nested grids satisfactorily describe the synoptic dynamics and the sea breeze circulations. The ECMWF meteorological fields provide the initial and boundary conditions. Different events characterized by various meteorological situations were simulated. Meteorological fields retrieved by modeling, also Modeled ozone, NOx, CO and SO2 concentrations, were compared with balloons, lidars, aircrafts and surface stations measurements. The chemistry regimes were explained according to the distribution of plumes. The stratified layers were examined.
NASA Astrophysics Data System (ADS)
Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.
2017-07-01
Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.
NASA Technical Reports Server (NTRS)
Grenfell, J. Lee; Shindell, D. T.; Koch, D.; Rind, D.; Hansen, James E. (Technical Monitor)
2002-01-01
We investigate the chemical (hydroxyl and ozone) and dynamical response to changing from present day to pre-industrial conditions in the Goddard Institute for Space Studies General Circulation Model (GISS GMC). We identify three main improvements not included by many other works. Firstly, our model includes interactive cloud calculations. Secondly we reduce sulfate aerosol which impacts NOx partitioning hence Ox distributions. Thirdly we reduce sea surface temperatures and increase ocean ice coverage which impact water vapor and ground albedo respectively. Changing the ocean data (hence water vapor and ozone) produces a potentially important feedback between the Hadley circulation and convective cloud cover. Our present day run (run 1, control run) global mean OH value was 9.8 x 10(exp 5) molecules/cc. For our best estimate of pre-industrial conditions run (run 2) which featured modified chemical emissions, sulfate aerosol and sea surface temperatures/ocean ice, this value changed to 10.2 x 10(exp 5) molecules/cc. Reducing only the chemical emissions to pre-industrial levels in run 1 (run 3) resulted in this value increasing to 10.6 x 10(exp 5) molecules/cc. Reducing the sulfate in run 3 to pre-industrial levels (run 4) resulted in a small increase in global mean OH (10.7 x 10(exp 5) molecules/cc). Changing the ocean data in run 4 to pre-industrial levels (run 5) led to a reduction in this value to 10.3 x 10(exp 5) molecules/cc. Mean tropospheric ozone burdens were 262, 181, 180, 180, and 182 Tg for runs 1-5 respectively.
Importance of Including Topography in Numerical Simulations of Venus' Atmospheric Circulation
NASA Astrophysics Data System (ADS)
Parish, H. F.; Schubert, G.; Lebonnois, S.; Covey, C. C.; Walterscheid, R. L.; Grossman, A.
2012-12-01
Venus' atmosphere is characterized by strong superrotation, in which the wind velocities at cloud heights are around 60 times faster than the surface rotation rate. The reasons for this strong superrotation are still not well understood. Since the surface of the planet is both a source and sink of atmospheric angular momentum it is important to understand and properly account for the interactions at the surface-atmosphere boundary. A key aspect of the surface-atmosphere interaction is the topography. Topography has been introduced into different general circulation models (GCMs) of Venus' atmosphere, producing significant, but widely varying effects on the atmospheric circulation. The reasons for the inconsistencies among model results are not well known, but our studies suggest they might be related to the influences of different dynamical cores. In our recent study, we have analyzed the angular momentum budget for two Venus GCMs, the Venus Community Atmosphere model (Venus CAM) and the Laboratoire de Meteorologie Dynamique (LMD) Venus GCM. Because of Venus' low magnitude surface winds, surface friction alone supplies only a relatively weak angular momentum forcing to the atmosphere. We find that if surface friction is introduced without including surface topography, the angular momentum balance of the atmosphere may be dominated by effects such as numerical diffusion, a sponge layer, or other numerical residuals that are generally included in all GCMs, and can themselves be sources of angular momentum. However, we find the mountain torque associated with realistic Venus surface topography supplies a much larger source of angular momentum than the surface friction, and dominates nonphysical numerical terms. (A similar effect occurs for rapidly rotating planets like Earth, but in this case numerical errors in the angular momentum budget are relatively small even in the absence of mountain torque). Even if surface friction dominates numerical terms in the angular momentum budgets of simulations without realistic topography, it must be remembered that there are no observational constraints on model parameterizations of the real surface friction on Venus. It is essential for a planet such as Venus, for which surface friction alone supplies only weak angular momentum forcing, to include surface topography to generate realistic forcing of angular momentum and avoid the influences of numerical artifacts, which can be significant. Venus' topography, as mapped using measurements from the Magellan mission, shows significant hemispheric asymmetry. In this work we examine the impact of this asymmetry using simulations of Venus' circulation with and without topography, within the latest version of the Venus CAM GCM.
Explicit Global Simulation of Gravity Waves up to the Lower Thermosphere
NASA Astrophysics Data System (ADS)
Becker, E.
2016-12-01
At least for short-term simulations, middle atmosphere general circulation models (GCMs) can be run with sufficiently high resolution in order to describe a good part of the gravity wave spectrum explicitly. Nevertheless, the parameterization of unresolved dynamical scales remains an issue, especially when the scales of parameterized gravity waves (GWs) and resolved GWs become comparable. In addition, turbulent diffusion must always be parameterized along with other subgrid-scale dynamics. A practical solution to the combined closure problem for GWs and turbulent diffusion is to dispense with a parameterization of GWs, apply a high spatial resolution, and to represent the unresolved scales by a macro-turbulent diffusion scheme that gives rise to wave damping in a self-consistent fashion. This is the approach of a few GCMs that extend from the surface to the lower thermosphere and simulate a realistic GW drag and summer-to-winter-pole residual circulation in the upper mesosphere. In this study we describe a new version of the Kuehlungsborn Mechanistic general Circulation Model (KMCM), which includes explicit (though idealized) computations of radiative transfer and the tropospheric moisture cycle. Particular emphasis is spent on 1) the turbulent diffusion scheme, 2) the attenuation of resolved GWs at critical levels, 3) the generation of GWs in the middle atmosphere from body forces, and 4) GW-tidal interactions (including the energy deposition of GWs and tides).
Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.
An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, theworld’s largest ocean,where relatively fresh surface waters inhibitNorth Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanyingmore » pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redoxsensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.« less
Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene
Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.; Jaccard, Samuel L.; Tiedemann, Ralf; Haug, Gerald H.
2017-01-01
An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world’s largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming. PMID:28924606
Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene
Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.; ...
2017-09-13
An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, theworld’s largest ocean,where relatively fresh surface waters inhibitNorth Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanyingmore » pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redoxsensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.« less
Methods of testing parameterizations: Vertical ocean mixing
NASA Technical Reports Server (NTRS)
Tziperman, Eli
1992-01-01
The ocean's velocity field is characterized by an exceptional variety of scales. While the small-scale oceanic turbulence responsible for the vertical mixing in the ocean is of scales a few centimeters and smaller, the oceanic general circulation is characterized by horizontal scales of thousands of kilometers. In oceanic general circulation models that are typically run today, the vertical structure of the ocean is represented by a few tens of discrete grid points. Such models cannot explicitly model the small-scale mixing processes, and must, therefore, find ways to parameterize them in terms of the larger-scale fields. Finding a parameterization that is both reliable and plausible to use in ocean models is not a simple task. Vertical mixing in the ocean is the combined result of many complex processes, and, in fact, mixing is one of the less known and less understood aspects of the oceanic circulation. In present models of the oceanic circulation, the many complex processes responsible for vertical mixing are often parameterized in an oversimplified manner. Yet, finding an adequate parameterization of vertical ocean mixing is crucial to the successful application of ocean models to climate studies. The results of general circulation models for quantities that are of particular interest to climate studies, such as the meridional heat flux carried by the ocean, are quite sensitive to the strength of the vertical mixing. We try to examine the difficulties in choosing an appropriate vertical mixing parameterization, and the methods that are available for validating different parameterizations by comparing model results to oceanographic data. First, some of the physical processes responsible for vertically mixing the ocean are briefly mentioned, and some possible approaches to the parameterization of these processes in oceanographic general circulation models are described in the following section. We then discuss the role of the vertical mixing in the physics of the large-scale ocean circulation, and examine methods of validating mixing parameterizations using large-scale ocean models.
Seth J. Wenger; Daniel J. Isaak; Charlie Luce; Helen M. Neville; Kurt D. Fausch; Jason B. Dunham; Daniel C. Dauwalter; Michael K. Young; Marketa M. Elsner; Bruce E. Rieman; Alan F. Hamlet; Jack E. Williams
2011-01-01
Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout...
Intercomparison of hydrologic processes in global climate models
NASA Technical Reports Server (NTRS)
Lau, W. K.-M.; Sud, Y. C.; Kim, J.-H.
1995-01-01
In this report, we address the intercomparison of precipitation (P), evaporation (E), and surface hydrologic forcing (P-E) for 23 Atmospheric Model Intercomparison Project (AMIP) general circulation models (GCM's) including relevant observations, over a variety of spatial and temporal scales. The intercomparison includes global and hemispheric means, latitudinal profiles, selected area means for the tropics and extratropics, ocean and land, respectively. In addition, we have computed anomaly pattern correlations among models and observations for different seasons, harmonic analysis for annual and semiannual cycles, and rain-rate frequency distribution. We also compare the joint influence of temperature and precipitation on local climate using the Koeppen climate classification scheme.
NASA Technical Reports Server (NTRS)
Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.
1991-01-01
Landsurface hydrological parameterizations are implemented in the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: (1) runoff and evapotranspiration functions that include the effects of subgrid scale spatial variability and use physically based equations of hydrologic flux at the soil surface, and (2) a realistic soil moisture diffusion scheme for the movement of water in the soil column. A one dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three dimensional GCM. Results of the final simulation with the GISS GCM and the new landsurface hydrology indicate that the runoff rate, especially in the tropics is significantly improved. As a result, the remaining components of the heat and moisture balance show comparable improvements when compared to observations. The validation of model results is carried from the large global (ocean and landsurface) scale, to the zonal, continental, and finally the finer river basin scales.
Approximate Stokes Drift Profiles and their use in Ocean Modelling
NASA Astrophysics Data System (ADS)
Breivik, O.; Biblot, J.; Janssen, P. A. E. M.
2016-02-01
Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. I will show some results from the coupled atmosphere-wave-ocean ensemble forecast system of ECMWF where these wave effects are now included in the ocean model component.
Lunar and Planetary Science XXXV: Special Session: Mars Climate Change
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Mars Climate Change" included the following topics:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.
Huang, Wei; Shi, Jun; Yen, R T
2012-12-01
The objective of our study was to develop a computing program for computing the transit time frequency distributions of red blood cell in human pulmonary circulation, based on our anatomic and elasticity data of blood vessels in human lung. A stochastic simulation model was introduced to simulate blood flow in human pulmonary circulation. In the stochastic simulation model, the connectivity data of pulmonary blood vessels in human lung was converted into a probability matrix. Based on this model, the transit time of red blood cell in human pulmonary circulation and the output blood pressure were studied. Additionally, the stochastic simulation model can be used to predict the changes of blood flow in human pulmonary circulation with the advantage of the lower computing cost and the higher flexibility. In conclusion, a stochastic simulation approach was introduced to simulate the blood flow in the hierarchical structure of a pulmonary circulation system, and to calculate the transit time distributions and the blood pressure outputs.
2006-09-30
disturbances from the lower atmosphere and ocean affect the upper atmosphere and how this variability interacts with the variability generated by solar and...represents “ general circulation model.” Both models include self-consistent ionospheric electrodynamics, that is, a calculation of the electric fields...and currents generated by the ionospheric dynamo, and consideration of their effects on the neutral dynamics. The TIE-GCM is used for studies that
Role of the North Atlantic Ocean in Low Frequency Climate Variability
NASA Astrophysics Data System (ADS)
Danabasoglu, G.; Yeager, S. G.; Kim, W. M.; Castruccio, F. S.
2017-12-01
The Atlantic Ocean is a unique basin with its extensive, North - South overturning circulation, referred to as the Atlantic meridional overturning circulation (AMOC). AMOC is thought to represent the dynamical memory of the climate system, playing an important role in decadal and longer time scale climate variability as well as prediction of the earth's future climate on these time scales via its large heat and salt transports. This oceanic memory is communicated to the atmosphere primarily through the influence of persistent sea surface temperature (SST) variations. Indeed, many modeling studies suggest that ocean circulation, i.e., AMOC, is largely responsible for the creation of coherent SST variability in the North Atlantic, referred to as Atlantic Multidecadal Variability (AMV). AMV has been linked to many (multi)decadal climate variations in, e.g., Sahel and Brazilian rainfall, Atlantic hurricane activity, and Arctic sea-ice extent. In the absence of long, continuous observations, much of the evidence for the ocean's role in (multi)decadal variability comes from model simulations. Although models tend to agree on the role of the North Atlantic Oscillation in creating the density anomalies that proceed the changes in ocean circulation, model fidelity in representing variability characteristics, mechanisms, and air-sea interactions remains a serious concern. In particular, there is increasing evidence that models significantly underestimate low frequency variability in the North Atlantic compared to available observations. Such model deficiencies can amplify the relative influence of external or stochastic atmospheric forcing in generating (multi)decadal variability, i.e., AMV, at the expense of ocean dynamics. Here, a succinct overview of the current understanding of the (North) Atlantic Ocean's role on the regional and global climate, including some outstanding questions, will be presented. In addition, a few examples of the climate impacts of the AMV via atmospheric teleconnections from a set of coupled simulations, also considering the relative roles of its tropical and extratropical components, will be highlighted.
NASA Astrophysics Data System (ADS)
Florenchie, P.; Verron, J.
1998-10-01
Simulation experiments of South Atlantic Ocean circulations are conducted with a 1/6°, four-layered, quasi-geostrophic model. By means of a simple nudging data assimilation procedure along satellite tracks, TOPEX/POSEIDON and ERS 1 altimeter measurements are introduced into the model to control the simulation of the basin-scale circulation for the period from October 1992 to September 1994. The model circulation appears to be strongly influenced by the introduction of altimeter data, offering a consistent picture of South Atlantic Ocean circulations. Comparisons with observations show that the assimilating model successfully simulates the kinematic behavior of a large number of surface circulation components. The assimilation procedure enables us to produce schematic diagrams of South Atlantic circulation in which patterns ranging from basin-scale currents to mesoscale eddies are portrayed in a realistic way, with respect to their complexity. The major features of the South Atlantic circulation are described and analyzed, with special emphasis on the Brazil-Malvinas Confluence region, the Subtropical Gyre with the formation of frontal structures, and the Agulhas Retroflection. The Agulhas eddy-shedding process has been studied extensively. Fourteen eddies appear to be shed during the 2-year experiment. Because of their strong surface topographic signature, Agulhas eddies have been tracked continuously during the assimilation experiment as they cross the South Atlantic basin westward. Other effects of the assimilation procedure are shown, such as the intensification of the Subtropical Gyre, the appearance of a strong seasonal cycle in the Brazil Current transport, and the increase of the mean Brazil Current transport. This last result, combined with the westward oriention of the Agulhas eddies' trajectories, leads to a southward transport of mean eddy kinetic energy across 30°S.
Data Assimilation and Propagation of Uncertainty in Multiscale Cardiovascular Simulation
NASA Astrophysics Data System (ADS)
Schiavazzi, Daniele; Marsden, Alison
2015-11-01
Cardiovascular modeling is the application of computational tools to predict hemodynamics. State-of-the-art techniques couple a 3D incompressible Navier-Stokes solver with a boundary circulation model and can predict local and peripheral hemodynamics, analyze the post-operative performance of surgical designs and complement clinical data collection minimizing invasive and risky measurement practices. The ability of these tools to make useful predictions is directly related to their accuracy in representing measured physiologies. Tuning of model parameters is therefore a topic of paramount importance and should include clinical data uncertainty, revealing how this uncertainty will affect the predictions. We propose a fully Bayesian, multi-level approach to data assimilation of uncertain clinical data in multiscale circulation models. To reduce the computational cost, we use a stable, condensed approximation of the 3D model build by linear sparse regression of the pressure/flow rate relationship at the outlets. Finally, we consider the problem of non-invasively propagating the uncertainty in model parameters to the resulting hemodynamics and compare Monte Carlo simulation with Stochastic Collocation approaches based on Polynomial or Multi-resolution Chaos expansions.
NASA Astrophysics Data System (ADS)
Fesen, C. G.; Roble, R. G.
1991-02-01
The NCAR thermosphere-ionosphere general circulation model (TIGCM) was used to simulate incoherent scatter radar observations of the lower thermosphere tides during the first Lower Thermosphere Coupling Study (LTCS) campaign, September 21-26, 1987. The TIGCM utilized time-varying histories of the model input fields obtained from the World Data Center for the LTCS period. The model inputs included solar flux, total hemispheric power, solar wind data from which the cross-polar-cap potential was derived, and geomagnetic Kp index. Calculations were made for the semidiurnal ion temperatures and horizontal neutral winds at locations representative of Arecibo, Millstone Hill, and Sondrestrom. Tidal inputs to the TIGCM lower boundary were obtained from the middle atmosphere model of Forbes and Vial (1989). The TIGCM tidal structures are in fair general agreement with the observations. The amplitudes tended to be better simulated than the phases, and the mid- and high-latitude locations are simulated better than the low-latitude thermosphere. The model simulations were used to investigate the daily variability of the tides due to the geomagnetic activity occurring during this period.
Proskurnin, Mikhail A.; Zhidkova, Tatyana V.; Volkov, Dmitry S.; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I.; Mock, Donald; Zharov, Vladimir P.
2011-01-01
Recently, photoacoustic (PA) flow cytometry (PAFC) has been developed for in vivo detection of circulating tumor cells and bacteria targeted by nanoparticles. Here, we propose multispectral PAFC with multiple dyes having distinctive absorption spectra as multicolor PA contrast agents. As a first step of our proof-of-concept, we characterized high-speed PAFC capability to monitor the clearance of three dyes (ICG, MB, and TB) in an animal model in vivo and in real time. We observed strong dynamic PA signal fluctuations, which can be associated with interactions of dyes with circulating blood cells and plasma proteins. PAFC demonstrated enumeration of circulating red and white blood cells labeled with ICG and MB, respectively, and detection of rare dead cells uptaking TB directly in bloodstream. The possibility for accurate measurements of various dye concentrations including CV and BG were verified in vitro using complementary to PAFC photothermal (PT) technique and spectrophotometry under batch and flow conditions. We further analyze the potential of integrated PAFC/PT spectroscopy with multiple dyes for rapid and accurate measurements of circulating blood volume without a priori information on hemoglobin content, which is impossible with existing optical techniques. This is important in many medical conditions including surgery and trauma with extensive blood loss, rapid fluid administration, transfusion of red blood cells. The potential for developing a robust clinical PAFC prototype that is, safe for human, and its applications for studying the liver function are further highlighted. PMID:21905207
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaspi, Yohai; Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il
The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relativemore » humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.« less
NASA Astrophysics Data System (ADS)
Voigt, A.
2013-11-01
I study the Hadley circulation of a completely ice-covered Snowball Earth through simulations with a comprehensive atmosphere general circulation model. Because the Snowball Earth atmosphere is an example of a dry atmosphere, these simulations allow me to test to what extent dry theories and idealized models capture the dynamics of realistic dry Hadley circulations. Perpetual off-equatorial as well as seasonally varying insolation is used, extending a previous study for perpetual on-equatorial (equinox) insolation. Vertical diffusion of momentum, representing the momentum transport of dry convection, is fundamental to the momentum budgets of both the winter and summer cells. In the zonal budget, it is the primary process balancing the Coriolis force. In the meridional budget, it mixes meridional momentum between the upper and the lower branch and thereby decelerates the circulation. Because of the latter, the circulation intensifies by a factor of three when vertical diffusion of momentum is suppressed. For seasonally varying insolation, the circulation undergoes rapid transitions from the weak summer into the strong winter regime. Consistent with previous studies in idealized models, these transitions result from a mean-flow feedback, because of which they are insensitive to the treatment of vertical diffusion of momentum. Overall, the results corroborate previous findings for perpetual on-equatorial insolation. They demonstrate that descriptions of realistic dry Hadley circulations, in particular their strength, need to incorporate the vertical momentum transport by dry convection, a process that is neglected in most dry theories and idealized models. An improved estimate of the strength of the Snowball Earth Hadley circulation will also help to better constrain the climate of a possible Neoproterozoic Snowball Earth and its deglaciation threshold.
NASA Astrophysics Data System (ADS)
Voigt, A.
2013-08-01
I study the Hadley circulation of a completely ice-covered Snowball Earth through simulations with a comprehensive atmosphere general circulation model. Because the Snowball Earth atmosphere is an example of a dry atmosphere, these simulations allow me to test to what extent dry theories and idealized models capture the dynamics of dry Hadley circulations. Perpetual off-equatorial as well as seasonally-varying insolation is used, extending a previous study for perpetual on-equatorial (equinox) insolation. Vertical diffusion of momentum, representing the momentum transport of dry convection, is fundamental to the momentum budgets of both the winter and summer cells. In the zonal budget, it is the primary process balancing the Coriolis force. In the meridional budget, it mixes meridional momentum between the upper and the lower branch and thereby decelerates the circulation. Because of the latter, the circulation intensifies by a factor of three when vertical diffusion of momentum is suppressed. For seasonally-varying insolation, the circulation undergoes rapid transitions from the weak summer into the strong winter regime. Consistent with previous studies in idealized models, these transitions result from a mean-flow feedback, because of which they are insensitive to the treatment of vertical diffusion of momentum. Overall, the results corroborate previous findings for perpetual on-equatorial insolation. They demonstrate that an appropriate description of dry Hadley circulations, in particular their strength, needs to incorporate the vertical momentum transport by dry convection, a process that is neglected in most dry theories and idealized models. An improved estimate of the strength of the Snowball Earth Hadley circulation will also help to better constrain the climate of a possible Neoproterozoic Snowball Earth and its deglaciation threshold.
Parameterizing Gravity Waves and Understanding Their Impacts on Venus' Upper Atmosphere
NASA Technical Reports Server (NTRS)
Brecht, A. S.; Bougher, S. W.; Yigit, Erdal
2018-01-01
The complexity of Venus’ upper atmospheric circulation is still being investigated. Simulations of Venus’ upper atmosphere largely depend on the utility of Rayleigh Friction (RF) as a driver and necessary process to reproduce observations (i.e. temperature, density, nightglow emission). Currently, there are additional observations which provide more constraints to help characterize the driver(s) of the circulation. This work will largely focus on the impact parameterized gravity waves have on Venus’ upper atmosphere circulation within a three dimensional hydrodynamic model (Venus Thermospheric General Circulation Model).
Impact of moisture variations on the circulation of the south-west monsoon
NASA Astrophysics Data System (ADS)
Kishtawal, C. M.; Pal, P. K.; Narayanan, M. S.; Manna, S. K.; Sharma, O. P.; Agarwal, Sangeeta; Upadhyaya, H. C.
1993-12-01
The impact of moisture anomalies on the circulation of the south-west Indian monsoon has been studied with a general circulation model. Newtonian relaxation is adopted to subject the model atmosphere under sustained moisture anomalies. The impact of negative anomalies of moisture was seen as a divergent circulation anomaly, while the positive anomaly was a stronger convergent anomaly. Although the humidity fields display a resilient behaviour, and relax back to normal patterns 1-2 days after the forcing terms in humidity are withdrawn, the circulation anomalies created by the moisture variation keeps growing. A feedback between positive moisture anomalies and low level convergence exists, which is terminated in the absence of external forcings.
NASA Technical Reports Server (NTRS)
Garcia, Rolando R.; Boville, Byron A.
1994-01-01
According to the 'downward control' principle, the extratropical mean vertical velocity on a given pressure level is approximately proportional to the meridional gradient of the vertically integrated zonal force per unit mass exerted by waves above that level. In this paper, a simple numerical model that includes parameterizations of both planetary and gravity wave breaking is used to explore the influence of gravity wave breaking in the mesosphere on the mean meridional circulation and temperature distribution at lower levels in the polar winter stratosphere. The results of these calculations suggest that gravity wave drag in the mesosphere can affect the state of the polar winter stratosphere down to altitudes below 30 km. The effect is most important when planetary wave driving is relatively weak: that is, during southern winter and in early northern winter. In southern winter, downwelling weakens by a factor of 2 near the stratospause and by 20% at 30 km when gravity wave drag is not included in the calculations. As a consequence, temperatures decrease considerably throughout the polar winter stratosphere (over 20 K above 40 km and as much as 8 K at 30 km, where the effect is enhanced by the long radiative relaxation timescale). The polar winter states obtained when gravity wave drag is omitted in this simple model resemble the results of simulations with some general circulation models and suggest that some of the shortcomings of the latter may be due to a deficit in mesospheric momentum deposition by small-scale gravity waves.
Numerical simulation of the circulation of the atmosphere of Titan
NASA Technical Reports Server (NTRS)
Hourdin, F.; Levan, P.; Talagrand, O.; Courtin, Regis; Gautier, Daniel; Mckay, Christopher P.
1992-01-01
A three dimensional General Circulation Model (GCM) of Titan's atmosphere is described. Initial results obtained with an economical two dimensional (2D) axisymmetric version of the model presented a strong superrotation in the upper stratosphere. Because of this result, a more general numerical study of superrotation was started with a somewhat different version of the GCM. It appears that for a slowly rotating planet which strongly absorbs solar radiation, circulation is dominated by global equator to pole Hadley circulation and strong superrotation. The theoretical study of this superrotation is discussed. It is also shown that 2D simulations systemically lead to instabilities which make 2D models poorly adapted to numerical simulation of Titan's (or Venus) atmosphere.
Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki
2012-01-01
We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.
