NASA Astrophysics Data System (ADS)
Zhou, T.; Song, F.
2014-12-01
The climatology and inter-annual variability of East Asian summer monsoon (EASM) simulated by 34 Coupled Model Intercomparison Project phase 5 (CMIP5) coupled general circulation models (CGCMs) are evaluated. To estimate the role of air-sea coupling, 17 CGCMs are compared to their corresponding atmospheric general circulation models (AGCMs). The climatological low-level monsoon circulation and mei-yu/changma/baiu rainfall band are improved in CGCMs from AGCMs. The improvement is at the cost of the local cold sea surface temperature (SST) biases in CGCMs, since they decrease the surface evaporation and enhance the circulation. The inter-annual EASM pattern is evaluated by a skill formula and the highest/lowest 8 models are selected to investigate the skill origins. The observed Indian Ocean (IO) warming, tropical eastern Indian Ocean (TEIO) rainfall anomalies and Kelvin wave response are captured well in high-skill models, while these features are not present in low-skill models. Further, the differences in the IO warming between high-skill and low-skill models are rooted in the preceding ENSO simulation. Hence, the IO-WPAC teleconnection is important for CGCMs, similar to AGCMs. However, compared to AGCMs, the easterly anomalies in the southern flank of the WPAC make the TEIO warmer in CGCMs by reducing the climatological monsoon westerlies and decreasing the surface evaporation. The warmer TEIO induces the stronger precipitation anomalies and intensifies the teleconnection. Hence, the inter-annual EASM pattern is better simulated in CGCMs than that in AGCMs. Key words: CMIP5, CGCMs, air-sea coupling, AGCMs, inter-annual EASM pattern, ENSO, IO-WPAC teleconnection
NASA Technical Reports Server (NTRS)
Lou, John; Ferraro, Robert; Farrara, John; Mechoso, Carlos
1996-01-01
An analysis is presented of several factors influencing the performance of a parallel implementation of the UCLA atmospheric general circulation model (AGCM) on massively parallel computer systems. Several modificaitons to the original parallel AGCM code aimed at improving its numerical efficiency, interprocessor communication cost, load-balance and issues affecting single-node code performance are discussed.
Synchronizing Two AGCMs via Ocean-Atmosphere Coupling (Invited)
NASA Astrophysics Data System (ADS)
Kirtman, B. P.
2009-12-01
A new approach for fusing or synchronizing to very different Atmospheric General Circulation Models (AGCMs) is described. The approach is also well suited for understand why two different coupled models have such large differences in their respective climate simulations. In the application presented here, the differences between the coupled models using the Center for Ocean-Land-Atmosphere Studies (COLA) and the National Center for Atmospheric Research (NCAR) atmospheric general circulation models (AGCMs) are examined. The intent is to isolate which component of the air-sea fluxes is most responsible for the differences between the coupled models and for the errors in their respective coupled simulations. The procedure is to simultaneously couple the two different atmospheric component models to a single ocean general circulation model (OGCM), in this case the Modular Ocean Model (MOM) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). Each atmospheric component model experiences the same SST produced by the OGCM, but the OGCM is simultaneously coupled to both AGCMs using a cross coupling strategy. In the first experiment, the OGCM is coupled to the heat and fresh water flux from the NCAR AGCM (Community Atmospheric Model; CAM) and the momentum flux from the COLA AGCM. Both AGCMs feel the same SST. In the second experiment, the OGCM is coupled to the heat and fresh water flux from the COLA AGCM and the momentum flux from the CAM AGCM. Again, both atmospheric component models experience the same SST. By comparing these two experimental simulations with control simulations where only one AGCM is used, it is possible to argue which of the flux components are most responsible for the differences in the simulations and their respective errors. Based on these sensitivity experiments we conclude that the tropical ocean warm bias in the COLA coupled model is due to errors in the heat flux, and that the erroneous westward shift in the tropical Pacific cold tongue minimum in the NCAR model is due errors in the momentum flux. All the coupled simulations presented here have warm biases along the eastern boundary of the tropical oceans suggesting that the problem is common to both AGCMs. In terms of interannual variability in the tropical Pacific, the CAM momentum flux is responsible for the erroneous westward extension of the sea surface temperature anomalies (SSTA) and errors in the COLA momentum flux cause the erroneous eastward migration of the El Niño-Southern Oscillation (ENSO) events. These conclusions depend on assuming that the error due to the OGCM can be neglected.
Atlas of Seasonal Means Simulated by the NSIPP 1 Atmospheric GCM. Volume 17
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Bacmeister, Julio; Pegion, Philip J.; Schubert, Siegfried D.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
This atlas documents the climate characteristics of version 1 of the NASA Seasonal-to-Interannual Prediction Project (NSIPP) Atmospheric General Circulation Model (AGCM). The AGCM includes an interactive land model (the Mosaic scheme), and is part of the NSIPP coupled atmosphere-land-ocean model. The results presented here are based on a 20-year (December 1979-November 1999) "ANIIP-style" integration of the AGCM in which the monthly-mean sea-surface temperature and sea ice are specified from observations. The climate characteristics of the AGCM are compared with the National Centers for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasting (ECMWF) reanalyses. Other verification data include Special Sensor Microwave/Imager (SSNM) total precipitable water, the Xie-Arkin estimates of precipitation, and Earth Radiation Budget Experiment (ERBE) measurements of short and long wave radiation. The atlas is organized by season. The basic quantities include seasonal mean global maps and zonal and vertical averages of circulation, variance/covariance statistics, and selected physics quantities.
NASA Astrophysics Data System (ADS)
Ohfuchi, Wataru; Enomoto, Takeshi; Yoshioka, Mayumi K.; Takaya, Koutarou
2014-05-01
Some high-resolution simulations with a conventional atmospheric general circulation model (AGCM) were conducted right after the first Earth Simulator started operating in the spring of 2002. More simulations with various resolutions followed. The AGCM in this study, AFES (Agcm For the Earth Simulator), is a primitive equation spectral transform method model with a cumulus convection parameterization. In this presentation, some findings from comparisons between high and low-resolution simulations, and some future perspectives of old-fashioned AGCMs will be discussed. One obvious advantage of increasing resolution is capability of resolving the fine structures of topography and atmospheric flow. By increasing resolution from T39 (about 320 km horizontal grid interval) to T79 (160 km), to T159 (80 km) to T319 (40 km), topographic precipitation over Japan becomes increasingly realistic. This feature is necessary for climate and weather studies involving both global and local aspects. In order to resolve submesoscale (about 100 km horizontal scale) atmospheric circulation, about 10-km grid interval is necessary. Comparing T1279 (10 km) simulations with T319 ones, it is found that, for example, the intensity of heavy rain associated with Baiu front and the central pressure of typhoon become more realistic. These realistic submesoscale phenomena should have impact on larger-sale flow through dynamics and thermodynamics. An interesting finding by increasing horizontal resolution of a conventional AGCM is that some cumulus convection parameterizations, such as Arakawa-Schubert type scheme, gradually stop producing precipitation, while some others, such as Emanuel type, do not. With the former, the grid condensation increases with the model resolution to compensate. Which characteristics are more desirable is arguable but it is an important feature one has to consider when developing a high-resolution conventional AGCM. Many may think that conventional primitive equation spectral transform AGCMs, such as AFES, have no future. Developing globally homogeneous nonhydrostatic cloud resolving grid AGCMs is obviously a straightforward direction for the future. However these models will be very expensive for many users for a while, perhaps for the next some decades. On the other hand, old-fashioned AGCMs with a grid interval of 20-100 km will remain to be accurate and efficient tools for many users for many years to come. Also by coupling with a fine-resolution regional nonhydrostatic model, a conventional AGCM may overcome its limitation for use in climate and weather studies in the future.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Chang, Yehui; Wang, Hailan; Schubert, Siegfried D.
2016-01-01
We perform a series of stationary wave model (SWM) experiments in which the boreal summer atmosphere is forced, over a number of locations in the continental U.S., with an idealized diabatic heating anomaly that mimics the atmospheric heating associated with a dry land surface. For localized heating within a large portion of the continental interior, regardless of the specific location of this heating, the spatial pattern of the forced atmospheric circulation anomaly (in terms of 250-mb eddy streamfunction) is largely the same: a high anomaly forms over west central North America and a low anomaly forms to the east. In supplemental atmospheric general circulation model (AGCM) experiments, we find similar results; imposing soil moisture dryness in the AGCM in different locations within the US interior tends to produce the aforementioned pattern, along with an associated near-surface warming and precipitation deficit in the center of the continent. The SWM-based and AGCM-based patterns generally agree with composites generated using reanalysis and precipitation gauge data. The AGCM experiments also suggest that dry anomalies imposed in the lower Mississippi Valley have remote surface impacts of particularly large spatial extent, and a region along the eastern half of the US-Canada border is particularly sensitive to dry anomalies in a number of remote areas. Overall, the SWM and AGCM experiments support the idea of a positive feedback loop operating over the continent: dry surface conditions in many interior locations lead to changes in atmospheric circulation that act to enhance further the overall dryness of the continental interior.
A January angular momentum balance in the OSU two-level atmospheric general circulation model
NASA Technical Reports Server (NTRS)
Kim, J.-W.; Grady, W.
1982-01-01
The present investigation is concerned with an analysis of the atmospheric angular momentum balance, based on the simulation data of the Oregon State University two-level atmospheric general circulation model (AGCM). An attempt is also made to gain an understanding of the involved processes. Preliminary results on the angular momentum and mass balance in the AGCM are shown. The basic equations are examined, and questions of turbulent momentum transfer are investigated. The methods of analysis are discussed, taking into account time-averaged balance equations, time and longitude-averaged balance equations, mean meridional circulation, the mean meridional balance of relative angular momentum, and standing and transient components of motion.
A New Approach for Coupled GCM Sensitivity Studies
NASA Astrophysics Data System (ADS)
Kirtman, B. P.; Duane, G. S.
2011-12-01
A new multi-model approach for coupled GCM sensitivity studies is presented. The purpose of the sensitivity experiments is to understand why two different coupled models have such large differences in their respective climate simulations. In the application presented here, the differences between the coupled models using the Center for Ocean-Land-Atmosphere Studies (COLA) and the National Center for Atmospheric Research (NCAR) atmospheric general circulation models (AGCMs) are examined. The intent is to isolate which component of the air-sea fluxes is most responsible for the differences between the coupled models and for the errors in their respective coupled simulations. The procedure is to simultaneously couple the two different atmospheric component models to a single ocean general circulation model (OGCM), in this case the Modular Ocean Model (MOM) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). Each atmospheric component model experiences the same SST produced by the OGCM, but the OGCM is simultaneously coupled to both AGCMs using a cross coupling strategy. In the first experiment, the OGCM is coupled to the heat and fresh water flux from the NCAR AGCM (Community Atmospheric Model; CAM) and the momentum flux from the COLA AGCM. Both AGCMs feel the same SST. In the second experiment, the OGCM is coupled to the heat and fresh water flux from the COLA AGCM and the momentum flux from the CAM AGCM. Again, both atmospheric component models experience the same SST. By comparing these two experimental simulations with control simulations where only one AGCM is used, it is possible to argue which of the flux components are most responsible for the differences in the simulations and their respective errors. Based on these sensitivity experiments we conclude that the tropical ocean warm bias in the COLA coupled model is due to errors in the heat flux, and that the erroneous westward shift in the tropical Pacific cold tongue minimum in the NCAR model is due errors in the momentum flux. All the coupled simulations presented here have warm biases along the eastern boundary of the tropical oceans suggesting that the problem is common to both AGCMs. In terms of interannual variability in the tropical Pacific, the CAM momentum flux is responsible for the erroneous westward extension of the sea surface temperature anomalies (SSTA) and errors in the COLA momentum flux cause the erroneous eastward migration of the El Niño-Southern Oscillation (ENSO) events. These conclusions depend on assuming that the error due to the OGCM can be neglected.
AGCM Biases in Evaporation Regime: Impacts on Soil Moisture Memory and Land-Atmosphere Feedback
NASA Technical Reports Server (NTRS)
Mahanama, Sarith P. P.; Koster, Randal D.
2005-01-01
Because precipitation and net radiation in an atmospheric general circulation model (AGCM) are typically biased relative to observations, the simulated evaporative regime of a region may be biased, with consequent negative effects on the AGCM s ability to translate an initialized soil moisture anomaly into an improved seasonal prediction. These potential problems are investigated through extensive offline analyses with the Mosaic land surface model (LSM). We first forced the LSM globally with a 15-year observations-based dataset. We then repeated the simulation after imposing a representative set of GCM climate biases onto the forcings - the observational forcings were scaled so that their mean seasonal cycles matched those simulated by the NSIPP-1 (NASA Global Modeling and Assimilation Office) AGCM over the same period-The AGCM s climate biases do indeed lead to significant biases in evaporative regime in certain regions, with the expected impacts on soil moisture memory timescales. Furthermore, the offline simulations suggest that the biased forcing in the AGCM should contribute to overestimated feedback in certain parts of North America - parts already identified in previous studies as having excessive feedback. The present study thus supports the notion that the reduction of climate biases in the AGCM will lead to more appropriate translations of soil moisture initialization into seasonal prediction skill.
Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations
NASA Astrophysics Data System (ADS)
Satoh, M.; Matsuno, T.; Tomita, H.; Miura, H.; Nasuno, T.; Iga, S.
2008-03-01
A new type of ultra-high resolution atmospheric global circulation model is developed. The new model is designed to perform "cloud resolving simulations" by directly calculating deep convection and meso-scale circulations, which play key roles not only in the tropical circulations but in the global circulations of the atmosphere. Since cores of deep convection have a few km in horizontal size, they have not directly been resolved by existing atmospheric general circulation models (AGCMs). In order to drastically enhance horizontal resolution, a new framework of a global atmospheric model is required; we adopted nonhydrostatic governing equations and icosahedral grids to the new model, and call it Nonhydrostatic ICosahedral Atmospheric Model (NICAM). In this article, we review governing equations and numerical techniques employed, and present the results from the unique 3.5-km mesh global experiments—with O(10 9) computational nodes—using realistic topography and land/ocean surface thermal forcing. The results show realistic behaviors of multi-scale convective systems in the tropics, which have not been captured by AGCMs. We also argue future perspective of the roles of the new model in the next generation atmospheric sciences.
NASA Technical Reports Server (NTRS)
Bacmeister, Julio T.; Suarez, Max J.; Einaudi, Franco (Technical Monitor)
2001-01-01
This is the first of a two part study examining the connection of the equatorial momentum budget in an AGCM (Atmospheric General Circulation Model), with simulated equatorial surface wind stresses over the Pacific. The AGCM used in this study forms part of a newly developed coupled forecasting system used at NASA's Seasonal- to-Interannual Prediction Project. Here we describe the model and present results from a 20-year (1979-1999) AMIP-type experiment forced with observed SSTs (Sea Surface Temperatures). Model results are compared them with available observational data sets. The climatological pattern of extra-tropical planetary waves as well as their ENSO-related variability is found to agree quite well with re-analysis estimates. The model's surface wind stress is examined in detail, and reveals a reasonable overall simulation of seasonal interannual variability, as well as seasonal mean distributions. However, an excessive annual oscillation in wind stress over the equatorial central Pacific is found. We examine the model's divergent circulation over the tropical Pacific and compare it with estimates based on re-analysis data. These comparisons are generally good, but reveal excessive upper-level convergence in the central Pacific. In Part II of this study a direct examination of individual terms in the AGCM's momentum budget is presented. We relate the results of this analysis to the model's simulation of surface wind stress.
The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna
NASA Technical Reports Server (NTRS)
Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio; Song, In-Sun; Eichmann, Andrew
2012-01-01
This report is a documentation of the Fortuna version of the GEOS-5 Atmospheric General Circulation Model (AGCM). The GEOS-5 AGCM is currently in use in the NASA Goddard Modeling and Assimilation Office (GMAO) for simulations at a wide range of resolutions, in atmosphere only, coupled ocean-atmosphere, and data assimilation modes. The focus here is on the development subsequent to the version that was used as part of NASA s Modern-Era Retrospective Analysis for Research and Applications (MERRA). We present here the results of a series of 30-year atmosphere-only simulations at different resolutions, with focus on the behavior of the 1-degree resolution simulation. The details of the changes in parameterizations subsequent to the MERRA model version are outlined, and results of a series of 30-year, atmosphere-only climate simulations at 2-degree resolution are shown to demonstrate changes in simulated climate associated with specific changes in parameterizations. The GEOS-5 AGCM presented here is the model used for the GMAO s atmosphere-only and coupled CMIP-5 simulations.
NASA Astrophysics Data System (ADS)
Ogata, Tomomichi; Johnson, Stephanie J.; Schiemann, Reinhard; Demory, Marie-Estelle; Mizuta, Ryo; Yoshida, Kohei; Osamu Arakawa
2017-11-01
In this study, we compare the resolution sensitivity of the Asian Summer Monsoon (ASM) in two Atmospheric General Circulation Models (AGCMs): the MRI-AGCM and the MetUM. We analyze the MetUM at three different resolutions, N96 (approximately 200-km mesh on the equator), N216 (90-km mesh) and N512 (40-km mesh), and the MRI-AGCM at TL95 (approximately 180-km mesh on the equator), TL319 (60-km mesh), and TL959 (20-km mesh). The MRI-AGCM and the MetUM both show decreasing precipitation over the western Pacific with increasing resolution, but their precipitation responses differ over the Indian Ocean. In MRI-AGCM, a large precipitation increase appears off the equator (5-20°N). In MetUM, this off-equatorial precipitation increase is less significant and precipitation decreases over the equator. Moisture budget analysis demonstrates that a changing in moisture flux convergence at higher resolution is related to the precipitation response. Orographic effects, intra-seasonal variability and the representation of the meridional thermal gradient are explored as possible causes of the resolution sensitivity. Both high-resolution AGCMs (TL959 and N512) can represent steep topography, which anchors the rainfall pattern over south Asia and the Maritime Continent. In MRI-AGCM, representation of low pressure systems in TL959 also contributes to the rainfall pattern. Furthermore, the seasonal evolution of the meridional thermal gradient appears to be more accurate at higher resolution, particularly in the MRI-AGCM. These findings emphasize that the impact of resolution is only robust across the two AGCMs for some features of the ASM, and highlights the importance of multi-model studies of GCM resolution sensitivity.
NASA Astrophysics Data System (ADS)
Zhou, Z. Q.; Xie, S. P.; Zhou, W.
2016-12-01
Atmosphere general circulation model (AGCM), forced with specified SST, has been widely used in climate studies. On one hand, AGCM is much faster to run compared to coupled general circulation model (CGCM). Also, the identical SST forcing allows a clean evaluation of the atmospheric component of CGCM. On the other hand, the coupling between atmosphere and ocean is missed in such atmosphere-only simulations. It is not clear how such simplification could affect the simulate of the atmosphere. In this study, the impact of ocean-atmosphere coupling is studied by comparing a CGCM simulation with an AGCM simulation which is forced with monthly SSTs specified from the CGCM simulation. Particularly, we focus on the climatology and interannual variability of rainfall over the IONWP during boreal summer. The IONWP is a unique region with a strong negative correlation between sea surface temperature (SST) and rainfall during boreal summer on the interannual time scale. The lead/lag correlation analysis suggests a negative feedback of rainfall on SST, which is only reasonably captured by CGCMs. We find that the lack of the negative feedback in AGCM not only enhances the climatology and interannual variability of rainfall but also increases the internal variability of rainfall over the IONWP. A simple mechanism is proposed to explain such enhancement. In addition, AGCM is able to capture the large-scale rainfall pattern over the IONWP during boreal summer, this is because that rainfall here is caused by remote ENSO effect on the interannual time scale. Our results herein suggest that people should be more careful when using an AGCM for climate change studies.
The Impact of ENSO on Extratropical Low Frequency Noise in Seasonal Forecasts
NASA Technical Reports Server (NTRS)
Schubert, Siegfried D.; Suarez, Max J.; Chang, Yehui; Branstator, Grant
2000-01-01
This study examines the uncertainty in forecasts of the January-February-March (JFM) mean extratropical circulation, and how that uncertainty is modulated by the El Nino/Southern Oscillation (ENSO). The analysis is based on ensembles of hindcasts made with an Atmospheric General Circulation Model (AGCM) forced with sea surface temperatures observed during; the 1983 El Nino and 1989 La Nina events. The AGCM produces pronounced interannual differences in the magnitude of the extratropical seasonal mean noise (intra-ensemble variability). The North Pacific, in particular, shows extensive regions where the 1989 seasonal mean noise kinetic energy (SKE), which is dominated by a "PNA-like" spatial structure, is more than twice that of the 1983 forecasts. The larger SKE in 1989 is associated with a larger than normal barotropic conversion of kinetic energy from the mean Pacific jet to the seasonal mean noise. The generation of SKE due to sub-monthly transients also shows substantial interannual differences, though these are much smaller than the differences in the mean flow conversions. An analysis of the Generation of monthly mean noise kinetic energy (NIKE) and its variability suggests that the seasonal mean noise is predominantly a statistical residue of variability resulting from dynamical processes operating on monthly and shorter times scales. A stochastically-forced barotropic model (linearized about the AGCM's 1983 and 1989 base states) is used to further assess the role of the basic state, submonthly transients, and tropical forcing, in modulating the uncertainties in the seasonal AGCM forecasts. When forced globally with spatially-white noise, the linear model generates much larger variance for the 1989 base state, consistent with the AGCM results. The extratropical variability for the 1989 base state is dominanted by a single eigenmode, and is strongly coupled with forcing over tropical western Pacific and the Indian Ocean, again consistent with the AGCM results. Linear calculations that include forcing from the AGCM variance of the tropical forcing and submonthly transients show a small impact on the variability over the Pacific/North American region compared with that of the base state differences.
Comparing the Degree of Land-Atmosphere Interaction in Four Atmospheric General Circulation Models
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Dirmeyer, Paul A.; Hahmann, Andrea N.; Ijpelaar, Ruben; Tyahla, Lori; Cox, Peter; Suarez, Max J.; Houser, Paul R. (Technical Monitor)
2001-01-01
Land-atmosphere feedback, by which (for example) precipitation-induced moisture anomalies at the land surface affect the overlying atmosphere and thereby the subsequent generation of precipitation, has been examined and quantified with many atmospheric general circulation models (AGCMs). Generally missing from such studies, however, is an indication of the extent to which the simulated feedback strength is model dependent. Four modeling groups have recently performed a highly controlled numerical experiment that allows an objective inter-model comparison of land-atmosphere feedback strength. The experiment essentially consists of an ensemble of simulations in which each member simulation artificially maintains the same time series of surface prognostic variables. Differences in atmospheric behavior between the ensemble members then indicates the degree to which the state of the land surface controls atmospheric processes in that model. A comparison of the four sets of experimental results shows that feedback strength does indeed vary significantly between the AGCMs.
Development of the GEOS-5 Atmospheric General Circulation Model: Evolution from MERRA to MERRA2.
NASA Technical Reports Server (NTRS)
Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio
2014-01-01
The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) version of the GEOS-5 (Goddard Earth Observing System Model - 5) Atmospheric General Circulation Model (AGCM) is currently in use in the NASA Global Modeling and Assimilation Office (GMAO) at a wide range of resolutions for a variety of applications. Details of the changes in parameterizations subsequent to the version in the original MERRA reanalysis are presented here. Results of a series of atmosphere-only sensitivity studies are shown to demonstrate changes in simulated climate associated with specific changes in physical parameterizations, and the impact of the newly implemented resolution-aware behavior on simulations at different resolutions is demonstrated. The GEOS-5 AGCM presented here is the model used as part of the GMAO's MERRA2 reanalysis, the global mesoscale "nature run", the real-time numerical weather prediction system, and for atmosphere-only, coupled ocean-atmosphere and coupled atmosphere-chemistry simulations. The seasonal mean climate of the MERRA2 version of the GEOS-5 AGCM represents a substantial improvement over the simulated climate of the MERRA version at all resolutions and for all applications. Fundamental improvements in simulated climate are associated with the increased re-evaporation of frozen precipitation and cloud condensate, resulting in a wetter atmosphere. Improvements in simulated climate are also shown to be attributable to changes in the background gravity wave drag, and to upgrades in the relationship between the ocean surface stress and the ocean roughness. The series of "resolution aware" parameters related to the moist physics were shown to result in improvements at higher resolutions, and result in AGCM simulations that exhibit seamless behavior across different resolutions and applications.
NASA Astrophysics Data System (ADS)
Nobre, Paulo; Moura, Antonio D.; Sun, Liqiang
2001-12-01
This study presents an evaluation of a seasonal climate forecast done with the International Research Institute for Climate Prediction (IRI) dynamical forecast system (regional model nested into a general circulation model) over northern South America for January-April 1999, encompassing the rainy season over Brazil's Nordeste. The one-way nesting is one in two tiers: first the NCEP's Regional Spectral Model (RSM) runs with an 80-km grid mesh forced by the ECHAM3 atmospheric general circulation model (AGCM) outputs; then the RSM runs with a finer grid mesh (20 km) forced by the forecasts generated by the RSM-80. An ensemble of three realizations is done. Lower boundary conditions over the oceans for both ECHAM and RSM model runs are sea surface temperature forecasts over the tropical oceans. Soil moisture is initialized by ECHAM's inputs. The rainfall forecasts generated by the regional model are compared with those of the AGCM and observations. It is shown that the regional model at 80-km resolution improves upon the AGCM rainfall forecast, reducing both seasonal bias and root-mean-square error. On the other hand, the RSM-20 forecasts presented larger errors, with spatial patterns that resemble those of local topography. The better forecast of the position and width of the intertropical convergence zone (ITCZ) over the tropical Atlantic by the RSM-80 model is one of the principal reasons for better-forecast scores of the RSM-80 relative to the AGCM. The regional model improved the spatial as well as the temporal details of rainfall distribution, and also presenting the minimum spread among the ensemble members. The statistics of synoptic-scale weather variability on seasonal timescales were best forecast with the regional 80-km model over the Nordeste. The possibility of forecasting the frequency distribution of dry and wet spells within the rainy season is encouraging.
