Sample records for circulation model simulations

  1. Relations between winter precipitation and atmospheric circulation simulated by the Geophysical Fluid Dynamics Laboratory general circulation model

    USGS Publications Warehouse

    McCabe, G.J.; Dettinger, M.D.

    1995-01-01

    General circulation model (GCM) simulations of atmospheric circulation are more reliable than GCM simulations of temperature and precipitation. In this study, temporal correlations between 700 hPa height anomalies simulated winter precipitation at eight locations in the conterminous United States are compared with corresponding correlations in observations. The objectives are to 1) characterize the relations between atmospheric circulation and winter precipitation simulated by the GFDL, GCM for selected locations in the conterminous USA, ii) determine whether these relations are similar to those found in observations of the actual climate system, and iii) determine if GFDL-simulated precipitation is forced by the same circulation patterns as in the real atmosphere. -from Authors

  2. Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Tolstykh, M. A.; Diansky, N. A.; Gusev, A. V.; Kiktev, D. B.

    2014-03-01

    A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989-2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997-1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.

  3. Computer Simulation of the Circulation Subsystem of a Library

    ERIC Educational Resources Information Center

    Shaw, W. M., Jr.

    1975-01-01

    When circulation data are used as input parameters for a computer simulation of a library's circulation subsystem, the results of the simulation provide information on book availability and delays. The model may be used to simulate alternative loan policies. (Author/LS)

  4. Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.

    1995-01-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.

  5. A heuristic simulation model of Lake Ontario circulation and mass balance transport

    USGS Publications Warehouse

    McKenna, J.E.; Chalupnicki, M.A.

    2011-01-01

    The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.

  6. Numerical Simulations of a Multiscale Model of Stratified Langmuir Circulation

    NASA Astrophysics Data System (ADS)

    Malecha, Ziemowit; Chini, Gregory; Julien, Keith

    2012-11-01

    Langmuir circulation (LC), a prominent form of wind and surface-wave driven shear turbulence in the ocean surface boundary layer (BL), is commonly modeled using the Craik-Leibovich (CL) equations, a phase-averaged variant of the Navier-Stokes (NS) equations. Although surface-wave filtering renders the CL equations more amenable to simulation than are the instantaneous NS equations, simulations in wide domains, hundreds of times the BL depth, currently earn the ``grand challenge'' designation. To facilitate simulations of LC in such spatially-extended domains, we have derived multiscale CL equations by exploiting the scale separation between submesoscale and BL flows in the upper ocean. The numerical algorithm for simulating this multiscale model resembles super-parameterization schemes used in meteorology, but retains a firm mathematical basis. We have validated our algorithm and here use it to perform multiscale simulations of the interaction between LC and upper ocean density stratification. ZMM, GPC, KJ gratefully acknowledge funding from NSF CMG Award 0934827.

  7. Seasonal changes in the atmospheric heat balance simulated by the GISS general circulation model

    NASA Technical Reports Server (NTRS)

    Stone, P. H.; Chow, S.; Helfand, H. M.; Quirk, W. J.; Somerville, R. C. J.

    1975-01-01

    Tests of the ability of numerical general circulation models to simulate the atmosphere have focussed so far on simulations of the January climatology. These models generally present boundary conditions such as sea surface temperature, but this does not prevent testing their ability to simulate seasonal changes in atmospheric processes that accompany presented seasonal changes in boundary conditions. Experiments to simulate changes in the zonally averaged heat balance are discussed since many simplified models of climatic processes are based solely on this balance.

  8. Simulation of Venus polar vortices with the non-hydrostatic general circulation model

    NASA Astrophysics Data System (ADS)

    Rodin, Alexander V.; Mingalev, Oleg; Orlov, Konstantin

    2012-07-01

    The dynamics of Venus atmosphere in the polar regions presents a challenge for general circulation models. Numerous images and hyperspectral data from Venus Express mission shows that above 60 degrees latitude atmospheric motion is substantially different from that of the tropical and extratropical atmosphere. In particular, extended polar hoods composed presumably of fine haze particles, as well as polar vortices revealing mesoscale wave perturbations with variable zonal wavenumbers, imply the significance of vertical motion in these circulation elements. On these scales, however, hydrostatic balance commonly used in the general circulation models is no longer valid, and vertical forces have to be taken into account to obtain correct wind field. We present the first non-hydrostatic general circulation model of the Venus atmosphere based on the full set of gas dynamics equations. The model uses uniform grid with the resolution of 1.2 degrees in horizontal and 200 m in the vertical direction. Thermal forcing is simulated by means of relaxation approximation with specified thermal profile and time scale. The model takes advantage of hybrid calculations on graphical processors using CUDA technology in order to increase performance. Simulations show that vorticity is concentrated at high latitudes within planetary scale, off-axis vortices, precessing with a period of 30 to 40 days. The scale and position of these vortices coincides with polar hoods observed in the UV images. The regions characterized with high vorticity are surrounded by series of small vortices which may be caused by shear instability of the zonal flow. Vertical velocity component implies that in the central part of high vorticity areas atmospheric flow is downwelling and perturbed by mesoscale waves with zonal wavenumbers 1-4, resembling observed wave structures in the polar vortices. Simulations also show the existence of areas with strong vertical flow, concentrated in spiral branches extending

  9. Computer simulated modeling of healthy and diseased right ventricular and pulmonary circulation.

    PubMed

    Chou, Jody; Rinehart, Joseph B

    2018-01-12

    We have previously developed a simulated cardiovascular physiology model for in-silico testing and validation of novel closed-loop controllers. To date, a detailed model of the right heart and pulmonary circulation was not needed, as previous controllers were not intended for use in patients with cardiac or pulmonary pathology. With new development of controllers for vasopressors, and looking forward, for combined vasopressor-fluid controllers, modeling of right-sided and pulmonary pathology is now relevant to further in-silico validation, so we aimed to expand our existing simulation platform to include these elements. Our hypothesis was that the completed platform could be tuned and stabilized such that the distributions of a randomized sample of simulated patients' baseline characteristics would be similar to reported population values. Our secondary outcomes were to further test the system in representing acute right heart failure and pulmonary artery hypertension. After development and tuning of the right-sided circulation, the model was validated against clinical data from multiple previously published articles. The model was considered 'tuned' when 100% of generated randomized patients converged to stability (steady, physiologically-plausible compartmental volumes, flows, and pressures) and 'valid' when the means for the model data in each health condition were contained within the standard deviations for the published data for the condition. A fully described right heart and pulmonary circulation model including non-linear pressure/volume relationships and pressure dependent flows was created over a 6-month span. The model was successfully tuned such that 100% of simulated patients converged into a steady state within 30 s. Simulation results in the healthy state for central venous volume (3350 ± 132 ml) pulmonary blood volume (405 ± 39 ml), pulmonary artery pressures (systolic 20.8 ± 4.1 mmHg and diastolic 9.4 ± 1.8 mmHg), left

  10. General Circulation Model Simulations of the Annual Cycle of Martian Climate

    NASA Astrophysics Data System (ADS)

    Wilson, R.; Richardson, M.; Rodin, A.

    Observations of the martian atmosphere have revealed a strong annual modulation of global mean atmospheric temperature that has been attributed to the pronounced seasonal asymmetry in solar radiation and the highly variable distribution of aerosol. These observations indicate little interannual variability during the relatively cool aphelion season and considerable variability in the perihelion season that is associated with the episodic occurrence of regional and major dust storms. The atmospheric circulation responds to the evolving spatial distribution of aerosol-induced heating and, in turn, plays a major role in determining the sources, sinks, and transport of radiatively active aerosol. We will present simulations employing the GFDL Mars General Circulation Model (MGCM) that show that aspects of the seasonally evolving climate may be simulated in a self-consistent manner using simple dust source parameterizations that represent the effects of lifting associated with local dust storms, dust devil activity, and other processes. Aerosol transport is accomplished, in large part, by elements of the large-scale circulation such as the Hadley circulation, baroclinic storms, tides, etc. A seasonal cycle of atmospheric opacity and temperature results from the variation in the strength and distribution of dust sources as well as from seasonal variations in the efficiency of atmospheric transport associated with changes in the circulation between solstice and equinox, and between perihelion and aphelion. We examine the efficiency of atmospheric transport of dust lifted along the perimeter of the polar caps to gauge the influence of these storms on the global circulation. We also consider the influence of water, as the formation of water ice clouds on dust nuclei may also affect the vertical distribution of dust and strongly influence the aerosol radiative properties.

  11. Validation of the BASALT model for simulating off-axis hydrothermal circulation in oceanic crust

    NASA Astrophysics Data System (ADS)

    Farahat, Navah X.; Archer, David; Abbot, Dorian S.

    2017-08-01

    Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems appear to produce considerable diversity of circulation behaviors. Circulation of seawater and seawater-derived fluids controls the extent of fluid-rock interaction, resulting in significant geochemical impacts. However, the primary regional characteristics that control how seawater is distributed within upper oceanic crust are still poorly understood. In this paper we present the details of the two-dimensional (2-D) BASALT (Basement Activity Simulated At Low Temperatures) numerical model of heat and fluid transport in an off-axis hydrothermal system. This model is designed to simulate a wide range of conditions in order to explore the dominant controls on circulation. We validate the BASALT model's ability to reproduce observations by configuring it to represent a thoroughly studied transect of the Juan de Fuca Ridge eastern flank. The results demonstrate that including series of narrow, ridge-parallel fractures as subgrid features produces a realistic circulation scenario at the validation site. In future projects, a full reactive transport version of the validated BASALT model will be used to explore geochemical fluxes in a variety of off-axis hydrothermal environments.

  12. Regional climates in the GISS global circulation model - Synoptic-scale circulation

    NASA Technical Reports Server (NTRS)

    Hewitson, B.; Crane, R. G.

    1992-01-01

    A major weakness of current general circulation models (GCMs) is their perceived inability to predict reliably the regional consequences of a global-scale change, and it is these regional-scale predictions that are necessary for studies of human-environmental response. For large areas of the extratropics, the local climate is controlled by the synoptic-scale atmospheric circulation, and it is the purpose of this paper to evaluate the synoptic-scale circulation of the Goddard Institute for Space Studies (GISS) GCM. A methodology for validating the daily synoptic circulation using Principal Component Analysis is described, and the methodology is then applied to the GCM simulation of sea level pressure over the continental United States (excluding Alaska). The analysis demonstrates that the GISS 4 x 5 deg GCM Model II effectively simulates the synoptic-scale atmospheric circulation over the United States. The modes of variance describing the atmospheric circulation of the model are comparable to those found in the observed data, and these modes explain similar amounts of variance in their respective datasets. The temporal behavior of these circulation modes in the synoptic time frame are also comparable.

  13. Numerical simulation and prediction of coastal ocean circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P.

    1992-01-01

    Numerical simulation and prediction of coastal ocean circulation have been conducted in three cases. 1. A process-oriented modeling study is conducted to study the interaction of a western boundary current (WBC) with coastal water, and its responses to upstream topographic irregularities. It is hypothesized that the interaction of propagating WBC frontal waves and topographic Rossby waves are responsible for upstream variability. 2. A simulation of meanders and eddies in the Norwegian Coastal Current (NCC) for February and March of 1988 is conducted with a newly developed nested dynamic interactive model. The model employs a coarse-grid, large domain to account formore » non-local forcing and a fine-grid nested domain to resolve meanders and eddies. The model is forced by wind stresses, heat fluxes and atmospheric pressure corresponding Feb/March of 1988, and accounts for river/fjord discharges, open ocean inflow and outflow, and M[sub 2] tides. The simulation reproduced fairly well the observed circulation, tides, and salinity features in the North Sea, Norwegian Trench and NCC region in the large domain and fairly realistic meanders and eddies in the NCC in the nested region. 3. A methodology for practical coastal ocean hindcast/forecast is developed, taking advantage of the disparate time scales of various forcing and considering wind to be the dominant factor in affecting density fluctuation in the time scale of 1 to 10 days. The density field obtained from a prognostic simulation is analyzed by the empirical orthogonal function method (EOF), and correlated with the wind; these information are then used to drive a circulation model which excludes the density calculation. The method is applied to hindcast the circulation in the New York Bight for spring and summer season of 1988. The hindcast fields compare favorably with the results obtained from the prognostic circulation model.« less

  14. Simulating effects of highway embankments on estuarine circulation

    USGS Publications Warehouse

    Lee, Jonathan K.; Schaffranek, Raymond W.; Baltzer, Robert A.

    1994-01-01

    A two-dimensional depth-averaged, finite-difference, numerical model was used to simulate tidal circulation and mass transport in the Port Royal Sound. South Carolina, estuarine system. The purpose of the study was to demonstrate the utility of the Surface-Water. Integrated. Flow and Transport model (SWIFT2D) for evaluating changes in circulation patterns and mass transport caused by highway-crossing embankments. A model of subregion of Port Royal Sound including the highway crossings and having a grid size of 61 m (200ft) was derived from a 183-m (600-ft) model of the entire Port Royal Sound estuarine system. The 183-m model was used to compute boundary-value data for the 61-m submodel, which was then used to simulate flow conditions with and without the highway embankments in place. The numerical simulations show that, with the highway embankment in place, mass transport between the Broad River and Battery Creek is reduced and mass transport between the Beaufort River and Battery Creek is increased. The net result is that mass transport into and out of upper Battery Creek is reduced. The presence of the embankments also alters circulation patterns within Battery Creek.

  15. Simulation of the atmospheric thermal circulation of a martian volcano using a mesoscale numerical model.

    PubMed

    Rafkin, Scot C R; Sta Maria, Magdalena R V; Michaels, Timothy I

    2002-10-17

    Mesoscale (<100 km) atmospheric phenomena are ubiquitous on Mars, as revealed by Mars Orbiter Camera images. Numerical models provide an important means of investigating martian atmospheric dynamics, for which data availability is limited. But the resolution of general circulation models, which are traditionally used for such research, is not sufficient to resolve mesoscale phenomena. To provide better understanding of these relatively small-scale phenomena, mesoscale models have recently been introduced. Here we simulate the mesoscale spiral dust cloud observed over the caldera of the volcano Arsia Mons by using the Mars Regional Atmospheric Modelling System. Our simulation uses a hierarchy of nested models with grid sizes ranging from 240 km to 3 km, and reveals that the dust cloud is an indicator of a greater but optically thin thermal circulation that reaches heights of up to 30 km, and transports dust horizontally over thousands of kilometres.

  16. The Response of the South Asian Summer Monsoon Circulation to Intensified Irrigation in Global Climate Model Simulations

    NASA Technical Reports Server (NTRS)

    Shukla, Sonali P.; Puma, Michael J.; Cook, Benjamin I.

    2013-01-01

    Agricultural intensification in South Asia has resulted in the expansion and intensification of surface irrigation over the twentieth century. The resulting changes to the surface energy balance could affect the temperature contrasts between the South Asian land surface and the equatorial Indian Ocean, potentially altering the South Asian Summer Monsoon (SASM) circulation. Prior studies have noted apparent declines in the monsoon intensity over the twentieth century and have focused on how altered surface energy balances impact the SASM rainfall distribution. Here, we use the coupled Goddard Institute for Space Studies ModelE-R general circulation model to investigate the impact of intensifying irrigation on the large-scale SASM circulation over the twentieth century, including how the effect of irrigation compares to the impact of increasing greenhouse gas (GHG) forcing. We force our simulations with time-varying, historical estimates of irrigation, both alone and with twentieth century GHGs and other forcings. In the irrigation only experiment, irrigation rates correlate strongly with lower and upper level temperature contrasts between the Indian sub-continent and the Indian Ocean (Pearson's r = -0.66 and r = -0.46, respectively), important quantities that control the strength of the SASM circulation. When GHG forcing is included, these correlations strengthen: r = -0.72 and r = -0.47 for lower and upper level temperature contrasts, respectively. Under irrigated conditions, the mean SASM intensity in the model decreases only slightly and insignificantly. However, in the simulation with irrigation and GHG forcing, inter-annual variability of the SASM circulation decreases by *40 %, consistent with trends in the reanalysis products. This suggests that the inclusion of irrigation may be necessary to accurately simulate the historical trends and variability of the SASM system over the last 50 years. These findings suggest that intensifying irrigation, in concert with

  17. Numerical simulation of the circulation of the atmosphere of Titan

    NASA Technical Reports Server (NTRS)

    Hourdin, F.; Levan, P.; Talagrand, O.; Courtin, Regis; Gautier, Daniel; Mckay, Christopher P.

    1992-01-01

    A three dimensional General Circulation Model (GCM) of Titan's atmosphere is described. Initial results obtained with an economical two dimensional (2D) axisymmetric version of the model presented a strong superrotation in the upper stratosphere. Because of this result, a more general numerical study of superrotation was started with a somewhat different version of the GCM. It appears that for a slowly rotating planet which strongly absorbs solar radiation, circulation is dominated by global equator to pole Hadley circulation and strong superrotation. The theoretical study of this superrotation is discussed. It is also shown that 2D simulations systemically lead to instabilities which make 2D models poorly adapted to numerical simulation of Titan's (or Venus) atmosphere.

  18. Do downscaled general circulation models reliably simulate historical climatic conditions?

    USGS Publications Warehouse

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2018-01-01

    The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.

  19. The Tropical Subseasonal Variability Simulated in the NASA GISS General Circulation Model

    NASA Technical Reports Server (NTRS)

    Kim, Daehyun; Sobel, Adam H.; DelGenio, Anthony D.; Chen, Yonghua; Camargo, Suzana J.; Yao, Mao-Sung; Kelley, Maxwell; Nazarenko, Larissa

    2012-01-01

    The tropical subseasonal variability simulated by the Goddard Institute for Space Studies general circulation model, Model E2, is examined. Several versions of Model E2 were developed with changes to the convective parameterization in order to improve the simulation of the Madden-Julian oscillation (MJO). When the convective scheme is modified to have a greater fractional entrainment rate, Model E2 is able to simulate MJO-like disturbances with proper spatial and temporal scales. Increasing the rate of rain reevaporation has additional positive impacts on the simulated MJO. The improvement in MJO simulation comes at the cost of increased biases in the mean state, consistent in structure and amplitude with those found in other GCMs when tuned to have a stronger MJO. By reinitializing a relatively poor-MJO version with restart files from a relatively better-MJO version, a series of 30-day integrations is constructed to examine the impacts of the parameterization changes on the organization of tropical convection. The poor-MJO version with smaller entrainment rate has a tendency to allow convection to be activated over a broader area and to reduce the contrast between dry and wet regimes so that tropical convection becomes less organized. Besides the MJO, the number of tropical-cyclone-like vortices simulated by the model is also affected by changes in the convection scheme. The model simulates a smaller number of such storms globally with a larger entrainment rate, while the number increases significantly with a greater rain reevaporation rate.

  20. A quasi-biennial oscillation signal in general circulation model simulations.

    PubMed

    Cariolle, D; Amodei, M; Déqué, M; Mahfouf, J F; Simon, P; Teyssédre, H

    1993-09-03

    The quasi-biennial oscillation (QBO) is a free atmospheric mode that affects the equatorial lower stratosphere. With a quasi-regular frequency, the mean equatorial zonal wind alternates from easterly to westerly regimes. This oscillation is zonally symmetric about the equator, has its largest amplitude in the latitudinal band from 20 degrees S to 20 degrees N, and has a mean period of about 27 months. The QBO appears to originate in the momentum deposition produced by the damping in the stratosphere of equatorial waves excited by diabatic thermal processes in the troposphere. The results of three 10-year simulations obtained with three general circulation models are reported, all of which show the development in the stratosphere of a QBO signal with a period and a spatial propagating structure that are in good agreement with observations without any ad hoc parameterization of equatorial wave forcing. Although the amplitude of the oscillation in the simulations is still less than the observed value, the result is promising for the development of global climate models.

  1. Verification of the isotopic composition of precipitation simulated by a regional isotope circulation model over Japan.

    PubMed

    Tanoue, Masahiro; Ichiyanagi, Kimpei; Yoshimura, Kei

    2016-01-01

    The isotopic composition (δ(18)O and δ(2)H) of precipitation simulated by a regional isotope circulation model with a horizontal resolution of 10, 30 and 50 km was compared with observations at 56 sites over Japan in 2013. All simulations produced reasonable spatio-temporal variations in δ(18)O in precipitation over Japan, except in January. In January, simulated δ(18)O values in precipitation were higher than observed values on the Pacific side of Japan, especially during an explosively developing extratropical cyclone event. This caused a parameterisation of precipitation formulation about the large fraction of precipitated water to liquid detrained water in the lower troposphere. As a result, most water vapour that transported from the Sea of Japan precipitated on the Sea of Japan side. The isotopic composition of precipitation was a useful verification tool for the parameterisation of precipitation formulation as well as large-scale moisture transport processes in the regional isotope circulation model.

  2. The 0.125 degree finite-volume General Circulation Model on the NASA Columbia Supercomputer: Preliminary Simulations of Mesoscale Vortices

    NASA Technical Reports Server (NTRS)

    Shen, B.-W.; Atlas, R.; Chern, J.-D.; Reale, O.; Lin, S.-J.; Lee, T.; Chang, J.

    2005-01-01

    The NASA Columbia supercomputer was ranked second on the TOP500 List in November, 2004. Such a quantum jump in computing power provides unprecedented opportunities to conduct ultra-high resolution simulations with the finite-volume General Circulation Model (fvGCM). During 2004, the model was run in realtime experimentally at 0.25 degree resolution producing remarkable hurricane forecasts [Atlas et al., 2005]. In 2005, the horizontal resolution was further doubled, which makes the fvGCM comparable to the first mesoscale resolving General Circulation Model at the Earth Simulator Center [Ohfuchi et al., 2004]. Nine 5-day 0.125 degree simulations of three hurricanes in 2004 are presented first for model validation. Then it is shown how the model can simulate the formation of the Catalina eddies and Hawaiian lee vortices, which are generated by the interaction of the synoptic-scale flow with surface forcing, and have never been reproduced in a GCM before.)

  3. Sensitivity simulations of superparameterised convection in a general circulation model

    NASA Astrophysics Data System (ADS)

    Rybka, Harald; Tost, Holger

    2015-04-01

    Cloud Resolving Models (CRMs) covering a horizontal grid spacing from a few hundred meters up to a few kilometers have been used to explicitly resolve small-scale and mesoscale processes. Special attention has been paid to realistically represent cloud dynamics and cloud microphysics involving cloud droplets, ice crystals, graupel and aerosols. The entire variety of physical processes on the small-scale interacts with the larger-scale circulation and has to be parameterised on the coarse grid of a general circulation model (GCM). Since more than a decade an approach to connect these two types of models which act on different scales has been developed to resolve cloud processes and their interactions with the large-scale flow. The concept is to use an ensemble of CRM grid cells in a 2D or 3D configuration in each grid cell of the GCM to explicitly represent small-scale processes avoiding the use of convection and large-scale cloud parameterisations which are a major source for uncertainties regarding clouds. The idea is commonly known as superparameterisation or cloud-resolving convection parameterisation. This study presents different simulations of an adapted Earth System Model (ESM) connected to a CRM which acts as a superparameterisation. Simulations have been performed with the ECHAM/MESSy atmospheric chemistry (EMAC) model comparing conventional GCM runs (including convection and large-scale cloud parameterisations) with the improved superparameterised EMAC (SP-EMAC) modeling one year with prescribed sea surface temperatures and sea ice content. The sensitivity of atmospheric temperature, precipiation patterns, cloud amount and types is observed changing the embedded CRM represenation (orientation, width, no. of CRM cells, 2D vs. 3D). Additionally, we also evaluate the radiation balance with the new model configuration, and systematically analyse the impact of tunable parameters on the radiation budget and hydrological cycle. Furthermore, the subgrid

  4. Experimental Study and CFD Simulation of a 2D Circulating Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Kallio, S.; Guldén, M.; Hermanson, A.

    Computational fluid dynamics (CFD) gains popularity in fluidized bed modeling. For model validation, there is a need of detailed measurements under well-defined conditions. In the present study, experiments were carried out in a 40 em wide and 3 m high 2D circulating fluidized bed. Two experiments were simulated by means of the Eulerian multiphase models of the Fluent CFD software. The vertical pressure and solids volume fraction profiles and the solids circulation rate obtained from the simulation were compared to the experimental results. In addition, lateral volume fraction profiles could be compared. The simulated CFB flow patterns and the profiles obtained from simulations were in general in a good agreement with the experimental results.

  5. Role of a cumulus parameterization scheme in simulating atmospheric circulation and rainfall in the nine-layer Goddard Laboratory for Atmospheres General Circulation Model

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Chao, Winston C.; Walker, G. K.

    1992-01-01

    The influence of a cumulus convection scheme on the simulated atmospheric circulation and hydrologic cycle is investigated by means of a coarse version of the GCM. Two sets of integrations, each containing an ensemble of three summer simulations, were produced. The ensemble sets of control and experiment simulations are compared and differentially analyzed to determine the influence of a cumulus convection scheme on the simulated circulation and hydrologic cycle. The results show that cumulus parameterization has a very significant influence on the simulation circulation and precipitation. The upper-level condensation heating over the ITCZ is much smaller for the experiment simulations as compared to the control simulations; correspondingly, the Hadley and Walker cells for the control simulations are also weaker and are accompanied by a weaker Ferrel cell in the Southern Hemisphere. Overall, the difference fields show that experiment simulations (without cumulus convection) produce a cooler and less energetic atmosphere.

  6. Simulation of the global ocean thermohaline circulation with an eddy-resolving INMIO model configuration

    NASA Astrophysics Data System (ADS)

    Ushakov, K. V.; Ibrayev, R. A.

    2017-11-01

    In this paper, the first results of a simulation of the mean World Ocean thermohaline characteristics obtained by the INMIO ocean general circulation model configured with 0.1 degree resolution in a 5-year long numerical experiment following the CORE-II protocol are presented. The horizontal and zonal mean distributions of the solution bias against the WOA09 data are analyzed. The seasonal cycle of heat content at a specified site of the North Atlantic is also discussed. The simulation results demonstrate a clear improvement in the quality of representation of the upper ocean compared to the results of experiments with 0.5 and 0.25 degree model configurations. Some remaining biases of the model solution and possible ways of their overcoming are highlighted.

  7. South Atlantic Ocean circulation: Simulation experiments with a quasi-geostrophic model and assimilation of TOPEX/POSEIDON and ERS 1 altimeter data

    NASA Astrophysics Data System (ADS)

    Florenchie, P.; Verron, J.

    1998-10-01

    Simulation experiments of South Atlantic Ocean circulations are conducted with a 1/6°, four-layered, quasi-geostrophic model. By means of a simple nudging data assimilation procedure along satellite tracks, TOPEX/POSEIDON and ERS 1 altimeter measurements are introduced into the model to control the simulation of the basin-scale circulation for the period from October 1992 to September 1994. The model circulation appears to be strongly influenced by the introduction of altimeter data, offering a consistent picture of South Atlantic Ocean circulations. Comparisons with observations show that the assimilating model successfully simulates the kinematic behavior of a large number of surface circulation components. The assimilation procedure enables us to produce schematic diagrams of South Atlantic circulation in which patterns ranging from basin-scale currents to mesoscale eddies are portrayed in a realistic way, with respect to their complexity. The major features of the South Atlantic circulation are described and analyzed, with special emphasis on the Brazil-Malvinas Confluence region, the Subtropical Gyre with the formation of frontal structures, and the Agulhas Retroflection. The Agulhas eddy-shedding process has been studied extensively. Fourteen eddies appear to be shed during the 2-year experiment. Because of their strong surface topographic signature, Agulhas eddies have been tracked continuously during the assimilation experiment as they cross the South Atlantic basin westward. Other effects of the assimilation procedure are shown, such as the intensification of the Subtropical Gyre, the appearance of a strong seasonal cycle in the Brazil Current transport, and the increase of the mean Brazil Current transport. This last result, combined with the westward oriention of the Agulhas eddies' trajectories, leads to a southward transport of mean eddy kinetic energy across 30°S.

  8. Circulation and rainfall climatology of a 10-year (1979 - 1988) integration with the Goddard Laboratory for atmospheres general circulation model

    NASA Technical Reports Server (NTRS)

    Kim, J.-H.; Sud, Y. C.

    1993-01-01

    A 10-year (1979-1988) integration of Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) under Atmospheric Model Intercomparison Project (AMIP) is analyzed and compared with observation. The first momentum fields of circulation variables and also hydrological variables including precipitation, evaporation, and soil moisture are presented. Our goals are (1) to produce a benchmark documentation of the GLA GCM for future model improvements; (2) to examine systematic errors between the simulated and the observed circulation, precipitation, and hydrologic cycle; (3) to examine the interannual variability of the simulated atmosphere and compare it with observation; and (4) to examine the ability of the model to capture the major climate anomalies in response to events such as El Nino and La Nina. The 10-year mean seasonal and annual simulated circulation is quite reasonable compared to the analyzed circulation, except the polar regions and area of high orography. Precipitation over tropics are quite well simulated, and the signal of El Nino/La Nina episodes can be easily identified. The time series of evaporation and soil moisture in the 12 biomes of the biosphere also show reasonable patterns compared to the estimated evaporation and soil moisture.

  9. Simulation of the planetary boundary layer with the UCLA general circulation model

    NASA Technical Reports Server (NTRS)

    Suarez, M. J.; Arakawa, A.; Randall, D. A.

    1981-01-01

    A planetary boundary layer (PBL) model is presented which employs a mixed layer entrainment formulation to describe the mass exchange between the mixed layer with the upper, laminar atmosphere. A modified coordinate system couples the mixed layer model with large scale and sub-grid scale processes of a general circulation model. The vertical coordinate is configured as a sigma coordinate with the lower boundary, the top of the PBL, and the prescribed pressure level near the tropopause expressed as coordinate surfaces. The entrainment mass flux is parameterized by assuming the dissipation rate of turbulent kinetic energy to be proportional to the positive part of the generation by convection or mechanical production. The results of a simulation of July are presented for the entire globe.

  10. Thermohaline circulation and its box models simulation

    NASA Astrophysics Data System (ADS)

    Bazyura, Kateryna; Polonsky, Alexander; Sannikov, Viktor

    2014-05-01

    Ocean Thermochaline circulation (THC) is the part of large-scale World Ocean circulation and one of the main climate system components. It is generated by global meridional density gradients, which are controlled by surface heat and freshwater fluxes. THC regulates climate variability on different timescales (from decades to thousands years) [Stocker (2000), Clark (2002)]. Study of paleoclimatic evidences of abrupt and dramatic changes in ocean-atmosphere system in the past (such as, Dansgaard-Oeschger and Heinrich events or Younger Dryas, see e.g., [Rahmstorf (2002), Alley & Clark(1999)]) shows that these events are connected with THC regimes. At different times during last 120,000 years, three THC modes have prevailed in the Atlantic. They can be labeled as stadial, interstadial and Heinrich modes or as cold, warm and off mode. THC collapse (or thermohaline catastrophe) can be one of the consequences of global warming (including modern anthropogenic climate changes occurring at the moment). The ideas underlying different box-model studies, possibility of thermochaline catastrophe in present and past are discussed in this presentation. Response of generalized four box model of North Atlantic thermohaline circulation [developing the model of Griffies & Tzippermann (1995)] on periodic, stochastic and linear forcing is studied in details. To estimate climatic parameters of the box model we used monthly salinity and temperature data of ECMWF operational Ocean Reanalysis System 3 (ORA-S3) and data from atmospheric NCEP/NCAR reanalysis on precipitation, and heat fluxes for 1959-2011. Mean values, amplitude of seasonal cycle, amplitudes and periods of typical interdecadal oscillations, white noise level, linear trend coefficients and their significance level were estimated for every hydrophysical parameter. In response to intense freshwater or heat forcing, THC regime can change resulting in thermohaline catastrophe. We analyze relevant thresholds of external forcing in

  11. Dust Emissions, Transport, and Deposition Simulated with the NASA Finite-Volume General Circulation Model

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; daSilva, Arlindo; Ginoux, Paul; Chin, Mian; Lin, S.-J.

    2003-01-01

    Mineral dust aerosols have radiative impacts on Earth's atmosphere, have been implicated in local and regional air quality issues, and have been identified as vectors for transporting disease pathogens and bringing mineral nutrients to terrestrial and oceanic ecosystems. We present for the first time dust simulations using online transport and meteorological analysis in the NASA Finite-Volume General Circulation Model (FVGCM). Our dust formulation follows the formulation in the offline Georgia Institute of Technology-Goddard Global Ozone Chemistry Aerosol Radiation and Transport Model (GOCART) using a topographical source for dust emissions. We compare results of the FVGCM simulations with GOCART, as well as with in situ and remotely sensed observations. Additionally, we estimate budgets of dust emission and transport into various regions.

  12. Simulation of the summer circulation over South America by two regional climate models. Part I: Mean climatology

    NASA Astrophysics Data System (ADS)

    Fernandez, J. P. R.; Franchito, S. H.; Rao, V. B.

    2006-09-01

    This study investigates the capabilities of two regional models (the ICTP RegCM3 and the climate version of the CPTEC Eta model - EtaClim) in simulating the mean climatological features of the summer quasi-stationary circulations over South America. Comparing the results with the NCEP/DOE reanalysis II data it is seen that the RegCM3 simulates a weaker and southward shifted Bolivian high (BH). But, the Nordeste low (NL) is located close to its climatological position. In the EtaClim the position of the BH is reproduced well, but the NL is shifted towards the interior of the continent. To the east of Andes, the RegCM3 simulates a weaker low level jet and a weaker basic flow from the tropical Atlantic to Amazonia while they are stronger in the EtaClim. In general, the RegCM3 and EtaClim show, respectively a negative and positive bias in the surface temperature in almost all regions of South America. For both models, the correlation coefficients between the simulated precipitation and the GPCP data are high over most of South America. Although the RegCM3 and EtaClim overestimate the precipitation in the Andes region they show a negative bias in general over the entire South America. The simulations of upper and lower level circulations and precipitation fields in EtaClim were better than that of the RegCM3. In central Amazonia both models were unable to simulate the precipitation correctly. The results showed that although the RegCM3 and EtaClim are capable of simulating the main climatological features of the summer climate over South America, there are areas which need improvement. This indicates that the models must be more adequately tuned in order to give reliable predictions in the different regions of South America.

  13. Martian atmospheric gravity waves simulated by a high-resolution general circulation model

    NASA Astrophysics Data System (ADS)

    Kuroda, Takeshi; Yiǧit, Erdal; Medvedev, Alexander S.; Hartogh, Paul

    2016-07-01

    Gravity waves (GWs) significantly affect temperature and wind fields in the Martian middle and upper atmosphere. They are also one of the observational targets of the MAVEN mission. We report on the first simulations with a high-resolution general circulation model (GCM) and present a global distributions of small-scale GWs in the Martian atmosphere. The simulated GW-induced temperature variances are in a good agreement with available radio occultation data in the lower atmosphere between 10 and 30 km. For the northern winter solstice, the model reveals a latitudinal asymmetry with stronger wave generation in the winter hemisphere and two distinctive sources of GWs: mountainous regions and the meandering winter polar jet. Orographic GWs are filtered upon propagating upward, and the mesosphere is primarily dominated by harmonics with faster horizontal phase velocities. Wave fluxes are directed mainly against the local wind. GW dissipation in the upper mesosphere generates a body force per unit mass of tens of m s^{-1} per Martian solar day (sol^{-1}), which tends to close the simulated jets. The results represent a realistic surrogate for missing observations, which can be used for constraining GW parameterizations and validating GCMs.

  14. Large eddy simulation model for wind-driven sea circulation in coastal areas

    NASA Astrophysics Data System (ADS)

    Petronio, A.; Roman, F.; Nasello, C.; Armenio, V.

    2013-12-01

    In the present paper a state-of-the-art large eddy simulation model (LES-COAST), suited for the analysis of water circulation and mixing in closed or semi-closed areas, is presented and applied to the study of the hydrodynamic characteristics of the Muggia bay, the industrial harbor of the city of Trieste, Italy. The model solves the non-hydrostatic, unsteady Navier-Stokes equations, under the Boussinesq approximation for temperature and salinity buoyancy effects, using a novel, two-eddy viscosity Smagorinsky model for the closure of the subgrid-scale momentum fluxes. The model employs: a simple and effective technique to take into account wind-stress inhomogeneity related to the blocking effect of emerged structures, which, in turn, can drive local-scale, short-term pollutant dispersion; a new nesting procedure to reconstruct instantaneous, turbulent velocity components, temperature and salinity at the open boundaries of the domain using data coming from large-scale circulation models (LCM). Validation tests have shown that the model reproduces field measurement satisfactorily. The analysis of water circulation and mixing in the Muggia bay has been carried out under three typical breeze conditions. Water circulation has been shown to behave as in typical semi-closed basins, with an upper layer moving along the wind direction (apart from the anti-cyclonic veering associated with the Coriolis force) and a bottom layer, thicker and slower than the upper one, moving along the opposite direction. The study has shown that water vertical mixing in the bay is inhibited by a large level of stable stratification, mainly associated with vertical variation in salinity and, to a minor extent, with temperature variation along the water column. More intense mixing, quantified by sub-critical values of the gradient Richardson number, is present in near-coastal regions where upwelling/downwelling phenomena occur. The analysis of instantaneous fields has detected the presence of

  15. Numerical Simulation of Regional Circulation in the Monterey Bay Region

    NASA Technical Reports Server (NTRS)

    Tseng, Y. H.; Dietrich, D. E.; Ferziger, J. H.

    2003-01-01

    The objective of this study is to produce a high-resolution numerical model of Mon- terey Bay area in which the dynamics are determined by the complex geometry of the coastline, steep bathymetry, and the in uence of the water masses that constitute the CCS. Our goal is to simulate the regional-scale ocean response with realistic dynamics (annual cycle), forcing, and domain. In particular, we focus on non-hydrostatic e ects (by comparing the results of hydrostatic and non-hydrostatic models) and the role of complex geometry, i.e. the bay and submarine canyon, on the nearshore circulation. To the best of our knowledge, the current study is the rst to simulate the regional circulation in the vicinity of Monterey Bay using a non-hydrostatic model. Section 2 introduces the high resolution Monterey Bay area regional model (MBARM). Section 3 provides the results and veri cation with mooring and satellite data. Section 4 compares the results of hydrostatic and non-hydrostatic models.

  16. Performance of the general circulation models in simulating temperature and precipitation over Iran

    NASA Astrophysics Data System (ADS)

    Abbasian, Mohammadsadegh; Moghim, Sanaz; Abrishamchi, Ahmad

    2018-03-01

    General Circulation Models (GCMs) are advanced tools for impact assessment and climate change studies. Previous studies show that the performance of the GCMs in simulating climate variables varies significantly over different regions. This study intends to evaluate the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs in simulating temperature and precipitation over Iran. Simulations from 37 GCMs and observations from the Climatic Research Unit (CRU) were obtained for the period of 1901-2005. Six measures of performance including mean bias, root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), linear correlation coefficient (r), Kolmogorov-Smirnov statistic (KS), Sen's slope estimator, and the Taylor diagram are used for the evaluation. GCMs are ranked based on each statistic at seasonal and annual time scales. Results show that most GCMs perform reasonably well in simulating the annual and seasonal temperature over Iran. The majority of the GCMs have a poor skill to simulate precipitation, particularly at seasonal scale. Based on the results, the best GCMs to represent temperature and precipitation simulations over Iran are the CMCC-CMS (Euro-Mediterranean Center on Climate Change) and the MRI-CGCM3 (Meteorological Research Institute), respectively. The results are valuable for climate and hydrometeorological studies and can help water resources planners and managers to choose the proper GCM based on their criteria.

  17. Renewed circulation scheme of the Baltic Sea - based on the 40-year simulation with GETM.

    NASA Astrophysics Data System (ADS)

    Maljutenko, Ilja; Raudsepp, Urmas

    2015-04-01

    The general circulation of the Baltic Sea has been characterized as cyclonic in all sub-basins based on numerous measurements and model simulations. From the long-term hydrodynamical simulation our model results have verified the general cyclonic circulation in the Baltic Proper and in the Gulf of Bothnia, but the Gulf of Finland and the Gulf of Riga have shown tendency to anticyclonic circulation. We have applied the General Estuarine Transport Model ( GETM ) for the period of 1966 - 2006 with a 1 nautical mile horizontal resolution and density adaptive bottom following vertical coordinates to make it possible to simulate horizontal and vertical density gradients with better precision. The atmospheric forcing from dynamically downscaled ERA40-HIRLAM and parametrized lateral boundary conditions are applied. Model simulation show close agreement with measurements conducted in the main monitoring stations in the BS during the simulation period. The geostrophic adjustment of density driven currents along with the upward salinity flux due to entrainment could explain the anticyclonic circulation and strong coastal current. Mean vertical velocities show that upward and downward movements are forming closed vertical circulation loops along the bottom slope of the Baltic Proper and the Gulf of Bothnia. The model has also reproduced patchy vertical movement across the BS with some distinctive areas of upward advective fluxes in the GoF along the thalweg. The distinctive areas of deepwater upwelling are also evident in the Gdansk Basin, western Gotland Basin, northern Gotland Basin and in the northen part of the Bothnia Sea.

  18. General-circulation-model simulations of future snowpack in the western United States

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    1999-01-01

    April 1 snowpack accumulations measured at 311 snow courses in the western United States (U.S.) are grouped using a correlation-based cluster analysis. A conceptual snow accumulation and melt model and monthly temperature and precipitation for each cluster are used to estimate cluster-average April 1 snowpack. The conceptual snow model is subsequently used to estimate future snowpack by using changes in monthly temperature and precipitation simulated by the Canadian Centre for Climate Modeling and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HADLEY) general circulation models (GCMs). Results for the CCC model indicate that although winter precipitation is estimated to increase in the future, increases in temperatures will result in large decreases in April 1 snowpack for the entire western US. Results for the HADLEY model also indicate large decreases in April 1 snowpack for most of the western US, but the decreases are not as severe as those estimated using the CCC simulations. Although snowpack conditions are estimated to decrease for most areas of the western US, both GCMs estimate a general increase in winter precipitation toward the latter half of the next century. Thus, water quantity may be increased in the western US; however, the timing of runoff will be altered because precipitation will more frequently occur as rain rather than as snow.

  19. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    NASA Astrophysics Data System (ADS)

    Bowden, Jared H.; Nolte, Christopher G.; Otte, Tanya L.

    2013-04-01

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscaling of global climate model (GCM) output for air quality applications under a changing climate. In this study we downscale the NCEP-Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis using three continuous 20-year WRF simulations: one simulation without interior grid nudging and two using different interior grid nudging methods. The biases in 2-m temperature and precipitation for the simulation without interior grid nudging are unreasonably large with respect to the North American Regional Reanalysis (NARR) over the eastern half of the contiguous United States (CONUS) during the summer when air quality concerns are most relevant. This study examines how these differences arise from errors in predicting the large-scale atmospheric circulation. It is demonstrated that the Bermuda high, which strongly influences the regional climate for much of the eastern half of the CONUS during the summer, is poorly simulated without interior grid nudging. In particular, two summers when the Bermuda high was west (1993) and east (2003) of its climatological position are chosen to illustrate problems in the large-scale atmospheric circulation anomalies. For both summers, WRF without interior grid nudging fails to simulate the placement of the upper-level anticyclonic (1993) and cyclonic (2003) circulation anomalies. The displacement of the large-scale circulation impacts the lower atmosphere moisture transport and precipitable water, affecting the convective environment and precipitation. Using interior grid nudging improves the large-scale circulation aloft and moisture transport/precipitable water anomalies, thereby improving the simulated 2-m temperature and precipitation

  20. Narrowing of the Upwelling Branch of the Brewer-Dobson Circulation and Hadley Cell in Chemistry-Climate Model Simulations of the 21st Century

    NASA Technical Reports Server (NTRS)

    Li, Feng; Stolarski, Richard S.; Pawson, Steven; Newman, Paul A.; Waugh, Darryn

    2010-01-01

    Changes in the width of the upwelling branch of the Brewer-Dobson circulation and Hadley cell in the 21st Century are investigated using simulations from a coupled chemistry-climate model. In these model simulations the tropical upwelling region narrows in the troposphere and lower stratosphere. The narrowing of the Brewer-Dobson circulation is caused by an equatorward shift of Rossby wave critical latitudes and Eliassen-Palm flux convergence in the subtropical lower stratosphere. In the troposphere, the model projects an expansion of the Hadley cell's poleward boundary, but a narrowing of the Hadley rising branch. Model results suggest that the narrowing of the Hadley cell ascent is also eddy-driven.

  1. Simulation of the early Martian climate using a general circulation model, DRAMATIC MGCM: Impacts of thermal inertia

    NASA Astrophysics Data System (ADS)

    Kamada, A.; Kuroda, T.; Kasaba, Y.; Terada, N.; Akiba, T.

    2017-09-01

    Our Mars General Circulation Model was used to reproduce the early Martian climate which was thought to be warm and wet. Our simulation with high thermal inertia assuming wet soils and ancient ocean/lakes succeeded in producing the surface temperature above 273K throughout a year in low-mid latitudes of northern hemisphere.

  2. A comparison between general circulation model simulations using two sea surface temperature datasets for January 1979

    NASA Technical Reports Server (NTRS)

    Ose, Tomoaki; Mechoso, Carlos; Halpern, David

    1994-01-01

    Simulations with the UCLA atmospheric general circulation model (AGCM) using two different global sea surface temperature (SST) datasets for January 1979 are compared. One of these datasets is based on Comprehensive Ocean-Atmosphere Data Set (COADS) (SSTs) at locations where there are ship reports, and climatology elsewhere; the other is derived from measurements by instruments onboard NOAA satellites. In the former dataset (COADS SST), data are concentrated along shipping routes in the Northern Hemisphere; in the latter dataset High Resolution Infrared Sounder (HIRS SST), data cover the global domain. Ensembles of five 30-day mean fields are obtained from integrations performed in the perpetual-January mode. The results are presented as anomalies, that is, departures of each ensemble mean from that produced in a control simulation with climatological SSTs. Large differences are found between the anomalies obtained using COADS and HIRS SSTs, even in the Northern Hemisphere where the datasets are most similar to each other. The internal variability of the circulation in the control simulation and the simulated atmospheric response to anomalous forcings appear to be linked in that the pattern of geopotential height anomalies obtained using COADS SSTs resembles the first empirical orthogonal function (EOF 1) in the control simulation. The corresponding pattern obtained using HIRS SSTs is substantially different and somewhat resembles EOF 2 in the sector from central North America to central Asia. To gain insight into the reasons for these results, three additional simulations are carried out with SST anomalies confined to regions where COADS SSTs are substantially warmer than HIRS SSTs. The regions correspond to warm pools in the northwest and northeast Pacific, and the northwest Atlantic. These warm pools tend to produce positive geopotential height anomalies in the northeastern part of the corresponding oceans. Both warm pools in the Pacific produce large

  3. Simulating pathways of subsurface oil in the Faroe-Shetland Channel using an ocean general circulation model.

    PubMed

    Main, C E; Yool, A; Holliday, N P; Popova, E E; Jones, D O B; Ruhl, H A

    2017-01-15

    Little is known about the fate of subsurface hydrocarbon plumes from deep-sea oil well blowouts and their effects on processes and communities. As deepwater drilling expands in the Faroe-Shetland Channel (FSC), oil well blowouts are a possibility, and the unusual ocean circulation of this region presents challenges to understanding possible subsurface oil pathways in the event of a spill. Here, an ocean general circulation model was used with a particle tracking algorithm to assess temporal variability of the oil-plume distribution from a deep-sea oil well blowout in the FSC. The drift of particles was first tracked for one year following release. Then, ambient model temperatures were used to simulate temperature-mediated biodegradation, truncating the trajectories of particles accordingly. Release depth of the modeled subsurface plumes affected both their direction of transport and distance travelled from their release location, and there was considerable interannual variability in transport. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Jones, Greg; Lin, John C.

    2011-01-01

    Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, C(sub u), of 0:047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the C(sub u) 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.

  5. An integrated coronary circulation teaching model.

    PubMed

    van Oostrom, Johannes H; Kentgens, S; Beneken, J E W; Gravenstein, J S

    2006-08-01

    We present in this paper a model of the coronary circulation. This model is integrated with a model of the systemic circulation, and contains models for oxygen supply and demand. Three compartments are created: one for the right ventricle, one for the epicardial segment of the left ventricle and one for the endo-cardial segment of the left ventricle. The model was implemented in the Java programming language and contains a visual representation of the left and right ventricles which beat in real time. Color shading is used to represent the partial pressure of oxygen in the segments. A multitude of model parameters can be changed to simulate different scenarios. The output of the model was characterized under different conditions and the results verified by clinicians. Educational models of human physiology can be very useful for a more in depth understanding of complete physiologic systems. The models must however have enough complexity, interaction with other systems, and realism to show the concepts being taught.

  6. Simulations of Variability and Waves at Cloud Altitudes Using a Venus Middle Atmosphere General Circulation Model

    NASA Astrophysics Data System (ADS)

    Parish, H. F.; Mitchell, J.

    2017-12-01

    We have developed a Venus general circulation model, the Venus Middle atmosphere Model (VMM), to simulate the atmosphere from just below the cloud deck 40 km altitude to around 100 km altitude. Our primary goal is to assess the influence of waves on the variability of winds and temperatures observed around Venus' cloud deck. Venus' deep atmosphere is not simulated directly in the VMM model, so the effects of waves propagating upwards from the lower atmosphere is represented by forcing at the lower boundary of the model. Sensitivity tests allow appropriate amplitudes for the wave forcing to be determined by comparison with Venus Express and probe measurements and allow the influence of waves on the cloud-level atmosphere to be investigated. Observations at cloud altitudes are characterized by waves with a wide variety of periods and wavelengths, including gravity waves, thermal tides, Rossby waves, and Kelvin waves. These waves may be generated within the cloud deck by instabilities, or may propagate up from the deep atmosphere. Our development of the VMM is motivated by the fact that the circulation and dynamics between the surface and the cloud levels are not well measured and wind velocities below 40 km altitude cannot be observed remotely, so we focus on the dynamics at cloud levels and above. Initial results from the VMM with a simplified radiation scheme have been validated by comparison with Pioneer Venus and Venus Express observations and show reasonable agreement with the measurements.

  7. MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passos, Dário; Charbonneau, Paul; Miesch, Mark, E-mail: dariopassos@ist.utl.pt

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone atmore » mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.« less

  8. Meridional Circulation Dynamics from 3D Magnetohydrodynamic Global Simulations of Solar Convection

    NASA Astrophysics Data System (ADS)

    Passos, Dário; Charbonneau, Paul; Miesch, Mark

    2015-02-01

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 {{R}⊙ }). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.

  9. Modeling and simulation of enzymatic gluconic acid production using immobilized enzyme and CSTR-PFTR circulation reaction system.

    PubMed

    Li, Can; Lin, Jianqun; Gao, Ling; Lin, Huibin; Lin, Jianqiang

    2018-04-01

    Production of gluconic acid by using immobilized enzyme and continuous stirred tank reactor-plug flow tubular reactor (CSTR-PFTR) circulation reaction system. A production system is constructed for gluconic acid production, which consists of a continuous stirred tank reactor (CSTR) for pH control and liquid storage and a plug flow tubular reactor (PFTR) filled with immobilized glucose oxidase (GOD) for gluconic acid production. Mathematical model is developed for this production system and simulation is made for the enzymatic reaction process. The pH inhibition effect on GOD is modeled by using a bell-type curve. Gluconic acid can be efficiently produced by using the reaction system and the mathematical model developed for this system can simulate and predict the process well.

  10. Numerical simulation of terrain-induced mesoscale circulation in the Chiang Mai area, Thailand

    NASA Astrophysics Data System (ADS)

    Sathitkunarat, Surachai; Wongwises, Prungchan; Pan-Aram, Rudklao; Zhang, Meigen

    2008-11-01

    The regional atmospheric modeling system (RAMS) was applied to Chiang Mai province, a mountainous area in Thailand, to study terrain-induced mesoscale circulations. Eight cases in wet and dry seasons under different weather conditions were analyzed to show thermal and dynamic impacts on local circulations. This is the first study of RAMS in Thailand especially investigating the effect of mountainous area on the simulated meteorological data. Analysis of model results indicates that the model can reproduce major features of local circulation and diurnal variations in temperatures. For evaluating the model performance, model results were compared with observed wind speed, wind direction, and temperature monitored at a meteorological tower. Comparison shows that the modeled values are generally in good agreement with observations and that the model captured many of the observed features.

  11. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    PubMed

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  12. The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model

    NASA Astrophysics Data System (ADS)

    Rodríguez, José M.; Milton, Sean F.; Marzin, Charline

    2017-10-01

    In this study the low-level monsoon circulation and observed sources of moisture responsible for the maintenance and seasonal evolution of the East Asian monsoon are examined, studying the detailed water budget components. These observational estimates are contrasted with the Met Office Unified Model (MetUM) climate simulation performance in capturing the circulation and water cycle at a variety of model horizontal resolutions and in fully coupled ocean-atmosphere simulations. We study the role of large-scale circulation in determining the hydrological cycle by analyzing key systematic errors in the model simulations. MetUM climate simulations exhibit robust circulation errors, including a weakening of the summer west Pacific Subtropical High, which leads to an underestimation of the southwesterly monsoon flow over the region. Precipitation and implied diabatic heating biases in the South Asian monsoon and Maritime Continent region are shown, via nudging sensitivity experiments, to have an impact on the East Asian monsoon circulation. By inference, the improvement of these tropical biases with increased model horizontal resolution is hypothesized to be a factor in improvements seen over East Asia with increased resolution. Results from the annual cycle of the hydrological budget components in five domains show a good agreement between MetUM simulations and ERA-Interim reanalysis in northern and Tibetan domains. In simulations, the contribution from moisture convergence is larger than in reanalysis, and they display less precipitation recycling over land. The errors are closely linked to monsoon circulation biases.

  13. Evaluation of rainfall simulations over West Africa in dynamically downscaled CMIP5 global circulation models

    NASA Astrophysics Data System (ADS)

    Akinsanola, A. A.; Ajayi, V. O.; Adejare, A. T.; Adeyeri, O. E.; Gbode, I. E.; Ogunjobi, K. O.; Nikulin, G.; Abolude, A. T.

    2018-04-01

    This study presents evaluation of the ability of Rossby Centre Regional Climate Model (RCA4) driven by nine global circulation models (GCMs), to skilfully reproduce the key features of rainfall climatology over West Africa for the period of 1980-2005. The seasonal climatology and annual cycle of the RCA4 simulations were assessed over three homogenous subregions of West Africa (Guinea coast, Savannah, and Sahel) and evaluated using observed precipitation data from the Global Precipitation Climatology Project (GPCP). Furthermore, the model output was evaluated using a wide range of statistical measures. The interseasonal and interannual variability of the RCA4 were further assessed over the subregions and the whole of the West Africa domain. Results indicate that the RCA4 captures the spatial and interseasonal rainfall pattern adequately but exhibits a weak performance over the Guinea coast. Findings from the interannual rainfall variability indicate that the model performance is better over the larger West Africa domain than the subregions. The largest difference across the RCA4 simulated annual rainfall was found in the Sahel. Result from the Mann-Kendall test showed no significant trend for the 1980-2005 period in annual rainfall either in GPCP observation data or in the model simulations over West Africa. In many aspects, the RCA4 simulation driven by the HadGEM2-ES perform best over the region. The use of the multimodel ensemble mean has resulted to the improved representation of rainfall characteristics over the study domain.

  14. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations.

    PubMed

    Safaei, Soroush; Blanco, Pablo J; Müller, Lucas O; Hellevik, Leif R; Hunter, Peter J

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data.

  15. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations

    PubMed Central

    Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979

  16. Development of an Accident Reproduction Simulator System Using a Hemodialysis Extracorporeal Circulation System

    PubMed Central

    Nishite, Yoshiaki; Takesawa, Shingo

    2016-01-01

    Background: Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. Objectives: The aim of this study was to create an extracorporeal circulation system (hereinafter, the circulation system) for dialysis machines so that it sets off five types of alarms for: 1) decreased arterial pressure, 2) increased arterial pressure, 3) decreased venous pressure, 4) increased venous pressure, and 5) blood leakage, according to the five types of accidents chosen based on their frequency of occurrence and the degree of severity. Materials and Methods: In order to verify the alarm from the dialysis apparatus connected to the circulation system and the accident corresponding to it, an evaluation of the alarm for its reproducibility of an accident was performed under normal treatment circumstances. The method involved testing whether the dialysis apparatus raised the desired alarm from the moment of control of the circulation system, and measuring the time it took until the desired alarm was activated. This was tested on five main models from four dialyzer manufacturers that are currently used in Japan. Results: The results of the tests demonstrated successful activation of the alarms by the dialysis apparatus, which were appropriate for each of the five types of accidents. The time between the control of the circulatory system to the alarm signal was as follows, 1) venous pressure lower limit alarm: 7 seconds; 2) venous pressure lower limit: 8 seconds; 3) venous pressure upper limit: 7 seconds; 4) venous pressure lower limit alarm: 2 seconds; and 5) blood leakage alarm: 19 seconds. All alarms were set off in under 20 seconds. Conclusions: Thus, we can conclude that a simulator system using an extracorporeal

  17. Development of an Accident Reproduction Simulator System Using a Hemodialysis Extracorporeal Circulation System.

    PubMed

    Nishite, Yoshiaki; Takesawa, Shingo

    2016-01-01

    Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. The aim of this study was to create an extracorporeal circulation system (hereinafter, the circulation system) for dialysis machines so that it sets off five types of alarms for: 1) decreased arterial pressure, 2) increased arterial pressure, 3) decreased venous pressure, 4) increased venous pressure, and 5) blood leakage, according to the five types of accidents chosen based on their frequency of occurrence and the degree of severity. In order to verify the alarm from the dialysis apparatus connected to the circulation system and the accident corresponding to it, an evaluation of the alarm for its reproducibility of an accident was performed under normal treatment circumstances. The method involved testing whether the dialysis apparatus raised the desired alarm from the moment of control of the circulation system, and measuring the time it took until the desired alarm was activated. This was tested on five main models from four dialyzer manufacturers that are currently used in Japan. The results of the tests demonstrated successful activation of the alarms by the dialysis apparatus, which were appropriate for each of the five types of accidents. The time between the control of the circulatory system to the alarm signal was as follows, 1) venous pressure lower limit alarm: 7 seconds; 2) venous pressure lower limit: 8 seconds; 3) venous pressure upper limit: 7 seconds; 4) venous pressure lower limit alarm: 2 seconds; and 5) blood leakage alarm: 19 seconds. All alarms were set off in under 20 seconds. Thus, we can conclude that a simulator system using an extracorporeal circulation system can be set to different models of dialyzers, and that

  18. A thermosphere-ionosphere-mesosphere-electrodynamic general circulation model (time-GCM): Equinox solar cycle minimum simulations (30-500 km)

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Ridley, E. C.

    1994-01-01

    A new simulation model of the mesosphere, thermosphere, and ionosphere with coupled electrodynamics has been developed and used to calculate the global circulation, temperature and compositional structure between 30-500 km for equinox, solar cycle minimum, geomagnetic quiet conditions. The model incorporates all of the features of the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere- electrodynamics general circulation model (TIE-GCM) but the lower boundary has been extended downward from 97 to 30 km (10 mb) and it includes the physical and chemical processes appropriate for the mesosphere and upper stratosphere. The first simulation used Rayleigh friction to represent gravity wave drag in the middle atmosphere and although it was able to close the mesospheric jets it severely damped the diurnal tide. Reduced Rayleigh friction allowed the tide to penetrate to thermospheric heights but did not close the jets. A gravity wave parameterization developed by Fritts and Lu (1993) allows both features to exist simultaneously with the structure of tides and mean flow dependent upon the strength of the gravity wave source. The model calculates a changing dynamic structure with the mean flow and diurnal tide dominant in the mesosphere, the in-situ generated semi-diurnal tide dominating the lower thermosphere and an in-situ generated diurnal tide in the upper thermosphere. The results also show considerable interaction between dynamics and composition, especially atomic oxygen between 85 and 120 km.

  19. Time-varying changes in the simulated structure of the Brewer-Dobson Circulation

    NASA Astrophysics Data System (ADS)

    Garfinkel, Chaim I.; Aquila, Valentina; Waugh, Darryn W.; Oman, Luke D.

    2017-01-01

    A series of simulations using the NASA Goddard Earth Observing System Chemistry Climate Model are analyzed in order to assess changes in the Brewer-Dobson Circulation (BDC) over the past 55 years. When trends are computed over the past 55 years, the BDC accelerates throughout the stratosphere, consistent with previous modeling results. However, over the second half of the simulations (i.e., since the late 1980s), the model simulates structural changes in the BDC as the temporal evolution of the BDC varies between regions in the stratosphere. In the mid-stratosphere in the midlatitude Northern Hemisphere, the BDC does not accelerate in the ensemble mean of our simulations despite increases in greenhouse gas concentrations and warming sea surface temperatures, and it even decelerates in one ensemble member. This deceleration is reminiscent of changes inferred from satellite instruments and in situ measurements. In contrast, the BDC in the lower stratosphere continues to accelerate. The main forcing agents for the recent slowdown in the mid-stratosphere appear to be declining ozone-depleting substance (ODS) concentrations and the timing of volcanic eruptions. Changes in both mean age of air and the tropical upwelling of the residual circulation indicate a lack of recent acceleration. We therefore clarify that the statement that is often made that climate models simulate a decreasing age throughout the stratosphere only applies over long time periods and is not necessarily the case for the past 25 years, when most tracer measurements were taken.

  20. Time-Varying Changes in the Simulated Structure of the Brewer-Dobson Circulation

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Aquila, Valentina; Waugh, Darryn W.; Oman, Luke D.

    2017-01-01

    A series of simulations using the NASA Goddard Earth Observing System Chemistry Climate Model are analyzed in order to assess changes in the Brewer-Dobson Circulation (BDC) over the past 55 years. When trends are computed over the past 55 years, the BDC accelerates throughout the stratosphere, consistent with previous modeling results. However, over the second half of the simulations (i.e., since the late 1980s), the model simulates structural changes in the BDC as the temporal evolution of the BDC varies between regions in the stratosphere. In the mid-stratosphere in the midlatitude Northern Hemisphere, the BDC does not accelerate in the ensemble mean of our simulations despite increases in greenhouse gas concentrations and warming sea surface temperatures, and it even decelerates in one ensemble member. This deceleration is reminiscent of changes inferred from satellite instruments and in situ measurements. In contrast, the BDC in the lower stratosphere continues to accelerate. The main forcing agents for the recent slowdown in the mid-stratosphere appear to be declining ozone-depleting substance (ODS) concentrations and the timing of volcanic eruptions. Changes in both mean age of air and the tropical upwelling of the residual circulation indicate a lack of recent acceleration. We therefore clarify that the statement that is often made that climate models simulate a decreasing age throughout the stratosphere only applies over long time periods and is not necessarily the case for the past 25 years, when most tracer measurements were taken.

  1. Numerical simulation of velocity and temperature fields in natural circulation loop

    NASA Astrophysics Data System (ADS)

    Sukomel, L. A.; Kaban'kov, O. N.

    2017-11-01

    Low flow natural circulation regimes are realized in many practical applications and the existence of the reliable engineering and design calculation methods of flows driven exclusively by buoyancy forces is an actual problem. In particular it is important for the analysis of start up regimes of passive safety systems of nuclear power plants. In spite of a long year investigations of natural circulation loops no suitable predicting recommendations for heat transfer and friction for the above regimes have been proposed for engineering practice and correlations for forced flow are commonly used which considerably overpredicts the real flow velocities. The 2D numerical simulation of velocity and temperature fields in circular tubes for laminar flow natural circulation with reference to the laboratory experimental loop has been carried out. The results were compared with the 1D modified model and experimental data obtained on the above loop. The 1D modified model was still based on forced flow correlations, but in these correlations the physical properties variability and the existence of thermal and hydrodynamic entrance regions are taken into account. The comparison of 2D simulation, 1D model calculations and the experimental data showed that even subject to influence of liquid properties variability and entrance regions on heat transfer and friction the use of 1D model with forced flow correlations do not improve the accuracy of calculations. In general, according to 2D numerical simulation the wall shear stresses are mainly affected by the change of wall velocity gradient due to practically continuous velocity profiles deformation along the whole heated zone. The form of velocity profiles and the extent of their deformation in its turn depend upon the wall heat flux density and the hydraulic diameter.

  2. Interannual Variability of Martian Global Dust Storms: Simulations with a Low-Order Model of the General Circulation

    NASA Technical Reports Server (NTRS)

    Pankine, A. A.; Ingersoll, Andrew P.

    2002-01-01

    We present simulations of the interannual variability of martian global dust storms (GDSs) with a simplified low-order model (LOM) of the general circulation. The simplified model allows one to conduct computationally fast long-term simulations of the martian climate system. The LOM is constructed by Galerkin projection of a 2D (zonally averaged) general circulation model (GCM) onto a truncated set of basis functions. The resulting LOM consists of 12 coupled nonlinear ordinary differential equations describing atmospheric dynamics and dust transport within the Hadley cell. The forcing of the model is described by simplified physics based on Newtonian cooling and Rayleigh friction. The atmosphere and surface are coupled: atmospheric heating depends on the dustiness of the atmosphere, and the surface dust source depends on the strength of the atmospheric winds. Parameters of the model are tuned to fit the output of the NASA AMES GCM and the fit is generally very good. Interannual variability of GDSs is possible in the IBM, but only when stochastic forcing is added to the model. The stochastic forcing could be provided by transient weather systems or some surface process such as redistribution of the sand particles in storm generating zones on the surface. The results are sensitive to the value of the saltation threshold, which hints at a possible feedback between saltation threshold and dust storm activity. According to this hypothesis, erodable material builds up its a result of a local process, whose effect is to lower the saltation threshold until a GDS occurs. The saltation threshold adjusts its value so that dust storms are barely able to occur.

  3. Antarctic boundary layer parametrization in a general circulation model: 1-D simulations facing summer observations at Dome C

    NASA Astrophysics Data System (ADS)

    Vignon, Etienne; Hourdin, Frédéric; Genthon, Christophe; Gallée, Hubert; Bazile, Eric; Lefebvre, Marie-Pierre; Madeleine, Jean-Baptiste; Van de Wiel, Bas J. H.

    2017-07-01

    The parametrization of the atmospheric boundary layer (ABL) is critical over the Antarctic Plateau for climate modelling since it affects the climatological temperature inversion and the negatively buoyant near-surface flow over the ice-sheet. This study challenges state-of-the-art parametrizations used in general circulation models to represent the clear-sky summertime diurnal cycle of the ABL at Dome C, Antarctic Plateau. The Laboratoire de Météorologie Dynamique-Zoom model is run in a 1-D configuration on the fourth Global Energy and Water Cycle Exchanges Project Atmospheric Boundary Layers Study case. Simulations are analyzed and compared to observations, giving insights into the sensitivity of one model that participates to the intercomparison exercise. Snow albedo and thermal inertia are calibrated leading to better surface temperatures. Using the so-called "thermal plume model" improves the momentum mixing in the diurnal ABL. In stable conditions, four turbulence schemes are tested. Best simulations are those in which the turbulence cuts off above 35 m in the middle of the night, highlighting the contribution of the longwave radiation in the ABL heat budget. However, the nocturnal surface layer is not stable enough to distinguish between surface fluxes computed with different stability functions. The absence of subsidence in the forcings and an underestimation of downward longwave radiation are identified to be likely responsible for a cold bias in the nocturnal ABL. Apart from model-specific improvements, the paper clarifies on which are the critical aspects to improve in general circulation models to correctly represent the summertime ABL over the Antarctic Plateau.