1999-01-01
A coupled general ocean circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. The model is driven by climatological meteorological conditions, cloud cover, and sea surface temperature. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chorophytes, and picoplankton) and three nutrient groups (nitrate, ammonium, and silicate). Phytoplankton groups are initialized as homogeneous fields horizontally and vertically, and allowed to distribute themselves according to the prevailing conditions. Basin-scale model chlorophyll results are in very good agreement with CZCS pigments in virtually every global region. Seasonal variability observed in the CZCS is also well represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are also in good conformance, although occasional departures are apparent. Agreement of nitrate distributions with in situ data is even better, including seasonal dynamics, except for the equatorial Atlantic. The good agreement of the model with satellite and in situ data sources indicates that the model dynamics realistically simulate phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization, and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.
Oceanic response to buoyancy, wind and tidal forcing in a Greenlandic glacial fjord
NASA Astrophysics Data System (ADS)
Carroll, D.; Sutherland, D.; Shroyer, E.; Nash, J. D.
2013-12-01
The Greenland Ice Sheet is losing mass at an accelerating rate. This acceleration may in part be due to changes in oceanic heat transport to marine-terminating outlet glaciers. Ocean heat transport to glaciers depends upon fjord dynamics, which include buoyancy-driven estuarine exchange flow, tides, internal waves, turbulent mixing, and connections to the continental shelf. A 3D model of Rink Isbrae fjord in West Greenland is used to investigate the role of ocean forcing on heat transport to the glacier face. Initial conditions are prescribed from oceanographic field data collected in Summer 2013; wind and tidal forcing, along with meltwater flux, are varied in individual model runs. Subglacial meltwater flux values range from 25-500 m3 s-1. For low discharge values, a subsurface plume drives circulation in the fjord. Our simulations indicate that offshore wind forcing is the dominant mechanism for exchange flow between the fjord and the continental shelf. These results show that glacial fjord circulation is a complex, 3D process with multi-cell estuarine circulation and large velocity shears due to coastal winds. Our results are a first step towards a realistic 3D representation of a high-latitude glacial fjord in a numerical model, and will provide insight to future observational studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costigan, K.R.
1998-11-01
Deseret Chemical Depot is one of the US Army`s storage facilities for its stockpile of chemical weapon agents. Congress has directed the Department of Defense to eliminate the aging stockpiles, which have existed since the end of World War II, and the US Army is destroying these lethal chemical munitions. Although the danger is slight, accurate predictions of the wind field in the valley are necessary for dispersion calculations in the event of an accident involving toxic chemicals at the depot. There are several small communities in Rush and Tooele valleys, including the town of Tooele, and Salt Lake Citymore » is located 65 km to the Northeast of Deseret Chemical Depot South area, at 1,300 m MSL and beyond the Oquirrh Mountains. The purpose of this report is to carry out three-dimensional numerical simulations of the atmospheric circulations in the region around Deseret Chemical Depot with the Higher Order Turbulence Model for Atmospheric Circulations (HOTMAC) and to evaluate the performance of the model. The code had been modified to assimilate local meteorological observations through the use of Newtonian nudging. The nudging scheme takes advantage of the extensive network of local observations in the valley.« less
Goodwin, Carl R.
1991-01-01
Decades of dredging and filling of Florida's low-lying coastal wetlands have produced thousands of miles of residential tidal canals and adjacent waterfront property. Typically, these canals are poorly flushed, and over time, accumulated organic-rich bottom materials, contribute to an increasingly severe degraded water quality. One-dimensional hydrodynamic and constituent-transport models were applied to two dead-end canal systems to determine the effects of canal system interconnection using tide gates on water circulation and constituent flushing. The model simulates existing and possible future circulation and flushing conditions in about 29 miles of the approximately 130 miles of tidally influenced canals in Cape Coral, located on the central west coast of peninsular Florida. Model results indicate that tidal water-level differences between the two canal systems can be converted to kinetic energy, in the form of increased water circulation, but the use of one-way tide gate interconnections. Computations show that construction of from one to four tide gates will cause replacement of a volume of water equivalent to the total volume of canals in both systems in 15 to 9 days, respectively. Because some canals flush faster than others, 47 and 21 percent of the original canal water will remain in both systems 50 days after start of operation of one and four tide gates, respectively. Some of the effects that such increased flushing are expected to have include reduced density stratification and associated dissolved-oxygen depletion in canal bottom waters, increased localized reaeration, and more efficient discharge of stormwater runoff entering the canals.
IMPACTS OF CLIMATE VARIATION AND CHANGE ON MID-ATLANTIC REGION HYDROLOGY
This study analyzes periodic variations in the climate of the mid-Atlantic Region over the last 100 years and uses general circulation models (GCMs) to project major climate trends for the next hundred years. Historical data include the Palmer Drought Severity Index (PDSI) for th...
NASA Technical Reports Server (NTRS)
Randell, David A.
2001-01-01
Our project included a variety of activities, ranging from model development to data manipulation and even participation in the SHEBA and FIRE field experiments. The following sections outline the work accomplished under these tasks. A collection of reprints is attached to this report.
We estimated surface salinity flux and solar penetration from satellite data, and performed model simulations to examine the impact of including the satellite estimates on temperature, salinity, and dissolved oxygen distributions on the Louisiana continental shelf (LCS) near the ...
Phase shift method to estimate solids circulation rate in circulating fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludlow, James Christopher; Panday, Rupen; Shadle, Lawrence J.
2013-01-01
While solids circulation rate is a critical design and control parameter in circulating fluidized bed (CFB) reactor systems, there are no available techniques to measure it directly at conditions of industrial interest. Cold flow tests have been conducted at NETL in an industrial scale CFB unit where the solids flow has been the topic of research in order to develop an independent method which could be applied to CFBs operating under the erosive and corrosive high temperatures and pressures of a coal fired boiler or gasifier. The dynamic responses of the CFB loop to modest modulated aeration flows in themore » return leg or standpipe were imposed to establish a periodic response in the unit without causing upset in the process performance. The resulting periodic behavior could then be analyzed with a dynamic model and the average solids circulation rate could be established. This method was applied to the CFB unit operated under a wide range of operating conditions including fast fluidization, core annular flow, dilute and dense transport, and dense suspension upflow. In addition, the system was operated in both low and high total solids inventories to explore the influence of inventory limiting cases on the estimated results. The technique was able to estimate the solids circulation rate for all transport circulating fluidized beds when operating above upper transport velocity, U{sub tr2}. For CFB operating in the fast fluidized bed regime (i.e., U{sub g}< U{sub tr2}), the phase shift technique was not successful. The riser pressure drop becomes independent of the solids circulation rate and the mass flow rate out of the riser does not show modulated behavior even when the riser pressure drop does.« less
Physiologically Based Pharmacokinetic Model for Long-Circulating Inorganic Nanoparticles.
Liang, Xiaowen; Wang, Haolu; Grice, Jeffrey E; Li, Li; Liu, Xin; Xu, Zhi Ping; Roberts, Michael S
2016-02-10
A physiologically based pharmacokinetic model was developed for accurately characterizing and predicting the in vivo fate of long-circulating inorganic nanoparticles (NPs). This model is built based on direct visualization of NP disposition details at the organ and cellular level. It was validated with multiple data sets, indicating robust inter-route and interspecies predictive capability. We suggest that the biodistribution of long-circulating inorganic NPs is determined by the uptake and release of NPs by phagocytic cells in target organs.
A Wind Tunnel Model to Explore Unsteady Circulation Control for General Aviation Applications
NASA Technical Reports Server (NTRS)
Cagle, Christopher M.; Jones, Gregory S.
2002-01-01
Circulation Control airfoils have been demonstrated to provide substantial improvements in lift over conventional airfoils. The General Aviation Circular Control model is an attempt to address some of the concerns of this technique. The primary focus is to substantially reduce the amount of air mass flow by implementing unsteady flow. This paper describes a wind tunnel model that implements unsteady circulation control by pulsing internal pneumatic valves and details some preliminary results from the first test entry.
Empirical justification of the elementary model of money circulation
NASA Astrophysics Data System (ADS)
Schinckus, Christophe; Altukhov, Yurii A.; Pokrovskii, Vladimir N.
2018-03-01
This paper proposes an elementary model describing the money circulation for a system, composed by a production system, the government, a central bank, commercial banks and their customers. A set of equations for the system determines the main features of interaction between the production and the money circulation. It is shown, that the money system can evolve independently of the evolution of production. The model can be applied to any national economy but we will illustrate our claim in the context of the Russian monetary system.
Numerical Model Studies of the Martian Mesoscale Circulations
NASA Technical Reports Server (NTRS)
Segal, M.; Arritt, R. W.
1996-01-01
Studies concerning mesoscale topographical effects on Martian flows examined low-level jets in the near equatorial latitudes and the dynamical intensification of flow by steep terrain. Continuation of work from previous years included evaluating the dissipation of cold air mass outbreaks due to enhanced sensible heat flux, further sensitivity and scaling evaluations for generalization of the characteristics of Martian mesoscale circulation caused by horizontal sensible heat-flux gradients, and evaluations of the significance that non-uniform surface would have on enhancing the polar CO2 ice sublimation during the spring. The sensitivity of maximum and minimum atmospheric temperatures to changes in wind speed, surface albedo, and deep soil temperature was investigated.
Decoupling of Iron and Phosphate in the Global Ocean
NASA Technical Reports Server (NTRS)
Parekh, Payal
2003-01-01
Iron is an essential micronutrient for marine phytoplankton, limiting their growth in high nutrient, low chlorophyll regions of the ocean. I use a hierarchy of ocean circulation and biogeochemistry models to understand controls on global iron distribution. I formulate a mechanistic model of iron cycling which includes scavenging onto sinking particles and complexation with an organic ligand. The iron cycle is coupled to a phosphorus cycling model. Iron's aeolian source is prescribed. In the context of a highly idealized multi-box model scheme, the model can be brought into consistency with the relatively sparse ocean observations of iron in the oceans. This biogeochemical scheme is also implemented in a coarse resolution ocean general circulation model. This model also successfully reproduces the broad regional patterns of iron and phosphorus. In particular, the high macronutrient concentrations of the Southern Ocean result from iron limitation in the model. Due to the potential ability of iron to change the efficiency of the carbon pump in the remote Southern Ocean, I study Southern Ocean surface phosphate response to increased aeolian dust flux. My box model and GCM results suggest that a global ten fold increase in dust flux can support a phosphate drawdown of 0.25-0.5 micromolar.
El Nino-southern oscillation simulated in an MRI atmosphere-ocean coupled general circulation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagai, T.; Tokioka, T.; Endoh, M.
A coupled atmosphere-ocean general circulation model (GCM) was time integrated for 30 years to study interannual variability in the tropics. The atmospheric component is a global GCM with 5 levels in the vertical and 4[degrees]latitude X 5[degrees] longitude grids in the horizontal including standard physical processes (e.g., interactive clouds). The oceanic component is a GCM for the Pacific with 19 levels in the vertical and 1[degrees]x 2.5[degrees] grids in the horizontal including seasonal varying solar radiation as forcing. The model succeeded in reproducing interannual variations that resemble the El Nino-Southern Oscillation (ENSO) with realistic seasonal variations in the atmospheric andmore » oceanic fields. The model ENSO cycle has a time scale of approximately 5 years and the model El Nino (warm) events are locked roughly in phase to the seasonal cycle. The cold events, however, are less evident in comparison with the El Nino events. The time scale of the model ENSO cycle is determined by propagation time of signals from the central-eastern Pacific to the western Pacific and back to the eastern Pacific. Seasonal timing is also important in the ENSO time scale: wind anomalies in the central-eastern Pacific occur in summer and the atmosphere ocean coupling in the western Pacific operates efficiently in the first half of the year.« less
NASA Astrophysics Data System (ADS)
Parish, H. F.; Mitchell, J.
2017-12-01
We have developed a Venus general circulation model, the Venus Middle atmosphere Model (VMM), to simulate the atmosphere from just below the cloud deck 40 km altitude to around 100 km altitude. Our primary goal is to assess the influence of waves on the variability of winds and temperatures observed around Venus' cloud deck. Venus' deep atmosphere is not simulated directly in the VMM model, so the effects of waves propagating upwards from the lower atmosphere is represented by forcing at the lower boundary of the model. Sensitivity tests allow appropriate amplitudes for the wave forcing to be determined by comparison with Venus Express and probe measurements and allow the influence of waves on the cloud-level atmosphere to be investigated. Observations at cloud altitudes are characterized by waves with a wide variety of periods and wavelengths, including gravity waves, thermal tides, Rossby waves, and Kelvin waves. These waves may be generated within the cloud deck by instabilities, or may propagate up from the deep atmosphere. Our development of the VMM is motivated by the fact that the circulation and dynamics between the surface and the cloud levels are not well measured and wind velocities below 40 km altitude cannot be observed remotely, so we focus on the dynamics at cloud levels and above. Initial results from the VMM with a simplified radiation scheme have been validated by comparison with Pioneer Venus and Venus Express observations and show reasonable agreement with the measurements.
NASA Technical Reports Server (NTRS)
Roble, R. G.; Ridley, E. C.
1994-01-01
A new simulation model of the mesosphere, thermosphere, and ionosphere with coupled electrodynamics has been developed and used to calculate the global circulation, temperature and compositional structure between 30-500 km for equinox, solar cycle minimum, geomagnetic quiet conditions. The model incorporates all of the features of the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere- electrodynamics general circulation model (TIE-GCM) but the lower boundary has been extended downward from 97 to 30 km (10 mb) and it includes the physical and chemical processes appropriate for the mesosphere and upper stratosphere. The first simulation used Rayleigh friction to represent gravity wave drag in the middle atmosphere and although it was able to close the mesospheric jets it severely damped the diurnal tide. Reduced Rayleigh friction allowed the tide to penetrate to thermospheric heights but did not close the jets. A gravity wave parameterization developed by Fritts and Lu (1993) allows both features to exist simultaneously with the structure of tides and mean flow dependent upon the strength of the gravity wave source. The model calculates a changing dynamic structure with the mean flow and diurnal tide dominant in the mesosphere, the in-situ generated semi-diurnal tide dominating the lower thermosphere and an in-situ generated diurnal tide in the upper thermosphere. The results also show considerable interaction between dynamics and composition, especially atomic oxygen between 85 and 120 km.
NASA Astrophysics Data System (ADS)
Martínez-Castro, Daniel; Vichot-Llano, Alejandro; Bezanilla-Morlot, Arnoldo; Centella-Artola, Abel; Campbell, Jayaka; Giorgi, Filippo; Viloria-Holguin, Cecilia C.
2018-06-01
A sensitivity study of the performance of the RegCM4 regional climate model driven by the ERA Interim reanalysis is conducted for the Central America and Caribbean region. A set of numerical experiments are completed using four configurations of the model, with a horizontal grid spacing of 25 km for a period of 6 years (1998-2003), using three of the convective parameterization schemes implemented in the model, the Emanuel scheme, the Grell over land-Emanuel over ocean scheme and two configurations of the Tiedtke scheme. The objective of the study is to investigate the ability of each configuration to reproduce different characteristics of the temperature, circulation and precipitation fields for the dry and rainy seasons. All schemes simulate the general temperature and precipitation patterns over land reasonably well, with relatively high correlations compared to observation datasets, though in specific regions there are positive or negative biases, greater in the rainy season. We also focus on some circulation features relevant for the region, such as the Caribbean low level jet and sea breeze circulations over islands, which are simulated by the model with varied performance across the different configurations. We find that no model configuration assessed is best performing for all the analysis criteria selected, but the Tiedtke configurations, which include the capability of tuning in particular the exchanges between cloud and environment air, provide the most balanced range of biases across variables, with no outstanding systematic bias emerging.
Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model
Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G.
2008-01-01
We are developing a three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit. The coupled model is applicable for fluvial, estuarine, shelf, and nearshore (surfzone) environments. Three-dimensional radiation-stress terms have been included in the momentum equations, along with effects of a surface wave roller model. The sediment-transport algorithms are implemented for an unlimited number of user-defined non-cohesive sediment classes. Each class has attributes of grain diameter, density, settling velocity, critical stress threshold for erosion, and erodibility constant. Suspended-sediment transport in the water column is computed with the same advection-diffusion algorithm used for all passive tracers and an additional algorithm for vertical settling that is not limited by the CFL criterion. Erosion and deposition are based on flux formulations. A multi-level bed framework tracks the distribution of every size class in each layer and stores bulk properties including layer thickness, porosity, and mass, allowing computation of bed morphology and stratigraphy. Also tracked are bed-surface properties including active-layer thickness, ripple geometry, and bed roughness. Bedload transport is calculated for mobile sediment classes in the top layer. Bottom-boundary layer submodels parameterize wave-current interactions that enhance bottom stresses and thereby facilitate sediment transport and increase bottom drag, creating a feedback to the circulation. The model is demonstrated in a series of simple test cases and a realistic application in Massachusetts Bay.
Impact of Data Assimilation And Resolution On Modeling The Gulf Stream Pathway
2011-11-18
currents could be generated by either the Deep Western Boundary Current (DWBC) associated with the Meridional Overturning Circulation (MOC) or by...abyssal gyre centered directly beneath the surface gyre. Figure 7. Meridional overturning circulation stream function for four 1/12° global HYCOM... circulation and have a weak overturning circulation . The Gulf Stream path is poorly simulated without the steering by the abyssal circulation . A
The Pattern and Dynamics of the Meridional Overturning Circulation in the Upper Ocean
2008-09-01
Atlantic . Figure 4a shows that the center of meridional overturning circulation occurs at a level of about one kilometer. Circulation is weak at...maintenance of the meridional overturning circulation in the Atlantic Ocean. 5. Global Simulation The most exciting experiment would be to fully model the...mechanisms responsible for the strength and maintenance of the meridional overturning circulation in the Atlantic Ocean are not
A combination of circulating miRNAs for the early detection of ovarian cancer
Yokoi, Akira; Yoshioka, Yusuke; Hirakawa, Akihiro; Yamamoto, Yusuke; Ishikawa, Mitsuya; Ikeda, Shun-ichi; Kato, Tomoyasu; Niimi, Kaoru; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Ochiya, Takahiro
2017-01-01
Ovarian cancer is the leading cause of gynecologic cancer mortality, due to the difficulty of early detection. Current screening methods lack sufficient accuracy, and it is still challenging to propose a new early detection method that improves patient outcomes with less-invasiveness. Although many studies have suggested the utility of circulating microRNAs in cancer detection, their potential for early detection remains elusive. Here, we develop novel predictive models using a combination of 8 circulating serum miRNAs. This method was able to successfully distinguish ovarian cancer patients from healthy controls (area under the curve, 0.97; sensitivity, 0.92; and specificity, 0.91) and early-stage ovarian cancer from patients with benign tumors (0.91, 0.86 and 0.83, respectively). This method also enables subtype classification in 4 types of epithelial ovarian cancer. Furthermore, it is found that most of the 8 miRNAs were packaged in extracellular vesicles, including exosomes, derived from ovarian cancer cells, and they were circulating in murine blood stream. The circulating miRNAs described in this study may serve as biomarkers for ovarian cancer patients. Early detection and subtype determination prior to surgery are crucial for clinicians to design an effective treatment strategy for each patient, as is the goal of precision medicine. PMID:29163790
Performance of computer vision in vivo flow cytometry with low fluorescence contrast
Markovic, Stacey; Li, Siyuan; Niedre, Mark
2015-01-01
Abstract. Detection and enumeration of circulating cells in the bloodstream of small animals are important in many areas of preclinical biomedical research, including cancer metastasis, immunology, and reproductive medicine. Optical in vivo flow cytometry (IVFC) represents a class of technologies that allow noninvasive and continuous enumeration of circulating cells without drawing blood samples. We recently developed a technique termed computer vision in vivo flow cytometry (CV-IVFC) that uses a high-sensitivity fluorescence camera and an automated computer vision algorithm to interrogate relatively large circulating blood volumes in the ear of a mouse. We detected circulating cells at concentrations as low as 20 cells/mL. In the present work, we characterized the performance of CV-IVFC with low-contrast imaging conditions with (1) weak cell fluorescent labeling using cell-simulating fluorescent microspheres with varying brightness and (2) high background tissue autofluorescence by varying autofluorescence properties of optical phantoms. Our analysis indicates that CV-IVFC can robustly track and enumerate circulating cells with at least 50% sensitivity even in conditions with two orders of magnitude degraded contrast than our previous in vivo work. These results support the significant potential utility of CV-IVFC in a wide range of in vivo biological models. PMID:25822954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staten, Paul; Reichler, Thomas; Lu, Jian
Tropospheric circulation shifts have strong potential to impact surface climate. But the magnitude of these shifts in a changing climate, and the attending regional hydrological changes, are difficult to project. Part of this difficulty arises from our lack of understanding of the physical mechanisms behind the circulation shifts themselves. In order to better delineate circulation shifts and their respective causes, we decompose the circulation response into (1) the "direct" response to radiative forcings themselves, and (2) the "indirect" response to changing sea surface temperatures. Using ensembles of 90-day climate model simulations with immediate switch-on forcings, including perturbed greenhouse gas concentrations,more » stratospheric ozone concentrations, and sea surface temperatures, we document the direct and indirect transient responses of the zonal mean general circulation, and investigate the roles of previously proposed mechanisms in shifting the midlatitude jet. We find that both the direct and indirect wind responses often begin in the lower stratosphere. Changes in midlatitude eddies are ubiquitous and synchronous with the midlatitude zonal wind response. Shifts in the critical latitude of wave absorption on either flank of the jet are not indicted as primary factors for the poleward shifting jet, although we see some evidence for increasing equatorward wave reflection over the southern hemisphere in response to sea surface warming. Mechanisms for the northern hemisphere jet shift are less clear.« less
GCM simulations of cold dry Snowball Earth atmospheres
NASA Astrophysics Data System (ADS)
Voigt, A.; Held, I.; Marotzke, J.
2009-12-01
We use the full-physics atmospheric general circulation model ECHAM5 to investigate cold and virtually dry Snowball Earth atmospheres. These result from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2 and setting atmospheric carbon dioxide to 300 ppmv. Here, we present four simulations corresponding to the four possible combinations of enabled or disabled diurnal and seasonal cycles. The aim of this study is twofold. First, we focus on the zonal-mean circulation of Snowball Earth atmospheres, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. Second, we investigate tropical surface temperatures with an emphasis on the impact of the diurnal and seasonal cycles. This will indicate whether the presence of the diurnal or seasonal cycle would facilitate or anticipate the escape from Snowball Earth conditions when total solar irradiance or atmospheric CO2 levels were increased. The dynamics of the tropical circulation in Snowball Earth atmospheres differs substantially from that in the modern atmosphere. The analysis of the mean zonal momentum budget reveals that the mean flow meridional advection of absolute vorticity is primarily balanced by vertical diffusion of zonal momentum. The contribution of eddies is found to be even smaller than the contribution of mean flow vertical advection of zonal momentum, the latter being usually neglected in theories for the Hadley circulation, at least in its upper tropospheric branch. Suppressing vertical diffusion of horizontal momentum above 850 hPa leads to a stronger Hadley circulation. This behaviour cannot be understood from axisymmetric models of the atmosphere, nor idealized atmospheric general circulation models, which both predict a weakening of the Hadley circulation when the vertical viscosity is decreased globally. We find that enabling the diurnal cycle does not change tropical annual-mean surface temperatures but significantly strengthens the Hadley circulation, which increases by 33% for equinoctial and by 50% during solstitial insolation conditions compared to simulations without diurnal cycle. Including the seasonal cycle results in a ''reversed'' annual-mean Hadley circulation with subsiding motion at the equator and ascending motion around 15N/S, a manifestation of the extreme seasonality of Snowball Earth atmospheres due to the low thermal inertia of the sea-ice surface. The impact of the seasonal cycle on the tropical annual-mean surface is a straightforward consequence of changes in insolation distribution: as annual-mean incoming shortwave radiation at the equator reduces by 18 Wm-2 for enabled seasonal cycle, tropical annual-mean surface temperatures decrease from 221 K to 217 K.
Olivato, Silvia; Nizzoli, Silvia; Cavazzuti, Milena; Casoni, Federica; Nichelli, Paolo Frigio; Zini, Andrea
2016-12-01
The National Institutes of Health Stroke Scale (NIHSS) is the most widespread clinical scale used in patients presenting with acute stroke. The merits of the NIHSS include simplicity, quickness, and agreement between clinicians. The clinical evaluation on posterior circulation stroke remains still a limit of NIHSS. We assessed the application of a new version of NIHSS, the e-NIHSS (expanded NIHSS), adding specific elements in existing items to explore signs/symptoms of a posterior circulation stroke. A total of 22 consecutive patients with suspected vertebrobasilar stroke were compared with 25 patients with anterior circulation stroke using NIHSS and e-NIHSS. We compared the NIHSS and e-NIHSS scores obtained by the 2 examiners, in patients with posterior circulation infarct (POCI), using the Wilcoxon test. Patients with POCI evaluated with e-NIHSS had an average of 2 points higher than patients evaluated with classical NIHSS. The difference was statistically significant (P < .05), weighted by the new expanded items. The NIHSS is a practical scale model, with high reproducibility between trained, different examiners, focused on posterior circulation strokes, with the same total score and number of items of the existing NIHSS. The e-NHISS could improve the sensitivity of NIHSS in posterior circulation stroke and could have an impact on clinical trials, as well as on outcomes. Further studies are needed to investigate a larger number of patients and the correlation between the e-NIHSS score and neuroimaging findings. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
TRIM—3D: a three-dimensional model for accurate simulation of shallow water flow
Casulli, Vincenzo; Bertolazzi, Enrico; Cheng, Ralph T.
1993-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is discussed. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that the resulting algorithm permits the use of large time steps at a minimal computational cost. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers. The high computational efficiency of this method has made it possible to provide the fine details of circulation structure in complex regions that previous studies were unable to obtain. For proper interpretation of the model results suitable interactive graphics is also an essential tool.