Constraints on the Profiles of Total Water PDF in AGCMs from AIRS and a High-Resolution Model
NASA Technical Reports Server (NTRS)
Molod, Andrea
2012-01-01
Atmospheric general circulation model (AGCM) cloud parameterizations generally include an assumption about the subgrid-scale probability distribution function (PDF) of total water and its vertical profile. In the present study, the Atmospheric Infrared Sounder (AIRS) monthly-mean cloud amount and relative humidity fields are used to compute a proxy for the second moment of an AGCM total water PDF called the RH01 diagnostic, which is the AIRS mean relative humidity for cloud fractions of 0.1 or less. The dependence of the second moment on horizontal grid resolution is analyzed using results from a high-resolution global model simulation.The AIRS-derived RH01 diagnostic is generally larger near the surface than aloft, indicating a narrower PDF near the surface, and varies with the type of underlying surface. High-resolution model results show that the vertical structure of profiles of the AGCM PDF second moment is unchanged as the grid resolution changes from 200 to 100 to 50 km, and that the second-moment profiles shift toward higher values with decreasing grid spacing.Several Goddard Earth Observing System, version 5 (GEOS-5), AGCM simulations were performed with several choices for the profile of the PDF second moment. The resulting cloud and relative humidity fields were shown to be quite sensitive to the prescribed profile, and the use of a profile based on the AIRS-derived proxy results in improvements relative to observational estimates. The AIRS-guided total water PDF profiles, including their dependence on underlying surface type and on horizontal resolution, have been implemented in the version of the GEOS-5 AGCM used for publicly released simulations.
Dynamic Downscaling of Seasonal Simulations over South America.
NASA Astrophysics Data System (ADS)
Misra, Vasubandhu; Dirmeyer, Paul A.; Kirtman, Ben P.
2003-01-01
In this paper multiple atmospheric global circulation model (AGCM) integrations at T42 spectral truncation and prescribed sea surface temperature were used to drive regional spectral model (RSM) simulations at 80-km resolution for the austral summer season (January-February-March). Relative to the AGCM, the RSM improves the ensemble mean simulation of precipitation and the lower- and upper-level tropospheric circulation over both tropical and subtropical South America and the neighboring ocean basins. It is also seen that the RSM exacerbates the dry bias over the northern tip of South America and the Nordeste region, and perpetuates the erroneous split intertropical convergence zone (ITCZ) over both the Pacific and Atlantic Ocean basins from the AGCM. The RSM at 80-km horizontal resolution is able to reasonably resolve the Altiplano plateau. This led to an improvement in the mean precipitation over the plateau. The improved resolution orography in the RSM did not substantially change the predictability of the precipitation, surface fluxes, or upper- and lower-level winds in the vicinity of the Andes Mountains from the AGCM. In spite of identical convective and land surface parameterization schemes, the diagnostic quantities, such as precipitation and surface fluxes, show significant differences in the intramodel variability over oceans and certain parts of the Amazon River basin (ARB). However, the prognostic variables of the models exhibit relatively similar model noise structures and magnitude. This suggests that the model physics are in large part responsible for the divergence of the solutions in the two models. However, the surface temperature and fluxes from the land surface scheme of the model [Simplified Simple Biosphere scheme (SSiB)] display comparable intramodel variability, except over certain parts of ARB in the two models. This suggests a certain resilience of predictability in SSiB (over the chosen domain of study) to variations in horizontal resolution. It is seen in this study that the summer precipitation over tropical and subtropical South America is highly unpredictable in both models.
Multiple GISS AGCM Hindcasts and MSU Versions of 1979-1998
NASA Technical Reports Server (NTRS)
Shah, Kathryn Pierce; Rind, David; Druyan, Leonard; Lonergan, Patrick; Chandler, Mark
1998-01-01
Multiple realizations of the 1979-1998 time period have been simulated by the Goddard Institute for Space Studies Atmospheric General Circulation Model (GISS AGCM) to explore its responsiveness to accumulated forcings, particularly over sensitive agricultural regions. A microwave radiative transfer postprocessor has produced the AGCM's lower tropospheric, tropospheric and lower stratospheric brightness temperature (Tb) time series for correlations with the various Microwave Sounding Unit (MSU) time series available. MSU maps of monthly means and anomalies were also used to assess the AGCM's mean annual cycle and regional variability. Seven realizations by the AGCM were forced by observed sea surface temperatures (sst) through 1992 to gather rough standard deviations associated with internal model variability. Subsequent runs hindcast January 1979 through April 1998 with an accumulation of forcings: observed ssts, greenhouse gases, stratospheric volcanic aerosols. stratospheric and tropospheric ozone and tropospheric sulfate and black carbon aerosols. The goal of narrowing gaps between AGCM and MSU time series was complicated by MSU time series, by Tb simulation concerns and by unforced climatic variability in the AGCM and in the real world. Lower stratospheric Tb correlations between the AGCM and MSU for 1979-1998 reached as high as 0.91 +/-0.16 globally with sst, greenhouse gases, volcanic aerosol, stratospheric ozone forcings and tropospheric aerosols. Mid-tropospheric Tb correlations reached as high as 0.66 +/-.04 globally and 0.84 +/-.02 in the tropics. Oceanic lower tropospheric Tb correlations similarly reached 0.61 +/-.06 globally and 0.79 +/-.02 in the tropics. Of the sensitive agricultural areas considered, Nordeste in northeastern Brazil was simulated best with mid-tropospheric Tb correlations up to 0.75 +/- .03. The two other agricultural regions, in Africa and in the northern mid-latitudes, suffered from higher levels of non-sst variability. Zimbabwe had a maximum mid-tropospheric correlation of 0.54 +/- 0.11 while the U.S. Cornbelt had only 0.25 +/- .10. Precipitation and surface temperature performance are also examined over these regions. Correlations of MSU and AGCM time series mostly improved with addition of explicit atmospheric forcings in zonal bands but not in agricultural regional bins each encompassing only six AGCM gridcells.
Improvement of the GEOS-5 AGCM upon Updating the Air-Sea Roughness Parameterization
NASA Technical Reports Server (NTRS)
Garfinkel, C. I.; Molod, A.; Oman, L. D.; Song, I.-S.
2011-01-01
The impact of an air-sea roughness parameterization over the ocean that more closely matches recent observations of air-sea exchange is examined in the NASA Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model. Surface wind biases in the GEOS-5 AGCM are decreased by up to 1.2m/s. The new parameterization also has implications aloft as improvements extend into the stratosphere. Many other GCMs (both for operational weather forecasting and climate) use a similar class of parameterization for their air-sea roughness scheme. We therefore expect that results from GEOS-5 are relevant to other models as well.
An Assessment of the Predictability of Northern Winter Seasonal Means with the NSIPP 1 AGCM
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Pegion, Philip J.; Schubert, Siegfried D.
2000-01-01
This atlas assesses the predictability of January-February-March (JFM) means using version 1 of the NASA Seasonal-to-Interannual Prediction Project Atmospheric General Circulation Model (the NSIPP 1 AGCM). The AGCM is part of the NSIPP coupled atmosphere-land-ocean model. For these results, the atmosphere was run uncoupled from the ocean, but coupled with an interactive land model. The results are based on 20 ensembles of nine JFM hindcasts for the period 1980-1999, with sea surface temperature (SST) and sea ice specified from observations. The model integrations were started from initial atmospheric conditions (taken from NCEP/NCAR reanalyses) centered on December 15. The analysis focuses on 200 mb height, precipitation, surface temperature, and sea-level pressure. The results address issues of both predictability and forecast skill. Various signal-to-noise measures are computed to demonstrate the potential for skillful prediction on seasonal time scales under the assumption of a perfect model and perfectly known oceanic boundary forcings. The results show that the model produces a realistic ENSO response in both the tropics and extratropics.
Global-Scale Hydrology: Simple Characterization of Complex Simulation
NASA Technical Reports Server (NTRS)
Koster, Randal D.
1999-01-01
Atmospheric general circulation models (AGCMS) are unique and valuable tools for the analysis of large-scale hydrology. AGCM simulations of climate provide tremendous amounts of hydrological data with a spatial and temporal coverage unmatched by observation systems. To the extent that the AGCM behaves realistically, these data can shed light on the nature of the real world's hydrological cycle. In the first part of the seminar, I will describe the hydrological cycle in a typical AGCM, with some emphasis on the validation of simulated precipitation against observations. The second part of the seminar will focus on a key goal in large-scale hydrology studies, namely the identification of simple, overarching controls on hydrological behavior hidden amidst the tremendous amounts of data produced by the highly complex AGCM parameterizations. In particular, I will show that a simple 50-year-old climatological relation (and a recent extension we made to it) successfully predicts, to first order, both the annual mean and the interannual variability of simulated evaporation and runoff fluxes. The seminar will conclude with an example of a practical application of global hydrology studies. The accurate prediction of weather statistics several months in advance would have tremendous societal benefits, and conventional wisdom today points at the use of coupled ocean-atmosphere-land models for such seasonal-to-interannual prediction. Understanding the hydrological cycle in AGCMs is critical to establishing the potential for such prediction. Our own studies show, among other things, that soil moisture retention can lead to significant precipitation predictability in many midlatitude and tropical regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, B.; Schneider, E.K.
1995-10-01
Two surface wind stress datasets for 1979-91, one based on observations and the other from an investigation of the COLA atmospheric general circulation model (AGCM) with prescribed SST, are used to drive the GFDL ocean general circulation model. These two runs are referred to as the control and COLA experiments, respectively. Simulated SST and upper-ocean heat contents (HC) in the tropical Pacific Ocean are compared with observations and between experiments. Both simulation reproduced the observed mean SST and HC fields as well as their annual cycles realistically. Major errors common to both runs are colder than observed SST in themore » eastern equatorial ocean and HC in the western Pacific south of the equator, with errors generally larger in the COLA experiment. New errors arising from the AGCM wind forcing include higher SST near the South American coast throughout the year and weaker HC gradients along the equator in boreal spring. The former is associated with suppressed coastal upwelling by weak along shore AGCM winds, and the latter is caused by weaker equatorial easterlies in boreal spring. The low-frequency ENSO fluctuations are also realistic for both runs. Correlations between the observed and simulated SST anomalies from the COLA simulation are as high as those from the control run in the central equatorial Pacific. A major problem in the COLA simulation is the appearance of unrealistic tropical cold anomalies during the boreal spring of mature El Nino years. These anomalies propagate along the equator from the western Pacific to the eastern coast in about three months, and temporarily eliminate the warm SST and HC anomalies in the eastern Pacific. This erroneous oceanic response in the COLA simulation is caused by a reversal of the westerly wind anomalies on the equator, associated with an unrealistic southward shift of the ITCZ in boreal spring during El Nino events. 66 refs., 16 figs.« less
NASA Astrophysics Data System (ADS)
Torres, Olivier; Braconnot, Pascale; Marti, Olivier; Gential, Luc
2018-05-01
The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Despite decades of effort and improvements, representation of these fluxes still presents a challenge due to the small-scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the climate system is still lacking. In this paper we investigates the large-scale impacts of the transfer coefficient used to compute turbulent heat fluxes with the IPSL-CM4 climate model in which the surface bulk formula is modified. Analyzing both atmosphere and coupled ocean-atmosphere general circulation model (AGCM, OAGCM) simulations allows us to study the direct effect and the mechanisms of adjustment to this modification. We focus on the representation of latent heat flux in the tropics. We show that the heat transfer coefficients are highly similar for a given parameterization between AGCM and OAGCM simulations. Although the same areas are impacted in both kind of simulations, the differences in surface heat fluxes are substantial. A regional modification of heat transfer coefficient has more impact than uniform modification in AGCM simulations while in OAGCM simulations, the opposite is observed. By studying the global energetics and the atmospheric circulation response to the modification, we highlight the role of the ocean in dampening a large part of the disturbance. Modification of the heat exchange coefficient modifies the way the coupled system works due to the link between atmospheric circulation and SST, and the different feedbacks between ocean and atmosphere. The adjustment that takes place implies a balance of net incoming solar radiation that is the same in all simulations. As there is no change in model physics other than drag coefficient, we obtain similar latent heat flux between coupled simulations with different atmospheric circulations. Finally, we analyze the impact of model tuning and show that it can offset part of the feedbacks.
A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.
2014-01-01
While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.
Toward 10-km mesh global climate simulations
NASA Astrophysics Data System (ADS)
Ohfuchi, W.; Enomoto, T.; Takaya, K.; Yoshioka, M. K.
2002-12-01
An atmospheric general circulation model (AGCM) that runs very efficiently on the Earth Simulator (ES) was developed. The ES is a gigantic vector-parallel computer with the peak performance of 40 Tflops. The AGCM, named AFES (AGCM for ES), was based on the version 5.4.02 of an AGCM developed jointly by the Center for Climate System Research, the University of Tokyo and the Japanese National Institute for Environmental Sciences. The AFES was, however, totally rewritten in FORTRAN90 and MPI while the original AGCM was written in FORTRAN77 and not capable of parallel computing. The AFES achieved 26 Tflops (about 65 % of the peak performance of the ES) at resolution of T1279L96 (10-km horizontal resolution and 500-m vertical resolution in middle troposphere to lower stratosphere). Some results of 10- to 20-day global simulations will be presented. At this moment, only short-term simulations are possible due to data storage limitation. As ten tera flops computing is achieved, peta byte data storage are necessary to conduct climate-type simulations at this super-high resolution global simulations. Some possibilities for future research topics in global super-high resolution climate simulations will be discussed. Some target topics are mesoscale structures and self-organization of the Baiu-Meiyu front over Japan, cyclogenecsis over the North Pacific and typhoons around the Japan area. Also improvement in local precipitation with increasing horizontal resolution will be demonstrated.