  4. The new version of the Institute of Numerical Mathematics Sigma Ocean Model (INMSOM) for simulation of Global Ocean circulation and its variability

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Fomin, Vladimir; Diansky, Nikolay; Korshenko, Evgeniya

    2017-04-01

    In this paper, we present the improved version of the ocean general circulation sigma-model developed in the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS). The previous version referred to as INMOM (Institute of Numerical Mathematics Ocean Model) is used as the oceanic component of the IPCC climate system model INMCM (Institute of Numerical Mathematics Climate Model (Volodin et al 2010,2013). Besides, INMOM as the only sigma-model was used for simulations according to CORE-II scenario (Danabasoglu et al. 2014,2016; Downes et al. 2015; Farneti et al. 2015). In general, INMOM results are comparable to ones of other OGCMs and were used for investigation of climatic variations in the North Atlantic (Gusev and Diansky 2014). However, detailed analysis of some CORE-II INMOM results revealed some disadvantages of the INMOM leading to considerable errors in reproducing some ocean characteristics. So, the mass transport in the Antarctic Circumpolar Current (ACC) was overestimated. As well, there were noticeable errors in reproducing thermohaline structure of the ocean. After analysing the previous results, the new version of the OGCM was developed. It was decided to entitle is INMSOM (Institute of Numerical Mathematics Sigma Ocean Model). The new title allows one to distingwish the new model, first, from its older version, and second, from another z-model developed in the INM RAS and referred to as INMIO (Institute of Numerical Mathematics and Institute of Oceanology ocean model) (Ushakov et al. 2016). There were numerous modifications in the model, some of them are as follows. 1) Formulation of the ocean circulation problem in terms of full free surface with taking into account water amount variation. 2) Using tensor form of lateral viscosity operator invariant to rotation. 3) Using isopycnal diffusion including Gent-McWilliams mixing. 4) Using atmospheric forcing computation according to NCAR methodology (Large and Yeager 2009). 5

  5. Borehole model for simulation transport geothermal heat with heat pipe system and with forced circulation of heat carrier

    NASA Astrophysics Data System (ADS)

    Jakubský, Michal; Lenhard, Richard; Vantúch, Martin; Malcho, Milan

    2012-04-01

    In the call OPVaV-2008/2.2/01-SORO Operational Programme Research and Development - knowledge and technology transfer from research and development into practice (ITMS-26220220057), whose strategic goal is "Device to use low-potential geothermal heat without forced circulation of heat carrier deep in the well "in the Department of Energy laboratory techniques to construct a simulator of transport low potential of geothermal energy in comparative test-drilling in the laboratory. The article describes a device that was designed as a scale model of two deep boreholes each of which withdraws the earth's heat by heat transfer technology and heat carrier. Device using forced circulation of heat carrier will respond in the construction of equipment currently used to transport heat from deep borehole. As the heat carrier will be used CO2. Facilities without using forced circulation of heat carrier, the new technology, which will be used as heat carrier ammonia (NH3).

  6. Numerical simulation of the world ocean circulation

    NASA Technical Reports Server (NTRS)

    Takano, K.; Mintz, Y.; Han, Y. J.

    1973-01-01

    A multi-level model, based on the primitive equations, is developed for simulating the temperature and velocity fields produced in the world ocean by differential heating and surface wind stress. The model ocean has constant depth, free slip at the lower boundary, and neglects momentum advection; so that there is no energy exchange between the barotropic and baroclinic components of the motion, although the former influences the latter through temperature advection. The ocean model was designed to be coupled to the UCLA atmospheric general circulation model, for the study of the dynamics of climate and climate changes. But here, the model is tested by prescribing the observed seasonally varying surface wind stress and the incident solar radiation, the surface air temperature and humidity, cloudiness and the surface wind speed, which, together with the predicted ocean surface temperature, determine the surface flux of radiant energy, sensible heat and latent heat.

  7. Application of Land Surface Data Assimilation to Simulations of Sea Breeze Circulations

    NASA Technical Reports Server (NTRS)

    Mackaro, Scott; Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske

    2003-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite- observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSUNCAR MM5 V3-5 and applied at spatial resolutions of 12- and 4-km. It is recognized that even 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the

  8. Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models

    NASA Astrophysics Data System (ADS)

    Nagura, Motoki; Sasaki, Wataru; Tozuka, Tomoki; Luo, Jing-Jia; Behera, Swadhin K.; Yamagata, Toshio

    2013-02-01

    Seychelles Dome refers to the shallow climatological thermocline in the southwestern Indian Ocean, where ocean wave dynamics efficiently affect sea surface temperature, allowing sea surface temperature anomalies to be predicted up to 1-2 years in advance. Accurate reproduction of the dome by ocean-atmosphere coupled general circulation models (CGCMs) is essential for successful seasonal predictions in the Indian Ocean. This study examines the Seychelles Dome as simulated by 35 CGCMs, including models used in phase five of the Coupled Model Intercomparison Project (CMIP5). Among the 35 CGCMs, 14 models erroneously produce an upwelling dome in the eastern half of the basin whereas the observed Seychelles Dome is located in the southwestern tropical Indian Ocean. The annual mean Ekman pumping velocity in these models is found to be almost zero in the southern off-equatorial region. This result is inconsistent with observations, in which Ekman upwelling acts as the main cause of the Seychelles Dome. In the models reproducing an eastward-displaced dome, easterly biases are prominent along the equator in boreal summer and fall, which result in shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and a spurious upwelling dome in the region. Compared to the CMIP3 models, the CMIP5 models are even worse in simulating the dome longitudes.

  9. Modeling biomass gasification in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  10. On the limitations of General Circulation Climate Models

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.; Risbey, James S.

    1990-01-01

    General Circulation Models (GCMs) by definition calculate large-scale dynamical and thermodynamical processes and their associated feedbacks from first principles. This aspect of GCMs is widely believed to give them an advantage in simulating global scale climate changes as compared to simpler models which do not calculate the large-scale processes from first principles. However, it is pointed out that the meridional transports of heat simulated GCMs used in climate change experiments differ from observational analyses and from other GCMs by as much as a factor of two. It is also demonstrated that GCM simulations of the large scale transports of heat are sensitive to the (uncertain) subgrid scale parameterizations. This leads to the question whether current GCMs are in fact superior to simpler models for simulating temperature changes associated with global scale climate change.

  11. Sea ice simulations based on fields generated by the GLAS GCM. [Goddard Laboratory for Atmospheric Sciences General Circulation Model

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Herman, G. F.

    1980-01-01

    The GLAS General Circulation Model (GCM) was applied to the four-month simulation of the thermodynamic part of the Parkinson-Washington sea ice model using atmospheric boundary conditions. The sea ice thickness and distribution were predicted for the Jan. 1-Apr. 30 period using the GCM-fields of solar and infrared radiation, specific humidity and air temperature at the surface, and snow accumulation; the sensible heat and evaporative surface fluxes were consistent with the ground temperatures produced by the ice model and the air temperatures determined by the atmospheric concept. It was concluded that the Parkinson-Washington sea ice model results in acceptable ice concentrations and thicknesses when used with GLAS GCM for the Jan.-Apr. period suggesting the feasibility of fully coupled ice-atmosphere simulations with these two approaches.

  12. Testing the Reconstruction Potential for North Pacific Circulation Anomalies inside the TraCE-21ka Paleoclimate Simulation

    NASA Astrophysics Data System (ADS)

    Elison Timm, O.; Flamholtz, W. M.; Li, S.; Massa, C.; Beilman, D. W.

    2016-12-01

    The motivation for this study was sparked by the idea that paleoclimate temperature and precipitation proxies provide sufficient information to make inferences about extratropical atmospheric circulation changes over the North Pacific during the Holocene. Typical targets for the circulation reconstruction problem include the strength and position of the Aleutian Low and the storm tracks. The reconstruction problem was investigated under idealized conditions using model simulation results from the TraCE-21ka transient climate simulation (http://www.cgd.ucar.edu/ccr/TraCE/), which covers the Last Glacial Maximum to present. It is demonstrated that modes of variability found on interannual to multidecadal timescales during the preindustrial era provide inadequate pattern for reconstructing long-term mean changes during the past 22,000 years. Our circulation reconstruction target was the geopotential height field at 500hPa (Z500) over the North Pacific Ocean during winter. We applied a field reconstruction method using Maximum Covariance Analysis (MCA). The MCA was applied to Z500 and surface temperatures as predictor information. The MCA was given model data containing interannual to multidecadal variability from the pre-industrial climate (1000BP-900BP). We worked with ten leading MCA modes in the reconstruction, which can reproduce about 90% of the covariability during the preindustrial period. Within the model simulation, we validated the field reconstructions against the model's circulation states over the last 22,000 years. Spatial skill scores show that the reconstruction skill drops significantly prior to the late Holocene. Reasons for the loss of reconstruction skill are due to the fact that externally forced climate changes do not resemble the internal modes of variability and that covariance between circulation and temperatures on interannual-multidecadal time scales changes with the background climate state. However, the reconstruction can be improved by

  13. Arctic storms simulated in atmospheric general circulation models under uniform high, uniform low, and variable resolutions

    NASA Astrophysics Data System (ADS)

    Roesler, E. L.; Bosler, P. A.; Taylor, M.

    2016-12-01

    The impact of strong extratropical storms on coastal communities is large, and the extent to which storms will change with a warming Arctic is unknown. Understanding storms in reanalysis and in climate models is important for future predictions. We know that the number of detected Arctic storms in reanalysis is sensitive to grid resolution. To understand Arctic storm sensitivity to resolution in climate models, we describe simulations designed to identify and compare Arctic storms at uniform low resolution (1 degree), at uniform high resolution (1/8 degree), and at variable resolution (1 degree to 1/8 degree). High-resolution simulations resolve more fine-scale structure and extremes, such as storms, in the atmosphere than a uniform low-resolution simulation. However, the computational cost of running a globally uniform high-resolution simulation is often prohibitive. The variable resolution tool in atmospheric general circulation models permits regional high-resolution solutions at a fraction of the computational cost. The storms are identified using the open-source search algorithm, Stride Search. The uniform high-resolution simulation has over 50% more storms than the uniform low-resolution and over 25% more storms than the variable resolution simulations. Storm statistics from each of the simulations is presented and compared with reanalysis. We propose variable resolution as a cost-effective means of investigating physics/dynamics coupling in the Arctic environment. Future work will include comparisons with observed storms to investigate tuning parameters for high resolution models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7402 A

  14. Simulations of the north sea circulation, its variability, and its implementation as hydrodynamical forcing in ERSEM

    NASA Astrophysics Data System (ADS)

    Lenhart, Hermann J.; Radach, Günther; Backhaus, Jan O.; Pohlmann, Thomas

    The rationale is given of how the gross physical features of the circulation and the stratification of the North Sea have been aggregated for inclusion in the ecosystem box model ERSEM. As the ecosystem dynamics are to a large extent determined by small-scale physical events, the ecosystem model is forced with the circulation of a specific year rather than using the long-term mean circulation field. Especially the vertical exchange processes have been explicitly included, because the primary production strongly depends on them. Simulations with a general circulation model (GCM), forced by three-hourly meteorological fields, have been utilized to derive daily horizontal transport values driving ERSEM on boxes of sizes of a few 100 km. The daily vertical transports across a fixed 30-m interface provide the necessary short-term event character of the vertical exchange. For the years 1988 and 1989 the properties of the hydrodynamic flow fields are presented in terms of trajectories of the flow, thermocline depths, of water budgets, flushing times and diffusion rates. The results of the standard simulation with ERSEM show that the daily variability of the circulation, being smoothed by the box integration procedure, is transferred to the chemical and biological state variables to a very limited degree only.

  15. Simulations of the September 1987 lower thermospheric tides with the National Center for Atmospheric Research thermosphere-ionosphere general circulation model

    NASA Astrophysics Data System (ADS)

    Fesen, C. G.; Roble, R. G.

    1991-02-01

    The NCAR thermosphere-ionosphere general circulation model (TIGCM) was used to simulate incoherent scatter radar observations of the lower thermosphere tides during the first Lower Thermosphere Coupling Study (LTCS) campaign, September 21-26, 1987. The TIGCM utilized time-varying histories of the model input fields obtained from the World Data Center for the LTCS period. The model inputs included solar flux, total hemispheric power, solar wind data from which the cross-polar-cap potential was derived, and geomagnetic Kp index. Calculations were made for the semidiurnal ion temperatures and horizontal neutral winds at locations representative of Arecibo, Millstone Hill, and Sondrestrom. Tidal inputs to the TIGCM lower boundary were obtained from the middle atmosphere model of Forbes and Vial (1989). The TIGCM tidal structures are in fair general agreement with the observations. The amplitudes tended to be better simulated than the phases, and the mid- and high-latitude locations are simulated better than the low-latitude thermosphere. The model simulations were used to investigate the daily variability of the tides due to the geomagnetic activity occurring during this period.

  16. Inter-annual variability of the Mediterranean thermohaline circulation in Med-CORDEX simulations

    NASA Astrophysics Data System (ADS)

    Vittoria Struglia, Maria; Adani, Mario; Carillo, Adriana; Pisacane, Giovanna; Sannino, Gianmaria; Beuvier, Jonathan; Lovato, Tomas; Sevault, Florence; Vervatis, Vassilios

    2016-04-01

    Recent atmospheric reanalysis products, such as ERA40 and ERA-interim, and their regional dynamical downscaling prompted the HyMeX/Med-CORDEX community to perform hind-cast simulations of the Mediterranean Sea, giving the opportunity to evaluate the response of different ocean models to a realistic inter-annual atmospheric forcing. Ocean numerical modeling studies have been steadily improving over the last decade through hind-cast processing, and are complementary to observations in studying the relative importance of the mechanisms playing a role in ocean variability, either external forcing or internal ocean variability. This work presents a review and an inter-comparison of the most recent hind-cast simulations of the Mediterranean Sea Circulation, produced in the framework of the Med-CORDEX initiative, at resolutions spanning from 1/8° to 1/16°. The richness of the simulations available for this study is exploited to address the effects of increasing resolution, both of models and forcing, the initialization procedure, and the prescription of the atmospheric boundary conditions, which are particularly relevant in order to model a realistic THC, in the perspective of fully coupled regional ocean-atmosphere models. The mean circulation is well reproduced by all the simulations. However, it can be observed that the horizontal resolution of both atmospheric forcing and ocean model plays a fundamental role in the reproduction of some specific features of both sub-basins and important differences can be observed among low and high resolution atmosphere forcing. We analyze the mean circulation on both the long-term and decadal time scale, and the represented inter-annual variability of intermediate and deep water mass formation processes in both the Eastern and Western sub-basins, finding that models agree with observations in correspondence of specific events, such as the 1992-1993 Eastern Mediterranean Transient, and the 2005-2006 event in the Gulf of Lion. Long

  17. High resolution simulations on the North Aegean Sea seasonal circulation

    NASA Astrophysics Data System (ADS)

    Kourafalou, V. H.; Barbopoulos, K.

    2003-01-01

    The seasonal characteristics of the circulation in the North Aegean Sea are examined with the aid of a climatological type simulation (three-year run with perpetual year forcing) on a fine resolution grid (2.5 km by 2.5 km). The model is based on the Princeton Ocean Model with a parameterisation of plume dynamics that is employed for the input of waters with hydrographic properties that are different than the properties of basin waters, as the Black Sea Water (BSW) outflow through the Dardanelles Strait and riverine sources. The model is nested with a sequence of coarser regional and basin-wide models that provide for the long-term interaction between the study area and the Eastern Mediterranean at large. The results are employed to discuss the response of the North Aegean to the important circulation forcing mechanisms in the region, namely wind stress, heat and salt fluxes, buoyancy due to rivers and the BSW outflow (which is low in salinity and occasionally low in temperature) and the interaction with the Southern Aegean. The high resolution allows for the detailed representation of the complicated topography that presides in the region. This helps produce a rich eddy field and it allows for variability in the pathways of BSW that has implications in the basin hydrography and circulation.

  18. Ocean Hydrodynamics Numerical Model in Curvilinear Coordinates for Simulating Circulation of the Global Ocean and its Separate Basins.

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Diansky, Nikolay; Zalesny, Vladimir

    2010-05-01

    scope of the CMIP-5 (Coupled Model Intercomparison Project). On the base of the complex proposed the Pacific Ocean circulation eddy-resolving model was realized. The integration domain covers the Pacific from Equator to Bering Strait. The model horizontal resolution is 0.125 degree and it has 20 non-uniform sigma-levels in depth. The model adequately reproduces circulation large-scale structure and its variability: Kuroshio meandering, ocean synoptic eddies, frontal zones, etc. Kuroshio high variability is shown. The distribution of contaminant was simulated that is admittedly wasted near Petropavlovsk-Kamchatsky. The results demonstrate contaminant distribution structure and provide us understanding of hydrological fields formation processes in the North-West Pacific.

  19. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed

    DOE PAGES

    Li, Tingwen; Dietiker, Jean-François; Shahnam, Mehrdad

    2012-12-01

    In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numericalmore » results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.« less

  20. Simulation of tidal flow and circulation patterns in the Loxahatchee River Estuary, southeastern Florida

    USGS Publications Warehouse

    Russell, G.M.; Goodwin, C.R.

    1987-01-01

    Results of a two-dimensional, vertically averaged, computer simulation model of the Loxahatchee River estuary show that under typical low freshwater inflow and vertically well mixed conditions, water circulation is dominated by freshwater inflow rather than by tidal influence. The model can simulate tidal flow and circulation in the Loxahatchee River estuary under typical low freshwater inflow and vertically well mixed conditions, but is limited, however, to low-flow and well mixed conditions. Computed patterns of residual water transport show a consistent seaward flow from the northwest fork through the central embayment and out Jupiter Inlet to the Atlantic Ocean. A large residual seaward flow was computed from the North Intracoastal Waterway to the inlet channel. Although the tide produces large flood and ebb flows in the estuary, tide-induced residual transport rates are low in comparison with freshwater-induced residual transport. Model investigations of partly mixed or stratified conditions in the estuary need to await development of systems capable of simulating three-dimensional flow patterns. (Author 's abstract)

  1. A simulation of the global ocean circulation with resolved eddies

    NASA Astrophysics Data System (ADS)

    Semtner, Albert J.; Chervin, Robert M.

    1988-12-01

    A multilevel primitive-equation model has been constructed for the purpose of simulating ocean circulation on modern supercomputing architectures. The model is designed to take advantage of faster clock speeds, increased numbers of processors, and enlarged memories of machines expected to be available over the next decade. The model allows global eddy-resolving simulations to be conducted in support of the World Ocean Circulation Experiment. Furthermore, global ocean modeling is essential for proper representation of the full range of oceanic and climatic phenomena. The first such global eddy-resolving ocean calculation is reported here. A 20-year integration of a global ocean model with ½° grid spacing and 20 vertical levels has been carried out with realistic geometry and annual mean wind forcing. The temperature and salinity are constrained to Levitus gridded data above 25-m depth and below 710-m depth (on time scales of 1 month and 3 years, respectively), but the values in the main thermocline are unconstrained for the last decade of the calculation. The final years of the simulation allow the spontaneous formation of waves and eddies through the use of scale-selective viscosity and diffusion. A quasi-equilibrium state shows many realistic features of ocean circulation, including unstable separating western boundary currents, the known anomalous northward heat transport in the South Atlantic, and a global compensation for the abyssal spread of North Atlantic Deep Water via a long chain of thermocline mass transport from the tropical Pacific, through the Indonesian archipelago, across the Indian Ocean, and around the southern tip of Africa. This chain of thermocline transport is perhaps the most striking result from the model, and eddies and waves are evident along the entire 20,000-km path of the flow. The modeled Gulf Stream separates somewhat north of Cape Hatteras, produces warm- and cold-core rings, and maintains its integrity as a meadering thermal front

  2. Simulation of mesoscale circulation in the Tatar Strait of the Japan Sea

    NASA Astrophysics Data System (ADS)

    Ponomarev, V. I.; Fayman, P. A.; Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2018-06-01

    The eddy-resolved ocean circulation model RIAMOM (Lee et al., 2003) is used to analyze seasonal variability of mesoscale circulation in the Tatar Strait of the Japan Sea. The model domain is a vast area including the northern Japan Sea, Okhotsk Sea and adjacent region in the Pacific Ocean. A numerical experiment with a horizontal 1/18° resolution has been carried out under realistic meteorological conditions from the ECMWF ERA-40 reanalysis with restoring of surface temperature and salinity. The simulated seasonal variability of both the current system and mesoscale eddy dynamics in the Tatar Strait is in a good agreement with temperature and salinity distributions of oceanographic observation data collected during various seasons and years. Two general circulation regimes in the Strait have been found. The circulation regime changes from summer to winter due to seasonal change of the North Asian Monsoon. On a synoptic time scale, the similar change of the circulation regime occurs due to change of the southeastern wind to the northwestern one when the meteorological situation with an anticyclone over the Okhotsk Sea changes to that with a strong cyclone. The Lagrangian maps illustrate seasonal changes in direction of the main currents and in polarity and location of mesoscale eddies in the Strait.

  3. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea

    NASA Astrophysics Data System (ADS)

    Sofianos, Sarantis S.; Johns, William E.

    2003-03-01

    The three-dimensional circulation of the Red Sea is studied using a set of Miami Isopycnic Coordinate Ocean Model (MICOM) simulations. The model performance is tested against the few available observations in the basin and shows generally good agreement with the main observed features of the circulation. The main findings of this analysis include an intensification of the along-axis flow toward the coasts, with a transition from western intensified boundary flow in the south to eastern intensified flow in the north, and a series of strong seasonal or permanent eddy-like features. Model experiments conducted with different forcing fields (wind-stress forcing only, surface buoyancy forcing only, or both forcings combined) showed that the circulation produced by the buoyancy forcing is stronger overall and dominates the wind-driven part of the circulation. The main circulation pattern is related to the seasonal buoyancy flux (mostly due to the evaporation), which causes the density to increase northward in the basin and produces a northward surface pressure gradient associated with the downward sloping of the sea surface. The response of the eastern boundary to the associated mean cross-basin geostrophic current depends on the stratification and β-effect. In the northern part of the basin this results in an eastward intensification of the northward surface flow associated with the presence of Kelvin waves while in the south the traditional westward intensification due to Rossby waves takes place. The most prominent gyre circulation pattern occurs in the north where a permanent cyclonic gyre is present that is involved in the formation of Red Sea Outflow Water (RSOW). Beneath the surface boundary currents are similarly intensified southward undercurrents that carry the RSOW to the sill to flow out of the basin into the Indian Ocean.

  4. Modeling the periodic stratification and gravitational circulation in San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Casulli, Vincenzo

    1996-01-01

    A high resolution, three-dimensional (3-D) hydrodynamic numerical model is applied to San Francisco Bay, California to simulate the periodic tidal stratification caused by tidal straining and stirring and their long-term effects on gravitational circulation. The numerical model is formulated using fixed levels in the vertical and uniform computational mesh on horizontal planes. The governing conservation equations, the 3-D shallow water equations, are solved by a semi-implicit finite-difference scheme. Numerical simulations for estuarine flows in San Francisco Bay have been performed to reproduce the hydrodynamic properties of tides, tidal and residual currents, and salt transport. All simulations were carried out to cover at least 30 days, so that the spring-neap variance in the model results could be analyzed. High grid resolution used in the model permits the use of a simple turbulence closure scheme which has been shown to be sufficient to reproduce the tidal cyclic stratification and well-mixed conditions in the water column. Low-pass filtered 3-D time-series reveals the classic estuarine gravitational circulation with a surface layer flowing down-estuary and an up-estuary flow near the bottom. The intensity of the gravitational circulation depends upon the amount of freshwater inflow, the degree of stratification, and spring-neap tidal variations.

  5. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    NASA Astrophysics Data System (ADS)

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Köhl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.

  6. On a sparse pressure-flow rate condensation of rigid circulation models

    PubMed Central

    Schiavazzi, D. E.; Hsia, T. Y.; Marsden, A. L.

    2015-01-01

    Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol’ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219

  7. The relation between AMOC, gyre circulation, and meridional heat transports in the North Atlantic in model simulations of the last millennium

    NASA Astrophysics Data System (ADS)

    Jungclaus, J. H.; Moreno-Chamarro, E.; Lohmann, K.; Zanchettin, D.

    2016-02-01

    While it is clear that the Atlantic Meridional Overturning Circulation (AMOC) is responsible for meridional heat transfer from the South Atlantic and the tropics to the North Atlantic, the majority of the heat transport in the northern North Atlantic and the Nordic seas is carried by the gyre system. However, the detailed mechanisms determining the interaction between and the temporal modulation of the components of the northward heat transport system are not clear. Long-term climate records and model simulations can help to identify important processes and to provide background for the changes that are presently observed. Multi-centennial proxy records from the subpolar North Atlantic and the Nordic Seas indicate, for example, an out-of-phase behavior of sea surface temperature and gyre circulation between the two regions with consequences for regional climate. Paleoceanographic evidence from Fram Strait shows a pronounced modulation of heat transfer to the Arctic by the Atlantic Water layer during the last 2000 years and reconstructions from the Subpolar North Atlantic suggest a role of ocean circulation in the transition between the Medieval Climate Anomaly and the Little Ice Age. Here we explore a small ensemble of last millennium simulations, carried out with the Max Planck Institute Earth System Model, and analyze mechanisms connecting the AMOC and gyre circulation and their relation to external forcing. Our results support the important role of the Subpolar Gyre strength and the related meridional mass and temperature fluxes. We find that the modulation of the northward heat transport into the Nordic Seas and the Arctic has pronounced impact on sea-ice distribution, ocean-atmosphere interaction, and the surface climate in Scandinavia and Western Europe.

  8. The relation between AMOC, gyre circulation, and meridional heat transports in the North Atlantic in model simulations of the last millennium

    NASA Astrophysics Data System (ADS)

    Jungclaus, Johann; Moreno-Chamarro, Eduardo; Lohmann, Katja

    2016-04-01

    While it is clear that the Atlantic Meridional Overturning Circulation (AMOC) is responsible for meridional heat transfer from the South Atlantic and the tropics to the North Atlantic, the majority of the heat transport in the northern North Atlantic and the Nordic seas is carried by the gyre system. However, the detailed mechanisms determining the interaction between and the temporal modulation of the components of the northward heat transport system are not clear. Long-term climate records and model simulations can help to identify important processes and to provide background for the changes that are presently observed. Multi-centennial proxy records from the subpolar North Atlantic and the Nordic Seas indicate, for example, an out-of-phase behavior of sea surface temperature and gyre circulation between the two regions with consequences for regional climate. Paleoceanographic evidence from Fram Strait shows a pronounced modulation of heat transfer to the Arctic by the Atlantic Water layer during the last 2000 years and reconstructions from the Subpolar North Atlantic suggest a role of ocean circulation in the transition between the Medieval Climate Anomaly and the Little Ice Age. Here we explore a small ensemble of last millennium simulations, carried out with the Max Planck Institute Earth System Model, and analyze mechanisms connecting the AMOC and gyre circulation and their relation to external forcing. Our results support the important role of the Subpolar Gyre strength and the related meridional mass and temperature fluxes. We find that the modulation of the northward heat transport into the Nordic Seas and the Arctic has pronounced impact on sea-ice distribution, ocean-atmosphere interaction, and the surface climate in Scandinavia and Western Europe.

  9. A Pacific Ocean general circulation model for satellite data assimilation

    NASA Technical Reports Server (NTRS)

    Chao, Y.; Halpern, D.; Mechoso, C. R.

    1991-01-01

    A tropical Pacific Ocean General Circulation Model (OGCM) to be used in satellite data assimilation studies is described. The transfer of the OGCM from a CYBER-205 at NOAA's Geophysical Fluid Dynamics Laboratory to a CRAY-2 at NASA's Ames Research Center is documented. Two 3-year model integrations from identical initial conditions but performed on those two computers are compared. The model simulations are very similar to each other, as expected, but the simulations performed with the higher-precision CRAY-2 is smoother than that with the lower-precision CYBER-205. The CYBER-205 and CRAY-2 use 32 and 64-bit mantissa arithmetic, respectively. The major features of the oceanic circulation in the tropical Pacific, namely the North Equatorial Current, the North Equatorial Countercurrent, the South Equatorial Current, and the Equatorial Undercurrent, are realistically produced and their seasonal cycles are described. The OGCM provides a powerful tool for study of tropical oceans and for the assimilation of satellite altimetry data.

  10. Documentation of the GLAS fourth order general circulation model. Volume 1: Model documentation

    NASA Technical Reports Server (NTRS)

    Kalnay, E.; Balgovind, R.; Chao, W.; Edelmann, J.; Pfaendtner, J.; Takacs, L.; Takano, K.

    1983-01-01

    The volume 1, of a 3 volume technical memoranda which contains a documentation of the GLAS Fourth Order General Circulation Model is presented. Volume 1 contains the documentation, description of the stratospheric/tropospheric extension, user's guide, climatological boundary data, and some climate simulation studies.

  11. Tropical disturbances in relation to general circulation modeling

    NASA Technical Reports Server (NTRS)

    Estoque, M. A.

    1982-01-01

    The initial results of an evaluation of the performance of the Goddard Laboratory of Atmospheric Simulation general circulation model depicting the tropical atmosphere during the summer are presented. Because the results show the existence of tropical wave disturbances throughout the tropics, the characteristics of synoptic disturbances over Africa were studied and a synoptic case study of a selected disturbance in this area was conducted. It is shown that the model is able to reproduce wave type synoptic disturbances in the tropics. The findings show that, in one of the summers simulated, the disturbances are predominantly closed vortices; in another summer, the predominant disturbances are open waves.

  12. The Latest on the Venus Thermospheric General Circulation Model: Capabilities and Simulations

    NASA Technical Reports Server (NTRS)

    Brecht, A. S.; Bougher, S. W.; Parkinson, C. D.

    2017-01-01

    Venus has a complex and dynamic upper atmosphere. This has been observed many times by ground-based, orbiters, probes, and fly-by missions going to other planets. Two over-arching questions are generally asked when examining the Venus upper atmosphere: (1) what creates the complex structure in the atmosphere, and (2) what drives the varying dynamics. A great way to interpret and connect observations to address these questions utilizes numerical modeling; and in the case of the middle and upper atmosphere (above the cloud tops), a 3D hydrodynamic numerical model called the Venus Thermospheric General Circulation Model (VTGCM) can be used. The VTGCM can produce climatological averages of key features in comparison to observations (i.e. nightside temperature, O2 IR nightglow emission). More recently, the VTGCM has been expanded to include new chemical constituents and airglow emissions, as well as new parameterizations to address waves and their impact on the varying global circulation and corresponding airglow distributions.

  13. Adaptation of a general circulation model to ocean dynamics

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Rees, T. H.; Woodbury, G. E.

    1976-01-01

    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.

  14. 3D General Circulation Model of the Middle Atmosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Zube, Nicholas Gerard; Zhang, Xi; Li, Cheng; Le, Tianhao

    2017-10-01

    The characteristics of Jupiter’s large-scale stratospheric circulation remain largely unknown. Detailed distributions of temperature and photochemical species have been provided by recent observations [1], but have not yet been accurately reproduced by middle atmosphere general circulation models (GCM). Jupiter’s stratosphere and upper troposphere are influenced by radiative forcing from solar insolation and infrared cooling from hydrogen and hydrocarbons, as well as waves propagating from the underlying troposphere [2]. The relative significance of radiative and mechanical forcing on stratospheric circulation is still being debated [3]. Here we present a 3D GCM of Jupiter’s atmosphere with a correlated-k radiative transfer scheme. The simulation results are compared with observations. We analyze the impact of model parameters on the stratospheric temperature distribution and dynamical features. Finally, we discuss future tracer transport and gravity wave parameterization schemes that may be able to accurately simulate the middle atmosphere dynamics of Jupiter and other giant planets.[1] Kunde et al. 2004, Science 305, 1582.[2] Zhang et al. 2013a, EGU General Assembly, EGU2013-5797-2.[3] Conrath 1990, Icarus, 83, 255-281.

  15. Evaluation of a Mineral Dust Simulation in the Atmospheric-Chemistry General Circulation Model-EMAC

    NASA Astrophysics Data System (ADS)

    Abdel Kader, M.; Astitha, M.; Lelieveld, J.

    2012-04-01

    This study presents an evaluation of the atmospheric mineral dust cycle in the Atmospheric Chemistry General Circulation Model (AC-GCM) using new developed dust emissions scheme. The dust cycle, as an integral part of the Earth System, plays an important role in the Earth's energy balance by both direct and indirect ways. As an aerosol, it significantly impacts the absorption and scattering of radiation in the atmosphere and can modify the optical properties of clouds and snow/ice surfaces. In addition, dust contributes to a range of physical, chemical and bio-geological processes that interact with the cycles of carbon and water. While our knowledge of the dust cycle, its impacts and interactions with the other global-scale bio-geochemical cycles has greatly advanced in the last decades, large uncertainties and knowledge gaps still exist. Improving the dust simulation in global models is essential to minimize the uncertainties in the model results related to dust. In this study, the results are based on the ECHAM5 Modular Earth Submodel System (MESSy) AC-GCM simulations using T106L31 spectral resolution (about 120km ) with 31 vertical levels. The GMXe aerosol submodel is used to simulate the phase changes of the dust particles between soluble and insoluble modes. Dust emission, transport and deposition (wet and dry) are calculated on-line along with the meteorological parameters in every model time step. The preliminary evaluation of the dust concentration and deposition are presented based on ground observations from various campaigns as well as the evaluation of the optical properties of dust using AERONET and satellite (MODIS and MISR) observations. Preliminarily results show good agreement with observations for dust deposition and optical properties. In addition, the global dust emissions, load, deposition and lifetime is in good agreement with the published results. Also, the uncertainties in the dust cycle that contribute to the overall model performance

  16. Simulated variability of the Atlantic meridional overturning circulation

    NASA Astrophysics Data System (ADS)

    Bentsen, M.; Drange, H.; Furevik, T.; Zhou, T.

    To examine the multi-annual to decadal scale variability of the Atlantic Meridional Overturning Circulation (AMOC) we conducted a four-member ensemble with a daily reanalysis forced, medium-resolution global version of the isopycnic coordinate ocean model MICOM, and a 300-years integration with the fully coupled Bergen Climate Model (BCM). The simulations of the AMOC with both model systems yield a long-term mean value of 18 Sv and decadal variability with an amplitude of 1-3 Sv. The power spectrum of the inter-annual to decadal scale variability of the AMOC in BCM generally follows the theoretical red noise spectrum, with indications of increased power near the 20-years period. Comparison with observational proxy indices for the AMOC, e.g. the thickness of the Labrador Sea Water, the strength of the baroclinic gyre circulation in the North Atlantic Ocean, and the surface temperature anomalies along the mean path of the Gulf Stream, shows similar trends and phasing of the variability, indicating that the simulated AMOC variability is robust and real. Mixing indices have been constructed for the Labrador, the Irminger and the Greenland-Iceland-Norwegian (GIN) seas. While convective mixing in the Labrador and the GIN seas are in opposite phase, and linked to the NAO as observations suggest, the convective mixing in the Irminger Sea is in phase with or leads the Labrador Sea. Newly formed deep water is seen as a slow, anomalous cold and fresh, plume flowing southward along the western continental slope of the Atlantic Ocean, with a return flow of warm and saline water on the surface. In addition, fast-travelling topographically trapped waves propagate southward along the continental slope towards equator, where they go east and continue along the eastern rim of the Atlantic. For both types of experiments, the Northern Hemisphere sea level pressure and 2 m temperature anomaly patterns computed based on the difference between climate states with strong and weak AMOC

  17. In Vitro Simulation and Validation of the Circulation with Congenital Heart Defects

    PubMed Central

    Figliola, Richard S.; Giardini, Alessandro; Conover, Tim; Camp, Tiffany A.; Biglino, Giovanni; Chiulli, John; Hsia, Tain-Yen

    2010-01-01

    Despite the recent advances in computational modeling, experimental simulation of the circulation with congenital heart defect using mock flow circuits remains an important tool for device testing, and for detailing the probable flow consequences resulting from surgical and interventional corrections. Validated mock circuits can be applied to qualify the results from novel computational models. New mathematical tools, coupled with advanced clinical imaging methods, allow for improved assessment of experimental circuit performance relative to human function, as well as the potential for patient-specific adaptation. In this review, we address the development of three in vitro mock circuits specific for studies of congenital heart defects. Performance of an in vitro right heart circulation circuit through a series of verification and validation exercises is described, including correlations with animal studies, and quantifying the effects of circuit inertiance on test results. We present our experience in the design of mock circuits suitable for investigations of the characteristics of the Fontan circulation. We use one such mock circuit to evaluate the accuracy of Doppler predictions in the presence of aortic coarctation. PMID:21218147

  18. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    EPA Science Inventory

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscal...

  19. An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1998-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical 'cores' of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical 'simple physics' parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.

  20. An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1998-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Cen- ter and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical "cores" of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. ne two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical "simple physics" parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.

  1. Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed

    NASA Astrophysics Data System (ADS)

    Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.

    2018-02-01

    Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.

  2. On the reduced lifetime of nitrous oxide due to climate change induced acceleration of the Brewer-Dobson circulation as simulated by the MPI Earth System Model

    NASA Astrophysics Data System (ADS)

    Kracher, D.; Manzini, E.; Reick, C. H.; Schultz, M. G.; Stein, O.

    2014-12-01

    Greenhouse gas induced climate change will modify the physical conditions of the atmosphere. One of the projected changes is an acceleration of the Brewer-Dobson circulation in the stratosphere, as it has been shown in many model studies. This change in the stratospheric circulation consequently bears an effect on the transport and distribution of atmospheric components such as N2O. Since N2O is involved in ozone destruction, a modified distribution of N2O can be of importance for ozone chemistry. N2O is inert in the troposphere and decays only in the stratosphere. Thus, changes in the exchange between troposphere and stratosphere can also affect the stratospheric sink of N2O, and consequently its atmospheric lifetime. N2O is a potent greenhouse gas with a global warming potential of currently approximately 300 CO2-equivalents in a 100-year perspective. A faster decay in atmospheric N2O mixing ratios, i.e. a decreased atmospheric lifetime of N2O, will also reduce its global warming potential. In order to assess the impact of climate change on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O, we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean-atmosphere N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation. Increasing surface temperatures and CO2 concentrations in the stratosphere impact atmospheric circulation differently. Thus, we conduct a series of transient runs with the atmospheric model of MPI-ESM to isolate different factors governing a shift in atmospheric circulation. From those transient

  3. Longitudinal Biases in the Seychelles Dome Simulated by 34 Ocean-Atmosphere Coupled General Circulation Models

    NASA Astrophysics Data System (ADS)

    Nagura, M.; Sasaki, W.; Tozuka, T.; Luo, J.; Behera, S. K.; Yamagata, T.

    2012-12-01

    The upwelling dome of the southern tropical Indian Ocean is examined by using simulated results from 34 ocean-atmosphere coupled general circulation models (CGCMs) including those from the phase five of the Coupled Model Intercomparison Project (CMIP5). Among the current set of the 34 CGCMs, 12 models erroneously produce the upwelling dome in the eastern half of the basin while the observed Seychelles Dome is located in the southwestern tropical Indian Ocean (Figure 1). The annual mean Ekman pumping velocity is almost zero in the southern off-equatorial region in these models. This is in contrast with the observations that show Ekman upwelling as the cause of the Seychelles Dome. In the models that produce the dome in the eastern basin, the easterly biases are prominent along the equator in boreal summer and fall that cause shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and result in a spurious upwelling dome there. In addition, these models tend to overestimate (underestimate) the magnitude of annual (semiannual) cycle of thermocline depth variability in the dome region, which is another consequence of the easterly wind biases in boreal summer-fall. Compared to the CMIP3 models (Yokoi et al. 2009), the CMIP5 models are even worse in simulating the dome longitudes and magnitudes of annual and semiannual cycles of thermocline depth variability in the dome region. Considering the increasing need to understand regional impacts of climate modes, these results may give serious caveats to interpretation of model results and help in further model developments.; Figure 1: The longitudes of the shallowest annual-mean D20 in 5°S-12°S. The open and filled circles are for the observations and the CGCMs, respectively.

  4. Modeling of Antarctic Sea Ice in a General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Wu, Xingren; Simmonds, Ian; Budd, W. F.

    1997-04-01

    A dynamic-thermodynamic sea ice model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea ice distribution. The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea ice model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified ice rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the ice/snow, the ice/water interface, and the open water area to determine the ice formation, accretion, and ablation. A lead parameterization is introduced with an effective partitioning scheme for freezing between and under the ice floes. The dynamic calculation determines the motion of ice, which is forced with the atmospheric wind, taking account of ice resistance and rafting. The simulated sea ice distribution compares reasonably well with observations. The seasonal cycle of ice extent is well simulated in phase as well as in magnitude. Simulated sea ice thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea ice distribution.

  5. Modeling of Antarctic sea ice in a general circulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xingren; Budd, W.F.; Simmonds, I.

    1997-04-01

    A dynamic-thermodynamic sea ice model is developed and coupled with the Melbourne University general circulation model to simulate the seasonal cycle of the Antarctic sea ice distributions The model is efficient, rapid to compute, and useful for a range of climate studies. The thermodynamic part of the sea ice model is similar to that developed by Parkinson and Washington, the dynamics contain a simplified ice rheology that resists compression. The thermodynamics is based on energy conservation at the top surface of the ice/snow, the ice/water interface, and the open water area to determine the ice formation, accretion, and ablation. Amore » lead parameterization is introduced with an effective partitioning scheme for freezing between and under the ice floes. The dynamic calculation determines the motion of ice, which is forced with the atmospheric wind, taking account of ice resistance and rafting. The simulated sea ice distribution compares reasonably well with observations. The seasonal cycle of ice extent is well simulated in phase as well as in magnitude. Simulated sea ice thickness and concentration are also in good agreement with observations over most regions and serve to indicate the importance of advection and ocean drift in the determination of the sea ice distribution. 64 refs., 15 figs., 2 tabs.« less

  6. The response of an ocean general circulation model to surface wind stress produced by an atmospheric general circulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, B.; Schneider, E.K.

    1995-10-01

    Two surface wind stress datasets for 1979-91, one based on observations and the other from an investigation of the COLA atmospheric general circulation model (AGCM) with prescribed SST, are used to drive the GFDL ocean general circulation model. These two runs are referred to as the control and COLA experiments, respectively. Simulated SST and upper-ocean heat contents (HC) in the tropical Pacific Ocean are compared with observations and between experiments. Both simulation reproduced the observed mean SST and HC fields as well as their annual cycles realistically. Major errors common to both runs are colder than observed SST in themore » eastern equatorial ocean and HC in the western Pacific south of the equator, with errors generally larger in the COLA experiment. New errors arising from the AGCM wind forcing include higher SST near the South American coast throughout the year and weaker HC gradients along the equator in boreal spring. The former is associated with suppressed coastal upwelling by weak along shore AGCM winds, and the latter is caused by weaker equatorial easterlies in boreal spring. The low-frequency ENSO fluctuations are also realistic for both runs. Correlations between the observed and simulated SST anomalies from the COLA simulation are as high as those from the control run in the central equatorial Pacific. A major problem in the COLA simulation is the appearance of unrealistic tropical cold anomalies during the boreal spring of mature El Nino years. These anomalies propagate along the equator from the western Pacific to the eastern coast in about three months, and temporarily eliminate the warm SST and HC anomalies in the eastern Pacific. This erroneous oceanic response in the COLA simulation is caused by a reversal of the westerly wind anomalies on the equator, associated with an unrealistic southward shift of the ITCZ in boreal spring during El Nino events. 66 refs., 16 figs.« less

  7. Numerical Model Studies of the Martian Mesoscale Circulations

    NASA Technical Reports Server (NTRS)

    Segal, Moti; Arritt, Raymond W.

    1997-01-01

    The study objectives were to evaluate by numerical modeling various possible mesoscale circulation on Mars and related atmospheric boundary layer processes. The study was in collaboration with J. Tillman of the University of Washington (who supported the study observationally). Interaction has been made with J. Prusa of Iowa State University in numerical modeling investigation of dynamical effects of topographically-influenced flow. Modeling simulations included evaluations of surface physical characteristics on: (i) the Martian atmospheric boundary layer and (ii) their impact on thermally and dynamically forced mesoscale flows. Special model evaluations were made in support of selection of the Pathfinder landing sites. J. Tillman's finding of VL-2 inter-annual temperature difference was followed by model simulations attempting to point out the forcing for this feature. Publication of the results in the reviewed literature in pending upon completion of the manuscripts in preparation as indicated later.

  8. Estimation and Correction of bias of long-term simulated climate data from Global Circulation Models (GCMs)

    NASA Astrophysics Data System (ADS)

    Mehan, S.; Gitau, M. W.

    2017-12-01

    Global circulation models are often used in simulating long-term climate data for use in hydrologic studies. However, some bias (difference between simulated values and observed data) has been observed especially while simulating precipitation events. The bias is especially evident with respect to simulating dry and wet days. This is because GCMs tend to underestimate large precipitation events with the associated precipitation amounts being distributed to some dry days, thus, leading to a larger number of wet days each with some amount of rainfall. The accuracy of precipitation simulations impacts the accuracy of other simulated components such as flow and water quality. It is, thus, very important to correct the bias associated with precipitation before it is used for any modeling applications. This study aims to correct the bias specifically associated with precipitation events with a focus on the Western Lake Erie Basin (WLEB). Analytical, statistical, and extreme event analyses for three different stations (Adrian, MI; Norwalk, OH; and Fort Wayne, IN) in the WLEB were carried out to quantify the bias. Findings indicated that GCMs overestimated the wet sequences and underestimated dry day probabilities. The number of wet sequences simulated by nine GCMs each from two different open sources were 310-678 (Fort Wayne, IN); 318-600 (Adrian, MI); and 346-638 (Norwalk, OH) compared with 166, 150, and 180, respectively. Predicted conditional probabilities of a dry day followed by wet day (P (D|W)) ranged between 0.16-0.42 (Fort Wayne, IN); 0.29-0.41(Adrian, MI); and 0.13-0.40 (Norwalk, OH) from the different GCMs compared to 0.52 (Fort Wayne, IN and Norwalk, OH); and 0.54 (Adrian, MI) from the observed climate data. There was a difference of 0-8.5% between the distribution of simulated climate values and observed climate data for precipitation and temperature for all three stations (Cohen's d effective size < 0.2). Further work involves the use of Stochastic Weather

  9. Comparisons of observed seasonal climate features with a winter and summer numerical simulation produced with the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Halem, M.; Shukla, J.; Mintz, Y.; Wu, M. L.; Godbole, R.; Herman, G.; Sud, Y.

    1979-01-01

    Results are presented from numerical simulations performed with the general circulation model (GCM) for winter and summer. The monthly mean simulated fields for each integration are compared with observed geographical distributions and zonal averages. In general, the simulated sea level pressure and upper level geopotential height field agree well with the observations. Well simulated features are the winter Aleutian and Icelandic lows, the summer southwestern U.S. low, the summer and winter oceanic subtropical highs in both hemispheres, and the summer upper level Tibetan high and Atlantic ridge. The surface and upper air wind fields in the low latitudes are in good agreement with the observations. The geographical distirbutions of the Earth-atmosphere radiation balance and of the precipitation rates over the oceans are well simulated, but not all of the intensities of these features are correct. Other comparisons are shown for precipitation along the ITCZ, rediation balance, zonally averaged temperatures and zonal winds, and poleward transports of momentum and sensible heat.

  10. An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skyllingstad, E.D.; Denbo, D.W.

    Numerical experiments were performed using a three-dimensional large-eddy simulation model of the ocean surface mixed layer that includes the Craik-Leibovich vortex force to parameterize the interaction of surface waves with mean currents. Results from the experiments show that the vortex force generates Langmuir circulations that can dominate vertical mixing. The simulated vertical velocity fields show linear, small-scale, coherent structures near the surface that extend downwind across the model domain. In the interior of the mixed layer, scales of motion increase to eddy sizes that are roughly equivalent to the mixed-layer depth. Cases with the vortex force have stronger circulations nearmore » the surface in contrast to cases with only heat flux and wind stress, particularly when the heat flux is positive. Calculations of the velocity variance and turbulence dissipation rates for cases with and without the vortex force, surface cooling, and wind stress indicate that wave-current interactions are a dominant mixing process in the upper mixed layer. Heat flux calculations show that the entrainment rate at the mixed-layer base can be up to two times greater when the vortex force is included. In a case with reduced wind stress, turbulence dissipation rates remained high near the surface because of the vortex force interaction with preexisting inertial currents. In deep mixed layers ({approximately}250 m) the simulations show that Langmuir circulations can vertically transport water 145 m during conditions of surface heating. Observations of turbulence dissipation rates and the vertical temperature structure support the model results. 42 refs., 20 figs., 21 tabs.« less

  11. A finite volume model simulation for the Broughton Archipelago, Canada

    NASA Astrophysics Data System (ADS)

    Foreman, M. G. G.; Czajko, P.; Stucchi, D. J.; Guo, M.

    A finite volume circulation model is applied to the Broughton Archipelago region of British Columbia, Canada and used to simulate the three-dimensional velocity, temperature, and salinity fields that are required by a companion model for sea lice behaviour, development, and transport. The absence of a high resolution atmospheric model necessitated the installation of nine weather stations throughout the region and the development of a simple data assimilation technique that accounts for topographic steering in interpolating/extrapolating the measured winds to the entire model domain. The circulation model is run for the period of March 13-April 3, 2008 and correlation coefficients between observed and model currents, comparisons between model and observed tidal harmonics, and root mean square differences between observed and model temperatures and salinities all showed generally good agreement. The importance of wind forcing in the near-surface circulation, differences between this simulation and one computed with another model, the effects of bathymetric smoothing on channel velocities, further improvements necessary for this model to accurately simulate conditions in May and June, and the implication of near-surface current patterns at a critical location in the 'migration corridor' of wild juvenile salmon, are also discussed.

  12. Balanced and Unbalanced Circulations in a Primitive Equation Simulation of a Midlatitude MCC. Part I: The Numerical Simulation.

    NASA Astrophysics Data System (ADS)

    Olsson, Peter Q.; Cotton, William R.

    1997-02-01

    A midlatitude mesoscale convective complex (MCC), which occurred over the central United States on 23-24 June 1985, was simulated using the Regional Atmospheric Modeling System (RAMS). The multiply nested-grid simulation agreed reasonably well with surface, upper-air, and satellite observations and ground-based radar plots. The simulated MCC had a typical structure consisting of a leading line of vigorous convection and a trailing region of less intense stratiform rainfall. Several other characteristic MCC circulations were also simulated: a divergent cold pool in the lower troposphere, midlevel convergence coupled with a relatively cool descending rear-inflow jet, and relatively warm updraft structure, and a cold divergent anticyclone in the tropopause region. Early in the MCC simulation, a mesoscale convectively induced vortex (MCV) formed on the eastern edge of the convective line. While frequently associated with MCCs and other mesoscale convective systems (MCSs), MCVs are more typically reported in the mature and decaying stages of the life cycle. Several hours later, a second MCV formed near the opposite end of the convective line, and by the mature phase of the MCC, these MCVs were embedded within a more complex system-wide vortical flow in the lower troposphere.Analysis of the first MCV during its incipient phase indicates that the vortex initially formed near the surface by convergence/stretching of the large low-level ambient vertical vorticity in this region. Vertical advection appeared largely responsible for the upward extension of this MCV to about 3.5 km above the surface, with tilting of horizontal vorticity playing a secondary role. This mechanism of MCV formation is in contrast to recent idealized high-resolution squall line simulations, where MCVs were found to result from the tilting into the vertical of storm-induced horizontal vorticity formed near the top of the cold pool.Another interesting aspect of the simulation was the development of a

  13. Simulation of hydrodynamics using large eddy simulation-second-order moment model in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Juhui, Chen; Yanjia, Tang; Dan, Li; Pengfei, Xu; Huilin, Lu

    2013-07-01

    Flow behavior of gas and particles is predicted by the large eddy simulation of gas-second order moment of solid model (LES-SOM model) in the simulation of flow behavior in CFB. This study shows that the simulated solid volume fractions along height using a two-dimensional model are in agreement with experiments. The velocity, volume fraction and second-order moments of particles are computed. The second-order moments of clusters are calculated. The solid volume fraction, velocity and second order moments are compared at the three different model constants.

  14. Impact of tropical Atlantic sea-surface temperature biases on the simulated atmospheric circulation and precipitation over the Atlantic region: An ECHAM6 model study

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Bader, Jürgen

    2017-09-01

    As many coupled atmosphere-ocean general circulation models, the coupled Earth System Model developed at the Max Planck Institute for Meteorology suffers from severe sea-surface temperature (SST) biases in the tropical Atlantic. We performed a set of SST sensitivity experiments with its atmospheric model component ECHAM6 to understand the impact of tropical Atlantic SST biases on atmospheric circulation and precipitation. The model was forced by a climatology of observed global SSTs to focus on simulated seasonal and annual mean state climate. Through the superposition of varying tropical Atlantic bias patterns extracted from the MPI-ESM on top of the control field, this study investigates the relevance of the seasonal variation and spatial structure of tropical Atlantic biases for the simulated response. Results show that the position and structure of the Intertropical Convergence Zone (ITCZ) across the Atlantic is significantly affected, exhibiting a dynamically forced shift of annual mean precipitation maximum to the east of the Atlantic basin as well as a southward shift of the oceanic rain belt. The SST-induced changes in the ITCZ in turn affect seasonal rainfall over adjacent continents. However not only the ITCZ position but also other effects arising from biases in tropical Atlantic SSTs, e.g. variations in the wind field, change the simulation of precipitation over land. The seasonal variation and spatial pattern of tropical Atlantic SST biases turns out to be crucial for the simulated atmospheric response and is essential for analyzing the contribution of SST biases to coupled model mean state biases. Our experiments show that MPI-ESM mean-state biases in the Atlantic sector are mainly driven by SST biases in the tropical Atlantic while teleconnections from other basins seem to play a minor role.

  15. Modeling and Simulation of U-tube Steam Generator

    NASA Astrophysics Data System (ADS)

    Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei

    2018-03-01

    The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.

  16. Cascading ocean basins: numerical simulations of the circulation and interbasin exchange in the Azov-Black-Marmara-Mediterranean Seas system

    NASA Astrophysics Data System (ADS)

    Stanev, Emil Vassilev; Grashorn, Sebastian; Zhang, Yinglong Joseph

    2017-08-01

    In this paper, we use the unstructured grid model SCHISM to simulate the thermohydrodynamics in a chain of baroclinic, interconnected basins. The model shows a good skill in simulating the horizontal circulation and vertical profiles of temperature, salinity, and currents. The magnitude and phases of the seasonal changes of circulation are consistent with earlier observations. Among the mesoscale and subbasin-scale circulation features that are realistically simulated are the anticyclonic coastal eddies, the Sebastopol and Batumi eddies, the Marmara Sea outflow around the southern coast of the Limnos Island, and the pathway of the cold water originating from the shelf. The superiority of the simulations compared to earlier numerical studies is demonstrated with the example of model capabilities to resolve the strait dynamics, gravity currents originating from the straits, high-salinity bottom layer on the shallow shelf, as well as the multiple intrusions from the Bosporus Strait down to 700 m depth. The warm temperature intrusions from the strait produce the warm water mass in the intermediate layers of the Black Sea. One novel result is that the seasonal intensification of circulation affects the interbasin exchange, thus allowing us to formulate the concept of circulation-controlled interbasin exchange. To the best of our knowledge, the present numerical simulations, for the first time, suggest that the sea level in the interior part of the Black Sea can be lower than the sea level in the Marmara Sea and even in some parts of the Aegean Sea. The comparison with observations shows that the timings and magnitude of exchange flows are also realistically simulated, along with the blocking events. The short-term variability of the strait transports is largely controlled by the anomalies of wind. The simulations demonstrate the crucial role of the narrow and shallow strait of Bosporus in separating the two pairs of basins: Aegean-Marmara Seas from one side and Azov

  17. South Atlantic circulation in a world ocean model

    NASA Astrophysics Data System (ADS)

    England, Matthew H.; Garçon, Véronique C.

    1994-09-01

    The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW) at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC) through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current) and fresher Subantarctic surface water (originating in the ACC). The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor). Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW) equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean exchange of thermocline

  18. Use of circulation types classifications to evaluate AR4 climate models over the Euro-Atlantic region

    NASA Astrophysics Data System (ADS)

    Pastor, M. A.; Casado, M. J.

    2012-10-01

    This paper presents an evaluation of the multi-model simulations for the 4th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) in terms of their ability to simulate the ERA40 circulation types over the Euro-Atlantic region in winter season. Two classification schemes, k-means and SANDRA, have been considered to test the sensitivity of the evaluation results to the classification procedure. The assessment allows establishing different rankings attending spatial and temporal features of the circulation types. Regarding temporal characteristics, in general, all AR4 models tend to underestimate the frequency of occurrence. The best model simulating spatial characteristics is the UKMO-HadGEM1 whereas CCSM3, UKMO-HadGEM1 and CGCM3.1(T63) are the best simulating the temporal features, for both classification schemes. This result agrees with the AR4 models ranking obtained when having analysed the ability of the same AR4 models to simulate Euro-Atlantic variability modes. This study has proved the utility of applying such a synoptic climatology approach as a diagnostic tool for models' assessment. The ability of the models to properly reproduce the position of ridges and troughs and the frequency of synoptic patterns, will therefore improve our confidence in the response of models to future climate changes.

  19. Numerical model of the circulation and dispersion in the east Adriatic coastal waters

    NASA Astrophysics Data System (ADS)

    Beg Paklar, Gordana; Dzoic, Tomislav; Koracin, Darko; Matijevic, Slavica; Grbec, Branka; Ivatek-Sahdan, Stjepan

    2017-04-01

    The Regional Ocean Modeling System (ROMS) was implemented to reproduce physical properties of the area around submarine outlet Stobrec in the middle Adriatic coastal area. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and dynamics of the surrounding area imposed at the open boundaries. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Simulated fields from the Adriatic and shelf scale models were used to prescribe the initial and open boundary conditions for fine resolution coastal domain. Model results were compared with available CTD measurements and discussed in the light of the climatological circulation and thermohaline properties of the middle Adriatic coastal area. Variability in the circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the open boundaries. Basic features of the coastal circulation are well reproduced by the ROMS model, as well as temperatures and salinities which are within corresponding seasonal intervals, although with lower stratification than measured ones. In order to reproduce dispersion of the passive tracer the ROMS model was coupled with Lagrangian dispersion model. Multiyear monitoring of the physical, chemical and biological parameters around the sewage outlet was used to assess the quality of the dispersion model results. Among measured parameters, redox potential of the surface sediment layer was selected to be compared with model results as its negative values are direct consequence of increased organic matter input that can be attributed to the sewage system inflow.

  20. Statistical analysis of simulated global soil moisture and its memory in an ensemble of CMIP5 general circulation models

    NASA Astrophysics Data System (ADS)

    Wiß, Felix; Stacke, Tobias; Hagemann, Stefan

    2014-05-01

    Soil moisture and its memory can have a strong impact on near surface temperature and precipitation and have the potential to promote severe heat waves, dry spells and floods. To analyze how soil moisture is simulated in recent general circulation models (GCMs), soil moisture data from a 23 model ensemble of Atmospheric Model Intercomparison Project (AMIP) type simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are examined for the period 1979 to 2008 with regard to parameterization and statistical characteristics. With respect to soil moisture processes, the models vary in their maximum soil and root depth, the number of soil layers, the water-holding capacity, and the ability to simulate freezing which all together leads to very different soil moisture characteristics. Differences in the water-holding capacity are resulting in deviations in the global median soil moisture of more than one order of magnitude between the models. In contrast, the variance shows similar absolute values when comparing the models to each other. Thus, the input and output rates by precipitation and evapotranspiration, which are computed by the atmospheric component of the models, have to be in the same range. Most models simulate great variances in the monsoon areas of the tropics and north western U.S., intermediate variances in Europe and eastern U.S., and low variances in the Sahara, continental Asia, and central and western Australia. In general, the variance decreases with latitude over the high northern latitudes. As soil moisture trends in the models were found to be negligible, the soil moisture anomalies were calculated by subtracting the 30 year monthly climatology from the data. The length of the memory is determined from the soil moisture anomalies by calculating the first insignificant autocorrelation for ascending monthly lags (insignificant autocorrelation folding time). The models show a great spread of autocorrelation length from a few months in

  1. Acute effects of a large bolide impact simulated by a global atmospheric circulation model

    NASA Technical Reports Server (NTRS)

    Thompson, Starley L.; Crutzen, P. J.

    1988-01-01

    The goal is to use a global three-dimensional atmospheric circulation model developed for studies of atmospheric effects of nuclear war to examine the time evolution of atmospheric effects from a large bolide impact. The model allows for dust and NOx injection, atmospheric transport by winds, removal by precipitation, radiative transfer effects, stratospheric ozone chemistry, and nitric acid formation and deposition on a simulated Earth having realistic geography. Researchers assume a modest 2 km-diameter impactor of the type that could have formed the 32 km-diameter impact structure found near Manson, Iowa and dated at roughly 66 Ma. Such an impact would have created on the order of 5 x 10 to the 10th power metric tons of atmospheric dust (about 0.01 g cm(-2) if spread globally) and 1 x 10 to the 37th power molecules of NO, or two orders of magnitude more stratospheric NO than might be produced in a large nuclear war. Researchers ignore potential injections of CO2 and wildfire smoke, and assume the direct heating of the atmosphere by impact ejecta on a regional scale is not large compared to absorption of solar energy by dust. Researchers assume an impact site at 45 N in the interior of present day North America.

  2. Modelling study of three-dimensional circulation and particle movement over the Sable Gully of Nova Scotia

    NASA Astrophysics Data System (ADS)

    Shan, Shiliang; Sheng, Jinyu; Greenan, Blair John William

    2014-01-01

    The Sable Gully is a broad deep underwater canyon located to the east of Sable Island on the edge of the Scotian Shelf. Being the home of many marine species including the endangered Northern Bottlenose Whale, the Gully was designated as a marine protected area (MPA) in 2004. Better understanding of physical environmental conditions over this MPA is needed for sustainable ecosystem management. In this study, a multi-nested ocean circulation model and a particle tracking model are used to examine the three-dimensional (3D) circulation and movement of particles carried passively by the flow over the Sable Gully. The 3D circulation model is driven by tides, wind, and surface heat/freshwater fluxes. The model performance is assessed by comparing the results with the previous numerical tidal results and current meter observations made in the Gully. The simulated tidal circulation over the Gully and adjacent waters is relatively strong on shallow banks and relatively weak on the continental slope. Below the depth of the Gully rim ( ˜ 200 m), the tidal currents are constrained by the thalweg of the Gully and amplified toward the Gully head. The simulated subtidal circulation in the Gully has a complex spatial structure and significant seasonal variability. The simulated time-dependent 3D flow fields are then used in a particle tracking model to study the particle movements, downstream and upstream areas, and residence time of the Gully. Based on the movements of particles released at the depth of the Gully rim and tracked forward in time, the e-folding residence time is estimated to be about 7 and 13 days in February and August 2006, respectively. The Gully flanks are identified as high retention areas with the typical residence time of 10 and 20 days in February and August 2006, respectively. Tracking particles with and without tides reveals that tidal circulation reduces the value of residence time in the Gully, particularly along the Gully flanks.

  3. Improved short-term variability in the thermosphere-ionosphere-mesosphere-electrodynamics general circulation model

    NASA Astrophysics Data System (ADS)

    Häusler, K.; Hagan, M. E.; Baumgaertner, A. J. G.; Maute, A.; Lu, G.; Doornbos, E.; Bruinsma, S.; Forbes, J. M.; Gasperini, F.

    2014-08-01

    We report on a new source of tidal variability in the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). Lower boundary forcing of the TIME-GCM for a simulation of November-December 2009 based on 3-hourly Modern-Era Retrospective Analysis for Research and Application (MERRA) reanalysis data includes day-to-day variations in both diurnal and semidiurnal tides of tropospheric origin. Comparison with TIME-GCM results from a heretofore standard simulation that includes climatological tropospheric tides from the global-scale wave model reveal evidence of the impacts of MERRA forcing throughout the model domain, including measurable tidal variability in the TIME-GCM upper thermosphere. Additional comparisons with measurements made by the Gravity field and steady-state Ocean Circulation Explorer satellite show improved TIME-GCM capability to capture day-to-day variations in thermospheric density for the November-December 2009 period with the new MERRA lower boundary forcing.

  4. A blood circulation model for reference man

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    This paper describes a dynamic blood circulation model that predicts the movement and gradual dispersal of a bolus of material in the circulation after its intravascular injection into an adult human. The main purpose of the model is to improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The total blood volume is partitioned into the blood contents of 24 separate organs or tissues, right heart chambers, left heart chambers, pulmonary circulation, arterial outflow to the systemic tissues (aorta and large arteries), and venous return from the systemic tissues (large veins). As amore » compromise between physical reality and computational simplicity, the circulation of blood is viewed as a system of first-order transfers between blood pools, with the delay time depending on the mean transit time across the pool. The model allows consideration of incomplete, tissue-dependent extraction of material during passage through the circulation and return of material from tissues to plasma.« less

  5. CMIP5 Historical Simulations (1850-2012) with GISS ModelE2

    NASA Technical Reports Server (NTRS)

    Miller, Ronald Lindsay; Schmidt, Gavin A.; Nazarenko, Larissa S.; Tausnev, Nick; Bauer, Susanne E.; DelGenio, Anthony D.; Kelley, Max; Lo, Ken K.; Ruedy, Reto; Shindell, Drew T.; hide

    2014-01-01

    Observations of climate change during the CMIP5 extended historical period (1850-2012) are compared to trends simulated by six versions of the NASA Goddard Institute for Space Studies ModelE2 Earth System Model. The six models are constructed from three versions of the ModelE2 atmospheric general circulation model, distinguished by their treatment of atmospheric composition and the aerosol indirect effect, combined with two ocean general circulation models, HYCOM and Russell. Forcings that perturb the model climate during the historical period are described. Five-member ensemble averages from each of the six versions of ModelE2 simulate trends of surface air temperature, atmospheric temperature, sea ice and ocean heat content that are in general agreement with observed trends, although simulated warming is slightly excessive within the past decade. Only simulations that include increasing concentrations of long-lived greenhouse gases match the warming observed during the twentieth century. Differences in twentieth-century warming among the six model versions can be attributed to differences in climate sensitivity, aerosol and ozone forcing, and heat uptake by the deep ocean. Coupled models with HYCOM export less heat to the deep ocean, associated with reduced surface warming in regions of deepwater formation, but greater warming elsewhere at high latitudes along with reduced sea ice. All ensembles show twentieth-century annular trends toward reduced surface pressure at southern high latitudes and a poleward shift of the midlatitude westerlies, consistent with observations.

  6. Simulations of Hurricane Katrina (2005) with the 0.125 degree finite-volume General Circulation Model on the NASA Columbia Supercomputer

    NASA Technical Reports Server (NTRS)

    Shen, B.-W.; Atlas, R.; Reale, O.; Lin, S.-J.; Chern, J.-D.; Chang, J.; Henze, C.