The dynamo of the diurnal tide and its effect on the thermospheric circulation
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Herrero, F. A.
1990-01-01
A theoretical multiconstituent model (including O, N2, and O2) which describes the interactions between neutral winds, dynamo electric fields, and ion drifts is used to interpret observations that revealed a dominance of the fundamental diurnal tide in the upper thermosphere and at equatorial latitudes, and its effect on the thermospheric circulation. The model is shown to reproduce reasonably well the magnitudes of the neutral winds, ion drift velocities, and the ratio between the two. A solution for the neutral winds in which the dynamo electric field is forced to zero shows that the dynamo-induced ion drift is very important in accelerating the neutral atmosphere at higher altitudes. The dynamo interaction primarily affects the curl component of the field; its effect on the temperature and density perturbations is small.
A new solar cycle model including meridional circulation
NASA Technical Reports Server (NTRS)
Wang, Y.-M.; Sheeley, N. R., Jr.; Nash, A. G.
1991-01-01
A kinematic model is presented for the solar cycle which includes not only the transport of magnetic flux by supergranular diffusion and a poleward bulk flow at the sun's surface, but also the effects of turbulent diffusion and an equatorward 'return flow' beneath the surface. As in the earlier models of Babcock and Leighton, the rotational shearing of a subsurface poloidal field generates toroidal flux that erupts at the surface in the form of bipolar magnetic regions. However, such eruptions do not result in any net loss of toroidal flux from the sun (as assumed by Babcock and Leighton); instead, the large-scale toroidal field is destroyed both by 'unwinding' as the local poloidal field reverses its polarity, and by diffusion as the toroidal flux is transported equatorward by the subsurface flow and merged with its opposite hemisphere counterpart. The inclusion of meridional circulation allows stable oscillations of the magnetic field, accompanied by the equatorward progression of flux eruptions, to be achieved even in the absence of a radial gradient in the angular velocity. An illustrative case in which a subsurface flow speed of order 1 m/s and subsurface diffusion rate of order 10 sq km/s yield 22-yr oscillations in qualitative agreement with observations.
Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change
NASA Technical Reports Server (NTRS)
Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.
2016-01-01
Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.
Modeling and Simulation of U-tube Steam Generator
NASA Astrophysics Data System (ADS)
Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei
2018-03-01
The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.
NASA Astrophysics Data System (ADS)
Duarte, Pedro; Alvarez-Salgado, Xosé Antón; Fernández-Reiriz, Maria José; Piedracoba, Silvia; Labarta, Uxío
2014-06-01
The present study suggests that both under upwelling and downwelling winds, the residual circulation of Ria de Ares-Betanzos remains positive with a strong influence from river discharge and a positive feedback from wind, unlike what is generally accepted for Galician rias. Furthermore, mussel cultivation areas may reduce residual velocities by almost 40%, suggesting their potential feedbacks on food replenishment for cultivated mussels. The Ria de Ares-Betanzos is a partially stratified estuary in the NW Iberian upwelling system where blue mussels are extensively cultured on hanging ropes. This type of culture depends to a large extent on water circulation and residence times, since mussels feed on suspended particles. Therefore, understanding the role of tides, continental runoff, and winds on the circulation of this embayment has important practical applications. Furthermore, previous works have emphasized the potential importance of aquaculture leases on water circulation within coastal ecosystems, with potential negative feedbacks on production carrying capacity. Here we implemented and validated a 3D hydrodynamic numerical model for the Ria de Ares-Betanzos to (i) evaluate the relative importance of the forcing agents on the circulation within the ria and (ii) estimate the importance of culture leases on circulation patterns at the scale of the mussel farms from model simulations. The model was successfully validated with empirical current velocity data collected during July and October 2007 using an assortment of efficiency criteria. Model simulations were carried out to isolate the effects of wind and river flows on circulation patterns.
Clarifying the Dynamics of the General Circulation: Phillips's 1956 Experiment.
NASA Astrophysics Data System (ADS)
Lewis, John M.
1998-01-01
In the mid-1950s, amid heated debate over the physical mechanisms that controlled the known features of the atmosphere's general circulation, Norman Phillips simulated hemispheric motion on the high-speed computer at the Institute for Advanced Study. A simple energetically consistent model was integrated for a simulated time of approximately 1 month. Analysis of the model results clarified the respective roles of the synoptic-scale eddies (cyclones-anticyclones) and mean meridional circulation in the maintenance of the upper-level westerlies and the surface wind regimes. Furthermore, the modeled cyclones clearly linked surface frontogenesis with the upper-level Charney-Eady wave. In addition to discussing the model results in light of the controversy and ferment that surrounded general circulation theory in the 1940s-1950s, an effort is made to follow Phillips's scientific path to the experiment.
Large-Scale Transport Responses to Tropospheric Circulation Changes Using GEOS-5
NASA Technical Reports Server (NTRS)
Orbe, Clara; Molod, Andrea; Arnold, Nathan; Waugh, Darryn W.; Yang, Huang
2017-01-01
The mean age since air was last at the Northern Hemisphere midlatitude surface is a fundamental property of tropospheric transport. Recent comparisons among chemistry climate models, however, reveal that there are large differences in the mean age among models and that these differences are most likely related to differences in tropical (parameterized) convection. Here we use aquaplanet simulations of the Goddard Earth Observing System Model Version 5 (GEOS-5) to explore the sensitivity of the mean age to changes in the tropical circulation. Tropical circulation changes are forced by prescribed localized off-equatorial warm sea surface temperature anomalies that (qualitatively) reproduce the convection and circulation differences among the comprehensive models. Idealized chemical species subject to prescribed OH loss are also integrated in parallel in order to illustrate the impact of tropical transport changes on interhemispheric constituent transport.
NASA Technical Reports Server (NTRS)
Chan, David T.; Milholen, William E., II; Jones, Gregory S.; Goodliff, Scott L.
2014-01-01
A second wind tunnel test of the FAST-MAC circulation control semi-span model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged flap. The model was configured for transonic testing of the cruise configuration with 0deg flap deflection to determine the potential for drag reduction with the circulation control blowing. Encouraging results from analysis of wing surface pressures suggested that the circulation control blowing was effective in reducing the transonic drag on the configuration, however this could not be quantified until the thrust generated by the blowing slot was correctly removed from the force and moment balance data. This paper will present the thrust removal methodology used for the FAST-MAC circulation control model and describe the experimental measurements and techniques used to develop the methodology. A discussion on the impact to the force and moment data as a result of removing the thrust from the blowing slot will also be presented for the cruise configuration, where at some Mach and Reynolds number conditions, the thrust-removed corrected data showed that a drag reduction was realized as a consequence of the blowing.
NASA Astrophysics Data System (ADS)
DeAngelis, Anthony M.
Changes in the characteristics of daily precipitation in response to global warming may have serious impacts on human life and property. An analysis of precipitation in climate models is performed to evaluate how well the models simulate the present climate and how precipitation may change in the future. Models participating in phase 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) have substantial biases in their simulation of heavy precipitation intensity over parts of North America during the 20th century. Despite these biases, the large-scale atmospheric circulation accompanying heavy precipitation is either simulated realistically or the strength of the circulation is overestimated. The biases are not related to the large-scale flow in a simple way, pointing toward the importance of other model deficiencies, such as coarse horizontal resolution and convective parameterizations, for the accurate simulation of intense precipitation. Although the models may not sufficiently simulate the intensity of precipitation, their realistic portrayal of the large-scale circulation suggests that projections of future precipitation may be reliable. In the CMIP5 ensemble, the distribution of daily precipitation is projected to undergo substantial changes in response to future atmospheric warming. The regional distribution of these changes was investigated, revealing that dry days and days with heavy-extreme precipitation are projected to increase at the expense of light-moderate precipitation over much of the middle and low latitudes. Such projections have serious implications for future impacts from flood and drought events. In other places, changes in the daily precipitation distribution are characterized by a shift toward either wetter or drier conditions in the future, with heavy-extreme precipitation projected to increase in all but the driest subtropical subsidence regions. Further analysis shows that increases in heavy precipitation in midlatitudes are largely explained by thermodynamics, including increases in atmospheric water vapor. However, in low latitudes and northern high latitudes, changes in vertical velocity accompanying heavy precipitation are also important. The strength of the large-scale atmospheric circulation is projected to change in accordance with vertical velocity in many places, though the circulation patterns, and therefore physical mechanisms that generate heavy precipitation, may remain the same.
The chemical and radiative effects of the Mount Pinatubo eruption
NASA Technical Reports Server (NTRS)
Kinneson, Douglas E.; Grant, Keith E.; Connell, Peter S.; Rotman, Douglas A.; Wuebbles, Donald J.
1994-01-01
To clarify the mechanisms leading to effects on stratospheric ozone, time-dependent stratospheric aerosol and gas experiment II (SAGE II) and cryogenic limb array elaton spectrometer (CLAES) aerosol optical extinction data and SAGE II surface area density are used as parameters in a two-dimensional (2-D) zonally averaged chemical radiative transport model. The model was integrated with time from before the eruption through December 1993. The modeled impact on global ozone results from increased rates of heterogeneous reactions on sulfate aerosols and from the increased radiative heating and scattering caused by these aerosols. When the aerosol heating is allowed to modify the temperature distribution, the maximum change calculated in equatorial column ozone is -1.6%. The calculated equatorial temperature change and peak local ozone change in October 1991 are +6K and -4%, respectively. When aerosol heating perturbs the circulation in the model, the maximum change in equatorial column ozone is -6%. Increased heterogeneous processing on sulfate aerosols is calculated to have changed equatorial column ozone in late 1991 by -1.5%. Global column ozone in the model in 1992 and 1993 changed by -2.8% and -2.4%, respectively. The relationship of ozone-controlling processes in the lower stratosphere is altered as well; HO(x) becomes the most important catalytic cycle, followed by ClO(x) and NO(x). This is driven by significant changes in trace gas concentrations. In October 1991, lower stratospheric, equatorial NO(x) decreased by 40%, ClO(x) increased by 60%, and HO(x) increased by 25%. When the effect of heterogeneous chemical processing on sulfate aerosols is combined with aerosol heating, modifying either circulation or temperature, dramatically different ozone fingerprints with time and latitude are predicted. Model-derived changes in the equatorial region in column ozone best represented the observed data when perturbed circulation was combined with heterogeneous chemical effects. However, at high latitudes, the increased ozone production from the strengthening of the mean circulation tends to cancel the heterogeneous reduction of ozone. This is not in good agreement with observed data, especially in 1992 and 1993. When the circulation is held fixed and the temperature allowed to change, and heterogeneous chemical effects are included, the equatorial ozone decrease predicted was too small for 1991. However, the mid- to high-latitude decrease in 1992 and 1993 is in better agreement with observed data.
Research on Parallel Three Phase PWM Converters base on RTDS
NASA Astrophysics Data System (ADS)
Xia, Yan; Zou, Jianxiao; Li, Kai; Liu, Jingbo; Tian, Jun
2018-01-01
Converters parallel operation can increase capacity of the system, but it may lead to potential zero-sequence circulating current, so the control of circulating current was an important goal in the design of parallel inverters. In this paper, the Real Time Digital Simulator (RTDS) is used to model the converters parallel system in real time and study the circulating current restraining. The equivalent model of two parallel converters and zero-sequence circulating current(ZSCC) were established and analyzed, then a strategy using variable zero vector control was proposed to suppress the circulating current. For two parallel modular converters, hardware-in-the-loop(HIL) study based on RTDS and practical experiment were implemented, results prove that the proposed control strategy is feasible and effective.
ERIC Educational Resources Information Center
Lee, Shinyoung; Kang, Eunhee; Kim, Heui-Baik
2015-01-01
This study aimed to explore the effect on group dynamics of statements associated with deep learning approaches (DLA) and their contribution to cognitive collaboration and model development during group modeling of blood circulation. A group was selected for an in-depth analysis of collaborative group modeling. This group constructed a model in a…
NASA Technical Reports Server (NTRS)
Sprott, Richard L. (Editor); Combs, Carol A. (Editor)
1991-01-01
This volume includes papers on correlations between aging effects and space effects on biosystems, with particular attention given to the effects on the cardiovascular system, bone, sleep, cellular systems, immunological system, and genetics. Papers are presented on NASA and NIA plans and opportunities, the age effect on the posture and circulation, the cardiovascular physiology in space flight, and age-related bone changes. Attention is given to research on sleep, circulation rhythms, and aging and its applications to manned spaceflight; sleep and circadian rhythms; altered cell function in microgravity; and the heterogeneity of changes in lymphoproliferative ability with increasing age. Also included is a review of cellular immunosenescence, a paper on the immune response during space flight, and a paper on Caenorhabditis elegans as a model system for space biology studies.
The solar dynamo and prediction of sunspot cycles
NASA Astrophysics Data System (ADS)
Dikpati, Mausumi
2012-07-01
Much progress has been made in understanding the solar dynamo since Parker first developed the concepts of dynamo waves and magnetic buoyancy around 1955, and the German school first formulated the solar dynamo using the mean-field formalism. The essential ingredients of these mean-field dynamos are turbulent magnetic diffusivity, a source of lifting of flux, or 'alpha-effect', and differential rotation. With the advent of helioseismic and other observations at the Sun's photosphere and interior, as well as theoretical understanding of solar interior dynamics, solar dynamo models have evolved both in the realm of mean-field and beyond mean-field models. After briefly discussing the status of these models, I will focus on a class of mean-field model, called flux-transport dynamos, which include meridional circulation as an essential additional ingredient. Flux-transport dynamos have been successful in simulating many global solar cycle features, and have reached the stage that they can be used for making solar cycle predictions. Meridional circulation works in these models like a conveyor-belt, carrying a memory of the magnetic fields from 5 to 20 years back in past. The lower is the magnetic diffusivity, the longer is the model's memory. In the terrestrial system, the great-ocean conveyor-belt in oceanic models and Hadley, polar and Ferrel circulation cells in the troposphere, carry signatures from the past climatological events and influence the determination of future events. Analogously, the memory provided by the Sun's meridional circulation creates the potential for flux-transport dynamos to predict future solar cycle properties. Various groups in the world have built flux-transport dynamo-based predictive tools, which nudge the Sun's surface magnetic data and integrated forward in time to forecast the amplitude of the currently ascending cycle 24. Due to different initial conditions and different choices of unknown model-ingredients, predictions can vary; so it is for their cycle 24 forecasts. We all await the peak of cycle 24. I will close by discussing the prospects of improving dynamo-based predictive tools using more sophisticated data-assimilation techniques, such as the Ensemble Kalman Filter method and variational approaches.
NASA Astrophysics Data System (ADS)
Bargegol, Iraj; Hamze Hosseini, Seyyed; Jahangir Samet, Mehdi
2017-10-01
Nowadays, urban roundabouts are one of the most popular types of intersections that have grown highly all over the world. Thus, the accurate and engineering design of these types of intersections has a significant effect on improving their traffic performance. The capacity is one of the important traffic parameters in different intersections, which represents the maximum volume of vehicles entering the roundabouts. There are two general methods for determining the capacity of intersections including the use of analytical models such as gap acceptance model and the use of empirical methods (regression model). In the present paper, using the collected data such as entry and circulating volume, both accepted and rejected gaps were studied for three urban roundabouts and the capacity model have been determined by the use of analytical method. After implementation of the data, they became consistent and homogeneous in four different groups and the most optimized range of critical gaps as well as the follow up time were separately determined for each of these groups by using conventional methods such as Sigloch, Raff, Wu, and Harder and according to statistical analyses with a confidence level of 95%. From the obtained results, a range of 3.03 - 3.32 s for critical gap of the studied roundabouts and the range of 1.3 - 1.7 s for follow up time could be mentioned. It was used from the theory of gap acceptance in order to determine urban roundabouts capacity model, in which these gaps have a random nature and follow negative exponential distribution and by conducting this analysis (also has been used by Sigloch), some relations were obtained for determining the capacity of the roundabouts according to the impact of circulating volume and drivers’ behaviour. The results indicate that the maximum capacity of the roundabouts in the microscopic models is equal to 2400 veh/h, when the circulating flow rate is reached zero. Moreover, according to the obtained capacity model, the circulating flow never falls down to zero in the case that it reaches its peak value.
A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS
A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...
NASA Technical Reports Server (NTRS)
Fukumori, I.; Fu, L. L.; Chao, Y.
1998-01-01
The feasibility of assimilating satellite altimetry data into a global ocean general ocean general circulation model is studied. Three years of TOPEX/POSEIDON data is analyzed using a global, three-dimensional, nonlinear primitive equation model.
NASA Technical Reports Server (NTRS)
Baker, W. E.; Paegle, J.
1983-01-01
An examination is undertaken of the sensitivity of short term Southern Hemisphere circulation prediction to tropical wind data and tropical latent heat release. The data assimilation experiments employ the Goddard Laboratory for Atmospheric Sciences' fourth-order general circulation model. Two of the experiments are identical, but for the fact that one uses tropical wind data while the other does not. A third experiment contains the identical initial conditions of forecasts with tropical winds, while suppressing tropical latent heat release.
NASA Astrophysics Data System (ADS)
Frisbee, Marty D.; Tolley, Douglas G.; Wilson, John L.
2017-04-01
Estimates of groundwater circulation depths based on field data are lacking. These data are critical to inform and refine hydrogeologic models of mountainous watersheds, and to quantify depth and time dependencies of weathering processes in watersheds. Here we test two competing hypotheses on the role of geology and geologic setting in deep groundwater circulation and the role of deep groundwater in the geochemical evolution of streams and springs. We test these hypotheses in two mountainous watersheds that have distinctly different geologic settings (one crystalline, metamorphic bedrock and the other volcanic bedrock). Estimated circulation depths for springs in both watersheds range from 0.6 to 1.6 km and may be as great as 2.5 km. These estimated groundwater circulation depths are much deeper than commonly modeled depths suggesting that we may be forcing groundwater flow paths too shallow in models. In addition, the spatial relationships of groundwater circulation depths are different between the two watersheds. Groundwater circulation depths in the crystalline bedrock watershed increase with decreasing elevation indicative of topography-driven groundwater flow. This relationship is not present in the volcanic bedrock watershed suggesting that both the source of fracturing (tectonic versus volcanic) and increased primary porosity in the volcanic bedrock play a role in deep groundwater circulation. The results from the crystalline bedrock watershed also indicate that relatively deep groundwater circulation can occur at local scales in headwater drainages less than 9.0 km2 and at larger fractions than commonly perceived. Deep groundwater is a primary control on streamflow processes and solute concentrations in both watersheds.
The Atlantic Multidecadal Oscillation without a role for ocean circulation.
Clement, Amy; Bellomo, Katinka; Murphy, Lisa N; Cane, Mark A; Mauritsen, Thorsten; Rädel, Gaby; Stevens, Bjorn
2015-10-16
The Atlantic Multidecadal Oscillation (AMO) is a major mode of climate variability with important societal impacts. Most previous explanations identify the driver of the AMO as the ocean circulation, specifically the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the main features of the observed AMO are reproduced in models where the ocean heat transport is prescribed and thus cannot be the driver. Allowing the ocean circulation to interact with the atmosphere does not significantly alter the characteristics of the AMO in the current generation of climate models. These results suggest that the AMO is the response to stochastic forcing from the mid-latitude atmospheric circulation, with thermal coupling playing a role in the tropics. In this view, the AMOC and other ocean circulation changes would be largely a response to, not a cause of, the AMO. Copyright © 2015, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping
Intertidal flats in estuaries are coastal wetlands that provide critical marine habitats to support wide ranges of marine species. Over the last century many estuarine systems have experienced significant loss of intertidal flats due to anthropogenic impacts. This paper presents a modeling study conducted to investigate the responses of estuarine hydrodynamics to the loss of intertidal flats caused by anthropogenic actions in Whidbey Basin of Puget Sound on the northwest coast of North America. Changes in salinity intrusion limits in the estuaries, salinity stratification, and circulation in intertidal flats and estuaries were evaluated by comparing model results under the existingmore » baseline condition and the no-flat condition. Model results showed that loss of intertidal flats results in an increase in salinity intrusion, stronger mixing, and a phase shift in salinity and velocity fields in the bay front areas. Model results also indicated that loss of intertidal flats enhances two-layer circulation, especially the bottom water intrusion. Loss of intertidal flats increases the mean salinity but reduces the salinity range in the subtidal flats over a tidal cycle because of increased mixing. Salinity intrusion limits extend upstream in all three major rivers discharging into Whidbey Basin when no intertidal flats are present. Changes in salinity intrusion and estuarine circulation patterns due to loss of intertidal flats affect the nearshore habitat and water quality in estuaries and potentially increase risk of coastal hazards, such as storm surge and coastal flooding. Furthermore, model results suggested the importance of including intertidal flats and the wetting-and-drying process in hydrodynamic simulations when intertidal flats are present in the model domain.« less
Thermosphere Dynamics Workshop, volume 2
NASA Technical Reports Server (NTRS)
Mayr, H. G. (Editor); Miller, N. J. (Editor)
1986-01-01
Atmospheric observations reported on include recent measurements of thermospherical composition, gas temperatures, auroral emissions, ion-neutral collisional coupling, electric fields, and plasma convection. Theoretical studies reported on include model calculations of thermospherical general circulation, thermospheric tides, thermospheric tidal coupling to the lower atmosphere, interactions between thermospheic chemistry and dynamics and thermosphere-ionosphere coupling processes. The abstracts provide details given in each talk but the figures represent the fundamental information exchanged within the workshop
Ocean Carbon Flux, Transport, and Burial Within the Western and Eastern US Coastal Zones
NASA Technical Reports Server (NTRS)
McWilliams, James C.; Moisan, John R.; Haidvogel, Dale B.; Miller, Arthur J.; Cornuelle, Bruce; Stolzenbach, Keith D.
2004-01-01
This project has been to develop and apply a regional. eddy-resolving circulation and biogeochemistry model of both the western and eastern U.S. coastal regions, capable of simulating the processes that control the carbon cycle. Validation has been by statistical comparison with analyses from various satellite measurements, including those from EOS sensors, as well as from in situ measurements. Sensitivity studies were carried out to investigate how the coastal ecosystem and biogeochemical cycles respond to changes in climate, large-scale eutrophication from indus- trial pollution, and other anthropogenic induced changes. The research has been conducted in collaboration with research groups at UCLA. NASA/GSFC (Wallops), Rutgers, and SIO. Overall. the project was focused on several key modeling issues, each of which tie back into completing the primary task of developing a coastal carbon model for both the eastern and western US. coasts. Individual groups within the entire program are still collaborating to address these specific tasks. These include: implementation of the coupled circulation/biogeochemical model within the U.S. West Coast. including high-resolution, embedded subdomains for the Southern California Bight and Monterey Bay region; development of a biogeochemical model with resolved carbon, nitrogen and oxygen cycles; development of data assimilation techniques for use of satellite data sets; reconfiguration of the model domain to U.S. East Coast; development of coastal forcing fields: development of methods to compare the model against remotely sensed data; and, the test of model sensitivity to environmental conditions. Below, we present a summary of the progress made toward achieving these soak. Because this has been a multi-institutional, collaborative effort, we note the groups involved with particular activities.
Alomari, Mahmoud A.; Shqair, Dana M.; Khabour, Omar F.; Alawneh, Khaldoon; Nazzal, Mahmoud I.; Keewan, Esraa F.
2012-01-01
Exercise testing is associated with barriers prevent using cardiovascular (CV) endurance (CVE) measure frequently. A recent nonexercise model (NM) is alleged to estimate CVE without exercise. This study examined CVE relationships, using the NM model, with measures of obesity, physical fitness (PF), blood glucose and lipid, and circulation in 188 asymptomatic young (18–40 years) adults. Estimated CVE correlated favorably with measures of PF (r = 0.4 − 0.5) including handgrip strength, distance in 6 munities walking test, and shoulder press, and leg extension strengths, obesity (r = 0.2 − 0.7) including % body fat, body water content, fat mass, muscle mass, BMI, waist and hip circumferences and waist/hip ratio, and circulation (r = 0.2 − 0.3) including blood pressures, blood flow, vascular resistance, and blood (r = 0.2 − 0.5) profile including glucose, total cholesterol, LDL-C, HDL-C, and triglycerides. Additionally, differences (P < 0.05) in examined measures were found between the high, average, and low estimated CVE groups. Obviously the majority of these measures are CV disease risk factors and metabolic syndrome components. These results enhance the NM scientific value, and thus, can be further used in clinical and nonclinical settings. PMID:22606068
NASA Astrophysics Data System (ADS)
Warner, J. C.; Sullivan, C.; Voulgaris, G.; Work, P.; Haas, K.; Hanes, D. M.
2004-12-01
Long Bay, South Carolina, is a heavily populated coastal region that supports a large tourism industry. Sand resources are important for both recreation and coastal habitat. Earlier geological framework studies have identified a large sand deposit oblique to the shoreline, oriented clockwise in the offshore direction. This sand feature is ~ 10 km long, 2 km wide, and in excess of 3m thick, possibly providing a source for beach nourishment material. Objectives of this study are to describe the physical processes that control the transport of sediment in Long Bay, specifically off the coast of Myrtle Beach, South Carolina. Specifically we seek to 1) measure and model the oceanographic circulation in the region, 2) identify the processes that maintain the presence of the offshore sand feature, 3) quantify the control that the shoal exerts on the nearshore through changes in wave energy propagation, and 4) identify consequences of removal of the offshore sand feature. Both observational and numerical experiments are used to study the oceanographic circulation and transport of sediment. The observational study is described in an accompanying poster and consists of eight sites that measured tides, surface waves, currents, salinity, temperature, suspended sediment concentrations, and bed forms from October 2003 to April 2004. Numerical modeling for circulation and sediment transport in the study region uses a new version of ROMS (v2.1) that now includes transport of multiple grain sizes, coupling of sediment transport to wave bottom boundary layer models, and evolution of the bottom morphology. The SWAN model is used to compute wave propagation. Results indicate that currents in the study area are strongly influenced by both tidal motion and wind driven setup / setdown. The presence of the offshore sand feature alters the residual flows in the region. Sediment transport is more significant during periods of sustained strong winds that generate local waves. Wind direction plays a key role in determining the direction and magnitude of sediment transport.