The North Pacific as a Regulator of Summertime Climate Over North America and the Asian Monsoon
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Wang, H.
2004-01-01
The interannual variability of summertime rainfall over the U.S. may be linked to climate anomalies over Pacific and East Asia through teleconnection patterns that may be components of recurring global climate modes in boreal summer (Lau and Weng 2002). In this study, maintenance of the boreal summer teleconnection patterns is investigated. The particular focus is on the potential effects of North Pacific air-sea interaction on climate anomalies over the U.S. Observational data, reanalysis and outputs of a series of NASA NSIPP AGCM and AGCM coupled to NASA GSFC MLO model experiments are used. Statistical analysis of observations and NSIPP AMIP type simulations indicates that, the interannual variability of observed warm season precipitation over the U.S. is related to SST variation in both tropical and North Pacific, whereas the NSIPP AMIP simulated summertime US. precipitation variation mainly reflects impact of ENS0 in tropical Pacific. This implies the potential importance of air-sea interaction in North Pacific in contributing to the interannual variability of observed summer climate over the U.S. The anomalous atmospheric circulation associated with the dominant summertime teleconnection modes in both observations and NSIPP AMIP simulations are further diagnosed, using stationary wave modeling approach. In observations, for the two dominant modes, both anomalous diabatic heating and anomalous transients significantly contribute to the anomalous circulation. The distributions of the anomalous diabatic heating and transient forcing are quadrature configured over North Pacific and North America, so that both forcings act constructively to maintain the teleconnection patterns. The contrast between observations and NSIPP AMIP simulations from stationary wave modeling diagnosis confirms the previous conclusion based on statistical analysis. To better appreciate the role of extra-tropical air-sea interaction in maintaining the summertime teleconnection pattern, various dynamical and physical fields and their inter- linkage in the series of NSIPP AGCM and AGCM coupled to MLO model experiments are examined in-depth. Based on comparison between different model experiments, we will discuss the physical and dynamical mechanisms through which the air-sea interaction in extratropics, and transient mean flow interactions over the North Pacific, affects interannual variation of U.S. climate during boreal summer.
NASA Astrophysics Data System (ADS)
Arnold, N.; Barahona, D.
2017-12-01
Atmospheric general circulation models (AGCMs) have long struggled to realistically represent tropical intraseasonal variability. Here we report progress in simulating the Madden Julian Oscillation (MJO) with the NASA Goddard Earth Observing System (GEOS) AGCM, in free-running simulations utilizing a new two-moment microphysics scheme and the University of Washington shallow cumulus parameterization. Lag composites of intraseasonal signals show significantly improved eastward propagation over the Indian Ocean and maritime region, with increased eastward precipitation variance and more coherent large-scale structure. The dynamics of the MJO are analyzed using a vertically resolved moisture budget, assuming weak temperature gradient conditions. We find that positive longwave radiative heating anomalies associated with high clouds contribute to low-level ascent and moistening, coincident with intraseasonal precipitation anomalies. Horizontal advection generally damps intraseasonal moisture anomalies, but at some longitudes contributes to their eastward tendency. Shallow convection is enhanced to the east of the intraseasonal precipitation maximum, and its associated moistening of the lower free troposphere encourages eastward propagation of deep convection.
NASA Astrophysics Data System (ADS)
Woo, Sumin; Singh, Gyan Prakash; Oh, Jai-Ho; Lee, Kyoung-Min
2018-05-01
Seasonal changes in precipitation characteristics over India were projected using a high-resolution (40-km) atmospheric general circulation model (AGCM) during the near- (2010-2039), mid- (2040-2069), and far- (2070-2099) futures. For the model evaluation, we simulated an Atmospheric Model Intercomparison Project-type present-day climate using AGCM with observed sea-surface temperature and sea-ice concentration. Based on this simulation, we have simulated the current climate from 1979 to 2009 and subsequently the future climate projection until 2100 using a CMCC-CM model from Coupled Model Intercomparison Project phase 5 models based on RCP4.5 and RCP8.5 scenarios. Using various observed precipitation data, the validation of the simulated precipitation indicates that the AGCM well-captured the high and low rain belts and also onset and withdrawal of monsoon in the present-day climate simulation. Future projections were performed for the above-mentioned time slices (near-, mid-, and far futures). The model projected an increase in summer precipitation from 7 to 18% under RCP4.5 and from 14 to 18% under RCP8.5 from the mid- to far futures. Projected summer precipitation from different time slices depicts an increase over northwest (NWI) and west-south peninsular India (SPI) and a reduction over northeast and north-central India. The model projected an eastward shift of monsoon trough around 2° longitude and expansion and intensification of Mascarene High and Tibetan High seems to be associated with projected precipitation. The model projected extreme precipitation events show an increase (20-50%) in rainy days over NWI and SPI. While a significant increase of about 20-50% is noticed in heavy rain events over SPI during the far future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiemann, Reinhard; Demory, Marie-Estelle; Shaffrey, Len C.
The aim of this study is to investigate if the representation of Northern Hemisphere blocking is sensitive to resolution in current-generation atmospheric global circulation models (AGCMs). An evaluation is thus conducted of how well atmospheric blocking is represented in four AGCMs whose horizontal resolution is increased from a grid spacing of more than 100 km to about 25 km. It is shown that Euro-Atlantic blocking is simulated overall more credibly at higher resolution (i.e., in better agreement with a 50-yr reference blocking climatology created from the reanalyses ERA-40 and ERA-Interim). The improvement seen with resolution depends on the season andmore » to some extent on the model considered. Euro-Atlantic blocking is simulated more realistically at higher resolution in winter, spring, and autumn, and robustly so across the model ensemble. The improvement in spring is larger than that in winter and autumn. Summer blocking is found to be better simulated at higher resolution by one model only, with little change seen in the other three models. The representation of Pacific blocking is not found to systematically depend on resolution. Despite the improvements seen with resolution, the 25-km models still exhibit large biases in Euro-Atlantic blocking. For example, three of the four 25-km models underestimate winter northern European blocking frequency by about one-third. The resolution sensitivity and biases in the simulated blocking are shown to be in part associated with the mean-state biases in the models' midlatitude circulation.« less
Schiemann, Reinhard; Demory, Marie-Estelle; Shaffrey, Len C.; ...
2016-12-19
The aim of this study is to investigate if the representation of Northern Hemisphere blocking is sensitive to resolution in current-generation atmospheric global circulation models (AGCMs). An evaluation is thus conducted of how well atmospheric blocking is represented in four AGCMs whose horizontal resolution is increased from a grid spacing of more than 100 km to about 25 km. It is shown that Euro-Atlantic blocking is simulated overall more credibly at higher resolution (i.e., in better agreement with a 50-yr reference blocking climatology created from the reanalyses ERA-40 and ERA-Interim). The improvement seen with resolution depends on the season andmore » to some extent on the model considered. Euro-Atlantic blocking is simulated more realistically at higher resolution in winter, spring, and autumn, and robustly so across the model ensemble. The improvement in spring is larger than that in winter and autumn. Summer blocking is found to be better simulated at higher resolution by one model only, with little change seen in the other three models. The representation of Pacific blocking is not found to systematically depend on resolution. Despite the improvements seen with resolution, the 25-km models still exhibit large biases in Euro-Atlantic blocking. For example, three of the four 25-km models underestimate winter northern European blocking frequency by about one-third. The resolution sensitivity and biases in the simulated blocking are shown to be in part associated with the mean-state biases in the models' midlatitude circulation.« less
SST-Forced Seasonal Simulation and Prediction Skill for Versions of the NCEP/MRF Model.
NASA Astrophysics Data System (ADS)
Livezey, Robert E.; Masutani, Michiko; Jil, Ming
1996-03-01
The feasibility of using a two-tier approach to provide guidance to operational long-lead seasonal prediction is explored. The approach includes first a forecast of global sea surface temperatures (SSTs) using a coupled general circulation model, followed by an atmospheric forecast using an atmospheric general circulation model (AGCM). For this exploration, ensembles of decade-long integrations of the AGCM driven by observed SSTs and ensembles of integrations of select cases driven by forecast SSTs have been conducted. The ability of the model in these sets of runs to reproduce observed atmospheric conditions has been evaluated with a multiparameter performance analysis.Results have identified performance and skill levels in the specified SST runs, for winters and springs over the Pacific/North America region, that are sufficient to impact operational seasonal predictions in years with major El Niño-Southern Oscillation (ENSO) episodes. Further, these levels were substantially reproduced in the forecast SST runs for 1-month leads and in many instances for up to one-season leads. In fact, overall the 0- and 1-month-lead forecasts of seasonal temperature over the United States for three falls and winters with major ENSO episodes were substantially better than corresponding official forecasts. Thus, there is considerable reason to develop a dynamical component for the official seasonal forecast process.
Validation of landsurface processes in the AMIP models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, T J
The Atmospheric Model Intercomparison Project (AMIP) is a commonly accepted protocol for testing the performance of the world's atmospheric general circulation models (AGCMs) under common specifications of radiative forcings (in solar constant and carbon dioxide concentration) and observed ocean boundary conditions (Gates 1992, Gates et al. 1999). From the standpoint of landsurface specialists, the AMIP affords an opportunity to investigate the behaviors of a wide variety of land-surface schemes (LSS) that are coupled to their ''native'' AGCMs (Phillips et al. 1995, Phillips 1999). In principle, therefore, the AMIP permits consideration of an overarching question: ''To what extent does an AGCM'smore » performance in simulating continental climate depend on the representations of land-surface processes by the embedded LSS?'' There are, of course, some formidable obstacles to satisfactorily addressing this question. First, there is the dilemna of how to effectively validate simulation performance, given the present dearth of global land-surface data sets. Even if this data problem were to be alleviated, some inherent methodological difficulties would remain: in the context of the AMIP, it is not possible to validate a given LSS per se, since the associated land-surface climate simulation is a product of the coupled AGCM/LSS system. Moreover, aside from the intrinsic differences in LSS across the AMIP models, the varied representations of land-surface characteristics (e.g. vegetation properties, surface albedos and roughnesses, etc.) and related variations in land-surface forcings further complicate such an attribution process. Nevertheless, it may be possible to develop validation methodologies/statistics that are sufficiently penetrating to reveal ''signatures'' of particular ISS representations (e.g. ''bucket'' vs more complex parameterizations of hydrology) in the AMIP land-surface simulations.« less
The Aqua-Planet Experiment (APE): CONTROL SST Simulation
NASA Technical Reports Server (NTRS)
Blackburn, Michael; Williamson, David L.; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut;
2013-01-01
Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE.Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies.The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed.The aqua-planet configuration is intended as one component of an experimental hierarchy used to evaluate AGCMs. This comparison does suggest that the range of model behaviour could be better understood and reduced in conjunction with Earth climate simulations. Controlled experimentation is required to explore individual model behavior and investigate convergence of the aqua-planet climate with increasing resolution.
NASA Technical Reports Server (NTRS)
Elshorbany, Yasin F.; Duncan, Bryan N.; Strode, Sarah A.; Wang, James S.; Kouatchou, Jules
2015-01-01
We present the Efficient CH4-CO-OH Module (ECCOH) that allows for the simulation of the methane, carbon monoxide and hydroxyl radical (CH4-CO-OH cycle, within a chemistry climate model, carbon cycle model, or earth system model. The computational efficiency of the module allows many multi-decadal, sensitivity simulations of the CH4-CO-OH cycle, which primarily determines the global tropospheric oxidizing capacity. This capability is important for capturing the nonlinear feedbacks of the CH4-CO-OH system and understanding the perturbations to relatively long-lived methane and the concomitant impacts on climate. We implemented the ECCOH module into the NASA GEOS-5 Atmospheric Global Circulation Model (AGCM), performed multiple sensitivity simulations of the CH4-CO-OH system over two decades, and evaluated the model output with surface and satellite datasets of methane and CO. The favorable comparison of output from the ECCOH module (as configured in the GEOS-5 AGCM) with observations demonstrates the fidelity of the module for use in scientific research.
NASA Technical Reports Server (NTRS)
Elshorbany, Yasin F.; Duncan, Bryan N.; Strode, Sarah A.; Wang, James S.; Kouatchou, Jules
2016-01-01
We present the Efficient CH4-CO-OH (ECCOH) chemistry module that allows for the simulation of the methane, carbon monoxide, and hydroxyl radical (CH4-CO- OH) system, within a chemistry climate model, carbon cycle model, or Earth system model. The computational efficiency of the module allows many multi-decadal sensitivity simulations of the CH4-CO-OH system, which primarily determines the global atmospheric oxidizing capacity. This capability is important for capturing the nonlinear feedbacks of the CH4-CO-OH system and understanding the perturbations to methane, CO, and OH, and the concomitant impacts on climate. We implemented the ECCOH chemistry module in the NASA GEOS-5 atmospheric global circulation model (AGCM), performed multiple sensitivity simulations of the CH4-CO-OH system over 2 decades, and evaluated the model output with surface and satellite data sets of methane and CO. The favorable comparison of output from the ECCOH chemistry module (as configured in the GEOS- 5 AGCM) with observations demonstrates the fidelity of the module for use in scientific research.