    2006-01-01

    Hurricane Katrina was the sixth most intense hurricane in the Atlantic. Katrina's forecast poses major challenges, the most important of which is its rapid intensification. Hurricane intensity forecast with General Circulation Models (GCMs) is difficult because of their coarse resolution. In this article, six 5-day simulations with the ultra-high resolution finite-volume GCM are conducted on the NASA Columbia supercomputer to show the effects of increased resolution on the intensity predictions of Katrina. It is found that the 0.125 degree runs give comparable tracks to the 0.25 degree, but provide better intensity forecasts, bringing the center pressure much closer to observations with differences of only plus or minus 12 hPa. In the runs initialized at 1200 UTC 25 AUG, the 0.125 degree simulates a more realistic intensification rate and better near-eye wind distributions. Moreover, the first global 0.125 degree simulation without convection parameterization (CP) produces even better intensity evolution and near-eye winds than the control run with CP.

  7. Dynamics and transport in the stratosphere : Simulations with a general circulation mode

    NASA Astrophysics Data System (ADS)

    van Aalst, Maarten Krispijn

    2005-01-01

    The middle atmosphere is strongly affected by two of the world's most important environmental problems: global climate change and stratospheric ozone depletion, caused by anthropogenic emissions of greenhouse gases and chlorofluorocarbons (CFCs), respectively. General circulation models with coupled chemistry are a key tool to advance our understanding of the complex interplay between dynamics, chemistry and radiation in the middle atmosphere. A key problem of such models is that they generate their own meteorology, and thus cannot be used for comparisons with instantaneous measurements. This thesis presents the first application of a simple data assimilation method, Newtonian relaxation, to reproduce realistic synoptical conditions in a state-of-the-art middle atmosphere general circulation model, MA-ECHAM. By nudging the model's meteorology slightly towards analyzed observations from a weather forecasting system (ECMWF), we have simulated specific atmospheric processes during particular meteorological episodes, such as the 1999/2000 Arctic winter. The nudging technique is intended to interfere as little as possible with the model's own dynamics. In fact, we found that we could even limit the nudging to the troposphere, leaving the middle atmosphere entirely free. In that setup, the model realistically reproduced many aspects of the instantaneous meteorology of the middle atmosphere, such as the unusually early major warming and breakup of the 2002 Antarctic vortex. However, we found that this required careful interpolation of the nudging data, and a correct choice of nudging parameters. We obtained the best results when we first projected the nudging data onto the model's normal modes so that we could filter out the (spurious) fast components. In a four-year simulation, for which we also introduced an additional nudging of the stratospheric quasi-biennial oscillation, we found that the model reproduced much of the interannual variability throughout the

  8. The balance of kinetic and total energy simulated by the OSU two-level atmospheric general circulation model for January and July

    NASA Technical Reports Server (NTRS)

    Wang, J.-T.; Gates, W. L.; Kim, J.-W.

    1984-01-01

    A three-year simulation which prescribes seasonally varying solar radiation and sea surface temperature is the basis of the present study of the horizontal structure of the balances of kinetic and total energy simulated by Oregon State University's two-level atmospheric general circulation model. Mechanisms responsible for the local energy changes are identified, and the energy balance requirement's fulfilment is examined. In January, the vertical integral of the total energy shows large amounts of external heating over the North Pacific and Atlantic, together with cooling over most of the land area of the Northern Hemisphere. In July, an overall seasonal reversal is found. Both seasons are also characterized by strong energy flux divergence in the tropics, in association with the poleward transport of heat and momentum.

  9. Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao

    2003-03-01

    The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.

  10. Climate Simulations from Super-parameterized and Conventional General Circulation Models with a Third-order Turbulence Closure

    NASA Astrophysics Data System (ADS)

    Xu, Kuan-Man; Cheng, Anning

    2014-05-01

    A high-resolution cloud-resolving model (CRM) embedded in a general circulation model (GCM) is an attractive alternative for climate modeling because it replaces all traditional cloud parameterizations and explicitly simulates cloud physical processes in each grid column of the GCM. Such an approach is called "Multiscale Modeling Framework." MMF still needs to parameterize the subgrid-scale (SGS) processes associated with clouds and large turbulent eddies because circulations associated with planetary boundary layer (PBL) and in-cloud turbulence are unresolved by CRMs with horizontal grid sizes on the order of a few kilometers. A third-order turbulence closure (IPHOC) has been implemented in the CRM component of the super-parameterized Community Atmosphere Model (SPCAM). IPHOC is used to predict (or diagnose) fractional cloudiness and the variability of temperature and water vapor at scales that are not resolved on the CRM's grid. This model has produced promised results, especially for low-level cloud climatology, seasonal variations and diurnal variations (Cheng and Xu 2011, 2013a, b; Xu and Cheng 2013a, b). Because of the enormous computational cost of SPCAM-IPHOC, which is 400 times of a conventional CAM, we decided to bypass the CRM and implement the IPHOC directly to CAM version 5 (CAM5). IPHOC replaces the PBL/stratocumulus, shallow convection, and cloud macrophysics parameterizations in CAM5. Since there are large discrepancies in the spatial and temporal scales between CRM and CAM5, IPHOC used in CAM5 has to be modified from that used in SPCAM. In particular, we diagnose all second- and third-order moments except for the fluxes. These prognostic and diagnostic moments are used to select a double-Gaussian probability density function to describe the SGS variability. We also incorporate a diagnostic PBL height parameterization to represent the strong inversion above PBL. The goal of this study is to compare the simulation of the climatology from these three

  11. Seasonal simulations of the planetary boundary layer and boundary-layer stratocumulus clouds with a general circulation model

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Abeles, J. A.; Corsetti, T. G.

    1985-01-01

    The formulation of the planetary boundary layer (PBL) and stratocumulus parametrizations in the UCLA general circulation model (GCM) are briefly summarized, and extensive new results are presented illustrating some aspects of the simulated seasonal changes of the global distributions of PBL depth, stratocumulus cloudiness, cloud-top entrainment instability, the cumulus mass flux, and related fields. Results from three experiments designed to reveal the sensitivity of the GCM results to aspects of the PBL and stratocumulus parametrizations are presented. The GCM results show that the layer cloud instability appears to limit the extent of the marine subtropical stratocumulus regimes, and that instability frequently occurs in association with cumulus convection over land. Cumulus convection acts as a very significant sink of PBL mass throughout the tropics and over the midlatitude continents in winter.

  12. Modeling the influence of river discharge on salt intrusion and residual circulation in Danshuei River estuary, Taiwan

    USGS Publications Warehouse

    Liu, W.-C.; Chen, W.-B.; Cheng, R.T.; Hsu, M.-H.; Kuo, A.Y.

    2007-01-01

    A 3-D, time-dependent, baroclinic, hydrodynamic and salinity model was implemented and applied to the Danshuei River estuarine system and the adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundaries and freshwater inflows from the main stream and major tributaries in the Danshuei River estuarine system. The bottom friction coefficient was adjusted to achieve model calibration and verification in model simulations of barotropic and baroclinic flows. The turbulent diffusivities were ascertained through comparison of simulated salinity time series with observations. The model simulation results are in qualitative agreement with the available field data. The validated model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow condition in the Danshuei River estuarine system. The model results reveal that the characteristic two-layered estuarine circulation prevails most of the time at Kuan-Du station near the river mouth. Comparing the estuarine circulation under low- and mean flow conditions, the circulation strengthens during low-flow period and its strength decreases at moderate river discharge. The river discharge is a dominating factor affecting the salinity intrusion in the estuarine system. A correlation between the distance of salt intrusion and freshwater discharge has been established allowing prediction of salt intrusion for different inflow conditions. ?? 2007 Elsevier Ltd. All rights reserved.

  13. Simulation of the Pinatubo aerosol cloud in general circulation model

    NASA Technical Reports Server (NTRS)

    Boville, Byron A.; Holton, James R.; Mote, Philip W.

    1991-01-01

    The global transport and dispersion of the Pinatubo aerosol cloud are simulated by means of a high-resolution stratospheric version of the NCAR Community Climate Model (CCM2) with an annual cycle. A passive tracer was injected into the model stratosphere over the Philippine Islands on June 15, and the transport was simulated for 180 d using an accurate semi-Lagrangian advection scheme. The simulated volcanic aerosol cloud initially drifted westward and expanded in longitude and latitude. The bulk of the aerosol cloud dispersed zonally to form a continuous belt in longitude, and remained confined to the tropics, centered near the 20-mb level for the entire 180-d model run, although a small amount was transported episodically into the upper troposphere in association with convective disturbances. Aerosol transported to the troposphere was dispersed within a few weeks into the Northern Hemisphere extratropics. In the Southern Hemisphere, the aerosol was mixed into the region equatorward of the core of the polar night jet during the first 50 d, but penetration into southern polar latitudes was delayed until the final warming in November.

  14. Clouds and the extratropical circulation response to global warming in a hierarchy of global atmosphere models

    NASA Astrophysics Data System (ADS)

    Voigt, A.

    2017-12-01

    Climate models project that global warming will lead to substantial changes in extratropical jet streams. Yet, many quantitative aspects of warming-induced jet stream changes remain uncertain, and recent work has indicated an important role of clouds and their radiative interactions. Here, I will investigate how cloud-radiative changes impact the zonal-mean extratropical circulation response under global warming using a hierarchy of global atmosphere models. I will first focus on aquaplanet setups with prescribed sea-surface temperatures (SSTs), which reproduce the model spread found in realistic simulations with interactive SSTs. Simulations with two CMIP5 models MPI-ESM and IPSL-CM5A and prescribed clouds show that half of the circulation response can be attributed to cloud changes. The rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud changes and is qualitatively reproduced in a dry Held-Suarez model, although the latter is too sensitive because of its simplified treatment of diabatic processes. I will then show that the aquaplanet results also hold when the models are used in a realistic setup that includes continents and seasonality. I will further juxtapose these prescribed-SST simulations with interactive-SST simulations and show that atmospheric and surface cloud-radiative interactions impact the jet poleward jet shifts in about equal measure. Finally, I will discuss the cloud impact on regional and seasonal circulation changes.

  15. On the tidally driven circulation in the South China Sea: modeling and analysis

    NASA Astrophysics Data System (ADS)

    Nelko, Varjola; Saha, Abhishek; Chua, Vivien P.

    2014-03-01

    The South China Sea is a large marginal sea surrounded by land masses and island chains, and characterized by complex bathymetry and irregular coastlines. An unstructured-grid SUNTANS model is employed to perform depth-averaged simulations of the circulation in the South China Sea. The model is tidally forced at the open ocean boundaries using the eight main tidal constituents as derived from the OSU Tidal Prediction Software. The model simulations are performed for the year 2005 using a time step of 60 s. The model reproduces the spring-neap and diurnal and semidiurnal variability in the observed data. Skill assessment of the model is performed by comparing model-predicted surface elevations with observations. For stations located in the central region of the South China Sea, the root mean squared errors (RMSE) are less than 10 % and the Pearson's correlation coefficient ( r) is as high as 0.9. The simulations show that the quality of the model prediction is dependent on the horizontal grid resolution, coastline accuracy, and boundary locations. The maximum RMSE errors and minimum correlation coefficients occur at Kaohsiung (located in northern South China Sea off Taiwan coast) and Tioman (located in southern South China Sea off Malaysia coast). This may be explained with spectral analysis of sea level residuals and winds, which reveal dynamics at Kaohsiung and Tioman are strongly influenced by the seasonal monsoon winds. Our model demonstrates the importance of tidally driven circulation in the central region of the South China Sea.

  16. Diversity in the representation of large-scale circulation associated with ENSO-Indian summer monsoon teleconnections in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.

    2018-04-01

    Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with ENSO-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of ENSO-ISM teleconnections in G1 models. Warm Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which ENSO-ISM teleconnections are

  17. The Sensitivity of WRF Daily Summertime Simulations over West Africa to Alternative Parameterizations. Part 1: African Wave Circulation

    NASA Technical Reports Server (NTRS)

    Noble, Erik; Druyan, Leonard M.; Fulakeza, Matthew

    2014-01-01

    The performance of the NCAR Weather Research and Forecasting Model (WRF) as a West African regional-atmospheric model is evaluated. The study tests the sensitivity of WRF-simulated vorticity maxima associated with African easterly waves to 64 combinations of alternative parameterizations in a series of simulations in September. In all, 104 simulations of 12-day duration during 11 consecutive years are examined. The 64 combinations combine WRF parameterizations of cumulus convection, radiation transfer, surface hydrology, and PBL physics. Simulated daily and mean circulation results are validated against NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) and NCEP/Department of Energy Global Reanalysis 2. Precipitation is considered in a second part of this two-part paper. A wide range of 700-hPa vorticity validation scores demonstrates the influence of alternative parameterizations. The best WRF performers achieve correlations against reanalysis of 0.40-0.60 and realistic amplitudes of spatiotemporal variability for the 2006 focus year while a parallel-benchmark simulation by the NASA Regional Model-3 (RM3) achieves higher correlations, but less realistic spatiotemporal variability. The largest favorable impact on WRF-vorticity validation is achieved by selecting the Grell-Devenyi cumulus convection scheme, resulting in higher correlations against reanalysis than simulations using the Kain-Fritch convection. Other parameterizations have less-obvious impact, although WRF configurations incorporating one surface model and PBL scheme consistently performed poorly. A comparison of reanalysis circulation against two NASA radiosonde stations confirms that both reanalyses represent observations well enough to validate the WRF results. Validation statistics for optimized WRF configurations simulating the parallel period during 10 additional years are less favorable than for 2006.

  18. Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations

    NASA Astrophysics Data System (ADS)

    Rotstayn, L. D.; Jeffrey, S. J.; Collier, M. A.; Dravitzki, S. M.; Hirst, A. C.; Syktus, J. I.; Wong, K. K.

    2012-07-01

    We use a coupled atmosphere-ocean global climate model (CSIRO-Mk3.6) to investigate the drivers of trends in summer rainfall and circulation in the vicinity of northern Australia. As part of the Coupled Model Intercomparison Project Phase 5 (CMIP5), we perform a 10-member 21st century ensemble driven by Representative Concentration Pathway 4.5 (RCP4.5). To investigate the roles of different forcing agents, we also perform multiple 10-member ensembles of historical climate change, which are analysed for the period 1951-2010. The historical runs include ensembles driven by "all forcings" (HIST), all forcings except anthropogenic aerosols (NO_AA) and forcing only from long-lived greenhouse gases (GHGAS). Anthropogenic aerosol-induced effects in a warming climate are calculated from the difference of HIST minus NO_AA. CSIRO-Mk3.6 simulates a strong summer rainfall decrease over north-western Australia (NWA) in RCP4.5, whereas simulated trends in HIST are weakly positive (but insignificant) during 1951-2010. The weak rainfall trends in HIST are due to compensating effects of different forcing agents: there is a significant decrease in GHGAS, offset by an aerosol-induced increase. Observations show a significant increase of summer rainfall over NWA during the last few decades. The large magnitude of the observed NWA rainfall trend is not captured by 440 unforced 60-yr trends calculated from a 500-yr pre-industrial control run, even though the model's decadal variability appears to be realistic. This suggests that the observed trend includes a forced component, despite the fact that the model does not simulate the magnitude of the observed rainfall increase in response to "all forcings" (HIST). We investigate the mechanism of simulated and observed NWA rainfall changes by exploring changes in circulation over the Indo-Pacific region. The key circulation feature associated with the rainfall increase in reanalyses is a lower-tropospheric cyclonic circulation trend off the

  19. Observations and Modeling of the Transient General Circulation of the North Pacific Basin

    NASA Technical Reports Server (NTRS)

    McWilliams, James C.

    2000-01-01

    Because of recent progress in satellite altimetry and numerical modeling and the accumulation and archiving of long records of hydrographic and meteorological variables, it is becoming feasible to describe and understand the transient general circulation of the ocean (i.e., variations with spatial scales larger than a few hundred kilometers and time scales of seasonal and longer-beyond the mesoscale). We have carried out various studies in investigation of the transient general circulation of the Pacific Ocean from a coordinated analysis of satellite altimeter data, historical hydrographic gauge data, scatterometer wind observations, reanalyzed operational wind fields, and a variety of ocean circulation models. Broadly stated, our goal was to achieve a phenomenological catalogue of different possible types of large-scale, low-frequency variability, as a context for understanding the observational record. The approach is to identify the simplest possible model from which particular observed phenomena can be isolated and understood dynamically and then to determine how well these dynamical processes are represented in more complex Oceanic General Circulation Models (OGCMs). Research results have been obtained on Rossby wave propagation and transformation, oceanic intrinsic low-frequency variability, effects of surface gravity waves, pacific data analyses, OGCM formulation and developments, and OGCM simulations of forced variability.

  20. Some remarks on using circulation classifications to evaluate circulation model and atmospheric reanalysis data

    NASA Astrophysics Data System (ADS)

    Stryhal, Jan; Huth, Radan

    2017-04-01

    Automated classifications of atmospheric circulation patterns represent a tool widely used for studying the circulation in both the real atmosphere, represented by atmospheric reanalyses, and in circulation model outputs. It is well known that the results of studies utilizing one of these methods are influenced by several subjective choices, of which one of the most crucial is the selection of the method itself. Authors of the present study used eight methods from the COST733 classification software (Grosswettertypes, two variants of Jenkinson-Collison, Lund, T-mode PCA with oblique rotation of principal components, k-medoids, k-means with differing starting partitions, and SANDRA) to assess the winter 1961-2000 daily sea level pressure patterns in five reanalysis datasets (ERA-40, NCEP-1, JRA-55, 20CRv2, and ERA-20C), as well as in the historical runs and 21st century projections of an ensemble of CMIP5 GCMs. The classification methods were quite consistent in displaying the strongest biases in GCM simulations. However, the results also showed that multiple classifications are required to quantify the biases in certain types of circulation (e.g., zonal circulation or blocking-like patterns). There was no sign that any method should have a tendency to over- or underestimate the biases in circulation type frequency. The bias found by a particular method for a particular domain clearly reflects the ability of the algorithm to detect groups of similar patterns within the data space, and whether these groups do or do not differ one dataset to another is to a large extend coincidental. There were, nevertheless, systematic differences between groups of methods that use some form of correlation to classify the patterns to circulation types (CTs) and those which use the Euclidean distance. The comparison of reanalyses, which was conducted over eight European domains, showed that there is even a weak negative correlation between the average differences of CT frequency found

  1. On the design of an interactive biosphere for the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Mintz, Y.; Sellers, P. J.; Willmott, C. J.

    1983-01-01

    Improving the realism and accuracy of the GLAS general circulation model (by adding an interactive biosphere that will simulate the transfers of latent and sensible heat from land surface to atmosphere as functions of the atmospheric conditions and the morphology and physiology of the vegetation) is proposed.

  2. Mars Pathfinder meteorological observations on the basis of results of an atmospheric global circulation model

    NASA Technical Reports Server (NTRS)

    Forget, Francois; Hourdin, F.; Talagrand, O.

    1994-01-01

    The Mars Pathfinder Meteorological Package (ASI/MET) will measure the local pressure, temperature, and winds at its future landing site, somewhere between the latitudes 0 deg N and 30 deg N. Comparable measurements have already been obtained at the surface of Mars by the Viking Landers at 22 deg N (VL1) and 48 deg N (VL2), providing much useful information on the martian atmosphere. In particular the pressure measurements contain very instructive information on the global atmospheric circulation. At the Laboratoire de Meteorologie Dynamique (LMD), we have analyzed and simulated these measurements with a martian atmospheric global circulation model (GCM), which was the first to simulate the martian atmospheric circulation over more than 1 year. The model is able to reproduce rather accurately many observed features of the martian atmosphere, including the long- and short-period oscillations of the surface pressure observed by the Viking landers. From a meteorological point of view, we think that a landing site located near or at the equator would be an interesting choice.

  3. Simulation of a dust episode over Eastern Mediterranean using a high-resolution atmospheric chemistry general circulation model

    NASA Astrophysics Data System (ADS)

    Abdel Kader, Mohamed; Zittis, Georgios; Astitha, Marina; Lelieveld, Jos; Tymvios, Fillipos

    2013-04-01

    An extended episode of low visibility took place over the Eastern Mediterranean in late September 2011, caused by a strong increase in dust concentrations, analyzed from observations of PM10 (Particulate Matter with <10μm in diameter). A high-resolution version of the atmospheric chemistry general circulation model EMAC (ECHAM5/Messy2.41 Atmospheric Chemistry) was used to simulate the emissions, transport and deposition of airborne desert dust. The model configuration involves the spectral resolution of T255 (0.5°, ~50Km) and 31 vertical levels in the troposphere and lower stratosphere. The model was nudged towards ERA40 reanalysis data to represent the actual meteorological conditions. The dust emissions were calculated online at each model time step and the aerosol microphysics using the GMXe submodel (Global Modal-aerosol eXtension). The model includes a sulphur chemistry mechanism to simulate the transformation of the dust particles from the insoluble (at emission) to soluble modes, which promotes dust removal by precipitation. The model successfully reproduces the dust distribution according to observations by the MODIS satellite instruments and ground-based AERONET stations. The PM10 concentration is also compared with in-situ measurements over Cyprus, resulting in good agreement. The model results show two subsequent dust events originating from the Negev and Sahara deserts. The first dust event resulted from the transport of dust from the Sahara on the 21st of September and lasted only briefly (hours) as the dust particles were efficiently removed by precipitation simulated by the model and observed by the TRMM (Tropical Rainfall Measuring Mission) satellites. The second event resulted from dust transport from the Negev desert to the Eastern Mediterranean during the period 26th - 30th September with a peak concentration at 2500m elevation. This event lasted for four days and diminished due to dry deposition. The observed reduced visibility over Cyprus

  4. Climate modeling for Yamal territory using supercomputer atmospheric circulation model ECHAM5-wiso

    NASA Astrophysics Data System (ADS)

    Denisova, N. Y.; Gribanov, K. G.; Werner, M.; Zakharov, V. I.

    2015-11-01

    Dependences of monthly means of regional averages of model atmospheric parameters on initial and boundary condition remoteness in the past are the subject of the study. We used atmospheric general circulation model ECHAM5-wiso for simulation of monthly means of regional averages of climate parameters for Yamal region and different periods of premodeling. Time interval was varied from several months to 12 years. We present dependences of model monthly means of regional averages of surface temperature, 2 m air temperature and humidity for December of 2000 on duration of premodeling. Comparison of these results with reanalysis data showed that best coincidence with true parameters could be reached if duration of pre-modelling is approximately 10 years.

  5. Wind driven general circulation of the Mediterranean Sea simulated with a Spectral Element Ocean Model

    NASA Astrophysics Data System (ADS)

    Molcard, A.; Pinardi, N.; Iskandarani, M.; Haidvogel, D. B.

    2002-05-01

    This work is an attempt to simulate the Mediterranean Sea general circulation with a Spectral Finite Element Model. This numerical technique associates the geometrical flexibility of the finite elements for the proper coastline definition with the precision offered by spectral methods. The model is reduced gravity and we study the wind-driven ocean response in order to explain the large scale sub-basin gyres and their variability. The study period goes from January 1987 to December 1993 and two forcing data sets are used. The effect of wind variability in space and time is analyzed and the relationship between wind stress curl and ocean response is stressed. Some of the main permanent structures of the general circulation (Gulf of Lions cyclonic gyre, Rhodes gyre, Gulf of Syrte anticylone) are shown to be induced by permanent wind stress curl structures. The magnitude and spatial variability of the wind is important in determining the appearance or disappearance of some gyres (Tyrrhenian anticyclonic gyre, Balearic anticyclonic gyre, Ionian cyclonic gyre). An EOF analysis of the seasonal variability indicates that the weakening and strengthening of the Levantine basin boundary currents is a major component of the seasonal cycle in the basin. The important discovery is that seasonal and interannual variability peak at the same spatial scales in the ocean response and that the interannual variability includes the change in amplitude and phase of the seasonal cycle in the sub-basin scale gyres and boundary currents. The Coriolis term in the vorticity balance seems to be responsible for the weakening of anticyclonic structures and their total disappearance when they are close to a boundary. The process of adjustment to winds produces a train of coastally trapped gravity waves which travel around the eastern and western basins, respectively in approximately 6 months. This corresponds to a phase velocity for the wave of about 1 m/s, comparable to an average velocity of

  6. Improvement of CFD Methods for Modeling Full Scale Circulating Fluidized Bed Combustion Systems

    NASA Astrophysics Data System (ADS)

    Shah, Srujal; Klajny, Marcin; Myöhänen, Kari; Hyppänen, Timo

    With the currently available methods of computational fluid dynamics (CFD), the task of simulating full scale circulating fluidized bed combustors is very challenging. In order to simulate the complex fluidization process, the size of calculation cells should be small and the calculation should be transient with small time step size. For full scale systems, these requirements lead to very large meshes and very long calculation times, so that the simulation in practice is difficult. This study investigates the requirements of cell size and the time step size for accurate simulations, and the filtering effects caused by coarser mesh and longer time step. A modeling study of a full scale CFB furnace is presented and the model results are compared with experimental data.

  7. Minimal modeling of the extratropical general circulation

    NASA Technical Reports Server (NTRS)

    O'Brien, Enda; Branscome, Lee E.

    1989-01-01

    The ability of low-order, two-layer models to reproduce basic features of the mid-latitude general circulation is investigated. Changes in model behavior with increased spectral resolution are examined in detail. Qualitatively correct time-mean heat and momentum balances are achieved in a beta-plane channel model which includes the first and third meridional modes. This minimal resolution also reproduces qualitatively realistic surface and upper-level winds and mean meridional circulations. Higher meridional resolution does not result in substantial changes in the latitudinal structure of the circulation. A qualitatively correct kinetic energy spectrum is produced when the resolution is high enough to include several linearly stable modes. A model with three zonal waves and the first three meridional modes has a reasonable energy spectrum and energy conversion cycle, while also satisfying heat and momentum budget requirements. This truncation reproduces the basic mechanisms and zonal circulation features that are obtained at higher resolution. The model performance improves gradually with higher resolution and is smoothly dependent on changes in external parameters.

  8. Electrical Lumped Model Examination for Load Variation of Circulation System

    NASA Astrophysics Data System (ADS)

    Koya, Yoshiharu; Ito, Mitsuyo; Mizoshiri, Isao

    Modeling and analysis of the circulation system enables the characteristic decision of circulation system in the body to be made. So, many models of circulation system have been proposed. But, they are complicated because the models include a lot of elements. Therefore, we proposed a complete circulation model as a lumped electrical circuit, which is comparatively simple. In this paper, we examine the effectiveness of the complete circulation model as a lumped electrical circuit. We use normal, angina pectoris, dilated cardiomyopathy and myocardial infarction for evaluation of the ventricular contraction function.

  9. 3D Visualization of Global Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.

    2015-12-01

    Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.

  10. Simulation of tidal-flow, circulation, and flushing of the Charlotte Harbor Estuarine System, Florida

    USGS Publications Warehouse

    Goodwin, C.R.

    1996-01-01

    A two-dimensional circulation and constituent- transport model, SIMSYS2D, was used to simulate tidal-flow, circulation, and flushing characteristics in Charlotte Harbor. The model was calibrated and verified against field observations of stage,discharge, and velocity. Standard errors averaged about 3 percent of the range in stage at the tide stations and between 3 and 10 percent of the range in discharge measured in the inlets for the calibration period. Following calibration and verification, the model was applied to three different conditions. The first condition represented the existing physical configuration and typical freshwater inflow. The second condition represented reduced fresh water inflow, and the third represented an alteration of Sanibel Causeway. All three conditions were evaluated through Lagrangian particle tracks and simulated dye injections. Residual circulation patterns were similar for typical and reduced freshwater inflow, but reduced freshwater inflow increased the residence time in the upper harbor by a factor of two or more. Removal of Sanibel Causeway did not significantly affect residual flows in upper and lower Charlotte Harbor, Matlacha Pass, Gasparilla Sound, or the Gulf of Mexico. Analysis of Lagrangian particle tracks indicated changes in residence times in San Carlos Bay as a result of removing Sanibel Causeway, but the changes were not consistent for all particles. The residence time of 8 particles in San Carlos Bay decreased with removal of the causeway, 1 was unchanged, and the residence time of 3 particles increased. Simulated flushing characteristics of the estuarine system were affected more by reduced freshwater inflow than for typical freshwater inflow. After 30 days of simulation of reduced freshwater inflow, 42 percent of the dye injected into the upper harbor remained in the upper harbor, compared to 28 percent for typical freshwater inflow. The upper harbor has a relatively long flushing time because it is not directly

  11. Interactions Between the Thermohaline Circulation and Tropical Atlantic SST in a Coupled General Circulation Model

    NASA Technical Reports Server (NTRS)

    Miller, Ron; Jiang, Xing-Jian; Travis, Larry (Technical Monitor)

    2001-01-01

    Tropical Atlantic SST shows a (statistically well-defined) decadal time scale in a 104-year simulation of unforced variability by a coupled general circulation model (CGCM). The SST anomalies superficially resemble observed Tropical Atlantic variability (TAV), and are associated with changes in the atmospheric circulation. Brazilian rainfall is modulated with a decadal time scale, along with the strength of the Atlantic trade winds, which are associated with variations in evaporation and the net surface heat flux. However, in contrast to observed tropical Atlantic variability, the trade winds damp the associated anomalies in ocean temperature, indicating a negative feedback. Tropical SST anomalies in the CGCM, though opposed by the surface heat flux, are advected in from the Southern Hemisphere mid-latitudes. These variations modulate the strength of the thermohaline circulation (THC): warm, salty anomalies at the equator sink drawing cold, fresh mid-latitude water. Upon reaching the equator, the latter inhibit vertical overturning and advection from higher latitudes, which allows warm, salty anomalies to reform, returning the cycle to its original state. Thus, the cycle results from advection of density anomalies and the effect of these anomalies upon the rate of vertical overturning and surface advection. This decadal modulation of Tropical Atlantic SST and the thermohaline circulation is correlated with ocean heat transport to the Northern Hemisphere high latitudes and Norwegian Sea SST. Because of the central role of equatorial convection, we question whether this mechanism is present in the current climate, although we speculate that it may have operated in palaeo times, depending upon the stability of the tropical water column.

  12. Aerosol-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations

    NASA Astrophysics Data System (ADS)

    Rotstayn, L. D.; Jeffrey, S. J.; Collier, M. A.; Dravitzki, S. M.; Hirst, A. C.; Syktus, J. I.; Wong, K. K.

    2012-02-01

    We use a coupled atmosphere-ocean global climate model (CSIRO-Mk3.6) to investigate the roles of different forcing agents as drivers of summer rainfall trends in the Australasian region. Our results suggest that anthropogenic aerosols have contributed to the observed multi-decadal rainfall increase over north-western Australia. As part of the Coupled Model Intercomparison Project Phase 5 (CMIP5), we performed multiple 10-member ensembles of historical climate change, which are analysed for the period 1951-2010. The historical runs include ensembles driven by "all forcings" (HIST), all forcings except anthropogenic aerosols (NO_AA) and forcing only from long-lived greenhouse gases (GHGAS). Anthropogenic aerosol-induced effects in a warming climate are calculated from the difference of HIST minus NO_AA. We also compare a 10-member 21st century ensemble driven by Representative Concentration Pathway 4.5 (RCP4.5). Simulated aerosol-induced rainfall trends over the Indo-Pacific region for austral summer and boreal summer show a distinct contrast. In boreal summer, there is a southward shift of equatorial rainfall, consistent with the idea that anthropogenic aerosols have suppressed Asian monsoonal rainfall, and caused a southward shift of the local Hadley circulation. In austral summer, the aerosol-induced response more closely resembles a westward shift and strengthening of the upward branch of the Walker circulation, rather than a coherent southward shift of regional tropical rainfall. Thus the mechanism by which anthropogenic aerosols may affect Australian summer rainfall is unclear. Focusing on summer rainfall trends over north-western Australia (NWA), we find that CSIRO-Mk3.6 simulates a strong rainfall decrease in RCP4.5, whereas simulated trends in HIST are weak and insignificant during 1951-2010. The weak rainfall trends in HIST are due to compensating effects of different forcing agents: there is a significant decrease in GHGAS, offset by an aerosol

  13. Simulations of Madden-Julian Oscillation in High Resolution Atmospheric General Circulation Model

    NASA Astrophysics Data System (ADS)

    Deng, Liping; Stenchikov, Georgiy; McCabe, Matthew; Bangalath, HamzaKunhu; Raj, Jerry; Osipov, Sergey

    2014-05-01

    The simulation of tropical signals, especially the Madden-Julian Oscillation (MJO), is one of the major deficiencies in current numerical models. The unrealistic features in the MJO simulations include the weak amplitude, more power at higher frequencies, displacement of the temporal and spatial distributions, eastward propagation speed being too fast, and a lack of coherent structure for the eastward propagation from the Indian Ocean to the Pacific (e.g., Slingo et al. 1996). While some improvement in simulating MJO variance and coherent eastward propagation has been attributed to model physics, model mean background state and air-sea interaction, studies have shown that the model resolution, especially for higher horizontal resolution, may play an important role in producing a more realistic simulation of MJO (e.g., Sperber et al. 2005). In this study, we employ unique high-resolution (25-km) simulations conducted using the Geophysical Fluid Dynamics Laboratory global High Resolution Atmospheric Model (HIRAM) to evaluate the MJO simulation against the European Center for Medium-range Weather Forecasts (ECMWF) Interim re-analysis (ERAI) dataset. We specifically focus on the ability of the model to represent the MJO related amplitude, spatial distribution, eastward propagation, and horizontal and vertical structures. Additionally, as the HIRAM output covers not only an historic period (1979-2012) but also future period (2012-2050), the impact of future climate change related to the MJO is illustrated. The possible changes in intensity and frequency of extreme weather and climate events (e.g., strong wind and heavy rainfall) in the western Pacific, the Indian Ocean and the Middle East North Africa (MENA) region are highlighted.

  14. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    NASA Astrophysics Data System (ADS)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-03-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  15. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-01-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  16. Modeling the seasonal circulation in Massachusetts Bay

    USGS Publications Warehouse

    Signell, Richard P.; Jenter, Harry L.; Blumberg, Alan F.; ,

    1994-01-01

    An 18 month simulation of circulation was conducted in Massachusetts Bay, a roughly 35 m deep, 100??50 km embayment on the northeastern shelf of the United States. Using a variant of the Blumberg-Mellor (1987) model, it was found that a continuous 18 month run was only possible if the velocity field was Shapiro filtered to remove two grid length energy that developed along the open boundary due to mismatch in locally generated and climatologically forced water properties. The seasonal development of temperature and salinity stratification was well-represented by the model once ??-coordinate errors were reduced by subtracting domain averaged vertical profiles of temperature, salinity and density before horizontal differencing was performed. Comparison of modeled and observed subtidal currents at fixed locations revealed that the model performance varies strongly with season and distance from the open boundaries. The model performs best during unstratified conditions, and in the interior of the bay. The model performs poorest during stratified conditions and in the regions where the bay is driven predominantly by remote fluctuations from the Gulf of Maine.

  17. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations tomore » study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.« less

  18. Three-dimensional computer model for the atmospheric general circulation experiment

    NASA Technical Reports Server (NTRS)

    Roberts, G. O.

    1984-01-01

    An efficient, flexible, three-dimensional, hydrodynamic, computer code has been developed for a spherical cap geometry. The code will be used to simulate NASA's Atmospheric General Circulation Experiment (AGCE). The AGCE is a spherical, baroclinic experiment which will model the large-scale dynamics of our atmosphere; it has been proposed to NASA for future Spacelab flights. In the AGCE a radial dielectric body force will simulate gravity, with hot fluid tending to move outwards. In order that this force be dominant, the AGCE must be operated in a low gravity environment such as Spacelab. The full potential of the AGCE will only be realized by working in conjunction with an accurate computer model. Proposed experimental parameter settings will be checked first using model runs. Then actual experimental results will be compared with the model predictions. This interaction between experiment and theory will be very valuable in determining the nature of the AGCE flows and hence their relationship to analytical theories and actual atmospheric dynamics.

  19. Chemistry-Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes

    DTIC Science & Technology

    2010-10-15

    cycle under volcanically clean aerosol conditions. Those models that do not reproduce a quasi- biennial oscillation ( QBO ) also include a relaxation...forc- ing toward the observed QBO (Giorgetta and Bengtsson 1999) for the SCN2 simulations. Table 2 summarizes the simulations used in this study and any...However simulations from three of the models included a future solar forcing and two models included an artificial QBO forcing in the tropics (see

  20. A time-dependent, three-dimensional model of the Delaware Bay and River system. Part 2: Three-dimensional flow fields and residual circulation

    NASA Astrophysics Data System (ADS)

    Galperin, Boris; Mellor, George L.

    1990-09-01

    The three-dimensional model of Delaware Bay, River and adjacent continental shelf was described in Part 1. Here, Part 2 of this two-part paper demonstrates that the model is capable of realistic simulation of current and salinity distributions, tidal cycle variability, events of strong mixing caused by high winds and rapid salinity changes due to high river runoff. The 25-h average subtidal circulation strongly depends on the wind forcing. Monthly residual currents and salinity distributions demonstrate a classical two-layer estuarine circulation wherein relatively low salinity water flows out at the surface and compensating high salinity water from the shelf flows at the bottom. The salinity intrusion is most vigorous along deep channels in the Bay. Winds can generate salinity fronts inside and outside the Bay and enhance or weaken the two-layer circulation pattern. Since the portion of the continental shelf included in the model is limited, the model shelf circulation is locally wind-driven and excludes such effects as coastally trapped waves and interaction with Gulf Stream rings; nevertheless, a significant portion of the coastal elevation variability is hindcast by the model. Also, inclusion of the shelf improves simulation of salinity inside the Bay compared with simulations where the salinity boundary condition is specified at the mouth of the Bay.

  1. Stability of the Atlantic meridional overturning circulation: A model intercomparison

    NASA Astrophysics Data System (ADS)

    Weaver, Andrew J.; Sedláček, Jan; Eby, Michael; Alexander, Kaitlin; Crespin, Elisabeth; Fichefet, Thierry; Philippon-Berthier, Gwenaëlle; Joos, Fortunat; Kawamiya, Michio; Matsumoto, Katsumi; Steinacher, Marco; Tachiiri, Kaoru; Tokos, Kathy; Yoshimori, Masakazu; Zickfeld, Kirsten

    2012-10-01

    The evolution of the Atlantic Meridional Overturning Circulation (MOC) in 30 models of varying complexity is examined under four distinct Representative Concentration Pathways. The models include 25 Atmosphere-Ocean General Circulation Models (AOGCMs) or Earth System Models (ESMs) that submitted simulations in support of the 5th phase of the Coupled Model Intercomparison Project (CMIP5) and 5 Earth System Models of Intermediate Complexity (EMICs). While none of the models incorporated the additional effects of ice sheet melting, they all projected very similar behaviour during the 21st century. Over this period the strength of MOC reduced by a best estimate of 22% (18%-25% 5%-95% confidence limits) for RCP2.6, 26% (23%-30%) for RCP4.5, 29% (23%-35%) for RCP6.0 and 40% (36%-44%) for RCP8.5. Two of the models eventually realized a slow shutdown of the MOC under RCP8.5, although no model exhibited an abrupt change of the MOC. Through analysis of the freshwater flux across 30°-32°S into the Atlantic, it was found that 40% of the CMIP5 models were in a bistable regime of the MOC for the duration of their RCP integrations. The results support previous assessments that it is very unlikely that the MOC will undergo an abrupt change to an off state as a consequence of global warming.

  2. Importance of Including Topography in Numerical Simulations of Venus' Atmospheric Circulation

    NASA Astrophysics Data System (ADS)

    Parish, H. F.; Schubert, G.; Lebonnois, S.; Covey, C. C.; Walterscheid, R. L.; Grossman, A.

    2012-12-01

    momentum budgets of simulations without realistic topography, it must be remembered that there are no observational constraints on model parameterizations of the real surface friction on Venus. It is essential for a planet such as Venus, for which surface friction alone supplies only weak angular momentum forcing, to include surface topography to generate realistic forcing of angular momentum and avoid the influences of numerical artifacts, which can be significant. Venus' topography, as mapped using measurements from the Magellan mission, shows significant hemispheric asymmetry. In this work we examine the impact of this asymmetry using simulations of Venus' circulation with and without topography, within the latest version of the Venus CAM GCM.

  3. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations

    NASA Astrophysics Data System (ADS)

    Satoh, M.; Matsuno, T.; Tomita, H.; Miura, H.; Nasuno, T.; Iga, S.

    2008-03-01

    A new type of ultra-high resolution atmospheric global circulation model is developed. The new model is designed to perform "cloud resolving simulations" by directly calculating deep convection and meso-scale circulations, which play key roles not only in the tropical circulations but in the global circulations of the atmosphere. Since cores of deep convection have a few km in horizontal size, they have not directly been resolved by existing atmospheric general circulation models (AGCMs). In order to drastically enhance horizontal resolution, a new framework of a global atmospheric model is required; we adopted nonhydrostatic governing equations and icosahedral grids to the new model, and call it Nonhydrostatic ICosahedral Atmospheric Model (NICAM). In this article, we review governing equations and numerical techniques employed, and present the results from the unique 3.5-km mesh global experiments—with O(10 9) computational nodes—using realistic topography and land/ocean surface thermal forcing. The results show realistic behaviors of multi-scale convective systems in the tropics, which have not been captured by AGCMs. We also argue future perspective of the roles of the new model in the next generation atmospheric sciences.

  4. High-resolution interpolation of climate scenarios for Canada derived from general circulation model simulations

    Treesearch

    D. T. Price; D. W. McKenney; L. A. Joyce; R. M. Siltanen; P. Papadopol; K. Lawrence

    2011-01-01

    Projections of future climate were selected for four well-established general circulation models (GCMs) forced by each of three greenhouse gas (GHG) emissions scenarios recommended by the Intergovernmental Panel on Climate Change (IPCC), namely scenarios A2, A1B, and B1 of the IPCC Special Report on Emissions Scenarios. Monthly data for the period 1961-2100 were...

  5. The Resolution Sensitivity of Northern Hemisphere Blocking in Four 25-km Atmospheric Global Circulation Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiemann, Reinhard; Demory, Marie-Estelle; Shaffrey, Len C.

    The aim of this study is to investigate if the representation of Northern Hemisphere blocking is sensitive to resolution in current-generation atmospheric global circulation models (AGCMs). An evaluation is thus conducted of how well atmospheric blocking is represented in four AGCMs whose horizontal resolution is increased from a grid spacing of more than 100 km to about 25 km. It is shown that Euro-Atlantic blocking is simulated overall more credibly at higher resolution (i.e., in better agreement with a 50-yr reference blocking climatology created from the reanalyses ERA-40 and ERA-Interim). The improvement seen with resolution depends on the season andmore » to some extent on the model considered. Euro-Atlantic blocking is simulated more realistically at higher resolution in winter, spring, and autumn, and robustly so across the model ensemble. The improvement in spring is larger than that in winter and autumn. Summer blocking is found to be better simulated at higher resolution by one model only, with little change seen in the other three models. The representation of Pacific blocking is not found to systematically depend on resolution. Despite the improvements seen with resolution, the 25-km models still exhibit large biases in Euro-Atlantic blocking. For example, three of the four 25-km models underestimate winter northern European blocking frequency by about one-third. The resolution sensitivity and biases in the simulated blocking are shown to be in part associated with the mean-state biases in the models' midlatitude circulation.« less

  6. The Resolution Sensitivity of Northern Hemisphere Blocking in Four 25-km Atmospheric Global Circulation Models

    DOE PAGES

    Schiemann, Reinhard; Demory, Marie-Estelle; Shaffrey, Len C.; ...

    2016-12-19

    The aim of this study is to investigate if the representation of Northern Hemisphere blocking is sensitive to resolution in current-generation atmospheric global circulation models (AGCMs). An evaluation is thus conducted of how well atmospheric blocking is represented in four AGCMs whose horizontal resolution is increased from a grid spacing of more than 100 km to about 25 km. It is shown that Euro-Atlantic blocking is simulated overall more credibly at higher resolution (i.e., in better agreement with a 50-yr reference blocking climatology created from the reanalyses ERA-40 and ERA-Interim). The improvement seen with resolution depends on the season andmore » to some extent on the model considered. Euro-Atlantic blocking is simulated more realistically at higher resolution in winter, spring, and autumn, and robustly so across the model ensemble. The improvement in spring is larger than that in winter and autumn. Summer blocking is found to be better simulated at higher resolution by one model only, with little change seen in the other three models. The representation of Pacific blocking is not found to systematically depend on resolution. Despite the improvements seen with resolution, the 25-km models still exhibit large biases in Euro-Atlantic blocking. For example, three of the four 25-km models underestimate winter northern European blocking frequency by about one-third. The resolution sensitivity and biases in the simulated blocking are shown to be in part associated with the mean-state biases in the models' midlatitude circulation.« less

  7. The evolution of the Brewer-Dobson Circulation from 1960-2100 in simulations with the Chemistry Climate Model EMAC

    NASA Astrophysics Data System (ADS)

    Oberländer, Sophie; Langematz, Ulrike; Kubin, Anne; Abalichin, Janna; Meul, Stefanie; Jöckel, Patrick; Brühl, Christoph

    2010-05-01

    First results of research performed within the new DFG Research Unit Stratospheric Change and its Role for Climate Prediction (SHARP) will be presented. SHARP investigates past and future changes in stratospheric dynamics and composition to improve the understanding of global climate change and the accuracy of climate change predictions. SHARP combines the efforts of eight German research institutes and expertise in state-of-the-art climate modelling and observations. Within the scope of the scientific sub-project SHARP-BDC (Brewer-Dobson-Circulation) the past and future evolution of the BDC in an atmosphere with changing composition will be analysed. Radiosonde data show an annual mean cooling of the tropical lower stratosphere over the past few decades (Thompson and Solomon, 2005). Several independent model simulations indicate an acceleration of the BDC due to higher greenhouse gas (GHG) concentrations with direct impact on the exchange of air masses between the troposphere and stratosphere (e.g., Butchart et al, 2006). In contrast, from balloon-born measurements no significant acceleration in the BDC could be identified (Engel et al, 2008). This disagreement between observations and model analyses motivates further studies. For the future, expected changes in planetary wave generation and propagation in an atmosphere with increasing GHG concentrations are a major source of uncertainty for predicting future levels of stratospheric composition. To analyse and interpret the past and future evolution of the BDC, results from a transient multi-decadal simulation with the Chemistry-Climate Model (CCM) EMAC will be presented. The model has been integrated from 1960 to 2100 following the SCN2d scenario recommendations of the SPARC CCMVal initiative for the temporal evolution of GHGs, ozone depleting substances and sea surface temperatures as well as sea ice. The role of increasing GHG concentrations for the BDC will be assessed by comparing the SCN2d-results with a

  8. Simulations of the general circulation of the Martian atmosphere. I - Polar processes

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Haberle, Robert M.; Schaeffer, James; Lee, Hilda

    1990-01-01

    Numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation. A large number of numerical experiments were conducted for alternative choices of seasonal date and dust optical depth. It was found that, as the dust content of the winter polar region increased, the rate of atmospheric CO2 condensation increased sharply. It is shown that the strong seasonal variation in the atmospheric dust content observed might cause a number of hemispheric asymmetries. These asymmetries include the greater prevalence of polar hoods in the northern polar region during winter, the lower albedo of the northern polar cap during spring, and the total dissipation of the northern CO2 ice cap during the warmer seasons.

  9. Past Asian Monsoon circulation from multiple tree-ring proxies and models (Invited)

    NASA Astrophysics Data System (ADS)

    Anchukaitis, K. J.; Herzog, M.; Hernandez, M.; Martin-Benito, D.; Gagen, M.; LeGrande, A. N.; Ummenhofer, C.; Buckley, B.; Cook, E. R.

    2013-12-01

    The Asian monsoon can be characterized in terms of precipitation variability as well as features of regional atmospheric circulation across a range of spatial and temporal scales. While multicentury time series of tree-ring widths at hundreds of sites across Asia provide estimates of past rainfall, the oxygen isotope ratios of annual rings at some of these sites can reveal broader regional atmosphere-ocean dynamics. Here we present a replicated, multicentury stable isotope series from Vietnam that integrates the influence of monsoon circulation on water isotopes. Stronger (weaker) monsoon flow over Indochina is associated with lower (higher) oxygen isotope values in our long-lived tropical conifers. Ring width and isotopes show particular coherence at multidecadal time scales, and together allow past precipitation amount and circulation strength to be disentangled. Combining multiple tree-ring proxies with simulations from isotope-enabled and paleoclimate general circulation models allows us to independently assess the mechanisms responsible for proxy formation and to evaluate how monsoon rainfall is influenced by ocean-atmosphere interactions at timescales from interannual to multidecadal.

  10. The Sensitivity of Atlantic Meridional Overturning Circulation to Dynamical Framework in an Ocean General Circulation Model

    NASA Astrophysics Data System (ADS)

    Li, X.; Yu, Y.

    2016-12-01

    The horizontal coordinate systems commonly used in most global ocean models are the sphere latitude-longitude grid and displaced poles such as tripolar grid. The effect of the horizontal coordinate system on Atlantic Meridional Overturning Circulation (AMOC) is evaluated using an oceanic general circulation model (OGCM). Two experiments are conducted with the model using latitude-longitude grid (Lat_1) and tripolar grid (Tri). Results show that Tri simulates a stronger NADW than Lat_1, as more saline water masses enter into the GIN Seas in Tri. Two reasons can be attributed to the stronger NADW. One is the removal of zonal filter in Tri, which leads to an increasing of zonal gradient of temperature and salinity, thus strengthens the north geostrophic flow. In turn, it decreases the positive subsurface temperature and salinity biases in the subtropical regions. The other may be associated with topography at the North Pole, because the realistic topography is applied in tripolar grid and the longitude-latitude grid employs an artificial island around the North Pole. In order to evaluate the effect of filter on AMOC, three enhanced filter experiments are carried out. Compared to Lat_1, enhanced filter can also increase the NADW, for more saline water is suppressed to go north and accumulated in the Labrador Sea, especially in the experiment with enhanced filter on salinity (Lat_2_S).

  11. Numerical simulation of a full-loop circulating fluidized bed under different operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yupeng; Musser, Jordan M.; Li, Tingwen

    Both experimental and computational studies of the fluidization of high-density polyethylene (HDPE) particles in a small-scale full-loop circulating fluidized bed are conducted. Experimental measurements of pressure drop are taken at different locations along the bed. The solids circulation rate is measured with an advanced Particle Image Velocimetry (PIV) technique. The bed height of the quasi-static region in the standpipe is also measured. Comparative numerical simulations are performed with a Computational Fluid Dynamics solver utilizing a Discrete Element Method (CFD-DEM). This paper reports a detailed and direct comparison between CFD-DEM results and experimental data for realistic gas-solid fluidization in a full-loopmore » circulating fluidized bed system. The comparison reveals good agreement with respect to system component pressure drop and inventory height in the standpipe. In addition, the effect of different drag laws applied within the CFD simulation is examined and compared with experimental results.« less

  12. Importance of the Annual Cycles of SST and Solar Irradiance for Circulation and Rainfall: A Climate Model Simulation Study

    NASA Technical Reports Server (NTRS)

    Sud, Yogesh C.; Lau, William K. M.; Walker, G. K.; Mehta, V. M.

    2001-01-01

    Annual cycle of climate and precipitation is related to annual cycle of sunshine and sea-surface temperatures. Understanding its behavior is important for the welfare of humans worldwide. For example, failure of Asian monsoons can cause widespread famine and grave economic disaster in the subtropical regions. For centuries meteorologists have struggled to understand the importance of the summer sunshine and associated heating and the annual cycle of sea-surface temperatures (SSTs) on rainfall in the subtropics. Because the solar income is pretty steady from year to year, while SSTs depict large interannual variability as consequence of the variability of ocean dynamics, the influence of SSTs on the monsoons are better understood through observational and modeling studies whereas the relationship of annual rainfall to sunshine remains elusive. However, using NASA's state of the art climate model(s) that can generate realistic climate in a computer simulation, one can answer such questions. We asked the question: if there was no annual cycle of the sunshine (and its associated land-heating) or the SST and its associated influence on global circulation, what will happen to the annual cycle of monsoon rains? By comparing the simulation of a 4-year integration of a baseline Control case with two parallel anomaly experiments: 1) with annual mean solar and 2) with annual mean sea-surface temperatures, we were able to draw the following conclusions: (1) Tropical convergence zone and rainfall which moves with the Sun into the northern and southern hemispheres, specifically over the Indian, African, South American and Australian regions, is strongly modulated by the annual cycles of SSTs as well as solar forcings. The influence of the annual cycle of solar heating over land, however, is much stronger than the corresponding SST influence for almost all regions, particularly the subtropics; (2) The seasonal circulation patterns over the vast land-masses of the Northern

  13. Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Dinniman, Michael S.; Klinck, John M.; Smith, Walker O.

    2007-11-01

    Satellite imagery shows that there was substantial variability in the sea ice extent in the Ross Sea during 2001-2003. Much of this variability is thought to be due to several large icebergs that moved through the area during that period. The effects of these changes in sea ice on circulation and water mass distributions are investigated with a numerical general circulation model. It would be difficult to simulate the highly variable sea ice from 2001 to 2003 with a dynamic sea ice model since much of the variability was due to the floating icebergs. Here, sea ice concentration is specified from satellite observations. To examine the effects of changes in sea ice due to iceberg C-19, simulations were performed using either climatological ice concentrations or the observed ice for that period. The heat balance around the Ross Sea Polynya (RSP) shows that the dominant term in the surface heat budget is the net exchange with the atmosphere, but advection of oceanic warm water is also important. The area average annual basal melt rate beneath the Ross Ice Shelf is reduced by 12% in the observed sea ice simulation. The observed sea ice simulation also creates more High-Salinity Shelf Water. Another simulation was performed with observed sea ice and a fixed iceberg representing B-15A. There is reduced advection of warm surface water during summer from the RSP into McMurdo Sound due to B-15A, but a much stronger reduction is due to the late opening of the RSP in early 2003 because of C-19.

  14. Identifying a key physical factor sensitive to the performance of Madden-Julian oscillation simulation in climate models

    NASA Astrophysics Data System (ADS)

    Kim, Go-Un; Seo, Kyong-Hwan

    2018-01-01

    A key physical factor in regulating the performance of Madden-Julian oscillation (MJO) simulation is examined by using 26 climate model simulations from the World Meteorological Organization's Working Group for Numerical Experimentation/Global Energy and Water Cycle Experiment Atmospheric System Study (WGNE and MJO-Task Force/GASS) global model comparison project. For this, intraseasonal moisture budget equation is analyzed and a simple, efficient physical quantity is developed. The result shows that MJO skill is most sensitive to vertically integrated intraseasonal zonal wind convergence (ZC). In particular, a specific threshold value of the strength of the ZC can be used as distinguishing between good and poor models. An additional finding is that good models exhibit the correct simultaneous convection and large-scale circulation phase relationship. In poor models, however, the peak circulation response appears 3 days after peak rainfall, suggesting unfavorable coupling between convection and circulation. For an improving simulation of the MJO in climate models, we propose that this delay of circulation in response to convection needs to be corrected in the cumulus parameterization scheme.

  15. Numerical Investigation of the Middle Atlantic Bight Shelfbreak Frontal Circulation Using a High-Resolution Ocean Hindcast Model

    DTIC Science & Technology

    2010-05-01

    circulation from December 2003 to June 2008 . The model is driven by tidal harmonics, realistic atmospheric forcing, and dynamically consistent initial and open...important element of the regional circulation (He and Wilkin 2006). We applied the method of Mellor and Yamada (1982) to compute vertical turbulent...shelfbreak ROMS hindcast ran continuously from December 2003 through January 2008 . Initial conditions were taken from the MABGOM ROMS simulation on 1

  16. Spin-up simulation behaviors in a climate model to build a basement of long-time simulation

    NASA Astrophysics Data System (ADS)

    Lee, J.; Xue, Y.; De Sales, F.

    2015-12-01

    It is essential to develop start-up information when conducting long-time climate simulation. In case that the initial condition is already available from the previous simulation of same type model this does not necessary; however, if not, model needs spin-up simulation to have adjusted and balanced initial condition with the model climatology. Otherwise, a severe spin may take several years. Some of model variables such as deep soil temperature fields and temperature in ocean deep layers in initial fields would affect model's further long-time simulation due to their long residual memories. To investigate the important factor for spin-up simulation in producing an atmospheric initial condition, we had conducted two different spin-up simulations when no atmospheric condition is available from exist datasets. One simulation employed atmospheric global circulation model (AGCM), namely Global Forecast System (GFS) of National Center for Environmental Prediction (NCEP), while the other employed atmosphere-ocean coupled global circulation model (CGCM), namely Climate Forecast System (CFS) of NCEP. Both models share the atmospheric modeling part and only difference is in applying of ocean model coupling, which is conducted by Modular Ocean Model version 4 (MOM4) of Geophysical Fluid Dynamics Laboratory (GFDL) in CFS. During a decade of spin-up simulation, prescribed sea-surface temperature (SST) fields of target year is forced to the GFS daily basis, while CFS digested only first time step ocean condition and freely iterated for the rest of the period. Both models were forced by CO2 condition and solar constant given from the target year. Our analyses of spin-up simulation results indicate that freely conducted interaction between the ocean and the atmosphere is more helpful to produce the initial condition for the target year rather than produced by fixed SST forcing. Since the GFS used prescribed forcing exactly given from the target year, this result is unexpected

  17. Studies in the parameterization of cloudiness in climate models and the analysis of radiation fields in general circulation models

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1990-01-01

    Broad-band parameterizations for atmospheric radiative transfer were developed for clear and cloudy skies. These were in the shortwave and longwave regions of the spectrum. These models were compared with other models in an international effort called ICRCCM (Intercomparison of Radiation Codes for Climate Models). The radiation package developed was used for simulations of a General Circulation Model (GCM). A synopsis is provided of the research accomplishments in the two areas separately. Details are available in the published literature.

  18. Comparing the Degree of Land-Atmosphere Interaction in Four Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Dirmeyer, Paul A.; Hahmann, Andrea N.; Ijpelaar, Ruben; Tyahla, Lori; Cox, Peter; Suarez, Max J.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Land-atmosphere feedback, by which (for example) precipitation-induced moisture anomalies at the land surface affect the overlying atmosphere and thereby the subsequent generation of precipitation, has been examined and quantified with many atmospheric general circulation models (AGCMs). Generally missing from such studies, however, is an indication of the extent to which the simulated feedback strength is model dependent. Four modeling groups have recently performed a highly controlled numerical experiment that allows an objective inter-model comparison of land-atmosphere feedback strength. The experiment essentially consists of an ensemble of simulations in which each member simulation artificially maintains the same time series of surface prognostic variables. Differences in atmospheric behavior between the ensemble members then indicates the degree to which the state of the land surface controls atmospheric processes in that model. A comparison of the four sets of experimental results shows that feedback strength does indeed vary significantly between the AGCMs.

  19. Simulation of Asian monsoon seasonal variations with climate model R42L9/LASG

    NASA Astrophysics Data System (ADS)

    Wang, Zaizhi; Wu, Guoxiong; Wu, Tongwen; Yu, Rucong

    2004-12-01

    The seasonal variations of the Asian monsoon were explored by applying the atmospheric general circulation model R42L9 that was developed recently at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS). The 20-yr (1979 1998) simulation was done using the prescribed 20-yr monthly SST and sea-ice data as required by Atmospheric Model Intercomparison Project (AMIP) II in the model. The monthly precipitation and monsoon circulations were analyzed and compared with the observations to validate the model’s performance in simulating the climatological mean and seasonal variations of the Asian monsoon. The results show that the model can capture the main features of the spatial distribution and the temporal evolution of precipitation in the Indian and East Asian monsoon areas. The model also reproduced the basic patterns of monsoon circulation. However, some biases exist in this model. The simulation of the heating over the Tibetan Plateau in summer was too strong. The overestimated heating caused a stronger East Asian monsoon and a weaker Indian monsoon than the observations. In the circulation fields, the South Asia high was stronger and located over the Tibetan Plateau. The western Pacific subtropical high was extended westward, which is in accordance with the observational results when the heating over the Tibetan Plateau is stronger. Consequently, the simulated rainfall around this area and in northwest China was heavier than in observations, but in the Indian monsoon area and west Pacific the rainfall was somewhat deficient.

  20. North-western Mediterranean sea-breeze circulation in a regional climate system model

    NASA Astrophysics Data System (ADS)

    Drobinski, Philippe; Bastin, Sophie; Arsouze, Thomas; Béranger, Karine; Flaounas, Emmanouil; Stéfanon, Marc

    2017-04-01

    In the Mediterranean basin, moisture transport can occur over large distance from remote regions by the synoptic circulation or more locally by sea breezes, driven by land-sea thermal contrast. Sea breezes play an important role in inland transport of moisture especially between late spring and early fall. In order to explicitly represent the two-way interactions at the atmosphere-ocean interface in the Mediterranean region and quantify the role of air-sea feedbacks on regional meteorology and climate, simulations at 20 km resolution performed with WRF regional climate model (RCM) and MORCE atmosphere-ocean regional climate model (AORCM) coupling WRF and NEMO-MED12 in the frame of HyMeX/MED-CORDEX are compared. One result of this study is that these simulations reproduce remarkably well the intensity, direction and inland penetration of the sea breeze and even the existence of the shallow sea breeze despite the overestimate of temperature over land in both simulations. The coupled simulation provides a more realistic representation of the evolution of the SST field at fine scale than the atmosphere-only one. Temperature and moisture anomalies are created in direct response to the SST anomaly and are advected by the sea breeze over land. However, the SST anomalies are not of sufficient magnitude to affect the large-scale sea-breeze circulation. The temperature anomalies are quickly damped by strong surface heating over land, whereas the water vapor mixing ratio anomalies are transported further inland. The inland limit of significance is imposed by the vertical dilution in a deeper continental boundary-layer.

  1. Snow hydrology in a general circulation model

    NASA Technical Reports Server (NTRS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-01-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  2. A two-way nested simulation of the oceanic circulation in the Southwestern Atlantic

    NASA Astrophysics Data System (ADS)

    Combes, Vincent; Matano, Ricardo P.

    2014-02-01

    This article presents the results of a high-resolution (1/12°), two-way nested simulation of the oceanic circulation in the southwestern Atlantic region. A comparison between the model results and extant observations indicates that the nested model has skill in reproducing the best-known aspects of the regional circulation, e.g., the volume transport of the ACC, the latitudinal position of the BMC, the shelf break upwelling of Patagonia, and the Zapiola Anticyclone. Sensitivity experiments indicate that the bottom stress parameterization significantly impacts the mean location of the Brazil/Malvinas Confluence and the transport of the Zapiola Anticyclone. The transport of the Brazil Current strengthens during the austral summer and weakens during the austral winter. These variations are driven by the wind stress curl over the southwestern Atlantic. The variations of the transport of the Malvinas Current are out of phase with those of the Brazil Current. Most of the seasonal variability of this current is concentrated in the offshore portion of the jet, the inshore portion has a weak seasonality that modulates the magnitude of the Patagonian shelf break upwelling. Using passive tracers we show that most of the entrainment of deep waters into the shelf occurs in the southernmost portion of the Patagonian shelf and along the inshore boundary of the Brazil Current. Shelf waters are preferentially detrained near the Brazil/Malvinas Confluence. Consistent with previous studies, our simulation also shows that south of ˜42°S the Malvinas Current is composed of two jets, which merge near 42°S to form a single jet farther north.

  3. Modeling waves and circulation in Lake Pontchartrain, Louisiana

    USGS Publications Warehouse

    Signell, Richard P.; List, Jeffrey H.

    1997-01-01

    The U.S. Geological Survey is conducting a study of storm-driven sediment resuspension and transport in Lake Pontchartrain, Louisiana. Two critical processes related to sediment transport in the lake are (1) the resuspension of sediments due to wind-generated storm waves and (2) the movement of resuspended material by lake currents during storm wind events. The potential for sediment resuspension is being studied with the wave prediction model which simulates local generation of waves by wind and shallow-water effects on waves (refraction, shoaling, bottom friction, and breaking). Long-term wind measurements are then used to determine the regional "climate" of bottom orbital velocity (showing the spatial and temporal variability of wave-induced currents at the bottom). The circulation of the lake is being studied with a three-dimensional hydrodynamic model. Results of the modeling effort indicate that remote forcing due to water levels in Mississippi Sound dominate the circulation near the passes in the eastern end of the lake, while local wind forcing dominates water movement in the western end. During typical storms with winds from the north-northeast or the south-southeast, currents along the south coast near New Orleans generally transport material westward, while material in the central region moves against the wind. When periods of sustained winds are followed by a drop in coastal sea level, a large amount of suspended sediment can be flushed from the lake.

  4. The puzzling Venusian polar atmospheric structure reproduced by a general circulation model

    PubMed Central

    Ando, Hiroki; Sugimoto, Norihiko; Takagi, Masahiro; Kashimura, Hiroki; Imamura, Takeshi; Matsuda, Yoshihisa

    2016-01-01

    Unlike the polar vortices observed in the Earth, Mars and Titan atmospheres, the observed Venus polar vortex is warmer than the midlatitudes at cloud-top levels (∼65 km). This warm polar vortex is zonally surrounded by a cold latitude band located at ∼60° latitude, which is a unique feature called ‘cold collar' in the Venus atmosphere. Although these structures have been observed in numerous previous observations, the formation mechanism is still unknown. Here we perform numerical simulations of the Venus atmospheric circulation using a general circulation model, and succeed in reproducing these puzzling features in close agreement with the observations. The cold collar and warm polar region are attributed to the residual mean meridional circulation enhanced by the thermal tide. The present results strongly suggest that the thermal tide is crucial for the structure of the Venus upper polar atmosphere at and above cloud levels. PMID:26832195

  5. Characteristics of atmospheric circulation patterns associated with extreme temperatures over North America in observations and climate models

    NASA Astrophysics Data System (ADS)

    Loikith, Paul C.