A Regression Study of Demand, Cost and Pricing Public Library Circulation Services.
ERIC Educational Resources Information Center
Stratton, Peter J.
This paper examines three aspects of the public library's circulation service: (1) a demand function for the service is estimated; (2) a long-run unit circulation cost curve is developed; and (3) using the economist's notion of "efficiency," a general model for the pricing of the circulation service is presented. The estimated demand…
Sensitivity of Age-of-Air Calculations to the Choice of Advection Scheme
NASA Technical Reports Server (NTRS)
Eluszkiewicz, Janusz; Hemler, Richard S.; Mahlman, Jerry D.; Bruhwiler, Lori; Takacs, Lawrence L.
2000-01-01
The age of air has recently emerged as a diagnostic of atmospheric transport unaffected by chemical parameterizations, and the features in the age distributions computed in models have been interpreted in terms of the models' large-scale circulation field. This study shows, however, that in addition to the simulated large-scale circulation, three-dimensional age calculations can also be affected by the choice of advection scheme employed in solving the tracer continuity equation, Specifically, using the 3.0deg latitude X 3.6deg longitude and 40 vertical level version of the Geophysical Fluid Dynamics Laboratory SKYHI GCM and six online transport schemes ranging from Eulerian through semi-Lagrangian to fully Lagrangian, it will be demonstrated that the oldest ages are obtained using the nondiffusive centered-difference schemes while the youngest ages are computed with a semi-Lagrangian transport (SLT) scheme. The centered- difference schemes are capable of producing ages older than 10 years in the mesosphere, thus eliminating the "young bias" found in previous age-of-air calculations. At this stage, only limited intuitive explanations can be advanced for this sensitivity of age-of-air calculations to the choice of advection scheme, In particular, age distributions computed online with the National Center for Atmospheric Research Community Climate Model (MACCM3) using different varieties of the SLT scheme are substantially older than the SKYHI SLT distribution. The different varieties, including a noninterpolating-in-the-vertical version (which is essentially centered-difference in the vertical), also produce a narrower range of age distributions than the suite of advection schemes employed in the SKYHI model. While additional MACCM3 experiments with a wider range of schemes would be necessary to provide more definitive insights, the older and less variable MACCM3 age distributions can plausibly be interpreted as being due to the semi-implicit semi-Lagrangian dynamics employed in the MACCM3. This type of dynamical core (employed with a 60-min time step) is likely to reduce SLT's interpolation errors that are compounded by the short-term variability characteristic of the explicit centered-difference dynamics employed in the SKYHI model (time step of 3 min). In the extreme case of a very slowly varying circulation, the choice of advection scheme has no effect on two-dimensional (latitude-height) age-of-air calculations, owing to the smooth nature of the transport circulation in 2D models. These results suggest that nondiffusive schemes may be the preferred choice for multiyear simulations of tracers not overly sensitive to the requirement of monotonicity (this category includes many greenhouse gases). At the same time, age-of-air calculations offer a simple quantitative diagnostic of a scheme's long-term diffusive properties and may help in the evaluation of dynamical cores in multiyear integrations. On the other hand, the sensitivity of the computed ages to the model numerics calls for caution in using age of air as a diagnostic of a GCM's large-scale circulation field.
Interannual Variability of the Patagonian Shelf Circulation and Cross-Shelf Exchange
NASA Astrophysics Data System (ADS)
Combes, V.; Matano, R. P.
2016-02-01
Observational studies have already established the general mean circulation and hydrographic characteristics of the Patagonian shelf waters using data from in situ observation, altimetry and more recently from the Aquarius satellite sea surface salinity, but the paucity of those data in time or below the surface leave us with an incomplete picture of the shelf circulation and of its variability. This study discusses the variability of the Patagonian central shelf circulation and off-shelf transport using a high-resolution model experiment for the period 1979-2012. The model solution shows high skill in reproducing the best-known aspects of the shelf and deep-ocean circulations. This study links the variability of the central shelf circulation and off-shelf transport to the wind variability, southern shelf transport variability and large-scale current variability. We find that while the inner and central shelf circulation are principally wind driven, the contribution of the Brazil/Malvinas Confluence (BMC) variability becomes important in the outer shelf and along the shelf break. The model also indicates that whereas the location of the off-shelf transport is controlled by the BMC, its variability is modulated by the southern shelf transport. The variability of the subtropical shelf front, where the fresh southern shelf waters encounters the saline northern shelf waters, is also presented in this study.
Miller, Omer; Butovsky, Oleg; Bukshpan, Shay; Beers, David R.; Henkel, Jenny S.; Yoles, Eti; Appel, Stanley H.; Schwartz, Michal
2011-01-01
Background Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS) in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs), representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease. Methods and Findings We tested this working hypothesis in amyotrophic lateral sclerosis (ALS) and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2) cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1) mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS), revealed a two-fold increase in the percentage of circulating MDSCs (LIN−/LowHLA-DR−CD33+) compared to controls. Conclusions Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might represent a risk factor and a novel target for therapeutic intervention in ALS at least at the early stage. PMID:22073221
Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change
NASA Astrophysics Data System (ADS)
Trossman, D.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.
2016-12-01
We argue that a substantial fraction of the uncertainty in the cloud radiative feedback during transient climate change may be due to uncertainty in the ocean circulation perturbation. A suite of climate model simulations in which the ocean circulation, the cloud radiative feedback, or a combination of both are held fixed while CO2 doubles, shows that changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback. Specifically, a slowdown in the Atlantic Meridional Overturning Circulation (AMOC) helps to maintain low cloud cover in the Northern Hemisphere extratropics. We propose that the AMOC decline increases the meridional SST gradient, strengthening the storm track, its attendant clouds and the amount of shortwave radiation they reflect back to space. If the results of our model were to scale proportionately in the CMIP5 models, whose AMOC decline ranges from 15 to 60% under RCP8.5, then as much as 70% of the intermodel spread in the cloud radiative feedback and 35% of the spread in the transient climate response could possibly stem from the model representations of AMOC decline.
Planning for Downtown Circulation Systems. Volume 3. Appendices.
DOT National Transportation Integrated Search
1983-10-01
This volume contains worksheets for estimating circulator patronage, costs, revenues and travel impacts, detailed discussions of estimation and application procedures for the demand models developed, and a case study of the models' application using ...
[Establishment and evaluation of extracorporeal circulation model in rats].
Xie, Xiao-Jun; Tao, Kai-Yu; Tang, Meng-Lin; Du, Lei; An, Qi; Lin, Ke; Gan, Chang-Ping; Chen, You-Wen; Luo, Shu-Hua
2012-09-01
To establish an extracorporeal circulation (ECC) rat model, and evaluate the inflammatory response and organ injury induced in the model. SD rats were anesthetized and cannulated from right common carotid artery to left femoral vein to establish the bypass of extracorporeal circulation. Then the rats were randomly divided into ECC group and sham group. The rats in ECC group were subjected to extracorporeal circulation for 2 hours and then rest for 2 hours, while the rats in sham group were only observed for 4 hours without extracorporeal circulation. After that, blood routine examination, blood gas analysis, the measurement of pro-inflammatory factors in bronchoalveolar lavage fluid and lung tissue were performed to evaluate the lung injury induced by ECC. Circulating endothelial cells were also calculated by flow cytometry to assess the vascular endothelial injury. At 2 hours after ECC, red blood cell counts in both groups kept normal, while leukocyte and neutrophil counts, plasmatic tumor necrosis factor-a level and neutrophil elastase level, circulating endothelial cells in the rats of ECC group were significantly higher than those in sham group. Tumor necrosis factor-alpha in bronchoalveolar lavage fluid and water content in lung of the ECC rats were also significantly higher, while the oxygenation index was significantly lower. Neutrophil infiltration was also observed in lung tissues with increased thickness of alveolar membrane in ECC group. The ECC model established from right common carotid artery to left femoral vein in our study can successfully induce systemic inflammatory response, and acute lung injury associated with inflammation.
NASA Astrophysics Data System (ADS)
Lips, Urmas; Zhurbas, Victor; Skudra, Maris; Väli, Germo
2016-01-01
A regional model of the Gulf of Riga (GoR) with horizontal grid spacing of 0.5 nautical miles was applied to study the features and driving forces of the whole-basin circulation in the GoR. The initial conditions and atmospheric forcing were taken from the operational models High Resolution Operational Model for the Baltic (HIROMB) and High Resolution Limited Area Model (HIRLAM), respectively. The wind stress curl is shown to be a major contributor to the whole-basin circulation pattern. An anticyclonic circulation pattern in the summer is determined by a combined effect of the negative wind stress curl, thermal density stratification and bottom topography. Positive values of the wind stress curl and a cyclonic circulation pattern prevail during the cold period of the year when seasonal thermocline is absent. During calm periods, the anticyclonic type of circulation is established due to a combined effect of the river runoff, saltier water inflow into and mixed water outflow from the GoR. Two seasonal baroclinic jet-like currents are identified in the summer: the Northward Longshore Current in the western GoR and Southward Subsurface Longshore Current in the eastern GoR. The alteration of the circulation pattern in the GoR from cyclonic in the cold period of the year to anticyclonic in the summer, and vice versa, was shown to be observed not every year due to inter-annual variability of wind forcing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Way, M. J.; Aleinov, I.; Amundsen, David S.
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower tomore » more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.« less
Circulating endothelial progenitor cells in obese children and adolescents.
Pires, António; Martins, Paula; Paiva, Artur; Pereira, Ana Margarida; Marques, Margarida; Castela, Eduardo; Sena, Cristina; Seiça, Raquel
2015-01-01
This study aimed to investigate the relationship between circulating endothelial progenitor cell count and endothelial activation in a pediatric population with obesity. Observational and transversal study, including 120 children and adolescents with primary obesity of both sexes, aged 6-17 years, who were recruited at this Cardiovascular Risk Clinic. The control group was made up of 41 children and adolescents with normal body mass index. The variables analyzed were: age, gender, body mass index, systolic and diastolic blood pressure, high-sensitivity C-reactive protein, lipid profile, leptin, adiponectin, homeostasis model assessment-insulin resistance, monocyte chemoattractant protein-1, E-selectin, asymmetric dimethylarginine and circulating progenitor endothelial cell count. Insulin resistance was correlated to asymmetric dimethylarginine (ρ=0.340; p=0.003), which was directly, but weakly correlated to E-selectin (ρ=0.252; p=0.046). High sensitivity C-reactive protein was not found to be correlated to markers of endothelial activation. Systolic blood pressure was directly correlated to body mass index (ρ=0.471; p<0.001) and the homeostasis model assessment-insulin resistance (ρ=0.230; p=0.012), and inversely correlated to adiponectin (ρ=-0.331; p<0.001) and high-density lipoprotein cholesterol (ρ=-0.319; p<0.001). Circulating endothelial progenitor cell count was directly, but weakly correlated, to body mass index (r=0.211; p=0.016), leptin (ρ=0.245; p=0.006), triglyceride levels (r=0.241; p=0.031), and E-selectin (ρ=0.297; p=0.004). Circulating endothelial progenitor cell count is elevated in obese children and adolescents with evidence of endothelial activation, suggesting that, during infancy, endothelial repairing mechanisms are present in the context of endothelial activation. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Gershman, Boris; Shui, Irene M; Stampfer, Meir; Platz, Elizabeth A; Gann, Peter H; Sesso, Howard L; DuPre, Natalie; Giovannucci, Edward; Mucci, Lorelei A
2014-04-01
Sex hormones play an important role in the growth and development of the prostate, and low androgen levels have been suggested to carry an adverse prognosis for men with prostate cancer (PCa). To examine the association between prediagnostic circulating sex hormones and lethal PCa in two prospective cohort studies, the Physicians' Health Study (PHS) and the Health Professionals Follow-up Study (HPFS). We included 963 PCa cases (700 HPFS; 263 PHS) that provided prediagnostic blood samples, in 1982 for PHS and in 1993-1995 for HPFS, in which circulating sex hormone levels were assayed. The primary end point was lethal PCa (defined as cancer-specific mortality or development of metastases), and we also assessed total mortality through March 2011. We used Cox proportional hazards models to evaluate the association of prediagnostic sex hormone levels with time from diagnosis to development of lethal PCa or total mortality. PCa cases were followed for a mean of 12.0±4.9 yr after diagnosis. We confirmed 148 cases of lethal PCa and 421 deaths overall. Using Cox proportional hazard models, we found no significant association between quartile of total testosterone, sex hormone binding globulin (SHBG), SHBG-adjusted testosterone, free testosterone, dihydrotestosterone, androstanediol glucuronide, or estradiol and lethal PCa or total mortality. In subset analyses stratified by Gleason score, TNM stage, age, and interval between blood draw and diagnosis, there was also no consistent association between lethal PCa and sex hormone quartile. We found no overall association between prediagnostic circulating sex hormones and lethal PCa or total mortality. Our null results suggest that reverse causation may be responsible in prior studies that noted adverse outcomes for men with low circulating androgens. Copyright © 2013 European Association of Urology. Published by Elsevier B.V. All rights reserved.
NORTH PORTAL-HOT WATER CIRCULATION PUMP CALCULATION-SHOP BUILDING #5006
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Blackstone
1996-01-25
The purpose of this design analysis and calculation is to size a circulating pump for the service hot water system in the Shop Building 5006, in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2). The method used for the calculation is based on Reference 5.2. This consists of determining the total heat transfer from the service hot water system piping to the surrounding environment. The heat transfer is then used to define the total pumping capacity based on a given temperature change in the circulating hot water as it flows throughmore » the closed loop piping system. The total pumping capacity is used to select a pump model from manufacturer's literature. This established the head generation for that capacity and particular pump model. The total length of all hot water supply and return piping including fittings is then estimated from the plumbing drawings which defines the pipe friction losses that must fit within the available pump head. Several iterations may be required before a pump can be selected that satisfies the head-capacity requirements.« less
Liquid biopsy: a step forward towards precision medicine in urologic malignancies.
Di Meo, Ashley; Bartlett, Jenni; Cheng, Yufeng; Pasic, Maria D; Yousef, George M
2017-04-14
There is a growing trend towards exploring the use of a minimally invasive "liquid biopsy" to identify biomarkers in a number of cancers, including urologic malignancies. Multiple aspects can be assessed in circulating cell-free DNA, including cell-free DNA levels, integrity, methylation and mutations. Other prospective liquid biopsy markers include circulating tumor cells, circulating RNAs (miRNA, lncRNAs and mRNAs), cell-free proteins, peptides and exosomes have also emerged as non-invasive cancer biomarkers. These circulating molecules can be detected in various biological fluids, including blood, urine, saliva and seminal plasma. Liquid biopsies hold great promise for personalized medicine due to their ability to provide multiple non-invasive global snapshots of the primary and metastatic tumors. Molecular profiling of circulating molecules has been a stepping-stone to the successful introduction of several non-invasive multi-marker tests into the clinic. In this review, we provide an overview of the current state of cell-free DNA-based kidney, prostate and bladder cancer biomarker research and discuss the potential utility other circulating molecules. We will also discuss the challenges and limitations facing non-invasive cancer biomarker discovery and the benefits of this growing area of translational research.
Properties of QBO and SAO Generated by Gravity Waves
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Reddy, C. A.; Chan, K. L.; Porter, H. S.
1999-01-01
We present an extension for the 2D (zonal mean) version of our Numerical Spectral Mode (NSM) that incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations and the semi-annual and quasi-biennial oscillations (SAO and QBO). Our earlier model reproduced the salient features of the mean zonal circulation in the middle atmosphere, including the QBO extension into the upper mesosphere inferred from UARS measurements. In the present model we incorporate also tropospheric heating to reproduce the upwelling at equatorial latitudes associated with the Brewer-Dobson circulation that affects significantly the dynamics of the stratosphere as Dunkerton had pointed out. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. The QBO period in the model is 30 months (mo), which is conducive to synchronize this oscillation with the seasonal cycle of solar forcing. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. Quadratic non-linearities generate interseasonal variations to produce a complicated pattern of variability associated with the QBO. The computed temperature amplitudes for the SAO and QBO are in substantial agreement with observations at equatorial and extratropical latitudes. At high latitudes, however, the observed QBO amplitudes are significantly larger, which may be a signature of propagating planetary waves not included in the present model. The assumption of hydrostatic equilibrium not being imposed, we find that the effects from the vertical Coriolis force associated with the equatorial oscillations are large for the vertical winds and significant for the temperature variations even outside the tropics but are relatively small for the zonal winds.
van der Merwe, Rudolph; Leen, Todd K; Lu, Zhengdong; Frolov, Sergey; Baptista, Antonio M
2007-05-01
We present neural network surrogates that provide extremely fast and accurate emulation of a large-scale circulation model for the coupled Columbia River, its estuary and near ocean regions. The circulation model has O(10(7)) degrees of freedom, is highly nonlinear and is driven by ocean, atmospheric and river influences at its boundaries. The surrogates provide accurate emulation of the full circulation code and run over 1000 times faster. Such fast dynamic surrogates will enable significant advances in ensemble forecasts in oceanography and weather.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karak, Bidya Binay, E-mail: bidya_karak@physics.iisc.ernet.i
2010-12-01
Meridional circulation is an important ingredient in flux transport dynamo models. We have studied its importance on the period, the amplitude of the solar cycle, and also in producing Maunder-like grand minima in these models. First, we model the periods of the last 23 sunspot cycles by varying the meridional circulation speed. If the dynamo is in a diffusion-dominated regime, then we find that most of the cycle amplitudes also get modeled up to some extent when we model the periods. Next, we propose that at the beginning of the Maunder minimum the amplitude of meridional circulation dropped to amore » low value and then after a few years it increased again. Several independent studies also favor this assumption. With this assumption, a diffusion-dominated dynamo is able to reproduce many important features of the Maunder minimum remarkably well. If the dynamo is in a diffusion-dominated regime, then a slower meridional circulation means that the poloidal field gets more time to diffuse during its transport through the convection zone, making the dynamo weaker. This consequence helps to model both the cycle amplitudes and the Maunder-like minima. We, however, fail to reproduce these results if the dynamo is in an advection-dominated regime.« less
Geothermal influences on the abyssal ocean
NASA Astrophysics Data System (ADS)
Emile-Geay, J.; Madec, G.
2017-12-01
Long considered a negligible contribution to ocean dynamics, geothermal heat flow (GHF) is now increasingly recognized as an important contributor to the large scale ocean's deep structure and circulation. This presentation will review the history of theories regarding geothermal influences on the abyssal ocean. Though the contribution to the thermal structure was recognized early on, its potential in driving a circulation [Worthington, 1968] was largely ignored on the grounds that it could not materially affect potential vorticity. Huang [JPO, 1999] proposed that GHF may provide 30-50% of the energy available for deep mixing, a calculation that later proved too optimistic [Wunsch & Ferrari ARFM 2004]. Model simulations suggested that a uniform GHF of 50 mW/m2 could drive an abyssal of a few Sverdrups (1 Sv = 106 m3.s-1) [Adcroft et al, GRL 2001], but it was not until Emile-Geay & Madec [OS, 2009] (EM09) that GHF began to be taken seriously [Mashayek et al, GRL 2013; Voldoire et al. Clim. Dyn. 2013; Dufresnes et al., Clim. Dyn. 2013]. Using analytical and numerical approaches, the study made 3 main points: GHF brings as much energy to the deep ocean as intense diapycnal mixing (1 cm2/s). GHF consumes the densest water masses, inducing a deep circulation of 5 Sv even without mixing. This circulation varies in inverse proportion to abyssal stratification. The spatial structure of GHF, highest at mid-ocean ridges and lowest in abyssal plains, matters far less than the fact that it bathes vast fractions of the ocean floor in a relatively low, constant flux. EM09 concluded that GHF "is an important actor of abyssal dynamics, and should no longer be neglected in oceanographic studies". Recent work has confirmed that geothermal heat flow is of comparable importance to ocean circulation as bottom-intensified mixing induced by internal wave breaking [De Lavergne et al, JPO 2016a,b]. Thus, including GHF in ocean general circulation models improves abyssal structure and circulation. We conclude with a perspective on the role of conductive geothermal heat loss versus localized, advective hydrothermal heat flow on abyssal dynamics, and delineate unsolved research problems for the years ahead.
Independent Verification of Mars-GRAM 2010 with Mars Climate Sounder Data
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Burns, Kerry L.
2014-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission and engineering applications. Applications of Mars-GRAM include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Atmospheric influences on landing site selection and long-term mission conceptualization and development can also be addressed utilizing Mars-GRAM. Mars-GRAM's perturbation modeling capability is commonly used, in a Monte Carlo mode, to perform high-fidelity engineering end-to-end simulations for entry, descent, and landing. Mars-GRAM is an evolving software package resulting in improved accuracy and additional features. Mars-GRAM 2005 has been validated against Radio Science data, and both nadir and limb data from the Thermal Emission Spectrometer (TES). From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). Above 80 km, Mars-GRAM is based on the University of Michigan Mars Thermospheric General Circulation Model (MTGCM). The most recent release of Mars-GRAM 2010 includes an update to Fortran 90/95 and the addition of adjustment factors. These adjustment factors are applied to the input data from the MGCM and the MTGCM for the mapping year 0 user-controlled dust case. The adjustment factors are expressed as a function of height (z), latitude and areocentric solar longitude (Ls).
Long-Term Model Assimilated Aerosols from MERRA-2: Data and Services at NASA GES DISC
NASA Technical Reports Server (NTRS)
Shen, Suhung; Ostrenga, Dana; Huwe, Paul; Vollmer, Bruce; Kempler, Steve
2016-01-01
The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) is the atmospheric reanalysis conducted with NASA assimilation system GEOS-5. Alongside the meteorological data assimilation, MERRA-2 includes an interactive analysis of aerosols, land, ocean, and ice that feed back into circulation.
Sieber, Sandro; Grossen, Philip; Detampel, Pascal; Siegfried, Salome; Witzigmann, Dominik; Huwyler, Jörg
2017-10-28
Nanomedicines have gained much attention for the delivery of small molecules or nucleic acids as treatment options for many diseases. However, the transfer from experimental systems to in vivo applications remains a challenge since it is difficult to assess their circulation behavior in the body at an early stage of drug discovery. Thus, innovative and improved concepts are urgently needed to overcome this issue and to close the gap between empiric nanoparticle design, in vitro assessment, and first in vivo experiments using rodent animal models. This study was focused on the zebrafish as a vertebrate screening model to assess the circulation in blood and extravasation behavior of nanoparticulate drug delivery systems in vivo. To validate this novel approach, monodisperse preparations of fluorescently labeled liposomes with similar size and zeta potential were injected into transgenic zebrafish lines expressing green fluorescent protein in their vasculature. Phosphatidylcholine-based lipids differed by fatty acid chain length and saturation. Circulation behavior and vascular distribution pattern were evaluated qualitatively and semi-quantitatively using image analysis. Liposomes composed of lipids with lower transition temperature (<28°C) as well as PEGylated liposomes showed longer circulation times and extravasation. In contrast, liposomes composed of lipids with transition temperatures>28°C bound to venous parts of the vasculature. This circulation patterns in the zebrafish model did correlate with published and experimental pharmacokinetic data from mice and rats. Our findings indicate that the zebrafish model is a useful vertebrate screening tool for nanoparticulate drug delivery systems to predict their in vivo circulation behavior with respect to systemic circulation time and exposure. Copyright © 2017 Elsevier B.V. All rights reserved.
Proskurnin, Mikhail A; Zhidkova, Tatyana V; Volkov, Dmitry S; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I; Mock, Donald; Nedosekin, Dmitry A; Zharov, Vladimir P
2011-10-01
Recently, photoacoustic (PA) flow cytometry (PAFC) has been developed for in vivo detection of circulating tumor cells and bacteria targeted by nanoparticles. Here, we propose multispectral PAFC with multiple dyes having distinctive absorption spectra as multicolor PA contrast agents. As a first step of our proof-of-concept, we characterized high-speed PAFC capability to monitor the clearance of three dyes (Indocyanine Green [ICG], Methylene Blue [MB], and Trypan Blue [TB]) in an animal model in vivo and in real time. We observed strong dynamic PA signal fluctuations, which can be associated with interactions of dyes with circulating blood cells and plasma proteins. PAFC demonstrated enumeration of circulating red and white blood cells labeled with ICG and MB, respectively, and detection of rare dead cells uptaking TB directly in bloodstream. The possibility for accurate measurements of various dye concentrations including Crystal Violet and Brilliant Green were verified in vitro using complementary to PAFC photothermal (PT) technique and spectrophotometry under batch and flow conditions. We further analyze the potential of integrated PAFC/PT spectroscopy with multiple dyes for rapid and accurate measurements of circulating blood volume without a priori information on hemoglobin content, which is impossible with existing optical techniques. This is important in many medical conditions including surgery and trauma with extensive blood loss, rapid fluid administration, and transfusion of red blood cells. The potential for developing a robust clinical PAFC prototype that is safe for human, and its applications for studying the liver function are further highlighted. Copyright © 2011 International Society for Advancement of Cytometry.