NASA Astrophysics Data System (ADS)
Wei, Y.; Chen, X.
2017-12-01
We present a first description and evaluation of the IAP Atmospheric Aerosol Chemistry Model (IAP-AACM) which has been integrated into the earth system model CAS-ESM. In this way it is possible to research into interaction of clouds and aerosol by its two-way coupling with the IAP Atmospheric General Circulation Model (IAP-AGCM). The model has a nested global-regional grid based on the Global Environmental Atmospheric Transport Model (GEATM) and the Nested Air Quality Prediction Modeling System (NAQPMS). The AACM provides two optional gas chemistry schemes, the CBM-Z gas chemistry as well as a sulfur oxidize box designed specifically for the CAS-ESM. Now the model driven by AGCM has been applied to a 1-year simulation of tropospheric chemistry both on global and regional scales for 2014, and been evaluated against various observation datasets, including aerosol precursor gas concentration, aerosol mass and number concentrations. Furthermore, global budgets in AACM are compared with other global aerosol models. Generally, the AACM simulations are within the range of other global aerosol model predictions, and the model has a reasonable agreement with observations of gases and particles concentration both on global and regional scales.
NASA Astrophysics Data System (ADS)
Lucarini, Valerio; Danihlik, Robert; Kriegerova, Ida; Speranza, Antonio
2007-07-01
We present an auditing (intercomparison and verification) of several regional climate models (RCMs) nested into the same run of the same atmospheric global circulation model (AGCM) regarding their representation of the statistical properties of the hydrological balance of the Danube river basin for 1961-1990. We also consider the data sets produced by the driving AGCM, by the European Centre for Medium-Range Weather Forecasts (ECMWF) and National Centers for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) reanalyses. The hydrological balance is computed by integrating the precipitation and evaporation fields over the area of interest. Large discrepancies exist among RCMs for the monthly climatology as well as for the mean and variability of the annual balances, and only few data sets are consistent with the observed discharge values of the Danube at its Delta, even if the driving AGCM provides itself an excellent estimate. We find consistently that, for a given model, increases in the resolution do not alter the net water balance, while speeding up the hydrological cycle through the enhancement of both precipitation and evaporation by the same amount. Since the considered approach relies on the mass conservation principle and bypasses the details of the air-land interface modeling, we propose that the atmospheric components of RCMs still face difficulties in representing the water balance even on a relatively large scale. Their reliability on smaller river basins may be even more problematic. Moreover, since for some models the hydrological balance estimates obtained with the runoff fields do not agree with those obtained via precipitation and evaporation, some deficiencies of the land models are also apparent. The driving AGCM greatly overperforms the NCEP-NCAR and ECMWF 40-year (ERA-40) reanalyses, which result to be largely inadequate for representing the hydrology of the Danube river basin, both for the reconstruction of the long-term averages and of the seasonal cycle. The reanalyses cannot in any sense be used as verification. We suggest that these results should be carefully considered in the perspective of auditing climate models and assessing their ability to simulate future climate changes.
NASA Astrophysics Data System (ADS)
Pilon, R.; Chauvin, F.; Palany, P.; Belmadani, A.
2017-12-01
A new version of the variable high-resolution Meteo-France Arpege atmospheric general circulation model (AGCM) has been developed for tropical cyclones (TC) studies, with a focus on the North Atlantic basin, where the model horizontal resolution is 15 km. Ensemble historical AMIP (Atmospheric Model Intercomparison Project)-type simulations (1965-2014) and future projections (2020-2080) under the IPCC (Intergovernmental Panel on Climate Change) representative concentration pathway (RCP) 8.5 scenario have been produced. TC-like vortices tracking algorithm is used to investigate TC activity and variability. TC frequency, genesis, geographical distribution and intensity are examined. Historical simulations are compared to best-track and reanalysis datasets. Model TC frequency is generally realistic but tends to be too high during the rst decade of the historical simulations. Biases appear to originate from both the tracking algorithm and model climatology. Nevertheless, the model is able to simulate extremely well intense TCs corresponding to category 5 hurricanes in the North Atlantic, where grid resolution is highest. Interaction between developing TCs and vertical wind shear is shown to be contributing factor for TC variability. Future changes in TC activity and properties are also discussed.
Thompson, Robert Stephen; Hostetler, Steven W.; Bartlein, Patrick J.; Anderson, Katherine H.
1998-01-01
Historical and geological data indicate that significant changes can occur in the Earth's climate on time scales ranging from years to millennia. In addition to natural climatic change, climatic changes may occur in the near future due to increased concentrations of carbon dioxide and other trace gases in the atmosphere that are the result of human activities. International research efforts using atmospheric general circulation models (AGCM's) to assess potential climatic conditions under atmospheric carbon dioxide concentrations of twice the pre-industrial level (a '2 X CO2' atmosphere) conclude that climate would warm on a global basis. However, it is difficult to assess how the projected warmer climatic conditions would be distributed on a regional scale and what the effects of such warming would be on the landscape, especially for temperate mountainous regions such as the Western United States. In this report, we present a strategy to assess the regional sensitivity to global climatic change. The strategy makes use of a hierarchy of models ranging from an AGCM, to a regional climate model, to landscape-scale process models of hydrology and vegetation. A 2 X CO2 global climate simulation conducted with the National Center for Atmospheric Research (NCAR) GENESIS AGCM on a grid of approximately 4.5o of latitude by 7.5o of longitude was used to drive the NCAR regional climate model (RegCM) over the Western United States on a grid of 60 km by 60 km. The output from the RegCM is used directly (for hydrologic models) or interpolated onto a 15-km grid (for vegetation models) to quantify possible future environmental conditions on a spatial scale relevant to policy makers and land managers.
Forced synchronization of large-scale circulation to increase predictability of surface states
NASA Astrophysics Data System (ADS)
Shen, Mao-Lin; Keenlyside, Noel; Selten, Frank; Wiegerinck, Wim; Duane, Gregory
2016-04-01
Numerical models are key tools in the projection of the future climate change. The lack of perfect initial condition and perfect knowledge of the laws of physics, as well as inherent chaotic behavior limit predictions. Conceptually, the atmospheric variables can be decomposed into a predictable component (signal) and an unpredictable component (noise). In ensemble prediction the anomaly of ensemble mean is regarded as the signal and the ensemble spread the noise. Naturally the prediction skill will be higher if the signal-to-noise ratio (SNR) is larger in the initial conditions. We run two ensemble experiments in order to explore a way to reduce the SNR of surface winds and temperature. One ensemble experiment is AGCM with prescribing sea surface temperature (SST); the other is AGCM with both prescribing SST and nudging the high-level temperature and winds to ERA-Interim. Each ensemble has 30 members. Larger SNR is expected and found over the tropical ocean in the first experiment because the tropical circulation is associated with the convection and the associated surface wind convergence as these are to a large extent driven by the SST. However, small SNR is found over high latitude ocean and land surface due to the chaotic and non-synchronized atmosphere states. In the second experiment the higher level temperature and winds are forced to be synchronized (nudged to reanalysis) and hence a larger SNR of surface winds and temperature is expected. Furthermore, different nudging coefficients are also tested in order to understand the limitation of both synchronization of large-scale circulation and the surface states. These experiments will be useful for the developing strategies to synchronize the 3-D states of atmospheric models that can be later used to build a super model.
Key roles of sea ice in inducing contrasting modes of glacial AMOC and climate
NASA Astrophysics Data System (ADS)
Sherriff-Tadano, S.; Abe-Ouchi, A.
2017-12-01
Gaining a better understanding of glacial Atlantic meridional overturning circulation (AMOC) is important to interpret the glacial climate changes such as the Heinrich event. Recent studies suggest that changes in sea ice over the North Atlantic largely affect the surface wind. Since changes in surface wind have a large impact on the AMOC, this implies a role of sea ice in modifying the AMOC though surface wind. However, the impact of sea ice on the surface winds and the impact of changes in the winds on the AMOC remain unclear. In this study, we first assess the impact of sea ice expansion on the winds. We then explore whether the changes in winds play a role in modifying the AMOC and climate. For this purpose, results from MIROC4m are analyzed (Kawamura et al. 2017). To clarify the impact of changes in sea ice on the surface wind, sensitivity experiments are conducted with an atmospheric general circulation model (AGCM). In the AGCM experiments, we modify the sea ice to extract the impact of sea ice on the winds. Partial decouple experiments are conducted with the coupled model MIROC4m, which we modify the surface winds to assess the impact of changes in the surface wind due to sea ice expansion on the AMOC. Results show that expansion of sea ice substantially weakens the surface wind over the northern North Atlantic. AGCM experiments show that a drastic decrease in surface temperature duo to a suppression of sensible heat flux plays a dominant role in weakening the surface winds through increasing the static stability of the air column near the surface. Partial decouple experiments with MIROC4m show that the weakening of the surface wind due to the expansion of sea ice plays an important role in maintaining the weak AMOC. Thus, these experiments show that the weakening of the surface winds due to sea ice expansion plays a role in stabilizing the AMOC.
Rain Reevaporation, Boundary Layer Convection Interactions, and Pacific Rainfall Patterns in an AGCM
NASA Technical Reports Server (NTRS)
Bacmeister, Julio T.; Suarez, Max J.; Robertson, Franklin R.
2004-01-01
Sensitivity experiments with an atmospheric general circulation model (AGCM) show that parameterized rain re-evaporation has a large impact on simulated precipitation patterns in the tropical Pacific, especially on the configuration of the model s intertropical convergence zone (ITCZ). Weak re-evaporation leads t o the formation of a "double ITCZ" during the northern warm season. The double ITCZ is accompanied by strong coupling between precipitation and high-frequency vertical motion in the planetary boundary layer (PBL). Strong reevaporation leads to a better overall agreement of simulated precipitation with observations. The model s double ITCZ bias is reduced. At the same time, correlation between high-frequency vertical motion in the PBL and precipitation is reduced. Experiments with modified physics suggest that evaporative cooling by rain near the PBL top weakens the coupling between precipitation and vertical motion. This may reduce the model s tendency to form double ITCZs. The strength of high-frequency vertical motions in the PBL was also reduced directly through the introduction of a diffusive cumulus momentum transport (DCMT) parameterization. The DCMT had a visible impact on simulated precipitation in the tropics, but did not reduce the model s double bias in all cases.
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)
2000-01-01
Predictability of the 1997 and 1998 South Asian summer monsoons is examined using National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalyses, and 100 two-year simulations with ten different Atmospheric General Circulation Models (AGCMs) with prescribed sea surface temperature (SST). We focus on the intraseasonal variations of the south Asian summer monsoon associated with the Madden-Julian Oscillation (MJO). The NCEP/NCAR reanalysis shows a clear coupling between SST anomalies and upper level velocity potential anomalies associated with the MJO. We analyze several MJO events that developed during the 1997 and 1998 focusing of the coupling with the SST. The same analysis is carried out for the model simulations. Remarkably, the ensemble mean of the two-year AGCM simulations show a signature of the observed MJO events. The ensemble mean simulated MJO events are approximately in phase with the observed events, although they are weaker, the period of oscillation is somewhat longer, and their onset is delayed by about ten days compared with the observations. Details of the analysis and comparisons among the ten AMIP2 (Atmospheric Model Intercomparison Project) models will be presented in the conference.
Evaluation of the Surface Representation of the Greenland Ice Sheet in a General Circulation Model
NASA Technical Reports Server (NTRS)
Cullather, Richard I.; Nowicki, Sophie M. J.; Zhao, Bin; Suarez, Max J.
2014-01-01
Simulated surface conditions of the Goddard Earth Observing System model, version 5 (GEOS 5) atmospheric general circulation model (AGCM) are examined for the contemporary Greenland Ice Sheet (GrIS). A surface parameterization that explicitly models surface processes including snow compaction, meltwater percolation and refreezing, and surface albedo is found to remedy an erroneous deficit in the annual net surface energy flux and provide an adequate representation of surface mass balance (SMB) in an evaluation using simulations at two spatial resolutions. The simulated 1980-2008 GrIS SMB average is 24.7+/-4.5 cm yr(- 1) water-equivalent (w.e.) at.5 degree model grid spacing, and 18.2+/-3.3 cm yr(- 1) w.e. for 2 degree grid spacing. The spatial variability and seasonal cycle of the simulation compare favorably to recent studies using regional climate models, while results from 2 degree integrations reproduce the primary features of the SMB field. In comparison to historical glaciological observations, the coarser resolution model overestimates accumulation in the southern areas of the GrIS, while the overall SMB is underestimated. These changes relate to the sensitivity of accumulation and melt to the resolution of topography. The GEOS-5 SMB fields contrast with available corresponding atmospheric models simulations from the Coupled Model Intercomparison Project (CMIP5). It is found that only a few of the CMIP5 AGCMs examined provide significant summertime runoff, a dominant feature of the GrIS seasonal cycle. This is a condition that will need to be remedied if potential contributions to future eustatic change from polar ice sheets are to be examined with GCMs.