    Motivated by a desire to understand the physical mechanisms involved in future anthropogenic changes in extreme temperature events, the key atmospheric circulation patterns associated with extreme daily temperatures over North America in the current climate are identified. Several novel metrics are used to systematically identify and describe these patterns for the entire continent. The orientation, physical characteristics, and spatial scale of these circulation patterns vary based on latitude, season, and proximity to important geographic features (i.e., mountains, coastlines). The anomaly patterns associated with extreme cold events tend to be similar to, but opposite in sign of, those associated with extreme warm events, especially within the westerlies, and tend to scale with temperature in the same locations. The influence of the Pacific North American (PNA) pattern, the Northern Annular Mode (NAM), and the El Niño-Southern Oscillation (ENSO) on extreme temperature days and months shows that associations between extreme temperatures and the PNA and NAM are stronger than associations with ENSO. In general, the association with extremes tends to be stronger on monthly than daily time scales. Extreme temperatures are associated with the PNA and NAM in locations typically influenced by these circulation patterns; however many extremes still occur on days when the amplitude and polarity of these patterns do not favor their occurrence. In winter, synoptic-scale, transient weather disturbances are important drivers of extreme temperature days; however these smaller-scale events are often concurrent with amplified PNA or NAM patterns. Associations are weaker in summer when other physical mechanisms affecting the surface energy balance, such as anomalous soil moisture content, are associated with extreme temperatures. Analysis of historical runs from seventeen climate models from the CMIP5 database suggests that most models simulate realistic circulation patterns

  6. Concurrent Simulation of the Eddying General Circulation and Tides in a Global Ocean Model

    DTIC Science & Technology

    2010-01-01

    Eddying General Circulation and Tides in a Global Ocean Model 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0602435N 6...STATEMENT Approved for public release, distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This paper presents a five-year global ...running 25-h average to approximately separate tidal and non-tidal components of the near-bottom flow. In contrast to earlier high-resolution global

  7. Circulation and microplastic dispersion in the Chiemsee (Germany) investigated with numerical modeling.

    NASA Astrophysics Data System (ADS)

    Marcello Falcieri, Francesco; Laforsch, Christian; Piehl, Sarah; Ricchi, Antonio; Atwood, Elizabeth C.; Carniel, Sandro; Sclavo, Mauro

    2017-04-01

    The Chiemsee (measuring about 80 km2 and a maximum depth of 73 m) is a NATURA 2000 site and one of the major German lakes and plays a significant environmental role for the region. Moreover it is an important touristic destination, making its beaches and water quality highly valuable from a socio-economical viewpoint. As for most inland European aquatic environments, the Chiemsee was recently found to be contaminated by microplastic (i.e. plastic fragments smaller than 0.5 mm). Two main microplastics sources were identified in the Chiemsee: riverine inputs, and degradation of litter from touristic beaches. Hence, it is of interest to study lake circulation and the resulting microplastic dispersion from these sources in order to support activities to achieve a good environmental status. Here we present the first attempt to characterize the hydrodynamic processes of the Chiemsee with a high resolution 3D implementation of the Regional Ocean Modeling System (ROMS). The simulations were forced with observed riverine inputs and modeled atmospherical fields computed with a local implementation of the Weather Research and Forecasting (WRF) model. Modeling results provide a first insight into the Chiemsee circulation system and contribute to understanding the dispersion pathways of microplastic particles from different sources. Furthermore, results can be used to highlight coastlines with higher risk of microplastic accumulation, identified using a set of Lagrangian simulations. The work was partially supported by the CNR Short Term Mobility grant.

  8. A case study of sea breeze circulation at Thumba Coast through observations and modelling

    NASA Astrophysics Data System (ADS)

    Kunhikrishnan, P. K.; Ramachandran, Radhika; Alappattu, Denny P.; Kiran Kumar, N. V. P.; Balasubrahamanyam, D.

    2006-12-01

    A case study of sea breeze circulation at a coastal region Thumba (8.5°N, 76.9°E) was carried out using Doppler Sodar, surface wind, temperature, humidity measurements and radiosonde ascents. The analysis of surface meteorological data showed that the onset of sea breeze on 12th April 2006 was at 0945 hrs. GPS sonde observation over sea at 1425 hrs and Radiosonde observation over land at 1730 showed a well developed sea breeze circulation over Thumba coast by afternoon hours. The vertical extent of sea breeze circulation was ~1000m over sea as well as on land. The Thermal Internal Boundary Layer (TIBL) depth associated with sea breeze circulation was about 400m at 8 km away from coast. The marine mixed layer height was ~500m about 12 km away from the coast. Numerical simulation of sea breeze was made using HRM (High Resolution Model) and compared the results with the observations.

  9. Diagnostics of severe convection and subsynoptic scale ageostrophic circulations

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Diagnostics of severe convection and subsynoptic scale ageostrophic circulations are reported. Mesoscale circulations through forcing of ageostrophic motion by adiabatic, diabatic and frictional processes were studied. The development and application of a hybrid isentropic sigma coordinate numerical model was examined. The numerical model simulates mesoscale ageostrophic circulations associated with propagating jet streaks and severe convection. A complete list of publications and these completed through support of the NASA severe storms research project is included.

  10. Exploring the Circulation Dynamics of Mississippi Sound and Bight Using the CONCORDE Synthesis Model

    NASA Astrophysics Data System (ADS)

    Pan, C.; Dinniman, M. S.; Fitzpatrick, P. J.; Lau, Y.; Cambazoglu, M. K.; Parra, S. M.; Hofmann, E. E.; Dzwonkowski, B.; Warner, S. J.; O'Brien, S. J.; Dykstra, S. L.; Wiggert, J. D.

    2017-12-01

    As part of the modeling effort of the GOMRI (Gulf of Mexico Research Initiative)-funded CONCORDE consortium, a high resolution ( 400 m) regional ocean model is implemented for the Mississippi (MS) Sound and Bight. The model is based on the Coupled Ocean Atmosphere Wave Sediment Transport Modeling System (COAWST), with initial and lateral boundary conditions drawn from data assimilative 3-day forecasts of the 1km-resolution Gulf of Mexico Navy Coastal Ocean Model (GOM-NCOM). The model initiates on 01/01/2014 and runs for 3 years. The model results are validated with available remote sensing data and with CONCORDE's moored and ship-based in-situ observations. Results from a three-year simulation (2014-2016) show that ocean circulation and water properties of the MS Sound and Bight are sensitive to meteorological forcing. A low resolution surface forcing, drawn from the North America Regional Reanalysis (NARR), and a high resolution forcing, called CONCORDE Meteorological Analysis (CMA) ) that resolves the diurnal sea breeze, are used to drive the model to examine the sensitivity of the circulation to surface forcing. The model responses to the low resolution NARR forcing and to the high resolution CMA are compared in detail for the CONCORDE Fall and Spring field campaigns when contemporaneous in situ data are available, with a focus on how simulated exchanges between MS Sound and MS Bight are impacted. In most cases, the model shows higher simulation skill when it is driven by CMA. Freshwater plumes of the MS River, MS Sound and Mobile Bay influence the shelf waters of the MS Bight in terms of material budget and dynamics. Drifters and dye experiments near Mobile Bay demonstrate that material exchanges between Mobile Bay and the Sound, and between the Sound and Bight, are sensitive to the wind strength and direction. A model - data comparison targeting the Mobile Bay plume suggests that under both northerly and southerly wind conditions the model is capable of

  11. Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, K. K.; Scarlat, R. O.; Hu, R.

    Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties ofmore » Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.« less

  12. Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Risi, C.; Werner, M.; Yoshimura, K.; Masson-Delmotte, V.

    2017-01-01

    The skills of isotope-enabled general circulation models are evaluated against atmospheric water vapor isotopes. We have combined in situ observations of surface water vapor isotopes spanning multiple field seasons (2010, 2011, and 2012) from the top of the Greenland Ice Sheet (NEEM site: 77.45°N, 51.05°W, 2484 m above sea level) with observations from the marine boundary layer of the North Atlantic and Arctic Ocean (Bermuda Islands 32.26°N, 64.88°W, year: 2012; south coast of Iceland 63.83°N, 21.47°W, year: 2012; South Greenland 61.21°N, 47.17°W, year: 2012; Svalbard 78.92°N, 11.92°E, year: 2014). This allows us to benchmark the ability to simulate the daily water vapor isotope variations from five different simulations using isotope-enabled general circulation models. Our model-data comparison documents clear isotope biases both on top of the Greenland Ice Sheet (1-11‰ for δ18O and 4-19‰ for d-excess depending on model and season) and in the marine boundary layer (maximum differences for the following: Bermuda δ18O = 1‰, d-excess = 3‰; South coast of Iceland δ18O = 2‰, d-excess = 5‰; South Greenland δ18O = 4‰, d-excess = 7‰; Svalbard δ18O = 2‰, d-excess = 7‰). We find that the simulated isotope biases are not just explained by simulated biases in temperature and humidity. Instead, we argue that these isotope biases are related to a poor simulation of the spatial structure of the marine boundary layer water vapor isotopic composition. Furthermore, we specifically show that the marine boundary layer water vapor isotopes of the Baffin Bay region show strong influence on the water vapor isotopes at the NEEM deep ice core-drilling site in northwest Greenland. Our evaluation of the simulations using isotope-enabled general circulation models also documents wide intermodel spatial variability in the Arctic. This stresses the importance of a coordinated water vapor isotope-monitoring network in order to discriminate amongst these model

  13. A zonally averaged, three-basin ocean circulation model for climate studies

    NASA Astrophysics Data System (ADS)

    Hovine, S.; Fichefet, T.

    1994-09-01

    A two-dimensional, three-basin ocean model suitable for long-term climate studies is developed. The model is based on the zonally averaged form of the primitive equations written in spherical coordinates. The east-west density difference which arises upon averaging the momentum equations is taken to be proportional to the meridional density gradient. Lateral exchanges of heat and salt between the basins are explicitly resolved. Moreover, the model includes bottom topography and has representations of the Arctic Ocean and of the Weddell and Ross seas. Under realistic restoring boundary conditions, the model reproduces the global conveyor belt: deep water is formed in the Atlantic between 60 and 70°N at a rate of about 17 Sv (1 Sv=106 m3 s-1) and in the vicinity of the Antarctic continent, while the Indian and Pacific basins show broad upwelling. Superimposed on this thermohaline circulation are vigorous wind-driven cells in the upper thermocline. The simulated temperature and salinity fields and the computed meridional heat transport compare reasonably well with the observational estimates. When mixed boundary conditions (i.e., a restoring condition on sea-surface temperature and flux condition on sea-surface salinity) are applied, the model exhibits an irregular behavior before reaching a steady state characterized by self-sustained oscillations of 8.5-y period. The conveyor-belt circulation always results at this stage. A series of perturbation experiments illustrates the ability of the model to reproduce different steady-state circulations under mixed boundary conditions. Finally, the model sensitivity to various factors is examined. This sensitivity study reveals that the bottom topography and the presence of a submarine meridional ridge in the zone of the Drake Passage play a crucial role in determining the properties of the model bottom-water masses. The importance of the seasonality of the surface forcing is also stressed.

  14. Oceanic dispersion of Fukushima-derived Cs-137 in the coastal, offshore, and open oceans simulated by multiple oceanic general circulation models

    NASA Astrophysics Data System (ADS)

    Kawamura, H.; Furuno, A.; Kobayashi, T.; In, T.; Nakayama, T.; Ishikawa, Y.; Miyazawa, Y.; Usui, N.

    2017-12-01

    To understand the concentration and amount of Fukushima-derived Cs-137 in the ocean, this study simulates the oceanic dispersion of Cs-137 by an oceanic dispersion model SEA-GEARN-FDM developed at Japan Atomic Energy Agency (JAEA) and multiple oceanic general circulation models. The Cs-137 deposition amounts at the sea surface were used as the source term in oceanic dispersion simulations, which were estimated by atmospheric dispersion simulations with a Worldwide version of System for Prediction of Environmental Emergency Dose Information version II (WSPEEDI-II) developed at JAEA. The direct release from the Fukushima Daiichi Nuclear Power Plant into the ocean based on in situ Cs-137 measurements was used as the other source term in oceanic dispersion simulations. The simulated air Cs-137 concentrations qualitatively replicated those measured around the North Pacific. The accumulated Cs-137 ground deposition amount in the eastern Japanese Islands was consistent with that estimated by aircraft measurements. The oceanic dispersion simulations relatively well reproduced the measured Cs-137 concentrations in the coastal and offshore oceans during the first few months after the Fukushima disaster, and in the open ocean during the first year post-disaster. It was suggested that Cs-137 dispersed along the coast in the north-south direction during the first few months post-disaster, and were subsequently dispersed offshore by the Kuroshio Current and Kuroshio Extension. Mesoscale eddies accompanied by the Kuroshio Current and Kuroshio Extension played an important role in dilution of Cs-137. The Cs-137 amounts were quantified in the coastal, offshore, and open oceans during the first year post-disaster. It was demonstrated that Cs-137 actively dispersed from the coastal and offshore oceans to the open ocean, and from the surface layer to the deeper layer in the North Pacific.

  15. Winter and summer simulations with the GLAS climate model

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Straus, D.; Randall, D.; Sud, Y.; Marx, L.

    1981-01-01

    The GLAS climate model is a general circulation model based on the primitive equations in sigma coordinates on a global domain in the presence of orography. The model incorporates parameterizations of the effects of radiation, convection, large scale latent heat release, turbulent and boundary layer fluxes, and ground hydrology. Winter and summer simulations were carried out with this model, and the resulting data are compared to observations.

  16. Equatorial waves simulated by the NCAR community climate model

    NASA Technical Reports Server (NTRS)

    Cheng, Xinhua; Chen, Tsing-Chang

    1988-01-01

    The equatorial planetary waves simulated by the NCAR CCM1 general circulation model were investigated in terms of space-time spectral analysis (Kao, 1968; Hayashi, 1971, 1973) and energetic analysis (Hayashi, 1980). These analyses are particularly applied to grid-point data on latitude circles. In order to test some physical factors which may affect the generation of tropical transient planetary waves, three different model simulations with the CCM1 (the control, the no-mountain, and the no-cloud experiments) were analyzed.

  17. Understanding the tropical cloud feedback from an analysis of the circulation and stability regimes simulated from an upgraded multiscale modeling framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kuan-Man; Cheng, Anning

    As revealed from studies using conventional general circulation models (GCMs), the thermodynamic contribution to the tropical cloud feedback dominates the dynamic contribution, but these models have difficulty in simulating the subsidence regimes in the tropics. In this study, we analyze the tropical cloud feedback from a 2 K sea surface temperature (SST) perturbation experiment performed with a multiscale modeling framework (MMF). The MMF explicitly represents cloud processes using 2-D cloud-resolving models with an advanced higher-order turbulence closure in each atmospheric column of the host GCM. We sort the monthly mean cloud properties and cloud radiative effects according to circulation andmore » stability regimes. Here, we find that the regime-sorted dynamic changes dominate the thermodynamic changes in terms of the absolute magnitude. The dynamic changes in the weak subsidence regimes exhibit strong negative cloud feedback due to increases in shallow cumulus and deep clouds while those in strongly convective and moderate-to-strong subsidence regimes have opposite signs, resulting in a small contribution to cloud feedback. On the other hand, the thermodynamic changes are large due to decreases in stratocumulus clouds in the moderate-to-strong subsidence regimes with small opposite changes in the weak subsidence and strongly convective regimes, resulting in a relatively large contribution to positive cloud feedback. The dynamic and thermodynamic changes contribute equally to positive cloud feedback and are relatively insensitive to stability in the moderate-to-strong subsidence regimes. But they are sensitive to stability changes from the SST increase in convective and weak subsidence regimes. Lastly, these results have implications for interpreting cloud feedback mechanisms.« less

  18. Understanding the tropical cloud feedback from an analysis of the circulation and stability regimes simulated from an upgraded multiscale modeling framework

    DOE PAGES

    Xu, Kuan-Man; Cheng, Anning

    2016-11-15

    As revealed from studies using conventional general circulation models (GCMs), the thermodynamic contribution to the tropical cloud feedback dominates the dynamic contribution, but these models have difficulty in simulating the subsidence regimes in the tropics. In this study, we analyze the tropical cloud feedback from a 2 K sea surface temperature (SST) perturbation experiment performed with a multiscale modeling framework (MMF). The MMF explicitly represents cloud processes using 2-D cloud-resolving models with an advanced higher-order turbulence closure in each atmospheric column of the host GCM. We sort the monthly mean cloud properties and cloud radiative effects according to circulation andmore » stability regimes. Here, we find that the regime-sorted dynamic changes dominate the thermodynamic changes in terms of the absolute magnitude. The dynamic changes in the weak subsidence regimes exhibit strong negative cloud feedback due to increases in shallow cumulus and deep clouds while those in strongly convective and moderate-to-strong subsidence regimes have opposite signs, resulting in a small contribution to cloud feedback. On the other hand, the thermodynamic changes are large due to decreases in stratocumulus clouds in the moderate-to-strong subsidence regimes with small opposite changes in the weak subsidence and strongly convective regimes, resulting in a relatively large contribution to positive cloud feedback. The dynamic and thermodynamic changes contribute equally to positive cloud feedback and are relatively insensitive to stability in the moderate-to-strong subsidence regimes. But they are sensitive to stability changes from the SST increase in convective and weak subsidence regimes. Lastly, these results have implications for interpreting cloud feedback mechanisms.« less

  19. The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna

    NASA Technical Reports Server (NTRS)

    Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio; Song, In-Sun; Eichmann, Andrew

    2012-01-01

    This report is a documentation of the Fortuna version of the GEOS-5 Atmospheric General Circulation Model (AGCM). The GEOS-5 AGCM is currently in use in the NASA Goddard Modeling and Assimilation Office (GMAO) for simulations at a wide range of resolutions, in atmosphere only, coupled ocean-atmosphere, and data assimilation modes. The focus here is on the development subsequent to the version that was used as part of NASA s Modern-Era Retrospective Analysis for Research and Applications (MERRA). We present here the results of a series of 30-year atmosphere-only simulations at different resolutions, with focus on the behavior of the 1-degree resolution simulation. The details of the changes in parameterizations subsequent to the MERRA model version are outlined, and results of a series of 30-year, atmosphere-only climate simulations at 2-degree resolution are shown to demonstrate changes in simulated climate associated with specific changes in parameterizations. The GEOS-5 AGCM presented here is the model used for the GMAO s atmosphere-only and coupled CMIP-5 simulations.

  20. Assimilation of TOPEX/POSEIDON altimeter data into a circulation model of the North Atlantic

    NASA Astrophysics Data System (ADS)

    Blayo, E.; Verron, J.; Molines, J. M.

    1994-12-01

    Geosat data. The first results show that the T/P simulations are more energetic than the Geosat simulations, especially east of the Mid-Atlantic Ridge, for every wavelength from 50 km to 500 km. This property is also verified in the deep ocean. The predicted abyssal circulation is indeed more energetic in the T/P case, which is more in accordance with what we know of the real ocean. Moreover, the good T/P altimeter coverage near the coasts greatly improves the model eddy kinetic energy levels in these areas, especially east of 25°W.

  1. Hemodynamic Effects of Ventricular Assist Device Implantation on Norwood, Glenn, and Fontan Circulation: A Simulation Study.

    PubMed

    Di Molfetta, Arianna; Amodeo, Antonio; Gagliardi, Maria G; Trivella, Maria G; Fresiello, Libera; Filippelli, Sergio; Toscano, Alessandra; Ferrari, Gianfranco

    2016-01-01

    The growing population of failing single-ventricle (SV) patients might benefit from ventricular assist device (VAD) support as a bridge to heart transplantation. However, the documented experience is limited to isolated case reports. Considering the complex and different physiopathology of Norwood, Glenn, and Fontan patients and the lack of established experience, the aim of this work is to realize and test a lumped parameter model of the cardiovascular system able to simulate SV hemodynamics and VAD implantation effects to support clinical decision. Hemodynamic and echocardiographic data of 30 SV patients (10 Norwood, 10 Glenn, and 10 Fontan) were retrospectively collected and used to simulate patients' baseline. Then, the effects of VAD implantation were simulated. Simulation results suggest that the implantation of VAD: (i) increases the cardiac output and the mean arterial systemic pressure in all the three palliation conditions (Norwood 77.2 and 19.7%, Glenn 38.6 and 32.2%, and Fontan 17.2 and 14.2%); (ii) decreases the SV external work (Norwood 55%, Glenn 35.6%, and Fontan 41%); (iii) decreases the pressure pulsatility index (Norwood 65.2%, Glenn 81.3%, and Fontan 64.8%); (iv) increases the pulmonary arterial pressure in particular in the Norwood circulation (Norwood 39.7%, Glenn 12.1% and Fontan 3%); and (v) decreases the atrial pressure (Norwood 2%, Glenn 10.6%, and Fontan 8.6%). Finally, the VAD work is lower in the Norwood circulation (30.4 mL·mm Hg) in comparison with Fontan (40.3 mL·mm Hg) and to Glenn (64.5 mL·mm Hg) circulations. The use of VAD in SV physiology could be helpful to bridge patients to heart transplantations by increasing the CO and unloading the SV with a decrement of the atrial pressure and the SV external work. The regulation of the pulmonary flow is challenging because the Pap is increased by the presence of VAD. The hemodynamic changes are different in the different SV palliation step. The use of numerical models

  2. A January angular momentum balance in the OSU two-level atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Kim, J.-W.; Grady, W.

    1982-01-01

    The present investigation is concerned with an analysis of the atmospheric angular momentum balance, based on the simulation data of the Oregon State University two-level atmospheric general circulation model (AGCM). An attempt is also made to gain an understanding of the involved processes. Preliminary results on the angular momentum and mass balance in the AGCM are shown. The basic equations are examined, and questions of turbulent momentum transfer are investigated. The methods of analysis are discussed, taking into account time-averaged balance equations, time and longitude-averaged balance equations, mean meridional circulation, the mean meridional balance of relative angular momentum, and standing and transient components of motion.

  3. A general circulation model study of the solar and QBO modulation of the stratospheric circulation during the northern hemisphere winter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodera, Kunihiko; Chiba, Masaru; Shibata, Kiyotaka

    1991-07-01

    A general circulation model has been used to study the modulation of north-polar temperatures during winter by both solar activity and the equatorial quasi-biennial oscillation (QBO). The variation of solar activity was simulated by changing the heating rate due to the absorption of ultraviolet (UV) radiation by ozone, while the QBO zonal wind fields were reproduced by incorporating zonal-momentum sources in the equatorial stratosphere. A total of 10 experiments were conducted by changing the heating rate from 70 to 110% for each of the simulated QBO easterly and westerly cases. The results of the numerical experiments show modulation effects similarmore » to those found by Labitzke (1987) in the 30-mb temperatures at the North Pole.« less

  4. Numerical simulation and analysis of impact of non-orographic gravity waves drag of middle atmosphere in framework of a general circulation model

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Wang, S.

    2017-12-01

    Gravity wave drag (GWD) is among the drivers of meridional overturning in the middle atmosphere, also known as the Brewer-Dobson Circulation, and of the quasi-biennial oscillation (QBO). The small spatial scales and complications due to wave breaking require their effects to be parameterised. GWD parameterizations are usually divided into two parts, orographic and non-orographic. The basic dynamical and physical processes of the middle atmosphere and the mechanism of the interactions between the troposphere and the middle atmosphere were studied in the frame of a general circulation model. The model for the troposphere was expanded to a global model considering middle atmosphere with the capability of describing the basic processes in the middle atmosphere and the troposphere-middle atmosphere interactions. Currently, it is too costly to include full non-hydrostatic and rotational wave dynamics in an operational parameterization. The hydrostatic non-rotational wave dynamics which allow an efficient implementation that is suitably fast for operation. The simplified parameterization of non-orographic GWD follows from the WM96 scheme in which a framework is developed using conservative propagation of gravity waves, critical level filtering, and non-linear dissipation. In order to simulate and analysis the influence of non-orographic GWD on the stratospheric wind and temperature fields, experiments using Stratospheric Sudden Warming (SSW) event case occurred in January 2013 were carried out, and results of objective weather forecast verifications of the two months period were compared in detail. The verification of monthly mean of forecast anomaly correlation (ACC) and root mean square (RMS) errors shows consistently positive impact of non-orographic GWD on skill score of forecasting for the three to eight days, both in the stratosphere and troposphere, and visible positive impact on prediction of the stratospheric wind and temperature fields. Numerical simulation

  5. Roadmap for cardiovascular circulation model

    PubMed Central

    Bradley, Christopher P.; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R.; Omholt, Stig W.; Chase, J. Geoffrey; Müller, Lucas O.; Watanabe, Sansuke M.; Blanco, Pablo J.; de Bono, Bernard; Hunter, Peter J.

    2016-01-01

    Abstract Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well‐established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo‐skeletal system. The computational infrastructure for the cardiovascular model should provide for near real‐time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. PMID:27506597

  6. The epistemological status of general circulation models

    NASA Astrophysics Data System (ADS)

    Loehle, Craig

    2018-03-01

    Forecasts of both likely anthropogenic effects on climate and consequent effects on nature and society are based on large, complex software tools called general circulation models (GCMs). Forecasts generated by GCMs have been used extensively in policy decisions related to climate change. However, the relation between underlying physical theories and results produced by GCMs is unclear. In the case of GCMs, many discretizations and approximations are made, and simulating Earth system processes is far from simple and currently leads to some results with unknown energy balance implications. Statistical testing of GCM forecasts for degree of agreement with data would facilitate assessment of fitness for use. If model results need to be put on an anomaly basis due to model bias, then both visual and quantitative measures of model fit depend strongly on the reference period used for normalization, making testing problematic. Epistemology is here applied to problems of statistical inference during testing, the relationship between the underlying physics and the models, the epistemic meaning of ensemble statistics, problems of spatial and temporal scale, the existence or not of an unforced null for climate fluctuations, the meaning of existing uncertainty estimates, and other issues. Rigorous reasoning entails carefully quantifying levels of uncertainty.

  7. Clarifying the Dynamics of the General Circulation: Phillips's 1956 Experiment.

    NASA Astrophysics Data System (ADS)

    Lewis, John M.

    1998-01-01

    In the mid-1950s, amid heated debate over the physical mechanisms that controlled the known features of the atmosphere's general circulation, Norman Phillips simulated hemispheric motion on the high-speed computer at the Institute for Advanced Study. A simple energetically consistent model was integrated for a simulated time of approximately 1 month. Analysis of the model results clarified the respective roles of the synoptic-scale eddies (cyclones-anticyclones) and mean meridional circulation in the maintenance of the upper-level westerlies and the surface wind regimes. Furthermore, the modeled cyclones clearly linked surface frontogenesis with the upper-level Charney-Eady wave. In addition to discussing the model results in light of the controversy and ferment that surrounded general circulation theory in the 1940s-1950s, an effort is made to follow Phillips's scientific path to the experiment.

  8. Stratosphere-resolving CMIP5 models simulate different changes in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Rea, Gloria; Riccio, Angelo; Fierli, Federico; Cairo, Francesco; Cagnazzo, Chiara

    2018-03-01

    This work documents long-term changes in the Southern Hemisphere circulation in the austral spring-summer season in the Coupled Intercomparison Project Phase 5 models, showing that those changes are larger in magnitude and closer to ERA-Interim and other reanalyses if models include a dynamical representation of the stratosphere. Specifically, models with a high-top and included dynamical and—in some cases—chemical feedbacks within the stratosphere better simulate the lower stratospheric cooling observed over 1979-2001 and strongly driven by ozone depletion, when compared to the other models. This occurs because high-top models can fully capture the stratospheric large scale circulation response to the ozone-induced cooling. Interestingly, this difference is also found at the surface for the Southern Annular Mode (SAM) changes, even though all model categories tend to underestimate SAM trends over those decades. In this analysis, models including a proper dynamical stratosphere are more sensitive to lower stratospheric cooling in their tropospheric circulation response. After a brief discussion of two RCP scenarios, our study confirms that at least for large changes in the extratropical regions, stratospheric changes induced by external forcing have to be properly simulated, as they are important drivers of tropospheric climate variations.

  9. Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models

    NASA Astrophysics Data System (ADS)

    Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.

    2014-12-01

    Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.

  10. Simulations of the general circulation of the Martian atmosphere. II - Seasonal pressure variations

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Haberle, Robert M.; Murphy, James R.; Schaeffer, James; Lee, Hilda

    1993-01-01

    The CO2 seasonal cycle of the Martian atmosphere and surface is simulated with a hybrid energy balance model that incorporates dynamical and radiation information from a large number of general circulation model runs. This information includes: heating due to atmospheric heat advection, the seasonally varying ratio of the surface pressure at the two Viking landing sites to the globally averaged pressure, the rate of CO2 condensation in the atmosphere, and solar heating of the atmosphere and surface. The predictions of the energy balance model are compared with the seasonal pressure variations measured at the two Viking landing sites and the springtime retreat of the seasonal polar cap boundaries. The following quantities are found to have a strong influence on the seasonal pressures at the Viking landing sites: albedo of the seasonal CO2 ice deposits, emissivity of this deposit, atmospheric heat advection, and the pressure ratio.

  11. A Variable Resolution Stretched Grid General Circulation Model: Regional Climate Simulation

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.; Suarez, Max J.

    2000-01-01

    The development of and results obtained with a variable resolution stretched-grid GCM for the regional climate simulation mode, are presented. A global variable resolution stretched- grid used in the study has enhanced horizontal resolution over the U.S. as the area of interest The stretched-grid approach is an ideal tool for representing regional to global scale interaction& It is an alternative to the widely used nested grid approach introduced over a decade ago as a pioneering step in regional climate modeling. The major results of the study are presented for the successful stretched-grid GCM simulation of the anomalous climate event of the 1988 U.S. summer drought- The straightforward (with no updates) two month simulation is performed with 60 km regional resolution- The major drought fields, patterns and characteristics such as the time averaged 500 hPa heights precipitation and the low level jet over the drought area. appear to be close to the verifying analyses for the stretched-grid simulation- In other words, the stretched-grid GCM provides an efficient down-scaling over the area of interest with enhanced horizontal resolution. It is also shown that the GCM skill is sustained throughout the simulation extended to one year. The developed and tested in a simulation mode stretched-grid GCM is a viable tool for regional and subregional climate studies and applications.

  12. Effects of Solar Particle Event-Like Proton Radiation and/or Simulated Microgravity on Circulating Mouse Blood Cells.

    PubMed

    Romero-Weaver, Ana L; Lin, Liyong; Carabe-Fernandez, Alejandro; Kennedy, Ann R

    2014-08-01

    Astronauts traveling in space missions outside of low Earth orbit will be exposed for longer times to a microgravity environment. In addition, the increased travel time involved in exploration class missions will result in an increased risk of exposure to significant doses of solar particle event (SPE) radiation. Both conditions could significantly affect the number of circulating blood cells. Therefore, it is critical to determine the combined effects of exposure to both microgravity and SPE radiation. The purpose of the present study was to assess these risks by evaluating the effects of SPE-like proton radiation and/or microgravity, as simulated with the hindlimb unloading (HU) system, on circulating blood cells using mouse as a model system. The results indicate that exposure to HU alone caused minimal or no significant changes in mouse circulating blood cell numbers. The exposure of mice to SPE-like proton radiation with or without HU treatment caused a significant decrease in the number of circulating lymphocytes, granulocytes and platelets. The reduced numbers of circulating lymphocytes, granulocytes, and platelets, resulting from the SPE-like proton radiation exposure, with or without HU treatment, in mice suggest that astronauts participating in exploration class missions may be at greater risk of developing infections and thrombotic diseases; thus, countermeasures may be necessary for these biological endpoints.

  13. Adaptive subdomain modeling: A multi-analysis technique for ocean circulation models

    NASA Astrophysics Data System (ADS)

    Altuntas, Alper; Baugh, John

    2017-07-01

    Many coastal and ocean processes of interest operate over large temporal and geographical scales and require a substantial amount of computational resources, particularly when engineering design and failure scenarios are also considered. This study presents an adaptive multi-analysis technique that improves the efficiency of these computations when multiple alternatives are being simulated. The technique, called adaptive subdomain modeling, concurrently analyzes any number of child domains, with each instance corresponding to a unique design or failure scenario, in addition to a full-scale parent domain providing the boundary conditions for its children. To contain the altered hydrodynamics originating from the modifications, the spatial extent of each child domain is adaptively adjusted during runtime depending on the response of the model. The technique is incorporated in ADCIRC++, a re-implementation of the popular ADCIRC ocean circulation model with an updated software architecture designed to facilitate this adaptive behavior and to utilize concurrent executions of multiple domains. The results of our case studies confirm that the method substantially reduces computational effort while maintaining accuracy.

  14. Effect of land model ensemble versus coupled model ensemble on the simulation of precipitation climatology and variability

    NASA Astrophysics Data System (ADS)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Yang, Zong-Liang; Chen, Haishan

    2017-10-01

    Through a series of model simulations with an atmospheric general circulation model coupled to three different land surface models, this study investigates the impacts of land model ensembles and coupled model ensemble on precipitation simulation. It is found that coupling an ensemble of land models to an atmospheric model has a very minor impact on the improvement of precipitation climatology and variability, but a simple ensemble average of the precipitation from three individually coupled land-atmosphere models produces better results, especially for precipitation variability. The generally weak impact of land processes on precipitation should be the main reason that the land model ensembles do not improve precipitation simulation. However, if there are big biases in the land surface model or land surface data set, correcting them could improve the simulated climate, especially for well-constrained regional climate simulations.

  15. Simulating Heinrich events in a coupled atmosphere-ocean-ice sheet model

    NASA Astrophysics Data System (ADS)

    Mikolajewicz, Uwe; Ziemen, Florian

    2016-04-01

    Heinrich events are among the most prominent events of long-term climate variability recorded in proxies across the northern hemisphere. They are the archetype of ice sheet - climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under discussion, and their climatic consequences are far from being fully understood. We contribute to answering the open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability without the need to prescribe external perturbations, as was the standard approach in almost all model studies so far. The setup consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global coarse resolution AOVGCM ECHAM5/MPIOM/LPJ. The simulations used for this analysis were an ensemble covering substantial parts of the late Glacial forced with transient insolation and prescribed atmospheric greenhouse gas concentrations. The modeled Heinrich events show a marked influence of the ice discharge on the Atlantic circulation and heat transport, but none of the Heinrich events during the Glacial did show a complete collapse of the North Atlantic meridional overturning circulation. The simulated main consequences of the Heinrich events are a freshening and cooling over the North Atlantic and a drying over northern Europe.

  16. Roadmap for cardiovascular circulation model.

    PubMed

    Safaei, Soroush; Bradley, Christopher P; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R; Omholt, Stig W; Chase, J Geoffrey; Müller, Lucas O; Watanabe, Sansuke M; Blanco, Pablo J; de Bono, Bernard; Hunter, Peter J

    2016-12-01

    Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well-established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo-skeletal system. The computational infrastructure for the cardiovascular model should provide for near real-time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  17. The global geochemistry of bomb-produced tritium - General circulation model compared to available observations and traditional interpretations

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Broecker, Wallace S.; Jouzel, Jean; Suozzo, Robert J.; Russell, Gary L.; Rind, David

    1989-01-01

    Observational evidence suggests that of the tritium produced during nuclear bomb tests that has already reached the ocean, more than twice as much arrived through vapor impact as through precipitation. In the present study, the Goddard Institute for Space Studies 8 x 10 deg atmospheric general circulation model is used to simulate tritium transport from the upper atmosphere to the ocean. The simulation indicates that tritium delivery to the ocean via vapor impact is about equal to that via precipitation. The model result is relatively insensitive to several imposed changes in tritium source location, in model parameterizations, and in model resolution. Possible reasons for the discrepancy are explored.

  18. Wind-driven variations in an overturning circulation

    NASA Astrophysics Data System (ADS)

    Bringedal, Carina; Eldevik, Tor; Spall, Michael

    2017-04-01

    The Atlantic overturning circulation and poleward heat transport is balanced by northern heat loss to the atmosphere and corresponding water mass transformation. The structure of this circulation and transformation is particularly manifested - and observed - at the Greenland-Scotland ridge. There is however a rich variability in the exchanges across the ridge on seasonal and yearly time scales. This variability has been almost perfectly captured in atmospherically forced ocean GCMs (e.g. Olsen et al 2008, Sandø et al 2012), suggesting that on shorter time scales the variability of the exchanges are connected to sea level pressure and corresponding wind stress forcing. Focusing on seasonal and yearly time scales, we accordingly propose that the connection between the exchanges of overturning waters across the Greenland-Scotland ridge and the sea level pressure must be direct and simple, and we use idealized simulations to support this hypothesis. The mechanisms underlying the connection are formulated through conceptual models. Although the models and simulations are simplified with respect to bathymetry and hydrography, they can reproduce the main features of the overturning circulation in the Nordic seas. In the observations, the variable exchanges can largely be related to sea level pressure variations and large scale wind patterns, and the idealized simulations and accompanying conceptual models show how these impacts can manifest via coastal downwelling and gyre circulation. S. M. Olsen, B. Hansen, D. Quadfasel and S. Østerhus, Observed and modelled stability of overflow across the Greenland-Scotland ridge, Nature 455, (2008) A. B. Sandø, J. E. Ø. Nilsen, T. Eldevik and M. Bentsen, Mechanisms for variable North Atlantic-Nordic seas exchanges, Journal of Geophysical Research 117, (2012)

  19. Influence of high-resolution surface databases on the modeling of local atmospheric circulation systems

    NASA Astrophysics Data System (ADS)

    Paiva, L. M. S.; Bodstein, G. C. R.; Pimentel, L. C. G.

    2014-08-01

    Large-eddy simulations are performed using the Advanced Regional Prediction System (ARPS) code at horizontal grid resolutions as fine as 300 m to assess the influence of detailed and updated surface databases on the modeling of local atmospheric circulation systems of urban areas with complex terrain. Applications to air pollution and wind energy are sought. These databases are comprised of 3 arc-sec topographic data from the Shuttle Radar Topography Mission, 10 arc-sec vegetation-type data from the European Space Agency (ESA) GlobCover project, and 30 arc-sec leaf area index and fraction of absorbed photosynthetically active radiation data from the ESA GlobCarbon project. Simulations are carried out for the metropolitan area of Rio de Janeiro using six one-way nested-grid domains that allow the choice of distinct parametric models and vertical resolutions associated to each grid. ARPS is initialized using the Global Forecasting System with 0.5°-resolution data from the National Center of Environmental Prediction, which is also used every 3 h as lateral boundary condition. Topographic shading is turned on and two soil layers are used to compute the soil temperature and moisture budgets in all runs. Results for two simulated runs covering three periods of time are compared to surface and upper-air observational data to explore the dependence of the simulations on initial and boundary conditions, grid resolution, topographic and land-use databases. Our comparisons show overall good agreement between simulated and observational data, mainly for the potential temperature and the wind speed fields, and clearly indicate that the use of high-resolution databases improves significantly our ability to predict the local atmospheric circulation.

  20. Optimal control of CPR procedure using hemodynamic circulation model

    DOEpatents

    Lenhart, Suzanne M.; Protopopescu, Vladimir A.; Jung, Eunok

    2007-12-25

    A method for determining a chest pressure profile for cardiopulmonary resuscitation (CPR) includes the steps of representing a hemodynamic circulation model based on a plurality of difference equations for a patient, applying an optimal control (OC) algorithm to the circulation model, and determining a chest pressure profile. The chest pressure profile defines a timing pattern of externally applied pressure to a chest of the patient to maximize blood flow through the patient. A CPR device includes a chest compressor, a controller communicably connected to the chest compressor, and a computer communicably connected to the controller. The computer determines the chest pressure profile by applying an OC algorithm to a hemodynamic circulation model based on the plurality of difference equations.

  1. The variability, structure and energy conversion of the northern hemisphere traveling waves simulated in a Mars general circulation model

    NASA Astrophysics Data System (ADS)

    Wang, Huiqun; Toigo, Anthony D.

    2016-06-01

    Investigations of the variability, structure and energetics of the m = 1-3 traveling waves in the northern hemisphere of Mars are conducted with the MarsWRF general circulation model. Using a simple, annually repeatable dust scenario, the model reproduces many general characteristics of the observed traveling waves. The simulated m = 1 and m = 3 traveling waves show large differences in terms of their structures and energetics. For each representative wave mode, the geopotential signature maximizes at a higher altitude than the temperature signature, and the wave energetics suggests a mixed baroclinic-barotropic nature. There is a large contrast in wave energetics between the near-surface and higher altitudes, as well as between the lower latitudes and higher latitudes at high altitudes. Both barotropic and baroclinic conversions can act as either sources or sinks of eddy kinetic energy. Band-pass filtered transient eddies exhibit strong zonal variations in eddy kinetic energy and various energy transfer terms. Transient eddies are mainly interacting with the time mean flow. However, there appear to be non-negligible wave-wave interactions associated with wave mode transitions. These interactions include those between traveling waves and thermal tides and those among traveling waves.

  2. Measured and Modelled Tidal Circulation Under Ice Covered Van Mijenforden

    NASA Astrophysics Data System (ADS)

    Nilsen, F.

    The observation and model area Van Mijenfjorden is situated at the west coast of Spits- bergen. An area of 533 km2 makes it the second largest fjord on Spitsbergen and the distance from the head to the mouth of the fjord is approximately 70 km. An 8.5km long and 1km wide island, Akseløya, is lying across the fjord mouth and blocking exchanges between the fjord and the coastal water masses outside. The sound Aksel- sundet on the northern side of the island is 1km wide and has a sill at 34m depth. On the southern side an islet, Mariaholmen, is between two sounds that are 200m wide and 2m deep, and 500m wide and 12m deep. Strong tidal currents exist in these sounds. Van Mijenfjorden has special ice conditions in that Akseløya almost closes the fjord, and comparatively little ice comes in from west. On the other hand, there are periods with fast ice in the fjord inside Akseløya longer than in other places, as the sea waves have little chance to break up fast ice here, or delay ice formation in autumn/winter. Van Mijenfjorden is often separated into two basins by a sill at 30m depth. The inner basin is typical 5km wide and has a maximum depth of 80m, while the outer basin is on average 10 km wide and has a maximum depth of 115m. Hydrographic measurements have been conducted since 1958 and up to the present. Through the last decade, The University Courses on Svalbard (UNIS) has used this fjord as a laboratory for their student excursions, in connection to courses in air-ice- ocean interaction and master programs, and build up an oceanographic data base. In this work, focus is put on the wintertime situation and the circulation under an ice covered fjord. Measurements show a mean cyclonic circulation pattern in the outer basin with tidal oscillation (mainly M2) superposed on this mean vector. A three- dimensional sigma layered numerical model called Bergen Ocean Model (BOM) was used to simulate the circulation in Van Mijenfjorden with only tidal forcing. The four most

  3. Evaluating the Credibility of Transport Processes in the Global Modeling Initiative 3D Model Simulations of Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Strahan, Susan E.; Douglass, Anne R.

    2003-01-01

    The Global Modeling Initiative has integrated two 35-year simulations of an ozone recovery scenario with an offline chemistry and transport model using two different meteorological inputs. Physically based diagnostics, derived from satellite and aircraft data sets, are described and then used to evaluate the realism of temperature and transport processes in the simulations. Processes evaluated include barrier formation in the subtropics and polar regions, and extratropical wave-driven transport. Some diagnostics are especially relevant to simulation of lower stratospheric ozone, but most are applicable to any stratospheric simulation. The temperature evaluation, which is relevant to gas phase chemical reactions, showed that both sets of meteorological fields have near climatological values at all latitudes and seasons at 30 hPa and below. Both simulations showed weakness in upper stratospheric wave driving. The simulation using input from a general circulation model (GMI(sub GCM)) showed a very good residual circulation in the tropics and northern hemisphere. The simulation with input from a data assimilation system (GMI(sub DAS)) performed better in the midlatitudes than at high latitudes. Neither simulation forms a realistic barrier at the vortex edge, leading to uncertainty in the fate of ozone-depleted vortex air. Overall, tracer transport in the offline GMI(sub GCM) has greater fidelity throughout the stratosphere than the GMI(sub DAS).

  4. A sigma-coordinate primitive equation model for studying the circulation in the South Atlantic Part II: Meridional transports and seasonal variability

    NASA Astrophysics Data System (ADS)

    Marchesiello, P.; Barnier, B.; de Miranda, A. P.

    1998-04-01

    The mean and seasonal variability of the circulation and meridional heat transport in the South Atlantic are investigated using a set of numerical experiments. The primitive equation model uses a topography-following (sigma) coordinate. The model domain is limited to the South Atlantic basin. Artificial boundaries at Drake Passage, between Brazil and Angola, and between South Africa and Antarctica are treated as open boundaries. Finally, recent and self-consistent estimates of seasonal fluxes are used to define a model-dependent atmospheric forcing. Quasi-diagnostic simulations forced by constant climatological winds are first conducted to determine the sensitivity of model solutions to bottom topography smoothing, and to diagnose meridional fluxes from a mass field that is relaxed to the annual climatology of Levitus (1982). Model results show good agreement with known climatological circulation features in this basin, especially in the Confluence Region, where coarse resolution models usually give smooth structures. Sensitivity studies show that the more detailed features of the circulation are influenced by the model bathymetry. The model simulates a meridional circulation whose upper branch (the return flow that balances the southward flow of North Atlantic Deep Water) is composed of Intermediate (IW) and Thermocline (TW) Waters. The transport of IW is found to be predominant, and the value of meridional heat transport consequently falls within the low estimates. We notice that the meridional heat balance is sensitive to the position of the Confluence. When this region occurs too far south, the amount of IW contributing to the return flow of the overturning cell is reduced. Prognostic simulations forced by seasonal winds and heat fluxes are studied to quantify the impact of wind forcing on the circulation in the South Atlantic. Particular attention is focused on meridional transports at 30°S. Analysis of the mean annual circulation confirms that the upper

  5. Secular trends and climate drift in coupled ocean-atmosphere general circulation models

    NASA Astrophysics Data System (ADS)

    Covey, Curt; Gleckler, Peter J.; Phillips, Thomas J.; Bader, David C.

    2006-02-01

    Coupled ocean-atmosphere general circulation models (coupled GCMs) with interactive sea ice are the primary tool for investigating possible future global warming and numerous other issues in climate science. A long-standing problem with such models is that when different components of the physical climate system are linked together, the simulated climate can drift away from observation unless constrained by ad hoc adjustments to interface fluxes. However, 11 modern coupled GCMs, including three that do not employ flux adjustments, behave much better in this respect than the older generation of models. Surface temperature trends in control run simulations (with external climate forcing such as solar brightness and atmospheric carbon dioxide held constant) are small compared with observed trends, which include 20th century climate change due to both anthropogenic and natural factors. Sea ice changes in the models are dominated by interannual variations. Deep ocean temperature and salinity trends are small enough for model control runs to extend over 1000 simulated years or more, but trends in some regions, most notably the Arctic, differ substantially among the models and may be problematic. Methods used to initialize coupled GCMs can mitigate climate drift but cannot eliminate it. Lengthy "spin-ups" of models, made possible by increasing computer power, are one reason for the improvements this paper documents.

  6. Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation

    PubMed Central

    Qureshi, M. Umar; Vaughan, Gareth D.A.; Sainsbury, Christopher; Johnson, Martin; Peskin, Charles S.; Olufsen, Mette S.; Hill, N.A.

    2014-01-01

    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen and coworkers (Ottesen et al., 2003; Olufsen et al., 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ‘large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ‘smaller’ arteries and veins of radii ≥ 50µm. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment of circulatory diseases within the lung. PMID:24610385

  7. Recent intensification of the Walker Circulation and the role of natural sea surface temperature variability

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Allen, R.

    2017-12-01

    In a warming world, the tropical atmospheric overturning circulation-including the Walker Circulation-is expected to weaken due to thermodynamic constraints. Tropical precipitation increases at a slower rate than water vapor-which increases according to Clausius Clapeyron scaling, assuming constant relative humidity-so the tropical overturning circulation slows down. This is supported by both observations and model simulations, which show a slowdown of the Walker Circulation over the 20th century. Model projections suggest a further weakening of the Walker Circulation in the 21st century. However, over the last several decades (1979-2014), multiple observations reveal a robust strengthening of the Walker Circulation. Although coupled CMIP5 simulations are unable to reproduce this strengthening, AMIP simulations-which feature the observed evolution of SSTs-are generally able to reproduce it. Assuming the ensemble mean sea surface temperatures (SSTs) from historical CMIP5 simulations accurately represent the externally forced SST response, the observed SSTs can be decomposed into a forced and an unforced component. CAM5 AMIP-type simulations driven by the unforced component of observed SSTs reproduce the observed strengthening of the Walker Circulation. Corresponding simulations driven by the forced component of observed SSTs yield a weaker Walker Circulation. These results are consistent with the zonal tropical SST gradient and the Bjerknes feedback. The unforced component of SSTs yield an increased SST gradient over tropical Pacific (a La Nina like pattern) and strengthening of the tropical trade winds, which constitute the lower branch of the Walker Circulation. The forced component of SSTs yields a zonally uniform tropical Pacific SST warming and a marginal weakening of the Walker Circulation. Our results suggest significant modulation of the tropical Walker Circulation by natural SST variability over the last several decades.

  8. Numerical simulation on casing modification of a boiler water circulation pump

    NASA Astrophysics Data System (ADS)

    Li, Y. Z.; Fan, Y. Z.; Liu, S. H.; Wu, Y. L.; Zuo, Z. G.

    2012-11-01

    In this paper, hydraulic performance comparisons are made by numerical simulation method on boiler water circulation pump with casings of different shapes. The existing pump adopts a semispherical casing and a garlic-shaped casing. Results show that in the garlic-shaped casing noticeable swirling vortex can be found in the top region of the discharge nozzle, and semispherical casing has better performance in hydraulic efficiency and head.

  9. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing

    NASA Astrophysics Data System (ADS)

    De La Chevrotière, Michèle; Khouider, Boualem

    2017-02-01

    the other advective part is a nilpotent matrix, which is solved via the method of lines. Validation tests using a synthetic exact solution are presented, and formal second-order convergence under grid refinement is demonstrated. Moreover, the model is tested under realistic monsoon conditions, and the ability of the model to simulate key features of the monsoon circulation is illustrated in two distinct parameter regimes.

  10. A Babcock-Leighton solar dynamo model with multi-cellular meridional circulation in advection- and diffusion-dominated regimes

    NASA Astrophysics Data System (ADS)

    Belucz, B.; Dikpati, M.; Forgacs-Dajka, E.

    2014-12-01

    Babcock-Leighton type solar dynamo models with single cell meridional circulation are successful in reproducing many solarcycle features, and recently such a model was applied for solarcycle 24 amplitude prediction. It seems that cycle 24 amplitudeforecast may not be validated. One of the reasons is the assumption of a single cell meridional circulation. Recent observations andtheoretical models of meridional circulation do not indicate a single-celledflow pattern. So it is nessecary to examine the role of complexmulti-cellular circulation patterns in a Babcock-Leighton solar dynamo model in the advection and diffusion dominated regimes.By simulating a Babcock-Leighton solar dynamo model with multi-cellularflow, we show that the presence of a weak, second, high-latitudereverse cell speeds up the cycle and slighty enhances the poleward branch in the butterfly diagram, whereas the presence of a second cellin depth reverses the tilt of the butterfly wing and leads to ananti-solar type feature. If, instead, the butterfly diagram isconstructed from the middle of the convection zone in that case, a solar-like pattern can be retrieved. All the above cases behavequalitatively similar in advection and diffusion-dominated regimes.However, our dynamo with a meridional circulation containing fourcells in latitude behaves distinctly different in the two regimes, producing a solar-like butterfly diagram with fast cycles indiffusion-dominated regime, and a complex branches in the butterflydiagram in the advection-dominated regime. Another interestingfinding from our studies is that a four-celled flow pattern containing two in radius and two in latitude always producesquadrupolar parity as the relaxed solution.

  11. A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model.

    PubMed

    Miura, Hiroaki; Satoh, Masaki; Nasuno, Tomoe; Noda, Akira T; Oouchi, Kazuyoshi

    2007-12-14

    A Madden-Julian Oscillation (MJO) is a massive weather event consisting of deep convection coupled with atmospheric circulation, moving slowly eastward over the Indian and Pacific Oceans. Despite its enormous influence on many weather and climate systems worldwide, it has proven very difficult to simulate an MJO because of assumptions about cumulus clouds in global meteorological models. Using a model that allows direct coupling of the atmospheric circulation and clouds, we successfully simulated the slow eastward migration of an MJO event. Topography, the zonal sea surface temperature gradient, and interplay between eastward- and westward-propagating signals controlled the timing of the eastward transition of the convective center. Our results demonstrate the potential making of month-long MJO predictions when global cloud-resolving models with realistic initial conditions are used.

  12. Experiments in monthly mean simulation of the atmosphere with a coarse-mesh general circulation model

    NASA Technical Reports Server (NTRS)

    Lutz, R. J.; Spar, J.

    1978-01-01

    The Hansen atmospheric model was used to compute five monthly forecasts (October 1976 through February 1977). The comparison is based on an energetics analysis, meridional and vertical profiles, error statistics, and prognostic and observed mean maps. The monthly mean model simulations suffer from several defects. There is, in general, no skill in the simulation of the monthly mean sea-level pressure field, and only marginal skill is indicated for the 850 mb temperatures and 500 mb heights. The coarse-mesh model appears to generate a less satisfactory monthly mean simulation than the finer mesh GISS model.

  13. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    NASA Astrophysics Data System (ADS)

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  14. Efficiency of circulant diallels via mixed models in the selection of papaya genotypes resistant to foliar fungal diseases.

    PubMed

    Vivas, M; Silveira, S F; Viana, A P; Amaral, A T; Cardoso, D L; Pereira, M G

    2014-07-02

    Diallel crossing methods provide information regarding the performance of genitors between themselves and their hybrid combinations. However, with a large number of parents, the number of hybrid combinations that can be obtained and evaluated become limited. One option regarding the number of parents involved is the adoption of circulant diallels. However, information is lacking regarding diallel analysis using mixed models. This study aimed to evaluate the efficacy of the method of linear mixed models to estimate, for variable resistance to foliar fungal diseases, components of general and specific combining ability in a circulant table with different s values. Subsequently, 50 diallels were simulated for each s value, and the correlations and estimates of the combining abilities of the different diallel combinations were analyzed. The circulant diallel method using mixed modeling was effective in the classification of genitors regarding their combining abilities relative to the complete diallels. The numbers of crosses in which each genitor(s) will compose the circulant diallel and the estimated heritability affect the combining ability estimates. With three crosses per parent, it is possible to obtain good concordance (correlation above 0.8) between the combining ability estimates.

  15. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Vecchi, Gabriel A.; Soden, Brian J.; Wittenberg, Andrew T.; Held, Isaac M.; Leetmaa, Ants; Harrison, Matthew J.

    2006-05-01

    Since the mid-nineteenth century the Earth's surface has warmed, and models indicate that human activities have caused part of the warming by altering the radiative balance of the atmosphere. Simple theories suggest that global warming will reduce the strength of the mean tropical atmospheric circulation. An important aspect of this tropical circulation is a large-scale zonal (east-west) overturning of air across the equatorial Pacific Ocean-driven by convection to the west and subsidence to the east-known as the Walker circulation. Here we explore changes in tropical Pacific circulation since the mid-nineteenth century using observations and a suite of global climate model experiments. Observed Indo-Pacific sea level pressure reveals a weakening of the Walker circulation. The size of this trend is consistent with theoretical predictions, is accurately reproduced by climate model simulations and, within the climate models, is largely due to anthropogenic forcing. The climate model indicates that the weakened surface winds have altered the thermal structure and circulation of the tropical Pacific Ocean. These results support model projections of further weakening of tropical atmospheric circulation during the twenty-first century.

  16. Study of CFB Simulation Model with Coincidence at Multi-Working Condition

    NASA Astrophysics Data System (ADS)

    Wang, Z.; He, F.; Yang, Z. W.; Li, Z.; Ni, W. D.

    A circulating fluidized bed (CFB) two-stage simulation model was developed. To realize the model results coincident with the design value or real operation value at specified multi-working conditions and with capability of real-time calculation, only the main key processes were taken into account and the dominant factors were further abstracted out of these key processes. The simulation results showed a sound accordance at multi-working conditions, and confirmed the advantage of the two-stage model over the original single-stage simulation model. The combustion-support effect of secondary air was investigated using the two-stage model. This model provides a solid platform for investigating the pant-leg structured CFB furnace, which is now under design for a supercritical power plant.

  17. Simulations of NLC formation using a microphysical model driven by three-dimensional dynamics

    NASA Astrophysics Data System (ADS)

    Kirsch, Annekatrin; Becker, Erich; Rapp, Markus; Megner, Linda; Wilms, Henrike

    2014-05-01

    Noctilucent clouds (NLCs) represent an optical phenomenon occurring in the polar summer mesopause region. These clouds have been known since the late 19th century. Current physical understanding of NLCs is based on numerous observational and theoretical studies, in recent years especially observations from satellites and by lidars from ground. Theoretical studies based on numerical models that simulate NLCs with the underlying microphysical processes are uncommon. Up to date no three-dimensional numerical simulations of NLCs exist that take all relevant dynamical scales into account, i.e., from the planetary scale down to gravity waves and turbulence. Rather, modeling is usually restricted to certain flow regimes. In this study we make a more rigorous attempt and simulate NLC formation in the environment of the general circulation of the mesopause region by explicitly including gravity waves motions. For this purpose we couple the Community Aerosol and Radiation Model for Atmosphere (CARMA) to gravity-wave resolving dynamical fields simulated beforehand with the Kuehlungsborn Mechanistic Circulation Model (KMCM). In our case, the KMCM is run with a horizontal resolution of T120 which corresponds to a minimum horizontal wavelength of 350 km. This restriction causes the resolved gravity waves to be somewhat biased to larger scales. The simulated general circulation is dynamically controlled by these waves in a self-consitent fashion and provides realistic temperatures and wind-fields for July conditions. Assuming a water vapor mixing ratio profile in agreement with current observations results in reasonable supersaturations of up to 100. In a first step, CARMA is applied to a horizontal section covering the Northern hemisphere. The vertical resolution is 120 levels ranging from 72 to 101 km. In this paper we will present initial results of this coupled dynamical microphysical model focussing on the interaction of waves and turbulent diffusion with NLC-microphysics.

  18. Ensemble formulation of surface fluxes and improvement in evapotranspiration and cloud parameterizations in a GCM. [General Circulation Model

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Smith, W. E.

    1984-01-01

    The influence of some modifications to the parameters of the current general circulation model (GCM) is investigated. The aim of the modifications was to eliminate strong occasional bursts of oscillations in planetary boundary layer (PBL) fluxes. Smoothly varying bulk aerodynamic friction and heat transport coefficients were found by ensemble averaging of the PBL fluxes in the current GCM. A comparison was performed of the simulations of the modified model and the unmodified model. The comparison showed that the surface fluxes and cloudiness in the modified model simulations were much more accurate. The planetary albedo in the model was also realistic. Weaknesses persisted in the models positioning of the Inter-tropical convergence zone (ICTZ) and in the temperature estimates for polar regions. A second simulation of the model following reparametrization of the cloud data showed improved results and these are described in detail.

  19. Simulating Mars' Dust Cycle with a Mars General Circulation Model: Effects of Water Ice Cloud Formation on Dust Lifting Strength and Seasonality

    NASA Technical Reports Server (NTRS)

    Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.

    2012-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.

  20. Simulation of Wind-Driven Circulation in the Salton Sea: Implications for Indigenous Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Chris B.; Orlob, Gerald T.; Huston, David W.

    The Salton Sea Authority is seeking methods for reducing water levels and controlling salinity within ranges that will protect beneficial uses of the Sea, its adjacent lands, and its indigenous ecosystems. Proposed solutions include various physical changes in the bathymetry and configuration of the Sea. Because circulation in the Sea is driven primarily by wind stresses imposed on the water surface, and circulation changes are likely to affect the Sea?s quality and ecology, a methodology for quantifying the effects of specific alternatives is required. For this purpose a mathematical model for simulation of the hydrodynamic behavior of the Sea hasmore » been developed, calibrated to data gathered by a field investigation conducted in 1997, and applied to alternative schemes that will isolate sections of the southern basin. The Salton Sea Hydrodynamic/Water Quality Model is constructed using the finite element method to represent the bathymetry of the Sea in a three-dimensional grid. Given certain boundary conditions, for example wind stresses imposed on the surface, the model solves the three-dimensional equations of motion and continuity, the advection-dispersion equation, and an equation of state dependent upon temperature and salinity, to obtain temporal and spatial descriptions of velocities and temperatures over a specified period of time. The model successfully replicated principal features of the Sea's behavior, especially the persistence of a counterclockwise gyre in the southern basin and seasonal stratification. Once calibrated, the model was applied to evaluate the possible effects of changing water surface elevations in the Sea and altering its configuration to isolate sections for evaporative concentration of salts. These effects, evident in changes in velocity, were quantified with regard to their possible impacts on the aquatic habitat and the health of the Salton Sea ecology. A comparative evaluation of alternatives is presented.« less

  1. Sensitivity of Atlantic meridional overturning circulation to the dynamical framework in an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Li, Xiaolan; Yu, Yongqiang; Liu, Hailong; Lin, Pengfei

    2017-06-01

    The horizontal coordinate systems commonly used in most global ocean models are the spherical latitude-longitude grid and displaced poles, such as a tripolar grid. The effect of the horizontal coordinate system on Atlantic meridional overturning circulation (AMOC) is evaluated by using an OGCM (ocean general circulation model). Two experiments are conducted with the model—one using a latitude-longitude grid (referred to as Lat_1) and the other using a tripolar grid (referred to as Tri). The results show that Tri simulates a stronger North Atlantic deep water (NADW) than Lat_1, as more saline water masses enter the Greenland-Iceland-Norwegian (GIN) seas in Tri. The stronger NADW can be attributed to two factors. One is the removal of the zonal filter in Tri, which leads to an increasing of the zonal gradient of temperature and salinity, thus strengthening the north geostrophic flow. In turn, it decreases the positive subsurface temperature and salinity biases in the subtropical regions. The other may be associated with topography at the North Pole, because realistic topography is applied in the tripolar grid while the latitude-longitude grid employs an artificial island around the North Pole. In order to evaluate the effect of the filter on AMOC, three enhanced filter experiments are carried out. Compared to Lat_1, an enhanced filter can also augment NADW formation, since more saline water is suppressed in the GIN seas, but accumulated in the Labrador Sea, especially in experiment Lat_2_S, which is the experiment with an enhanced filter on salinity.

  2. Climate and Ocean Circulation During "The Boring Billion" Simulated by CCSM3

    NASA Astrophysics Data System (ADS)

    Liu, P.; Hu, Y.; Liu, Y.

    2017-12-01

    The Boring Billion is referred to the era between approximately 1.8 and 0.8 billion years ago. Geological evidence suggests that no dramatic climate changes in the billions of years, at least in terms of permanent glaciation. The atmospheric oxygen maintained at a relatively low level without significant perturbations. Life had a certain degree of evolution with a quite gentle pace. Relative to the Great Oxidation Event occurred previously, and the Snowball Earth Event and Cambrian Explosion occurred afterwards, this billion years was calm in all aspects so it's often referred to as "the Boring Billion". Why were both the climate and oxygen concentration so stable, and how the anoxic condition in the deep ocean maintained are the questions that motivated our research. We use the Atmosphere Ocean General Circulation Model CCSM3 in this study. The climate of the Boring Billion is simulated for two distinct continental configurations reconstructed for 1540 Ma and 1420 Ma, with continental fragments concentrating towards the North Pole and equator, respectively. The solar constant is set to be 10% weaker than that of the present day. The results show that when the concentration of CO2 is 20 times the present atmospheric level (PAL), the global mean surface temperatures are 19 ° C and 20 ° C for the 1540 Ma and 1420 Ma continental configuration, respectively. Large scale permanent glaciers cannot develop in such a warm climate even for the continents at the polar region. The largest mixed-layer depth in the high-latitude ocean is approximately 1200 m and meridional overturning circulation can reach depth of 3000 m with strength of 40 Sv for both continental configuration. This implies that the material and energy exchange between shallow and deep ocean, as well as atmosphere and ocean, is efficient. When CO2 concentration is reduced to 10 PAL, 5 PAL or 2.5 PAL, global average temperature becomes 16 ° C, 13 ° C and 2 ° C respectively, and permanent glaciers start to

  3. [Establishment and evaluation of extracorporeal circulation model in rats].

    PubMed

    Xie, Xiao-Jun; Tao, Kai-Yu; Tang, Meng-Lin; Du, Lei; An, Qi; Lin, Ke; Gan, Chang-Ping; Chen, You-Wen; Luo, Shu-Hua

    2012-09-01

    To establish an extracorporeal circulation (ECC) rat model, and evaluate the inflammatory response and organ injury induced in the model. SD rats were anesthetized and cannulated from right common carotid artery to left femoral vein to establish the bypass of extracorporeal circulation. Then the rats were randomly divided into ECC group and sham group. The rats in ECC group were subjected to extracorporeal circulation for 2 hours and then rest for 2 hours, while the rats in sham group were only observed for 4 hours without extracorporeal circulation. After that, blood routine examination, blood gas analysis, the measurement of pro-inflammatory factors in bronchoalveolar lavage fluid and lung tissue were performed to evaluate the lung injury induced by ECC. Circulating endothelial cells were also calculated by flow cytometry to assess the vascular endothelial injury. At 2 hours after ECC, red blood cell counts in both groups kept normal, while leukocyte and neutrophil counts, plasmatic tumor necrosis factor-a level and neutrophil elastase level, circulating endothelial cells in the rats of ECC group were significantly higher than those in sham group. Tumor necrosis factor-alpha in bronchoalveolar lavage fluid and water content in lung of the ECC rats were also significantly higher, while the oxygenation index was significantly lower. Neutrophil infiltration was also observed in lung tissues with increased thickness of alveolar membrane in ECC group. The ECC model established from right common carotid artery to left femoral vein in our study can successfully induce systemic inflammatory response, and acute lung injury associated with inflammation.

  4. Using a Gravity Model to Predict Circulation in a Public Library System.

    ERIC Educational Resources Information Center

    Ottensmann, John R.

    1995-01-01

    Describes the development of a gravity model based upon principles of spatial interaction to predict the circulation of libraries in the Indianapolis-Marion County Public Library (Indiana). The model effectively predicted past circulation figures and was tested by predicting future library circulation, particularly for a new branch library.…

  5. Application of Local Discretization Methods in the NASA Finite-Volume General Circulation Model

    NASA Technical Reports Server (NTRS)

    Yeh, Kao-San; Lin, Shian-Jiann; Rood, Richard B.

    2002-01-01

    We present the basic ideas of the dynamics system of the finite-volume General Circulation Model developed at NASA Goddard Space Flight Center for climate simulations and other applications in meteorology. The dynamics of this model is designed with emphases on conservative and monotonic transport, where the property of Lagrangian conservation is used to maintain the physical consistency of the computational fluid for long-term simulations. As the model benefits from the noise-free solutions of monotonic finite-volume transport schemes, the property of Lagrangian conservation also partly compensates the accuracy of transport for the diffusion effects due to the treatment of monotonicity. By faithfully maintaining the fundamental laws of physics during the computation, this model is able to achieve sufficient accuracy for the global consistency of climate processes. Because the computing algorithms are based on local memory, this model has the advantage of efficiency in parallel computation with distributed memory. Further research is yet desirable to reduce the diffusion effects of monotonic transport for better accuracy, and to mitigate the limitation due to fast-moving gravity waves for better efficiency.

  6. A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations

    NASA Astrophysics Data System (ADS)

    Cariolle, D.; Teyssèdre, H.

    2007-05-01

    This article describes the validation of a linear parameterization of the ozone photochemistry for use in upper tropospheric and stratospheric studies. The present work extends a previously developed scheme by improving the 2-D model used to derive the coefficients of the parameterization. The chemical reaction rates are updated from a compilation that includes recent laboratory work. Furthermore, the polar ozone destruction due to heterogeneous reactions at the surface of the polar stratospheric clouds is taken into account as a function of the stratospheric temperature and the total chlorine content. Two versions of the parameterization are tested. The first one only requires the solution of a continuity equation for the time evolution of the ozone mixing ratio, the second one uses one additional equation for a cold tracer. The parameterization has been introduced into the chemical transport model MOCAGE. The model is integrated with wind and temperature fields from the ECMWF operational analyses over the period 2000-2004. Overall, the results from the two versions show a very good agreement between the modelled ozone distribution and the Total Ozone Mapping Spectrometer (TOMS) satellite data and the "in-situ" vertical soundings. During the course of the integration the model does not show any drift and the biases are generally small, of the order of 10%. The model also reproduces fairly well the polar ozone variability, notably the formation of "ozone holes" in the Southern Hemisphere with amplitudes and a seasonal evolution that follow the dynamics and time evolution of the polar vortex. The introduction of the cold tracer further improves the model simulation by allowing additional ozone destruction inside air masses exported from the high to the mid-latitudes, and by maintaining low ozone content inside the polar vortex of the Southern Hemisphere over longer periods in spring time. It is concluded that for the study of climate scenarios or the assimilation of

  7. A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations

    NASA Astrophysics Data System (ADS)

    Cariolle, D.; Teyssèdre, H.