Hartmann, Carolin; Patil, Roshani; Lin, Charles P; Niedre, Mark J
2017-11-08
There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immune reaction/inflammation, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most currently used methods require drawing and enriching blood samples from the body, but these suffer from a number of limitations. In contrast, "in vivo flow cytometry" (IVFC) refers to set of technologies that allow study of cells directly in the bloodstream of the organism in vivo. In recent years the IVFC field has grown significantly and new techniques have been developed, including fluorescence microscopy, multi-photon, photo-acoustic, and diffuse fluorescence IVFC. In this paper we review recent technical advances in IVFC, with emphasis on instrumentation, contrast mechanisms, and detection sensitivity. We also describe key applications in biomedical research, including cancer research and immunology. Last, we discuss future directions for IVFC, as well as prospects for broader adoption by the biomedical research community and translation to humans clinically. © 2017 Institute of Physics and Engineering in Medicine.
NASA Astrophysics Data System (ADS)
Herraez, Ivan; Micallef, Daniel; van Kuik, Gijs A. M.; Peinke, Joachim
2015-11-01
At the tip of wind turbine blades, the radial bound circulation is transformed into chordwise circulation just before being released as trailing vorticity, giving rise to the tip vortex. The force acting on the chordwise circulation contains a radial and a normal component with respect to the blade axis. This load does not contribute to the torque, so it is a conservative load. Due to this, it is disregarded in the engineering tools used for the design of wind turbines. However, as we demonstrated in a previous work, the conservative load might influence the trajectory of the tip vortex. In order to see how this affects the blade loads, in this research we perform large eddy simulations with an actuator line model where the conservative load has been included. The conservative load reduces the angle of attack in the tip region as a consequence of the modified tip vortex trajectory. This has a negative influence on the lift and the power output. We conclude that the accuracy of engineering design tools of wind turbines can be improved if the conservative load acting at the tip is considered.
Effects of Dissociation/Recombination on the Day–Night Temperature Contrasts of Ultra-hot Jupiters
NASA Astrophysics Data System (ADS)
Komacek, Thaddeus D.; Tan, Xianyu
2018-05-01
Secondary eclipse observations of ultra-hot Jupiters have found evidence that hydrogen is dissociated on their daysides. Additionally, full-phase light curve observations of ultra-hot Jupiters show a smaller day-night emitted flux contrast than that expected from previous theory. Recently, it was proposed by Bell & Cowan (2018) that the heat intake to dissociate hydrogen and heat release due to recombination of dissociated hydrogen can affect the atmospheric circulation of ultra-hot Jupiters. In this work, we add cooling/heating due to dissociation/recombination into the analytic theory of Komacek & Showman (2016) and Zhang & Showman (2017) for the dayside-nightside temperature contrasts of hot Jupiters. We find that at high values of incident stellar flux, the day-night temperature contrast of ultra-hot Jupiters may decrease with increasing incident stellar flux due to dissociation/recombination, the opposite of that expected without including the effects of dissociation/recombination. We propose that a combination of a greater number of full-phase light curve observations of ultra-hot Jupiters and future General Circulation Models that include the effects of dissociation/recombination could determine in detail how the atmospheric circulation of ultra-hot Jupiters differs from that of cooler planets.
[The present and future state of minimized extracorporeal circulation].
Meng, Fan; Yang, Ming
2013-05-01
Minimized extracorporeal circulation improved in the postoperative side effects of conventional extracorporeal circulation is a kind of new extracorporeal circulation. This paper introduces the principle, characteristics, applications and related research of minimized extracorporeal circulation. For the problems of systemic inflammatory response syndrome and limited assist time, the article proposes three development direction including system miniaturization and integration, pulsatile blood pump and the adaptive control by human parameter identification.
Maintenance of Summer Monsoon Circulations: A Planetary-Scale Perspective.
NASA Astrophysics Data System (ADS)
Chen, Tsing-Chang
2003-06-01
The monsoon circulation, which is generally considered to be driven by the landmass-ocean thermal contrast, like a gigantic land-sea breeze circulation, exhibits a phase reversal in its vertical structure; a monsoon high aloft over a continental thermal low is juxtaposed with a midoceanic trough underlaid by an oceanic anticyclone. This classic monsoon circulation model is well matched by the monsoon circulation depicted with the observational data prior to the First Global Atmospheric Research Program (GARP) Global Experiment (FGGE). However, synthesizing findings of the global circulation portrayed with the post-FGGE data, it was found that some basic features of major monsoon circulations in Asia, North America, South America, and Australia differ from those of the classic monsoon circulation model. Therefore, a revision of the classic monsoon theory is suggested. With four different wave regimes selected to fit the horizontal dimensions of these monsoon circulations, basic features common to all four major monsoons are illustrated in terms of diagnostic analyses of the velocity potential maintenance equation (which relates diabatic heating and velocity potential) and the streamfunction budget (which links velocity potential and streamfunction) in these wave regimes. It is shown that a monsoon circulation is actually driven by the east-west differential heating and maintained dynamically by a balance between a vorticity source and advection. This dynamic balance is reflected by a spatial quadrature relationship between the monsoon divergent circulation and the monsoon high (low) at upper (lower) levels.
Turetta, Matteo; Ben, Fabio Del; Brisotto, Giulia; Biscontin, Eva; Bulfoni, Michela; Cesselli, Daniela; Colombatti, Alfonso; Scoles, Giacinto; Gigli, Giuseppe; Del Mercato, Loretta L
2018-06-05
In the present review, we describe three hot topics in cancer research such as circulating tumor cells, exosomes, and 3D environment models. The first section is dedicated to microfluidic platforms for detecting circulating tumor cells, including both affinity-based methods that take advantage of antibodies and aptamers, and "label-free" approaches, exploiting cancer cells physical features and, more recently, abnormal cancer metabolism. In the second section, we briefly describe biology of exosomes and their role in cancer, as well as conventional techniques for their isolation and innovative microfluidic platforms. In the third section, the importance of tumor microenvironment is highlighted, along with techniques for modeling it in vitro. Finally, we discuss limitations of two-dimensional monolayer methods and describe advantages and disadvantages of different three-dimensional tumor systems for cell-cell interaction analysis and their potential applications in cancer management. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Kim, Go-Un; Seo, Kyong-Hwan
2018-01-01
A key physical factor in regulating the performance of Madden-Julian oscillation (MJO) simulation is examined by using 26 climate model simulations from the World Meteorological Organization's Working Group for Numerical Experimentation/Global Energy and Water Cycle Experiment Atmospheric System Study (WGNE and MJO-Task Force/GASS) global model comparison project. For this, intraseasonal moisture budget equation is analyzed and a simple, efficient physical quantity is developed. The result shows that MJO skill is most sensitive to vertically integrated intraseasonal zonal wind convergence (ZC). In particular, a specific threshold value of the strength of the ZC can be used as distinguishing between good and poor models. An additional finding is that good models exhibit the correct simultaneous convection and large-scale circulation phase relationship. In poor models, however, the peak circulation response appears 3 days after peak rainfall, suggesting unfavorable coupling between convection and circulation. For an improving simulation of the MJO in climate models, we propose that this delay of circulation in response to convection needs to be corrected in the cumulus parameterization scheme.
PARTICLE FLOW, MIXING, AND CHEMICAL REACTION IN CIRCULATING FLUIDIZED BED ABSORBERS
A mixing model has been developed to simulate the particle residence time distribution (RTD) in a circulating fluidized bed absorber (CFBA). Also, a gas/solid reaction model for sulfur dioxide (SO2) removal by lime has been developed. For the reaction model that considers RTD dis...
Documentation of the GLAS fourth order general circulation model. Volume 1: Model documentation
NASA Technical Reports Server (NTRS)
Kalnay, E.; Balgovind, R.; Chao, W.; Edelmann, J.; Pfaendtner, J.; Takacs, L.; Takano, K.
1983-01-01
The volume 1, of a 3 volume technical memoranda which contains a documentation of the GLAS Fourth Order General Circulation Model is presented. Volume 1 contains the documentation, description of the stratospheric/tropospheric extension, user's guide, climatological boundary data, and some climate simulation studies.
2013-09-30
Circulation (HC) in terms of the meridional streamfunction. The interannual variability of the Atlantic HC in boreal summer was examined using the EOF...large-scale circulations in the NAVGEM model and the source of predictability for the seasonal variation of the Atlantic TCs. We have been working...EOF analysis of Meridional Circulation (JAS). (a) The leading mode (M1); (b) variance explained by the first 10 modes. 9
Dynamical Evaluation of Ocean Models using the Gulf Stream as an Example
2010-01-01
transport for the Atlantic meridional overturning circulation (AMOC) as the 3 nonlinear solutions discussed in Section 2. The model boundary is...Hellerman and Rosenstein (1983) wind stress climatology and the northward upper ocean flow (14 Sv) of the Atlantic meridional overturning circulation ... overturning circulation (AMOC) streamfunction with a 5 Sv contour interval from (a) 1/12° Atlantic MICOM, (b) 1/12° Atlantic HYCOM, and (c) 1/12
2009-06-30
Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate Global Ocean...2009 4. TITLE AND SUBTITLE Salinity Boundary Conditions and the Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate... Atlantic Meridional Overturning Circulation (AMOC) in global simulations performed with the depth coordinate Parallel Ocean Program (POP) ocean
A Simple Diagnostic Model of the Circulation Beneath an Ice Shelf
NASA Astrophysics Data System (ADS)
Jenkins, Adrian; Nøst, Ole Anders
2017-04-01
The ocean circulation beneath ice shelves supplies the heat required to melt ice and exports the resulting freshwater. It therefore plays a key role in determining the mass balance and geometry of the ice shelves and hence the restraint they impose on the outflow of grounded ice from the interior of the ice sheet. Despite this critical role in regulating the ice sheet's contribution to eustatic sea level, an understanding of some of the most basic features of the circulation is lacking. The conventional paradigm is one of a buoyancy-forced overturning circulation, with inflow of warm, salty water along the seabed and outflow of cooled and freshened waters along the ice base. However, most sub-ice-shelf cavities are broad relative to the internal Rossby radius, so a horizontal circulation accompanies the overturning. Primitive equation ocean models applied to idealised geometries produce cyclonic gyres of comparable magnitude, but in the absence of a theoretical understanding of what controls the gyre strength, those solutions can only be validated against each other. Furthermore, we have no understanding of how the gyre circulation should change given more complex geometries. To begin to address this gap in our theoretical understanding we present a simple, linear, steady-state model for the circulation beneath an ice shelf. Our approach in analogous to that of Stommel's classic analysis of the wind-driven gyres, but is complicated by the fact that his most basic assumption of homogeneity is inappropriate. The only forcing on the flow beneath an ice shelf arises because of the horizontal density gradients set up by melting. We thus arrive at a diagnostic model which gives us the depth-dependent horizontal circulation that results from an imposed geometry and density distribution. We describe the development of the model and present some preliminary solutions for the simplest cavity geometries.
3D Visualization of Global Ocean Circulation
NASA Astrophysics Data System (ADS)
Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.
2015-12-01
Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.
NASA Technical Reports Server (NTRS)
Nese, Jon M.; Dutton, John A.
1993-01-01
The predictability of the weather and climatic states of a low-order moist general circulation model is quantified using a dynamic systems approach, and the effect of incorporating a simple oceanic circulation on predictability is evaluated. The predictability and the structure of the model attractors are compared using Liapunov exponents, local divergence rates, and the correlation and Liapunov dimensions. It was found that the activation of oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10 percent and decreases the variance of the largest local divergence rate by 20 percent. When an oceanic circulation develops, the average predictability of annually averaged states is improved by 25 percent and the variance of the largest local divergence rate decreases by 25 percent.
Ionospheric Outflow in the Magnetosphere: Circulation and Consequences
NASA Astrophysics Data System (ADS)
Welling, D. T.; Liemohn, M. W.
2017-12-01
Including ionospheric outflow in global magnetohydrodynamic models of near-Earth outer space has become an important step towards understanding the role of this plasma source in the magnetosphere. Such simulations have revealed the importance of outflow in populating the plasma sheet and inner magnetosphere as a function of outflow source characteristics. More importantly, these experiments have shown how outflow can control global dynamics, including tail dynamics and dayside reconnection rate. The broad impact of light and heavy ion outflow can create non-linear feedback loops between outflow and the magnetosphere. This paper reviews some of the most important revelations from global magnetospheric modeling that includes ionospheric outflow of light and heavy ions. It also introduces new advances in outflow modeling and coupling outflow to the magnetosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Xianyu; Showman, Adam P., E-mail: xianyut@lpl.arizona.edu
The growing number of observations of brown dwarfs (BDs) has provided evidence for strong atmospheric circulation on these objects. Directly imaged planets share similar observations and can be viewed as low-gravity versions of BDs. Vigorous condensate cycles of chemical species in their atmospheres are inferred by observations and theoretical studies, and latent heating associated with condensation is expected to be important in shaping atmospheric circulation and influencing cloud patchiness. We present a qualitative description of the mechanisms by which condensational latent heating influences circulation, and then illustrate them using an idealized general circulation model that includes a condensation cycle ofmore » silicates with latent heating and molecular weight effect due to the rainout of the condensate. Simulations with conditions appropriate for typical T dwarfs exhibit the development of localized storms and east–west jets. The storms are spatially inhomogeneous, evolving on a timescale of hours to days and extending vertically from the condensation level to the tropopause. The fractional area of the BD covered by active storms is small. Based on a simple analytic model, we quantitatively explain the area fraction of moist plumes and show its dependence on the radiative timescale and convective available potential energy (CAPE). We predict that if latent heating dominates cloud formation processes, the fractional coverage area of clouds decreases as the spectral type goes through the L/T transition from high to lower effective temperature. This is a natural consequence of the variation of the radiative timescale and CAPE with the spectral type.« less
Effects of Latent Heating on Atmospheres of Brown Dwarfs and Directly Imaged Planets
NASA Astrophysics Data System (ADS)
Tan, Xianyu; Showman, Adam P.
2017-02-01
The growing number of observations of brown dwarfs (BDs) has provided evidence for strong atmospheric circulation on these objects. Directly imaged planets share similar observations and can be viewed as low-gravity versions of BDs. Vigorous condensate cycles of chemical species in their atmospheres are inferred by observations and theoretical studies, and latent heating associated with condensation is expected to be important in shaping atmospheric circulation and influencing cloud patchiness. We present a qualitative description of the mechanisms by which condensational latent heating influences circulation, and then illustrate them using an idealized general circulation model that includes a condensation cycle of silicates with latent heating and molecular weight effect due to the rainout of the condensate. Simulations with conditions appropriate for typical T dwarfs exhibit the development of localized storms and east-west jets. The storms are spatially inhomogeneous, evolving on a timescale of hours to days and extending vertically from the condensation level to the tropopause. The fractional area of the BD covered by active storms is small. Based on a simple analytic model, we quantitatively explain the area fraction of moist plumes and show its dependence on the radiative timescale and convective available potential energy (CAPE). We predict that if latent heating dominates cloud formation processes, the fractional coverage area of clouds decreases as the spectral type goes through the L/T transition from high to lower effective temperature. This is a natural consequence of the variation of the radiative timescale and CAPE with the spectral type.
Muller, David C; Fanidi, Anouar; Midttun, Øivind; Steffen, Annika; Dossus, Laure; Boutron-Ruault, Marie-Christine; Severi, Gianluca; Kühn, Tilman; Katzke, Verena; de la Torre, Ramón Alonso; González, Carlos A; Sánchez, María-José; Dorronsoro, Miren; Santiuste, Carmen; Barricarte, Aurelio; Khaw, Kay-Tee; Wareham, Nick; Travis, Ruth C; Trichopoulou, Antonia; Giotaki, Maria; Trichopoulos, Dimitrios; Palli, Domenico; Krogh, Vittorio; Tumino, Rosario; Vineis, Paolo; Panico, Salvatore; Tjønneland, Anne; Olsen, Anja; Bueno-de-Mesquita, H Bas; Peeters, Petra H; Ljungberg, Börje; Wennberg, Maria; Weiderpass, Elisabete; Murphy, Neil; Riboli, Elio; Ueland, Per Magne; Boeing, Heiner; Brennan, Paul; Johansson, Mattias
2014-10-15
Normal renal function is essential for vitamin D metabolism, but it is unclear whether circulating vitamin D is associated with risk of renal cell carcinoma (RCC). We assessed whether 25-hydroxyvitamin D3 (25(OH)D3) was associated with risk of RCC and death after RCC diagnosis in the European Prospective Investigation into Cancer and Nutrition (EPIC). EPIC recruited 385,747 participants with blood samples between 1992 and 2000. The current study included 560 RCC cases, 557 individually matched controls, and 553 additional controls. Circulating 25(OH)D3 was assessed by mass spectrometry. Conditional and unconditional logistic regression models were used to calculate odds ratios and 95% confidence intervals. Death after RCC diagnosis was assessed using Cox proportional hazards models and flexible parametric survival models. A doubling of 25(OH)D3 was associated with 28% lower odds of RCC after adjustment for season of and age at blood collection, sex, and country of recruitment (odds ratio = 0.72, 95% confidence interval: 0.60, 0.86; P = 0.0004). This estimate was attenuated somewhat after additional adjustment for smoking status at baseline, circulating cotinine, body mass index (weight (kg)/height (m)(2)), and alcohol intake (odds ratio = 0.82, 95% confidence interval: 0.68, 0.99; P = 0.038). There was also some indication that both low and high 25(OH)D3 levels were associated with higher risk of death from any cause among RCC cases. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Belucz, B.; Dikpati, M.; Forgacs-Dajka, E.
2014-12-01
Babcock-Leighton type solar dynamo models with single cell meridional circulation are successful in reproducing many solarcycle features, and recently such a model was applied for solarcycle 24 amplitude prediction. It seems that cycle 24 amplitudeforecast may not be validated. One of the reasons is the assumption of a single cell meridional circulation. Recent observations andtheoretical models of meridional circulation do not indicate a single-celledflow pattern. So it is nessecary to examine the role of complexmulti-cellular circulation patterns in a Babcock-Leighton solar dynamo model in the advection and diffusion dominated regimes.By simulating a Babcock-Leighton solar dynamo model with multi-cellularflow, we show that the presence of a weak, second, high-latitudereverse cell speeds up the cycle and slighty enhances the poleward branch in the butterfly diagram, whereas the presence of a second cellin depth reverses the tilt of the butterfly wing and leads to ananti-solar type feature. If, instead, the butterfly diagram isconstructed from the middle of the convection zone in that case, a solar-like pattern can be retrieved. All the above cases behavequalitatively similar in advection and diffusion-dominated regimes.However, our dynamo with a meridional circulation containing fourcells in latitude behaves distinctly different in the two regimes, producing a solar-like butterfly diagram with fast cycles indiffusion-dominated regime, and a complex branches in the butterflydiagram in the advection-dominated regime. Another interestingfinding from our studies is that a four-celled flow pattern containing two in radius and two in latitude always producesquadrupolar parity as the relaxed solution.
Assessing stratospheric transport in the CMAM30 simulations using ACE-FTS measurements
NASA Astrophysics Data System (ADS)
Kolonjari, Felicia; Plummer, David A.; Walker, Kaley A.; Boone, Chris D.; Elkins, James W.; Hegglin, Michaela I.; Manney, Gloria L.; Moore, Fred L.; Pendlebury, Diane; Ray, Eric A.; Rosenlof, Karen H.; Stiller, Gabriele P.
2018-05-01
Stratospheric transport in global circulation models and chemistry-climate models is an important component in simulating the recovery of the ozone layer as well as changes in the climate system. The Brewer-Dobson circulation is not well constrained by observations and further investigation is required to resolve uncertainties related to the mechanisms driving the circulation. This study has assessed the specified dynamics mode of the Canadian Middle Atmosphere Model (CMAM30) by comparing to the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) profile measurements of CFC-11 (CCl3F), CFC-12 (CCl2F2), and N2O. In the CMAM30 specified dynamics simulation, the meteorological fields are nudged using the ERA-Interim reanalysis and a specified tracer was employed for each species, with hemispherically defined surface measurements used as the boundary condition. A comprehensive sampling technique along the line of sight of the ACE-FTS measurements has been utilized to allow for direct comparisons between the simulated and measured tracer concentrations. The model consistently overpredicts tracer concentrations of CFC-11, CFC-12, and N2O in the lower stratosphere, particularly in the northern hemispheric winter and spring seasons. The three mixing barriers investigated, including the polar vortex, the extratropical tropopause, and the tropical pipe, show that there are significant inconsistencies between the measurements and the simulations. In particular, the CMAM30 simulation underpredicts mixing efficiency in the tropical lower stratosphere during the June-July-August season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavignet, A.A.; Wick, C.J.
In current practice, pressure drops in the mud circulating system and the settling velocity of cuttings are calculated with simple rheological models and simple equations. Wellsite computers now allow more sophistication in drilling computations. In this paper, experimental results on the settling velocity of spheres in drilling fluids are reported, along with rheograms done over a wide range of shear rates. The flow curves are fitted to polynomials and general methods are developed to predict friction losses and settling velocities as functions of the polynomial coefficients. These methods were incorporated in a software package that can handle any rig configurationmore » system, including riser booster. Graphic displays show the effect of each parameter on the performance of the circulating system.« less
NASA Astrophysics Data System (ADS)
Simpson, I.
2015-12-01
A long standing bias among global climate models (GCMs) is their incorrect representation of the wintertime circulation of the North Atlantic region. Specifically models tend to exhibit a North Atlantic jet (and associated storm track) that is too zonal, extending across central Europe, when it should tilt northward toward Scandinavia. GCM's consistently predict substantial changes in the large scale circulation in this region, consisting of a localized anti-cyclonic circulation, centered over the Mediterranean and accompanied by increased aridity there and increased storminess over Northern Europe.Here, we present preliminary results from experiments that are designed to address the question of what the impact of the climatological circulation biases might be on this predicted future response. Climate change experiments will be compared in two versions of the Community Earth System Model: the first is a free running version of the model, as typically used in climate prediction; the second is a bias corrected version of the model in which a seasonally varying cycle of bias correction tendencies are applied to the wind and temperature fields. These bias correction tendencies are designed to account for deficiencies in the fast parameterized processes, with an aim to push the model toward a more realistic climatology.While these experiments come with the caveat that they assume the bias correction tendencies will remain constant with time, they allow for an initial assessment, through controlled experiments, of the impact that biases in the climatological circulation can have on future predictions in this region. They will also motivate future work that can make use of the bias correction tendencies to understand the underlying physical processes responsible for the incorrect tilt of the jet.
Computer simulated modeling of healthy and diseased right ventricular and pulmonary circulation.
Chou, Jody; Rinehart, Joseph B
2018-01-12
We have previously developed a simulated cardiovascular physiology model for in-silico testing and validation of novel closed-loop controllers. To date, a detailed model of the right heart and pulmonary circulation was not needed, as previous controllers were not intended for use in patients with cardiac or pulmonary pathology. With new development of controllers for vasopressors, and looking forward, for combined vasopressor-fluid controllers, modeling of right-sided and pulmonary pathology is now relevant to further in-silico validation, so we aimed to expand our existing simulation platform to include these elements. Our hypothesis was that the completed platform could be tuned and stabilized such that the distributions of a randomized sample of simulated patients' baseline characteristics would be similar to reported population values. Our secondary outcomes were to further test the system in representing acute right heart failure and pulmonary artery hypertension. After development and tuning of the right-sided circulation, the model was validated against clinical data from multiple previously published articles. The model was considered 'tuned' when 100% of generated randomized patients converged to stability (steady, physiologically-plausible compartmental volumes, flows, and pressures) and 'valid' when the means for the model data in each health condition were contained within the standard deviations for the published data for the condition. A fully described right heart and pulmonary circulation model including non-linear pressure/volume relationships and pressure dependent flows was created over a 6-month span. The model was successfully tuned such that 100% of simulated patients converged into a steady state within 30 s. Simulation results in the healthy state for central venous volume (3350 ± 132 ml) pulmonary blood volume (405 ± 39 ml), pulmonary artery pressures (systolic 20.8 ± 4.1 mmHg and diastolic 9.4 ± 1.8 mmHg), left atrial pressure (4.6 ± 0.8 mmHg), PVR (1.0 ± 0.2 wood units), and CI (3.8 ± 0.5 l/min/m 2 ) all met criteria for acceptance of the model, though the standard deviations of LAP and CI were somewhat narrower than published comparators. The simulation results for right ventricular infarction also fell within the published ranges: pulmonary blood volume (727 ± 102 ml), pulmonary arterial pressures (30 ± 4 mmHg systolic, 12 ± 2 mmHg diastolic), left atrial pressure (13 ± 2 mmHg), PVR (1.6 ± 0.3 wood units), and CI (2.0 ± 0.4 l/min/m 2 ) all fell within one standard deviation of the reported population values and vice-versa. In the pulmonary hypertension model, pulmonary blood volume of 615 ± 90 ml, pulmonary arterial pressures of 80 ± 14 mmHg systolic, 36 ± 7 mmHg diastolic, and the left atrial pressure of 11 ± 2 mmHg all met criteria for acceptance. For CI, the simulated value of 2.8 ± 0.4 l/min/m 2 once again had a narrower spread than most of the published data, but fell inside of the SD of all published data, and the PVR value of 7.5 ± 1.6 wood units fell in the middle of the four published studies. The right-ventricular and pulmonary circulation simulation appears to be a reasonable approximation of the right-sided circulation for healthy physiology as well as the pathologic conditions tested.
NASA Astrophysics Data System (ADS)
Kronberg, Elena A.; Ashour-Abdalla, Maha; Dandouras, Iannis; Delcourt, Dominique C.; Grigorenko, Elena E.; Kistler, Lynn M.; Kuzichev, Ilya V.; Liao, Jing; Maggiolo, Romain; Malova, Helmi V.; Orlova, Ksenia G.; Peroomian, Vahe; Shklyar, David R.; Shprits, Yuri Y.; Welling, Daniel T.; Zelenyi, Lev M.