Parameter Uncertainty on AGCM-simulated Tropical Cyclones
NASA Astrophysics Data System (ADS)
He, F.
2015-12-01
This work studies the parameter uncertainty on tropical cyclone (TC) simulations in Atmospheric General Circulation Models (AGCMs) using the Reed-Jablonowski TC test case, which is illustrated in Community Atmosphere Model (CAM). It examines the impact from 24 parameters across the physical parameterization schemes that represent the convection, turbulence, precipitation and cloud processes in AGCMs. The one-at-a-time (OAT) sensitivity analysis method first quantifies their relative importance on TC simulations and identifies the key parameters to the six different TC characteristics: intensity, precipitation, longwave cloud radiative forcing (LWCF), shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP) and ice water path (IWP). Then, 8 physical parameters are chosen and perturbed using the Latin-Hypercube Sampling (LHS) method. The comparison between OAT ensemble run and LHS ensemble run shows that the simulated TC intensity is mainly affected by the parcel fractional mass entrainment rate in Zhang-McFarlane (ZM) deep convection scheme. The nonlinear interactive effect among different physical parameters is negligible on simulated TC intensity. In contrast, this nonlinear interactive effect plays a significant role in other simulated tropical cyclone characteristics (precipitation, LWCF, SWCF, LWP and IWP) and greatly enlarge their simulated uncertainties. The statistical emulator Extended Multivariate Adaptive Regression Splines (EMARS) is applied to characterize the response functions for nonlinear effect. Last, we find that the intensity uncertainty caused by physical parameters is in a degree comparable to uncertainty caused by model structure (e.g. grid) and initial conditions (e.g. sea surface temperature, atmospheric moisture). These findings suggest the importance of using the perturbed physics ensemble (PPE) method to revisit tropical cyclone prediction under climate change scenario.
Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions
NASA Astrophysics Data System (ADS)
McGrath-Spangler, E. L.; Molod, A.
2014-07-01
Accurate models of planetary boundary layer (PBL) processes are important for forecasting weather and climate. The present study compares seven methods of calculating PBL depth in the GEOS-5 atmospheric general circulation model (AGCM) over land. These methods depend on the eddy diffusion coefficients, bulk and local Richardson numbers, and the turbulent kinetic energy. The computed PBL depths are aggregated to the Köppen-Geiger climate classes, and some limited comparisons are made using radiosonde profiles. Most methods produce similar midday PBL depths, although in the warm, moist climate classes the bulk Richardson number method gives midday results that are lower than those given by the eddy diffusion coefficient methods. Additional analysis revealed that methods sensitive to turbulence driven by radiative cooling produce greater PBL depths, this effect being most significant during the evening transition. Nocturnal PBLs based on Richardson number methods are generally shallower than eddy diffusion coefficient based estimates. The bulk Richardson number estimate is recommended as the PBL height to inform the choice of the turbulent length scale, based on the similarity to other methods during the day, and the improved nighttime behavior.
The Onset of the Madden-Julian Oscillation Within an Aquaplanet Model
NASA Technical Reports Server (NTRS)
Colon, Edward; Lindesay, James; Suarez, Max
1997-01-01
A series of numerical experiments using a two-level atmospheric general circulation model (AGCM) were performed for the purpose of investigating the coupling between sea surface temperature (SST) profile and the onset of the Madden-Julian Oscillation (MJO). The AGCM was modified to run as an aquaplane with all seasonal forcing removed. SST distributions based on the New Global Sea-Ice and Sea Surface Temperature (GISST) Data Set for 1903-1994 were generated then modified to vary the north-south gradient and tropical temperatures. It was found that the MJO signal did not depend on the SST temperature gradients but rather on the absolute temperature of the equatorial region, EOF analysis revealed that the SST distribution which generated the strongest MJO signal produced a periodic fluctuation in velocity potential at the 250 millibar level with a phase speed of 15 m/s, and a periodicity of 30 days which falls within the shortest limit of observed oscillations. This distribution also possessed the coolest equatorial SSTs which suggests that increased stability in the atmosphere favors the occurrence of organized MJO propagation.
Comparison of GEOS-5 AGCM Planetary Boundary Layer Depths Computed with Various Definitions
NASA Technical Reports Server (NTRS)
Mcgrath-Spangler, E. L.; Molod, A.
2014-01-01
Accurate models of planetary boundary layer (PBL) processes are important for forecasting weather and climate. The present study compares seven methods of calculating PBL depth in the GEOS-5 atmospheric general circulation model (AGCM) over land. These methods depend on the eddy diffusion coefficients, bulk and local Richardson numbers, and the turbulent kinetic energy. The computed PBL depths are aggregated to the Koppen climate classes, and some limited comparisons are made using radiosonde profiles. Most methods produce similar midday PBL depths, although in the warm, moist climate classes, the bulk Richardson number method gives midday results that are lower than those given by the eddy diffusion coefficient methods. Additional analysis revealed that methods sensitive to turbulence driven by radiative cooling produce greater PBL depths, this effect being most significant during the evening transition. Nocturnal PBLs based on Richardson number are generally shallower than eddy diffusion coefficient based estimates. The bulk Richardson number estimate is recommended as the PBL height to inform the choice of the turbulent length scale, based on the similarity to other methods during the day, and the improved nighttime behavior.
Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions
NASA Astrophysics Data System (ADS)
McGrath-Spangler, E. L.; Molod, A.
2014-03-01
Accurate models of planetary boundary layer (PBL) processes are important for forecasting weather and climate. The present study compares seven methods of calculating PBL depth in the GEOS-5 atmospheric general circulation model (AGCM) over land. These methods depend on the eddy diffusion coefficients, bulk and local Richardson numbers, and the turbulent kinetic energy. The computed PBL depths are aggregated to the Köppen climate classes, and some limited comparisons are made using radiosonde profiles. Most methods produce similar midday PBL depths, although in the warm, moist climate classes, the bulk Richardson number method gives midday results that are lower than those given by the eddy diffusion coefficient methods. Additional analysis revealed that methods sensitive to turbulence driven by radiative cooling produce greater PBL depths, this effect being most significant during the evening transition. Nocturnal PBLs based on Richardson number are generally shallower than eddy diffusion coefficient based estimates. The bulk Richardson number estimate is recommended as the PBL height to inform the choice of the turbulent length scale, based on the similarity to other methods during the day, and the improved nighttime behavior.
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Lee, D.; Oreopoulos, L.; Barahona, D.; Nenes, A.; Suarez, M. J.
2012-01-01
A revised version of the Microphysics of clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction (McRAS-AC), including, among others, the Barahona and Nenes ice nucleation parameterization, is implemented in the GEOS-5 AGCM. Various fields from a 10-year long integration of the AGCM with McRAS-AC were compared with their counterparts from an integration of the baseline GEOS-5 AGCM, and with satellite data as observations. Generally using McRAS-AC reduced biases in cloud fields and cloud radiative effects are much better over most of the regions of the Earth. Two weaknesses are identified in the McRAS-AC runs, namely, too few cloud particles around 40S-60S, and too high cloud water path during northern hemisphere summer over the Gulf Stream and North Pacific. Sensitivity analyses showed that these biases potentially originated from biases in the aerosol input. The first bias is largely eliminated in a sensitivity test using 50% smaller aerosol particles, while the second bias is much reduced when interactive aerosol chemistry was turned on. The main drawback of McRAS-AC is dearth of low-level marine stratus clouds, probably due to lack of dry-convection, not yet implemented into the cloud scheme. Despite these biases, McRAS-AC does simulate realistic clouds and their optical properties that can improve with better aerosol-input and thereby has the potential to be a valuable tool for climate modeling research because of its aerosol indirect effect simulation capabilities involving prediction of cloud particle number concentration and effective particle size for both convective and stratiform clouds is quite realistic.
Meridional Propagation of the MJO/ISO and Prediction of Off-equatorial Monsoon Variability
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Schubert, S.; Suarez, M.; Pegion, P.; Bacmeister, J.; Waliser, D.
2004-01-01
In this study we examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the off-equatorial monsoon development. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. Here we focus on the potential for skillful predictions of the monsoon on subseasonal time scales associated with the meridional propagation of the ISOMJO. In particular, we show that the variability of the Indian summer monsoon lags behind the variability of tropical ISOMJO heating by about 15 days when the tropical heating is around 60E and 90E. This feature of the ISOMJO is reproduced in the AGCM experiments with the idealized eastward propagating MJO-like heating, suggesting that models with realistic ISOM0 variability should provide useful skill of monsoon breaks and surges on subseasonal time scales.
NASA Astrophysics Data System (ADS)
King, Martin P.; Herceg-Bulić, Ivana; Kucharski, Fred; Keenlyside, Noel
2018-03-01
We investigate the Northern Hemisphere atmospheric circulation anomalies associated to the sea surface temperature (SST) anomalies that are related to the eastern-Pacific and central-Pacific El Nino-Southern Oscillations in the late autumn (November). This research is motivated by the need for improving understanding of the autumn climate conditions which can impact on winter climate, as well as the relative lack of study on the boreal autumn climate processes compared to winter. Using reanalysis and SST datasets available from the late nineteenth century through the recent years, we found that there are two major atmospheric responses; one is a hemispheric-wide wave number-4 pattern, another has a more annular pattern. Both of these project on the East Atlantic pattern (southward-shifted North Atlantic Oscillation) in the Atlantic sector. Which of the patterns is active is suggested to depend on the background mean flow, with the annular anomaly active in the most recent decades, while the wave-4 pattern in the decades before. This switch is associated with a change of correlation sign in the North Pacific. We discuss the robustness of this finding. The ability of two atmospheric general circulation models (ICTP-AGCM and ECHAM-AGCM) to reproduce the teleconnections is also examined. Evidence provided shows that the wave-4 pattern and the East Atlantic pattern signals can be reproduced by the models, while the shift from this to an annular response for the recent years is not found conclusively.
The Aqua-planet Experiment (APE): Response to Changed Meridional SST Profile
NASA Technical Reports Server (NTRS)
Williamson, David L.; Blackburn, Michael; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut;
2013-01-01
This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea- ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double structure off the equator, keeping the minimum over the maximum SST. In both situations only modest changes appear in the shifted profile of zonal average precipitation. When the upward branch of the Hadley circulation moves into the hemisphere with SST maximum, the zonal average zonal, meridional and vertical winds all indicate that the Hadley cell in the other hemisphere dominates.
The North Pacific Summer Jet and Climate Extremes Over North America: Mechanisms and Model Biases
NASA Astrophysics Data System (ADS)
Schubert, S. D.; Wang, H.; Chang, Y.; Koster, R. D.; Molod, A.
2017-12-01
The North Pacific summer jet (NPSJ) plays a critical role as a waveguide for weather systems and other sub-seasonal Rossby waves entering North America and therefore has a controlling influence on the warm season weather and climate extremes over much of the continent. In particular, much of the warm season precipitation that occurs over the central United States depends on subseasonal transients that are able to tap moisture from the Gulf of Mexico as they propagate across the continent. The GEOS-5 atmospheric general circulation model (AGCM), like many AGCMs, is deficient in the simulation of the NPSJ. It is shown that the deficiency is composed of: 1) a stunted jet in which the strongest winds are confined to the Asian continent, failing to extend across the North Pacific into the Gulf of Alaska as observed, and 2) a zonally symmetric poleward shift in the jet. These biases combine to impede the eastward propagation of the weather systems into the continent (the stunted jet), and deprive those systems that do enter the continent access to the moisture from the Gulf (the northward shift), leading to a dry bias over the central US. It is shown that the stunted jet bias is the result of too strong heating that occurs just south of the jet core over and near Tibet. Furthermore, it is shown that the poleward shift of the NPSJ can be corrected in the current GEOS-5 AGCM by increasing the vertical resolution. The implications of these results for improving warm season forecasts of extreme events will be discussed.
NASA Technical Reports Server (NTRS)
Ott, Lesley; Duncan, Bryan; Pawson, Steven; Colarco, Peter; Chin, Mian; Randles, Cynthia; Diehl, Thomas; Nielsen, Eric
2009-01-01
The direct and semi-direct effects of aerosols produced by Indonesian biomass burning (BB) during August November 2006 on tropical dynamics have been examined using NASA's Goddard Earth Observing System, Version 5 (GEOS-5) atmospheric general circulation model (AGCM). The AGCM includes CO, which is transported by resolved and sub-grid processes and subject to a linearized chemical loss rate. Simulations were driven by two sets of aerosol forcing fields calculated offline, one that included Indonesian BB aerosol emissions and one that did not. In order to separate the influence of the aerosols from internal model variability, the means of two ten-member ensembles were compared. Diabatic heating from BB aerosols increased temperatures over Indonesia between 150 and 400 hPa. The higher temperatures resulted in strong increases in upward grid-scale vertical motion, which increased water vapor and CO over Indonesia. In October, the largest increases in water vapor were found in the mid-troposphere (25%) while the largest increases in CO occurred just below the tropopause (80 ppbv or 50%). Diabatic heating from the Indonesian BB aerosols caused CO to increase by 9% throughout the tropical tropopause layer in November and 5% in the lower stratosphere in December. The results demonstrate that aerosol heating plays an important role in the transport of BB pollution and troposphere-to-stratosphere transport. Changes in vertical motion and cloudiness induced by aerosol heating can also alter the transport and phase of water vapor in the upper troposphere/lower stratosphere.