    2007-01-01

    This article describes the validation of a linear parameterization of the ozone photochemistry for use in upper tropospheric and stratospheric studies. The present work extends a previously developed scheme by improving the 2D model used to derive the coefficients of the parameterization. The chemical reaction rates are updated from a compilation that includes recent laboratory works. Furthermore, the polar ozone destruction due to heterogeneous reactions at the surface of the polar stratospheric clouds is taken into account as a function of the stratospheric temperature and the total chlorine content. Two versions of the parameterization are tested. The first one only requires the resolution of a continuity equation for the time evolution of the ozone mixing ratio, the second one uses one additional equation for a cold tracer. The parameterization has been introduced into the chemical transport model MOCAGE. The model is integrated with wind and temperature fields from the ECMWF operational analyses over the period 2000-2004. Overall, the results show a very good agreement between the modelled ozone distribution and the Total Ozone Mapping Spectrometer (TOMS) satellite data and the "in-situ" vertical soundings. During the course of the integration the model does not show any drift and the biases are generally small. The model also reproduces fairly well the polar ozone variability, with notably the formation of "ozone holes" in the southern hemisphere with amplitudes and seasonal evolutions that follow the dynamics and time evolution of the polar vortex. The introduction of the cold tracer further improves the model simulation by allowing additional ozone destruction inside air masses exported from the high to the mid-latitudes, and by maintaining low ozone contents inside the polar vortex of the southern hemisphere over longer periods in spring time. It is concluded that for the study of climatic scenarios or the assimilation of ozone data, the present

  8. Evaluating the Credibility of Transport Processes in Simulations of Ozone Recovery using the Global Modeling Initiative Three-dimensional Model

    NASA Technical Reports Server (NTRS)

    Strahan, Susan E.; Douglass, Anne R.

    2004-01-01

    The Global Modeling Initiative (GMI) has integrated two 36-year simulations of an ozone recovery scenario with an offline chemistry and tra nsport model using two different meteorological inputs. Physically ba sed diagnostics, derived from satellite and aircraft data sets, are d escribed and then used to evaluate the realism of temperature and transport processes in the simulations. Processes evaluated include barri er formation in the subtropics and polar regions, and extratropical w ave-driven transport. Some diagnostics are especially relevant to sim ulation of lower stratospheric ozone, but most are applicable to any stratospheric simulation. The global temperature evaluation, which is relevant to gas phase chemical reactions, showed that both sets of me teorological fields have near climatological values at all latitudes and seasons at 30 hPa and below. Both simulations showed weakness in upper stratospheric wave driving. The simulation using input from a g eneral circulation model (GMI(GCM)) showed a very good residual circulation in the tropics and Northern Hemisphere. The simulation with inp ut from a data assimilation system (GMI(DAS)) performed better in the midlatitudes than it did at high latitudes. Neither simulation forms a realistic barrier at the vortex edge, leading to uncertainty in the fate of ozone-depleted vortex air. Overall, tracer transport in the offline GML(GCM) has greater fidelity throughout the stratosphere tha n it does in the GMI(DAS)

  9. Stable water isotope behavior during the last glacial maximum: A general circulation model analysis

    NASA Technical Reports Server (NTRS)

    Jouzel, Jean; Koster, Randal D.; Suozzo, Robert J.; Russell, Gary L.

    1994-01-01

    Global water isotope geochemisty during the last glacial maximum (LGM) is simulated with an 8 deg x 10 deg atmospheric general circulation model (GCM). The simulation results suggest that the spatial delta O-18/temperature relationships observed for the present day and LGM climates are very similar. Furthermore, the temporal delta O-18/temperature relationship is similar to the present-day spatial relationship in regions for which the LGM/present-day temperature change is significant. This helps justify the standard practice of applying the latter to the interpretation of paleodata, despite the possible influence of other factors, such as changes in the evaportive sources of precipitation or in the seasonality of precipitation. The model suggests, for example, that temperature shifts inferred from ice core data may differ from the true shifts by only about 30%.

  10. Understanding the past to interpret the future: Comparison of simulated groundwater recharge in the upper Colorado River basin (USA) using observed and general-circulation-model historical climate data

    USGS Publications Warehouse

    Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-01-01

    In evaluating potential impacts of climate change on water resources, water managers seek to understand how future conditions may differ from the recent past. Studies of climate impacts on groundwater recharge often compare simulated recharge from future and historical time periods on an average monthly or overall average annual basis, or compare average recharge from future decades to that from a single recent decade. Baseline historical recharge estimates, which are compared with future conditions, are often from simulations using observed historical climate data. Comparison of average monthly results, average annual results, or even averaging over selected historical decades, may mask the true variability in historical results and lead to misinterpretation of future conditions. Comparison of future recharge results simulated using general circulation model (GCM) climate data to recharge results simulated using actual historical climate data may also result in an incomplete understanding of the likelihood of future changes. In this study, groundwater recharge is estimated in the upper Colorado River basin, USA, using a distributed-parameter soil-water balance groundwater recharge model for the period 1951–2010. Recharge simulations are performed using precipitation, maximum temperature, and minimum temperature data from observed climate data and from 97 CMIP5 (Coupled Model Intercomparison Project, phase 5) projections. Results indicate that average monthly and average annual simulated recharge are similar using observed and GCM climate data. However, 10-year moving-average recharge results show substantial differences between observed and simulated climate data, particularly during period 1970–2000, with much greater variability seen for results using observed climate data.

  11. Impacts of Large-Scale Circulation on Convection: A 2-D Cloud Resolving Model Study

    NASA Technical Reports Server (NTRS)

    Li, X; Sui, C.-H.; Lau, K.-M.

    1999-01-01

    Studies of impacts of large-scale circulation on convection, and the roles of convection in heat and water balances over tropical region are fundamentally important for understanding global climate changes. Heat and water budgets over warm pool (SST=29.5 C) and cold pool (SST=26 C) were analyzed based on simulations of the two-dimensional cloud resolving model. Here the sensitivity of heat and water budgets to different sizes of warm and cold pools is examined.

  12. Characterizing observed circulation patterns within a bay using HF radar and numerical model simulations

    NASA Astrophysics Data System (ADS)

    O'Donncha, Fearghal; Hartnett, Michael; Nash, Stephen; Ren, Lei; Ragnoli, Emanuele

    2015-02-01

    In this study, High Frequency Radar (HFR), observations in conjunction with numerical model simulations investigate surface flow dynamics in a tidally-active, wind-driven bay; Galway Bay situated on the West coast of Ireland. Comparisons against ADCP sensor data permit an independent assessment of HFR and model performance, respectively. Results show root-mean-square (rms) differences in the range 10 - 12cm/s while model rms equalled 12 - 14cm/s. Subsequent analysis focus on a detailed comparison of HFR and model output. Harmonic analysis decompose both sets of surface currents based on distinct flow process, enabling a correlation analysis between the resultant output and dominant forcing parameters. Comparisons of barotropic model simulations and HFR tidal signal demonstrate consistently high agreement, particularly of the dominant M2 tidal signal. Analysis of residual flows demonstrate considerably poorer agreement, with the model failing to replicate complex flows. A number of hypotheses explaining this discrepancy are discussed, namely: discrepancies between regional-scale, coastal-ocean models and globally-influenced bay-scale dynamics; model uncertainties arising from highly-variable wind-driven flows across alarge body of water forced by point measurements of wind vectors; and the high dependence of model simulations on empirical wind-stress coefficients. The research demonstrates that an advanced, widely-used hydro-environmental model does not accurately reproduce aspects of surface flow processes, particularly with regards wind forcing. Considering the significance of surface boundary conditions in both coastal and open ocean dynamics, the viability of using a systematic analysis of results to improve model predictions is discussed.

  13. Computer simulation of stochastic processes through model-sampling (Monte Carlo) techniques.

    PubMed

    Sheppard, C W.

    1969-03-01

    A simple Monte Carlo simulation program is outlined which can be used for the investigation of random-walk problems, for example in diffusion, or the movement of tracers in the blood circulation. The results given by the simulation are compared with those predicted by well-established theory, and it is shown how the model can be expanded to deal with drift, and with reflexion from or adsorption at a boundary.

  14. The Pattern and Dynamics of the Meridional Overturning Circulation in the Upper Ocean

    DTIC Science & Technology

    2008-09-01

    Atlantic . Figure 4a shows that the center of meridional overturning circulation occurs at a level of about one kilometer. Circulation is weak at...maintenance of the meridional overturning circulation in the Atlantic Ocean. 5. Global Simulation The most exciting experiment would be to fully model the...mechanisms responsible for the strength and maintenance of the meridional overturning circulation in the Atlantic Ocean are not

  15. Mesoscale Numerical Simulations of the IAS Circulation

    NASA Astrophysics Data System (ADS)

    Mooers, C. N.; Ko, D.

    2008-05-01

    Real-time nowcasts and forecasts of the IAS circulation have been made for several years with mesoscale resolution using the Navy Coastal Ocean Model (NCOM) implemented for the IAS. It is commonly called IASNFS and is driven by the lower resolution Global NCOM on the open boundaries, synoptic atmospheric forcing obtained from the Navy Global Atmospheric Prediction System (NOGAPS), and assimilated satellite-derived sea surface height anomalies and sea surface temperature. Here, examples of the model output are demonstrated; e.g., Gulf of Mexico Loop Current eddy shedding events and the meandering Caribbean Current jet and associated eddies. Overall, IASNFS is ready for further analysis, application to a variety of studies, and downscaling to even higher resolution shelf models. Its output fields are available online through NOAA's National Coastal Data Development Center (NCDDC), located at the Stennis Space Center.

  16. Regional model simulations of New Zealand climate

    NASA Astrophysics Data System (ADS)

    Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.

    1998-03-01

    Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.

  17. Numerical Temperature And Fluid-Flow Modelling For The Topographic Effects On Hydrothermal Circulation; A case study in Lucy Strike Vent Field

    NASA Astrophysics Data System (ADS)

    Erçetin, Engin; Düşünür Doǧan, Doǧa

    2017-04-01

    The aim of the study is to present a numerical temperature and fluid-flow modelling for the topographic effects on hydrothermal circulation. Bathymetry can create a major disturbance on fluid flow pattern. ANSYS Fluent Computational fluid dynamics software is used for simulations. Coupled fluid flow and temperature quations are solved using a 2-Dimensional control volume finite difference approach. Darcy's law is assumed to hold, the fluid is considered to be anormal Boussinesq incompressible fluid neglecting inertial effects. Several topographic models were simulated and both temperature and fluid flow calculations obtained for this study. The preliminary simulations examine the effect of a ingle bathymetric high on a single plume and the secondary study of simulations investigates the effect of multiple bathymetric highs on multiple plume. The simulations were also performed for the slow spreading Lucky Strike segment along the Mid-Atlantic Ridge (MAR), one of the best studied regions along the MAR, where a 3.4 km deep magma chamber extending 6 km along-axis is found at its center. The Lucky Strike segment displays a transitional morphology between that of the FAMOUS - North FAMOUS segments, which are characterized by well-developed axial valleys typical of slow-spreading segments, and that of the Menez Gwen segment, characterized by an axial high at the segment center. Lucky Strike Segment hosts a central volcano and active vent field located at the segment center and thus constitutes an excellent case study to simulate the effects of bathymetry on fluid flow. Results demonstrate that bathymetric relief has an important influence on hydrothermal flow. Subsurface pressure alterations can be formed by bathymetric highs, for this reason, bathymetric relief ought to be considered while simulating hydrothermal circulation systems. Results of this study suggest the dominant effect of bathymetric highs on fluid flow pattern and Darcy velocities will be presented

  18. Interannual Tropical Rainfall Variability in General Circulation Model Simulations Associated with the Atmospheric Model Intercomparison Project.

    NASA Astrophysics Data System (ADS)

    Sperber, K. R.; Palmer, T. N.

    1996-11-01

    The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979-88 as part of the Atmospheric Model Intercomparison Project (AMIP). The interannual variations of Nordeste rainfall are the most readily captured, owing to the intimate link with Pacific and Atlantic sea surface temperatures. The precipitation variations over India and the Sahel are less well simulated. Additionally, an Indian monsoon wind shear index was calculated for each model. Evaluation of the interannual variability of a wind shear index over the summer monsoon region indicates that the models exhibit greater fidelity in capturing the large-scale dynamic fluctuations than the regional-scale rainfall variations. A rainfall/SST teleconnection quality control was used to objectively stratify model performance. Skill scores improved for those models that qualitatively simulated the observed rainfall/El Niño- Southern Oscillation SST correlation pattern. This subset of models also had a rainfall climatology that was in better agreement with observations, indicating a link between systematic model error and the ability to simulate interannual variations.A suite of six European Centre for Medium-Range Weather Forecasts (ECMWF) AMIP runs (differing only in their initial conditions) have also been examined. As observed, all-India rainfall was enhanced in 1988 relative to 1987 in each of these realizations. All-India rainfall variability during other years showed little or no predictability, possibly due to internal chaotic dynamics associated with intraseasonal monsoon fluctuations and/or unpredictable land surface process interactions. The interannual variations of Nordeste rainfall were best represented. The State University of New York at Albany/National Center for Atmospheric Research Genesis model was run in five initial condition realizations. In this model, the Nordeste rainfall

  19. Physiologically Based Pharmacokinetic Model for Long-Circulating Inorganic Nanoparticles.

    PubMed

    Liang, Xiaowen; Wang, Haolu; Grice, Jeffrey E; Li, Li; Liu, Xin; Xu, Zhi Ping; Roberts, Michael S

    2016-02-10

    A physiologically based pharmacokinetic model was developed for accurately characterizing and predicting the in vivo fate of long-circulating inorganic nanoparticles (NPs). This model is built based on direct visualization of NP disposition details at the organ and cellular level. It was validated with multiple data sets, indicating robust inter-route and interspecies predictive capability. We suggest that the biodistribution of long-circulating inorganic NPs is determined by the uptake and release of NPs by phagocytic cells in target organs.

  20. Variability simulations with a steady, linearized primitive equations model

    NASA Technical Reports Server (NTRS)

    Kinter, J. L., III; Nigam, S.

    1985-01-01

    Solutions of the steady, primitive equations on a sphere, linearized about a zonally symmetric basic state are computed for the purpose of simulating monthly mean variability in the troposphere. The basic states are observed, winter monthly mean, zonal means of zontal and meridional velocities, temperatures and surface pressures computed from the 15 year NMC time series. A least squares fit to a series of Legendre polynomials is used to compute the basic states between 20 H and the equator, and the hemispheres are assumed symmetric. The model is spectral in the zonal direction, and centered differences are employed in the meridional and vertical directions. Since the model is steady and linear, the solution is obtained by inversion of a block, pente-diagonal matrix. The model simulates the climatology of the GFDL nine level, spectral general circulation model quite closely, particularly in middle latitudes above the boundary layer. This experiment is an extension of that simulation to examine variability of the steady, linear solution.

  1. Modeling of circulating fluised beds for post-combustion carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.; Shadle, L.; Miller, D.

    2011-01-01

    A compartment based model for a circulating fluidized bed reactor has been developed based on experimental observations of riser hydrodynamics. The model uses a cluster based approach to describe the two-phase behavior of circulating fluidized beds. Fundamental mass balance equations have been derived to describe the movement of both gas and solids though the system. Additional work is being performed to develop the correlations required to describe the hydrodynamics of the system. Initial testing of the model with experimental data shows promising results and highlights the importance of including end effects within the model.

  2. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

    NASA Astrophysics Data System (ADS)

    Liu, Zedong; Wan, Xiuquan

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

  3. Empirical justification of the elementary model of money circulation

    NASA Astrophysics Data System (ADS)

    Schinckus, Christophe; Altukhov, Yurii A.; Pokrovskii, Vladimir N.

    2018-03-01

    This paper proposes an elementary model describing the money circulation for a system, composed by a production system, the government, a central bank, commercial banks and their customers. A set of equations for the system determines the main features of interaction between the production and the money circulation. It is shown, that the money system can evolve independently of the evolution of production. The model can be applied to any national economy but we will illustrate our claim in the context of the Russian monetary system.

  4. Development of a hydraulic model of the human systemic circulation

    NASA Technical Reports Server (NTRS)

    Sharp, M. K.; Dharmalingham, R. K.

    1999-01-01

    Physical and numeric models of the human circulation are constructed for a number of objectives, including studies and training in physiologic control, interpretation of clinical observations, and testing of prosthetic cardiovascular devices. For many of these purposes it is important to quantitatively validate the dynamic response of the models in terms of the input impedance (Z = oscillatory pressure/oscillatory flow). To address this need, the authors developed an improved physical model. Using a computer study, the authors first identified the configuration of lumped parameter elements in a model of the systemic circulation; the result was a good match with human aortic input impedance with a minimum number of elements. Design, construction, and testing of a hydraulic model analogous to the computer model followed. Numeric results showed that a three element model with two resistors and one compliance produced reasonable matching without undue complication. The subsequent analogous hydraulic model included adjustable resistors incorporating a sliding plate to vary the flow area through a porous material and an adjustable compliance consisting of a variable-volume air chamber. The response of the hydraulic model compared favorably with other circulation models.

  5. The Response of a Spectral General Circulation Model to Refinements in Radiative Processes.

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Pitcher, Eric J.; Malone, Robert C.; Blackmon, Maurice L.

    1983-03-01

    We present here results and analyses of a series of numerical experiments performed with a spectral general circulation model (GCM). The purpose of the GCM experiments is to examine the role of radiation/cloud processes in the general circulation of the troposphere and stratosphere. The experiments were primarily motivated by the significant improvements in the GCM zonal mean simulation as refinements were made in the model treatment of clear-sky radiation and cloud-radiative interactions. The GCM with the improved cloud/radiation model is able to reproduce many observed features, such as: a clear separation between the wintertime tropospheric jet and the polar night jet; winter polar stratospheric temperatures of about 200 K; interhemispheric and seasonal asymmetries in the zonal winds.In a set of sensitivity experiments, we have stripped the cloud/radiation model of its improvements, the result being a significant degradation of the zonal mean simulations by the GCM. Through these experiments we have been able to identify the processes that are responsible for the improved GCM simulations: (i) careful treatment of the upper boundary condition for O3 solar heating; (ii) temperature dependence of longwave cooling by CO2 15 m bands., (iii) vertical distribution of H2O that minimizes the lower stratospheric H2O longwave cooling; (iv) dependence of cirrus emissivity on cloud liquid water content.Comparison of the GCM simulations, with and without the cloud/radiation improvements, reveals the nature and magnitude of the following radiative-dynamical interactions: (i) the temperature decrease (due to errors in radiative heating) within the winter polar stratosphere is much larger than can be accounted for by purely radiative adjustment; (ii) the role of dynamics in maintaining the winter polar stratosphere thermal structure is greatly diminished in the GCM with the degraded treatment of radiation; (iii) the radiative and radiative-dynamical response times of the

  6. Climate Simulations based on a different-grid nested and coupled model

    NASA Astrophysics Data System (ADS)

    Li, Dan; Ji, Jinjun; Li, Yinpeng

    2002-05-01

    An atmosphere-vegetation interaction model (A VIM) has been coupled with a nine-layer General Cir-culation Model (GCM) of Institute of Atmospheic Physics/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (IAP/LASG), which is rhomboidally truncated at zonal wave number 15, to simulate global climatic mean states. A VIM is a model having inter-feedback between land surface processes and eco-physiological processes on land. As the first step to couple land with atmosphere completely, the physiological processes are fixed and only the physical part (generally named the SVAT (soil-vegetation-atmosphere-transfer scheme) model) of AVIM is nested into IAP/LASG L9R15 GCM. The ocean part of GCM is prescribed and its monthly sea surface temperature (SST) is the climatic mean value. With respect to the low resolution of GCM, i.e., each grid cell having lon-gitude 7.5° and latitude 4.5°, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere. The coupling model has been integrated for 15 years and its last ten-year mean of outputs was chosen for analysis. Compared with observed data and NCEP reanalysis, the coupled model simulates the main characteris-tics of global atmospheric circulation and the fields of temperature and moisture. In particular, the simu-lated precipitation and surface air temperature have sound results. The work creates a solid base on coupling climate models with the biosphere.

  7. Regional climates in the GISS general circulation model: Surface air temperature

    NASA Technical Reports Server (NTRS)

    Hewitson, Bruce

    1994-01-01

    One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.

  8. Heinrich events modeled in transient glacial simulations

    NASA Astrophysics Data System (ADS)

    Ziemen, Florian; Kapsch, Marie; Mikolajewicz, Uwe

    2017-04-01

    Heinrich events are among the most prominent events of climate variability recorded in proxies across the northern hemisphere. They are the archetype of ice sheet — climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under debate, and their climatic consequences are far from being fully understood. We address open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability. The framework consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global AOVGCM ECHAM5/MPIOM/LPJ. The simulations were performed fully coupled and with transient orbital and greenhouse gas forcing. They span from several millennia before the last glacial maximum into the deglaciation. To make these long simulations feasible, the atmosphere is accelerated by a factor of 10 relative to the other model components using a periodical-synchronous coupling technique. To disentangle effects of the Heinrich events and the deglaciation, we focus on the events occurring before the deglaciation. The modeled Heinrich events show a peak ice discharge of about 0.05 Sv and raise the sea level by 2.3 m on average. The resulting surface water freshening reduces the Atlantic meridional overturning circulation and ocean heat release. The reduction in ocean heat release causes a sub-surface warming and decreases the air temperature and precipitation regionally and downstream into Eurasia. The surface elevation decrease of the ice sheet enhances moisture transport onto the ice sheet and thus increases precipitation over the Hudson Bay area, thereby accelerating the recovery after an event.

  9. Understanding variability of the Southern Ocean overturning circulation in CORE-II models

    NASA Astrophysics Data System (ADS)

    Downes, S. M.; Spence, P.; Hogg, A. M.

    2018-03-01

    The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.

  10. Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models

    NASA Technical Reports Server (NTRS)

    Xu, L.

    1994-01-01

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.

  11. Hadley circulation extent and strength in a wide range of simulated climates

    NASA Astrophysics Data System (ADS)

    D'Agostino, Roberta; Adam, Ori; Lionello, Piero; Schneider, Tapio

    2017-04-01

    Understanding the Hadley circulation (HC) dynamics is crucial because its changes affect the seasonal migration of the ITCZ, the extent of subtropical arid regions and the strength of the monsoons. Despite decades of study, the factors controlling its strength and extent have remained unclear. Here we analyse how HC strength and extent change over a wide range of climate conditions from the Last Glacial Maximum to future projections. The large climate change between paleoclimate simulations and future scenarios offers the chance to analyse robust HC changes and their link to large-scale factors. The HC shrinks and strengthens in the coldest simulation relative to the warmest. A progressive poleward shift of its edges is evident as the climate warms (at a rate of 0.35°lat./K in each hemisphere). The HC extent and strength both depend on the isentropic slope, which in turn is related to the meridional temperature gradient, subtropical static stability and tropopause height. In multiple robust regression analysis using these as predictors, we find that the tropical tropopause height does not add relevant information to the model beyond surface temperature. Therefore, primarily the static stability and secondarily the meridional temperature contrast together account for the bulk of the almost the total HC variance. However, the regressions leave some of the northern HC edge and southern HC strength variance unexplained. The effectiveness of this analysis is limited by the correlation among the predictors and their relationship with mean temperature. In fact, for all simulations, the tropical temperature explains well the variations of HC except its southern hemisphere intensity. Hence, it can be used as the sole predictor to diagnose the HC response to greenhouse-induced global warming. How to account for the evolution of the southern HC strength remains unclear, because of the large inter-model spread in this quantity.

  12. Numerical simulations of a transverse indirect circulation and low-level jet in the exit region of an upper-level jet

    NASA Technical Reports Server (NTRS)

    Brill, K. F.; Uccellini, L. W.; Burkhart, R. P.; Warner, T. T.; Anthes, R. A.

    1985-01-01

    A numerical study was performed of a severe weather event (tornado) which occurred on May 10, 1973 in the Ohio region. The situation was modeled with a primitive equation mesoscale dynamic formulation. Account was taken of precipitation, the planetary boundary layer parameters as bulk quantities, the vertical pressure gradient, and lateral boundary conditions based on radiosonde data. Two 12-hr simulations, adiabatic and nondivergent, respectively, were analyzed for relationships between upper and lower level jets. In the adiabatic formulation, a transverse circulation with a low level jet formed at the exit region of the upper level jet. The nondivergent situation led to similar, but weaker, phenomena. Both forms suggest that indirect circulation in the exit zone of an upper level jet is strongly influenced by the initial structure of the jet.

  13. Streamflow changes in the Sierra Nevada, California, simulated using a statistically downscaled general circulation model scenario of climate change

    USGS Publications Warehouse

    Wilby, Robert L.; Dettinger, Michael D.

    2000-01-01

    Simulations of future climate using general circulation models (GCMs) suggest that rising concentrations of greenhouse gases may have significant consequences for the global climate. Of less certainty is the extent to which regional scale (i.e., sub-GCM grid) environmental processes will be affected. In this chapter, a range of downscaling techniques are critiqued. Then a relatively simple (yet robust) statistical downscaling technique and its use in the modelling of future runoff scenarios for three river basins in the Sierra Nevada, California, is described. This region was selected because GCM experiments driven by combined greenhouse-gas and sulphate-aerosol forcings consistently show major changes in the hydro-climate of the southwest United States by the end of the 21st century. The regression-based downscaling method was used to simulate daily rainfall and temperature series for streamflow modelling in three Californian river basins under current-and future-climate conditions. The downscaling involved just three predictor variables (specific humidity, zonal velocity component of airflow, and 500 hPa geopotential heights) supplied by the U.K. Meteorological Office couple ocean-atmosphere model (HadCM2) for the grid point nearest the target basins. When evaluated using independent data, the model showed reasonable skill at reproducing observed area-average precipitation, temperature, and concomitant streamflow variations. Overall, the downscaled data resulted in slight underestimates of mean annual streamflow due to underestimates of precipitation in spring and positive temperature biases in winter. Differences in the skill of simulated streamflows amongst the three basins were attributed to the smoothing effects of snowpack on streamflow responses to climate forcing. The Merced and American River basins drain the western, windward slope of the Sierra Nevada and are snowmelt dominated, whereas the Carson River drains the eastern, leeward slope and is a mix of

  14. Laser anemometry measurements of natural circulation flow in a scale model PWR reactor system. [Pressurized Water Reactor

    NASA Technical Reports Server (NTRS)

    Kadambi, J. R.; Schneider, S. J.; Stewart, W. A.

    1986-01-01

    The natural circulation of a single phase fluid in a scale model of a pressurized water reactor system during a postulated grade core accident is analyzed. The fluids utilized were water and SF6. The design of the reactor model and the similitude requirements are described. Four LDA tests were conducted: water with 28 kW of heat in the simulated core, with and without the participation of simulated steam generators; water with 28 kW of heat in the simulated core, with the participation of simulated steam generators and with cold upflow of 12 lbm/min from the lower plenum; and SF6 with 0.9 kW of heat in the simulated core and without the participation of the simulated steam generators. For the water tests, the velocity of the water in the center of the core increases with vertical height and continues to increase in the upper plenum. For SF6, it is observed that the velocities are an order of magnitude higher than those of water; however, the velocity patterns are similar.

  15. A Simple Diagnostic Model of the Circulation Beneath an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Jenkins, Adrian; Nøst, Ole Anders

    2017-04-01

    The ocean circulation beneath ice shelves supplies the heat required to melt ice and exports the resulting freshwater. It therefore plays a key role in determining the mass balance and geometry of the ice shelves and hence the restraint they impose on the outflow of grounded ice from the interior of the ice sheet. Despite this critical role in regulating the ice sheet's contribution to eustatic sea level, an understanding of some of the most basic features of the circulation is lacking. The conventional paradigm is one of a buoyancy-forced overturning circulation, with inflow of warm, salty water along the seabed and outflow of cooled and freshened waters along the ice base. However, most sub-ice-shelf cavities are broad relative to the internal Rossby radius, so a horizontal circulation accompanies the overturning. Primitive equation ocean models applied to idealised geometries produce cyclonic gyres of comparable magnitude, but in the absence of a theoretical understanding of what controls the gyre strength, those solutions can only be validated against each other. Furthermore, we have no understanding of how the gyre circulation should change given more complex geometries. To begin to address this gap in our theoretical understanding we present a simple, linear, steady-state model for the circulation beneath an ice shelf. Our approach in analogous to that of Stommel's classic analysis of the wind-driven gyres, but is complicated by the fact that his most basic assumption of homogeneity is inappropriate. The only forcing on the flow beneath an ice shelf arises because of the horizontal density gradients set up by melting. We thus arrive at a diagnostic model which gives us the depth-dependent horizontal circulation that results from an imposed geometry and density distribution. We describe the development of the model and present some preliminary solutions for the simplest cavity geometries.

  16. Hurricane Forecasting with the High-resolution NASA Finite-volume General Circulation Model

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Reale, O.; Shen, B.-W.; Lin, S.-J.; Chern, J.-D.; Putman, W.; Lee, T.; Yeh, K.-S.; Bosilovich, M.; Radakovich, J.

    2004-01-01

    A high-resolution finite-volume General Circulation Model (fvGCM), resulting from a development effort of more than ten years, is now being run operationally at the NASA Goddard Space Flight Center and Ames Research Center. The model is based on a finite-volume dynamical core with terrain-following Lagrangian control-volume discretization and performs efficiently on massive parallel architectures. The computational efficiency allows simulations at a resolution of a quarter of a degree, which is double the resolution currently adopted by most global models in operational weather centers. Such fine global resolution brings us closer to overcoming a fundamental barrier in global atmospheric modeling for both weather and climate, because tropical cyclones and even tropical convective clusters can be more realistically represented. In this work, preliminary results of the fvGCM are shown. Fifteen simulations of four Atlantic tropical cyclones in 2002 and 2004 are chosen because of strong and varied difficulties presented to numerical weather forecasting. It is shown that the fvGCM, run at the resolution of a quarter of a degree, can produce very good forecasts of these tropical systems, adequately resolving problems like erratic track, abrupt recurvature, intense extratropical transition, multiple landfall and reintensification, and interaction among vortices.

  17. Global environmental effects of impact-generated aerosols: Results from a general circulation model

    NASA Technical Reports Server (NTRS)

    Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.

    1989-01-01

    Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to the three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans, not included in the one-dimensional model, substantially mitigates land surface cooling. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stages of cooling than in the one-dimensional model study. GCM-simulated climatic changes in the scenario of asteroid/comet winter are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though of course less severe, climatic changes, according to the GCM. An asteroid or comet impact would not lead to anything approaching complete global freezing, but quite reasonable to assume that impacts would dramatically alter the climate in at least a patchy sense.

  18. Subtle exchange model of flow depended on the blood cell shape to enhance the micro-circulation in capillary

    NASA Astrophysics Data System (ADS)

    Chan, Iatneng

    2012-02-01

    In general the exchange of gases or other material in capillary system is conceptualized by the diffusion effect. But in this model, we investigate a micro-flow pattern by simulation and computation on a micro-exchange model in which the blood cell is a considered factor, especially on its shape. It shows that the cell benefits the circulation while it is moving in the capillary. In the study, the flow detail near the cell surface is mathematically analyzed, such that the Navier-Stokes equations are applied and the viscous factor is also briefly considered. For having a driven force to the motion of micro-circulation, a breathing mode is suggested to approximately compute on the flow rate in the blood capillary during the transfer of cell. The rate is also used to estimate the enhancement to the circulation in additional to the outcome of diffusion. Moreover in the research, the shape change of capillary wall under pressure influence is another element in the beginning calculation for the effect in the assistance to cell motion.

  19. El Nino-southern oscillation simulated in an MRI atmosphere-ocean coupled general circulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, T.; Tokioka, T.; Endoh, M.

    A coupled atmosphere-ocean general circulation model (GCM) was time integrated for 30 years to study interannual variability in the tropics. The atmospheric component is a global GCM with 5 levels in the vertical and 4[degrees]latitude X 5[degrees] longitude grids in the horizontal including standard physical processes (e.g., interactive clouds). The oceanic component is a GCM for the Pacific with 19 levels in the vertical and 1[degrees]x 2.5[degrees] grids in the horizontal including seasonal varying solar radiation as forcing. The model succeeded in reproducing interannual variations that resemble the El Nino-Southern Oscillation (ENSO) with realistic seasonal variations in the atmospheric andmore » oceanic fields. The model ENSO cycle has a time scale of approximately 5 years and the model El Nino (warm) events are locked roughly in phase to the seasonal cycle. The cold events, however, are less evident in comparison with the El Nino events. The time scale of the model ENSO cycle is determined by propagation time of signals from the central-eastern Pacific to the western Pacific and back to the eastern Pacific. Seasonal timing is also important in the ENSO time scale: wind anomalies in the central-eastern Pacific occur in summer and the atmosphere ocean coupling in the western Pacific operates efficiently in the first half of the year.« less

  20. High resolution interpolation of climate scenarios for the conterminous USA and Alaska derived from general circulation model simulations

    Treesearch

    Linda A. Joyce; David T. Price; Daniel W. McKenney; R. Martin Siltanen; Pia Papadopol; Kevin Lawrence; David P. Coulson

    2011-01-01

    Projections of future climate were selected for four well-established general circulation models (GCM) forced by each of three greenhouse gas (GHG) emissions scenarios, namely A2, A1B, and B1 from the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES). Monthly data for the period 1961-2100 were downloaded mainly from the web...

  1. Climate simulations and projections with a super-parameterized climate model

    DOE PAGES

    Stan, Cristiana; Xu, Li

    2014-07-01

    The mean climate and its variability are analyzed in a suite of numerical experiments with a fully coupled general circulation model in which subgrid-scale moist convection is explicitly represented through embedded 2D cloud-system resolving models. Control simulations forced by the present day, fixed atmospheric carbon dioxide concentration are conducted using two horizontal resolutions and validated against observations and reanalyses. The mean state simulated by the higher resolution configuration has smaller biases. Climate variability also shows some sensitivity to resolution but not as uniform as in the case of mean state. The interannual and seasonal variability are better represented in themore » simulation at lower resolution whereas the subseasonal variability is more accurate in the higher resolution simulation. The equilibrium climate sensitivity of the model is estimated from a simulation forced by an abrupt quadrupling of the atmospheric carbon dioxide concentration. The equilibrium climate sensitivity temperature of the model is 2.77 °C, and this value is slightly smaller than the mean value (3.37 °C) of contemporary models using conventional representation of cloud processes. As a result, the climate change simulation forced by the representative concentration pathway 8.5 scenario projects an increase in the frequency of severe droughts over most of the North America.« less

  2. Modeling the Dynamics of the Atmospheric Boundary Layer Over the Antarctic Plateau With a General Circulation Model

    NASA Astrophysics Data System (ADS)

    Vignon, Etienne; Hourdin, Frédéric; Genthon, Christophe; Van de Wiel, Bas J. H.; Gallée, Hubert; Madeleine, Jean-Baptiste; Beaumet, Julien

    2018-01-01

    Observations evidence extremely stable boundary layers (SBL) over the Antarctic Plateau and sharp regime transitions between weakly and very stable conditions. Representing such features is a challenge for climate models. This study assesses the modeling of the dynamics of the boundary layer over the Antarctic Plateau in the LMDZ general circulation model. It uses 1 year simulations with a stretched-grid over Dome C. The model is nudged with reanalyses outside of the Dome C region such as simulations can be directly compared to in situ observations. We underline the critical role of the downward longwave radiation for modeling the surface temperature. LMDZ reasonably represents the near-surface seasonal profiles of wind and temperature but strong temperature inversions are degraded by enhanced turbulent mixing formulations. Unlike ERA-Interim reanalyses, LMDZ reproduces two SBL regimes and the regime transition, with a sudden increase in the near-surface inversion with decreasing wind speed. The sharpness of the transition depends on the stability function used for calculating the surface drag coefficient. Moreover, using a refined vertical grid leads to a better reversed "S-shaped" relationship between the inversion and the wind. Sudden warming events associated to synoptic advections of warm and moist air are also well reproduced. Near-surface supersaturation with respect to ice is not allowed in LMDZ but the impact on the SBL structure is moderate. Finally, climate simulations with the free model show that the recommended configuration leads to stronger inversions and winds over the ice-sheet. However, the near-surface wind remains underestimated over the slopes of East-Antarctica.

  3. Estimation and Validation of \\delta18O Global Distribution with Rayleigh-type two Dimensional Isotope Circulation Model

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.; Oki, T.; Ohte, N.; Kanae, S.; Ichiyanagi, K.

    2004-12-01

    A simple water isotope circulation model on a global scale that includes a Rayleigh equation and the use of _grealistic_h external meteorological forcings estimates short-term variability of precipitation 18O. The results are validated by Global Network of Isotopes in Precipitation (GNIP) monthly observations and by daily observations at three sites in Thailand. This good agreement highlights the importance of large scale transport and mixing of vapor masses as a control factor for spatial and temporal variability of precipitation isotopes, rather than in-cloud micro processes. It also indicates the usefulness of the model and the isotopes observation databases for evaluation of two-dimensional atmospheric water circulation fields in forcing datasets. In this regard, two offline simulations for 1978-1993 with major reanalyses, i.e. NCEP and ERA15, were implemented, and the results show that, over Europe ERA15 better matched observations at both monthly and interannual time scales, mainly owing to better precipitation fields in ERA15, while in the tropics both produced similarly accurate isotopic fields. The isotope analyses diagnose accuracy of two-dimensional water circulation fields in datasets with a particular focus on precipitation processes.

  4. Aerosol in the Upper Troposphere Lower Stratosphere, decadal Simulations of Radiative Forcing using the Chemistry Circulation Model EMAC and MIPAS, GOMOS, IASI and other Satellite Data

    NASA Astrophysics Data System (ADS)

    Bruehl, C.; Schallock, J.; Lelieveld, J.; Bingen, C.; Robert, C. E.; Hoepfner, M.; Clarisse, L.

    2017-12-01

    The atmospheric chemistry - general circulation model EMAC with a modal interactive aerosol module is used to estimate radiative effects of UTLS aerosol for the ENVISAT period 2002 to 2012 in the framework of SPARC/SSIRC. Volcanic SO2 injections by about 230 explosive volcano eruptions are estimated mostly from MIPAS limb observations. For periods of data gaps, injected SO2 is estimated indirectly from extinctions observed by GOMOS. GOMOS extinctions in the UTLS and the seasonal component of radiative forcing can be only reproduced by the model if a comprehensive treatment of desert dust and organic and black carbon is included. Upward transport of particles and gases by the Asian Monsoon appears to contribute importantly. The time series of simulated stratospheric aerosol optical depth and radiative forcing agree with the corresponding quantities derived from different satellite data sets. Comparisons of total aerosol optical depth with IASI show that tropospheric and stratospheric aerosol in the model are consistently and realistically represented.

  5. Some lessons and thoughts from development of an old-fashioned high-resolution atmospheric general circulation model

    NASA Astrophysics Data System (ADS)

    Ohfuchi, Wataru; Enomoto, Takeshi; Yoshioka, Mayumi K.; Takaya, Koutarou

    2014-05-01

    Some high-resolution simulations with a conventional atmospheric general circulation model (AGCM) were conducted right after the first Earth Simulator started operating in the spring of 2002. More simulations with various resolutions followed. The AGCM in this study, AFES (Agcm For the Earth Simulator), is a primitive equation spectral transform method model with a cumulus convection parameterization. In this presentation, some findings from comparisons between high and low-resolution simulations, and some future perspectives of old-fashioned AGCMs will be discussed. One obvious advantage of increasing resolution is capability of resolving the fine structures of topography and atmospheric flow. By increasing resolution from T39 (about 320 km horizontal grid interval) to T79 (160 km), to T159 (80 km) to T319 (40 km), topographic precipitation over Japan becomes increasingly realistic. This feature is necessary for climate and weather studies involving both global and local aspects. In order to resolve submesoscale (about 100 km horizontal scale) atmospheric circulation, about 10-km grid interval is necessary. Comparing T1279 (10 km) simulations with T319 ones, it is found that, for example, the intensity of heavy rain associated with Baiu front and the central pressure of typhoon become more realistic. These realistic submesoscale phenomena should have impact on larger-sale flow through dynamics and thermodynamics. An interesting finding by increasing horizontal resolution of a conventional AGCM is that some cumulus convection parameterizations, such as Arakawa-Schubert type scheme, gradually stop producing precipitation, while some others, such as Emanuel type, do not. With the former, the grid condensation increases with the model resolution to compensate. Which characteristics are more desirable is arguable but it is an important feature one has to consider when developing a high-resolution conventional AGCM. Many may think that conventional primitive equation

  6. Correlations between the modelled potato crop yield and the general atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Sepp, Mait; Saue, Triin

    2012-07-01

    Biology-related indicators do not usually depend on just one meteorological element but on a combination of several weather indicators. One way to establish such integral indicators is to classify the general atmospheric circulation into a small number of circulation types. The aim of present study is to analyse connections between general atmospheric circulation and potato crop yield in Estonia. Meteorologically possible yield (MPY), calculated by the model POMOD, is used to characterise potato crop yield. Data of three meteorological stations and the biological parameters of two potato sorts were applied to the model, and 73 different classifications of atmospheric circulation from catalogue 1.2 of COST 733, domain 05 are used to qualify circulation conditions. Correlation analysis showed that there is at least one circulation type in each of the classifications with at least one statistically significant (99%) correlation with potato crop yield, whether in Kuressaare, Tallinn or Tartu. However, no classifications with circulation types correlating with MPY in all three stations at the same time were revealed. Circulation types inducing a decrease in the potato crop yield are more clearly represented. Clear differences occurred between the observed geographical locations as well as between the seasons: derived from the number of significant circulation types, summer and Kuressaare stand out. Of potato varieties, late 'Anti' is more influenced by circulation. Analysis of MSLP maps of circulation types revealed that the seaside stations (Tallinn, Kuressaare) suffer from negative effects of anti-cyclonic conditions (drought), while Tartu suffers from the cyclonic activity (excessive water).

  7. The circulation in the Levantine Basin as inferred from in-situ data and numerical modelling (1995-2013)

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Radhakrishnan, Hari; Lardner, Robin; Hayes, Daniel; Gertman, Isaac; Menna, Milena; Poulain, Pierre-Marie

    2014-05-01

    The general anticlockwise circulation along the coastline of the Eastern Mediterranean Levantine Basin was first proposed by Nielsen in 1912. Half a century later the schematic of the circulation in the area was enriched with sub-basin flow structures. In late 1980s, a more detailed picture of the circulation composed of eddies, gyres and coastal-offshore jets was defined during the POEM cruises. In 2005, Millot and Taupier-Letage have used SST satellite imagery to argue for a simpler pattern similar to the one proposed almost a century ago. During the last decade, renewed in-situ multi-platforms investigations under the framework of CYBO, CYCLOPS, NEMED, GROOM, HaiSec and PERSEUS projects, as well the development of the operational ocean forecasts and hindcasts in the framework of the MFS, ECOOP, MERSEA and MyOcean projects, have made possible to obtain an improved, higher spatial and temporal resolution picture of the circulation in the area. After some years of scientific disputes on the circulation pattern of the region, the new in-situ data sets and the operational numerical simulations confirm the relevant POEM results. The existing POM-based Cyprus Coastal Ocean Forecasting System (CYCOFOS), downscaling the MyOcean MFS, has been providing operational forecasts in the Eastern Mediterranean Levantine Basin region since early 2002. Recently, Radhakrishnan et al. (2012) parallelized the CYCOFOS hydrodynamic flow model using MPI to improve the accuracy of predictions while reducing the computational time. The parallel flow model is capable of modeling the Eastern Mediterranean Levantine Basin flow at a resolution of 500 m. The model was run in hindcast mode during which the innovations were computed using the historical data collected using gliders and cruises. Then, DD-OceanVar (D'Amore et al., 2013), a data assimilation tool based on 3DVAR developed by CMCC was used to compute the temperature and salinity field corrections. Numerical modeling results after the

  8. Salinity Boundary Conditions and the Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate Global Ocean Models

    DTIC Science & Technology

    2009-06-30

    Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate Global Ocean...2009 4. TITLE AND SUBTITLE Salinity Boundary Conditions and the Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate... Atlantic Meridional Overturning Circulation (AMOC) in global simulations performed with the depth coordinate Parallel Ocean Program (POP) ocean

  9. Evaluation of the Surface Representation of the Greenland Ice Sheet in a General Circulation Model

    NASA Technical Reports Server (NTRS)

    Cullather, Richard I.; Nowicki, Sophie M. J.; Zhao, Bin; Suarez, Max J.

    2014-01-01

    Simulated surface conditions of the Goddard Earth Observing System model, version 5 (GEOS 5) atmospheric general circulation model (AGCM) are examined for the contemporary Greenland Ice Sheet (GrIS). A surface parameterization that explicitly models surface processes including snow compaction, meltwater percolation and refreezing, and surface albedo is found to remedy an erroneous deficit in the annual net surface energy flux and provide an adequate representation of surface mass balance (SMB) in an evaluation using simulations at two spatial resolutions. The simulated 1980-2008 GrIS SMB average is 24.7+/-4.5 cm yr(- 1) water-equivalent (w.e.) at.5 degree model grid spacing, and 18.2+/-3.3 cm yr(- 1) w.e. for 2 degree grid spacing. The spatial variability and seasonal cycle of the simulation compare favorably to recent studies using regional climate models, while results from 2 degree integrations reproduce the primary features of the SMB field. In comparison to historical glaciological observations, the coarser resolution model overestimates accumulation in the southern areas of the GrIS, while the overall SMB is underestimated. These changes relate to the sensitivity of accumulation and melt to the resolution of topography. The GEOS-5 SMB fields contrast with available corresponding atmospheric models simulations from the Coupled Model Intercomparison Project (CMIP5). It is found that only a few of the CMIP5 AGCMs examined provide significant summertime runoff, a dominant feature of the GrIS seasonal cycle. This is a condition that will need to be remedied if potential contributions to future eustatic change from polar ice sheets are to be examined with GCMs.

  10. Recent developments of DMI's operational system: Coupled Ecosystem-Circulation-and SPM model.

    NASA Astrophysics Data System (ADS)

    Murawski, Jens; Tian, Tian; Dobrynin, Mikhail

    2010-05-01

    ECOOP is a pan- European project with 72 partners from 29 countries around the Baltic Sea, the North Sea, the Iberia-Biscay-Ireland region, the Mediterranean Sea and the Black Sea. The project aims at the development and the integration of the different coastal and regional observation and forecasting systems. The Danish Meteorological Institute DMI coordinates the project and is responsible for the Baltic Sea regional forecasting System. Over the project period, the Baltic Sea system was developed from a purely hydro dynamical model (version V1), running operationally since summer 2009, to a coupled model platform (version V2), including model components for the simulation of suspended particles, data assimilation and ecosystem variables. The ECOOP V2 model is currently tested and validated, and will replace the V1 version soon. The coupled biogeochemical- and circulation model runs operationally since November 2009. The daily forecasts are presented at DMI's homepage http:/ocean.dmi.dk. The presentation includes a short description of the ECOOP forecasting system, discusses the model results and shows the outcome of the model validation.

  11. The GEM-Mars general circulation model for Mars: Description and evaluation

    NASA Astrophysics Data System (ADS)

    Neary, L.; Daerden, F.

    2018-01-01

    GEM-Mars is a gridpoint-based three-dimensional general circulation model (GCM) of the Mars atmosphere extending from the surface to approximately 150 km based on the GEM (Global Environmental Multiscale) model, part of the operational weather forecasting and data assimilation system for Canada. After the initial modification for Mars, the model has undergone considerable changes. GEM-Mars is now based on GEM 4.2.0 and many physical parameterizations have been added for Mars-specific atmospheric processes and surface-atmosphere exchange. The model simulates interactive carbon dioxide-, dust-, water- and atmospheric chemistry cycles. Dust and water ice clouds are radiatively active. Size distributed dust is lifted by saltation and dust devils. The model includes 16 chemical species (CO2, Argon, N2, O2, CO, H2O, CH4, O3, O(1D), O, H, H2, OH, HO2, H2O2 and O2(a1Δg)) and has fully interactive photochemistry (15 reactions) and gas-phase chemistry (31 reactions). GEM-Mars provides a good simulation of the water and ozone cycles. A variety of other passive tracers can be included for dedicated studies, such as the emission of methane. The model has both a hydrostatic and non-hydrostatic formulation, and together with a flexible grid definition provides a single platform for simulations on a variety of horizontal scales. The model code is fully parallelized using OMP and MPI. Model results are evaluated by comparison to a selection of observations from instruments on the surface and in orbit, relating to atmosphere and surface temperature and pressure, dust and ice content, polar ice mass, polar argon, and global water and ozone vertical columns. GEM-Mars will play an integral part in the analysis and interpretation of data that is received by the NOMAD spectrometer on the ESA-Roskosmos ExoMars Trace Gas Orbiter. The present paper provides an overview of the current status and capabilities of the GEM-Mars model and lays the foundations for more in-depth studies in support

  12. Understanding the West African Monsoon from the analysis of diabatic heating distributions as simulated by climate models

    NASA Astrophysics Data System (ADS)

    Martin, G. M.; Peyrillé, P.; Roehrig, R.; Rio, C.; Caian, M.; Bellon, G.; Codron, F.; Lafore, J.-P.; Poan, D. E.; Idelkadi, A.

    2017-03-01

    Vertical and horizontal distributions of diabatic heating in the West African monsoon (WAM) region as simulated by four model families are analyzed in order to assess the physical processes that affect the WAM circulation. For each model family, atmosphere-only runs of their CMIP5 configurations are compared with more recent configurations which are on the development path toward CMIP6. The various configurations of these models exhibit significant differences in their heating/moistening profiles, related to the different representation of physical processes such as boundary layer mixing, convection, large-scale condensation and radiative heating/cooling. There are also significant differences in the models' simulation of WAM rainfall patterns and circulations. The weaker the radiative cooling in the Saharan region, the larger the ascent in the rainband and the more intense the monsoon flow, while the latitude of the rainband is related to heating in the Gulf of Guinea region and on the northern side of the Saharan heat low. Overall, this work illustrates the difficulty experienced by current climate models in representing the characteristics of monsoon systems, but also that we can still use them to understand the interactions between local subgrid physical processes and the WAM circulation. Moreover, our conclusions regarding the relationship between errors in the large-scale circulation of the WAM and the structure of the heating by small-scale processes will motivate future studies and model development.

  13. Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations

    NASA Astrophysics Data System (ADS)

    Joshi, Sneh; Kar, Sarat C.

    2018-02-01

    Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.

  14. Non-hydrostatic general circulation model of the Venus atmosphere

    NASA Astrophysics Data System (ADS)

    Rodin, Alexander V.; Mingalev, Igor; Orlov, Konstantin; Ignatiev, Nikolay

    We present the first non-hydrostatic global circulation model of the Venus atmosphere based on the complete set of gas dynamics equations. The model employs a spatially uniform triangular mesh that allows to avoid artificial damping of the dynamical processes in the polar regions, with altitude as a vertical coordinate. Energy conversion from the solar flux into atmospheric motion is described via explicitly specified heating and cooling rates or, alternatively, with help of the radiation block based on comprehensive treatment of the Venus atmosphere spectroscopy, including line mixing effects in CO2 far wing absorption. Momentum equations are integrated using the semi-Lagrangian explicit scheme that provides high accuracy of mass and energy conservation. Due to high vertical grid resolution required by gas dynamics calculations, the model is integrated on the short time step less than one second. The model reliably repro-duces zonal superrotation, smoothly extending far below the cloud layer, tidal patterns at the cloud level and above, and non-rotating, sun-synchronous global convective cell in the upper atmosphere. One of the most interesting features of the model is the development of the polar vortices resembling those observed by Venus Express' VIRTIS instrument. Initial analysis of the simulation results confirms the hypothesis that it is thermal tides that provides main driver for the superrotation.

  15. Modeling of submarine melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.

    2013-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. the model is constrained by ice shelf bathymetry and ice thickness from NASA Operation IceBridge, ocean temperature/salinity data from Johnson et al. (2011), and subglacial discharge estimated from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. This work is performed under a contract with NASA Cryosphere Program.

  16. Coupling of wave and circulation models in coastal-ocean predicting systems: A case study for the German Bight

    NASA Astrophysics Data System (ADS)

    Staneva, Joanna; Wahle, Kathrin

    2015-04-01

    This study addresses the coupling between wind wave and circulation models on the example of the German Bight and its coastal area called the Wadden Sea (the area between the barrier islands and the coast). This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales. The uncertainties in most of the presently used models result from the nonlinear feedback between strong tidal currents and wind-waves, which can no longer be ignored, in particular in the coastal zone where its role seems to be dominant. A nested modelling system is used in the Helmholtz-Zentrum Geesthacht to producing reliable now- and short-term forecasts of ocean state variables, including wind waves and hydrodynamics. In this study we present analysis of wave and hydrographic observations, as well as the results of numerical simulations. The data base includes ADCP observations and continuous measurements from data stations. The individual and collective role of wind, waves and tidal forcing are quantified. The performance of the forecasting system is illustrated for the cases of several extreme events. Effects of ocean waves on coastal circulation and SST simulations are investigated considering wave-dependent stress and wave breaking parameterization during extreme events, e.g. hurricane Xavier in December, 2013. Also the effect which the circulation exerts on the wind waves is tested for the coastal areas using different parameterizations. The improved skill resulting from the new developments in the forecasting system, in particular during extreme events, justifies further enhancements of the coastal pre-operational system for the North Sea and German Bight.

  17. Numerical Simulation on Hydrodynamics and Combustion in a Circulating Fluidized Bed under O2/CO2 and Air Atmospheres

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Zhao, C. S.; Duan, L. B.; Qu, C. R.; Lu, J. Y.; Chen, X. P.

    Oxy-fuel circulating fluidized bed (CFB) combustion technology is in the stage of initial development for carbon capture and storage (CCS). Numerical simulation is helpful to better understanding the combustion process and will be significant for CFB scale-up. In this paper, a computational fluid dynamics (CFD) model was employed to simulate the hydrodynamics of gas-solid flow in a CFB riser based on the Eulerian-Granular multiphase model. The cold model predicted the main features of the complex gas-solid flow, including the cluster formation of the solid phase along the walls, the flow structure of up-flow in the core and downward flow in the annular region. Furthermore, coal devolatilization, char combustion and heat transfer were considered by coupling semi-empirical sub-models with CFD model to establish a comprehensive model. The gas compositions and temperature profiles were predicted and the outflow gas fractions are validated with the experimental data in air combustion. With the experimentally validated model being applied, the concentration and temperature distributions in O2/CO2 combustion were predicted. The model is useful for the further development of a comprehensive model including more sub-models, such as pollutant emissions, and better understanding the combustion process in furnace.

  18. A simple biosphere model (SiB) for use within general circulation models

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Mintz, Y.; Sud, Y. C.; Dalcher, A.

    1986-01-01

    A simple realistic biosphere model for calculating the transfer of energy, mass and momentum between the atmosphere and the vegetated surface of the earth has been developed for use in atmospheric general circulation models. The vegetation in each terrestrial model grid is represented by an upper level, representing the perennial canopy of trees and shrubs, and a lower level, representing the annual cover of grasses and other heraceous species. The vegetation morphology and the physical and physiological properties of the vegetation layers determine such properties as: the reflection, transmission, absorption and emission of direct and diffuse radiation; the infiltration, drainage, and storage of the residual rainfall in the soil; and the control over the stomatal functioning. The model, with prescribed vegetation parameters and soil interactive soil moisture, can be used for prediction of the atmospheric circulation and precipitaion fields for short periods of up to a few weeks.

  19. Short ensembles: An Efficient Method for Discerning Climate-relevant Sensitivities in Atmospheric General Circulation Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Hui; Rasch, Philip J.; Zhang, Kai

    2014-09-08

    This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models. The basic idea is to replace the traditional serial-in-time long-term climate integrations by representative ensembles of shorter simulations. The key advantage of the proposed method lies in its efficiency: since fewer days of simulation are needed, the computational cost is less, and because individual realizations are independent and can be integrated simultaneously, the new dimension of parallelism can dramatically reduce the turnaround time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy is not appropriate for exploring sensitivitymore » of all model features, but it is very effective in many situations. Two examples are presented using the Community Atmosphere Model version 5. The first example demonstrates that the method is capable of characterizing the model cloud and precipitation sensitivity to time step length. A nudging technique is also applied to an additional set of simulations to help understand the contribution of physics-dynamics interaction to the detected time step sensitivity. In the second example, multiple empirical parameters related to cloud microphysics and aerosol lifecycle are perturbed simultaneously in order to explore which parameters have the largest impact on the simulated global mean top-of-atmosphere radiation balance. Results show that in both examples, short ensembles are able to correctly reproduce the main signals of model sensitivities revealed by traditional long-term climate simulations for fast processes in the climate system. The efficiency of the ensemble method makes it particularly useful for the development of high-resolution, costly and complex climate models.« less

  20. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaas, Johannes; Ming, Yi; Menon, Surabi

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found thatmore » the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on

  1. Development of a cerebral circulation model for the automatic control of brain physiology.

    PubMed

    Utsuki, T

    2015-01-01

    In various clinical guidelines of brain injury, intracranial pressure (ICP), cerebral blood flow (CBF) and brain temperature (BT) are essential targets for precise management for brain resuscitation. In addition, the integrated automatic control of BT, ICP, and CBF is required for improving therapeutic effects and reducing medical costs and staff burden. Thus, a new model of cerebral circulation was developed in this study for integrative automatic control. With this model, the CBF and cerebral perfusion pressure of a normal adult male were regionally calculated according to cerebrovascular structure, blood viscosity, blood distribution, CBF autoregulation, and ICP. The analysis results were consistent with physiological knowledge already obtained with conventional studies. Therefore, the developed model is potentially available for the integrative control of the physiological state of the brain as a reference model of an automatic control system, or as a controlled object in various control simulations.

  2. Numerical Study Comparing RANS and LES Approaches on a Circulation Control Airfoil

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Nishino, Takafumi

    2011-01-01

    A numerical study over a nominally two-dimensional circulation control airfoil is performed using a large-eddy simulation code and two Reynolds-averaged Navier-Stokes codes. Different Coanda jet blowing conditions are investigated. In addition to investigating the influence of grid density, a comparison is made between incompressible and compressible flow solvers. The incompressible equations are found to yield negligible differences from the compressible equations up to at least a jet exit Mach number of 0.64. The effects of different turbulence models are also studied. Models that do not account for streamline curvature effects tend to predict jet separation from the Coanda surface too late, and can produce non-physical solutions at high blowing rates. Three different turbulence models that account for streamline curvature are compared with each other and with large eddy simulation solutions. All three models are found to predict the Coanda jet separation location reasonably well, but one of the models predicts specific flow field details near the Coanda surface prior to separation much better than the other two. All Reynolds-averaged Navier-Stokes computations produce higher circulation than large eddy simulation computations, with different stagnation point location and greater flow acceleration around the nose onto the upper surface. The precise reasons for the higher circulation are not clear, although it is not solely a function of predicting the jet separation location correctly.

  3. Ocean regional circulation model sensitizes to resolution of the lateral boundary conditions

    NASA Astrophysics Data System (ADS)

    Pham, Van Sy; Hwang, Jin Hwan

    2017-04-01

    Dynamical downscaling with nested regional oceanographic models is an effective approach for forecasting operationally coastal weather and projecting long term climate on the ocean. Nesting procedures deliver the unwanted in dynamic downscaling due to the differences of numerical grid sizes and updating steps. Therefore, such unavoidable errors restrict the application of the Ocean Regional Circulation Model (ORCMs) in both short-term forecasts and long-term projections. The current work identifies the effects of errors induced by computational limitations during nesting procedures on the downscaled results of the ORCMs. The errors are quantitatively evaluated for each error source and its characteristics by the Big-Brother Experiments (BBE). The BBE separates identified errors from each other and quantitatively assess the amount of uncertainties employing the same model to simulate for both nesting and nested model. Here, we focus on discussing errors resulting from two main matters associated with nesting procedures. They should be the spatial grids' differences and the temporal updating steps. After the diverse cases from separately running of the BBE, a Taylor diagram was adopted to analyze the results and suggest an optimization intern of grid size and updating period and domain sizes. Key words: lateral boundary condition, error, ocean regional circulation model, Big-Brother Experiment. Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled "Development of integrated estuarine management system" and a National Research Foundation of Korea (NRF) Grant (No. 2015R1A5A 7037372) funded by MSIP of Korea. The authors thank the Integrated Research Institute of Construction and Environmental Engineering of Seoul National University for administrative support.

  4. Development of the GEOS-5 Atmospheric General Circulation Model: Evolution from MERRA to MERRA2.

    NASA Technical Reports Server (NTRS)

    Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio

    2014-01-01

    The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) version of the GEOS-5 (Goddard Earth Observing System Model - 5) Atmospheric General Circulation Model (AGCM) is currently in use in the NASA Global Modeling and Assimilation Office (GMAO) at a wide range of resolutions for a variety of applications. Details of the changes in parameterizations subsequent to the version in the original MERRA reanalysis are presented here. Results of a series of atmosphere-only sensitivity studies are shown to demonstrate changes in simulated climate associated with specific changes in physical parameterizations, and the impact of the newly implemented resolution-aware behavior on simulations at different resolutions is demonstrated. The GEOS-5 AGCM presented here is the model used as part of the GMAO's MERRA2 reanalysis, the global mesoscale "nature run", the real-time numerical weather prediction system, and for atmosphere-only, coupled ocean-atmosphere and coupled atmosphere-chemistry simulations. The seasonal mean climate of the MERRA2 version of the GEOS-5 AGCM represents a substantial improvement over the simulated climate of the MERRA version at all resolutions and for all applications. Fundamental improvements in simulated climate are associated with the increased re-evaporation of frozen precipitation and cloud condensate, resulting in a wetter atmosphere. Improvements in simulated climate are also shown to be attributable to changes in the background gravity wave drag, and to upgrades in the relationship between the ocean surface stress and the ocean roughness. The series of "resolution aware" parameters related to the moist physics were shown to result in improvements at higher resolutions, and result in AGCM simulations that exhibit seamless behavior across different resolutions and applications.

  5. Responses of estuarine circulation and salinity to the loss of intertidal flats – A modeling study

    DOE PAGES

    Yang, Zhaoqing; Wang, Taiping

    2015-08-25

    Intertidal flats in estuaries are coastal wetlands that provide critical marine habitats to support wide ranges of marine species. Over the last century many estuarine systems have experienced significant loss of intertidal flats due to anthropogenic impacts. This paper presents a modeling study conducted to investigate the responses of estuarine hydrodynamics to the loss of intertidal flats caused by anthropogenic actions in Whidbey Basin of Puget Sound on the northwest coast of North America. Changes in salinity intrusion limits in the estuaries, salinity stratification, and circulation in intertidal flats and estuaries were evaluated by comparing model results under the existingmore » baseline condition and the no-flat condition. Model results showed that loss of intertidal flats results in an increase in salinity intrusion, stronger mixing, and a phase shift in salinity and velocity fields in the bay front areas. Model results also indicated that loss of intertidal flats enhances two-layer circulation, especially the bottom water intrusion. Loss of intertidal flats increases the mean salinity but reduces the salinity range in the subtidal flats over a tidal cycle because of increased mixing. Salinity intrusion limits extend upstream in all three major rivers discharging into Whidbey Basin when no intertidal flats are present. Changes in salinity intrusion and estuarine circulation patterns due to loss of intertidal flats affect the nearshore habitat and water quality in estuaries and potentially increase risk of coastal hazards, such as storm surge and coastal flooding. Furthermore, model results suggested the importance of including intertidal flats and the wetting-and-drying process in hydrodynamic simulations when intertidal flats are present in the model domain.« less

  6. PARTICLE FLOW, MIXING, AND CHEMICAL REACTION IN CIRCULATING FLUIDIZED BED ABSORBERS

    EPA Science Inventory

    A mixing model has been developed to simulate the particle residence time distribution (RTD) in a circulating fluidized bed absorber (CFBA). Also, a gas/solid reaction model for sulfur dioxide (SO2) removal by lime has been developed. For the reaction model that considers RTD dis...

  7. Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation

    NASA Technical Reports Server (NTRS)

    Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan; David, Tim

    2003-01-01

    A computational fluid dynamics (CFD) approach is presented to model the blood flow through the human circulatory system under altered gravity conditions. Models required for CFD simulation relevant to major hemodynamic issues are introduced such as non-Newtonian flow models governed by red blood cells, a model for arterial wall motion due to fluid-wall interactions, a vascular bed model for outflow boundary conditions, and a model for auto-regulation mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models are solved iteratively using the pseudocompressibility method and dual time stepping. Moving wall boundary conditions from the first-order fluid-wall interaction model are used to study the influence of arterial wall distensibility on flow patterns and wall shear stresses during the heart pulse. A vascular bed modeling utilizing the analogy with electric circuits is coupled with an auto-regulation algorithm for multiple outflow boundaries. For the treatment of complex geometry, a chimera overset grid technique is adopted to obtain connectivity between arterial branches. For code validation, computed results are compared with experimental data for steady and unsteady non-Newtonian flows. Good agreement is obtained for both cases. In sin-type Gravity Benchmark Problems, gravity source terms are added to the Navier-Stokes equations to study the effect of gravitational variation on the human circulatory system. This computational approach is then applied to localized blood flows through a realistic carotid bifurcation and two Circle of Willis models, one using an idealized geometry and the other model using an anatomical data set. A three- dimensional anatomical Circle of Willis configuration is reconstructed from human-specific magnetic resonance images using an image segmentation method. The blood flow through these Circle of Willis models is simulated to provide means for studying gravitational effects on the brain

  8. A Lagrangian analysis of a sudden stratospheric warming - Comparison of a model simulation and LIMS observations

    NASA Technical Reports Server (NTRS)

    Pierce, R. B.; Remsberg, Ellis E.; Fairlie, T. D.; Blackshear, W. T.; Grose, William L.; Turner, Richard E.

    1992-01-01

    Lagrangian area diagnostics and trajectory techniques are used to investigate the radiative and dynamical characteristics of a spontaneous sudden warming which occurred during a 2-yr Langley Research Center model simulation. The ability of the Langley Research Center GCM to simulate the major features of the stratospheric circulation during such highly disturbed periods is illustrated by comparison of the simulated warming to the observed circulation during the LIMS observation period. The apparent sink of vortex area associated with Rossby wave-breaking accounts for the majority of the reduction of the size of the vortex and also acts to offset the radiatively driven increase in the area occupied by the 'surf zone'. Trajectory analysis of selected material lines substantiates the conclusions from the area diagnostics.

  9. Lifecycle of South America Monsoon System Simulated by the Regional Eta Model

    NASA Astrophysics Data System (ADS)

    Cavalcanti, I. F.; Raia, A.; Chou, S. C.; Silveira, V. P.