2014-11-01
Knowledge of the ion composition in the near-Earth's magnetosphere and plasma sheet is essential for the understanding of magnetospheric processes and instabilities. The presence of heavy ions of ionospheric origin in the magnetosphere, in particular oxygen (O+), influences the plasma sheet bulk properties, current sheet (CS) thickness and its structure. It affects reconnection rates and the formation of Kelvin-Helmholtz instabilities. This has profound consequences for the global magnetospheric dynamics, including geomagnetic storms and substorm-like events. The formation and demise of the ring current and the radiation belts are also dependent on the presence of heavy ions. In this review we cover recent advances in observations and models of the circulation of heavy ions in the magnetosphere, considering sources, transport, acceleration, bulk properties, and the influence on the magnetospheric dynamics. We identify important open questions and promising avenues for future research.
NASA Technical Reports Server (NTRS)
Kuznetz, L. H.
1976-01-01
Test data and a mathematical model of the human thermoregulatory system were used to investigate control of thermal balance by means of a liquid circulating garment (LCG). The test data were derived from five series of experiments in which environmental and metabolic conditions were varied parametrically as a function of several independent variables, including LCG flowrate, LCG inlet temperature, net environmental heat exchange, surrounding gas ventilation rate, ambient pressure, metabolic rate, and subjective/obligatory cooling control. The resultant data were used to relate skin temperature to LCG water temperature and flowrate, to assess a thermal comfort band, to demonstrate the relationship between metabolic rate and LCG heat dissipation, and so forth. The usefulness of the mathematical model as a tool for data interpretation and for generation of trends and relationships among the various physiological parameters was also investigated and verified.
Geothermal heating enhances atmospheric asymmetries on synchronously rotating planets
NASA Astrophysics Data System (ADS)
Haqq-Misra, Jacob; Kopparapu, Ravi Kumar
2015-01-01
Earth-like planets within the liquid water habitable zone of M-type stars may evolve into synchronous rotators. On these planets, the substellar hemisphere experiences perpetual daylight while the opposing antistellar hemisphere experiences perpetual darkness. Because the night-side hemisphere has no direct source of energy, the air over this side of the planet is prone to freeze out and deposit on the surface, which could result in atmospheric collapse. However, general circulation models (GCMs) have shown that atmospheric dynamics can counteract this problem and provide sufficient energy transport to the antistellar side. Here, we use an idealized GCM to consider the impact of geothermal heating on the habitability of synchronously rotating planets. Geothermal heating may be expected due to tidal interactions with the host star, and the effects of geothermal heating provide additional habitable surface area and may help to induce melting of ice on the antistellar hemisphere. We also explore the persistence of atmospheric asymmetries between the Northern and Southern hemispheres, and we find that the direction of the meridional circulation (for rapidly rotating planets) or the direction of zonal wind (for slowly rotating planets) reverses on either side of the substellar point. We show that the zonal circulation approaches a theoretical state similar to a Walker circulation only for slowly rotating planets, while rapidly rotating planets show a zonal circulation with the opposite direction. We find that a cross-polar circulation is present in all cases and provides an additional mechanism of mass and energy transport from the substellar to antistellar point. Characterization of the atmospheres of synchronously rotating planets should include consideration of hemispheric differences in meridional circulation and examination of transport due to cross-polar flow.
Could circulating fetuin A be a biomarker of aortic valve stenosis?
Di Minno, Alessandro; Zanobini, Marco; Myasoedova, Veronika A; Valerio, Vincenza; Songia, Paola; Saccocci, Matteo; Di Minno, Matteo Nicola Dario; Tremoli, Elena; Poggio, Paolo
2017-12-15
Aortic valve stenosis (AVS) is a multifactorial-progressive pathological process. In the past decades, many studies have focus their attention on circulating biomarkers able to identify AVS and/or to predict its progression. One of the many biomarkers studied is the fetuin A. The aim of the present meta-analysis was to evaluate the correlation between fetuin A levels and end-stage AVS. A systematic search was performed in three electronic databases (PubMed, Web of Science and Scopus), looking for studies that compared control subjects with AVS patients and that have measured fetuin A circulating levels in both groups. The main outcome was to evaluate the difference in circulating fetuin A concentration in the two groups. Seven studies, enrolling 2283 AVS patients and 1549 controls, were included. Differences between control subjects and AVS patients were expressed as standardized mean difference (SMD) with pertinent 95% confidence intervals (95%CI) and standard deviation (SD), analysing the data using a random effect model. We found significantly lower circulating levels of fetuin A in AVS patients compared to healthy subjects (SMD: -0.96μg/mL, 95% CI: -1.62, -0.30; p=0.004). In addition, meta-regression analyses showed that several cardiovascular risk factors were significantly associated with circulating levels of fetuin A between patients affected by AVS and healthy controls. In conclusion, our meta-analysis shows that AVS patients have significant lower circulating levels of fetuin A compared to control subjects. However, dedicated studies with large and matched cohorts are needed to validate these findings, evaluating if there is a real link or just a mere association. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Cook, Benjamin; Seager, Richard; Miller, R. L.
2010-01-01
We use an early twentieth century (1908-1958) atmospheric reanalysis, based on assimilation of surface and sea level pressure observations, to contrast atmospheric circulation during two periods of persistent drought in North America: 1932-1939 (the Dust Bowl) and 1948-1957. Primary forcing for both droughts is believed to come from anomalous sea surface temperatures (SSTs): a warm Atlantic and a cool eastern tropical Pacific. For boreal winter (October-March) in the 1950s, a stationary wave pattern originating from the tropical Pacific is present, with positive centers over the north Pacific and north Atlantic ocean basins and a negative center positioned over northwest North America and the tropical/subtropical Pacific. This wave train is largely absent for the 1930s drought; boreal winter height anomalies are organized much more zonally, with positive heights extending across northern North America. For boreal summer (April-September) during the 1930s, a strong upper level ridge is centered over the Great Plains; this feature is absent during the 1950s and appears to be linked to a weakening of the Great Plains low-level jet (GPLLJ). Subsidence anomalies are co-located over the centers of each drought: in the central Great Plains for the 1930s and in a band extending from the southwest to the southeastern United States for the 1950s. The location and intensity of this subsidence during the 1948-1957 drought is a typical response to a cold eastern tropical Pacific, but for 1932-1939 deviates in terms of the expected intensity, location, and spatial extent. Overall, circulation anomalies during the 1950s drought appear consistent with the expected response to the observed SST forcing. This is not the case for the 1930s, implying some other causal factor may be needed to explain the Dust Bowl drought anomalies. In addition to SST forcing, the 1930s were also characterized by massive alterations to the land surface, including regional-scale devegetation from crop failures and intensive wind erosion and dust storms. Incorporation of these land surface factors into a general circulation model greatly improves the simulation of precipitation and subsidence anomalies during this drought, relative to simulations with SST forcing alone. Even with additional forcing from the land surface, however, the model still has difficulty reproducing some of the other circulation anomalies, including weakening of the GPLLJ and strengthening of the upper level ridge during AMJJAS. This may be due to either weaknesses in the model or uncertainties in the boundary condition estimates. Still, analysis of the circulation anomalies supports the conclusion of an earlier paper (Cook et al. in Proc Natl Acad Sci 106:4997, 2009), demonstrating that land degradation factors are consistent with the anomalous nature of the Dust Bowl drought.
Aziz, Najib
2015-01-01
Measurement of circulating cytokine levels can provide important information in the study of the pathogenesis of disease. John L. Fahey was a pioneer in the measurement of circulating cytokines and immune-activation markers and a leader in the quality assessment/control of assays for measurement of circulating cytokines. Insights into the measurement of circulating cytokines, including consideration of multiplex assays, are presented here.
Computer Simulation of the Circulation Subsystem of a Library
ERIC Educational Resources Information Center
Shaw, W. M., Jr.
1975-01-01
When circulation data are used as input parameters for a computer simulation of a library's circulation subsystem, the results of the simulation provide information on book availability and delays. The model may be used to simulate alternative loan policies. (Author/LS)
Residual estuarine circulation in the Mandovi, a monsoonal estuary: A three-dimensional model study
NASA Astrophysics Data System (ADS)
Vijith, V.; Shetye, S. R.; Baetens, K.; Luyten, P.; Michael, G. S.
2016-05-01
Observations in the Mandovi estuary, located on the central west coast of India, have shown that the salinity field in this estuary is remarkably time-dependent and passes through all possible states of stratification (riverine, highly-stratified, partially-mixed and well-mixed) during a year as the runoff into the estuary varies from high values (∼1000 m3 s-1) in the wet season to negligible values (∼1 m3 s-1) at end of the dry season. The time-dependence is forced by the Indian Summer Monsoon (ISM) and hence the estuary is referred to as a monsoonal estuary. In this paper, we use a three-dimensional, open source, hydrodynamic, numerical model to reproduce the observed annual salinity field in the Mandovi. We then analyse the model results to define characteristics of residual estuarine circulation in the Mandovi. Our motivation to study this aspect of the Mandovi's dynamics is derived from the following three considerations. First, residual circulation is important to long-term evolution of an estuary; second, we need to understand how this circulation responds to strongly time-dependent runoff forcing experienced by a monsoonal estuary; and third, Mandovi is among the best studied estuaries that come under the influence of ISM, and has observations that can be used to validate the model. Our analysis shows that the residual estuarine circulation in the Mandovi shows four distinct phases during a year: a river like flow that is oriented downstream throughout the estuary; a salt-wedge type circulation, with flow into the estuary near the bottom and out of the estuary near the surface restricted close to the mouth of the estuary; circulation associated with a partially-mixed estuary; and, the circulation associated with a well-mixed estuary. Dimensional analysis of the field of residual circulation helped us to establish the link between strength of residual circulation at a location and magnitude of river runoff and rate of mixing at the location. We then derive an analytical expression that approximates exchange velocity (bottom velocity minus near freshwater velocity at a location) as a function of freshwater velocity and rate of mixing.
NASA Technical Reports Server (NTRS)
Fukumori, Ichiro; Malanotte-Rizzoli, Paola
1995-01-01
A practical method of data assimilation for use with large, nonlinear, ocean general circulation models is explored. A Kalman filter based on approximation of the state error covariance matrix is presented, employing a reduction of the effective model dimension, the error's asymptotic steady state limit, and a time-invariant linearization of the dynamic model for the error integration. The approximations lead to dramatic computational savings in applying estimation theory to large complex systems. We examine the utility of the approximate filter in assimilating different measurement types using a twin experiment of an idealized Gulf Stream. A nonlinear primitive equation model of an unstable east-west jet is studied with a state dimension exceeding 170,000 elements. Assimilation of various pseudomeasurements are examined, including velocity, density, and volume transport at localized arrays and realistic distributions of satellite altimetry and acoustic tomography observations. Results are compared in terms of their effects on the accuracies of the estimation. The approximate filter is shown to outperform an empirical nudging scheme used in a previous study. The examples demonstrate that useful approximate estimation errors can be computed in a practical manner for general circulation models.
Supporting observation campaigns with high resolution modeling
NASA Astrophysics Data System (ADS)
Klocke, Daniel; Brueck, Matthias; Voigt, Aiko
2017-04-01
High resolution simulation in support of measurement campaigns offers a promising and emerging way to create large-scale context for small-scale observations of clouds and precipitation processes. As these simulation include the coupling of measured small-scale processes with the circulation, they also help to integrate the research communities from modeling and observations and allow for detailed model evaluations against dedicated observations. In connection with the measurement campaign NARVAL (August 2016 and December 2013) simulations with a grid-spacing of 2.5 km for the tropical Atlantic region (9000x3300 km), with local refinement to 1.2 km for the western part of the domain, were performed using the icosahedral non-hydrostatic (ICON) general circulation model. These simulations are again used to drive large eddy resolving simulations with the same model for selected days in the high definition clouds and precipitation for advancing climate prediction (HD(CP)2) project. The simulations are presented with the focus on selected results showing the benefit for the scientific communities doing atmospheric measurements and numerical modeling of climate and weather. Additionally, an outlook will be given on how similar simulations will support the NAWDEX measurement campaign in the North Atlantic and AC3 measurement campaign in the Arctic.
NASA Astrophysics Data System (ADS)
Fukumori, Ichiro; Malanotte-Rizzoli, Paola
1995-04-01
A practical method of data assimilation for use with large, nonlinear, ocean general circulation models is explored. A Kaiman filter based on approximations of the state error covariance matrix is presented, employing a reduction of the effective model dimension, the error's asymptotic steady state limit, and a time-invariant linearization of the dynamic model for the error integration. The approximations lead to dramatic computational savings in applying estimation theory to large complex systems. We examine the utility of the approximate filter in assimilating different measurement types using a twin experiment of an idealized Gulf Stream. A nonlinear primitive equation model of an unstable east-west jet is studied with a state dimension exceeding 170,000 elements. Assimilation of various pseudomeasurements are examined, including velocity, density, and volume transport at localized arrays and realistic distributions of satellite altimetry and acoustic tomography observations. Results are compared in terms of their effects on the accuracies of the estimation. The approximate filter is shown to outperform an empirical nudging scheme used in a previous study. The examples demonstrate that useful approximate estimation errors can be computed in a practical manner for general circulation models.
The Aqua-planet Experiment (APE): Response to Changed Meridional SST Profile
NASA Technical Reports Server (NTRS)
Williamson, David L.; Blackburn, Michael; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut;
2013-01-01
This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea- ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double structure off the equator, keeping the minimum over the maximum SST. In both situations only modest changes appear in the shifted profile of zonal average precipitation. When the upward branch of the Hadley circulation moves into the hemisphere with SST maximum, the zonal average zonal, meridional and vertical winds all indicate that the Hadley cell in the other hemisphere dominates.
The Role of Gravity Waves in Generating Equatorial Oscillations in Modulating Atmospheric Tides
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Reddy, C. A.
1999-01-01
We discuss a Numerical Spectral Mode (NSM) that extends from the ground up into the thermosphere and incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations in the mean zonal circulation, the semi-annual and quasi-biennial oscillations (SAO and QBO), as well as the tides and planetary waves in the middle atmosphere. Initial results showed that this model can reproduce the salient features observed, including the QBO extending into the upper mesosphere inferred from UARS measurements. The model has now been extended to simulate also: (a) the zonal circulation of the lower stratosphere and upper troposphere, and (b) the upwelling at equatorial latitudes associated with the Brewer Dobsen circulation that affects the dynamics significantly as pointed out by Dunkerton. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase in the model the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. This development is conducive to extending the QBO and SAO to higher latitudes through global scale momentum redistribution. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. In a 3D version of the model, wave momentum is absorbed and dissipated by tides and planetary waves. A somewhat larger GW source (well within the DSP range) is then required to generate realistic QBO and SAO amplitudes. Since GW momentum is deposited in the altitude regime of increasing winds, the amplitude of the diurnal tide is amplified and its vertical wavelength is reduced at altitudes between 70 and 120 km. Wave filtering by the mean zonal circulation causes the GW flux to peak during equinox, and this produces a large semi-annual variation in the tide that has been observed on UARS. Without the diurnal tide, the semidiurnal tide would also be modulated in this way. But the diurnal tide filters out the GW preferentially during equinox, so that the semidiurnal tide tends to peak during solstice. Under the influence of GW, the tides are modulated significantly by planetary waves that are generated preferentially during solstice in part due to baroclinic instability.
NASA Technical Reports Server (NTRS)
Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.
1993-01-01
New land-surface hydrologic parameterizations are implemented into the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: 1) runoff and evapotranspiration functions that include the effects of subgrid-scale spatial variability and use physically based equations of hydrologic flux at the soil surface and 2) a realistic soil moisture diffusion scheme for the movement of water and root sink in the soil column. A one-dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three-dimensional GCM. Results of the final simulation with the GISS GCM and the new land-surface hydrology indicate that the runoff rate, especially in the tropics, is significantly improved. As a result, the remaining components of the heat and moisture balance show similar improvements when compared to observations. The validation of model results is carried from the large global (ocean and land-surface) scale to the zonal, continental, and finally the regional river basin scales.
NASA Astrophysics Data System (ADS)
Bruehl, C.; Schallock, J.; Lelieveld, J.; Bingen, C.; Robert, C. E.; Hoepfner, M.; Clarisse, L.
2017-12-01
The atmospheric chemistry - general circulation model EMAC with a modal interactive aerosol module is used to estimate radiative effects of UTLS aerosol for the ENVISAT period 2002 to 2012 in the framework of SPARC/SSIRC. Volcanic SO2 injections by about 230 explosive volcano eruptions are estimated mostly from MIPAS limb observations. For periods of data gaps, injected SO2 is estimated indirectly from extinctions observed by GOMOS. GOMOS extinctions in the UTLS and the seasonal component of radiative forcing can be only reproduced by the model if a comprehensive treatment of desert dust and organic and black carbon is included. Upward transport of particles and gases by the Asian Monsoon appears to contribute importantly. The time series of simulated stratospheric aerosol optical depth and radiative forcing agree with the corresponding quantities derived from different satellite data sets. Comparisons of total aerosol optical depth with IASI show that tropospheric and stratospheric aerosol in the model are consistently and realistically represented.
Circulation Systems on Microcomputers.
ERIC Educational Resources Information Center
Carlson, Gary
1984-01-01
Reports on the use of microcomputers in comprehensive library circulation systems. Topics covered include system requirements (reliability, completeness); determining circulation system needs (saving money, improving service, modernization); limitations of microcomputers (capacity, kinds of data stored, number of stations or terminals); system…
Ayers, Lisa; Nieuwland, Rienk; Kohler, Malcolm; Kraenkel, Nicolle; Ferry, Berne; Leeson, Paul
2015-12-01
Interest in cell-derived microvesicles (or microparticles) within cardiovascular diagnostics and therapeutics is rapidly growing. Microvesicles are often measured in the circulation at a single time point. However, it is becoming clear that microvesicle levels both increase and decrease rapidly in response to certain stimuli such as hypoxia, acute cardiac stress, shear stress, hypertriglyceridaemia and inflammation. Consequently, the levels of circulating microvesicles will reflect the balance between dynamic mechanisms for release and clearance. The present review describes the range of triggers currently known to lead to microvesicle release from different cellular origins into the circulation. Specifically, the published data are used to summarize the dynamic impact of these triggers on the degree and rate of microvesicle release. Secondly, a summary of the current understanding of microvesicle clearance via different cellular systems, including the endothelial cell and macrophage, is presented, based on reported studies of clearance in experimental models and clinical scenarios, such as transfusion or cardiac stress. Together, this information can be used to provide insights into potential underlying biological mechanisms that might explain the increases or decreases in circulating microvesicle levels that have been reported and help to design future clinical studies. © 2015 Authors; published by Portland Press Limited.
Superconductor rotor cooling system
Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.
2004-11-02
A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.
Superconductor rotor cooling system
Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.
2002-01-01
A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.
2010-05-01
circulation from December 2003 to June 2008 . The model is driven by tidal harmonics, realistic atmospheric forcing, and dynamically consistent initial and open...important element of the regional circulation (He and Wilkin 2006). We applied the method of Mellor and Yamada (1982) to compute vertical turbulent...shelfbreak ROMS hindcast ran continuously from December 2003 through January 2008 . Initial conditions were taken from the MABGOM ROMS simulation on 1
Effects of artificial gravity on the cardiovascular system: Computational approach
NASA Astrophysics Data System (ADS)
Diaz Artiles, Ana; Heldt, Thomas; Young, Laurence R.
2016-09-01
Artificial gravity has been suggested as a multisystem countermeasure against the negative effects of weightlessness. However, many questions regarding the appropriate configuration are still unanswered, including optimal g-level, angular velocity, gravity gradient, and exercise protocol. Mathematical models can provide unique insight into these questions, particularly when experimental data is very expensive or difficult to obtain. In this research effort, a cardiovascular lumped-parameter model is developed to simulate the short-term transient hemodynamic response to artificial gravity exposure combined with ergometer exercise, using a bicycle mounted on a short-radius centrifuge. The model is thoroughly described and preliminary simulations are conducted to show the model capabilities and potential applications. The model consists of 21 compartments (including systemic circulation, pulmonary circulation, and a cardiac model), and it also includes the rapid cardiovascular control systems (arterial baroreflex and cardiopulmonary reflex). In addition, the pressure gradient resulting from short-radius centrifugation is captured in the model using hydrostatic pressure sources located at each compartment. The model also includes the cardiovascular effects resulting from exercise such as the muscle pump effect. An initial set of artificial gravity simulations were implemented using the Massachusetts Institute of Technology (MIT) Compact-Radius Centrifuge (CRC) configuration. Three centripetal acceleration (artificial gravity) levels were chosen: 1 g, 1.2 g, and 1.4 g, referenced to the subject's feet. Each simulation lasted 15.5 minutes and included a baseline period, the spin-up process, the ergometer exercise period (5 minutes of ergometer exercise at 30 W with a simulated pedal cadence of 60 RPM), and the spin-down process. Results showed that the cardiovascular model is able to predict the cardiovascular dynamics during gravity changes, as well as the expected steady-state cardiovascular behavior during sustained artificial gravity and exercise. Further validation of the model was performed using experimental data from the combined exercise and artificial gravity experiments conducted on the MIT CRC, and these results will be presented separately in future publications. This unique computational framework can be used to simulate a variety of centrifuge configuration and exercise intensities to improve understanding and inform decisions about future implementation of artificial gravity in space.
Deep water characteristics and circulation in the South China Sea
NASA Astrophysics Data System (ADS)
Wang, Aimei; Du, Yan; Peng, Shiqiu; Liu, Kexiu; Huang, Rui Xin
2018-04-01
This study investigates the deep circulation in the South China Sea (SCS) using oceanographic observations combined with results from a bottom layer reduced gravity model. The SCS water, 2000 m below the surface, is quite different from that in the adjacent Pacific Ocean, and it is characterized by its low dissolved oxygen (DO), high temperature and low salinity. The horizontal distribution of deep water properties indicates a basin-scale cyclonic circulation driven by the Luzon overflow. The results of the bottom layer reduced gravity model are consistent with the existence of the cyclonic circulation in the deep SCS. The circulation is stronger at the northern/western boundary. After overflowing the sill of the Luzon Strait, the deep water moves broadly southwestward, constrained by the 3500 m isobath. The broadening of the southward flow is induced by the downwelling velocity in the interior of the deep basin. The main deep circulation bifurcates into two branches after the Zhongsha Islands. The southward branch continues flowing along the 3500 m isobath, and the eastward branch forms the sub-basin scale cyclonic circulation around the seamounts in the central deep SCS. The returning flow along the east boundary is fairly weak. The numerical experiments of the bottom layer reduced gravity model reveal the important roles of topography, bottom friction, and the upwelling/downwelling pattern in controlling the spatial structure, particularly the strong, deep western boundary current.
Circulating DNA and its methylation level in inflammatory bowel disease and related colon cancer.
Bai, Xuming; Zhu, Yaqun; Pu, Wangyang; Xiao, Li; Li, Kai; Xing, Chungen; Jin, Yong
2015-01-01
Both of chronic inflammation and abnormal immune in inflammatory bowel disease can induce colon cancer. Previous research showed that cell apoptosis and necrosis become the main source of circulating DNA in the peripheral blood during tumorigenesis that reduced along with methylation degree. However, its role in the process of colitis transforming to colon cancer is not clarified. Drinking 3% DSS was used to establish colitis model, while 3% dextran sodium sulfate (DSS) combined with azo oxidation methane (AOM) intraperitoneal injection was applied to establish colitis related colon cancer model. Circulating DNA and its methylation level in peripheral blood were tested. Morphology observation, HE staining, and p53 and β-catenin expression detection confirmed that drinking 3% DSS and 3% DSS combined with AOM intraperitoneal injection can successfully establish colitis and colitis associated colorectal cancer models. Circulating DNA level in colitis and colon cancer mice increased by gradient compared with control, while significant difference was observed between each other. Circulating DNA methylation level decreased obviously in colitis and colon cancer, and significant difference was observed between each other. Abnormal protein expression, circulating DNA and its methylation level in ulcerative colitis associated colorectal tissues change in gradient, suggesting that circulating DNA and its methylation level can be treated as new markers for colitis cancer transformation that has certain significance to explore the mechanism of human ulcerative colitis canceration.
GCM Simulation of the Large-Scale North American Monsoon Including Water Vapor Tracer Diagnostics
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)
2002-01-01
The geographic sources of water for the large scale North American monsoon in a GCM (General Circulation Model) are diagnosed using passive constituent tracers of regional water sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American Monsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of monsoonal precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.
Chen, Tao; Lian, Guoping; Kattou, Panayiotis
2016-07-01
The purpose was to develop a mechanistic mathematical model for predicting the pharmacokinetics of topically applied solutes penetrating through the skin and into the blood circulation. The model could be used to support the design of transdermal drug delivery systems and skin care products, and risk assessment of occupational or consumer exposure. A recently reported skin penetration model [Pharm Res 32 (2015) 1779] was integrated with the kinetic equations for dermis-to-capillary transport and systemic circulation. All model parameters were determined separately from the molecular, microscopic and physiological bases, without fitting to the in vivo data to be predicted. Published clinical studies of nicotine were used for model demonstration. The predicted plasma kinetics is in good agreement with observed clinical data. The simulated two-dimensional concentration profile in the stratum corneum vividly illustrates the local sub-cellular disposition kinetics, including tortuous lipid pathway for diffusion and the "reservoir" effect of the corneocytes. A mechanistic model for predicting transdermal and systemic kinetics was developed and demonstrated with published clinical data. The integrated mechanistic approach has significantly extended the applicability of a recently reported microscopic skin penetration model by providing prediction of solute concentration in the blood.