The North Pacific Summer Jet and Climate Extremes over North America: Mechanisms and Model Biases
NASA Technical Reports Server (NTRS)
Schubert, S.; Wang, H.; Chang, Y.; Koster, R.; Molod, A.; Barahona, D.
2017-01-01
The North Pacific summer jet (NPSJ) plays a critical role as a waveguide for weather systems and other sub-seasonal Rossby waves entering North America and therefore has a controlling influence on the warm season weather and climate extremes over much of the continent. In particular, much of the warm season precipitation that occurs over the central United States depends on subseasonal transients that are able to tap moisture from the Gulf of Mexico as they propagate across the continent. The GEOS-5 atmospheric general circulation model (AGCM), like many AGCMs, is deficient in the simulation of the NPSJ. It is shown that the deficiency is composed of: 1) a stunted jet in which the strongest winds are confined to the Asian continent, failing to extend across the North Pacific into the Gulf of Alaska as observed, and 2) a zonally symmetric poleward shift in the jet. These biases combine to impede the eastward propagation of the weather systems into the continent (the stunted jet), and deprive those systems that do enter the continent access to the moisture from the Gulf (the northward shift), leading to a dry bias over the central US. It is shown that the stunted jet bias is the result of too strong heating that occurs just south of the jet core over and near Tibet. Furthermore, it is shown that the poleward shift of the NPSJ can be corrected in the current GEOS-5 AGCM by increasing the vertical resolution. The implications of these results for improving warm season forecasts of extreme events will be discussed.
NASA Astrophysics Data System (ADS)
Funk, C. C.; Hoerling, M. P.; Hoell, A.; Verdin, J. P.; Robertson, F. R.; Alured, D.; Liebmann, B.
2013-12-01
As the earth's population, industry, and agricultural systems continue to expand and increase demand for limited hydrologic resources, developing better tools for monitoring, analyzing and perhaps even predicting decadal variations in precipitation will enable the climate community to better inform important policy and management decisions. To this end, in support of the development and humanitarian relief efforts of the US Agency for International Development, USGS, NOAA, UC Santa Barbara, and NASA scientists have been exploring global precipitation trends using observations and new ensembles of atmospheric general circulation model (AGCM) simulations from the ECHAM5, GFSv2, CAM4 and GMAO models. This talk summarizes this work, and discusses how combined analyses of AGCM simulations and observations might lead to credible decadal projections, for some regions and seasons, based on the strength of the Indo-Pacific warming signal. Focusing on the late boreal spring, a critical period for food insecure Africa, we begin by linearly decomposing 1900-2012 sea surface temperatures (SST) into components loading strongly in the Indo-Western Pacific and Eastern Pacific. Eastern Pacific (EP) SST variations are based on regressions with three time series: the first and second principal components of equatorial Pacific SST and the Pacific Decadal Oscillation. These influences are removed from Indo-Pacific SSTs, and the Indo-Western Pacific (IWP) SST variations are defined by the 1st principal component of the residuals, which we refer to as the Indo-West Pacific Warming Signal (IWPWS). The pattern of IWPWS SST changes resembles recent assessments of centennial warming, and identifies rapid warming in the equatorial western Pacific and north and south Pacific convergence zones. The circulation impacts of IWP and EP SST forcing are explored in two ways. First, assuming linear SST forcing relationships, IWP and EP decompositions of ECHAM5, GFS, CAM4 and GMAO AGCM simulations are presented. These results suggest that a substantial component of the recent Walker circulation intensification has been related to the IWPWS. The IWPWS warming extends from just north of Papua New Guinea to just west of Hawaii, and appears associated with SLP, wind and rainfall responses consistent with enhanced Indo-Pacific convection. These decomposition results are compared with a set of numerical simulation experiments based on the ECHAM5 and GFS models forced with characteristic IWP and EP SST for 1983-1996 and 1999-2012. The talk concludes with a tentative discussion of the decadal predictability associated with the IWPWS. Using both observed and model-simulated precipitation, we briefly explore potential IWPWS drought teleconnection regions in the Americas, Asia, Middle East, and Eastern Africa. Figure 1. Western Pacific and Eastern Pacific SST changes between 1999-2012 and 1983-1996. Figure 2. Western Pacific and Eastern Pacific GPCP precipitation changes between 1999-2012 and 1983-1996.
Performance of a reconfigured atmospheric general circulation model at low resolution
NASA Astrophysics Data System (ADS)
Wen, Xinyu; Zhou, Tianjun; Wang, Shaowu; Wang, Bin; Wan, Hui; Li, Jian
2007-07-01
Paleoclimate simulations usually require model runs over a very long time. The fast integration version of a state-of-the-art general circulation model (GCM), which shares the same physical and dynamical processes but with reduced horizontal resolution and increased time step, is usually developed. In this study, we configure a fast version of an atmospheric GCM (AGCM), the Grid Atmospheric Model of IAP/LASG (Institute of Atmospheric Physics/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics), at low resolution (GAMIL-L, hereafter), and compare the simulation results with the NCEP/NCAR reanalysis and other data to examine its performance. GAMIL-L, which is derived from the original GAMIL, is a finite difference AGCM with 72×40 grids in longitude and latitude and 26 vertical levels. To validate the simulated climatology and variability, two runs were achieved. One was a 60-year control run with fixed climatological monthly sea surface temperature (SST) forcing, and the other was a 50-yr (1950 2000) integration with observational time-varying monthly SST forcing. Comparisons between these two cases and the reanalysis, including intra-seasonal and inter-annual variability are also presented. In addition, the differences between GAMIL-L and the original version of GAMIL are also investigated. The results show that GAMIL-L can capture most of the large-scale dynamical features of the atmosphere, especially in the tropics and mid latitudes, although a few deficiencies exist, such as the underestimated Hadley cell and thereby the weak strength of the Asia summer monsoon. However, the simulated mean states over high latitudes, especially over the polar regions, are not acceptable. Apart from dynamics, the thermodynamic features mainly depend upon the physical parameterization schemes. Since the physical package of GAMIL-L is exactly the same as the original high-resolution version of GAMIL, in which the NCAR Community Atmosphere Model (CAM2) physical package was used, there are only small differences between them in the precipitation and temperature fields. Because our goal is to develop a fast-running AGCM and employ it in the coupled climate system model of IAP/LASG for paleoclimate studies such as ENSO and Australia-Asia monsoon, particular attention has been paid to the model performances in the tropics. More model validations, such as those ran for the Southern Oscillation and South Asia monsoon, indicate that GAMIL-L is reasonably competent and valuable in this regard.
NASA Astrophysics Data System (ADS)
Acosta, R. P.; Huber, M.
2017-08-01
Accurately simulating the Indo-Asian monsoon (IAM) using atmospheric general circulation models (AGCMs) is challenging but crucial. This study uses reanalysis products European Centre of Medium-Range Forecast Interim reanalysis, Japanese Reanalysis year 55, and High Asia Reanalysis to highlight an easterly, low-level barrier jet along the Indo-Gangetic Plain (referred from here as IG LLJ), which we identify as the primary moisture transport mechanism for the northeastern branch of the IAM. We show that the NCAR family of AGCMs (Community Atmospheric Model (CAM)) does not capture this circulation until 1/2° or greater spatial horizontal resolution is used. The IG LLJ develops due to a persistent low-pressure system centered over the Ganges basin and is enhanced by the Himalayas. Using diabatic heating rates and the moist Froude number as diagnostics, we find that in CAM, this branch of the IAM displays two different dynamical regimes as a function of resolution. At low resolution, the atmosphere near the Himalayas is statically unstable, diabatic heating is strong, and the moisture flow is southwesterly from the Arabian Sea and moves over the terrain (unblocked). At high resolution, the moist static stability near the Himalayan Mountains is stable, diabatic heating is weak, and the flow primarily enters easterly from the Bay of Bengal and moves parallel to the terrain (blocked). During the summer season, the low-resolution CAM is locked into the unblocked mode, which has serious implications for interpreting topography-monsoon interactions. For a broader context, we demonstrate that more than half of the CMIP5 models do not capture the IG LLJ, which further highlights model-data mismatch across the IAM region.
Statistical-Dynamical Seasonal Forecasts of Central-Southwest Asian Winter Precipitation.
NASA Astrophysics Data System (ADS)
Tippett, Michael K.; Goddard, Lisa; Barnston, Anthony G.
2005-06-01
Interannual precipitation variability in central-southwest (CSW) Asia has been associated with East Asian jet stream variability and western Pacific tropical convection. However, atmospheric general circulation models (AGCMs) forced by observed sea surface temperature (SST) poorly simulate the region's interannual precipitation variability. The statistical-dynamical approach uses statistical methods to correct systematic deficiencies in the response of AGCMs to SST forcing. Statistical correction methods linking model-simulated Indo-west Pacific precipitation and observed CSW Asia precipitation result in modest, but statistically significant, cross-validated simulation skill in the northeast part of the domain for the period from 1951 to 1998. The statistical-dynamical method is also applied to recent (winter 1998/99 to 2002/03) multimodel, two-tier December-March precipitation forecasts initiated in October. This period includes 4 yr (winter of 1998/99 to 2001/02) of severe drought. Tercile probability forecasts are produced using ensemble-mean forecasts and forecast error estimates. The statistical-dynamical forecasts show enhanced probability of below-normal precipitation for the four drought years and capture the return to normal conditions in part of the region during the winter of 2002/03.May Kabul be without gold, but not without snow.—Traditional Afghan proverb
NASA Astrophysics Data System (ADS)
Straus, D. M.
2006-12-01
The transitions between portions of the state space of the large-scale flow is studied from daily wintertime data over the Pacific North America region using the NCEP reanalysis data set (54 winters) and very large suites of hindcasts made with the COLA atmospheric GCM with observed SST (55 members for each of 18 winters). The partition of the large-scale state space is guided by cluster analysis, whose statistical significance and relationship to SST is reviewed (Straus and Molteni, 2004; Straus, Corti and Molteni, 2006). The determination of the global nature of the flow through state space is studied using Markov Chains (Crommelin, 2004). In particular the non-diffusive part of the flow is contrasted in nature (small data sample) and the AGCM (large data sample). The intrinsic error growth associated with different portions of the state space is studied through sets of identical twin AGCM simulations. The goal is to obtain realistic estimates of predictability times for large-scale transitions that should be useful in long-range forecasting.
Meridional Propagation of the MJO/ISO and Prediction of Off-equatorial Monsoon Variability
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Schubert, S.; Suarez, M.; Pegion, P.; Waliser, D.
2003-01-01
This study was examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the off-equatorial monsoon development. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant 'to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. Here we focus on the potential for skillful predictions of the monsoon on sub-seasonal time scales associated with the meridional propagation of the ISO/MJO. In particular, we show that the variability of the Indian summer monsoon lags behind the variability of tropical ISO/MJO heating by about 15 days when the tropical heating is around 60E and 90E. This feature of the ISO/MJO is reproduced in the AGCM experiments with the idealized eastward propagating MJO-like heating, suggesting that models with realistic ISO/MJO variability should provide useful skill of monsoon breaks and surges on sub-seasonal time scales.
NASA Astrophysics Data System (ADS)
Gentemann, C. L.; Akella, S.
2018-02-01
An analysis of the ocean skin Sea Surface Temperature (SST) has been included in the Goddard Earth Observing System (GEOS) - Atmospheric Data Assimilation System (ADAS), Version 5 (GEOS-ADAS). This analysis is based on the GEOS atmospheric general circulation model (AGCM) that simulates near-surface diurnal warming and cool skin effects. Analysis for the skin SST is performed along with the atmospheric state, including Advanced Very High Resolution Radiometer (AVHRR) satellite radiance observations as part of the data assimilation system. One month (September, 2015) of GEOS-ADAS SSTs were compared to collocated satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSTs to examine how the GEOS-ADAS diurnal warming compares to the satellite measured warming. The spatial distribution of warming compares well to the satellite observed distributions. Specific diurnal events are analyzed to examine variability within a single day. The dependence of diurnal warming on wind speed, time of day, and daily average insolation is also examined. Overall the magnitude of GEOS-ADAS warming is similar to the warming inferred from satellite retrievals, but several weaknesses in the GEOS-AGCM simulated diurnal warming are identified and directly related back to specific features in the formulation of the diurnal warming model.
The impact of ARM on climate modeling
Randall, David A.; Del Genio, Anthony D.; Donner, Lee J.; ...
2016-07-15
Climate models are among humanity’s most ambitious and elaborate creations. They are designed to simulate the interactions of the atmosphere, ocean, land surface, and cryosphere on time scales far beyond the limits of deterministic predictability and including the effects of time-dependent external forcings. The processes involved include radiative transfer, fluid dynamics, microphysics, and some aspects of geochemistry, biology, and ecology. The models explicitly simulate processes on spatial scales ranging from the circumference of Earth down to 100 km or smaller and implicitly include the effects of processes on even smaller scales down to a micron or so. In addition, themore » atmospheric component of a climate model can be called an atmospheric global circulation model (AGCM).« less
The Impact of ARM on Climate Modeling. Chapter 26
NASA Technical Reports Server (NTRS)
Randall, David A.; Del Genio, Anthony D.; Donner, Leo J.; Collins, William D.; Klein, Stephen A.