    2017-12-01

    The SAMS comprises a set of features over South America that includes the rainy season over large areas of the continent, typical atmospheric circulation and humidity fluxes characteristics and occurrences of the South Atlantic Convergence Zone. The onset and duration of these characteristics are important to several economic sectors, such as Agriculture and Hydropower. Droughts during the summer season, as the 2014 and 2015 cases, or onset delays can affect these sectors. Predictions of the SAMS onset and duration can contribute to management actions. The Eta Regional model represents well the precipitation difference between summer and winter and the related atmospheric circulation differences over South America. Therefore the objective of this study is to analyze the lifecycle of the SAMS simulated by the Eta model to evaluate first the behaviour compared to observations and to further use as a tool to prediction of onset and duration. There are several methods to analyze the lifecycle of the monsoon and here the criterion is based on vertical integrated zonal moisture flux in the monsoon core, which is located at southern Amazonia. The climate simulation was performed with the Eta model using the HadGEM2_ES model, from CMIP5, as lateral boundary condition. The period of analyses is 1980 to 2005. The model results are compared to ERA-Interim reanalysis and GPCP precipitation dataset. The results show the interannual lifecycles and the average for the whole period, as well as the annual cycle of zonal wind, precipitation, temperature and specific humidity. Spatial maps of humidity convergence, atmospheric circulation at low and high levels indicate the changes during the onset and demise.

  10. Ocean circulation drifts in multi-millennial climate simulations: the role of salinity corrections and climate feedbacks

    NASA Astrophysics Data System (ADS)

    Dentith, Jennifer E.; Ivanovic, Ruza F.; Gregoire, Lauren J.; Tindall, Julia C.; Smith, Robin S.

    2018-05-01

    Low-resolution, complex general circulation models (GCMs) are valuable tools for studying the Earth system on multi-millennial timescales. However, slowly evolving salinity drifts can cause large shifts in climatic and oceanic regimes over thousands of years. We test two different schemes for neutralising unforced salinity drifts in the FAMOUS GCM: surface flux correction and volumetric flux correction. Although both methods successfully maintain a steady global mean salinity, local drifts and subsequent feedbacks promote cooling (≈ 4 °C over 6000 years) and freshening (≈ 2 psu over 6000 years) in the North Atlantic Ocean, and gradual warming (≈ 0.2 °C per millennium) and salinification (≈ 0.15 psu per millennium) in the North Pacific Ocean. Changes in the surface density in these regions affect the meridional overturning circulation (MOC), such that, after several millennia, the Atlantic MOC (AMOC) is in a collapsed state, and there is a strong, deep Pacific MOC (PMOC). Furthermore, the AMOC exhibits a period of metastability, which is only identifiable with run lengths in excess of 1500 years. We also compare simulations with two different land surface schemes, demonstrating that small biases in the surface climate may cause regional salinity drifts and significant shifts in the MOC (weakening of the AMOC and the initiation then invigoration of PMOC), even when the global hydrological cycle has been forcibly closed. Although there is no specific precursor to the simulated AMOC collapse, the northwest North Pacific and northeast North Atlantic are important areas that should be closely monitored for trends arising from such biases.

  11. The Ability of a General Circulation Model to represent the Atmospheric Boundary Layer over the Antarctic Plateau

    NASA Astrophysics Data System (ADS)

    Vignon, Etienne; Hourdin, Frédéric; Genthon, Christophe; Madeleine, Jean-Baptiste; Cheruy, Frédérique; Gallée, Hubert; Bazile, Eric; Lefebvre, Marie-Pierre; Van de Wiel, Bas J. H.

    2017-04-01

    In a General Circulation Model (GCM), the turbulent mixing parametrization of the atmospheric boundary layer (ABL) over the Antarctic Plateau is critical since it affects the continental scale temperature inversion, the katabatic winds and finally the Southern Hemisphere circulation. The aim of this study is to evaluate the representation of the Antarctic Plateau ABL in the Laboratoire de Météorologie Dynamique-Zoom (LMDZ) GCM, the atmospheric component of the IPSL Earth System Model in preparation for the sixth Coupled Models Intercomparison Project. We carry out 1D simulations on the fourth Gewex Atmospheric Boundary Layers Study (GABLS4) case, and 3D simulations with the 'zooming capability' of the horizontal grid and with nudging. Simulations are evaluated and validated using in-situ measurements obtained at Dome C, East Antarctic Plateau, and satellite data. Sensitivity tests to surface parameters, vertical grid and turbulent mixing parametrizations led to significant improvements of the model and to a new configuration better adapted for Antarctic conditions. In particular, we point out the need to remove minimum turbulence thresholds to correctly reproduce very steep temperature and wind speed gradients in the stable ABL. We then assess the ability of the GCM to represent the two distinct stable ABL regimes and very strong near-surface temperature inversions, which are fascinating and critical features of the Dome C climate. This leads us to investigate the competition between radiative and turbulent coupling between the ABL and the snow surface in the model. Our results show that the new configuration of LMDZ reproduces reasonnably well the Dome C climatology and it is able to model strong temperature inversions and radiatively-dominated ABL. However, they also reveal a strong sensitivity of the modeling of the different regimes to the radiative scheme and vertical resolution. The present work finally hints at future developments to better and more

  12. Modeling bronchial circulation with application to soluble gas exchange: description and sensitivity analysis.

    PubMed

    Bui, T D; Dabdub, D; George, S C

    1998-06-01

    The steady-state exchange of inert gases across an in situ canine trachea has recently been shown to be limited equally by diffusion and perfusion over a wide range (0.01-350) of blood solubilities (betablood; ml . ml-1 . atm-1). Hence, we hypothesize that the exchange of ethanol (betablood = 1,756 at 37 degrees C) in the airways depends on the blood flow rate from the bronchial circulation. To test this hypothesis, the dynamics of the bronchial circulation were incorporated into an existing model that describes the simultaneous exchange of heat, water, and a soluble gas in the airways. A detailed sensitivity analysis of key model parameters was performed by using the method of Latin hypercube sampling. The model accurately predicted a previously reported experimental exhalation profile of ethanol (R2 = 0.991) as well as the end-exhalation airstream temperature (34.6 degrees C). The model predicts that 27, 29, and 44% of exhaled ethanol in a single exhalation are derived from the tissues of the mucosa and submucosa, the bronchial circulation, and the tissue exterior to the submucosa (which would include the pulmonary circulation), respectively. Although the concentration of ethanol in the bronchial capillary decreased during inspiration, the three key model outputs (end-exhaled ethanol concentration, the slope of phase III, and end-exhaled temperature) were all statistically insensitive (P > 0.05) to the parameters describing the bronchial circulation. In contrast, the model outputs were all sensitive (P < 0.05) to the thickness of tissue separating the core body conditions from the bronchial smooth muscle. We conclude that both the bronchial circulation and the pulmonary circulation impact soluble gas exchange when the entire conducting airway tree is considered.

  13. A Babcock-Leighton Solar Dynamo Model with Multi-cellular Meridional Circulation in Advection- and Diffusion-dominated Regimes

    NASA Astrophysics Data System (ADS)

    Belucz, Bernadett; Dikpati, Mausumi; Forgács-Dajka, Emese

    2015-06-01

    Babcock-Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock-Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.

  14. A BABCOCK–LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belucz, Bernadett; Forgács-Dajka, Emese; Dikpati, Mausumi, E-mail: bbelucz@astro.elte.hu, E-mail: dikpati@ucar.edu

    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterflymore » diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.« less

  15. Clinical CVVH model removes endothelium-derived microparticles from circulation

    PubMed Central

    Abdelhafeez, Abdelhafeez H.; Jeziorczak, Paul M.; Schaid, Terry R.; Hoefs, Susan L.; Kaul, Sushma; Nanchal, Rahul; Jacobs, Elizabeth R.; Densmore, John C.

    2014-01-01

    Background Endothelium-derived microparticles (EMPs) are submicron vesicles released from the plasma membrane of endothelial cells in response to injury, apoptosis or activation. We have previously demonstrated EMP-induced acute lung injury (ALI) in animal models and endothelial barrier dysfunction in vitro. Current treatment options for ALI are limited and consist of supportive therapies. We hypothesize that standard clinical continuous venovenous hemofiltration (CVVH) reduces serum EMP levels and may be adapted as a potential therapeutic intervention. Materials and methods EMPs were generated from plasminogen activation inhibitor-1 (PAI-1)-stimulated human umbilical vein endothelial cells (HUVECs). Flow cytometric analysis was used to characterize EMPs as CD31- and annexin V-positive events in a submicron size gate. Enumeration was completed against a known concentration of latex beads. Ultimately, a concentration of ~650,000 EMP/mL perfusate fluid (total 470 mL) was circulated through a standard CVVH filter (pore size 200 μm, flow rate 250 mL/hr) for a period of 70 minutes. 0.5 mL aliquots were removed at 5- to 10-minute intervals for flow cytometric analysis. EMP concentration in the dialysate was measured at the end of 4 hours to better understand the fate of EMPs. Results A progressive decrease in circulating EMP concentration was noted using standard CVVH at 250 mL/hr (a clinical standard rate) from a 470 mL volume modelling a patient's circulation. A 50% reduction was noted within the first 30 minutes. EMPs entering the dialysate after 4 hours were 5.7% of the EMP original concentration. Conclusion These data demonstrate that standard CVVH can remove EMPs from circulation in a circuit modelling a patient. An animal model of hemofiltration with induction of EMP release is required to test the therapeutic potential of this finding and potential of application in early treatment of ALI. PMID:24596654

  16. Estimates of runoff using water-balance and atmospheric general circulation models

    USGS Publications Warehouse

    Wolock, D.M.; McCabe, G.J.

    1999-01-01

    The effects of potential climate change on mean annual runoff in the conterminous United States (U.S.) are examined using a simple water-balance model and output from two atmospheric general circulation models (GCMs). The two GCMs are from the Canadian Centre for Climate Prediction and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HAD). In general, the CCC GCM climate results in decreases in runoff for the conterminous U.S., and the HAD GCM climate produces increases in runoff. These estimated changes in runoff primarily are the result of estimated changes in precipitation. The changes in mean annual runoff, however, mostly are smaller than the decade-to-decade variability in GCM-based mean annual runoff and errors in GCM-based runoff. The differences in simulated runoff between the two GCMs, together with decade-to-decade variability and errors in GCM-based runoff, cause the estimates of changes in runoff to be uncertain and unreliable.

  17. Laboratory Simulation of the Geothermal Heating Effects on Ocean Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Xia, K. Q.; Wang, F.; Huang, S. D.; Zhou, S. Q.

    2016-12-01

    A large-scale circulation subject to an additional heat flux from the bottom is investigated laboratorially, motivated by understanding the geothermal heating effects on ocean circulation. Despite its idealization, our experiment suggests that the leading order effect of geothermal heating is to significantly enhance the abyssal overturning, which is in agreement with the findings in ocean circulation models. Our results also suggest that geothermal heating could not influence the poleward heat transport due to the strong stratification in the thermocline. It is revealed that the ratio of geothermal-flux-induced turbulent dissipation to the dissipation due to other energies is the key determining the dynamical importance of geothermal heating. This quantity explains why the impact of geothermal heating is sensitive to the deep stratification and the diapycnal mixing, in addition to the amount of geothermal flux. Moreover, this dissipation ratio may be used to understand results from different studies in a consistent way. This work is supported by the Hong Kong Research Grants Council under Grant No. CUHK1430115 and by the CUHK Research Committee through a Direct Grant (Project No. 3132740).

  18. A Study on Planetary Atmospheric Circulations using THOR

    NASA Astrophysics Data System (ADS)

    Mendonça, João; Grosheintz, Luc; Lukas Grimm, Simon; Heng, Kevin

    2015-12-01

    The large variety of planetary parameters observed leads us to think that exoplanets may show a large range of possible climates. It is therefore of the uttermost importance to investigate the influence of astronomical and planetary bulk parameters in driving the atmospheric circulations. In the solar system the results from planetary spacecraft missions have demonstrated how different the planetary climate and atmospheric circulations can be. The study of exoplanets will require probing a far wider range of physical and orbital parameters than the ones of our neighbor planets. For this reason, such a study will involve exploring an even larger diversity of circulation and climate regimes. Our new atmospheric model, THOR, is intended to be extremely flexible and to explore the large diversity of planetary atmospheres.THOR is part of the Exoclimes Simulation Platform, and is a project of the Exoplanet and Exoclimes Group (see www.exoclime.org). THOR solves the complex atmospheric fluid equations in a rotating sphere (fully compressible - nonhydrostatic system) using an icosahedral grid. The main advantages of using our new platform against other recent exoplanet models is that 1) The atmospheric fluid equations are completely represented and no approximations are used that could compromise the physics of the problem; 2) The model uses for the first time in exoplanet studies, a specific icosahedral grid that solves the pole problem; 3) The interface is user friendly and can be easily adapted to a multitude of atmospheric conditions; 4) By using GPU computation, our code greatly improves the typical code running time.We will present and discuss the first detailed results of our simulations, more specifically of two benchmark tests that are a representative sample of the large range of exoplanetary parameters: Earth-like conditions (the Held-Suarez test) and a tidally locked hot-Jupiter. THOR has successfully passed these tests and is able to determine the main

  19. Global environmental effects of impact-generated aerosols: Results from a general circulation model, revision 1

    NASA Technical Reports Server (NTRS)

    Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.

    1989-01-01

    Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to our three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans substantially mitigates land surface cooling, an effect that one-dimensional models cannot quantify. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stage of cooling than in the one-dimensional model study. These two differences between three-dimensional and one-dimensional model simulations were noted previously in studies of nuclear winter; GCM-simulated climatic changes in the Alvarez-inspired scenario of asteroid/comet winter, however, are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though less severe, climatic changes, according to our GCM. Our conclusion is that it is difficult to imagine an asteroid or comet impact leading to anything approaching complete global freezing, but quite reasonable to assume that impacts at the Alvarez level, or even smaller, dramatically alter the climate in at least a patchy sense.

  20. Large-Scale Transport Responses to Tropospheric Circulation Changes Using GEOS-5

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Molod, Andrea; Arnold, Nathan; Waugh, Darryn W.; Yang, Huang

    2017-01-01

    The mean age since air was last at the Northern Hemisphere midlatitude surface is a fundamental property of tropospheric transport. Recent comparisons among chemistry climate models, however, reveal that there are large differences in the mean age among models and that these differences are most likely related to differences in tropical (parameterized) convection. Here we use aquaplanet simulations of the Goddard Earth Observing System Model Version 5 (GEOS-5) to explore the sensitivity of the mean age to changes in the tropical circulation. Tropical circulation changes are forced by prescribed localized off-equatorial warm sea surface temperature anomalies that (qualitatively) reproduce the convection and circulation differences among the comprehensive models. Idealized chemical species subject to prescribed OH loss are also integrated in parallel in order to illustrate the impact of tropical transport changes on interhemispheric constituent transport.

  1. Simulation of the effects of proposed tide gates on circulation, flushing, and water quality in residential canals, Cape Coral Florida

    USGS Publications Warehouse

    Goodwin, Carl R.

    1991-01-01

    Decades of dredging and filling of Florida's low-lying coastal wetlands have produced thousands of miles of residential tidal canals and adjacent waterfront property. Typically, these canals are poorly flushed, and over time, accumulated organic-rich bottom materials, contribute to an increasingly severe degraded water quality. One-dimensional hydrodynamic and constituent-transport models were applied to two dead-end canal systems to determine the effects of canal system interconnection using tide gates on water circulation and constituent flushing. The model simulates existing and possible future circulation and flushing conditions in about 29 miles of the approximately 130 miles of tidally influenced canals in Cape Coral, located on the central west coast of peninsular Florida. Model results indicate that tidal water-level differences between the two canal systems can be converted to kinetic energy, in the form of increased water circulation, but the use of one-way tide gate interconnections. Computations show that construction of from one to four tide gates will cause replacement of a volume of water equivalent to the total volume of canals in both systems in 15 to 9 days, respectively. Because some canals flush faster than others, 47 and 21 percent of the original canal water will remain in both systems 50 days after start of operation of one and four tide gates, respectively. Some of the effects that such increased flushing are expected to have include reduced density stratification and associated dissolved-oxygen depletion in canal bottom waters, increased localized reaeration, and more efficient discharge of stormwater runoff entering the canals.

  2. Intercomparison of general circulation models for hot extrasolar planets

    NASA Astrophysics Data System (ADS)

    Polichtchouk, I.; Cho, J. Y.-K.; Watkins, C.; Thrastarson, H. Th.; Umurhan, O. M.; de la Torre Juárez, M.

    2014-02-01

    We compare five general circulation models (GCMs) which have been recently used to study hot extrasolar planet atmospheres (BOB, CAM, IGCM, MITgcm, and PEQMOD), under three test cases useful for assessing model convergence and accuracy. Such a broad, detailed intercomparison has not been performed thus far for extrasolar planets study. The models considered all solve the traditional primitive equations, but employ different numerical algorithms or grids (e.g., pseudospectral and finite volume, with the latter separately in longitude-latitude and ‘cubed-sphere’ grids). The test cases are chosen to cleanly address specific aspects of the behaviors typically reported in hot extrasolar planet simulations: (1) steady-state, (2) nonlinearly evolving baroclinic wave, and (3) response to fast timescale thermal relaxation. When initialized with a steady jet, all models maintain the steadiness, as they should-except MITgcm in cubed-sphere grid. A very good agreement is obtained for a baroclinic wave evolving from an initial instability in pseudospectral models (only). However, exact numerical convergence is still not achieved across the pseudospectral models: amplitudes and phases are observably different. When subject to a typical ‘hot-Jupiter’-like forcing, all five models show quantitatively different behavior-although qualitatively similar, time-variable, quadrupole-dominated flows are produced. Hence, as have been advocated in several past studies, specific quantitative predictions (such as the location of large vortices and hot regions) by GCMs should be viewed with caution. Overall, in the tests considered here, pseudospectral models in pressure coordinate (PEBOB and PEQMOD) perform the best and MITgcm in cubed-sphere grid performs the worst.

  3. Upper-Ocean Heat Balance Processes and the Walker Circulation in CMIP5 Model Projections

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Roberts, J. B.; Funk, C.; Lyon, B.; Ricciardulli, L.

    2012-01-01

    Considerable uncertainty remains as to the importance of mechanisms governing decadal and longer variability of the Walker Circulation, its connection to the tropical climate system, and prospects for tropical climate change in the face of anthropogenic forcing. Most contemporary climate models suggest that in response to elevated CO2 and a warmer but more stratified atmosphere, the required upward mass flux in tropical convection will diminish along with the Walker component of the tropical mean circulation as well. Alternatively, there is also evidence to suggest that the shoaling and increased vertical stratification of the thermocline in the eastern Pacific will enable a muted SST increase there-- preserving or even enhancing some of the dynamical forcing for the Walker cell flow. Over the past decade there have been observational indications of an acceleration in near-surface easterlies, a strengthened Pacific zonal SST gradient, and globally-teleconnected dislocations in precipitation. But is this evidence in support of an ocean dynamical thermostat process posited to accompany anthropogenic forcing, or just residual decadal fluctuations associated with variations in warm and cold ENSO events and other stochastic forcing? From a modeling perspective we try to make headway on this question by examining zonal variations in surface energy fluxes and dynamics governing tropical upper ocean heat content evolution in the WCRP CMIP5 model projections. There is some diversity among model simulations; for example, the CCSM4 indicates net ocean warming over the IndoPacific region while the CSIRO model concentrates separate warming responses over the central Pacific and Indian Ocean regions. The models, as with observations, demonstrate strong local coupling between variations in column water vapor, downward surface longwave radiation and SST; but the spatial patterns of changes in the sign of this relationship differ among models and, for models as a whole, with

  4. Calibrating the ECCO ocean general circulation model using Green's functions

    NASA Technical Reports Server (NTRS)

    Menemenlis, D.; Fu, L. L.; Lee, T.; Fukumori, I.

    2002-01-01

    Green's functions provide a simple, yet effective, method to test and calibrate General-Circulation-Model(GCM) parameterizations, to study and quantify model and data errors, to correct model biases and trends, and to blend estimates from different solutions and data products.

  5. Red Sea circulation during marine isotope stage 5e

    NASA Astrophysics Data System (ADS)

    Siccha, Michael; Biton, Eli; Gildor, Hezi

    2015-04-01

    We have employed a regional Massachusetts Institute of Technology oceanic general circulation model of the Red Sea to investigate its circulation during marine isotope stage (MIS) 5e, the peak of the last interglacial, approximately 125 ka before present. Compared to present-day conditions, MIS 5e was characterized by higher Northern Hemisphere summer insolation, accompanied by increases in air temperature of more than 2°C and global sea level approximately 8 m higher than today. As a consequence of the increased seasonality, intensified monsoonal conditions with increased winds, rainfall, and humidity in the Red Sea region are evident in speleothem records and supported by model simulations. To assess the dominant factors responsible for the observed changes, we conducted several sensitivity experiments in which the MIS 5 boundary conditions or forcing parameters were used individually. Overall, our model simulation for the last interglacial maximum reconstructs a Red Sea that is colder, less ventilated and probably more oligotrophic than at present day. The largest alteration in Red Sea circulation and properties was found for the simulation of the northward displacement and intensification of the African tropical rain belt during MIS 5e, leading to a notable increase in the fresh water flux into the Red Sea. Such an increase significantly reduced the Red Sea salinity and exchange volume of the Red Sea with the Gulf of Aden. The Red Sea reacted to the MIS 5e insolation forcing by the expected increase in seasonal sea surface temperature amplitude and overall cooling caused by lower temperatures during deep water formation in winter.

  6. Large-Scale Atmospheric Circulation Patterns Associated with Temperature Extremes as a Basis for Model Evaluation: Methodological Overview and Results

    NASA Astrophysics Data System (ADS)

    Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.

    2015-12-01

    Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are

  7. Computational models of the pulmonary circulation: Insights and the move towards clinically directed studies

    PubMed Central

    Tawhai, Merryn H.; Clark, Alys R.; Burrowes, Kelly S.

    2011-01-01

    Biophysically-based computational models provide a tool for integrating and explaining experimental data, observations, and hypotheses. Computational models of the pulmonary circulation have evolved from minimal and efficient constructs that have been used to study individual mechanisms that contribute to lung perfusion, to sophisticated multi-scale and -physics structure-based models that predict integrated structure-function relationships within a heterogeneous organ. This review considers the utility of computational models in providing new insights into the function of the pulmonary circulation, and their application in clinically motivated studies. We review mathematical and computational models of the pulmonary circulation based on their application; we begin with models that seek to answer questions in basic science and physiology and progress to models that aim to have clinical application. In looking forward, we discuss the relative merits and clinical relevance of computational models: what important features are still lacking; and how these models may ultimately be applied to further increasing our understanding of the mechanisms occurring in disease of the pulmonary circulation. PMID:22034608

  8. Simulating the Agulhas system in global ocean models - nesting vs. multi-resolution unstructured meshes

    NASA Astrophysics Data System (ADS)

    Biastoch, Arne; Sein, Dmitry; Durgadoo, Jonathan V.; Wang, Qiang; Danilov, Sergey

    2018-01-01

    Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing.

  9. Global environmental effects of impact-generated aerosols: Results from a general circulation model

    NASA Technical Reports Server (NTRS)

    Covey, C.; Ghan, S. J.; Weissman, Paul R.

    1988-01-01

    Cooling and darkening at Earth's surface are expected to result from the interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet, according to the one-dimensional radioactive-convective atmospheric model (RCM) of Pollack et al. An analogous three-dimensional general circulation model (GCM) simulation obtains the same basic result as the RCM but there are important differences in detail. In the GCM simulation the heat capacity of the oceans, not included in the RCM, substantially mitigates land surface cooling. On the other hand, the GCM's low heat capacity surface allows surface temperatures to drop much more rapidly than reported by Pollack et al. These two differences between RCM and GCM simulations were noted previously in studies of nuclear winter; GCM results for comet/asteroid winter, however, are much more severe than for nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on Earth. In the simulation the global average of land surface temperature drops to the freezing point in just 4.5 days, one-tenth the time required in the Pollack et al. simulation. In addition to the standard case of Pollack et al., which represents the collision of a 10-km diameter asteroid with Earth, additional scenarios are considered ranging from the statistically more frequent impacts of smaller asteroids to the collision of Halley's comet with Earth. In the latter case the kinetic energy of impact is extremely large due to the head-on collision resulting from Halley's retrograde orbit.

  10. Can preferred atmospheric circulation patterns over the North-Atlantic-Eurasian region be associated with arctic sea ice loss?

    NASA Astrophysics Data System (ADS)

    Crasemann, Berit; Handorf, Dörthe; Jaiser, Ralf; Dethloff, Klaus; Nakamura, Tetsu; Ukita, Jinro; Yamazaki, Koji

    2017-12-01

    In the framework of atmospheric circulation regimes, we study whether the recent Arctic sea ice loss and Arctic Amplification are associated with changes in the frequency of occurrence of preferred atmospheric circulation patterns during the extended winter season from December to March. To determine regimes we applied a cluster analysis to sea-level pressure fields from reanalysis data and output from an atmospheric general circulation model. The specific set up of the two analyzed model simulations for low and high ice conditions allows for attributing differences between the simulations to the prescribed sea ice changes only. The reanalysis data revealed two circulation patterns that occur more frequently for low Arctic sea ice conditions: a Scandinavian blocking in December and January and a negative North Atlantic Oscillation pattern in February and March. An analysis of related patterns of synoptic-scale activity and 2 m temperatures provides a synoptic interpretation of the corresponding large-scale regimes. The regimes that occur more frequently for low sea ice conditions are resembled reasonably well by the model simulations. Based on those results we conclude that the detected changes in the frequency of occurrence of large-scale circulation patterns can be associated with changes in Arctic sea ice conditions.

  11. Simulating transoceanic migrations of young loggerhead sea turtles: merging magnetic navigation behavior with an ocean circulation model.

    PubMed

    Putman, Nathan F; Verley, Philippe; Shay, Thomas J; Lohmann, Kenneth J

    2012-06-01

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida, USA, undertake a transoceanic migration in which they gradually circle the Sargasso Sea before returning to the North American coast. Loggerheads possess a 'magnetic map' in which regional magnetic fields elicit changes in swimming direction along the migratory pathway. In some geographic areas, however, ocean currents move more rapidly than young turtles can swim. Thus, the degree to which turtles can control their migratory movements has remained unclear. In this study, the movements of young turtles were simulated within a high-resolution ocean circulation model using several different behavioral scenarios, including one in which turtles drifted passively and others in which turtles swam briefly in accordance with experimentally derived data on magnetic navigation. Results revealed that small amounts of oriented swimming in response to regional magnetic fields profoundly affected migratory routes and endpoints. Turtles that engaged in directed swimming for as little as 1-3 h per day were 43-187% more likely than passive drifters to reach the Azores, a productive foraging area frequented by Florida loggerheads. They were also more likely to remain within warm-water currents favorable for growth and survival, avoid areas on the perimeter of the migratory route where predation risk and thermal conditions pose threats, and successfully return to the open-sea migratory route if carried into coastal areas. These findings imply that even weakly swimming marine animals may be able to exert strong effects on their migratory trajectories and open-sea distributions through simple navigation responses and minimal swimming.

  12. The dynamics of the Snowball Earth Hadley circulation for off-equatorial and seasonally varying insolation

    NASA Astrophysics Data System (ADS)

    Voigt, A.

    2013-11-01

    I study the Hadley circulation of a completely ice-covered Snowball Earth through simulations with a comprehensive atmosphere general circulation model. Because the Snowball Earth atmosphere is an example of a dry atmosphere, these simulations allow me to test to what extent dry theories and idealized models capture the dynamics of realistic dry Hadley circulations. Perpetual off-equatorial as well as seasonally varying insolation is used, extending a previous study for perpetual on-equatorial (equinox) insolation. Vertical diffusion of momentum, representing the momentum transport of dry convection, is fundamental to the momentum budgets of both the winter and summer cells. In the zonal budget, it is the primary process balancing the Coriolis force. In the meridional budget, it mixes meridional momentum between the upper and the lower branch and thereby decelerates the circulation. Because of the latter, the circulation intensifies by a factor of three when vertical diffusion of momentum is suppressed. For seasonally varying insolation, the circulation undergoes rapid transitions from the weak summer into the strong winter regime. Consistent with previous studies in idealized models, these transitions result from a mean-flow feedback, because of which they are insensitive to the treatment of vertical diffusion of momentum. Overall, the results corroborate previous findings for perpetual on-equatorial insolation. They demonstrate that descriptions of realistic dry Hadley circulations, in particular their strength, need to incorporate the vertical momentum transport by dry convection, a process that is neglected in most dry theories and idealized models. An improved estimate of the strength of the Snowball Earth Hadley circulation will also help to better constrain the climate of a possible Neoproterozoic Snowball Earth and its deglaciation threshold.

  13. The dynamics of the Snowball Earth Hadley circulation for off-equatorial and seasonally-varying insolation

    NASA Astrophysics Data System (ADS)

    Voigt, A.

    2013-08-01

    I study the Hadley circulation of a completely ice-covered Snowball Earth through simulations with a comprehensive atmosphere general circulation model. Because the Snowball Earth atmosphere is an example of a dry atmosphere, these simulations allow me to test to what extent dry theories and idealized models capture the dynamics of dry Hadley circulations. Perpetual off-equatorial as well as seasonally-varying insolation is used, extending a previous study for perpetual on-equatorial (equinox) insolation. Vertical diffusion of momentum, representing the momentum transport of dry convection, is fundamental to the momentum budgets of both the winter and summer cells. In the zonal budget, it is the primary process balancing the Coriolis force. In the meridional budget, it mixes meridional momentum between the upper and the lower branch and thereby decelerates the circulation. Because of the latter, the circulation intensifies by a factor of three when vertical diffusion of momentum is suppressed. For seasonally-varying insolation, the circulation undergoes rapid transitions from the weak summer into the strong winter regime. Consistent with previous studies in idealized models, these transitions result from a mean-flow feedback, because of which they are insensitive to the treatment of vertical diffusion of momentum. Overall, the results corroborate previous findings for perpetual on-equatorial insolation. They demonstrate that an appropriate description of dry Hadley circulations, in particular their strength, needs to incorporate the vertical momentum transport by dry convection, a process that is neglected in most dry theories and idealized models. An improved estimate of the strength of the Snowball Earth Hadley circulation will also help to better constrain the climate of a possible Neoproterozoic Snowball Earth and its deglaciation threshold.

  14. Circulation in the South China Sea during summer 2000 as obtained from observations and a generalized topography-following ocean model

    NASA Astrophysics Data System (ADS)

    Wang, Huiqun; Yuan, Yaochu; Guan, Weibing; Lou, Ruyun; Wang, Kangshan

    2004-07-01

    On the basis of the recently obtained hydrographic data in the South China Sea, the improved Princeton Ocean Model with a generalized topography-following coordinate system is used to study the circulation in the region during summer 2000. Several sensitivity experiments are carried out to achieve reasonable model parameters for the South China Sea (SCS). It is shown from the resting stratification experiments that the generalized topography-following coordinate scheme is better than the standard sigma grid scheme for reducing the pressure gradient errors. The combination of sea surface height anomaly derived from TOPEX/Poseidon and numerical results with both diagnostic and semidiagnostic simulations provides a consistent circulation pattern for the SCS in August, and the main circulation features can be summarized as follows: (1) There is a notable anticyclonic warm eddy southeast of Vietnam with a horizontal scale of ˜300 km, and there is a cyclonic cold eddy. The simultaneous existence of these cold and warm eddies is one of the important circulation characteristics in the SCS during summer 2000. (2) A secondary cold eddy is found east of Vietnam. (3) The northwestern part of the SCS is dominated by an anticyclonic circulation system. (4) There is also a secondary warm eddy southwest off the Luzon Island. (5) A cyclonic eddy is found west off the Borneo Island. (6) A western intensification phenomenon obviously occurs in the SCS. The dynamical mechanisms of the above-mentioned circulation pattern in the SCS are the interaction between the wind stress and bottom topography and the joint effect of baroclinicity and relief.

  15. Mesoscale Convective Systems in SCSMEX: Simulated by a Regional Climate Model and a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Wang, Y.; Qian, I.; Lau, W.; Shie, C.-L.; Starr, David (Technical Monitor)

    2002-01-01

    A Regional Land-Atmosphere Climate Simulation (RELACS) System is being developed and implemented at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes, in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water and energy cycles in Indo-China/ South China Sea (SCS)/China, N. America and S. America. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Goddard Parameterization for Land-Atmosphere-C loud Exchange (PLACE) land surface model. PLACE allows for the effects of vegetation, and thus important physical processes such as evapotranspiration and interception are included. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate the atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. RELACS has been used to simulate the onset of the South China Sea Monsoon in 1986, 1997 and 1998. Sensitivity tests on various land surface models, cumulus parameterization schemes (CPSs), sea surface temperature (SST) variations and midlatitude influences have been performed. These tests have indicated that the land surface model has a major impact on the circulation over the S. China Sea. CPSs can effect the precipitation pattern while SST variation can effect the precipitation amounts over both land and ocean. RELACS has also been used to understand the soil-precipitation interaction and feedback associated with a flood event that occurred in and around China

  16. Mesoscale Convective Systems in SCSMEX: Simulated by a Regional Climate Model and a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Wang, Y.; Lau, W.; Jia, Y.; Johnson, D.; Shie, C.-L.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A Regional Land-Atmosphere Climate Simulation (RELACS) System is being developed and implemented at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes, in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water and energy cycles in Indo-China/South China Sea (SCS)/China, North America and South America. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Goddard Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model, PLACE allows for the effect A vegetation, and thus important physical processes such as evapotranspiration and interception are included. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate the atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. RELACS has been used to simulate the onset of the South China Sea Monsoon in 1986, 1991 and 1998. Sensitivity tests on various land surface models, cumulus parameterization schemes (CPSs), sea surface temperature (SST) variations and midlatitude influences have been performed. These tests have indicated that the land surface model has a major impact on the circulation over the South China Sea. CPSs can effect the precipitation pattern while SST variation can effect the precipitation amounts over both land and ocean. RELACS has also been used to understand the soil-precipitation interaction and feedback associated with a flood event that occurred in and around

  17. Numerical Modeling of Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  18. Circulation Control Model Experimental Database for CFD Validation

    NASA Technical Reports Server (NTRS)

    Paschal, Keith B.; Neuhart, Danny H.; Beeler, George B.; Allan, Brian G.

    2012-01-01

    A 2D circulation control wing was tested in the Basic Aerodynamic Research Tunnel at the NASA Langley Research Center. A traditional circulation control wing employs tangential blowing along the span over a trailing-edge Coanda surface for the purpose of lift augmentation. This model has been tested extensively at the Georgia Tech Research Institute for the purpose of performance documentation at various blowing rates. The current study seeks to expand on the previous work by documenting additional flow-field data needed for validation of computational fluid dynamics. Two jet momentum coefficients were tested during this entry: 0.047 and 0.114. Boundary-layer transition was investigated and turbulent boundary layers were established on both the upper and lower surfaces of the model. Chordwise and spanwise pressure measurements were made, and tunnel sidewall pressure footprints were documented. Laser Doppler Velocimetry measurements were made on both the upper and lower surface of the model at two chordwise locations (x/c = 0.8 and 0.9) to document the state of the boundary layers near the spanwise blowing slot.

  19. Mid-Pliocene Atlantic Meridional Overturning Circulation Not Unlike Modern

    NASA Technical Reports Server (NTRS)

    Zhang, Z.-S.; Nisancioglu, K. H.; Chandler, M. A.; Haywood, A. M.; Otto-Bliesner, B. L.; Ramstein, G.; Stepanek, C.; Abe-Ouchi, A.; Chan, W. -L.; Sohl, L. E.

    2013-01-01

    In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high-latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.

  20. Performance of a reconfigured atmospheric general circulation model at low resolution

    NASA Astrophysics Data System (ADS)

    Wen, Xinyu; Zhou, Tianjun; Wang, Shaowu; Wang, Bin; Wan, Hui; Li, Jian

    2007-07-01

    Paleoclimate simulations usually require model runs over a very long time. The fast integration version of a state-of-the-art general circulation model (GCM), which shares the same physical and dynamical processes but with reduced horizontal resolution and increased time step, is usually developed. In this study, we configure a fast version of an atmospheric GCM (AGCM), the Grid Atmospheric Model of IAP/LASG (Institute of Atmospheric Physics/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics), at low resolution (GAMIL-L, hereafter), and compare the simulation results with the NCEP/NCAR reanalysis and other data to examine its performance. GAMIL-L, which is derived from the original GAMIL, is a finite difference AGCM with 72×40 grids in longitude and latitude and 26 vertical levels. To validate the simulated climatology and variability, two runs were achieved. One was a 60-year control run with fixed climatological monthly sea surface temperature (SST) forcing, and the other was a 50-yr (1950 2000) integration with observational time-varying monthly SST forcing. Comparisons between these two cases and the reanalysis, including intra-seasonal and inter-annual variability are also presented. In addition, the differences between GAMIL-L and the original version of GAMIL are also investigated. The results show that GAMIL-L can capture most of the large-scale dynamical features of the atmosphere, especially in the tropics and mid latitudes, although a few deficiencies exist, such as the underestimated Hadley cell and thereby the weak strength of the Asia summer monsoon. However, the simulated mean states over high latitudes, especially over the polar regions, are not acceptable. Apart from dynamics, the thermodynamic features mainly depend upon the physical parameterization schemes. Since the physical package of GAMIL-L is exactly the same as the original high-resolution version of GAMIL, in which the NCAR Community

  1. A global multiscale mathematical model for the human circulation with emphasis on the venous system.

    PubMed

    Müller, Lucas O; Toro, Eleuterio F

    2014-07-01

    We present a global, closed-loop, multiscale mathematical model for the human circulation including the arterial system, the venous system, the heart, the pulmonary circulation and the microcirculation. A distinctive feature of our model is the detailed description of the venous system, particularly for intracranial and extracranial veins. Medium to large vessels are described by one-dimensional hyperbolic systems while the rest of the components are described by zero-dimensional models represented by differential-algebraic equations. Robust, high-order accurate numerical methodology is implemented for solving the hyperbolic equations, which are adopted from a recent reformulation that includes variable material properties. Because of the large intersubject variability of the venous system, we perform a patient-specific characterization of major veins of the head and neck using MRI data. Computational results are carefully validated using published data for the arterial system and most regions of the venous system. For head and neck veins, validation is carried out through a detailed comparison of simulation results against patient-specific phase-contrast MRI flow quantification data. A merit of our model is its global, closed-loop character; the imposition of highly artificial boundary conditions is avoided. Applications in mind include a vast range of medical conditions. Of particular interest is the study of some neurodegenerative diseases, whose venous haemodynamic connection has recently been identified by medical researchers. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Revisiting Gill's Circulation. Dynamic Response to Diabatic Heating of Different Horizontal Extents

    NASA Astrophysics Data System (ADS)

    Reboredo, B.; Bellon, G.

    2017-12-01

    The horizontal extent of diabatic heating associated with the MJO is thought to be crucial to its development, and the inability of GCMs to simulate the spatial, horizontal organization of clouds is considered a leading hypothesis to explain their limited capacity to simulate MJO events. This prevents the MJO large-circulation response from developing and feeding back on the development of clouds. We apply mid-tropospheric heating of different size in simple linear and non-linear models of the tropical atmosphere following Gill's seminal work on heat-induced tropical circulations. Results show that there is a scale for which the characteristic circulation {Γ c} for the vertical advection of moisture to produce the latent heat mean {Q} gives a rough estimate of the real world MJO scale. Overturning circulation flow rates above {Γ c} account for a circulation that transports more moisture than necessary to be maintained, and below {Γ c}, circulation would not transport enough moisture to maintain circulation. This dynamic scale might constrain the size of the spatially-organised convection necessary to the development of an MJO event. However, other effects are expected to modulate this scale, such as vertical advection of moisture anomalies, horizontal advection, evaporation, radiative heating, and sensible heat fluxes.

  3. Influence of savanna fire on Australian monsoon season precipitation and circulation as simulated using a distributed computing environment

    NASA Astrophysics Data System (ADS)

    Lynch, Amanda H.; Abramson, David; Görgen, Klaus; Beringer, Jason; Uotila, Petteri

    2007-10-01

    Fires in the Australian savanna have been hypothesized to affect monsoon evolution, but the hypothesis is controversial and the effects have not been quantified. A distributed computing approach allows the development of a challenging experimental design that permits simultaneous variation of all fire attributes. The climate model simulations are distributed around multiple independent computer clusters in six countries, an approach that has potential for a range of other large simulation applications in the earth sciences. The experiment clarifies that savanna burning can shape the monsoon through two mechanisms. Boundary-layer circulation and large-scale convergence is intensified monotonically through increasing fire intensity and area burned. However, thresholds of fire timing and area are evident in the consequent influence on monsoon rainfall. In the optimal band of late, high intensity fires with a somewhat limited extent, it is possible for the wet season to be significantly enhanced.

  4. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    NASA Technical Reports Server (NTRS)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  5. COSP: Satellite simulation software for model assessment

    DOE PAGES

    Bodas-Salcedo, A.; Webb, M. J.; Bony, S.; ...

    2011-08-01

    Errors in the simulation of clouds in general circulation models (GCMs) remain a long-standing issue in climate projections, as discussed in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. This highlights the need for developing new analysis techniques to improve our knowledge of the physical processes at the root of these errors. The Cloud Feedback Model Intercomparison Project (CFMIP) pursues this objective, and under that framework the CFMIP Observation Simulator Package (COSP) has been developed. COSP is a flexible software tool that enables the simulation of several satellite-borne active and passive sensor observations from model variables. The flexibilitymore » of COSP and a common interface for all sensors facilitates its use in any type of numerical model, from high-resolution cloud-resolving models to the coarser-resolution GCMs assessed by the IPCC, and the scales in between used in weather forecast and regional models. The diversity of model parameterization techniques makes the comparison between model and observations difficult, as some parameterized variables (e.g., cloud fraction) do not have the same meaning in all models. The approach followed in COSP permits models to be evaluated against observations and compared against each other in a more consistent manner. This thus permits a more detailed diagnosis of the physical processes that govern the behavior of clouds and precipitation in numerical models. The World Climate Research Programme (WCRP) Working Group on Coupled Modelling has recommended the use of COSP in a subset of climate experiments that will be assessed by the next IPCC report. Here we describe COSP, present some results from its application to numerical models, and discuss future work that will expand its capabilities.« less

  6. The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models

    DOE PAGES

    Sperber, Kenneth R.; Gualdi, Silvio; Legutke, Stephanie; ...

    2005-06-29

    The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30–70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space–time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which ~100 years of daily data is available, Montemore » Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of ~0.5°C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air–sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat

  7. Tropical circulation and precipitation response to ozone depletion and recovery

    NASA Astrophysics Data System (ADS)

    Brönnimann, Stefan; Jacques-Coper, Martín; Rozanov, Eugene; Fischer, Andreas M.; Morgenstern, Olaf; Zeng, Guang; Akiyoshi, Hideharu; Yamashita, Yousuke

    2017-06-01

    Among the few well established changes in atmospheric circulation in recent decades are those caused by stratospheric ozone depletion. They include a strengthening and poleward contraction of the westerly atmospheric circulation over the Southern extratropics, i.e. a strengthening Southern Annular Mode (SAM), in austral spring and summer. Associated effects on extratropical temperature and precipitation and more recently subtropical precipitation have been documented and are understood in a zonal mean framework. We present zonally asymmetric effects of ozone depletion that reach into the tropics and affect atmospheric circulation and precipitation, including the South Pacific Convergence Zone (SPCZ), the most important rainband of the Southern Hemisphere. Using observation-based analyses and model simulations we show that over the 1961-1996 period, ozone depletion led to increased precipitation at the northern flank of the SPCZ and to decreased precipitation to the south. The effects originate from a flow pattern over the southwestern Pacific that extends equatorward and alters the propagation of synoptic waves and thus the position of the SPCZ. Model simulations suggest that anticipated stratospheric ozone recovery over the next decades will reverse these effects.

  8. Stochastic simulation of human pulmonary blood flow and transit time frequency distribution based on anatomic and elasticity data.

    PubMed

    Huang, Wei; Shi, Jun; Yen, R T

    2012-12-01

    The objective of our study was to develop a computing program for computing the transit time frequency distributions of red blood cell in human pulmonary circulation, based on our anatomic and elasticity data of blood vessels in human lung. A stochastic simulation model was introduced to simulate blood flow in human pulmonary circulation. In the stochastic simulation model, the connectivity data of pulmonary blood vessels in human lung was converted into a probability matrix. Based on this model, the transit time of red blood cell in human pulmonary circulation and the output blood pressure were studied. Additionally, the stochastic simulation model can be used to predict the changes of blood flow in human pulmonary circulation with the advantage of the lower computing cost and the higher flexibility. In conclusion, a stochastic simulation approach was introduced to simulate the blood flow in the hierarchical structure of a pulmonary circulation system, and to calculate the transit time distributions and the blood pressure outputs.

  9. Wind and Wave Driven Nearshore Circulation at Cape Hatteras Point

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Voulgaris, G.; Warner, J. C.; List, J. H.

    2012-12-01

    We have used a measurement and modeling approach to identify hydrodynamic processes responsible for alongshore transport of sediment that can support the maintenance of Diamond Shoals, NC, a large inner-shelf sedimentary convergent feature. As a part of Carolina Coastal Change Processes project, a one month field experiment was conducted around Cape Hatteras point during February, 2010. The instrumentation consisted of 15 acoustic current meters (measuring pressure and velocity profile) deployed in water depths varying from 3-10m and a very high frequency (VHF) beam forming radar system providing surface waves and currents with a resolution of 150 m and a spatial coverage of 10-15 km2. Analysis of field observation suggests that wind-driven circulation and littoral current dominate surf zone and inner shelf processes at least at an order higher than tidally rectified flows. However, the data analysis identified that relevant processes like non-linear advective acceleration, pressure gradient and vortex-force (due to interaction between wave-induced drift and mean flow vorticity), may be significant, but were not assessed accurately due to instrument location and accuracy. To obtain a deeper physical understanding of the hydrodynamics in this study-site, we applied a three-dimensional Coupled-Ocean-Atmosphere-Wave_Sediment-Transport (COAWST) numerical model. The COAWST modeling system is comprised of nested, coupled, three-dimensional ocean-circulation model (ROMS) and wave propagation model (SWAN), configured for the study site to simulate wave height, direction, period and mean current velocities (both Eulerian and Lagrangian). The nesting follows a two-way grid refinement process for the circulation module, and one-way for the wave model. The coarsest parent grid resolved processes on the spatial and temporal scales of mid-shelf to inner-shelf, and subsequent child grids evolved at inner-shelf and surf zone scales. Preliminary results show that the model

  10. Global two dimensional chemistry model and simulation of atmospheric chemical composition

    NASA Astrophysics Data System (ADS)

    Zhang, Renjian; Wang, Mingxing; Zeng, Qingcun

    2000-03-01

    A global two-dimensional zonally averaged chemistry model is developed to study the chemi-cal composition of atmosphere. The region of the model is from 90°S to 90°N and from the ground to the altitude of 20 km with a resolution of 5° x 1 km. The wind field is residual circulation calcu-lated from diabatic rate. 34 species and 104 chemical and photochemical reactions are considered in the model. The sources of CH4, CO and NOx, which are divided into seasonal sources and non-seasonal sources, are parameterized as a function of latitude and time. The chemical composi-tion of atmosphere was simulated with emission level of CH4, CO and NOx in 1990. The results are compared with observations and other model results, showing that the model is successful to simu-late the atmospheric chemical composition and distribution of CH4.

  11. Angular circulation speed of tablets in a vibratory tablet coating pan.

    PubMed

    Kumar, Rahul; Wassgren, Carl

    2013-03-01

    In this work, a single tablet model and a discrete element method (DEM) computer simulation are developed to obtain the angular circulation speed of tablets in a vibratory tablet coating pan for range of vibration frequencies and amplitudes. The models identify three important dimensionless parameters that influence the speed of the tablets: the dimensionless amplitude ratio (a/R), the Froude number (aω2/g), and the tablet-wall friction coefficient, where a is the peak vibration amplitude at the drum center, ω is the vibration angular frequency, R is the drum radius, and g is the acceleration due to gravity. The models predict that the angular circulation speed of tablets increases with an increase in each of these parameters. The rate of increase in the angular circulation speed is observed to decrease for larger values of a/R. The angular circulation speed reaches an asymptote beyond a tablet-wall friction coefficient value of about 0.4. Furthermore, it is found that the Froude number should be greater than one for the tablets to start circulating. The angular circulation speed increases as Froude number increases but then does not change significantly at larger values of the Froude number. Period doubling, where the motion of the bed is repeated every two cycles, occurs at a Froude number larger than five. The single tablet model, although much simpler than the DEM model, is able to predict the maximum circulation speed (the limiting case for a large value of tablet-wall friction coefficient) as well as the transition to period doubling.

  12. Integrated and spectral energetics of the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Tenenbaum, J.

    1981-01-01

    Integrated and spectral error energetics of the Goddard Laboratory for Atmospheric Sciences (GLAS) general circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level. General circulation model spectral energetics predictions are compared with the corresponding observational spectra on a day by day basis. Eddy kinetic energy can be correct while significant errors occur in the kinetic energy of wavenumber three. Single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetic and potential energy are demonstrated.

  13. A Detailed Physiologically Based Model to Simulate the Pharmacokinetics and Hormonal Pharmacodynamics of Enalapril on the Circulating Endocrine Renin-Angiotensin-Aldosterone System

    PubMed Central

    Claassen, Karina; Willmann, Stefan; Eissing, Thomas; Preusser, Tobias; Block, Michael

    2013-01-01

    The renin-angiotensin-aldosterone system (RAAS) plays a key role in the pathogenesis of cardiovascular disorders including hypertension and is one of the most important targets for drugs. A whole body physiologically based pharmacokinetic (wb PBPK) model integrating this hormone circulation system and its inhibition can be used to explore the influence of drugs that interfere with this system, and thus to improve the understanding of interactions between drugs and the target system. In this study, we describe the development of a mechanistic RAAS model and exemplify drug action by a simulation of enalapril administration. Enalapril and its metabolite enalaprilat are potent inhibitors of the angiotensin-converting-enzyme (ACE). To this end, a coupled dynamic parent-metabolite PBPK model was developed and linked with the RAAS model that consists of seven coupled PBPK models for aldosterone, ACE, angiotensin 1, angiotensin 2, angiotensin 2 receptor type 1, renin, and prorenin. The results indicate that the model represents the interactions in the RAAS in response to the pharmacokinetics (PK) and pharmacodynamics (PD) of enalapril and enalaprilat in an accurate manner. The full set of RAAS-hormone profiles and interactions are consistently described at pre- and post-administration steady state as well as during their dynamic transition and show a good agreement with literature data. The model allows a simultaneous representation of the parent-metabolite conversion to the active form as well as the effect of the drug on the hormone levels, offering a detailed mechanistic insight into the hormone cascade and its inhibition. This model constitutes a first major step to establish a PBPK-PD-model including the PK and the mode of action (MoA) of a drug acting on a dynamic RAAS that can be further used to link to clinical endpoints such as blood pressure. PMID:23404365

  14. Numerical experiments with a general circulation model concerning the distribution of ozone in the stratosphere

    NASA Technical Reports Server (NTRS)

    Kurzeja, R. J.; Haggard, K. V.; Grose, W. L.

    1984-01-01

    The distribution of ozone below 60 km altitude has been simulated in two experiments employing a nine-layer quasi-geostrophic spectral model and linear parameterization of ozone photochemistry, the first of which included thermal and orographic forcing of the planetary scale waves, while the second omitted it. The first experiment exhibited a high latitude winter ozone buildup which was due to a Brewer-Dodson circulation forced by large amplitude (planetary scale) waves in the winter lower stratosphere. Photochemistry was also found to be important down to lower altitudes (20 km) in the summer stratosphere than had previously been supposed.

  15. The Role of Rough Topography in Mediating Impacts of Bottom Drag in Eddying Ocean Circulation Models.

    PubMed

    Trossman, David S; Arbic, Brian K; Straub, David N; Richman, James G; Chassignet, Eric P; Wallcraft, Alan J; Xu, Xiaobiao

    2017-08-01

    Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β -plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.

  16. Simulation of the West African Monsoon using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Gianotti, Rebecca L.; Eltahir, Elfatih A. B.

    2013-04-01

    We test the performance of the MIT Regional Climate Model (MRCM) in simulating the West African Monsoon. MRCM introduces several improvements over Regional Climate Model version 3 (RegCM3) including coupling of Integrated Biosphere Simulator (IBIS) land surface scheme, a new albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Using MRCM, we carried out a series of experiments implementing two different land surface schemes (IBIS and BATS) and three convection schemes (Grell with the Fritsch-Chappell closure, standard Emanuel, and modified Emanuel that includes the new convective cloud scheme). Our analysis primarily focused on comparing the precipitation characteristics, surface energy balance and large scale circulations against various observations. We document a significant sensitivity of the West African monsoon simulation to the choices of the land surface and convection schemes. In spite of several deficiencies, the simulation with the combination of IBIS and modified Emanuel schemes shows the best performance reflected in a marked improvement of precipitation in terms of spatial distribution and monsoon features. In particular, the coupling of IBIS leads to representations of the surface energy balance and partitioning that are consistent with observations. Therefore, the major components of the surface energy budget (including radiation fluxes) in the IBIS simulations are in better agreement with observation than those from our BATS simulation, or from previous similar studies (e.g Steiner et al., 2009), both qualitatively and quantitatively. The IBIS simulations also reasonably reproduce the dynamical structure of vertically stratified behavior of the atmospheric circulation with three major components: westerly monsoon flow, African Easterly Jet (AEJ), and Tropical Easterly Jet (TEJ). In addition, since the modified Emanuel scheme tends to reduce the precipitation

  17. Does coupled ocean enhance ozone-hole-induced Southern Hemisphere circulation changes?

    NASA Astrophysics Data System (ADS)

    Son, S. W.; Han, B. R.; Kim, S. Y.; Park, R.

    2017-12-01

    The ozone-hole-induced Southern Hemisphere (SH) circulation changes, such as poleward shift of westerly jet and Hadley cell widening, have been typically explored with either coupled general circulation models (CGCMs) prescribing stratospheric ozone or chemistry-climate models (CCMs) prescribing surface boundary conditions. Only few studies have utilized ocean-coupled CCMs with a relatively coarse resolution. To better quantify the role of interactive chemistry and coupled ocean in the ozone-hole-induced SH circulation changes, the present study examines a set of CGCM and CCM simulations archived for the Coupled Model Intercomparison Project phase 5 (CMIP5) and CCM initiative (CCMI). Although inter-model spread of Antarctic ozone depletion is substantially large especially in the austral spring, both CGCMs with relatively simple ozone chemistry and CCMs with fully interactive comprehensive chemistry reasonably well reproduce long-term trends of Antarctic ozone and the associated polar-stratospheric temperature changes. Most models reproduce a poleward shift of SH jet and Hadley-cell widening in the austral summer in the late 20th century as identified in reanalysis datasets. These changes are quasi-linearly related with Antarctic ozone changes, confirming the critical role of Antarctic ozone depletion in the austral-summer zonal-mean circulation changes. The CGCMs with simple but still interactive ozone show slightly stronger circulation changes than those with prescribed ozone. However, the long-term circulation changes in CCMs are largely insensitive to the coupled ocean. While a few models show the enhanced circulation changes when ocean is coupled, others show essentially no changes or even weakened circulation changes. This result suggests that the ozone-hole-related stratosphere-troposphere coupling in the late 20th century may be only weakly sensitive to the coupled ocean.

  18. Functional end-arterial circulation of the choroid assessed by using fat embolism and electric circuit simulation.

    PubMed

    Lee, Ji Eun; Ahn, Ki Su; Park, Keun Heung; Pak, Kang Yeun; Kim, Hak Jin; Byon, Ik Soo; Park, Sung Who

    2017-05-30

    The discrepancy in the choroidal circulation between anatomy and function has remained unsolved for several decades. Postmortem cast studies revealed extensive anastomotic channels, but angiographic studies indicated end-arterial circulation. We carried out experimental fat embolism in cats and electric circuit simulation. Perfusion defects were observed in two categories. In the scatter perfusion defects suggesting an embolism at the terminal arterioles, fluorescein dye filled the non-perfused lobule slowly from the adjacent perfused lobule. In the segmental perfusion defects suggesting occlusion of the posterior ciliary arteries, the hypofluorescent segment became perfused by spontaneous resolution of the embolism without subsequent smaller infarction. The angiographic findings could be simulated with an electric circuit. Although electric currents flowed to the disconnected lobule, the level was very low compared with that of the connected ones. The choroid appeared to be composed of multiple sectors with no anastomosis to other sectors, but to have its own anastomotic arterioles in each sector. Blood flows through the continuous choriocapillaris bed in an end-arterial nature functionally to follow a pressure gradient due to the drainage through the collector venule.

  19. Study on bubbly flow behavior in natural circulation reactor by thermal-hydraulic simulation tests with SF6-Gas and ethanol liquid

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshiyuki; Suga, Keishi; Hibi, Koki; Okazaki, Toshihiko; Komeno, Toshihiro; Kunugi, Tomoaki; Serizawa, Akimi; Yoneda, Kimitoshi; Arai, Takahiro

    2009-02-01

    An advanced experimental technique has been developed to simulate two-phase flow behavior in a light water reactor (LWR). The technique applies three kinds of methods; (1) use of sulfur-hexafluoride (SF6) gas and ethanol (C2H5OH) liquid at atmospheric temperature and a pressure less than 1.0MPa, where the fluid properties are similar to steam-water ones in the LWR, (2) generation of bubble with a sintering tube, which simulates bubble generation on heated surface in the LWR, (3) measurement of detailed bubble distribution data with a bi-optical probe (BOP), (4) and measurement of liquid velocities with the tracer liquid. This experimental technique provides easy visualization of flows by using a large scale experimental apparatus, which gives three-dimensional flows, and measurement of detailed spatial distributions of two-phase flow. With this technique, we have carried out experiments simulating two-phase flow behavior in a single-channel geometry, a multi-rod-bundle one, and a horizontal-tube-bundle one on a typical natural circulation reactor system. Those experiments have clarified a) a flow regime map in a rod bundle on the transient region between bubbly and churn flow, b) three-dimensional flow behaviour in rod-bundles where inter-subassembly cross-flow occurs, c) bubble-separation behavior with consideration of reactor internal structures. The data have given analysis models for the natural circulation reactor design with good extrapolation.

  20. Numerical simulation of local atmospheric circulations in the pre-Alpine area between Lake Garda and Verona

    NASA Astrophysics Data System (ADS)

    Laiti, L.; Serafin, S.; Zardi, D.

    2010-09-01

    The pre-Alpine area between Lake Garda and Verona displays a very complex and heterogeneous territory, allowing the development of several interacting systems of thermally driven local winds, the major being the lake/land breeze system on the coasts of Lake Garda and the up/down-valley wind system between the plain and the river Adige Valley. In order to investigate the local wind patterns, a series of nested numerical simulations with a horizontal resolution of 500 m were carried out using the ARPS 5.2.9 model (Xue et al. 2000, 2001), considering a fair weather day suitable for a clear development of the expected circulations (15th July 2003). The simulated wind speed and direction, pressure, temperature and water vapour mixing ratio were compared to synoptic scale meteorological charts, to vertical profiles from radiosoundings taken at the major sounding stations of the alpine region and to local scale measurements performed at the surface station of Dolcè (at the inlet of the Adige Valley). Numerical results at all scales were found to be in very good agreement with the available sets of meteorological observations. The analysis of the diurnal evolution of the 3D fields of temperature, moisture content, wind and turbulent kinetic energy allowed the identification of a very shallow and clearly defined breeze front of cold and humid air moving from off-shore towards the Lake Garda coast, from the late morning (10:00 LST) until the evening (20:00 LST). The diurnal up-valley breeze was also well reproduced: the valley atmosphere displays a thick mixed layer dominated by shallow turbulent convection between 11:00 LST and 21:00 LST. Lateral slope winds were also recognized, as they created cross-valley convective cells. While no clear evidence of a nocturnal land breeze was found in the simulations, the nocturnal down-valley wind in the Adige Valley was clearly reproduced. Finally, a scalar transport equation was added to the ARPS model in order to simulate transport

  1. Modeling circulation patterns induced by spatial cross-shore wind variability in a small-size coastal embayment

    NASA Astrophysics Data System (ADS)

    Cerralbo, Pablo; Espino, Manuel; Grifoll, Manel

    2016-08-01

    This contribution shows the importance of the cross-shore spatial wind variability in the water circulation in a small-sized micro-tidal bay. The hydrodynamic wind response at Alfacs Bay (Ebro River delta, NW Mediterranean Sea) is investigated with a numerical model (ROMS) supported by in situ observations. The wind variability observed in meteorological measurements is characterized with meteorological model (WRF) outputs. From the hydrodynamic simulations of the bay, the water circulation response is affected by the cross-shore wind variability, leading to water current structures not observed in the homogeneous-wind case. If the wind heterogeneity response is considered, the water exchange in the longitudinal direction increases significantly, reducing the water exchange time by around 20%. Wind resolutions half the size of the bay (in our case around 9 km) inhibit cross-shore wind variability, which significantly affects the resultant circulation pattern. The characteristic response is also investigated using idealized test cases. These results show how the wind curl contributes to the hydrodynamic response in shallow areas and promotes the exchange between the bay and the open sea. Negative wind curl is related to the formation of an anti-cyclonic gyre at the bay's mouth. Our results highlight the importance of considering appropriate wind resolution even in small-scale domains (such as bays or harbors) to characterize the hydrodynamics, with relevant implications in the water exchange time and the consequent water quality and ecological parameters.

  2. Cloud Feedback in Atmospheric General Circulation Models: An Update

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M. H.; Ingram, W. J.; Potter, G. L.; Alekseev, V.; Barker, H. W.; Cohen-Solal, E.; Colman, R. A.; Dazlich, D. A.; DelGenio, A. D.; hide

    1996-01-01

    Six years ago, we compared the climate sensitivity of 19 atmospheric general circulation models and found a roughly threefold variation among the models; most of this variation was attributed to differences in the models' depictions of cloud feedback. In an update of this comparison, current models showed considerably smaller differences in net cloud feedback, with most producing modest values. There are, however, substantial differences in the feedback components, indicating that the models still have physical disagreements.

  3. Integrated and spectral energetics of the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Tenenbaum, J.

    1982-01-01

    Integrated and spectral error energetics of the GLAS General circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level, particularly above strong initial jet streams associated in part with regions of steep terrain. The spectral error growth study represents the first comparison of general circulation model spectral energetics predictions with the corresponding observational spectra on a day by day basis. The major conclusion is that eddy kinetics energy can be correct while significant errors occur in the kinetic energy of wavenumber 3. Both the model and observations show evidence of single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetics and potential energy.

  4. Intercomparison of methods of coupling between convection and large-scale circulation. 1. Comparison over uniform surface conditions

    DOE PAGES

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.; ...

    2015-10-24

    Here, as part of an international intercomparison project, a set of single-column models (SCMs) and cloud-resolving models (CRMs) are run under the weak-temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistentmore » implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large-scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.« less

  5. Comparison of ocean surface solar irradiance in the GLA General Circulation Model and satellite-based calculations

    NASA Technical Reports Server (NTRS)

    Chertock, Beth; Sud, Y. C.

    1993-01-01

    A global, 7-year satellite-based record of ocean surface solar irradiance (SSI) is used to assess the realism of ocean SSI simulated by the nine-layer Goddard Laboratory for Atmospheres (GLA) General Circulation Model (GCM). January and July climatologies of net SSI produced by the model are compared with corresponding satellite climatologies for the world oceans between 54 deg N and 54 deg S. This comparison of climatologies indicates areas of strengths and weaknesses in the GCM treatment of cloud-radiation interactions, the major source of model uncertainty. Realism of ocean SSI is also important for applications such as incorporating the GLA GCM into a coupled ocean-atmosphere GCM. The results show that the GLA GCM simulates too much SSI in the extratropics and too little in the tropics, especially in the summer hemisphere. These discrepancies reach magnitudes of 60 W/sq m and more. The discrepancies are particularly large in the July case off the western coast of North America. Positive and negative discrepancies in SSI are shown to be consistent with discrepancies in planetary albedo.

  6. Processing of Cells' Trajectories Data for Blood Flow Simulation Model*

    NASA Astrophysics Data System (ADS)

    Slavík, Martin; Kovalčíková, Kristína; Bachratý, Hynek; Bachratá, Katarína; Smiešková, Monika

    2018-06-01

    Simulations of the red blood cells (RBCs) flow as a movement of elastic objects in a fluid, are developed to optimize microfluidic devices used for a blood sample analysis for diagnostic purposes in the medicine. Tracking cell behaviour during simulation helps to improve the model and adjust its parameters. For the optimization of the microfluidic devices, it is also necessary to analyse cell trajectories as well as likelihood and frequency of their occurrence in a particular device area, especially in the parts, where they can affect circulating tumour cells capture. In this article, we propose and verify several ways of processing and analysing the typology and trajectory stability in simulations with single or with a large number of red blood cells (RBCs) in devices with different topologies containing cylindrical obstacles.

  7. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model.

    PubMed

    Hyde, W T; Crowley, T J; Baum, S K; Peltier, W R

    2000-05-25

    Ice sheets may have reached the Equator in the late Proterozoic era (600-800 Myr ago), according to geological and palaeomagnetic studies, possibly resulting in a 'snowball Earth'. But this period was a critical time in the evolution of multicellular animals, posing the question of how early life survived under such environmental stress. Here we present computer simulations of this unusual climate stage with a coupled climate/ice-sheet model. To simulate a snowball Earth, we use only a reduction in the solar constant compared to present-day conditions and we keep atmospheric CO2 concentrations near present levels. We find rapid transitions into and out of full glaciation that are consistent with the geological evidence. When we combine these results with a general circulation model, some of the simulations result in an equatorial belt of open water that may have provided a refugium for multicellular animals.

  8. Aerosol indirect effects - general circulation model intercomparison and evaluation with satellite data

    NASA Astrophysics Data System (ADS)

    Quaas, J.; Ming, Y.; Menon, S.; Takemura, T.; Wang, M.; Penner, J. E.; Gettelman, A.; Lohmann, U.; Bellouin, N.; Boucher, O.; Sayer, A. M.; Thomas, G. E.; McComiskey, A.; Feingold, G.; Hoose, C.; Kristjánsson, J. E.; Liu, X.; Balkanski, Y.; Donner, L. J.; Ginoux, P. A.; Stier, P.; Grandey, B.; Feichter, J.; Sednev, I.; Bauer, S. E.; Koch, D.; Grainger, R. G.; Kirkevåg, A.; Iversen, T.; Seland, Ø.; Easter, R.; Ghan, S. J.; Rasch, P. J.; Morrison, H.; Lamarque, J.-F.; Iacono, M. J.; Kinne, S.; Schulz, M.

    2009-11-01

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (τa) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between τa and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and τa as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld-τa relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between τa and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR-τa relationship show a strong positive correlation between τa and fcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of τa, and parameterisation

  9. Dynamical Core in Atmospheric Model Does Matter in the Simulation of Arctic Climate

    NASA Astrophysics Data System (ADS)

    Jun, Sang-Yoon; Choi, Suk-Jin; Kim, Baek-Min

    2018-03-01

    Climate models using different dynamical cores can simulate significantly different winter Arctic climates even if equipped with virtually the same physics schemes. Current climate simulated by the global climate model using cubed-sphere grid with spectral element method (SE core) exhibited significantly warmer Arctic surface air temperature compared to that using latitude-longitude grid with finite volume method core. Compared to the finite volume method core, SE core simulated additional adiabatic warming in the Arctic lower atmosphere, and this was consistent with the eddy-forced secondary circulation. Downward longwave radiation further enhanced Arctic near-surface warming with a higher surface air temperature of about 1.9 K. Furthermore, in the atmospheric response to the reduced sea ice conditions with the same physical settings, only the SE core showed a robust cooling response over North America. We emphasize that special attention is needed in selecting the dynamical core of climate models in the simulation of the Arctic climate and associated teleconnection patterns.