Kohara, Marina; Masuda, Takahiro; Shiizaki, Kazuhiro; Akimoto, Tetsu; Watanabe, Yuko; Honma, Sumiko; Sekiguchi, Chuji; Miyazawa, Yasuharu; Kusano, Eiji; Kanda, Yoshinobu; Asano, Yasushi; Kuro-O, Makoto; Nagata, Daisuke
2017-01-01
Fibroblast growth factor 21 (FGF21) is an endocrine factor that regulates glucose and lipid metabolism. Circulating FGF21 predicts cardiovascular events and mortality in type 2 diabetes mellitus, including early-stage chronic kidney disease, but its impact on clinical outcomes in end-stage renal disease (ESRD) patients remains unclear. This study enrolled 90 ESRD patients receiving chronic hemodialysis who were categorized into low- and high-FGF21 groups by the median value. We investigated the association between circulating FGF21 levels and the cardiovascular event and mortality during a median follow-up period of 64 months. A Kaplan-Meier analysis showed that the mortality rate was significantly higher in the high-FGF21 group than in the low-FGF21 group (28.3% vs. 9.1%, log-rank, P = 0.034), while the rate of cardiovascular events did not significantly differ between the two groups (30.4% vs. 22.7%, log-rank, P = 0.312). In multivariable Cox models adjusted a high FGF21 level was an independent predictor of all-cause mortality (hazard ratio: 3.98; 95% confidence interval: 1.39-14.27, P = 0.009). Higher circulating FGF21 levels were associated with a high mortality rate, but not cardiovascular events in patient with ESRD, suggesting that circulating FGF21 levels serve as a predictive marker for mortality in these subjects.
ERIC Educational Resources Information Center
Lee, Shinyoung; Kim, Heui-Baik
2014-01-01
The purpose of this study is to identify the epistemological features and model qualities depending on model evaluation levels and to explore the reasoning process behind high-level evaluation through small group interaction about blood circulation. Nine groups of three to four students in the eighth grade participated in the modeling practice.…
Observations and Modeling of the Transient General Circulation of the North Pacific Basin
NASA Technical Reports Server (NTRS)
McWilliams, James C.
2000-01-01
Because of recent progress in satellite altimetry and numerical modeling and the accumulation and archiving of long records of hydrographic and meteorological variables, it is becoming feasible to describe and understand the transient general circulation of the ocean (i.e., variations with spatial scales larger than a few hundred kilometers and time scales of seasonal and longer-beyond the mesoscale). We have carried out various studies in investigation of the transient general circulation of the Pacific Ocean from a coordinated analysis of satellite altimeter data, historical hydrographic gauge data, scatterometer wind observations, reanalyzed operational wind fields, and a variety of ocean circulation models. Broadly stated, our goal was to achieve a phenomenological catalogue of different possible types of large-scale, low-frequency variability, as a context for understanding the observational record. The approach is to identify the simplest possible model from which particular observed phenomena can be isolated and understood dynamically and then to determine how well these dynamical processes are represented in more complex Oceanic General Circulation Models (OGCMs). Research results have been obtained on Rossby wave propagation and transformation, oceanic intrinsic low-frequency variability, effects of surface gravity waves, pacific data analyses, OGCM formulation and developments, and OGCM simulations of forced variability.
Evaluation of Heating Methods for Thermal Structural Testing of Large Structures
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Sikora, Joseph G.; Caldwell, Darrell L., Jr.
1998-01-01
An experimental study was conducted to evaluate different heating methods for thermal structural testing of large scale structures at temperatures up to 350 F as part of the High Speed Research program. The heating techniques evaluated included: radiative/convective, forced convective, and conductive. The radiative/convective heaters included finned strip heaters, and clear and frosted quartz lamps. The forced convective heating was accomplished by closed loop circulation of heated air. The conductive heater consisted of heating blankets. The tests were conducted on an 1/8 inch thick stainless steel plate in a custom-built oven. The criteria used for comparing the different heating methods included test specimen temperature uniformity, heater response time, and consumed power. The parameters investigated included air circulation in the oven, reflectance of oven walls, and the orientation of the test specimen and heaters (vertical and horizontal). It was found that reflectance of oven walls was not an important parameter. Air circulation was necessary to obtain uniform temperatures only for the vertically oriented specimen. Heating blankets provided unacceptably high temperature non-uniformities. Quartz lamps with internal air circulation had the lowest power consumption levels. Using frosted quartz lamps with closed loop circulation of cool air, and closed loop circulation of heated air provided the fastest response time.
Magnetic Flux Circulation During Dawn-Dusk Oriented Interplanetary Magnetic Field
NASA Technical Reports Server (NTRS)
Mitchell, E. J.; Lopez, R. E.; Fok, M.-C.; Deng, Y.; Wiltberger, M.; Lyon, J.
2010-01-01
Magnetic flux circulation is a primary mode of energy transfer from the solar wind into the ionosphere and inner magnetosphere. For southward interplanetary magnetic field (IMF), magnetic flux circulation is described by the Dungey cycle (dayside merging, night side reconnection, and magnetospheric convection), and both the ionosphere and inner magnetosphere receive energy. For dawn-dusk oriented IMF, magnetic flux circulation is not well understood, and the inner magnetosphere does not receive energy. Several models have been suggested for possible reconnection patterns; the general pattern is: dayside merging; reconnection on the dayside or along the dawn/dusk regions; and, return flow on dayside only. These models are consistent with the lack of energy in the inner magnetosphere. We will present evidence that the Dungey cycle does not explain the energy transfer during dawn-dusk oriented IMF. We will also present evidence of how magnetic flux does circulate during dawn-dusk oriented IMF, specifically how the magnetic flux reconnects and circulates back.
Seasonal Overturning Circulation in the Red Sea
NASA Astrophysics Data System (ADS)
Yao, F.; Hoteit, I.; Koehl, A.
2010-12-01
The Red Sea exhibits a distinct seasonal overturning circulation. In winter, a typical two-layer exchange structure, with a fresher inflow from the Gulf of Aden on top of an outflow from the Red Sea, is established. In summer months (June to September) this circulation pattern is changed to a three-layer structure: a surface outflow from the Red Sea on top of a subsurface intrusion of the Gulf of Aden Intermediate Water and a weakened deep outflow. This seasonal variability is studied using a general circulation model, MITgcm, with 6 hourly NCEP atmospheric forcing. The model is able to reproduce the observed seasonal variability very well. The forcing mechanisms of the seasonal variability related to seasonal surface wind stress and buoyancy flux, and water mass transformation processes associated with the seasonal overturning circulation are analyzed and presented.
The Twist Tensor Nuclear Norm for Video Completion.
Hu, Wenrui; Tao, Dacheng; Zhang, Wensheng; Xie, Yuan; Yang, Yehui
2017-12-01
In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.
Vivas, M; Silveira, S F; Viana, A P; Amaral, A T; Cardoso, D L; Pereira, M G
2014-07-02
Diallel crossing methods provide information regarding the performance of genitors between themselves and their hybrid combinations. However, with a large number of parents, the number of hybrid combinations that can be obtained and evaluated become limited. One option regarding the number of parents involved is the adoption of circulant diallels. However, information is lacking regarding diallel analysis using mixed models. This study aimed to evaluate the efficacy of the method of linear mixed models to estimate, for variable resistance to foliar fungal diseases, components of general and specific combining ability in a circulant table with different s values. Subsequently, 50 diallels were simulated for each s value, and the correlations and estimates of the combining abilities of the different diallel combinations were analyzed. The circulant diallel method using mixed modeling was effective in the classification of genitors regarding their combining abilities relative to the complete diallels. The numbers of crosses in which each genitor(s) will compose the circulant diallel and the estimated heritability affect the combining ability estimates. With three crosses per parent, it is possible to obtain good concordance (correlation above 0.8) between the combining ability estimates.
NASA Technical Reports Server (NTRS)
Li, Feng; Stolarski, Richard S.; Pawson, Steven; Newman, Paul A.; Waugh, Darryn
2010-01-01
Changes in the width of the upwelling branch of the Brewer-Dobson circulation and Hadley cell in the 21st Century are investigated using simulations from a coupled chemistry-climate model. In these model simulations the tropical upwelling region narrows in the troposphere and lower stratosphere. The narrowing of the Brewer-Dobson circulation is caused by an equatorward shift of Rossby wave critical latitudes and Eliassen-Palm flux convergence in the subtropical lower stratosphere. In the troposphere, the model projects an expansion of the Hadley cell's poleward boundary, but a narrowing of the Hadley rising branch. Model results suggest that the narrowing of the Hadley cell ascent is also eddy-driven.
Adhikari, Dinesh; Jiang, Tianyi; Kawagoe, Taiki; Kai, Takamitsu; Kubota, Kenzo; Araki, Kiwako S; Kubo, Motoki
2017-12-04
Improvement of phosphorus circulation in the soil is necessary to enhance phosphorus availability to plants. Phosphorus circulation activity is an index of soil's ability to supply soluble phosphorus from organic phosphorus in the soil solution. To understand the relationship among phosphorus circulation activity; bacterial biomass; pH; and Fe, Al, and Ca concentrations (described as mineral concentration in this paper) in agricultural soil, 232 soil samples from various agricultural fields were collected and analyzed. A weak relationship between phosphorus circulation activity and bacterial biomass was observed in all soil samples ( R ² = 0.25), and this relationship became significantly stronger at near-neutral pH (6.0-7.3; R ² = 0.67). No relationship between phosphorus circulation activity and bacterial biomass was observed at acidic (pH < 6.0) or alkaline (pH > 7.3) pH. A negative correlation between Fe and Al concentrations and phosphorus circulation activity was observed at acidic pH ( R ² = 0.72 and 0.73, respectively), as well as for Ca at alkaline pH ( R ² = 0.64). Therefore, bacterial biomass, pH, and mineral concentration should be considered together for activation of phosphorus circulation activity in the soil. A relationship model was proposed based on the effects of bacterial biomass and mineral concentration on phosphorus circulation activity. The suitable conditions of bacterial biomass, pH, and mineral concentration for phosphorus circulation activity could be estimated from the relationship model.
NASA Technical Reports Server (NTRS)
Roble, R. G.; Killeen, T. L.; Spencer, N. W.; Heelis, R. A.; Reiff, P. H.
1988-01-01
Time-dependent aurora and magnetospheric convection parameterizations have been derived from solar wind and aurora particle data for November 21-22, 1981, and are used to drive the auroral and magnetospheric convection models that are embedded in the National Center for Atmospheric Research thermospheric general circulation model (TGCM). Neutral wind speeds and transition boundaries between the midlatitude solar-driven circulation and the high-latitude magnetospheric convection-driven circulation are examined on an orbit-by-orbit basis. The results show that TGCM-calculated winds and reversal boundary locations are in generally good agreement with Dynamics Explorer 2 measurements for the orbits studied. This suggests that, at least for this particular period of relatively moderate geomagnetic activity, the TGCM parameterizations on the eveningside of the auroral oval and polar cap are adequate.
Parameterized and resolved Southern Ocean eddy compensation
NASA Astrophysics Data System (ADS)
Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman
2018-04-01
The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.
NASA Astrophysics Data System (ADS)
Ramp, Steven R.; Lermusiaux, Pierre F. J.; Shulman, Igor; Chao, Yi; Wolf, Rebecca E.; Bahr, Frederick L.
2011-09-01
A comprehensive data set from the ocean and atmosphere was obtained just north of the Monterey Bay as part of the Monterey Bay 2006 (MB06) field experiment. The wind stress, heat fluxes, and sea surface temperature were sampled by the Naval Postgraduate School's TWIN OTTER research aircraft. In situ data were collected using ships, moorings, gliders and AUVs. Four data-assimilating numerical models were additionally run, including the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS ®) model for the atmosphere and the Harvard Ocean Prediction System (HOPS), the Regional Ocean Modeling System (ROMS), and the Navy Coastal Ocean Model (NCOM) for the ocean. The scientific focus of the Adaptive Sampling and Prediction Experiment (ASAP) was on the upwelling/relaxation cycle and the resulting three-dimensional coastal circulation near a coastal promontory, in this case Point Año Nuevo, CA. The emphasis of this study is on the circulation over the continental shelf as estimated from the wind forcing, two ADCP moorings, and model outputs. The wind stress during August 2006 consisted of 3-10 day upwelling favorable events separated by brief 1-3 day relaxations. During the first two weeks there was some correlation between local winds and currents and the three models' capability to reproduce the events. During the last two weeks, largely equatorward surface wind stress forced the sea surface and barotropic poleward flow occurred over the shelf, reducing model skill at predicting the circulation. The poleward flow was apparently remotely forced by mesoscale eddies and alongshore pressure gradients, which were not well simulated by the models. The small, high-resolution model domains were highly reliant on correct open boundary conditions to drive these larger-scale poleward flows. Multiply-nested models were no more effective than well-initialized local models in this respect.
NASA Technical Reports Server (NTRS)
Peterson, Thomas C.; Barnett, Tim P.; Roeckner, Erich; Vonder Haar, Thomas H.
1992-01-01
The relationship between the sea surface temperature anomalies (SSTAs) and the anomalies of the monthly mean cloud cover (including the high-level, low-level, and total cloud cover), the outgoing longwave radiation, and the reflected solar radiation was analyzed using a least absolute deviations regression at each grid point over the open ocean for a 6-yr period. The results indicate that cloud change in association with a local 1-C increase in SSTAs cannot be used to predict clouds in a potential future world where all the oceans are 1-C warmer than at present, because much of the observed cloud changes are due to circulation changes, which in turn are related not only to changes in SSTAs but to changes in SSTA gradients. However, because SSTAs are associated with changes in the local ocean-atmosphere moisture and heat fluxes as well as significant changes in circulation (such as ENSO), SSTAs can serve as a surrogate for many aspects of global climate change.
The influence of topography on Titan’s atmospheric circulation and hydrologic cycle
NASA Astrophysics Data System (ADS)
Lora, Juan M.; Faulk, Sean; Mitchell, Jonathan
2017-10-01
Titan’s atmospheric circulation is a dominant driver of the global methane hydrologic cycle—producing weather and a seasonal climate cycle—while interactions between the surface and the troposphere strongly constrain regional climates, and contribute to the differentiation between Titan’s low latitude deserts and high latitude lake districts. Yet the influence of surface topography on the atmospheric circulation has only been studied in a few instances, and no published work has investigated the coupling between topographical forcing and Titan’s hydrologic cycle. In this work, we examine the impacts of global topography in the Titan Atmospheric Model (TAM), which includes a robust representation of the methane cycle. We focus in particular on the influence of large-scale topographical features on the atmospheric flow, atmospheric moisture transport, and cloud formation. High latitude transient weather systems have previously been identified as important contributors to global atmospheric methane transport, and here we examine whether topographically-forced stationary or quasi-permanent systems are also important, as they are in Earth’s hydrologic cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, B.; Schneider, E.K.
1995-10-01
Two surface wind stress datasets for 1979-91, one based on observations and the other from an investigation of the COLA atmospheric general circulation model (AGCM) with prescribed SST, are used to drive the GFDL ocean general circulation model. These two runs are referred to as the control and COLA experiments, respectively. Simulated SST and upper-ocean heat contents (HC) in the tropical Pacific Ocean are compared with observations and between experiments. Both simulation reproduced the observed mean SST and HC fields as well as their annual cycles realistically. Major errors common to both runs are colder than observed SST in themore » eastern equatorial ocean and HC in the western Pacific south of the equator, with errors generally larger in the COLA experiment. New errors arising from the AGCM wind forcing include higher SST near the South American coast throughout the year and weaker HC gradients along the equator in boreal spring. The former is associated with suppressed coastal upwelling by weak along shore AGCM winds, and the latter is caused by weaker equatorial easterlies in boreal spring. The low-frequency ENSO fluctuations are also realistic for both runs. Correlations between the observed and simulated SST anomalies from the COLA simulation are as high as those from the control run in the central equatorial Pacific. A major problem in the COLA simulation is the appearance of unrealistic tropical cold anomalies during the boreal spring of mature El Nino years. These anomalies propagate along the equator from the western Pacific to the eastern coast in about three months, and temporarily eliminate the warm SST and HC anomalies in the eastern Pacific. This erroneous oceanic response in the COLA simulation is caused by a reversal of the westerly wind anomalies on the equator, associated with an unrealistic southward shift of the ITCZ in boreal spring during El Nino events. 66 refs., 16 figs.« less
NASA Astrophysics Data System (ADS)
Hwang, Jin Hwan; Pham, Van Sy
2017-04-01
The Big-Brother Experiment (BBE) evaluates the effect of domain size on the ocean regional circulation model (ORCMs) in the downscaling and nesting from the ocean global circulation (OGCMs). The BBE first establishes a mimic ocean global circulation models (M-OGCMs) data and employs a ORCM to simulate for a highly resolved large domain. This M-OGCM's results were then filtered to remove short scales then used for boundary and initial conditions of the nested ORCMs, which have the same resolution to the M-OGCMs. The various sizes of domain were embedded in the M-OGCMs and the cases were simulated to see the effect of domain size with the extra buffering distance to the results of the ORCMs. The diagnostic variables including temperature, salinity and vorticity of the nested domain are then compared with those of the M-OGCMs before filtering. Differences between them can address the errors associating with the sizes of the domain, which are not attributed unambiguously to models errors or observational errors. The results showed that domain size significantly impacts on the results of ORCMs. As the domain size of the ORCM becomes lager, the distance of the extra space between the area of interest and the updated LBCs increases. So, the results of ORCMs perform more highly correlated with the M-OGCM. But, there are a certain optimal sizes of the OGCMs, which could be larger than nested ORCMs' domain size from 2 to 10 times, depending on the computational costs. Key words: domain size, error, ocean regional circulation model, Big-Brother Experiment. Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled "Development of integrated estuarine management system" and a National Research Foundation of Korea (NRF) Grant (No. 2015R1A5A 7037372) funded by MSIP of Korea. The authors thank the Integrated Research Institute of Construction and Environmental Engineering of Seoul National University for administrative support.
NASA Technical Reports Server (NTRS)
Branscome, Lee E.; Bleck, Rainer; Obrien, Enda
1990-01-01
The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial conditions typical of climatological winter conditions, they examined the behavior of synoptic and planetary waves growing in moist and dry environments. Surface conditions were representative of a zonally averaged ocean. They found that moist convection associated with baroclinic wave development was confined to the subtropics.
Lifecycle of South America Monsoon System Simulated by the Regional Eta Model
NASA Astrophysics Data System (ADS)
Cavalcanti, I. F.; Raia, A.; Chou, S. C.; Silveira, V. P.
2017-12-01
The SAMS comprises a set of features over South America that includes the rainy season over large areas of the continent, typical atmospheric circulation and humidity fluxes characteristics and occurrences of the South Atlantic Convergence Zone. The onset and duration of these characteristics are important to several economic sectors, such as Agriculture and Hydropower. Droughts during the summer season, as the 2014 and 2015 cases, or onset delays can affect these sectors. Predictions of the SAMS onset and duration can contribute to management actions. The Eta Regional model represents well the precipitation difference between summer and winter and the related atmospheric circulation differences over South America. Therefore the objective of this study is to analyze the lifecycle of the SAMS simulated by the Eta model to evaluate first the behaviour compared to observations and to further use as a tool to prediction of onset and duration. There are several methods to analyze the lifecycle of the monsoon and here the criterion is based on vertical integrated zonal moisture flux in the monsoon core, which is located at southern Amazonia. The climate simulation was performed with the Eta model using the HadGEM2_ES model, from CMIP5, as lateral boundary condition. The period of analyses is 1980 to 2005. The model results are compared to ERA-Interim reanalysis and GPCP precipitation dataset. The results show the interannual lifecycles and the average for the whole period, as well as the annual cycle of zonal wind, precipitation, temperature and specific humidity. Spatial maps of humidity convergence, atmospheric circulation at low and high levels indicate the changes during the onset and demise.
Modeling the QBO and SAO Driven by Gravity Waves
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.
1999-01-01
Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW) is applied in a global scale numerical spectral model (NSM) to describe the semi-annual and quasi-biennial oscillations (SAO and QBO) as well as the long term interannual variations that are driven by wave mean flow interactions. This model has been successful in simulating the salient features observed near the equator at altitudes above 20 km, including the QBO extension into the upper mesosphere inferred from UARS measurements. The model has now been extended to describe also the mean zonal and meridional circulations of the upper troposphere and lower stratosphere that affect the equatorial QBO and its global scale extension. This is accomplished in part through tuning of the GW parameterization, and preliminary results lead to the following conclusions: (1) To reproduce the upwelling at equatorial latitudes associated with the Brewer/Dobson circulation that in part is modulated in the model by the vertical component of the Coriolis force, the eddy diffusivity in the lower stratosphere had to be enhanced and the related GW spectrum modified to bring it in closer agreement with the form recommended for the DSP. (2) To compensate for the required increase in the diffusivity, the observed QBO requires a larger GW source that is closer to the middle of the range recommended for the DSP. (3) Through global scale momentum redistribution, the above developments are conducive to extending the QBO and SAO oscillations to higher latitudes. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. (4) In a 3D version of the model, wave momentum is absorbed and dissipated by tides and planetary waves. Thus, a somewhat larger GW source is required to generate realistic amplitudes for the QBO and SAO.
Jarvis, Mark W.; Olstad, Jessica; Parent, Yves; ...
2018-01-02
We investigate and quantitate the changes in hydrocarbon product composition while evaluating the performance and operability of the National Renewable Energy Laboratory's Davison Circulating Riser (DCR) reactor system when biomass model compounds are cofed with traditional fluid catalyst cracking (FCC) feeds and catalyst: vacuum gas oil (VGO) and equilibrium zeolite catalyst (E-Cat). Three compounds (acetic acid, guaiacol, and sorbitan monooleate) were selected to represent the major classes of oxygenates present in biomass pyrolysis vapors. These vapors can contain 30-50% oxygen as oxygenates, which create conversion complications (increased reactivity and coking) when integrating biomass vapors and liquids into fuel and chemicalmore » processes long dominated by petroleum feedstocks. We used these model compounds to determine the appropriate conditions for coprocessing with petroleum and ultimately pure pyrolysis vapors only as compared with standard baseline conditions obtained with VGO and E-Cat only in the DCR. Model compound addition decreased the DCR catalyst circulation rate, which controls reactor temperature and measures reaction heat demand, while increasing catalyst coking rates. Liquid product analyses included 2-dimensional gas chromatography time-of-flight mass spectroscopy (2D GCxGC TOFS), simulated distillation (SIM DIST), 13C NMR, and carbonyl content. Aggregated results indicated that the model compounds were converted during reaction, and despite functional group differences, product distributions for each model compound were very similar. In addition, we determined that adding model compounds to the VGO feed did not significantly affect the DCR's operability or performance. Future work will assess catalytic upgrading of biomass pyrolysis vapor to fungible hydrocarbon products using upgrading catalysts currently being developed at NREL and at Johnson Matthey.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, Mark W.; Olstad, Jessica; Parent, Yves
We investigate and quantitate the changes in hydrocarbon product composition while evaluating the performance and operability of the National Renewable Energy Laboratory's Davison Circulating Riser (DCR) reactor system when biomass model compounds are cofed with traditional fluid catalyst cracking (FCC) feeds and catalyst: vacuum gas oil (VGO) and equilibrium zeolite catalyst (E-Cat). Three compounds (acetic acid, guaiacol, and sorbitan monooleate) were selected to represent the major classes of oxygenates present in biomass pyrolysis vapors. These vapors can contain 30-50% oxygen as oxygenates, which create conversion complications (increased reactivity and coking) when integrating biomass vapors and liquids into fuel and chemicalmore » processes long dominated by petroleum feedstocks. We used these model compounds to determine the appropriate conditions for coprocessing with petroleum and ultimately pure pyrolysis vapors only as compared with standard baseline conditions obtained with VGO and E-Cat only in the DCR. Model compound addition decreased the DCR catalyst circulation rate, which controls reactor temperature and measures reaction heat demand, while increasing catalyst coking rates. Liquid product analyses included 2-dimensional gas chromatography time-of-flight mass spectroscopy (2D GCxGC TOFS), simulated distillation (SIM DIST), 13C NMR, and carbonyl content. Aggregated results indicated that the model compounds were converted during reaction, and despite functional group differences, product distributions for each model compound were very similar. In addition, we determined that adding model compounds to the VGO feed did not significantly affect the DCR's operability or performance. Future work will assess catalytic upgrading of biomass pyrolysis vapor to fungible hydrocarbon products using upgrading catalysts currently being developed at NREL and at Johnson Matthey.« less
Representation of Clear and Cloudy Boundary Layers in Climate Models. Chapter 14
NASA Technical Reports Server (NTRS)
Randall, D. A.; Shao, Q.; Branson, M.
1997-01-01
The atmospheric general circulation models which are being used as components of climate models rely on their boundary layer parameterizations to produce realistic simulations of the surface turbulent fluxes of sensible heat. moisture. and momentum: of the boundary-layer depth over which these fluxes converge: of boundary layer cloudiness: and of the interactions of the boundary layer with the deep convective clouds that grow upwards from it. Two current atmospheric general circulation models are used as examples to show how these requirements are being addressed: these are version 3 of the Community Climate Model. which has been developed at the U.S. National Center for Atmospheric Research. and the Colorado State University atmospheric general circulation model. The formulations and results of both models are discussed. Finally, areas for future research are suggested.
Arctic Ocean Pathways in the 21st century
NASA Astrophysics Data System (ADS)
Aksenov, Yevgeny; van Gennip, Simon J.; Kelly, Stephen J.; Popova, Ekaterina E.; Yool, Andrew
2017-04-01
In the last three decades, changes in the Arctic environment have been occurring at an increasing rate. The opening up of large areas of previously sea ice-covered ocean affects the marine environment with potential impacts on Arctic ecosystems, including through changes in Arctic access, industries and societies. Changes to sea ice and surface winds result in large-scale shifts in ocean circulation and oceanic pathways. This study presents a high-resolution analysis of the projected ocean circulation and pathways of the Arctic water masses across the 21st century. The analysis is based on an eddy-permitting high-resolution global simulation of the ocean general circulation model NEMO (Nucleus for European Modelling of the Ocean) at the 1/4-degree horizontal resolution. The atmospheric forcing is from HadGEM2-ES model output from IPCC Assessment Report 5 (AR5) simulations performed for Coupled Model Intercomparison Project 5 (CMIP5), and follow the Representative Concentration Pathway 8.5 (RCP8.5) scenario. During the 21st century the AO experiences a significant warming, with sea surface temperature increased by in excess of 4 deg. C. Annual mean Arctic sea ice thickness drops to less than 0.5m, and the Arctic Ocean is ice-free in summer from the mid-century. We use an off-line tracer technique to investigate Arctic pathways of the Atlantic and Pacific waters (AW and PW respectively) under this future climate. The AW tracers have been released in the eastern Fram Strait and in the western Barents Sea, whereas the PW tracer has been seeded in the Bering Strait. In the second half of the century the upper 1000 m ocean circulation shows a reduction in the eastward AW flow along the continental slopes towards the Makarov and Canada basins and a deviation of the PW flow away from the Beaufort Sea towards the Siberian coast. Strengthening of Arctic boundary current and intensification of the cyclonic gyre in the Nansen basin of the Arctic Ocean is accompanied by weakening of the current and an anti-cyclonic gyre spin-up in the Makarov Basin. This presents a shift of the Arctic circulation "dipole" and of the Transpolar Drift, with the consequence that the PW flow towards Fram Strait is significantly reduced by the end of the century, weakening the Pacific-Atlantic connection via the Arctic Ocean, and reducing the Arctic freshwater outflow into the North Atlantic. Examination of the simulations suggests that these circulation changes are primarily due to the shift in the wind.
The Southern Ocean in the Coupled Model Intercomparison Project phase 5
Meijers, A. J. S.
2014-01-01
The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses of the historical and projected wind, sea ice, circulation and bulk properties of the Southern Ocean in the updated Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble. Improvements to the models include higher resolutions, more complex and better-tuned parametrizations of ocean mixing, and improved biogeochemical cycles and atmospheric chemistry. CMIP5 largely reproduces the findings of CMIP3, but with smaller inter-model spreads and biases. By the end of the twenty-first century, mid-latitude wind stresses increase and shift polewards. All water masses warm, and intermediate waters freshen, while bottom waters increase in salinity. Surface mixed layers shallow, warm and freshen, whereas sea ice decreases. The upper overturning circulation intensifies, whereas bottom water formation is reduced. Significant disagreement exists between models for the response of the Antarctic Circumpolar Current strength, for reasons that are as yet unclear. PMID:24891395
Simulation of seasonal cloud forcing anomalies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randall, D.A.
1990-08-01
One useful way to classify clouds is according to the processes that generate them. There are three main cloud-formation agencies: deep convection; surface evaporation; large-scale lifting in the absence of conditional instability. Although traditionally clouds have been viewed as influencing the atmospheric general circulation primarily through the release of latent heat, the atmospheric science literature contains abundant evidence that, in reality, clouds influence the general circulation through four more or less equally important effects: interactions with the solar and terrestrial radiation fields; condensation and evaporation; precipitation; small-scale circulations within the atmosphere. The most advanced of the current generation of GCMsmore » include parameterizations of all four effects. Until recently there has been lingering skepticism, in the general circulation modeling community, that the radiative effects of clouds significantly influence the atmospheric general circulation. GCMs have provided the proof that the radiative effects of clouds are important for the general circulation of the atmosphere. An important concept in analysis of the effects of clouds on climate is the cloud radiative forcing (CRF), which is defined as the difference between the radiative flux which actually occurs in the presence of clouds, and that which would occur if the clouds were removed but the atmospheric state were otherwise unchanged. We also use the term CRF to denote warming or cooling tendencies due to cloud-radiation interactions. Cloud feedback is the change in CRF that accompanies a climate change. The present study concentrates on the planetary CRF and its response to external forcing, i.e. seasonal change.« less
Zhang, Xiaoqian; Liu, Shanglong; Zhou, Yanbing
2016-09-27
Results from publications on inflammatory markers of C-reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) and risk of colorectal adenomas are not consistent. A meta-analysis was conducted to explore the above-mentioned associations. Relevant studies were identified by a search of Embase, Medline and PubMed through February 2016. A random effect model was adopted to combine study-specific odds ratio (OR) and 95% confidence interval (95% CI). Between-study heterogeneity and publications bias were assessed. Dose-response relationships were assessed by restricted cubic splines. Nineteen observational studies were included. For highest vs. lowest levels, results from this meta-analysis did not support an association between circulating levels of CRP [OR (95% CI): 1.15 (0.94-1.40)], IL-6 [1.17 (0.94-1.46)] and TNF-α [0.99 (0.75-1.31)] and risk of colorectal adenomas, respectively. The findings were supported by sensitivity analysis and subgroup analysis. In dose-response analysis, the risk of colorectal adenomas increased by 2% [1.02 (0.97-1.08)] for each 1 mg/L increment in circulation CRP levels, 9% [1.09 (0.91-1.31)] for each 1 ng/L increment in circulation IL-6 levels, and 6% [1.06 (0.93-1.21)] for each 1 pg/mL increment in circulation TNF-α levels. Moderate between-study heterogeneity was found. No evidence of publication bias was found. Circulation levels of CRP, IL-6 and TNF-α might be not useful biomarkers for identifying colorectal adenomas, respectively.
Zhang, L; Fang, X; Li, L; Liu, R; Zhang, C; Liu, H; Tan, M; Yang, G
2018-05-21
The diagnosis of polycystic ovary syndrome (PCOS) is based on a combination of various clinical phenotypes in each patient. However, insulin resistance (IR) and dysmetabolism are not included in the diagnostic criteria of PCOS. Therefore, the definition of PCOS is controversial. The objective of this study is to investigate whether some PCOS phenotypes can be predicted by a circulating biomarker related to IR and metabolic dysfunction in PCOS women. One hundred and seventeen women with PCOS and 95 healthy women were recruited for this study. All individuals were assessed by the phenotypic and metabolic characteristics related to PCOS. A euglycemic-hyperinsulinemic clamp was performed to assess insulin sensitivity. Circulating irisin concentrations were determined with ELISA. In our PCOS cohort, 65.8% of individuals were found to have hyperandrogenism. 83.8% had chronic oligoanovulation, and 80.3% of subjects showed polycystic ovaries. According to the diagnostic criteria of PCOS, 30.8% of PCOS subjects were diagnosed with the classic phenotype. In addition, 65.8% of PCOS women had insulin resistance. Serum irisin levels were significantly higher in PCOS women compared with healthy women. However, PCOS women with a normoandrogenic phenotype had similar circulating irisin levels as healthy women. PCOS women with the normoandrogenic phenotype had a low homeostasis model assessment of insulin resistance (HOMA-IR) and higher M-values than PCOS women with other phenotypes. Circulating irisin levels were associated with hyperandrogenism, but not with oligoanovulation or PCO morphology. Circulating irisin may allow physicians to establish which women merit screening by a biomarker for PCOS.
Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max
2016-01-01
This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.
Case study modeling of turbulent and mesoscale fluxes over the BOREAS region
Vidale, P.L.; Pielke, R.A.; Steyaert, L.T.; Barr, A.
1997-01-01
Results from aircraft and surface observations provided evidence for the existence of mesoscale circulations over the Boreal Ecosystem-Atmosphere Study (BOREAS) domain. Using an integrated approach that included the use of analytical modeling, numerical modeling, and data analysis, we have found that there are substantial contributions to the total budgets of heat over the BOREAS domain generated by mesoscale circulations. This effect is largest when the synoptic flow is relatively weak, yet it is present under less favorable conditions, as shown by the case study presented here. While further analysis is warranted to document this effect, the existence of mesoscale flow is not surprising, since it is related to the presence of landscape patches, including lakes, which are of a size on the order of the local Rossby radius and which have spatial differences in maximum sensible heat flux of about 300 W m-2. We have also analyzed the vertical temperature profile simulated in our case study as well as high-resolution soundings and we have found vertical profiles of temperature change above the boundary layer height, which we attribute in part to mesoscale contributions. Our conclusion is that in regions with organized landscapes, such as BOREAS, even with relatively strong synoptic winds, dynamical scaling criteria should be used to assess whether mesoscale effects should be parameterized or explicitly resolved in numerical models of the atmosphere.
Renewed circulation scheme of the Baltic Sea - based on the 40-year simulation with GETM.
NASA Astrophysics Data System (ADS)
Maljutenko, Ilja; Raudsepp, Urmas
2015-04-01
The general circulation of the Baltic Sea has been characterized as cyclonic in all sub-basins based on numerous measurements and model simulations. From the long-term hydrodynamical simulation our model results have verified the general cyclonic circulation in the Baltic Proper and in the Gulf of Bothnia, but the Gulf of Finland and the Gulf of Riga have shown tendency to anticyclonic circulation. We have applied the General Estuarine Transport Model ( GETM ) for the period of 1966 - 2006 with a 1 nautical mile horizontal resolution and density adaptive bottom following vertical coordinates to make it possible to simulate horizontal and vertical density gradients with better precision. The atmospheric forcing from dynamically downscaled ERA40-HIRLAM and parametrized lateral boundary conditions are applied. Model simulation show close agreement with measurements conducted in the main monitoring stations in the BS during the simulation period. The geostrophic adjustment of density driven currents along with the upward salinity flux due to entrainment could explain the anticyclonic circulation and strong coastal current. Mean vertical velocities show that upward and downward movements are forming closed vertical circulation loops along the bottom slope of the Baltic Proper and the Gulf of Bothnia. The model has also reproduced patchy vertical movement across the BS with some distinctive areas of upward advective fluxes in the GoF along the thalweg. The distinctive areas of deepwater upwelling are also evident in the Gdansk Basin, western Gotland Basin, northern Gotland Basin and in the northen part of the Bothnia Sea.
Documentation of the GLAS fourth order general circulation model. Volume 2: Scalar code
NASA Technical Reports Server (NTRS)
Kalnay, E.; Balgovind, R.; Chao, W.; Edelmann, D.; Pfaendtner, J.; Takacs, L.; Takano, K.
1983-01-01
Volume 2, of a 3 volume technical memoranda contains a detailed documentation of the GLAS fourth order general circulation model. Volume 2 contains the CYBER 205 scalar and vector codes of the model, list of variables, and cross references. A variable name dictionary for the scalar code, and code listings are outlined.
Modeling biomass gasification in circulating fluidized beds
NASA Astrophysics Data System (ADS)
Miao, Qi
In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous reactions occur in gas phase. Each section was divided into a number of small cells, over which mass and energy balances were applied. Due to the high heating rate in circulating fluidized bed, the pyrolysis was considered instantaneous. A number of homogeneous and heterogeneous reactions were considered in the model. Mass transfer resistance was considered negligible since the reactions were under kinetic control due to good gas-solid mixing. The model is capable of predicting the bed temperature distribution along the gasifier, the concentration and distribution of each species in the vertical direction of the bed, the composition and lower heating value (LHV) of produced gas, the gasification efficiency, the overall carbon conversion and the produced gas production rate. A sensitivity analysis was performed to test its response to several gasifier operating conditions. The model sensitivity analysis showed that equivalence ratio (ER), bed temperature, fluidization velocity, biomass feed rate and moisture content had various effects on the gasifier performance. However, the model was more sensitive to variations in ER and bed temperature. The model was validated using the experimental results obtained from the demonstration plant. The reactor was operated on rice husk at various ERs, fluidization velocities and biomass feed rates. The model gave reasonable predictions. The model was also validated by comparing the simulation results with two other different size CFBBGs using different biomass feedstock, and it was concluded that the developed model can be applied to other CFBBGs using various biomass fuels and having comparable reactor geometries. A thermodynamic model was developed under ASPEN PLUS environment. Using the approach of Gibbs free energy minimization, the model was essentially independent of kinetic parameters. A sensitivity analysis was performed on the model to test its response to operating variables, including ER and biomass moisture content. The results showed that the ER has the most effect on the product gas composition and LHV. The simulation results were compared with the experimental data obtained from the demonstration plant. Keywords: Biomass gasification; Mathematical model; Circulating fluidized bed; Hydrodynamics; Kinetics; Sensitivity analysis; Validation; Equivalence ratio; Temperature; Feed rate; Moisture; Syngas composition; Lower heating value; Gasification efficiency; Carbon conversion
Atmospheric Constituents in GEOS-5: Components for an Earth System Model
NASA Technical Reports Server (NTRS)
Pawson, Steven; Douglass, Anne; Duncan, Bryan; Nielsen, Eric; Ott, Leslie; Strode, Sarah
2011-01-01
The GEOS-S model is being developed for weather and climate processes, including the implementation of "Earth System" components. While the stratospheric chemistry capabilities are mature, we are presently extending this to include predictions of the tropospheric composition and chemistry - this includes CO2, CH4, CO, nitrogen species, etc. (Aerosols are also implemented, but are beyond the scope of this paper.) This work will give an overview of our chemistry modules, the approaches taken to represent surface emissions and uptake of chemical species, and some studies of the sensitivity of the atmospheric circulation to changes in atmospheric composition. Results are obtained through focused experiments and multi-decadal simulations.
Approximate Stokes Drift Profiles and their use in Ocean Modelling
NASA Astrophysics Data System (ADS)
Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian
2016-04-01
Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f-5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).
Global environmental effects of impact-generated aerosols: Results from a general circulation model
NASA Technical Reports Server (NTRS)
Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.
1989-01-01
Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to the three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans, not included in the one-dimensional model, substantially mitigates land surface cooling. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stages of cooling than in the one-dimensional model study. GCM-simulated climatic changes in the scenario of asteroid/comet winter are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though of course less severe, climatic changes, according to the GCM. An asteroid or comet impact would not lead to anything approaching complete global freezing, but quite reasonable to assume that impacts would dramatically alter the climate in at least a patchy sense.
NASA Technical Reports Server (NTRS)
McCormick, S.; Ruge, John W.
1998-01-01
This work represents a part of a project to develop an atmospheric general circulation model based on the semi-Lagrangian advection of potential vorticity (PC) with divergence as the companion prognostic variable.
NASA Astrophysics Data System (ADS)
Zappa, G.; Pithan, F.; Shepherd, T. G.
2018-01-01
Previous single-model experiments have found that Arctic sea ice loss can influence the atmospheric circulation. To evaluate this process in a multimodel ensemble, a novel methodology is here presented and applied to infer the influence of Arctic sea ice loss in the CMIP5 future projections. Sea ice influence is estimated by comparing the circulation response in the RCP8.5 scenario against the circulation response to sea surface warming and CO2 increase inferred from the AMIPFuture and AMIP4xCO2 experiments, where sea ice is unperturbed. Multimodel evidence of the impact of sea ice loss on midlatitude atmospheric circulation is identified in late winter (January-March), when the sea ice-related surface heat flux perturbation is largest. Sea ice loss acts to suppress the projected poleward shift of the North Atlantic jet, to increase surface pressure in northern Siberia, and to lower it in North America. These features are consistent with previous single-model studies, and the present results indicate that they are robust to model formulation.
Zappa, G; Pithan, F; Shepherd, T G
2018-01-28
Previous single-model experiments have found that Arctic sea ice loss can influence the atmospheric circulation. To evaluate this process in a multimodel ensemble, a novel methodology is here presented and applied to infer the influence of Arctic sea ice loss in the CMIP5 future projections. Sea ice influence is estimated by comparing the circulation response in the RCP8.5 scenario against the circulation response to sea surface warming and CO 2 increase inferred from the AMIPFuture and AMIP4xCO2 experiments, where sea ice is unperturbed. Multimodel evidence of the impact of sea ice loss on midlatitude atmospheric circulation is identified in late winter (January-March), when the sea ice-related surface heat flux perturbation is largest. Sea ice loss acts to suppress the projected poleward shift of the North Atlantic jet, to increase surface pressure in northern Siberia, and to lower it in North America. These features are consistent with previous single-model studies, and the present results indicate that they are robust to model formulation.
NASA Astrophysics Data System (ADS)
Liu, Zedong; Wan, Xiuquan
2018-04-01
The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.
NASA Astrophysics Data System (ADS)
Crasemann, Berit; Handorf, Dörthe; Jaiser, Ralf; Dethloff, Klaus; Nakamura, Tetsu; Ukita, Jinro; Yamazaki, Koji
2017-12-01
In the framework of atmospheric circulation regimes, we study whether the recent Arctic sea ice loss and Arctic Amplification are associated with changes in the frequency of occurrence of preferred atmospheric circulation patterns during the extended winter season from December to March. To determine regimes we applied a cluster analysis to sea-level pressure fields from reanalysis data and output from an atmospheric general circulation model. The specific set up of the two analyzed model simulations for low and high ice conditions allows for attributing differences between the simulations to the prescribed sea ice changes only. The reanalysis data revealed two circulation patterns that occur more frequently for low Arctic sea ice conditions: a Scandinavian blocking in December and January and a negative North Atlantic Oscillation pattern in February and March. An analysis of related patterns of synoptic-scale activity and 2 m temperatures provides a synoptic interpretation of the corresponding large-scale regimes. The regimes that occur more frequently for low sea ice conditions are resembled reasonably well by the model simulations. Based on those results we conclude that the detected changes in the frequency of occurrence of large-scale circulation patterns can be associated with changes in Arctic sea ice conditions.
Coccarelli, Alberto; Boileau, Etienne; Parthimos, Dimitris; Nithiarasu, Perumal
2016-10-01
In the present work, an elaborate one-dimensional thermofluid model for a human body is presented. By contrast to the existing pure conduction-/perfusion-based models, the proposed methodology couples the arterial fluid dynamics of a human body with a multi-segmental bioheat model of surrounding solid tissues. In the present configuration, arterial flow is included through a network of elastic vessels. More than a dozen solid segments are employed to represent the heat conduction in the surrounding tissues, and each segment is constituted by a multilayered circular cylinder. Such multi-layers allow flexible delineation of the geometry and incorporation of properties of different tissue types. The coupling of solid tissue and fluid models requires subdivision of the arterial circulation into large and small arteries. The heat exchange between tissues and arterial wall occurs by convection in large vessels and by perfusion in small arteries. The core region, including the heart, provides the inlet conditions for the fluid equations. In the proposed model, shivering, sweating, and perfusion changes constitute the basis of the thermoregulatory system. The equations governing flow and heat transfer in the circulatory system are solved using a locally conservative Galerkin approach, and the heat conduction in the surrounding tissues is solved using a standard implicit backward Euler method. To investigate the effectiveness of the proposed model, temperature field evolutions are monitored at different points of the arterial tree and in the surrounding tissue layers. To study the differences due to flow-induced convection effects on thermal balance, the results of the current model are compared against those of the widely used modelling methodologies. The results show that the convection significantly influences the temperature distribution of the solid tissues in the vicinity of the arteries. Thus, the inner convection has a more predominant role in the human body heat balance than previously thought. To demonstrate its capabilities, the proposed new model is used to study different scenarios, including thermoregulation inactivity and variation in surrounding atmospheric conditions.
The study of the hydrological regime extreme effects of the Caspian Sea during the XX-XXI centuries
NASA Astrophysics Data System (ADS)
Yaitskaya, Natalia
2016-04-01
The Caspian Sea - the unique largest enclosed inland body of water on Earth. Significant periodic sea level fluctuations are a typical feature of the sea. In the XIX-XX centuries a number of comprehensive studies of the Caspian Sea was carried out. The results are published in the papers, monographs and climatic atlases. But a number of fundamental questions about the features of the hydrological regime of the Caspian Sea is still open: 1. How does the water circulation change during the level variations? 2. What is the effect of heterogeneity of evaporation from the water surface on the formation of the flow field in the conditions of long-term level changes? 3. How does the water salinity regime change depending on the sea level position, water circulation, river flow and different climatic influences? 4. What is the effect of extreme events (multi-hazards) (ice, storms, destruction of the coasts) on coastal infrastructure? In 2016, the project aims to study hydrological regime extreme effects of the Caspian Sea was supported by the Russian Foundation for Basic Research. Within this project all of the above problems will be solved. Geographic information system "Caspian Sea" for the storage and data processing, including a database of primary oceanographic information for the period of instrumental observations (1897-2013), cartographic database (1921-2011) and tools for multidimensional analysis of spatio-temporal information is the basis of the study. The scheme of interconnected hydrodynamic models (Caspian Sea MODel - Ocean Model - Wind wave model) was developed. The important factors are taken into account in the structure of the models: long-term and seasonal dynamics of the sea waves parameters, new long-term values of evaporation from the shallow waters areas of the Caspian Sea, water circulation. Schemes of general seasonal circulation of the Caspian Sea and the Northern Caspian at different positions of the sea level in XX-XXI centuries using interconnected models will be reconstructed. Forecast of seasonal water circulation for the most probable climate change scenarios in the future will be done. Conceptual scheme of calculations of the multi-hazards (ice storms, the destruction of the coasts) in the Caspian Sea was developed. The similar method of calculation was successfully applied to the prediction of natural hazards in the Sea of Azov. The reported study was funded by RFBR, according to the research project No.16-35-60046 mol_a_dk.
Cloud Feedback in Atmospheric General Circulation Models: An Update
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, M. H.; Ingram, W. J.; Potter, G. L.; Alekseev, V.; Barker, H. W.; Cohen-Solal, E.; Colman, R. A.; Dazlich, D. A.; DelGenio, A. D.;
1996-01-01
Six years ago, we compared the climate sensitivity of 19 atmospheric general circulation models and found a roughly threefold variation among the models; most of this variation was attributed to differences in the models' depictions of cloud feedback. In an update of this comparison, current models showed considerably smaller differences in net cloud feedback, with most producing modest values. There are, however, substantial differences in the feedback components, indicating that the models still have physical disagreements.
Mars atmospheric circulation - Aspects from Viking Landers
NASA Technical Reports Server (NTRS)
Ryan, J. A.
1985-01-01
Winds measured by the two Viking Landers have been filtered and then compared with predictions from the general circulation model and to Orbiter observations of clouds and surface phenomena that indicate wind direction. This was done to determine the degree to which filtered winds may represent aspects of the general circulation. Excellent agreement was found between wind direction data from Lander 1 and the model predictions and Orbiter observations. For Lander 2, agreement was generally good, but there were periods of disagreement which indicate that the filtering did not remove other extraneous effects. It is concluded that Lander 1 gives a good representation of the general circulation at 22.5 deg N latitude but that Lander 2 is suspect. Most wind data from Lander 1 have yet to be analyzed. It appears that when analyzed these Lander 1 data (covering 3.5 Mars years) can provide information about interannual variations in the general circulation at the Lander latitude.
NASA Astrophysics Data System (ADS)
Bellomo, K.; Polvani, L. M.
2017-12-01
It is widely believed that the Walker Circulation will weaken in response to increasing greenhouse gases (GHG) by the end of the 21st century. But over the 20th century, the existence of a statistical significant weakening trends in the observations remains unclear. We here present new modelling evidence showing that Ozone Depleting Substances (ODS) may have significantly contributed to the weakening of the Walker Circulation over the years 1955-2005. While the primary impact of increasing ODS has been the formation of the ozone hole, it is perhaps not as widely appreciated that ODS are also powerful greenhouse gases. Using an ensemble of integrations with the the Whole Atmosphere Chemistry Climate Model, we show that the surface warming caused by increasing ODS over the second half of the 20th century causes a statistically significant weakening of the Walker Circulation in the model. In fact, we find that the increase of the other well-mixed GHG alone leads to a strengthening, not a weakening of the Walker Circulation, over that period in our model. When ODS concentrations are held fixed at 1950's levels, the effect of the other GHG is not sufficient, and a warming delay in the eastern tropical Pacific SST leads to an increase in the east-west SST gradient which is accompanied by a strengthening of the Walker Circulation. But, when the forcing from ODS is added in, the additional radiative forcing causes the eastern Pacific to warm faster, and the trend in the Walker Circulation reverses sign and becomes negative over the second half of the 20th century.
Variational data assimilative modeling of the Gulf of Maine in spring and summer 2010
NASA Astrophysics Data System (ADS)
Li, Yizhen; He, Ruoying; Chen, Ke; McGillicuddy, Dennis J.
2015-05-01
A data assimilative ocean circulation model is used to hindcast the Gulf of Maine [GOM) circulation in spring and summer 2010. Using the recently developed incremental strong constraint 4D Variational data assimilation algorithm, the model assimilates satellite sea surface temperature and in situ temperature and salinity profiles measured by expendable bathythermograph, Argo floats, and shipboard CTD casts. Validation against independent observations shows that the model skill is significantly improved after data assimilation. The data-assimilative model hindcast reproduces the temporal and spatial evolution of the ocean state, showing that a sea level depression southwest of the Scotian Shelf played a critical role in shaping the gulf-wide circulation. Heat budget analysis further demonstrates that both advection and surface heat flux contribute to temperature variability. The estimated time scale for coastal water to travel from the Scotian Shelf to the Jordan Basin is around 60 days, which is consistent with previous estimates based on in situ observations. Our study highlights the importance of resolving upstream and offshore forcing conditions in predicting the coastal circulation in the GOM.