  10. Walker circulation in a transient climate

    NASA Astrophysics Data System (ADS)

    Plesca, Elina; Grützun, Verena; Buehler, Stefan A.

    2016-04-01

    response (temperature change by the time of CO2 doubling), which in turn might be related to a decreased ocean heat uptake. This uncertainty across the models we attribute to the multitude of factors controlling ocean and atmosphere heat exchange, both at global and regional scales, as well as to the present capabilities of GCMs in simulating this exchange. References: England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A. S., McPhaden, M. J., Purich, A., and Santoso, A., 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change 4 (3): 222-227. Ma, J., and Xie, S. P., 2013. Regional Patterns of Sea Surface Temperature Change: A Source of Uncertainty in Future Projections of Precipitation and Atmospheric Circulation*. Journal of Climate, 26 (8): 2482-2501

  11. Mesoscale Circulation Variability from Five years of Quasi-continuous Glider Observations and Numerical Simulation at a Key Sub-basin 'Choke' Point.

    NASA Astrophysics Data System (ADS)

    Heslop, E. E.; Mourre, B.; Juza, M.; Troupin, C.; Escudier, R.; Torner, M.; Tintore, J.

    2016-02-01

    Quasi-continuous glider observations over 5 years have uniquely characterised a high frequency variability in the circulation through the Ibiza Channel, an important `choke' point in the Western Mediterranean Sea. This `choke' point governs the basin/sub-basin scale circulation and the north/south exchanges of different water masses. The resulting multi-scale variability impacts the regional shelf and open ocean ecosystems, including the spawning grounds of Atlantic bluefin tuna. Through the unique glider record we show the relevance of the weekly/mesoscale variability, which is of same order as the previously established seasonal and inter-annual variability. To understand the drivers of this variability we combine the glider data with numerical simulations (WMOP) and altimetry. Two key drivers are identified; extreme winter events, which cause the formation of a cold winter mode water (Winter Intermediate Water) in the shelf areas to the north of the Ibiza Channel, and mesoscale activity, which to the north produce channel `blocking' eddies and to the south intermittent and vigorous flows of fresher `Atlantic' waters through the Ibiza Channel. Results from the 2 km resolution WMOP are compared with the high-resolution (2 - 3 km.) glider data, giving insight into model validation across different scales, for both circulation and water masses. There is an emerging consensus that gliders can uniquely access critical time and length scales and in this study gliders complement existing satellite measurements and models, while opening up new capabilities for multidisciplinary, autonomous and high-resolution ocean observation.

  12. Stationary eddies in the Mars general circulation as simulated by the NASA-Ames GCM

    NASA Technical Reports Server (NTRS)

    Barnes, J. R.; Pollack, J. B.; Haberle, Robert M.

    1993-01-01

    Quasistationary eddies are prominent in a large set of simulations of the Mars general circulation performed with the NASA-Ames GCM. Various spacecraft observations have at least hinted at the existence of such eddies in the Mars atmosphere. The GCM stationary eddies appear to be forced primarily by the large Mars topography, and (to a much lesser degree) by spatial variations in the surface albedo and thermal inertia. The stationary eddy circulations exhibit largest amplitudes at high altitudes (above 30-40 km) in the winter extratropical regions. In these regions they are of planetary scale, characterized largely by zonal wavenumbers 1 and 2. Southern Hemisphere winter appears to be dominated by a very strong wave 1 pattern, with both waves 1 and 2 being prominent in the Northern Hemisphere winter regime. This difference seems to be basically understandable in terms of differences in the topography in the two hemispheres. The stationary eddies in the northern winter extratropics are found to increase in amplitude with dust loading. This behavior appears to be at least partly associated with changes in the structure of the zonal-mean flow that favor a greater response to wave 1 topographic forcing. There are also strong stationary eddy circulations in the tropics and in the summer hemisphere. The eddies in the summer subtropics and extratropics arc substantially stronger in southern summer than in northern summer. The summer hemisphere stationary circulations are relatively shallow and are characterized by smaller zonal scales than those in the winter extratropics.

  13. The parameterization of the planetary boundary layer in the UCLA general circulation model - Formulation and results

    NASA Technical Reports Server (NTRS)

    Suarez, M. J.; Arakawa, A.; Randall, D. A.

    1983-01-01

    A planetary boundary layer (PBL) parameterization for general circulation models (GCMs) is presented. It uses a mixed-layer approach in which the PBL is assumed to be capped by discontinuities in the mean vertical profiles. Both clear and cloud-topped boundary layers are parameterized. Particular emphasis is placed on the formulation of the coupling between the PBL and both the free atmosphere and cumulus convection. For this purpose a modified sigma-coordinate is introduced in which the PBL top and the lower boundary are both coordinate surfaces. The use of a bulk PBL formulation with this coordinate is extensively discussed. Results are presented from a July simulation produced by the UCLA GCM. PBL-related variables are shown, to illustrate the various regimes the parameterization is capable of simulating.

  14. Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    NASA Astrophysics Data System (ADS)

    Trossman, D.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-12-01

    We argue that a substantial fraction of the uncertainty in the cloud radiative feedback during transient climate change may be due to uncertainty in the ocean circulation perturbation. A suite of climate model simulations in which the ocean circulation, the cloud radiative feedback, or a combination of both are held fixed while CO2 doubles, shows that changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback. Specifically, a slowdown in the Atlantic Meridional Overturning Circulation (AMOC) helps to maintain low cloud cover in the Northern Hemisphere extratropics. We propose that the AMOC decline increases the meridional SST gradient, strengthening the storm track, its attendant clouds and the amount of shortwave radiation they reflect back to space. If the results of our model were to scale proportionately in the CMIP5 models, whose AMOC decline ranges from 15 to 60% under RCP8.5, then as much as 70% of the intermodel spread in the cloud radiative feedback and 35% of the spread in the transient climate response could possibly stem from the model representations of AMOC decline.

  15. The Hornsund fjord - modeling of the general circulation, heat exchange and water masses transport.

    NASA Astrophysics Data System (ADS)

    Przyborska, Anna; Jakacki, Jaromir; Kosecki, Szymon; Sundfjord, Arild

    2015-04-01

    The MIKE3D hydrodynamic model has been implemented for diagnosis an ecosystem status in the most southern fjord of the Svalbard Archipelago. The model is based on MIKE 3 Flow Model FM that uses flexible mesh grid. The spatial discretization in solutions of equations is performed by the finite element method. The regional scale of the model implicated implementation of external data at the lateral boundary region. In our case Flather's boundary condition let us to force the model with combined information. At the same time tidal ordinate and barotropic component of velocity that reflects the West Spitsbergen Current are implemented. Also salinity and temperature were nested at the boundary area. The upper boundary conditions was also introduced. The data for the boundary were taken from Global Tide Model (all tidal components), an 800 m ROMS simulation of the Svalbard area made by the Norwegian Institute of Marine Research (bartoropic velocities, temperature and salinity), European Centre for Medium Weather Forecast (ECMWF) and also from Global Data Assimilation System (GDAS). Implemented model was validated and the mean circulation and its seasonal variability will be presented. Also influence of the shelf water masses on the fjord will be discussed. Fresh water transport from glaciers, run off and snow will be estimated. Results are based on 5 years simulation (2005-2010) This work was partially performed in the frame of the projects GAME (DEC-2012/04/A/NZ8/00661) and AWAKE2 (Pol-Nor/198675/17/2013)

  16. Modeling of subaqueous melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.; Tinto, K. J.; van den Broeke, M. R.

    2014-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. The model is constrained by ice shelf bathymetry and ice thickness (refined model in the immediate vicinity of the grounding line) from NASA Operation IceBridge (2011), ocean temperature/salinity data from Johnson et al. (2011), ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) by Padman and Erofeeva (2004) and subglacial discharge at the grounding line calculated by the hydrostatic potential of the ice from estimated products of the Regional Atmospheric Climate Model (RACMO) of Royal Netherlands Meteorological Institute (KNMI). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the variation of tide height and current, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. The basal melt rate increases ~20% with summer surface runoff. This work is performed under a contract with NASA Cryosphere Program.

  17. Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation.

    PubMed

    Schmittner, Andreas

    2005-03-31

    Reorganizations of the Atlantic meridional overturning circulation were associated with large and abrupt climatic changes in the North Atlantic region during the last glacial period. Projections with climate models suggest that similar reorganizations may also occur in response to anthropogenic global warming. Here I use ensemble simulations with a coupled climate-ecosystem model of intermediate complexity to investigate the possible consequences of such disturbances to the marine ecosystem. In the simulations, a disruption of the Atlantic meridional overturning circulation leads to a collapse of the North Atlantic plankton stocks to less than half of their initial biomass, owing to rapid shoaling of winter mixed layers and their associated separation from the deep ocean nutrient reservoir. Globally integrated export production declines by more than 20 per cent owing to reduced upwelling of nutrient-rich deep water and gradual depletion of upper ocean nutrient concentrations. These model results are consistent with the available high-resolution palaeorecord, and suggest that global ocean productivity is sensitive to changes in the Atlantic meridional overturning circulation.

  18. The Mean State and Inter-annual Variability of East Asian Summer Monsoon in CMIP5 Coupled Models: Does Air-Sea Coupling Improve the Simulations?

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Song, F.

    2014-12-01

    The climatology and inter-annual variability of East Asian summer monsoon (EASM) simulated by 34 Coupled Model Intercomparison Project phase 5 (CMIP5) coupled general circulation models (CGCMs) are evaluated. To estimate the role of air-sea coupling, 17 CGCMs are compared to their corresponding atmospheric general circulation models (AGCMs). The climatological low-level monsoon circulation and mei-yu/changma/baiu rainfall band are improved in CGCMs from AGCMs. The improvement is at the cost of the local cold sea surface temperature (SST) biases in CGCMs, since they decrease the surface evaporation and enhance the circulation. The inter-annual EASM pattern is evaluated by a skill formula and the highest/lowest 8 models are selected to investigate the skill origins. The observed Indian Ocean (IO) warming, tropical eastern Indian Ocean (TEIO) rainfall anomalies and Kelvin wave response are captured well in high-skill models, while these features are not present in low-skill models. Further, the differences in the IO warming between high-skill and low-skill models are rooted in the preceding ENSO simulation. Hence, the IO-WPAC teleconnection is important for CGCMs, similar to AGCMs. However, compared to AGCMs, the easterly anomalies in the southern flank of the WPAC make the TEIO warmer in CGCMs by reducing the climatological monsoon westerlies and decreasing the surface evaporation. The warmer TEIO induces the stronger precipitation anomalies and intensifies the teleconnection. Hence, the inter-annual EASM pattern is better simulated in CGCMs than that in AGCMs. Key words: CMIP5, CGCMs, air-sea coupling, AGCMs, inter-annual EASM pattern, ENSO, IO-WPAC teleconnection

  19. Mesoscale Convective Systems During SCSMEX: Simulations with a Regional Climate Model and a Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Wang, Y.; Qian, J.-H.; Shie, C.-L.; Lau, W. K.-M.; Kakar, R.; Starr, David (Technical Monitor)

    2002-01-01

    The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, ships, wind profilers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convection and circulation changes associated with monsoons over the South China Sea region. SCSMEX also provided precipitation derived from atmospheric budgets and comparison to those obtained from the Tropical Rainfall Measuring Mission (TRMM). In this paper, a regional scale model (with grid size of 20 km) and Goddard Cumulus Ensemble (GCE) model (with 1 km grid size) are used to perform multi-day integration to understand the precipitation processes associated with the summer monsoon over Southeast Asia and southern China. The regional climate model is used to understand the soil-precipitation interaction and feedback associated with a flood event that occurred in and around China's Yantz River during SCSMEX Sensitivity tests on various land surface models, sea surface temperature (SST) variations, and cloud processes are performed to understand the precipitation processes associated with the onset of the monsoon over the S. China Sea during SCSMEX. These tests have indicated that the land surface model has a major impact on the circulation over the S. China Sea. Cloud processes can effect the precipitation pattern while SST variation can effect the precipitation amounts over both land and ocean. The exact location (region) of the flooding can be effected by the soil-rainfall feedback. The GCE-model results captured many observed precipitation characteristics because it used a fine grid size. For example, the model simulated rainfall temporal variation compared quite well to the sounding-estimated rainfall. The

  20. A theoretical model of the variation of the meridional circulation with the solar cycle

    NASA Astrophysics Data System (ADS)

    Hazra, Gopal; Choudhuri, Arnab Rai

    2017-12-01

    Observations of the meridional circulation of the Sun, which plays a key role in the operation of the solar dynamo, indicate that its speed varies with the solar cycle, becoming faster during the solar minima and slower during the solar maxima. To explain this variation of the meridional circulation with the solar cycle, we construct a theoretical model by coupling the equation of the meridional circulation (the ϕ component of the vorticity equation within the solar convection zone) with the equations of the flux transport dynamo model. We consider the back reaction due to the Lorentz force of the dynamo-generated magnetic fields and study the perturbations produced in the meridional circulation due to it. This enables us to model the variations of the meridional circulation without developing a full theory of the meridional circulation itself. We obtain results which reproduce the observational data of solar cycle variations of the meridional circulation reasonably well. We get the best results on assuming the turbulent viscosity acting on the velocity field to be comparable to the magnetic diffusivity (i.e. on assuming the magnetic Prandtl number to be close to unity). We have to assume an appropriate bottom boundary condition to ensure that the Lorentz force cannot drive a flow in the subadiabatic layers below the bottom of the tachocline. Our results are sensitive to this bottom boundary condition. We also suggest a hypothesis on how the observed inward flow towards the active regions may be produced.

  1. Coupling of a 3D Finite Element Model of Cardiac Ventricular Mechanics to Lumped Systems Models of the Systemic and Pulmonic Circulation

    PubMed Central

    Kerckhoffs, Roy C. P.; Neal, Maxwell L.; Gu, Quan; Bassingthwaighte, James B.; Omens, Jeff H.; McCulloch, Andrew D.

    2010-01-01

    In this study we present a novel, robust method to couple finite element (FE) models of cardiac mechanics to systems models of the circulation (CIRC), independent of cardiac phase. For each time step through a cardiac cycle, left and right ventricular pressures were calculated using ventricular compliances from the FE and CIRC models. These pressures served as boundary conditions in the FE and CIRC models. In succeeding steps, pressures were updated to minimize cavity volume error (FE minus CIRC volume) using Newton iterations. Coupling was achieved when a predefined criterion for the volume error was satisfied. Initial conditions for the multi-scale model were obtained by replacing the FE model with a varying elastance model, which takes into account direct ventricular interactions. Applying the coupling, a novel multi-scale model of the canine cardiovascular system was developed. Global hemodynamics and regional mechanics were calculated for multiple beats in two separate simulations with a left ventricular ischemic region and pulmonary artery constriction, respectively. After the interventions, global hemodynamics changed due to direct and indirect ventricular interactions, in agreement with previously published experimental results. The coupling method allows for simulations of multiple cardiac cycles for normal and pathophysiology, encompassing levels from cell to system. PMID:17111210

  2. Using in-situ observations of atmospheric water vapor isotopes to benchmark and isotope-enabled General Circulation Models and improve ice core paleo-climate reconstruction

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, Hans Christian; Sveinbjörnsdottir, Arny; Masson-Delmotte, Valerie; Werner, Martin; Risi, Camille; Yoshimura, Kei

    2016-04-01

    We have since 2010 carried out in-situ continuous water vapor isotope observations on top of the Greenland Ice Sheet (3 seasons at NEEM), in Svalbard (1 year), in Iceland (4 years), in Bermuda (4 years). The expansive dataset containing high accuracy and precision measurements of δ18O, δD, and the d-excess allow us to validate and benchmark the treatment of the atmospheric hydrological cycle's processes in General Circulation Models using simulations nudged to reanalysis products. Recent findings from both Antarctica and Greenland have documented strong interaction between the snow surface isotopes and the near surface atmospheric water vapor isotopes on diurnal to synoptic time scales. In fact, it has been shown that the snow surface isotopes take up the synoptic driven atmospheric water vapor isotopic signal in-between precipitation events, erasing the precipitation isotope signal in the surface snow. This highlights the importance of using General or Regional Climate Models, which accurately are able to simulate the atmospheric water vapor isotopic composition, to understand and interpret the ice core isotope signal. With this in mind we have used three isotope-enabled General Circulation Models (isoGSM, ECHAM5-wiso, and LMDZiso) nudged to reanalysis products. We have compared the simulations of daily mean isotope values directly with our in-situ observations. This has allowed us to characterize the variability of the isotopic composition in the models and compared it to our observations. We have specifically focused on the d-excess in order to characterize why both the mean and the variability is significantly lower than our observations. We argue that using water vapor isotopes to benchmark General Circulation Models offers an excellent tool for improving the treatment and parameterization of the atmospheric hydrological cycle. Recent studies have documented a very large inter-model dispersion in the treatment of the Arctic water cycle under a future global

  3. Tests of the higher order turbulence model for atmospheric circulations (HOTMAC) at Deseret Chemical Depot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costigan, K.R.

    1998-11-01

    Deseret Chemical Depot is one of the US Army`s storage facilities for its stockpile of chemical weapon agents. Congress has directed the Department of Defense to eliminate the aging stockpiles, which have existed since the end of World War II, and the US Army is destroying these lethal chemical munitions. Although the danger is slight, accurate predictions of the wind field in the valley are necessary for dispersion calculations in the event of an accident involving toxic chemicals at the depot. There are several small communities in Rush and Tooele valleys, including the town of Tooele, and Salt Lake Citymore » is located 65 km to the Northeast of Deseret Chemical Depot South area, at 1,300 m MSL and beyond the Oquirrh Mountains. The purpose of this report is to carry out three-dimensional numerical simulations of the atmospheric circulations in the region around Deseret Chemical Depot with the Higher Order Turbulence Model for Atmospheric Circulations (HOTMAC) and to evaluate the performance of the model. The code had been modified to assimilate local meteorological observations through the use of Newtonian nudging. The nudging scheme takes advantage of the extensive network of local observations in the valley.« less

  4. Equatorial waves in a stratospheric GCM: Effects of vertical resolution. [GCM (general circulation model)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boville, B.A.; Randel, W.J.

    1992-05-01

    Equatorially trapped wave modes, such as Kelvin and mixed Rossby-gravity waves, are believed to play a crucial role in forcing the quasi-biennial oscillation (QBO) of the lower tropical stratosphere. This study examines the ability of a general circulation model (GCM) to simulate these waves and investigates the changes in the wave properties as a function of the vertical resolution of the model. The simulations produce a stratopause-level semiannual oscillation but not a QBO. An unfortunate property of the equatorially trapped waves is that they tend to have small vertical wavelengths ([le] 15 km). Some of the waves, believed to bemore » important in forcing the QBO, have wavelengths as short as 4 km. The short vertical wavelengths pose a stringent computational requirement for numerical models whose vertical grid spacing is typically chosen based on the requirements for simulating extratropical Rossby waves (which have much longer vertical wavelengths). This study examines the dependence of the equatorial wave simulation of vertical resolution using three experiments with vertical grid spacings of approximately 2.8, 1.4, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and inertio-gravity waves are identified in the simulations. At high vertical resolution, the simulated waves are shown to correspond fairly well to the available observations. The properties of the relatively slow (and vertically short) waves believed to play a role in the QBO vary significantly with vertical resolution. Vertical grid spacings of about 1 km or less appear to be required to represent these waves adequately. The simulated wave amplitudes are at least as large as observed, and the waves are absorbed in the lower stratosphere, as required in order to force the QBO. However, the EP flux divergence associated with the waves is not sufficient to explain the zonal flow accelerations found in the QBO. 39 refs., 17 figs., 1 tab.« less

  5. The extratropical 40-day oscillation in the UCLA general circulation model. Part 1: Atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Marcus, S. L.; Ghil, M.; Dickey, J. O.

    1994-01-01

    Variations in atmospheric angular momentum (AAM) are examined in a three-year simulation of the large-scale atmosphere with perpetual January forcing. The simulation is performed with a version of the University of California at Los Angeles (UCLA) general circulation model that contains no tropical Madden-Julian Oscillation (MJO). In addition, the results of three shorter experiments with no topography are analyzed. The three-year standard topography run contains no significant intraseasonal AAM periodicity in the tropics, consistent with the lack of the MJO, but produces a robust, 42-day AAM oscillation in the Northern Hemisphere (NH) extratropics. The model tropics undergoes a barotropic, zonally symmetric oscillation, driven by an exchange of mass with the NH extratropics. No intraseasonal periodicity is found in the average tropical latent heating field, indicating that the model oscillation is dynamically rather than thermodynamically driven. The no-mountain runs fail to produce an intraseasonal AAM oscillation, consistent with a topographic origin for the NH extratropical oscillation in the standard model. The spatial patterns of the oscillation in the 500-mb height field, and the relationship of the extratropical oscillation to intraseasonal variations in the tropics, will be discussed in Part 2 of this study.

  6. On Evaluating circulation and temperature stratification under changing water levels in Lake Mead with a 3D hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Li, Y.; Acharya, K.; Chen, D.; Stone, M.; Yu, Z.; Young, M.; Zhu, J.; Shafer, D. S.; Warwick, J. J.

    2009-12-01

    Sustained drought in the western United States since 2000 has led to a significant drop (about 35 meters) in the water level of Lake Mead, the largest reservoir by volume in United States. The drought combined with rapid urban development in southern Nevada and emergence of invasive species has threatened the water quality and ecological processes in Lake Mead. A three-dimensional hydrodynamic model, Environmental Fluid Dynamics Code (EFDC), was applied to investigate lake circulation and temperature stratification in parts of Lake Mead (Las Vegas Bay and Boulder Basin) under changing water levels. Besides the inflow from Las Vegas Wash and the Colorado River, the model considered atmospheric changes as well as the boundary conditions restricted by the operation of Hoover Dam. The model was calibrated and verified by using observed data including water level, velocity, and temperature from 2003 and 2005. The model was applied to study the hydrodynamic processes at water level 366.8 m (year 2000) and at water level 338.2 m (year 2008). The high-stage simulation described the pre-drought lake hydrodynamic processes while the low-stage simulation highlighted the drawdown impact on such processes. The results showed that both inflow and wind-driven mixing process played major roles in the thermal stratification and lake circulation in both cases. However, the atmospheric boundary played a more important role than inflow temperature on thermal stratification of Lake Mead during water level decline. Further, the thermal stratification regime and flow circulation pattern in shallow lake regions (e.g.., the Boulder Basin area) were most impacted. The temperature of the lake at the high-stage was more sensitive to inflow temperatures than at low-stage. Furthermore, flow velocities decreased with the decreasing water level due to reduction in wind impacts, particularly in shallow areas of the lake. Such changes in temperature and lake current due to present drought have a

  7. Improving sea level simulation in Mediterranean regional climate models

    NASA Astrophysics Data System (ADS)

    Adloff, Fanny; Jordà, Gabriel; Somot, Samuel; Sevault, Florence; Arsouze, Thomas; Meyssignac, Benoit; Li, Laurent; Planton, Serge

    2017-08-01

    For now, the question about future sea level change in the Mediterranean remains a challenge. Previous climate modelling attempts to estimate future sea level change in the Mediterranean did not meet a consensus. The low resolution of CMIP-type models prevents an accurate representation of important small scales processes acting over the Mediterranean region. For this reason among others, the use of high resolution regional ocean modelling has been recommended in literature to address the question of ongoing and future Mediterranean sea level change in response to climate change or greenhouse gases emissions. Also, it has been shown that east Atlantic sea level variability is the dominant driver of the Mediterranean variability at interannual and interdecadal scales. However, up to now, long-term regional simulations of the Mediterranean Sea do not integrate the full sea level information from the Atlantic, which is a substantial shortcoming when analysing Mediterranean sea level response. In the present study we analyse different approaches followed by state-of-the-art regional climate models to simulate Mediterranean sea level variability. Additionally we present a new simulation which incorporates improved information of Atlantic sea level forcing at the lateral boundary. We evaluate the skills of the different simulations in the frame of long-term hindcast simulations spanning from 1980 to 2012 analysing sea level variability from seasonal to multidecadal scales. Results from the new simulation show a substantial improvement in the modelled Mediterranean sea level signal. This confirms that Mediterranean mean sea level is strongly influenced by the Atlantic conditions, and thus suggests that the quality of the information in the lateral boundary conditions (LBCs) is crucial for the good modelling of Mediterranean sea level. We also found that the regional differences inside the basin, that are induced by circulation changes, are model-dependent and thus not

  8. Harvesting model uncertainty for the simulation of interannual variability

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu

    2009-08-01

    An innovative modeling strategy is introduced to account for uncertainty in the convective parameterization (CP) scheme of a coupled ocean-atmosphere model. The methodology involves calling the CP scheme several times at every given time step of the model integration to pick the most probable convective state. Each call of the CP scheme is unique in that one of its critical parameter values (which is unobserved but required by the scheme) is chosen randomly over a given range. This methodology is tested with the relaxed Arakawa-Schubert CP scheme in the Center for Ocean-Land-Atmosphere Studies (COLA) coupled general circulation model (CGCM). Relative to the control COLA CGCM, this methodology shows improvement in the El Niño-Southern Oscillation simulation and the Indian summer monsoon precipitation variability.

  9. Numerical simulation on dimension decrease for annular casing of one centrifugal boiler circulation pump

    NASA Astrophysics Data System (ADS)

    Fan, Y. Z.; Zuo, Z. G.; Liu, S. H.; Wu, Y. L.; Sha, Y. J.

    2012-11-01

    Primary formulation derivation indicates that the dimension of one existing centrifugal boiler circulation pump casing is too large. As great manufacture cost can be saved by dimension decrease, a numerical simulation research is developed in this paper on dimension decrease for annular casing of this pump with a specific speed equaling to 189, which aims at finding an appropriately smaller dimension of the casing while hydraulic performance and strength performance will hardly be changed according to the requirements of the cooperative company. The research object is one existing centrifugal pump with a diffuser and a semi-spherical annular casing, working as the boiler circulation pump for (ultra) supercritical units in power plants. Dimension decrease, the modification method, is achieved by decreasing the existing casing's internal radius (marked as "Ri0") while keeping the wall thickness. The research analysis is based on primary formulation derivation, CFD (Computational Fluid Dynamics) simulation and FEM (Finite Element Method) simulation. Primary formulation derivation estimates that a design casing's internal radius should be less than 0.75 Ri0. CFD analysis indicates that smaller casing with 0.75 Ri0 has a worse hydraulic performance when working at large flow rates and a better hydraulic performance when working at small flow rates. In consideration of hydraulic performance and dimension decrease, an appropriate casing's internal radius is determined, which equals to 0.875 Ri0. FEM analysis then confirms that modified pump casing has nearly the same strength performance as the existing pump casing. It is concluded that dimension decrease can be an economical method as well as a practical method for large pumps in engineering fields.

  10. JIGSAW-GEO (1.0): Locally Orthogonal Staggered Unstructured Grid Generation for General Circulation Modelling on the Sphere

    NASA Technical Reports Server (NTRS)

    Engwirda, Darren

    2017-01-01

    An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered VoronoiDelaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.

  11. JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere

    NASA Astrophysics Data System (ADS)

    Engwirda, Darren

    2017-06-01

    An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered Voronoi-Delaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.

  12. A continuum model for pressure-flow relationship in human pulmonary circulation.

    PubMed

    Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T

    2011-06-01

    A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.

  13. A new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Dowsett, H. J.; Scher, H. D.; Robinson, M. M.

    2011-12-01

    The mid-Pliocene (3.264 - 3.025 Ma) is the most recent interval in Earth's history with sustained global temperatures in the range of warming predicted for the 21st century, providing an appealing analog with which to examine the Earth system changes we might encounter in the coming century. Ongoing sea surface and deep ocean temperature reconstructions and coupled ocean-atmosphere general circulation model simulations by the USGS PRISM (Pliocene Research Interpretation and Synoptic Mapping) Group identify a dramatic North Atlantic warm anomaly coupled with increased evaporation in the mid-Pliocene, possibly driving enhanced meridional overturning circulation and North Atlantic Deep Water production. However deep ocean temperature is not a conclusive proxy for water mass, and most coupled model simulations predict transient decreases in North Atlantic Deep Water production in 21st century, presenting a contrasting picture of future warmer worlds. Here, we present early results from a new multi-proxy reconstruction of Atlantic deep ocean circulation during the warm mid-Pliocene, using δ13C of benthic foraminifera as a proxy for water mass age and the neodymium isotopic imprint on fossil fish teeth as a proxy for water mass source region along a three-site depth transect from the Walvis Ridge (subtropical South Atlantic). The deep ocean circulation reconstructions resulting from this project will add a new dimension to the PRISM effort and will be useful for both initialization and evaluation of future model simulations.

  14. Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps

    NASA Astrophysics Data System (ADS)

    Fang, En; Wu, Xiaojie; Yu, Yuesen; Xiu, Junrui

    2017-03-01

    In this paper, a numerical model is developed by combining thermodynamics with heat transfer theory. Taking inner and external multi-irreversibility into account, it is with a complementary equation for heat circulation in air gaps of a steady cooling system with commercial thermoelectric modules operating in refrigeration mode. With two modes concerned, the equation presents the heat flowing through air gaps which forms heat circulations between both sides of thermoelectric coolers (TECs). In numerical modelling, a TEC is separated as two temperature controlled constant heat flux reservoirs in a thermal resistance network. In order to obtain the parameter values, an experimental apparatus with a commercial thermoelectric cooler was built to characterize the performance of a TEC with heat source and sink assembly. At constant power dissipation, steady temperatures of heat source and both sides of the thermoelectric cooler were compared with those in a standard numerical model. The method displayed that the relationship between Φf and the ratio Φ_{c}'/Φ_{c} was linear as expected. Then, for verifying the accuracy of proposed numerical model, the data in another system were recorded. It is evident that the experimental results are in good agreement with simulation(proposed model) data at different heat transfer rates. The error is small and mainly results from the instabilities of thermal resistances with temperature change and heat flux, heat loss of the device vertical surfaces and measurements.

  15. Sensitivity of the ocean overturning circulation to wind and mixing: theoretical scalings and global ocean models

    NASA Astrophysics Data System (ADS)

    Nikurashin, Maxim; Gunn, Andrew

    2017-04-01

    The meridional overturning circulation (MOC) is a planetary-scale oceanic flow which is of direct importance to the climate system: it transports heat meridionally and regulates the exchange of CO2 with the atmosphere. The MOC is forced by wind and heat and freshwater fluxes at the surface and turbulent mixing in the ocean interior. A number of conceptual theories for the sensitivity of the MOC to changes in forcing have recently been developed and tested with idealized numerical models. However, the skill of the simple conceptual theories to describe the MOC simulated with higher complexity global models remains largely unknown. In this study, we present a systematic comparison of theoretical and modelled sensitivity of the MOC and associated deep ocean stratification to vertical mixing and southern hemisphere westerlies. The results show that theories that simplify the ocean into a single-basin, zonally-symmetric box are generally in a good agreement with a realistic, global ocean circulation model. Some disagreement occurs in the abyssal ocean, where complex bottom topography is not taken into account by simple theories. Distinct regimes, where the MOC has a different sensitivity to wind or mixing, as predicted by simple theories, are also clearly shown by the global ocean model. The sensitivity of the Indo-Pacific, Atlantic, and global basins is analysed separately to validate the conceptual understanding of the upper and lower overturning cells in the theory.

  16. Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumik; Bhatla, R.; Mall, R. K.; Srivastava, Prashant K.; Sahai, A. K.

    2018-03-01

    Climate model faces considerable difficulties in simulating the rainfall characteristics of southwest summer monsoon. In this study, the dynamical downscaling of European Centre for Medium-Range Weather Forecast's (ECMWF's) ERA-Interim (EIN15) has been utilized for the simulation of Indian summer monsoon (ISM) through the Regional Climate Model version 4.3 (RegCM-4.3) over the South Asia Co-Ordinated Regional Climate Downscaling EXperiment (CORDEX) domain. The complexities of model simulation over a particular terrain are generally influenced by factors such as complex topography, coastal boundary, and lack of unbiased initial and lateral boundary conditions. In order to overcome some of these limitations, the RegCM-4.3 is employed for simulating the rainfall characteristics over the complex topographical conditions. For reliable rainfall simulation, implementations of numerous lower boundary conditions are forced in the RegCM-4.3 with specific horizontal grid resolution of 50 km over South Asia CORDEX domain. The analysis is considered for 30 years of climatological simulation of rainfall, outgoing longwave radiation (OLR), mean sea level pressure (MSLP), and wind with different vertical levels over the specified region. The dependency of model simulation with the forcing of EIN15 initial and lateral boundary conditions is used to understand the impact of simulated rainfall characteristics during different phases of summer monsoon. The results obtained from this study are used to evaluate the activity of initial conditions of zonal wind circulation speed, which causes an increase in the uncertainty of regional model output over the region under investigation. Further, the results showed that the EIN15 zonal wind circulation lacks sufficient speed over the specified region in a particular time, which was carried forward by the RegCM output and leads to a disrupted regional simulation in the climate model.

  17. Changes in present and future circulation types frequency in northwest Iberian Peninsula.

    PubMed

    Lorenzo, María N; Ramos, Alexandre M; Taboada, Juan J; Gimeno, Luis

    2011-01-21

    The aim of the work described herein was to study projection scenarios in order to find changes in the synoptic variability of the northwest Iberian Peninsula in the 21st century. To this end, we investigated the changes in the frequency of the different circulation types computed for the study area using three different models used in the IPCC 4(th) assessment report. The circulation types were computed using the procedure known as Lamb circulation types. The control simulation for the late 20th century was evaluated objectively from the results obtained using data from the NCEP/NCAR reanalysis, as to evaluate the ability of the model to reproduce the present climate. We have compared not only seasonal mean sea level pressure fields but also the mean seasonal frequency of circulation types. The results for the end of the 21st century show a decrease in the frequency of cyclonic, W, and SW circulation types in the spring and summer months. This trend also appears in the autumn, with a concomitant increase in the anticyclonic types.

  18. Changes in Present and Future Circulation Types Frequency in Northwest Iberian Peninsula

    PubMed Central

    Lorenzo, María N.; Ramos, Alexandre M.; Taboada, Juan J.; Gimeno, Luis

    2011-01-01

    The aim of the work described herein was to study projection scenarios in order to find changes in the synoptic variability of the northwest Iberian Peninsula in the 21st century. To this end, we investigated the changes in the frequency of the different circulation types computed for the study area using three different models used in the IPCC 4th assessment report. The circulation types were computed using the procedure known as Lamb circulation types. The control simulation for the late 20th century was evaluated objectively from the results obtained using data from the NCEP/NCAR reanalysis, as to evaluate the ability of the model to reproduce the present climate. We have compared not only seasonal mean sea level pressure fields but also the mean seasonal frequency of circulation types. The results for the end of the 21st century show a decrease in the frequency of cyclonic, W, and SW circulation types in the spring and summer months. This trend also appears in the autumn, with a concomitant increase in the anticyclonic types. PMID:21283703

  19. An Exospheric Temperature Model Based On CHAMP Observations and TIEGCM Simulations

    NASA Astrophysics Data System (ADS)

    Ruan, Haibing; Lei, Jiuhou; Dou, Xiankang; Liu, Siqing; Aa, Ercha

    2018-02-01

    In this work, thermospheric densities from the accelerometer measurement on board the CHAMP satellite during 2002-2009 and the simulations from the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) are employed to develop an empirical exospheric temperature model (ETM). The two-dimensional basis functions of the ETM are first provided from the principal component analysis of the TIEGCM simulations. Based on the exospheric temperatures derived from CHAMP thermospheric densities, a global distribution of the exospheric temperatures is reconstructed. A parameterization is conducted for each basis function amplitude as a function of solar-geophysical and seasonal conditions. Thus, the ETM can be utilized to model the thermospheric temperature and mass density under a specified condition. Our results showed that the averaged standard deviation of the ETM is generally less than 10% than approximately 30% in the MSIS model. Besides, the ETM reproduces the global thermospheric evolutions including the equatorial thermosphere anomaly.

  20. The implementation and validation of improved landsurface hydrology in an atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.

    1991-01-01

    Landsurface hydrological parameterizations are implemented in the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: (1) runoff and evapotranspiration functions that include the effects of subgrid scale spatial variability and use physically based equations of hydrologic flux at the soil surface, and (2) a realistic soil moisture diffusion scheme for the movement of water in the soil column. A one dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three dimensional GCM. Results of the final simulation with the GISS GCM and the new landsurface hydrology indicate that the runoff rate, especially in the tropics is significantly improved. As a result, the remaining components of the heat and moisture balance show comparable improvements when compared to observations. The validation of model results is carried from the large global (ocean and landsurface) scale, to the zonal, continental, and finally the finer river basin scales.

  1. Sensitivity of the Carolina Coastal Ocean Circulation to Open Boundary and Atmospheric Forcing

    NASA Astrophysics Data System (ADS)

    Liu, X.; Xie, L.; Pietrafesa, L.

    2003-12-01

    The ocean circulation on the continental shelf off the Carolina coast is characterized by a complex flow regime and temporal variability, which is influenced by atmospheric forcing, the Gulf Stream system, complex coastline and bathymetry, river discharge and tidal forcing. In this study, a triple-nested, HYbrid Coordinate Ocean Model (HYCOM) is used to simulate the coastal ocean circulation on the continental shelf off the Carolina coast and its interactions with the offshore large-scale ocean circulation system. The horizontal mesh size in the innermost domain was set to 1 km, whereas the outermost domain coincides with the near real-time 1/12­’ Atlantic HYCOM Nowcast/Forecast System operated at the Naval Research Laboratory. The intermediate domain uses a mesh size of 3 km. Atmospheric forcing fields for the Carolina coastal region are derived from the NOAA operational ETA model, the ECMWF reanalysis fields and NCEP/NCAR reanalysis fields. These forcing fields are derived at 0.8›¦, 1.125›¦ and 1.875›¦ resolutions, and at intervals of 6 hour, daily and monthly. The sensitivity of the model results to the spatial and temporal resolution of the atmospheric forcing fields is analyzed. To study the dependence of the model sensitivity on the model grid size, single-window simulations at resolutions of 1km, 3km and 9km are carried out using the same forcing fields that were applied to the nested system. Comparisons between the nested and the single domain simulation results will be presented.

  2. Why is the simulated climatology of tropical cyclones so sensitive to the choice of cumulus parameterization scheme in the WRF model?

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxi; Wang, Yuqing

    2018-01-01

    The sensitivity of simulated tropical cyclones (TCs) to the choice of cumulus parameterization (CP) scheme in the advanced Weather Research and Forecasting Model (WRF-ARW) version 3.5 is analyzed based on ten seasonal simulations with 20-km horizontal grid spacing over the western North Pacific. Results show that the simulated frequency and intensity of TCs are very sensitive to the choice of the CP scheme. The sensitivity can be explained well by the difference in the low-level circulation in a height and sorted moisture space. By transporting moist static energy from dry to moist region, the low-level circulation is important to convective self-aggregation which is believed to be related to genesis of TC-like vortices (TCLVs) and TCs in idealized settings. The radiative and evaporative cooling associated with low-level clouds and shallow convection in dry regions is found to play a crucial role in driving the moisture-sorted low-level circulation. With shallow convection turned off in a CP scheme, relatively strong precipitation occurs frequently in dry regions. In this case, the diabatic cooling can still drive the low-level circulation but its strength is reduced and thus TCLV/TC genesis is suppressed. The inclusion of the cumulus momentum transport (CMT) in a CP scheme can considerably suppress genesis of TCLVs/TCs, while changes in the moisture-sorted low-level circulation and horizontal distribution of precipitation are trivial, indicating that the CMT modulates the TCLVs/TCs activities in the model by mechanisms other than the horizontal transport of moist static energy.

  3. Combined simulation of carbon and water isotopes in a global ocean model

    NASA Astrophysics Data System (ADS)

    Paul, André; Krandick, Annegret; Gebbie, Jake; Marchal, Olivier; Dutkiewicz, Stephanie; Losch, Martin; Kurahashi-Nakamura, Takasumi; Tharammal, Thejna

    2013-04-01

    Carbon and water isotopes are included as passive tracers in the MIT general circulation model (MITgcm). The implementation of the carbon isotopes is based on the existing MITgcm carbon cycle component and involves the fractionation processes during photosynthesis and air-sea gas exchange. Special care is given to the use of a real freshwater flux boundary condition in conjunction with the nonlinear free surface of the ocean model. The isotopic content of precipitation and water vapor is obtained from an atmospheric GCM (the NCAR CAM3) and mapped onto the MITgcm grid system, but the kinetic fractionation during evaporation is treated explicitly in the ocean model. In a number of simulations, we test the sensitivity of the carbon isotope distributions to the formulation of fractionation during photosynthesis and compare the results to modern observations of δ13C and Δ14C from GEOSECS, WOCE and CLIVAR. Similarly, we compare the resulting distribution of oxygen isotopes to modern δ18O data from the NASA GISS Global Seawater Oxygen-18 Database. The overall agreement is good, but there are discrepancies in the carbon isotope composition of the surface water and the oxygen isotope composition of the intermediate and deep waters. The combined simulation of carbon and water isotopes in a global ocean model will provide a framework for studying present and past states of ocean circulation such as postulated from deep-sea sediment records.

  4. THM modelling of hydrothermal circulation in deep geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Magnenet, Vincent; Fond, Christophe; Schmittbuhl, Jean; Genter, Albert

    2014-05-01

    Numerous models have been developped for describing deep geothermal reservoirs. Using the opensource finite element software ASTER developped by EDF R&D, we carried out 2D simulations of the hydrothermal circulation in the deep geothermal reservoir of Soultz-sous-Forêts. The model is based on the effective description of Thermo-Hydro-Mechanical (THM) coupling at large scale. Such a model has a fourfold interest: a) the physical integration of laboratory measurements (rock physics), well logging, well head parameters, geological description, and geophysics field measurements; b) the construction of a direct model mechanically based for geophysical inversion: fluid flow, fluid pressure, temperature profile, seismicity monitoring, deformation of the ground surface (INSAR/GPS) related to reservoir modification, gravity or electromagnetic geophysical measurements; c) the sensitivity analysis of the parameters involved in the hydrothermal circulation and identification of the dominant ones; d) the development of a decision tool for drilling planning, stimulation and exploitation. In our model, we introduced extended Thermo-Hydro-Mechanical coupling including not only poro-elastic behavior but also the sensitivity of the fluid density, viscosity, and heat capacity to temperature and pressure. The behavior of solid rock grains is assumed to be thermo-elastic and linear. Hydraulic and thermal phenomena are governed by Darcy and Fourier laws respectively, and most rock properties (like the specific heat at constant stress csσ(T), or the thermal conductivity Λ(T,φ)) are assumed to depend on the temperature T and/or porosity φ. The radioactivity of the rocks is taken into account through a heat source term appearing in the balance equation of enthalpy. To characterize as precisely as possible the convective movement of water and the associated heat flow, water properties (specific mass ρw(T,pw), specific enthalpy hmw(T,pw) dynamic viscosity μw(T), thermal dilation

  5. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaas, Johannes; Ming, Yi; Menon, Surabi

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is foundmore » that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the

  6. Towards the impact of eddies on the response of the global ocean circulation to Southern Ocean gateway opening

    NASA Astrophysics Data System (ADS)

    Viebahn, Jan; von der Heydt, Anna S.; Dijkstra, Henk A.

    2014-05-01

    During the past 65 Million (Ma) years, Earth's climate has undergone a major change from warm 'greenhouse' to colder 'icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The Eocene-Oligocene (~34 Ma) and Oligocene-Miocene (~23 Ma) boundaries reflect major transitions in Cenozoic global climate change. Proposed mechanisms of these transitions include reorganization of ocean circulation due to critical gateway opening/deepening, changes in atmospheric CO2-concentration, and feedback mechanisms related to land-ice formation. A long-standing hypothesis is that the formation of the Antarctic Circumpolar Current due to opening/deepening of Southern Ocean gateways led to glaciation of the Antarctic continent. However, while this hypothesis remains controversial, its assessment via coupled climate model simulations depends crucially on the spatial resolution in the ocean component. More precisely, only high-resolution modeling of the turbulent ocean circulation is capable of adequately describing reorganizations in the ocean flow field and related changes in turbulent heat transport. In this study, for the first time results of a high-resolution (0.1° horizontally) realistic global ocean model simulation with a closed Drake Passage are presented. Changes in global ocean temperatures, heat transport, and ocean circulation (e.g., Meridional Overturning Circulation and Antarctic Coastal Current) are established by comparison with an open Drake Passage high-resolution reference simulation. Finally, corresponding low-resolution simulations are also analyzed. The results highlight the essential impact of the ocean eddy field in palaeoclimatic change.

  7. The Influence of Indian Ocean Atmospheric Circulation on Warm Pool Hydroclimate During the Holocene Epoch

    NASA Technical Reports Server (NTRS)

    Tierney, J.E.; Oppo, D. W.; LeGrande, A. N.; Huang, Y.; Rosenthal, Y.; Linsley, B. K.

    2012-01-01

    Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September-November (SON) season is important for hydroclimate in Borneo. The preeminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene.

  8. On the stability of the Atlantic meridional overturning circulation.

    PubMed

    Hofmann, Matthias; Rahmstorf, Stefan

    2009-12-08

    One of the most important large-scale ocean current systems for Earth's climate is the Atlantic meridional overturning circulation (AMOC). Here we review its stability properties and present new model simulations to study the AMOC's hysteresis response to freshwater perturbations. We employ seven different versions of an Ocean General Circulation Model by using a highly accurate tracer advection scheme, which minimizes the problem of numerical diffusion. We find that a characteristic freshwater hysteresis also exists in the predominantly wind-driven, low-diffusion limit of the AMOC. However, the shape of the hysteresis changes, indicating that a convective instability rather than the advective Stommel feedback plays a dominant role. We show that model errors in the mean climate can make the hysteresis disappear, and we investigate how model innovations over the past two decades, like new parameterizations and mixing schemes, affect the AMOC stability. Finally, we discuss evidence that current climate models systematically overestimate the stability of the AMOC.

  9. On the stability of the Atlantic meridional overturning circulation

    PubMed Central

    Hofmann, Matthias; Rahmstorf, Stefan

    2009-01-01

    One of the most important large-scale ocean current systems for Earth's climate is the Atlantic meridional overturning circulation (AMOC). Here we review its stability properties and present new model simulations to study the AMOC's hysteresis response to freshwater perturbations. We employ seven different versions of an Ocean General Circulation Model by using a highly accurate tracer advection scheme, which minimizes the problem of numerical diffusion. We find that a characteristic freshwater hysteresis also exists in the predominantly wind-driven, low-diffusion limit of the AMOC. However, the shape of the hysteresis changes, indicating that a convective instability rather than the advective Stommel feedback plays a dominant role. We show that model errors in the mean climate can make the hysteresis disappear, and we investigate how model innovations over the past two decades, like new parameterizations and mixing schemes, affect the AMOC stability. Finally, we discuss evidence that current climate models systematically overestimate the stability of the AMOC. PMID:19897722

  10. Hydrothermal Circulation Within and Between Basement Outcrops on a Young Ridge Flank: Numerical Models and Thermal Constraints

    NASA Astrophysics Data System (ADS)

    Hutnak, M.; Fisher, A. T.; Stauffer, P.; Gable, C. W.

    2005-12-01

    We use two-dimensional, finite-element models of coupled heat and fluid flow to investigate local and large-scale heat and fluid transport around and between basement outcrops on a young ridge flank. System geometries and properties are based on observations and measurements on the 3.4-3.6 Ma eastern flank of the Juan de Fuca Ridge. A small area of basement exposure (Baby Bare outcrop) experiences focused hydrothermal discharge, whereas a much larger feature (Grizzly Bare outcrop) 50 km to the south is a site of hydrothermal recharge. Observations of seafloor heat flow, subseafloor pressures, and basement fluid geochemistry at and near these outcrops constrain acceptable model results. Single-outcrop simulations suggest that local convection alone (represented by a high Nusselt number proxy) cannot explain the near-outcrop heat flow patterns; rapid through-flow is required. Venting of at least 5 L/s through the smaller outcrop, a volumetric flow rate consistent with earlier estimates based on plume and outcrop measurements, is needed to match seafloor heat flow patterns. Heat flow patterns are more variable and complex near the larger, recharging outcrop. Simulations that include 5-20 L/s of recharge through this feature can replicate first-order trends in the data, but small-scale variations are likely to result from heterogeneous flow paths and vigorous, local convection. Two-outcrop simulations started with a warm hydrostatic initial condition, based on a conductive model, result in rapid fluid flow from the smaller outcrop to the larger outcrop, inconsistent with observations. Flow can be sustained in the opposite (correct) direction if it is initially forced, which generates a hydrothermal siphon between the two features. Free flow simulations maintain rapid circulation at rates consistent with observations (specific discharge of m/yr to tens of m/yr), provided basement permeability is on the order of 10-10 m2 or greater. Lateral flow rates scale inversely

  11. Time-varying Atmospheric Circulation Patterns Caused by N2 Condensation Flows on a Simulated Triton Atmosphere

    NASA Astrophysics Data System (ADS)

    Miller, C.; Chanover, N.; Murphy, J. R.; Zalucha, A. M.

    2011-12-01

    Triton and Pluto are two members of a possible class of bodies with an N2 frost covered surface in vapor-pressure equilibrium with a predominately N2 atmosphere. Modeling the dynamics of such an atmosphere is useful for several reasons. First, winds on Triton were inferred from images of surface streaks and active plumes visible at the time of the Voyager 2 flyby in August 1989. Dynamic atmospheric simulations can reveal the seasonal conditions under which such winds would arise and therefore how long before the Voyager 2 encounter the ground streaks may have been deposited. Second, atmospheric conditions on Pluto at the time of the New Horizons flyby are expected to be similar to those on Triton. Therefore, a dynamical model of a cold, thin N2 atmosphere can be used to predict wind speed and direction on Pluto during the New Horizons encounter with the Pluto/Charon system in July 2015. We used a modified version of the NASA Ames Mars General Circulation Model, version 2.0, to model an N2 atmosphere in contact with N2 surface frosts. We altered the Ames GCM to simulate conditions found on Triton. These alterations included changing the size, rotation rate, orbital inclination, surface gravity, and distance to the Sun of the parent body to model the proper time-varying insolation. We defined the gas properties for an N2 atmosphere, including values for latent heat, specific heat, and the vapor pressure-temperature relationship for N2 frosts. Our simulations assumed an N2 atmosphere with an initial average surface pressure of 18 microbars and we chose N2 frost albedo and emissivity values that resulted in a stable surface pressure over time. We incorporated a 190-meter deep ten-layer water-ice subsurface layer covered with a 20-centimeter global layer of N2 frost. Our simulations did not include atmospheric radiative heat transfer, but did include conduction, convection, and surface-boundary layer heating. We ran simulations of 100 Triton days at 10 points along

  12. On the sensitivity of the global ocean circulation to reconstructions of paleo-bathymetry

    NASA Astrophysics Data System (ADS)

    Weber, Tobias; Thomas, Maik

    2013-04-01

    The ability to model the long-term evolution of the climate does considerably depend on the accuracy of ocean models and their interaction with the atmosphere. Thereby, the ocean model's behavior with respect to uncertain and changing boundary conditions is of crucial importance. One of the remaining questions is, how different reconstructions of the ocean floor influence the model. Although of general interest, this effect has mostly been neglected, so far. We modeled Pliocene and pre-industrial ocean currents with the Max-Planck-Institute Ocean Model (MPIOM), forced by climatologies derived from an atmospheric and vegetational Global Circulation Model (GCM). We equipped it with different reconstructions of the bathymetry, what allowed us to study the model's sensitivity regarding changes in bathymetry. On the one hand we examined the influence of reconstructions with different locations of major ridges, but the same treatment of the shelf. On the other hand, reconstruction techniques that treated the shelf areas differently were taken into consideration. This leads to different oceanic circulation realizations, which induce changes in deep ocean temperature and salinity. Some of the simulations result in unrealistic behavior, such as an increase in surface temperature by several degrees. Most important, small bathymetric changes in the areas of deep water formation near Greenland and the Antarctic alter the thermohaline circulation strongly. This leads to its complete cessation in some of the simulations and therefore to stationary deep laying ocean masses. This shows that not all bathymetric reconstruction sequences are applicable for the generation of boundary conditions for GCMs. In order to obtain reliable and physically realistic data from the models, the reconstruction method to be used for the paleo-bathymetry also needs to be applied to the present day bathymetry. This reconstruction can then be used in a control simulation which can be validated against

  13. Parameterized Radiative Convective Equilibrium Across a Range of Domains: A Unifying Tool for General Circulation Models and High Resolution Models

    NASA Astrophysics Data System (ADS)

    Silvers, L. G.; Stevens, B. B.; Mauritsen, T.; Marco, G. A.

    2015-12-01

    The characteristics of clouds in General Circulation Models (GCMs) need to be constrained in a consistent manner with theory, observations, and high resolution models (HRMs). One way forward is to base improvements of parameterizations on high resolution studies which resolve more of the important dynamical motions and allow for less parameterizations. This is difficult because of the numerous differences between GCMs and HRMs, both technical and theoretical. Century long simulations at resolutions of 20-250 km on a global domain are typical of GCMs while HRMs often simulate hours at resolutions of 0.1km-5km on domains the size of a single GCM grid cell. The recently developed mode ICON provides a flexible framework which allows many of these difficulties to be overcome. This study uses the ICON model to compute SST perturbation simulations on multiple domains in a state of Radiative Convective Equilibrium (RCE) with parameterized convection. The domains used range from roughly the size of Texas to nearly half of Earth's surface area. All simulations use a doubly periodic domain with an effective distance between cell centers of 13 km and are integrated to a state of statistical stationarity. The primary analysis examines the mean characteristics of the cloud related fields and the feedback parameter of the simulations. It is shown that the simulated atmosphere of a GCM in RCE is sufficiently similar across a range of domain sizes to justify the use of RCE to study both a GCM and a HRM on the same domain with the goal of improved constraints on the parameterized clouds. The simulated atmospheres are comparable to what could be expected at midday in a typical region of Earth's tropics under calm conditions. In particular, the differences between the domains are smaller than differences which result from choosing different physics schemes. Significant convective organization is present on all domain sizes with a relatively high subsidence fraction. Notwithstanding

  14. Investigation of sludge re-circulating clarifiers design and optimization through numerical simulation.

    PubMed

    Davari, S; Lichayee, M J

    2003-01-01

    In steam thermal power plants (TPP) with open re-circulating wet cooling towers, elimination of water hardness and suspended solids (SS) is performed in clarifiers. Most of these clarifiers are of high efficiency sludge re-circulating type (SRC) with capacity between 500-1,500 m3/hr. Improper design and/or mal-operation of clarifiers in TPPs results in working conditions below design capacity or production of soft water with improper quality (hardness and S.S.). This causes accumulation of deposits in heat exchangers, condenser tubes, cooling and service water pipes and boiler tubes as well as increasing the ionic load of water at the demineralizing system inlet. It also increases the amount of chemical consumptions and produces more liquid and solid waste. In this regard, a software program for optimal design and simulation of SRCs has been developed. Then design parameters of existing SRCs in four TPPs in Iran were used as inputs to developed software program and resulting technical specifications were compared with existing ones. In some cases improper design was the main cause of poor outlet water quality. In order to achieve proper efficiency, further investigations were made to obtain control parameters as well as design parameters for both mal-designed and/or mal-operated SRCs.

  15. Effects of land cover change on the tropical circulation in a GCM

    NASA Astrophysics Data System (ADS)

    Jonko, Alexandra Karolina; Hense, Andreas; Feddema, Johannes Jan

    2010-09-01

    Multivariate statistics are used to investigate sensitivity of the tropical atmospheric circulation to scenario-based global land cover change (LCC), with the largest changes occurring in the tropics. Three simulations performed with the fully coupled Parallel Climate Model (PCM) are compared: (1) a present day control run; (2) a simulation with present day land cover and Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 greenhouse gas (GHG) projections; and (3) a simulation with SRES A2 land cover and GHG projections. Dimensionality of PCM data is reduced by projection onto a priori specified eigenvectors, consisting of Rossby and Kelvin waves produced by a linearized, reduced gravity model of the tropical circulation. A Hotelling T 2 test is performed on projection amplitudes. Effects of LCC evaluated by this method are limited to diabatic heating. A statistically significant and recurrent signal is detected for 33% of all tests performed for various combinations of parameters. Taking into account uncertainties and limitations of the present methodology, this signal can be interpreted as a Rossby wave response to prescribed LCC. The Rossby waves are shallow, large-scale motions, trapped at the equator and most pronounced in boreal summer. Differences in mass and flow fields indicate a shift of the tropical Walker circulation patterns with an anomalous subsidence over tropical South America.

  16. The Errors Sources Affect to the Results of One-Way Nested Ocean Regional Circulation Model

    NASA Astrophysics Data System (ADS)

    Pham, S. V.

    2016-02-01

    Pham-Van Sy1, Jin Hwan Hwang2 and Hyeyun Ku3 Dept. of Civil & Environmental Engineering, Seoul National University, KoreaEmail: 1phamsymt@gmail.com (Corresponding author) Email: 2jinhwang@snu.ac.krEmail: 3hyeyun.ku@gmail.comAbstractThe Oceanic Regional Circulation Model (ORCM) is an essential tool in resolving highly a regional scale through downscaling dynamically the results from the roughly revolved global model. However, when dynamic downscaling from a coarse resolution of the global model or observations to the small scale, errors are generated due to the different sizes of resolution and lateral updating frequency. This research evaluated the effect of four main sources on the results of the ocean regional circulation model (ORCMs) during downscaling and nesting the output data from the ocean global circulation model (OGCMs). Representative four error sources should be the way of the LBC formulation, the spatial resolution difference between driving and driven data, the frequency for up-dating LBCs and domain size. Errors which are contributed from each error source to the results of the ORCMs are investigated separately by applying the Big-Brother Experiment (BBE). Within resolution of 3km grid point of the ORCMs imposing in the BBE framework, it clearly exposes that the simulation results of the ORCMs significantly depend on the domain size and specially the spatial and temporal resolution of lateral boundary conditions (LBCs). The ratio resolution of spatial resolution between driving data and driven model could be up to 3, the updating frequency of the LBCs can be up to every 6 hours per day. The optimal domain size of the ORCMs could be smaller than the OGCMs' domain size around 2 to 10 times. Key words: ORCMs, error source, lateral boundary conditions, domain size Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled as "Developing total management system for the Keum river estuary and coast

  17. Simulations and Evaluation of Mesoscale Convective Systems in a Multi-scale Modeling Framework (MMF)

    NASA Astrophysics Data System (ADS)

    Chern, J. D.; Tao, W. K.

    2017-12-01

    It is well known that the mesoscale convective systems (MCS) produce more than 50% of rainfall in most tropical regions and play important roles in regional and global water cycles. Simulation of MCSs in global and climate models is a very challenging problem. Typical MCSs have horizontal scale of a few hundred kilometers. Models with a domain of several hundred kilometers and fine enough resolution to properly simulate individual clouds are required to realistically simulate MCSs. The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has shown some capabilities of simulating organized MCS-like storm signals and propagations. However, its embedded CRMs typically have small domain (less than 128 km) and coarse resolution ( 4 km) that cannot realistically simulate MCSs and individual clouds. In this study, a series of simulations were performed using the Goddard MMF. The impacts of the domain size and model grid resolution of the embedded CRMs on simulating MCSs are examined. The changes of cloud structure, occurrence, and properties such as cloud types, updraft and downdraft, latent heating profile, and cold pool strength in the embedded CRMs are examined in details. The simulated MCS characteristics are evaluated against satellite measurements using the Goddard Satellite Data Simulator Unit. The results indicate that embedded CRMs with large domain and fine resolution tend to produce better simulations compared to those simulations with typical MMF configuration (128 km domain size and 4 km model grid spacing).

  18. Simulation and Sensitivity in a Nested Modeling System for South America. Part II: GCM Boundary Forcing.

    NASA Astrophysics Data System (ADS)

    Rojas, Maisa; Seth, Anji

    2003-08-01

    of this study, the RegCM's ability to simulate circulation and rainfall observed in the two extreme seasons was demonstrated when driven at the lateral boundaries by reanalyzed forcing. Seasonal integrations with the RegCM driven by GCM ensemble-derived lateral boundary forcing demonstrate that the nested model responds well to the SST forcing, by capturing the major features of the circulation and rainfall differences between the two years. The GCM-driven model also improves upon the monthly evolution of rainfall compared with that from the GCM. However, the nested model rainfall simulations for the two seasons are degraded compared with those from the reanalyses-driven RegCM integrations. The poor location of the Atlantic intertropical convergence zone (ITCZ) in the GCM leads to excess rainfall in Nordeste in the nested model.An expanded domain was tested, wherein the RegCM was permitted more internal freedom to respond to SST and regional orographic forcing. Results show that the RegCM is able to improve the location of the ITCZ, and the seasonal evolution of rainfall in Nordeste, the Amazon region, and the southeastern region of Brazil. However, it remains that the limiting factor in the skill of the nested modeling system is the quality of the lateral boundary forcing provided by the global model.

  19. TRANSPORT BY MERIDIONAL CIRCULATIONS IN SOLAR-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, T. S.; Brummell, N. H., E-mail: tsw25@soe.ucsc.edu

    2012-08-20

    Transport by meridional flows has significant consequences for stellar evolution, but is difficult to capture in global-scale numerical simulations because of the wide range of timescales involved. Stellar evolution models therefore usually adopt parameterizations for such transport based on idealized laminar or mean-field models. Unfortunately, recent attempts to model this transport in global simulations have produced results that are not consistent with any of these idealized models. In an effort to explain the discrepancies between global simulations and idealized models, here we use three-dimensional local Cartesian simulations of compressible convection to study the efficiency of transport by meridional flows belowmore » a convection zone in several parameter regimes of relevance to the Sun and solar-type stars. In these local simulations we are able to establish the correct ordering of dynamical timescales, although the separation of the timescales remains unrealistic. We find that, even though the generation of internal waves by convective overshoot produces a high degree of time dependence in the meridional flow field, the mean flow has the qualitative behavior predicted by laminar, 'balanced' models. In particular, we observe a progressive deepening, or 'burrowing', of the mean circulation if the local Eddington-Sweet timescale is shorter than the viscous diffusion timescale. Such burrowing is a robust prediction of laminar models in this parameter regime, but has never been observed in any previous numerical simulation. We argue that previous simulations therefore underestimate the transport by meridional flows.« less

  20. ENSO-Related Precipitation and Its Statistical Relationship with the Walker Circulation Trend in CMIP5 AMIP Models

    DOE PAGES

    Yim, Bo; Yeh, Sang -Wook; Sohn, Byung -Ju

    2016-01-29

    Observational evidence shows that the Walker circulation (WC) in the tropical Pacific has strengthened in recent decades. In this study, we examine the WC trend for 1979–2005 and its relationship with the precipitation associated with the El Niño Southern Oscillation (ENSO) using the sea surface temperature (SST)-constrained Atmospheric Model Intercomparison Project (AMIP) simulations of the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models. All of the 29 models show a strengthening of the WC trend in response to an increase in the SST zonal gradient along the equator. Despite the same SST-constrained AMIP simulations, however, a large diversity ismore » found among the CMIP5 climate models in the magnitude of the WC trend. The relationship between the WC trend and precipitation anomalies (PRCPAs) associated with ENSO (ENSO-related PRCPAs) shows that the longitudinal position of the ENSO-related PRCPAs in the western tropical Pacific is closely related to the magnitude of the WC trend. Specifically, it is found that the strengthening of the WC trend is large (small) in the CMIP5 AMIP simulations in which the ENSO-related PRCPAs are located relatively westward (eastward) in the western tropical Pacific. Furthermore, the zonal shift of the ENSO-related precipitation in the western tropical Pacific, which is associated with the climatological mean precipitation in the tropical Pacific, could play an important role in modifying the WC trend in the CMIP5 climate models.« less

  1. Tidal and tidally averaged circulation characteristics of Suisun Bay, California

    USGS Publications Warehouse

    Smith, Lawrence H.; Cheng, Ralph T.

    1987-01-01

    Availability of extensive field data permitted realistic calibration and validation of a hydrodynamic model of tidal circulation and salt transport for Suisun Bay, California. Suisun Bay is a partially mixed embayment of northern San Francisco Bay located just seaward of the Sacramento-San Joaquin Delta. The model employs a variant of an alternating direction implicit finite-difference method to solve the hydrodynamic equations and an Eulerian-Lagrangian method to solve the salt transport equation. An upwind formulation of the advective acceleration terms of the momentum equations was employed to avoid oscillations in the tidally averaged velocity field produced by central spatial differencing of these terms. Simulation results of tidal circulation and salt transport demonstrate that tides and the complex bathymetry determine the patterns of tidal velocities and that net changes in the salinity distribution over a few tidal cycles are small despite large changes during each tidal cycle. Computations of tidally averaged circulation suggest that baroclinic and wind effects are important influences on tidally averaged circulation during low freshwater-inflow conditions. Exclusion of baroclinic effects would lead to overestimation of freshwater inflow by several hundred m3/s for a fixed set of model boundary conditions. Likewise, exclusion of wind would cause an underestimation of flux rates between shoals and channels by 70–100%.

  2. A Wind Tunnel Model to Explore Unsteady Circulation Control for General Aviation Applications

    NASA Technical Reports Server (NTRS)

    Cagle, Christopher M.; Jones, Gregory S.

    2002-01-01

    Circulation Control airfoils have been demonstrated to provide substantial improvements in lift over conventional airfoils. The General Aviation Circular Control model is an attempt to address some of the concerns of this technique. The primary focus is to substantially reduce the amount of air mass flow by implementing unsteady flow. This paper describes a wind tunnel model that implements unsteady circulation control by pulsing internal pneumatic valves and details some preliminary results from the first test entry.

  3. An efficient mode-splitting method for a curvilinear nearshore circulation model

    USGS Publications Warehouse

    Shi, Fengyan; Kirby, James T.; Hanes, Daniel M.

    2007-01-01

    A mode-splitting method is applied to the quasi-3D nearshore circulation equations in generalized curvilinear coordinates. The gravity wave mode and the vorticity wave mode of the equations are derived using the two-step projection method. Using an implicit algorithm for the gravity mode and an explicit algorithm for the vorticity mode, we combine the two modes to derive a mixed difference–differential equation with respect to surface elevation. McKee et al.'s [McKee, S., Wall, D.P., and Wilson, S.K., 1996. An alternating direction implicit scheme for parabolic equations with mixed derivative and convective terms. J. Comput. Phys., 126, 64–76.] ADI scheme is then used to solve the parabolic-type equation in dealing with the mixed derivative and convective terms from the curvilinear coordinate transformation. Good convergence rates are found in two typical cases which represent respectively the motions dominated by the gravity mode and the vorticity mode. Time step limitations imposed by the vorticity convective Courant number in vorticity-mode-dominant cases are discussed. Model efficiency and accuracy are verified in model application to tidal current simulations in San Francisco Bight.

  4. Seasonal variability of water transport through the Straits of Gibraltar, Sicily and Corsica, derived from a high-resolution model of the Mediterranean circulation

    NASA Astrophysics Data System (ADS)

    Béranger, K.; Mortier, L.; Crépon, M.

    2005-08-01

    The variability of the water transport through three major straits of the Mediterranean Sea (Gibraltar, Sicily and Corsica) was investigated using a high-resolution model. This model of the Mediterranean circulation was developed in the context of the Mercator project. The region of interest is the western Mediterranean between the Strait of Gibraltar and the Strait of Sicily. The major water masses and the winter convection in the Gulf of Lions were simulated. The model reproduced the meso-scale and large-scale patterns of the circulation in very good agreement with recent observations. The western and the eastern gyres of the Alboran Sea were observed but high interannual variability was noticed. The Algerian Current splits into several branches at the longitude of the Strait of Sicily level, forming the Tyrrhenian branch, and, the Atlantic Ionian Stream and the Atlantic Tunisian Current in the eastern Mediterranean. The North Current retroflexed north of the Balearic Islands and a dome structure was observed in the Gulf of Lions. The cyclonic barotropic Algerian gyre, which was recently observed during the MATER and ELISA experiment, was evidenced in the simulation. From time-series of 10-day mean transport, the three straits presented a high variability at short time-scales. The transport was generally maximum, in April for the Strait of Gibraltar, in November for the Strait of Sicily, and in January for the Strait of Corsica. The amplitudes of the transport through the Straits of Gibraltar (0.11 Sv) and Sicily (0.30 Sv) presented a weaker seasonal variability than that of the Strait of Corsica (0.70 Sv). The study of the relation between transport and wind forcing showed that the transport through the Strait of Gibraltar is dependent on local zonal wind over short time-scales (70%), which was not the case for the other straits (less than 30%). The maximum (minimum) of the transport occurred for an eastward (westward) wind stress in the strait. An interannual

  5. Using the Gamma-Poisson Model to Predict Library Circulations.

    ERIC Educational Resources Information Center

    Burrell, Quentin L.

    1990-01-01

    Argues that the gamma mixture of Poisson processes, for all its perceived defects, can be used to make predictions regarding future library book circulations of a quality adequate for general management requirements. The use of the model is extensively illustrated with data from two academic libraries. (Nine references) (CLB)

  6. High-Reynolds Number Circulation Control Testing in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.

    2012-01-01

    A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. The first active flow control experiment was completed using the new FAST-MAC semi-span model to study Reynolds number scaling effects for several circulation control concepts. Testing was conducted over a wide range of Mach numbers, up to chord Reynolds numbers of 30 million. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. Preliminary analysis of the uncorrected lift data showed that the circulation control increased the low-speed maximum lift coefficient by 33%. At transonic speeds, the circulation control was capable of positively altering the shockwave pattern on the upper wing surface and reducing flow separation. Furthermore, application of the technique to only the outboard portion of the wing demonstrated the feasibility of a pneumatic based roll control capability.

  7. Tidal-flow, circulation, and flushing characteristics of Kings Bay, Citrus County, Florida

    USGS Publications Warehouse

    Hammett, K.M.; Goodwin, C.R.; Sanders, G.L.

    1996-01-01

    Kings Bay is an estuary on the gulf coast of peninsular Florida with a surface area of less than one square mile. It is a unique estuarine system with no significant inflowing rivers or streams. As much as 99 percent of the freshwater entering the bay originates from multiple spring vents at the bottom of the estuary. The circulation and flushing characteristics of Kings Bay were evaluated by applying SIMSYS2D, a two-dimensional numerical model. Field data were used to calibrate and verify the model. Lagrangian particle simulations were used to determine the circulation characteristics for three hydrologic conditions: low inflow, typical inflow, and low inflow with reduced friction from aquatic vegetation. Spring discharge transported the particles from Kings Bay through Crystal River and out of the model domain. Tidal effects added an oscillatory component to the particle paths. The mean particle residence time was 59 hours for low inflow with reduced friction; therefore, particle residence time is affected more by spring discharge than by bottom friction. Circulation patterns were virtually identical for the three simulated hydroloigc conditions. Simulated particles introduced in the southern part of Kings Bay traveled along the eastern side of Buzzard Island before entering Crystal River and existing the model domain. The flushing characteristics of Kings Bay for the three hydrodynamic conditions were determined by simulating the injection of conservative dye constituents. The average concentration of dye initially injected in Kings Bay decreased asymptotically because of spring discharge, and the tide caused some oscillation in the average dye concentration. Ninety-five percent of the injected dye exited Kings Bay and Crystal River with 94 hours for low inflow, 71 hours for typical inflow, and 94 hours for low inflow with reduced bottom friction. Simulation results indicate that all of the open waters of Kings Bay are flushed by the spring discharge. Reduced

  8. A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS

    EPA Science Inventory

    A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...

  9. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed {alpha}-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithmmore » for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.« less

  10. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    NASA Technical Reports Server (NTRS)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; hide

    2017-01-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth's, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  11. Progress toward a circulation atlas for application to coastal water siting problems

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Gordon, H. H.

    1978-01-01

    Circulation data needed to resolve coastal siting problems are assembled from historical hydrographic and remote sensing studies in the form of a Circulation Atlas. Empirical data are used instead of numerical model simulations to achieve fine resolution and include fronts and convergence zones. Eulerian and Langrangian data are collected, transformed, and combined into trajectory maps and current vector maps as a function of tidal phase and wind vector. Initial Atlas development is centered on the Elizabeth River, Hampton Roads, Virgina.

  12. Simulations of Antarctic ice shelves and the Southern Ocean in the POP2x ocean model coupled with the BISICLES ice-sheet model

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Martin, Daniel; Price, Stephen; Maltrud, Mathew

    2014-05-01

    We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and ice-sheet evolution models. This presentation focuses on the ocean model, POP2x, which is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). A companion presentation, 'Fully resolved whole-continent Antarctica simulations using the BISICLES AMR ice sheet model coupled with the POP2x Ocean Model', concentrates more on the ice-sheet model, BISICLES (Cornford et al., 2012), which includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (Southern Ocean) simulations using POP2x at 0.1 degree resolution with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to

  13. A diabatic circulation two-dimensional model with photochemistry - Simulations of ozone and long-lived tracers with surface sources

    NASA Technical Reports Server (NTRS)

    Stordal, F.; Isaksen, I. S. A.; Horntveth, K.

    1985-01-01

    Numerous studies have been concerned with the possibility of a reduction of the stratospheric ozone layer. Such a reduction could lead to an enhanced penetration of ultraviolet (UV) radiation to the ground, and, as a result, to damage in the case of several biological processes. It is pointed out that the distributions of many trace gases, such as ozone, are governed in part by transport processes. The present investigation presents a two-dimensional photochemistry-transport model using the residual circulation. The global distribution of both ozone and components with ground sources computed in this model is in good agreement with the observations even though slow diffusion is adopted. The agreement is particularly good in the Northern Hemisphere. The results provide additional support for the idea that tracer transport in the stratosphere is mainly of advective nature.

  14. Turbulent circulation above the surface heat source in stably stratified atmosphere

    NASA Astrophysics Data System (ADS)

    Kurbatskii, A. F.; Kurbatskaya, L. I.

    2016-10-01

    The 3-level RANS approach for simulating a turbulent circulation over the heat island in a stably stratified environment under nearly calm conditions is formulated. The turbulent kinetic energy its spectral consumption (dissipation) and the dispersion of turbulent fluctuations of temperature are found from differential equations, thus the correct modeling of transport processes in the interface layer with the counter-gradient heat flux is assured. The three-parameter turbulence RANS approach minimizes difficulties in simulating the turbulent transport in a stably stratified environment and reduces efforts needed for the numerical implementation of the 3-level RANS approach. Numerical simulation of the turbulent structure of the penetrative convection over the heat island under conditions of stably stratified atmosphere demonstrates that the three-equation model is able to predict the thermal circulation induced by the heat island. The temperature distribution, root-mean-square fluctuations of the turbulent velocity and temperature fields and spectral turbulent kinetic energy flux are in good agreement with the experimental data. The model describes such thin physical effects, as a crossing of vertical profiles of temperature of a thermal plume with the formation of the negative buoyancy area testifying to development of the dome-shaped form at the top part of a plume in the form of "hat".

  15. Lagrangian Modeling of Arctic Ocean Circulation Pathways: Impact of Advection on Spread of Pollutants

    NASA Astrophysics Data System (ADS)

    Kelly, S.; Popova, E.; Aksenov, Y.; Marsh, R.; Yool, A.

    2018-04-01

    Sea-ice-free summers are projected to become a prominent feature of the Arctic environment in the coming decades. From a shipping perspective, this means larger areas of open water in the summer, thinner and less compact ice all year round, and longer operating seasons. Therefore, the possibility for easier navigation along trans-Arctic shipping routes arises. The Northern Sea Route (NSR) is one trans-Arctic route, and it offers a potential 10 day shortcut between Western Europe and the Far East. More ships transiting the NSR means an increased risk of an accident, and associated oil spill, occurring. Previous research suggests that current infrastructure is insufficient for increased shipping. Therefore, should an oil spill occur, the window for a successful clean-up will be short. In the event of a failed recovery, the long-term fate of the unrecovered pollutants must be considered, at least until the next melt season when it could become accessible again. Here we investigate the role of oceanic advection in determining the long-term fate of Arctic pollutants using a high-resolution ocean model along with Lagrangian particle-tracking to simulate the spread of pollutants. The resulting "advective footprints" of pollutants are proposed as an informative metric for analyzing such experiments. We characterize the circulation along different parts of the NSR, defining three main regions in the Eurasian Arctic, and relate the distinctive circulation pathways of each to the long-term fate of spilled oil. We conclude that a detailed understanding of ocean circulation is critical for determining the long-term fate of Arctic pollutants.

  16. Simulating physiological interactions in a hybrid system of mathematical models.

    PubMed

    Kretschmer, Jörn; Haunsberger, Thomas; Drost, Erick; Koch, Edmund; Möller, Knut

    2014-12-01

    Mathematical models can be deployed to simulate physiological processes of the human organism. Exploiting these simulations, reactions of a patient to changes in the therapy regime can be predicted. Based on these predictions, medical decision support systems (MDSS) can help in optimizing medical therapy. An MDSS designed to support mechanical ventilation in critically ill patients should not only consider respiratory mechanics but should also consider other systems of the human organism such as gas exchange or blood circulation. A specially designed framework allows combining three model families (respiratory mechanics, cardiovascular dynamics and gas exchange) to predict the outcome of a therapy setting. Elements of the three model families are dynamically combined to form a complex model system with interacting submodels. Tests revealed that complex model combinations are not computationally feasible. In most patients, cardiovascular physiology could be simulated by simplified models decreasing computational costs. Thus, a simplified cardiovascular model that is able to reproduce basic physiological behavior is introduced. This model purely consists of difference equations and does not require special algorithms to be solved numerically. The model is based on a beat-to-beat model which has been extended to react to intrathoracic pressure levels that are present during mechanical ventilation. The introduced reaction to intrathoracic pressure levels as found during mechanical ventilation has been tuned to mimic the behavior of a complex 19-compartment model. Tests revealed that the model is able to represent general system behavior comparable to the 19-compartment model closely. Blood pressures were calculated with a maximum deviation of 1.8 % in systolic pressure and 3.5 % in diastolic pressure, leading to a simulation error of 0.3 % in cardiac output. The gas exchange submodel being reactive to changes in cardiac output showed a resulting deviation of less

  17. Assessment and simulation of global terrestrial latent heat flux by synthesis of CMIP5 climate models and surface eddy covariance observations

    Treesearch

    Yunjun Yao; Shunlin Liang; Xianglan Li; Shaomin Liu; Jiquan Chen; Xiaotong Zhang; Kun Jia; Bo Jiang; Xianhong Xie; Simon Munier; Meng Liu; Jian Yu; Anders Lindroth; Andrej Varlagin; Antonio Raschi; Asko Noormets; Casimiro Pio; Georg Wohlfahrt; Ge Sun; Jean-Christophe Domec; Leonardo Montagnani; Magnus Lund; Moors Eddy; Peter D. Blanken; Thomas Grunwald; Sebastian Wolf; Vincenzo Magliulo

    2016-01-01

    The latent heat flux (LE) between the terrestrial biosphere and atmosphere is a major driver of the globalhydrological cycle. In this study, we evaluated LE simulations by 45 general circulation models (GCMs)in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by a comparison...

  18. Tests of Parameterized Langmuir Circulation Mixing in the Oceans Surface Mixed Layer II

    DTIC Science & Technology

    2017-08-11

    inertial oscillations in the ocean are governed by three-dimensional processes that are not accounted for in a one-dimensional simulation , and it was...Unlimited 52 Paul Martin (228) 688-5447 Recent large-eddy simulations (LES) of Langmuir circulation (LC) within the surface mixed layer (SML) of...used in the Navy Coastal Ocean Model (NCOM) and tested for (a) a simple wind-mixing case, (b) simulations of the upper ocean thermal structure at Ocean

  19. Library Circulation Systems: An Overview

    ERIC Educational Resources Information Center

    Surace, Cecily J.

    1972-01-01

    The model circulation system outlined is an on-line real time system in which the circulation file is created from the shelf list. The model extends beyond the operational limits of most existing circulation systems and can be considered a reflection of the current state of the art. (36 references) (Author/NH)

  20. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    NASA Astrophysics Data System (ADS)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional

  1. The zonally averaged transport characteristics of the atmosphere as determined by a general circulation model

    NASA Technical Reports Server (NTRS)

    Plumb, R. A.

    1985-01-01

    Two dimensional modeling has become an established technique for the simulation of the global structure of trace constituents. Such models are simpler to formulate and cheaper to operate than three dimensional general circulation models, while avoiding some of the gross simplifications of one dimensional models. Nevertheless, the parameterization of eddy fluxes required in a 2-D model is not a trivial problem. This fact has apparently led some to interpret the shortcomings of existing 2-D models as indicating that the parameterization procedure is wrong in principle. There are grounds to believe that these shortcomings result primarily from incorrect implementations of the predictions of eddy transport theory and that a properly based parameterization may provide a good basis for atmospheric modeling. The existence of these GCM-derived coefficients affords an unprecedented opportunity to test the validity of the flux-gradient parameterization. To this end, a zonally averaged (2-D) model was developed, using these coefficients in the transport parameterization. Results from this model for a number of contrived tracer experiments were compared with the parent GCM. The generally good agreement substantially validates the flus-gradient parameterization, and thus the basic principle of 2-D modeling.

  2. Influence of Transport on Two-Dimensional Model Simulation. Tracer Sensitivity to 2-D Model Transport. 1; Long Lived Tracers

    NASA Technical Reports Server (NTRS)

    Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Stolarski, Richard S.

    1999-01-01

    In this study, we examine the sensitivity of long lived tracers to changes in the base transport components in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric mean age, and increased the rate of removal of material from the stratosphere. Increasing the stratospheric K(sub yy) increased the mean age due to the greater recycling of air parcels through the middle atmosphere, via the residual circulation, before returning to the troposphere. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and produces significantly younger ages throughout the stratosphere. Simulations with very small tropical stratospheric K(sub yy) decreased the globally averaged age of air by as much as 25% in the middle and upper stratosphere, and resulted in substantially weaker vertical age gradients above 20 km in the extratropics. We found only very small stratospheric tracer sensitivity to the magnitude of the horizontal mixing across the tropopause, and to the strength of the mesospheric gravity wave drag and diffusion used in the model. We also investigated the transport influence on chemically active tracers and found a strong age-tracer correlation, both in concentration and calculated lifetimes. The base model transport gives the most favorable overall comparison with a variety of inert tracer observations, and provides a significant improvement over our previous 1995 model transport. Moderate changes to the base transport were found to provide modest agreement with some of the measurements. Transport scenarios with residence times ranging from moderately shorter to slightly longer relative to the base case simulated N2O lifetimes

  3. Plasma Sheet Circulation Pathways

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.; Damiano, P.; Lotko, W.

    2008-01-01

    Global simulations of Earth's magnetosphere in the solar wind compute the pathways of plasma circulation through the plasma sheet. We address the pathways that supply and drain the plasma sheet, by coupling single fluid simulations with Global Ion Kinetic simulations of the outer magnetosphere and the Comprehensive Ring Current Model of the inner magnetosphere, including plasmaspheric plasmas. We find that the plasma sheet is supplied with solar wind plasmas via the magnetospheric flanks, and that this supply is most effective for northward IMF. For southward IMF, the innermost plasma sheet and ring current region are directly supplied from the flanks, with an asymmetry of single particle entry favoring the dawn flank. The central plasma sheet (near midnight) is supplied, as expected, from the lobes and polar cusps, but the near-Earth supply consists mainly of slowly moving ionospheric outflows for typical conditions. Work with the recently developed multi-fluid LFM simulation shows transport via plasma "fingers" extending Earthward from the flanks, suggestive of an interchange instability. We investigate this with solar wind ion trajectories, seeking to understand the fingering mechanisms and effects on transport rates.

  4. Prognostic residual mean flow in an ocean general circulation model and its relation to prognostic Eulerian mean flow

    DOE PAGES

    Saenz, Juan A.; Chen, Qingshan; Ringler, Todd

    2015-05-19

    Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less

  5. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew

    empirical model was also implemented in the computational models of the NSTF using both RELAP5-3D and STARCCM+ codes. Accounting for the effects of ambient conditions, simulations from both codes predicted the natural circulation flow rates very well.« less

  6. Simulation of South-Asian Summer Monsoon in a GCM

    NASA Astrophysics Data System (ADS)

    Ajayamohan, R. S.

    2007-10-01

    Major characteristics of Indian summer monsoon climate are analyzed using simulations from the upgraded version of Florida State University Global Spectral Model (FSUGSM). The Indian monsoon has been studied in terms of mean precipitation and low-level and upper-level circulation patterns and compared with observations. In addition, the model's fidelity in simulating observed monsoon intraseasonal variability, interannual variability and teleconnection patterns is examined. The model is successful in simulating the major rainbelts over the Indian monsoon region. However, the model exhibits bias in simulating the precipitation bands over the South China Sea and the West Pacific region. Seasonal mean circulation patterns of low-level and upper-level winds are consistent with the model's precipitation pattern. Basic features like onset and peak phase of monsoon are realistically simulated. However, model simulation indicates an early withdrawal of monsoon. Northward propagation of rainbelts over the Indian continent is simulated fairly well, but the propagation is weak over the ocean. The model simulates the meridional dipole structure associated with the monsoon intraseasonal variability realistically. The model is unable to capture the observed interannual variability of monsoon and its teleconnection patterns. Estimate of potential predictability of the model reveals the dominating influence of internal variability over the Indian monsoon region.

  7. Residual estuarine circulation in the Mandovi, a monsoonal estuary: A three-dimensional model study

    NASA Astrophysics Data System (ADS)

    Vijith, V.; Shetye, S. R.; Baetens, K.; Luyten, P.; Michael, G. S.

    2016-05-01

    Observations in the Mandovi estuary, located on the central west coast of India, have shown that the salinity field in this estuary is remarkably time-dependent and passes through all possible states of stratification (riverine, highly-stratified, partially-mixed and well-mixed) during a year as the runoff into the estuary varies from high values (∼1000 m3 s-1) in the wet season to negligible values (∼1 m3 s-1) at end of the dry season. The time-dependence is forced by the Indian Summer Monsoon (ISM) and hence the estuary is referred to as a monsoonal estuary. In this paper, we use a three-dimensional, open source, hydrodynamic, numerical model to reproduce the observed annual salinity field in the Mandovi. We then analyse the model results to define characteristics of residual estuarine circulation in the Mandovi. Our motivation to study this aspect of the Mandovi's dynamics is derived from the following three considerations. First, residual circulation is important to long-term evolution of an estuary; second, we need to understand how this circulation responds to strongly time-dependent runoff forcing experienced by a monsoonal estuary; and third, Mandovi is among the best studied estuaries that come under the influence of ISM, and has observations that can be used to validate the model. Our analysis shows that the residual estuarine circulation in the Mandovi shows four distinct phases during a year: a river like flow that is oriented downstream throughout the estuary; a salt-wedge type circulation, with flow into the estuary near the bottom and out of the estuary near the surface restricted close to the mouth of the estuary; circulation associated with a partially-mixed estuary; and, the circulation associated with a well-mixed estuary. Dimensional analysis of the field of residual circulation helped us to establish the link between strength of residual circulation at a location and magnitude of river runoff and rate of mixing at the location. We then

  8. Evaluation of stratospheric temperature simulation results by the global GRAPES model

    NASA Astrophysics Data System (ADS)

    Liu, Ningwei; Wang, Yangfeng; Ma, Xiaogang; Zhang, Yunhai

    2017-12-01

    Global final analysis (FNL) products and the general circulation spectral model (ECHAM) were used to evaluate the simulation of stratospheric temperature by the global assimilation and prediction system (GRAPES). Through a series of comparisons, it was shown that the temperature variations at 50 hPa simulated by GRAPES were significantly elevated in the southern hemisphere, whereas simulations by ECHAM and FNL varied little over time. The regional warming predicted by GRAPES seemed to be too distinct and uncontrolled to be reasonable. The temperature difference between GRAPES and FNL (GRAPES minus FNL) was small at the start time on the global scale. Over time, the positive values became larger in more locations, especially in parts of the southern hemisphere, where the warming predicted by GRAPES was dominant, with a maximal value larger than 24 K. To determine the reasons for the stratospheric warming, we considered the model initial conditions and ozone data to be possible factors; however, a comparison and sensitivity test indicated that the errors produced by GRAPES were not significantly related to either factor. Further research focusing on the impact of factors such as vapor, heating rate, and the temperature tendency on GRAPES simulations will be conducted.

  9. A numerical model simulation of the regional air pollution meteorology of the greater Chesapeake Bay area - Summer day case study

    NASA Technical Reports Server (NTRS)

    Segal, M.; Pielke, R. A.; Mcnider, R. T.; Mcdougal, D. S.

    1982-01-01

    The mesoscale numerical model of the University of Virginia (UVMM), has been applied to the greater Chesapeake Bay area in order to provide a detailed description of the air pollution meteorology during a typical summer day. This model provides state of the art simulations for land-sea thermally induced circulations. The model-predicted results agree favorably with available observed data. The effects of synoptic flow and sea breeze coupling on air pollution meteorological characteristics in this region, are demonstrated by a spatial and temporal presentation of various model predicted fields. A transport analysis based on predicted wind velocities indicated possible recirculation of pollutants back onto the Atlantic coast due to the sea breeze circulation.

  10. Equatorial waves in the NCAR stratospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Boville, B. A.

    1985-01-01

    Equatorially trapped wave modes are very important in the tropical stratospheric momentum balance. Kelvin waves and mixed Rossby-gravity waves are believed to be responsible for the quasi-biennial oscillation of the zonal winds in the equatorial lower stratosphere. Both Kelvin and mixed Rossby-gravity waves have been identified in observations and in numerical models. Kelvin and mixed Rossby-gravity waves are identified in a general circulation model extending from the surface into the mesosphere and looks at the effect on the waves of lowering the top of the model.

  11. Intercomparison of General Circulation Models for Hot Extrasolar Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Cho, James

    2013-11-01

    In this collaborative work with I. Polichtchouk, C. Watkins, H. Th. Thrastarson, O. M. Umurhan, and M. de la Torre-Juárez, we compare five general circulation models (GCMs) which have been recently used to study hot extrasolar planet atmospheres (BOB, CAM, IGCM, MITgcm, and PEQMOD), under three test cases useful for assessing model convergence and accuracy. Such a broad, detailed intercomparison has not been performed thus far for extrasolar planets study. The models considered all solve the traditional primitive equations, but employ different numerical algorithms or grids (e.g., pseudospectral and finite volume, with the latter separately in longitude-latitude and ``cubed-sphere'' grids). The test cases are chosen to cleanly address specific aspects of the behaviors typically reported in hot extrasolar planet simulations: 1) steady-state, 2) nonlinearly evolving baroclinic wave, and 3) response to fast timescale thermal relaxation. When initialized with a steady jet, all models maintain the steadiness, as they should--except MITgcm in cubed-sphere grid. A very good agreement is obtained for a baroclinic wave evolving from an initial instability in spectral models (only). However, exact numerical convergence is still not achieved across the spectral models: amplitudes and phases are observably different. When subject to a typical ``hot-Jupiter''-like forcing, all five models show quantitatively different behavior--although qualitatively similar, time-variable, quadrupole-dominated flows are produced. Hence, as have been advocated in several past studies, specific quantitative predictions (such as the location of large vortices and hot regions) by GCMs should be viewed with caution. Overall, in the tests considered here, spectral models in pressure coordinate (PEBOB and PEQMOD) perform the best and MITgcm in cubed-sphere grid performs the worst. This work has been supported by the Science and Technology Facilities Council, Westfield Small Grant, NASA Postdoctoral

  12. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  13. A large ozone-circulation feedback and its implications for global warming assessments.

    PubMed

    Nowack, Peer J; Abraham, N Luke; Maycock, Amanda C; Braesicke, Peter; Gregory, Jonathan M; Joshi, Manoj M; Osprey, Annette; Pyle, John A

    2015-01-01

    State-of-the-art climate models now include more climate processes which are simulated at higher spatial resolution than ever 1 . Nevertheless, some processes, such as atmospheric chemical feedbacks, are still computationally expensive and are often ignored in climate simulations 1,2 . Here we present evidence that how stratospheric ozone is represented in climate models can have a first order impact on estimates of effective climate sensitivity. Using a comprehensive atmosphere-ocean chemistry-climate model, we find an increase in global mean surface warming of around 1°C (~20%) after 75 years when ozone is prescribed at pre-industrial levels compared with when it is allowed to evolve self-consistently in response to an abrupt 4×CO 2 forcing. The difference is primarily attributed to changes in longwave radiative feedbacks associated with circulation-driven decreases in tropical lower stratospheric ozone and related stratospheric water vapour and cirrus cloud changes. This has important implications for global model intercomparison studies 1,2 in which participating models often use simplified treatments of atmospheric composition changes that are neither consistent with the specified greenhouse gas forcing scenario nor with the associated atmospheric circulation feedbacks 3-5 .

  14. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings. Such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  15. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings, such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  16. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.

    2014-03-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  17. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.; Williams, A. G.; Chambers, S. D.

    2014-10-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  18. ENSO-related Interannual Variability of Southern Hemisphere Atmospheric Circulation: Assessment and Projected Changes in CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Frederiksen, Carsten; Grainger, Simon; Zheng, Xiaogu; Sisson, Janice

    2013-04-01

    similar for both ENSO modes, with the associated variance being generally underestimated. Projected changes in the modes in the 21st century are then investigated using ensembles of CMIP5 models that reproduce well the 20th century slow modes. The slow-internal and slow-external components are examined separately, allowing the projected changes in the response to ENSO variability to be separated from the response to changes in greenhouse gas concentrations. By using several ensembles, the model-dependency of the projected changes in the ENSO-related slow-internal modes is examined. Frederiksen, C. S., and X. Zheng, 2007: Variability of seasonal-mean fields arising from intraseasonal variability. Part 3: Application to SH winter and summer circulations. Climate Dyn., 28, 849-866. Grainger, S., C. S. Frederiksen, and X. Zheng, 2012: Modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP3 models: Assessment and Projections. Climate Dyn., in press. Zheng, X., D. M. Straus, C. S. Frederiksen, and S. Grainger, 2009: Potentially predictable patterns of extratropical tropospheric circulation in an ensemble of climate simulations with the COLA AGCM. Quart. J. Roy. Meteor. Soc., 135, 1816-1829.

  19. Circulation and multiple-scale variability in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    Dong, Changming; Idica, Eileen Y.; McWilliams, James C.

    2009-09-01

    The oceanic circulation in the Southern California Bight (SCB) is influenced by the large-scale California Current offshore, tropical remote forcing through the coastal wave guide alongshore, and local atmospheric forcing. The region is characterized by local complexity in the topography and coastline. All these factors engender variability in the circulation on interannual, seasonal, and intraseasonal time scales. This study applies the Regional Oceanic Modeling System (ROMS) to the SCB circulation and its multiple-scale variability. The model is configured in three levels of nested grids with the parent grid covering the whole US West Coast. The first child grid covers a large southern domain, and the third grid zooms in on the SCB region. The three horizontal grid resolutions are 20 km, 6.7 km, and 1 km, respectively. The external forcings are momentum, heat, and freshwater flux at the surface and adaptive nudging to gyre-scale SODA reanalysis fields at the boundaries. The momentum flux is from a three-hourly reanalysis mesoscale MM5 wind with a 6 km resolution for the finest grid in the SCB. The oceanic model starts in an equilibrium state from a multiple-year cyclical climatology run, and then it is integrated from years 1996 through 2003. In this paper, the 8-year simulation at the 1 km resolution is analyzed and assessed against extensive observational data: High-Frequency (HF) radar data, current meters, Acoustic Doppler Current Profilers (ADCP) data, hydrographic measurements, tide gauges, drifters, altimeters, and radiometers. The simulation shows that the domain-scale surface circulation in the SCB is characterized by the Southern California Cyclonic Gyre, comprised of the offshore equatorward California Current System and the onshore poleward Southern California Countercurrent. The simulation also exhibits three subdomain-scale, persistent ( i.e., standing), cyclonic eddies related to the local topography and wind forcing: the Santa Barbara Channel Eddy

  20. The Numerical Studies Program for the Atmospheric General Circulation Experiment (AGCE) for Spacelab Flights

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W. (Editor); Davis, M. H. (Editor)

    1981-01-01

    The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.

  1. Statistical downscaling of general-circulation-model- simulated average monthly air temperature to the beginning of flowering of the dandelion (Taraxacum officinale) in Slovenia

    NASA Astrophysics Data System (ADS)

    Bergant, Klemen; Kajfež-Bogataj, Lučka; Črepinšek, Zalika

    2002-02-01

    Phenological observations are a valuable source of information for investigating the relationship between climate variation and plant development. Potential climate change in the future will shift the occurrence of phenological phases. Information about future climate conditions is needed in order to estimate this shift. General circulation models (GCM) provide the best information about future climate change. They are able to simulate reliably the most important mean features on a large scale, but they fail on a regional scale because of their low spatial resolution. A common approach to bridging the scale gap is statistical downscaling, which was used to relate the beginning of flowering of Taraxacum officinale in Slovenia with the monthly mean near-surface air temperature for January, February and March in Central Europe. Statistical models were developed and tested with NCAR/NCEP Reanalysis predictor data and EARS predictand data for the period 1960-1999. Prior to developing statistical models, empirical orthogonal function (EOF) analysis was employed on the predictor data. Multiple linear regression was used to relate the beginning of flowering with expansion coefficients of the first three EOF for the Janauary, Febrauary and March air temperatures, and a strong correlation was found between them. Developed statistical models were employed on the results of two GCM (HadCM3 and ECHAM4/OPYC3) to estimate the potential shifts in the beginning of flowering for the periods 1990-2019 and 2020-2049 in comparison with the period 1960-1989. The HadCM3 model predicts, on average, 4 days earlier occurrence and ECHAM4/OPYC3 5 days earlier occurrence of flowering in the period 1990-2019. The analogous results for the period 2020-2049 are a 10- and 11-day earlier occurrence.

  2. Anelastic Models of Fully-Convective Stars: Differential Rotation, Meridional Circulation and Residual Entropy

    NASA Astrophysics Data System (ADS)

    Sainsbury-Martinez, Felix; Browning, Matthew; Miesch, Mark; Featherstone, Nicholas A.

    2018-01-01

    Low-Mass stars are typically fully convective, and as such their dynamics may differ significantly from sun-like stars. Here we present a series of 3D anelastic HD and MHD simulations of fully convective stars, designed to investigate how the meridional circulation, the differential rotation, and residual entropy are affected by both varying stellar parameters, such as the luminosity or the rotation rate, and by the presence of a magnetic field. We also investigate, more specifically, a theoretical model in which isorotation contours and residual entropy (σ‧ = σ ‑ σ(r)) are intrinsically linked via the thermal wind equation (as proposed in the Solar context by Balbus in 2009). We have selected our simulation parameters in such as way as to span the transition between Solar-like differential rotation (fast equator + slow poles) and ‘anti-Solar’ differential rotation (slow equator + fast poles), as characterised by the convective Rossby number and △Ω. We illustrate the transition from single-celled to multi-celled MC profiles, and from positive to negative latitudinal entropy gradients. We show that an extrapolation involving both TWB and the σ‧/Ω link provides a reasonable estimate for the interior profile of our fully convective stars. Finally, we also present a selection of MHD simulations which exhibit an almost unsuppressed differential rotation profile, with energy balances remaining dominated by kinetic components.

  3. Observational and modeling studies of heat, moisture, precipitation, and global-scale circulation patterns

    NASA Technical Reports Server (NTRS)

    Vincent, Dayton G.; Robertson, Franklin

    1993-01-01

    The research sponsored by this grant is a continuation and an extension of the work conducted under a previous contract, 'South Pacific Convergence Zone and Global-Scale Circulations'. In the prior work, we conducted a detailed investigation of the South Pacific convergence zone (SPCZ), and documented many of its significant features and characteristics. We also conducted studies of its interaction with global-scale circulation features through the use of both observational and modeling studies. The latter was accomplished toward the end of the contract when Dr. James Hurrell, then a Ph.D. candidate, successfully ported the NASA GLA general circulation model (GCM) to Purdue University. In our present grant, we have expanded our previous research to include studies of other convectively-driven circulation systems in the tropics besides the SPCZ. Furthermore, we have continued to examine the relationship between these convective systems and global-scale circulation patterns. Our recent research efforts have focused on three objectives: (1) determining the periodicity of large-scale bands of organized convection in the tropics, primarily synoptic to intraseasonal time scales in the Southern Hemisphere; (2) examining the relative importance of tropical versus mid-latitude forcing for Southern Hemisphere summertime subtropical jets, particularly over the Pacific Ocean; and (3) estimating tropical precipitation, especially over oceans, using observational and budget methods. A summary list of our most significant accomplishments in the past year is given.

  4. Impacts of the cloud structure's latitudinal variation on the general circulation of the Venus atmosphere as modeled by the LMD-GCM

    NASA Astrophysics Data System (ADS)

    Garate-Lopez, Itziar; Lebonnois, Sébastien

    2017-04-01

    A new simulation of Venus atmospheric circulation obtained with the LMD Venus GCM is described and the impact of cloud's latitudinal structure on the general circulation is analyzed. The model used here is based on that presented in Lebonnois et al. (2016). However, in the present simulation we consider the latitudinal variation of the cloud structure (Haus et al., 2014) both for the solar heating and to compute the infrared net-exchange rate matrix used in the radiative transfer module. The new cloud treatment affects mainly the balance in the angular momentum and the zonal wind distribution. Consequently, the agreement between the vertical profile of the modeled mean zonal wind and the profiles measured by different probes, is clearly improved from previous simulations in which zonal winds below the clouds were weak (roughly half the observed values). Moreover, the equatorial jet obtained at the base of the cloud deck is now more consistent with the observations. In Lebonnois et al. (2016) it was too strong compared to mid-latitudes, but in the present simulation the equatorial jet is less intense than the mid-latitude jets, in concordance with cloud-tracking measurements (Hueso et al., 2015). Since the atmospheric waves play a crucial role in the angular momentum budget of the Venus's atmospheric circulation, we analyze the wave activity by means of the Fast Fourier Transform technique studying the frequency spectrum of temperature, zonal and meridional wind fields. Modifications in the activity of the different types of waves present in the Venusian atmosphere compared to Lebonnois et al. (2016) are discussed, in terms of horizontal and vertical transport of the angular momentum by diurnal and semi-diurnal tides, barotropic and baroclinic waves, and Rossby and Kelvin type waves. Haus R., Kappel D. and Arnold G., 2014. Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements. Icarus

  5. Validation of an intermediate-complexity model for simulating marine biogeochemistry under anoxic conditions in the modern Black Sea

    NASA Astrophysics Data System (ADS)

    Romaniello, Stephen J.; Derry, Louis A.

    2010-08-01

    We test the ability of a new 1-D intermediate-complexity box model (ICBM) that includes process-based C, N, P, O, and S biogeochemistry to simulate profiles and fluxes of biogeochemically reactive species across a wide range of ocean redox states. The ICBM was developed to simulate whole ocean processes for paleoceanographic applications and has been tested with data from the modern global ocean. Here we adapt the circulation submodel of the ICBM to simulate water mass exchange and eddy diffusion processes in the Black Sea but make only very minor changes to the biogeochemical submodel. We force the model with estimated natural and anthropogenic inputs of tracers and nutrients to the Black Sea and compare the results of the simulations to modern observations. Ventilation of the Black Sea is modeled by depth-dependent entrainment of Cold Intermediate Layer water into Bosphorus plume water and subsequent intrusion into deep layers. The simulated profiles of circulation tracers θ, salinity, CFC-12, and radiocarbon agree well with available data, suggesting that the model does a reasonable job of representing physical exchange. Vertical profiles of biogeochemically active components are in good overall agreement with observations. The lack of trace metal (Mn and Fe) cycling in the model results in some discrepancies between the simulated profiles and observation across the suboxic zone; however, the overall redox balance is not sensitive to this difference. We compare modeled basin-wide biogeochemical fluxes to available estimates, but in a number of cases uncertainties in modern budgets limit our ability to test the model rigorously. In agreement with earlier work we find that fixed N losses via thiodenitrification are likely a major pathway in the Black Sea N cycle. Overall, the same biogeochemical submodel used to simulate the modern global ocean appears to perform well in simulating Black Sea processes without requiring significant modification. The ability of a

  6. Projected strengthening of Amazonian dry season by constrained climate model simulations

    NASA Astrophysics Data System (ADS)

    Boisier, Juan P.; Ciais, Philippe; Ducharne, Agnès; Guimberteau, Matthieu

    2015-07-01

    The vulnerability of Amazonian rainforest, and the ecological services it provides, depends on an adequate supply of dry-season water, either as precipitation or stored soil moisture. How the rain-bearing South American monsoon will evolve across the twenty-first century is thus a question of major interest. Extensive savanization, with its loss of forest carbon stock and uptake capacity, is an extreme although very uncertain scenario. We show that the contrasting rainfall projections simulated for Amazonia by 36 global climate models (GCMs) can be reproduced with empirical precipitation models, calibrated with historical GCM data as functions of the large-scale circulation. A set of these simple models was therefore calibrated with observations and used to constrain the GCM simulations. In agreement with the current hydrologic trends, the resulting projection towards the end of the twenty-first century is for a strengthening of the monsoon seasonal cycle, and a dry-season lengthening in southern Amazonia. With this approach, the increase in the area subjected to lengthy--savannah-prone--dry seasons is substantially larger than the GCM-simulated one. Our results confirm the dominant picture shown by the state-of-the-art GCMs, but suggest that the `model democracy' view of these impacts can be significantly underestimated.

  7. Scaling and Numerical Model Evaluation of Snow-Cover Effects on the Generation and Modification of Daytime Mesoscale Circulations.

    NASA Astrophysics Data System (ADS)

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Ye, Z.

    1991-04-01

    Consideration of the sensible heat flux characteristics over a snow surface suggests a significant diminution in the magnitude of the flux, compared to that over a snow-free surface under the same environmental conditions. Consequently, the existence of snow-covered mesoscale areas adjacent to snow-free areas produces horizontal thermal gradients in the lower atmosphere during the daytime, possibly resulting in a `snow breeze.' In addition, suppression of the daytime thermally induced upslope flow over snow-covered slopes is likely to occur. The present paper provides scaling and modeling evaluations of these situations, with quantification of the generated and modified circulations. These evaluations suggest that under ideal situations involved with uniform snow cover over large areas, particularly in late winter and early spring, a noticeable `snow breeze' is likely to develop. Additionally: suppression of the daytime thermally induced upslope flow is significant and may even result in a daytime drainage flow. The effects of bare ground patchiness in the snow cover on these circulations are also explored, both for flat terrain and slope-flow situations. A patchiness fraction greater than 0.5 is found to result in a noticeably reduced snow-breeze circulation, while a patchiness fraction of only 0.1 caused the simulated daytime drainage flow over slopes to he reversed.

  8. Numerical simulation of isolation of cancer cells in a microfluidic chip

    NASA Astrophysics Data System (ADS)

    Djukic, T.; Topalovic, M.; Filipovic, N.

    2015-08-01

    Cancer is a disease that is characterized by the uncontrolled increase of numbers of cells. Circulating tumour cells (CTCs) are separated from the primary tumor, circulate in the bloodstream and form metastases. Circulating tumor cells can be identified in the blood of a patient by taking a blood sample. Microfluidic chips are a new technique that is used to isolate these cells from the blood sample. In this paper a numerical model is presented that is able to simulate the motion of individual cells through a microfluidic chip. The proposed numerical model gives very valuable insight into the processes happening within a microfluidic chip. The accuracy of the proposed model is compared with experimental results. The experimental setup that is described in literature is used to create identical geometrical domains and define simulation parameters. A good agreement of experimental and numerical results demonstrates that the proposed model can be successfully used to simulate complex behaviour of CTCs inside microfluidic chips.

  9. Ensemble-Based Parameter Estimation in a Coupled General Circulation Model

    DOE PAGES

    Liu, Y.; Liu, Z.; Zhang, S.; ...

    2014-09-10

    Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less

  10. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A. D.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; Tsigaridis, K.

    2017-07-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  11. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Way, M. J.; Aleinov, I.; Amundsen, David S.

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower tomore » more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.« less

  12. Using Transport Diagnostics to Understand Chemistry Climate Model Ozone Simulations

    NASA Technical Reports Server (NTRS)

    Strahan, S. E.; Douglass, A. R.; Stolarski, R. S.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.; hide

    2010-01-01

    We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.

  13. Heat flow bounds over the Cascadia margin derived from bottom simulating reflectors and implications for thermal models of subduction

    NASA Astrophysics Data System (ADS)

    Phrampus, Benjamin J.; Harris, Robert N.; Tréhu, Anne M.

    2017-09-01

    Understanding the thermal structure of the Cascadia subduction zone is important for understanding megathrust earthquake processes and seismogenic potential. Currently our understanding of the thermal structure of Cascadia is limited by a lack of high spatial resolution heat flow data and by poor understanding of thermal processes such as hydrothermal fluid circulation in the subducting basement, sediment thickening and dewatering, and frictional heat generation on the plate boundary. Here, using a data set of publically available seismic lines combined with new interpretations of bottom simulating reflector (BSR) distributions, we derive heat flow estimates across the Cascadia margin. Thermal models that account for hydrothermal circulation predict BSR-derived heat flow bounds better than purely conductive models, but still over-predict surface heat flows. We show that when the thermal effects of in-situ sedimentation and of sediment thickening and dewatering due to accretion are included, models with hydrothermal circulation become consistent with our BSR-derived heat flow bounds.

  14. Estimating habitat volume of living resources using three-dimensional circulation and biogeochemical models

    NASA Astrophysics Data System (ADS)

    Smith, Katharine A.; Schlag, Zachary; North, Elizabeth W.

    2018-07-01

    Coupled three-dimensional circulation and biogeochemical models predict changes in water properties that can be used to define fish habitat, including physiologically important parameters such as temperature, salinity, and dissolved oxygen. However, methods for calculating the volume of habitat defined by the intersection of multiple water properties are not well established for coupled three-dimensional models. The objectives of this research were to examine multiple methods for calculating habitat volume from three-dimensional model predictions, select the most robust approach, and provide an example application of the technique. Three methods were assessed: the "Step," "Ruled Surface", and "Pentahedron" methods, the latter of which was developed as part of this research. Results indicate that the analytical Pentahedron method is exact, computationally efficient, and preserves continuity in water properties between adjacent grid cells. As an example application, the Pentahedron method was implemented within the Habitat Volume Model (HabVol) using output from a circulation model with an Arakawa C-grid and physiological tolerances of juvenile striped bass (Morone saxatilis). This application demonstrates that the analytical Pentahedron method can be successfully applied to calculate habitat volume using output from coupled three-dimensional circulation and biogeochemical models, and it indicates that the Pentahedron method has wide application to aquatic and marine systems for which these models exist and physiological tolerances of organisms are known.

  15. The simulation of influence of different coals on the circulating fluidized bed Boiler's combustion performance

    NASA Astrophysics Data System (ADS)

    Yong, Yumei; Lu, Qinggang

    2003-05-01

    The combustion performance of the boiler largely depends on the coal type. Lots of experimental research shows that different fuels have different combustion characteristics. It is obvious that fuel will change the whole operating performance of Circulating Fluidized Bed Combustion (CFBC). We know even in a pilot-scale running boiler, the measurement of some parameters is difficult and costly. Therefore, we developed the way of simulation to evaluate the combustion performance of Chinese coals in CFB. The simulation results show that, different coals will result in different coal particle diameter and comminution depending on their mineral component and the change will affect the distribution of ash in CFBC system. In a word, the computational results are in accordance with experimental results qualitatively but there are some differences quantitatively.

  16. Understanding and Portraying the Global Atmospheric Circulation.

    ERIC Educational Resources Information Center

    Harrington, John, Jr.; Oliver, John E.

    2000-01-01

    Examines teaching models of atmospheric circulation and resultant surface pressure patterns, focusing on the three-cell model and the meaning of meridional circulation as related to middle and high latitudes. Addresses the failure of the three-cell model to explain seasonal variations in atmospheric circulation. Suggests alternative models. (CMK)

  17. Interannual Variation of Surface Circulation in the Japan/East Sea due to External Forcings and Intrinsic Variability

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman

    2018-03-01

    The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.

  18. The Sensitivity of the Midlatitude Moist Isentropic Circulation on Both Sides of the Climate Model Hierarchy

    NASA Astrophysics Data System (ADS)

    Fajber, R. A.; Kushner, P. J.; Laliberte, F. B.

    2017-12-01

    In the midlatitude atmosphere, baroclinic eddies are able to raise warm, moist air from the surface into the midtroposphere where it condenses and warms the atmosphere through latent heating. This coupling between dynamics and moist thermodynamics motivates using a conserved moist thermodynamic variable, such as the equivalent potential temperature, to study the midlatitude circulation and associated heat transport since it implicitly accounts for latent heating. When the equivalent potential temperature is used to zonally average the circulation, the moist isentropic circulation takes the form of a single cell in each hemisphere. By utilising the statistical transformed Eulerian mean (STEM) circulation we are able to parametrize the moist isentropic circulation in terms of second order dynamic and moist thermodynamic statistics. The functional dependence of the STEM allows us to analytically calculate functional derivatives that reveal the spatially varying sensitivity of the moist isentropic circulation to perturbations in different statistics. Using the STEM functional derivatives as sensitivity kernels we interpret changes in the moist isentropic circulation from two experiments: surface heating in an idealised moist model, and a climate change scenario in a comprehensive atmospheric general circulation model. In both cases we find that the changes in the moist isentropic circulation are well predicted by the functional sensitivities, and that the total heat transport is more sensitive to changes in dynamical processes driving local changes in poleward heat transport than it is to thermodynamic and/or radiative processes driving changes to the distribution of equivalent potential temperature.

  19. Modeling the Effects of Inhomogeneous Aerosols on the Hot Jupiter Kepler-7b’s Atmospheric Circulation

    NASA Astrophysics Data System (ADS)

    Roman, Michael; Rauscher, Emily

    2017-11-01

    Motivated by observational evidence of inhomogeneous clouds in exoplanetary atmospheres, we investigate how proposed simple cloud distributions can affect atmospheric circulations and infrared emission. We simulated temperatures and winds for the hot Jupiter Kepler-7b using a three-dimensional atmospheric circulation model that included a simplified aerosol radiative transfer model. We prescribed fixed cloud distributions and scattering properties based on results previously inferred from Kepler-7b optical phase curves, including inhomogeneous aerosols centered along the western terminator and hypothetical cases in which aerosols additionally extended across much of the planet’s nightside. In all cases, a strong jet capable of advecting aerosols from a cooler nightside to dayside was found to persist, but only at the equator. Colder temperatures at mid and polar latitudes might permit aerosol to form on the dayside without the need for advection. By altering the deposition and redistribution of heat, aerosols along the western terminator produced an asymmetric heating that effectively shifts the hottest spot further east of the substellar point than expected for a uniform distribution. The addition of opaque high clouds on the nightside can partly mitigate this enhanced shift by retaining heat that contributes to warming west of the hotspot. These expected differences in infrared phase curves could place constraints on proposed cloud distributions and their infrared opacities for brighter hot Jupiters.

  20. Skills of General Circulation and Earth System Models in reproducing streamflow to the ocean: the case of Congo river

    NASA Astrophysics Data System (ADS)

    Santini, M.; Caporaso, L.

    2017-12-01

    Although the importance of water resources in the context of climate change, it is still difficult to correctly simulate the freshwater cycle over the land via General Circulation and Earth System Models (GCMs and ESMs). Existing efforts from the Climate Model Intercomparison Project 5 (CMIP5) were mainly devoted to the validation of atmospheric variables like temperature and precipitation, with low attention to discharge.Here we investigate the present-day performances of GCMs and ESMs participating to CMIP5 in simulating the discharge of the river Congo to the sea thanks to: i) the long-term availability of discharge data for the Kinshasa hydrological station representative of more than 95% of the water flowing in the whole catchment; and ii) the River's still low influence by human intervention, which enables comparison with the (mostly) natural streamflow simulated within CMIP5.Our findings suggest how most of models appear overestimating the streamflow in terms of seasonal cycle, especially in the late winter and spring, while overestimation and variability across models are lower in late summer. Weighted ensemble means are also calculated, based on simulations' performances given by several metrics, showing some improvements of results.Although simulated inter-monthly and inter-annual percent anomalies do not appear significantly different from those in observed data, when translated into well consolidated indicators of drought attributes (frequency, magnitude, timing, duration), usually adopted for more immediate communication to stakeholders and decision makers, such anomalies can be misleading.These inconsistencies produce incorrect assessments towards water management planning and infrastructures (e.g. dams or irrigated areas), especially if models are used instead of measurements, as in case of ungauged basins or for basins with insufficient data, as well as when relying on models for future estimates without a preliminary quantification of model biases.

  1. Library Circulation Systems -- An Overview.

    ERIC Educational Resources Information Center

    Surace, Cecily J.

    The model circulation system outlined is an on-line real time system in which the circulation file is created from the shelf list and the terminal inquiry system includes the capability to query and browse through the bibliographic system and the circulation subsystem together to determine the availability for circulation of specific documents, or…

  2. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas

    2018-04-01

    In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.

  3. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model

    NASA Astrophysics Data System (ADS)

    Jungclaus, J. H.; Fischer, N.; Haak, H.; Lohmann, K.; Marotzke, J.; Matei, D.; Mikolajewicz, U.; Notz, D.; von Storch, J. S.

    2013-06-01

    MPI-ESM is a new version of the global Earth system model developed at the Max Planck Institute for Meteorology. This paper describes the ocean state and circulation as well as basic aspects of variability in simulations contributing to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The performance of the ocean/sea-ice model MPIOM, coupled to a new version of the atmosphere model ECHAM6 and modules for land surface and ocean biogeochemistry, is assessed for two model versions with different grid resolution in the ocean. The low-resolution configuration has a nominal resolution of 1.5°, whereas the higher resolution version features a quasiuniform, eddy-permitting global resolution of 0.4°. The paper focuses on important oceanic features, such as surface temperature and salinity, water mass distribution, large-scale circulation, and heat and freshwater transports. In general, these integral quantities are simulated well in comparison with observational estimates, and improvements in comparison with the predecessor system are documented; for example, for tropical variability and sea ice representation. Introducing an eddy-permitting grid configuration in the ocean leads to improvements, in particular, in the representation of interior water mass properties in the Atlantic and in the representation of important ocean currents, such as the Agulhas and Equatorial current systems. In general, however, there are more similarities than differences between the two grid configurations, and several shortcomings, known from earlier versions of the coupled model, prevail.

  4. Evaluation of Tropospheric Water Vapor Simulations from the Atmospheric Model Intercomparison Project

    NASA Technical Reports Server (NTRS)

    Gaffen, Dian J.; Rosen, Richard D.; Salstein, David A.; Boyle, James S.

    1997-01-01

    Simulations of humidity from 28 general circulation models for the period 1979-88 from the Atmospheric Model Intercomparison Project are compared with observations from radiosondes over North America and the globe and with satellite microwave observations over the Pacific basin. The simulations of decadal mean values of precipitable water (W) integrated over each of these regions tend to be less moist than the real atmosphere in all three cases; the median model values are approximately 5% less than the observed values. The spread among the simulations is larger over regions of high terrain, which suggests that differences in methods of resolving topographic features are important. The mean elevation of the North American continent is substantially higher in the models than is observed, which may contribute to the overall dry bias of the models over that area. The authors do not find a clear association between the mean topography of a model and its mean W simulation, however, which suggests that the bias over land is not purely a matter of orography. The seasonal cycle of W is reasonably well simulated by the models, although over North America they have a tendency to become moister more quickly in the spring than is observed. The interannual component of the variability of W is not well captured by the models over North America. Globally, the simulated W values show a signal correlated with the Southern Oscillation index but the observations do not. This discrepancy may be related to deficiencies in the radiosonde network, which does not sample the tropical ocean regions well. Overall, the interannual variability of W, as well as its climatology and mean seasonal cycle, are better described by the median of the 28 simulations than by individual members of the ensemble. Tests to learn whether simulated precipitable water, evaporation, and precipitation values may be related to aspects of model formulation yield few clear signals, although the authors find, for

  5. Reconciling the Observed and Modeled Southern Hemisphere Circulation Response to Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    McGraw, M. C.; Barnes, E. A.; Deser, C.

    2016-12-01

    Confusion exists regarding the tropospheric circulation response to volcanic eruptions, with models and observations seeming to disagree on the sign of the response. The forced Southern Hemisphere circulation response to the eruptions of Pinatubo and El Chichon is shown to be a robust positive annular mode, using over 200 ensemble members from 38 climate models. It is demonstrated that the models and observations are not at odds, but rather, internal climate variability is large and can overwhelm the forced response. It is further argued that the state of ENSO can at least partially explain the sign of the observed anomalies, and may account for the perceived discrepancy between model and observational studies. The eruptions of both El Chichon and Pinatubo occurred during El Nino events, and it is demonstrated that the SAM anomalies following volcanic eruptions are weaker during El Nino events compared to La Nina events.

  6. Tidally averaged circulation in Puget Sound sub-basins: Comparison of historical data, analytical model, and numerical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang; Yang, Zhaoqing; Kim, Tae Yun

    2011-07-20

    Through extensive field data collection and analysis efforts conducted since the 1950s, researchers have established an understanding of the characteristic features of circulation in Puget Sound. The pattern ranges from the classic fjordal behavior in some basins, with shallow brackish outflow and compensating inflow immediately below, to the typical two-layer flow observed in many partially mixed estuaries with saline inflow at depth. An attempt at reproducing this behavior by fitting an analytical formulation to past data is presented, followed by the application of a three-dimensional circulation and transport numerical model. The analytical treatment helped identify key physical processes and parameters,more » but quickly reconfirmed that response is complex and would require site-specific parameterization to include effects of sills and interconnected basins. The numerical model of Puget Sound, developed using unstructured-grid finite volume method, allowed resolution of the sub-basin geometric features, including presence of major islands, and site-specific strong advective vertical mixing created by bathymetry and multiple sills. The model was calibrated using available recent short-term oceanographic time series data sets from different parts of the Puget Sound basin. The results are compared against (1) recent velocity and salinity data collected in Puget Sound from 2006 and (2) a composite data set from previously analyzed historical records, mostly from the 1970s. The results highlight the ability of the model to reproduce velocity and salinity profile characteristics, their variations among Puget Sound subbasins, and tidally averaged circulation. Sensitivity of residual circulation to variations in freshwater inflow and resulting salinity gradient in fjordal sub-basins of Puget Sound is examined.« less

  7. Dependence of stratocumulus-topped boundary-layer entrainment on cloud-water sedimentation: Impact on global aerosol indirect effect in GISS ModelE3 single column model and global simulations

    NASA Astrophysics Data System (ADS)

    Ackerman, A. S.; Kelley, M.; Cheng, Y.; Fridlind, A. M.; Del Genio, A. D.; Bauer, S.

    2017-12-01

    Reduction in cloud-water sedimentation induced by increasing droplet concentrations has been shown in large-eddy simulations (LES) and direct numerical simulation (DNS) to enhance boundary-layer entrainment, thereby reducing cloud liquid water path and offsetting the Twomey effect when the overlying air is sufficiently dry, which is typical. Among recent upgrades to ModelE3, the latest version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), are a two-moment stratiform cloud microphysics treatment with prognostic precipitation and a moist turbulence scheme that includes an option in its entrainment closure of a simple parameterization for the effect of cloud-water sedimentation. Single column model (SCM) simulations are compared to LES results for a stratocumulus case study and show that invoking the sedimentation-entrainment parameterization option indeed reduces the dependence of cloud liquid water path on increasing aerosol concentrations. Impacts of variations of the SCM configuration and the sedimentation-entrainment parameterization will be explored. Its impact on global aerosol indirect forcing in the framework of idealized atmospheric GCM simulations will also be assessed.

  8. A local-circulation model for Darrieus vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Masse, B.

    1986-04-01

    A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.

  9. New Approaches to Quantifying Transport Model Error in Atmospheric CO2 Simulations

    NASA Technical Reports Server (NTRS)

    Ott, L.; Pawson, S.; Zhu, Z.; Nielsen, J. E.; Collatz, G. J.; Gregg, W. W.

    2012-01-01

    In recent years, much progress has been made in observing CO2 distributions from space. However, the use of these observations to infer source/sink distributions in inversion studies continues to be complicated by difficulty in quantifying atmospheric transport model errors. We will present results from several different experiments designed to quantify different aspects of transport error using the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM). In the first set of experiments, an ensemble of simulations is constructed using perturbations to parameters in the model s moist physics and turbulence parameterizations that control sub-grid scale transport of trace gases. Analysis of the ensemble spread and scales of temporal and spatial variability among the simulations allows insight into how parameterized, small-scale transport processes influence simulated CO2 distributions. In the second set of experiments, atmospheric tracers representing model error are constructed using observation minus analysis statistics from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA). The goal of these simulations is to understand how errors in large scale dynamics are distributed, and how they propagate in space and time, affecting trace gas distributions. These simulations will also be compared to results from NASA's Carbon Monitoring System Flux Pilot Project that quantified the impact of uncertainty in satellite constrained CO2 flux estimates on atmospheric mixing ratios to assess the major factors governing uncertainty in global and regional trace gas distributions.

  10. Stratospheric wind errors, initial states and forecast skill in the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Tenenbaum, J.

    1983-01-01

    Relations between stratospheric wind errors, initial states and 500 mb skill are investigated using the GLAS general circulation model initialized with FGGE data. Erroneous stratospheric winds are seen in all current general circulation models, appearing also as weak shear above the subtropical jet and as cold polar stratospheres. In this study it is shown that the more anticyclonic large-scale flows are correlated with large forecast stratospheric winds. In addition, it is found that for North America the resulting errors are correlated with initial state jet stream accelerations while for East Asia the forecast winds are correlated with initial state jet strength. Using 500 mb skill scores over Europe at day 5 to measure forecast performance, it is found that both poor forecast skill and excessive stratospheric winds are correlated with more anticyclonic large-scale flows over North America. It is hypothesized that the resulting erroneous kinetic energy contributes to the poor forecast skill, and that the problem is caused by a failure in the modeling of the stratospheric energy cycle in current general circulation models independent of vertical resolution.

  11. Uncertainties in Carbon Dioxide Radiative Forcing in Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M.-H.; Potter, G. L.; Gates, W. L.; Taylor, K. E.; Barker, H. W.; Colman, R. A.; Fraser, J. R.; McAvaney, B. J.; Dazlich, D. A.; hide

    1993-01-01

    Global warming, caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest contributor was the carbon dioxide radiation parameterizations of the models.

  12. Optimisation of a parallel ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Beare, M. I.; Stevens, D. P.

    1997-10-01

    This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.

  13. Circulating a Good Service Model at Its Core: Circulation!

    ERIC Educational Resources Information Center

    Hernandez, Edmee Sofia; Germain, Carol Anne, Ed.

    2009-01-01

    Circulation is the library's tireless foot soldier: it serves as the front gate to the library's services and resources. This service point is where most patrons enter and leave; and experience their first and last impressions--impressions that linger. In an age when academic libraries are facing meager budgets and declining usage statistics, this…

  14. The Dynamics of Hadley Circulation Variability and Change

    NASA Astrophysics Data System (ADS)

    Davis, Nicholas Alexander

    The Hadley circulation exerts a dominant control on the surface climate of earth's tropical belt. Its converging surface winds fuel the tropical rains, while subsidence in the subtropics dries and stabilizes the atmosphere, creating deserts on land and stratocumulus decks over the oceans. Because of the strong meridional gradients in temperature and precipitation in the subtropics, any shift in the Hadley circulation edge could project as major changes in surface climate. While climate model simulations predict an expansion of the Hadley cells in response to greenhouse gas forcings, the mechanisms remain elusive. An analysis of the climatology, variability, and response of the Hadley circulation to radiative forcings in climate models and reanalyses illuminates the broader landscape in which Hadley cell expansion is realized. The expansion is a fundamental response of the atmosphere to increasing greenhouse gas concentrations as it scales with other key climate system changes, including polar amplification, increasing static stability, stratospheric cooling, and increasing global-mean surface temperatures. Multiple measures of the Hadley circulation edge latitudes co-vary with the latitudes of the eddy-driven jets on all timescales, and both exhibit a robust poleward shift in response to forcings. Further, across models there is a robust coupling between the eddy-driving on the Hadley cells and their width. On the other hand, the subtropical jet and tropopause break latitudes, two common observational proxies for the tropical belt edges, lack a strong statistical relationship with the Hadley cell edges and have no coherent response to forcings. This undermines theories for the Hadley cell width predicated on angular momentum conservation and calls for a new framework for understanding Hadley cell expansion. A numerical framework is developed within an idealized general circulation model to isolate the mean flow and eddy responses of the global atmosphere to

  15. Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate.

    PubMed

    van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B

    2017-07-01

    Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO 2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.

  16. The strength of the meridional overturning circulation of the stratosphere

    PubMed Central

    Linz, Marianna; Plumb, R. Alan; Gerber, Edwin P.; Haenel, Florian J.; Stiller, Gabriele; Kinnison, Douglas E.; Ming, Alison; Neu, Jessica L.

    2017-01-01

    The distribution of gases such as ozone and water vapour in the stratosphere — which affect surface climate — is influenced by the meridional overturning of mass in the stratosphere, the Brewer–Dobson circulation. However, observation-based estimates of its global strength are difficult to obtain. Here we present two calculations of the mean strength of the meridional overturning of the stratosphere. We analyze satellite data that document the global diabatic circulation between 2007– 2011, and compare these to three re-analysis data sets and to simulations with a state-of-the-art chemistry-climate model. Using measurements of sulfur hexafluoride (SF6) and nitrous oxide, we calculate the global mean diabatic overturning mass flux throughout the stratosphere. In the lower stratosphere, these two estimates agree, and at a potential temperature level of 460 K (about 20 km or 60 hPa in tropics), the global circulation strength is 6.3–7.6 × 109 kg/s. Higher in the atmosphere, only the SF6-based estimate is available, and it diverges from the re-analysis data and simulations. Interpretation of the SF6 data-based estimate is limited because of a mesospheric sink of SF6; however, the reanalyses also differ substantially from each other. We conclude that the uncertainty in the mean meridional overturning circulation strength at upper levels of the stratosphere amounts to at least 100 %. PMID:28966661

  17. Improvements to Shortwave Absorption in the GFDL General Circulation Model Radiation Code

    NASA Astrophysics Data System (ADS)

    Freidenreich, S.

    2015-12-01

    The multiple-band shortwave radiation parameterization used in the GFDL general circulation models is being revised to better simulate the disposition of the solar flux in comparison with line-by-line+doubling-adding reference calculations based on the HITRAN 2012 catalog. For clear skies, a notable deficiency in the older formulation is an underestimate of atmospheric absorption. The two main reasons for this is the neglecting of both H2O absorption for wavenumbers < 2500 cm-1 and the O2 continuum. Further contributions to this underestimate are due to neglecting the effects of CH4, N2O and stratospheric H2O absorption. These issues are addressed in the revised formulation and result in globally average shortwave absorption increasing from 74 to 78 Wm-2. The number of spectral bands considered remains the same (18), but the number of pseudomonochromatic intervals (based mainly on the exponential-sum-fit technique) for the determination of H2O absorption is increased from 38 to 74, allowing for more accuracy in its simulation. Also, CO2 absorption is now determined by the exponential-sum-fit technique, replacing an algebraic absorptivity expression in the older parameterization; this improves the simulation of the heating in the stratosphere. Improvements to the treatment of multiple scattering are currently being tested. This involves replacing the current algorithm, which consists of the two stream delta-Eddington, with a four stream algorithm. Initial results show that in most, but not all cases these produce better agreement with the reference doubling-adding results.

  18. Thrust Removal Scheme for the FAST-MAC Circulation Control Model Tested in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Milholen, William E., II; Jones, Gregory S.; Goodliff, Scott L.

    2014-01-01

    A second wind tunnel test of the FAST-MAC circulation control semi-span model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged flap. The model was configured for transonic testing of the cruise configuration with 0deg flap deflection to determine the potential for drag reduction with the circulation control blowing. Encouraging results from analysis of wing surface pressures suggested that the circulation control blowing was effective in reducing the transonic drag on the configuration, however this could not be quantified until the thrust generated by the blowing slot was correctly removed from the force and moment balance data. This paper will present the thrust removal methodology used for the FAST-MAC circulation control model and describe the experimental measurements and techniques used to develop the methodology. A discussion on the impact to the force and moment data as a result of removing the thrust from the blowing slot will also be presented for the cruise configuration, where at some Mach and Reynolds number conditions, the thrust-removed corrected data showed that a drag reduction was realized as a consequence of the blowing.

  19. A senstitivity study of the ground hydrologic model using data generated by an atmospheric general circulation model. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sun, S. F.

    1985-01-01

    The Ground Hydrologic Model (GHM) developed for use in an atmospheric general circulation model (GCM) has been refined. A series of sensitivity studies of the new version of the GHM were conducted for the purpose of understanding the role played by various physical parameters in the GHM. The following refinements have been made: (1) the GHM is coupled directly with the planetary boundary layer (PBL); (2) a bulk vegetation layer is added with a more realistic large-scale parameterization; and (3) the infiltration rate is modified. This version GHM has been tested using input data derived from a GCM simulation run for eight North America regions for 45 days. The results are compared with those of the resident GHM in the GCM. The daily average of grid surface temperatures from both models agree reasonably well in phase and magnitude. However, large difference exists in one or two regions on some days. The daily average evapotranspiration is in general 10 to 30% less than the corresponding value given by the resident GHM.

  20. Heinrich events simulated across the glacial

    NASA Astrophysics Data System (ADS)

    Ziemen, F. A.; Mikolajewicz, U.

    2015-12-01

    Heinrich events are among the most prominent climate change events recorded in proxies across the northern hemisphere. They are the archetype of ice sheet — climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under discussion, and their climatic consequences are far from being fully understood. We contribute to answering the open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability. The setup consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global AOVGCM ECHAM5/MPIOM/LPJ. The simulations were performed fully coupled and with transient orbital and greenhouse gas forcing. They span from several millennia before the last glacial maximum into the deglaciation. We analyze simulations where the ISM is coupled asynchronously to the AOVGCM and simulations where the ISM and the ocean model are coupled synchronously and the atmosphere model is coupled asynchronously to them. The modeled Heinrich events show a marked influence of the ice discharge on the Atlantic circulation and heat transport.