2016-01-01
Climate models are among humanity's most ambitious and elaborate creations. They are designed to simulate the interactions of the atmosphere, ocean, land surface, and cryosphere on time scales far beyond the limits of deterministic predictability, and including the effects of time-dependent external forcings. The processes involved include radiative transfer, fluid dynamics, microphysics, and some aspects of geochemistry, biology, and ecology. The models explicitly simulate processes on spatial scales ranging from the circumference of the Earth down to one hundred kilometers or smaller, and implicitly include the effects of processes on even smaller scales down to a micron or so. The atmospheric component of a climate model can be called an atmospheric global circulation model (AGCM). In an AGCM, calculations are done on a three-dimensional grid, which in some of today's climate models consists of several million grid cells. For each grid cell, about a dozen variables are time-stepped as the model integrates forward from its initial conditions. These so-called prognostic variables have special importance because they are the only things that a model remembers from one time step to the next; everything else is recreated on each time step by starting from the prognostic variables and the boundary conditions. The prognostic variables typically include information about the mass of dry air, the temperature, the wind components, water vapor, various condensed-water species, and at least a few chemical species such as ozone. A good way to understand how climate models work is to consider the lengthy and complex process used to develop one. Lets imagine that a new AGCM is to be created, starting from a blank piece of paper. The model may be intended for a particular class of applications, e.g., high-resolution simulations on time scales of a few decades. Before a single line of code is written, the conceptual foundation of the model must be designed through a creative envisioning that starts from the intended application and is based on current understanding of how the atmosphere works and the inventory of mathematical methods available.
Quantifying the Aerosol Semi-Direct Effect in the NASA GEOS-5 AGCM
NASA Technical Reports Server (NTRS)
Randles, Cynthia A.; Colarco, Peter R.; daSilva, Arlindo
2011-01-01
Aerosols such as black carbon, dust, and some organic carbon species both scatter and absorb incoming solar radiation. This direct aerosol radiative forcing (DARF) redistributes solar energy both by cooling the surface and warming the atmosphere. As a result, these aerosols affect atmospheric stability and cloud cover (the semi-direct effect, or SDE). Furthermore, in regions with persistent high loadings of absorbing aerosols (e.g. Asia), regional circulation patterns may be altered, potentially resulting in changes in precipitation patterns. Here we investigate aerosol-climate coupling using the NASA Goddard Earth Observing System model version 5 (GEOS-5) atmospheric general circulation model (AGCM), in which we have implemented an online version of the Goddard Chemistry, Aerosol, Radiation and Transport (GOCART) model. GOCART includes representations of the sources, sinks, and chemical transformation of externally mixed dust, sea salt, sulfate, and carbonaceous aerosols. We examine a series of free-running ensemble climate simulations of the present-day period (2000-2009) forced by observed sea surface temperatures to determine the impact of aerosols on the model climate. The SDE and response of each simulation is determined by differencing with respect to the control simulation (no aerosol forcing). In a free-running model, any estimate of the SDE includes changes in clouds due both to atmospheric heating from aerosols and changes in circulation. To try and quantify the SDE without these circulation changes we then examine the DARF and SDE in GEOS-5 with prescribed meteorological analyses introduced by the MERRA analysis. By doing so, we are able to examine changes in model clouds that occur on shorter scales (six hours). In the GEOS-5 data assimilation system (DAS), the analysis is defined as the best estimate of the atmospheric state at any given time, and it is determined by optimally combining a first-guess short-term GCM forecast with all available observations. The Incremental Analysis Update (IAU) is added to the model forecast tendencies to align them with the analysis every six hours, thus preventing longer timescale feedbacks due to the aerosol forcing. We calculate the SDE by comparing model runs with and without aerosols, and the difference in the IAU between these runs is a useful metric with which to evaluate the impact of the SDE on the model atmosphere and clouds. Decreasing the IAU indicates that the aerosol direct and semi-direct effects act to reduce the bias between the model and observations and vice versa.
NASA Astrophysics Data System (ADS)
Oshima, Kazuhiro; Ogata, Koto; Park, Hotaek; Tachibana, Yoshihiro
2018-05-01
River discharges from Siberia are a large source of freshwater into the Arctic Ocean, whereas the cause of the long-term variation in Siberian discharges is still unclear. The observed river discharges of the Lena in the east and the Ob in the west indicated different relationships in each of the epochs during the past 7 decades. The correlations between the two river discharges were negative during the 1980s to mid-1990s, positive during the mid-1950s to 1960s, and became weak after the mid-1990s. More long-term records of tree-ring-reconstructed discharges have also shown differences in the correlations in each of the epochs. It is noteworthy that the correlations obtained from the reconstructions tend to be negative during the past 2 centuries. Such tendency has also been obtained from precipitations in observations, and in simulations with an atmospheric general circulation model (AGCM) and fully coupled atmosphere-ocean GCMs conducted for the Fourth Assessment Report of the IPCC. The AGCM control simulation further demonstrated that an east-west seesaw pattern of summertime large-scale atmospheric circulation frequently emerges over Siberia as an atmospheric internal variability. This results in an opposite anomaly of precipitation over the Lena and Ob and the negative correlation. Consequently, the summertime atmospheric internal variability in the east-west seesaw pattern over Siberia is a key factor influencing the long-term variation in precipitation and river discharge, i.e., the water cycle in this region.
NASA Astrophysics Data System (ADS)
Talento, Stefanie; Barreiro, Marcelo
2018-03-01
This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño-Southern Oscillation, weakening its amplitude and low-frequency behaviour.
Simulated atmospheric response to Gulf Stream variability
NASA Astrophysics Data System (ADS)
Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Latif, Mojib; Minobe, Shoshiro
2010-05-01
Though the ocean variability has a distinct low-frequent component on interannual to interdecadal timescales, a better understanding of the main features of air-sea interaction in the extratropical ocean might increase the predictive skill of climate models significantly. An insufficiently understood region in this context are the sharp SST-fronts connected to western boundary currents, which interact with the overlaying atmosphere by forcing low-level winds and evaporation. Recent studies show, that this response extends beyond the marine boundary layer and so might influence also the large-scale atmospheric circulation. In this work a 5 member ensemble of model runs from the AGCM ECHAM5 was analyzed focussing on the atmospheric response to the Gulf Stream. The analyzed experiment covered a time period of 138 years from 1870 to 2007 and was forced by observed SSTs and sea-ice concentration from the HadISST dataset. The experiment was performed at T106 horizontal resolution (~100km) and with 31 vertical levels up to 1 hPa. Simulated seasonal mean circulation indicate a convective response of the atmosphere in the Gulf Stream region similar to observations, with distinct low-level wind convergence, strong upward motion, and low-pressure over the warm SST flank of the Gulf Stream. An analysis of variance (ANOVA) suggests, that up to 25-30% of the variability of the summer precipitation in the Gulf Stream region are connected to the boundary conditions. The link between oceanic and atmospheric variability on seasonal to interannual timescales is investigated with composite and linear regression analysis. Results indicate that increased (decreased) precipitation is associated with stronger (weaker) low-level wind convergence, enhanced (reduced) upward motion, low (high) pressure, and warm (cold) SST anomalies in the region of the Gulf Stream. Currently sensitivity experiments with the same AGCM configuration are in progress.
Diagnosing Air-Sea Interactions on Intraseasonal Timescales
NASA Astrophysics Data System (ADS)
DeMott, C. A.
2014-12-01
What is the role of ocean coupling in the Madden Julian Oscillation (MJO)? Consensus thinking holds that the essential physics of the MJO involve interactions between convection, atmospheric wave dynamics, and boundary layer and free troposphere moisture. However, many modeling studies demonstrate improved MJO simulation when an atmosphere-only general circulation model (AGCM) is coupled to an ocean model, so feedbacks from the ocean are probably not negligible. Assessing the importance and processes of these feedbacks is challenging for at least two reasons. First, observations of the MJO only sample the fully coupled ocean-atmosphere system; there is no "uncoupled" MJO in nature. Second, the practice of analyzing the MJO in uncoupled and coupled GCMs (CGCMs) involves using imperfect tools to study the problem. Although MJO simulation is improving in many models, shortcomings remain in both AGCMs and CGCMs, making it difficult to determine if changes brought about through coupling reflect critical air-sea interactions or are simply part of the collective idiosyncracies of a given model. For the atmosphere, ocean feedbacks from intraseasonal sea surface temperature (SST) variations are communicated through their effects on surface fluxes of heat and moisture. This presentation suggests a set of analysis tools for diagnosing the impact of an interactive ocean on surface latent and sensible heat fluxes, including their mean, variance, spectral characteristics, and phasing with respect to wind, SST, and MJO convection. The diagnostics are demonstrated with application to several CMIP5 models, and reveal a variety of responses to coupled ocean feedbacks.
Water Isotopes in Precipitation: Data/Model Comparison for Present-Day and Past Climates
NASA Technical Reports Server (NTRS)
Jouzel, J.; Hoffmann, G.; Masson, V.
1998-01-01
Variations of HDO and H2O-18 concentrations are observed in precipitation both on a geographical and on a temporal basis. These variations, resulting from successive isotopic fractionation processes at each phase change of water during its atmospheric cycle, are well documented through the IAEA/WMO network and other sources. Isotope concentrations are, in middle and high latitudes, linearly related to the annual mean temperature at the precipitation site. Paleoclimatologists have used this relationship to infer paleotemperatures from isotope paleodata extractable from ice cores, deep groundwater and other such sources. For this application to be valid, however, the spatial relationship must also hold in time at a given location as the location undergoes a series of climatic changes. Progress in water isotope modeling aimed at examining and evaluating this assumption has been recently reviewed with a focus on polar regions and, more specifically, on Greenland. This article was largely based on the results obtained using the isotopic version of the NASA/GISS Atmospheric General Circulation Model (AGCM) fitted with isotope tracer diagnostics. We extend this review in comparing the results of two different isotopic AGCMs (NASA/GISS and ECHAM) and in examining, with a more global perspective, the validity of the above assumption, i.e. the equivalence of the spatial and temporal isotope-temperature relationship. We also examine recent progress made in modeling the relationship between the conditions prevailing in moisture source regions for precipitation and the deuterium-excess of that precipitation.
Maintaining Atmospheric Mass and Water Balance Within Reanalysis
NASA Technical Reports Server (NTRS)
Takacs, Lawrence L.; Suarez, Max; Todling, Ricardo
2015-01-01
This report describes the modifications implemented into the Goddard Earth Observing System Version-5 (GEOS-5) Atmospheric Data Assimilation System (ADAS) to maintain global conservation of dry atmospheric mass as well as to preserve the model balance of globally integrated precipitation and surface evaporation during reanalysis. Section 1 begins with a review of these global quantities from four current reanalysis efforts. Section 2 introduces the modifications necessary to preserve these constraints within the atmospheric general circulation model (AGCM), the Gridpoint Statistical Interpolation (GSI) analysis procedure, and the Incremental Analysis Update (IAU) algorithm. Section 3 presents experiments quantifying the impact of the new procedure. Section 4 shows preliminary results from its use within the GMAO MERRA-2 Reanalysis project. Section 5 concludes with a summary.
An Evaluation of the Predictability of Austral Summer Season Precipitation over South America.
NASA Astrophysics Data System (ADS)
Misra, Vasubandhu
2004-03-01
In this study predictability of austral summer seasonal precipitation over South America is investigated using a 12-yr set of a 3.5-month range (seasonal) and a 17-yr range (continuous multiannual) five-member ensemble integrations of the Center for Ocean Land Atmosphere Studies (COLA) atmospheric general circulation model (AGCM). These integrations were performed with prescribed observed sea surface temperature (SST); therefore, skill attained represents an estimate of the upper bound of the skill achievable by COLA AGCM with predicted SST. The seasonal runs outperform the multiannual model integrations both in deterministic and probabilistic skill. The simulation of the January February March (JFM) seasonal climatology of precipitation is vastly superior in the seasonal runs except over the Nordeste region where the multiannual runs show a marginal improvement. The teleconnection of the ensemble mean JFM precipitation over tropical South America with global contemporaneous observed sea surface temperature in the seasonal runs conforms more closely to observations than in the multiannual runs. Both the sets of runs clearly beat persistence in predicting the interannual precipitation anomalies over the Amazon River basin, Nordeste, South Atlantic convergence zone, and subtropical South America. However, both types of runs display poorer simulations over subtropical regions than the tropical areas of South America. The examination of probabilistic skill of precipitation supports the conclusions from deterministic skill analysis that the seasonal runs yield superior simulations than the multiannual-type runs.
NASA Astrophysics Data System (ADS)
Bangalath, Hamza Kunhu; Stenchikov, Georgiy
2015-05-01
To investigate the influence of direct radiative effect of dust on the tropical summer rain belt across the Middle East and North Africa (MENA), the present study utilizes the high-resolution capability of an Atmospheric General Circulation Model, the High-Resolution Atmospheric Model. Ensembles of Atmospheric Model Intercomparison Project style simulations have been conducted with and without dust radiative impacts, to differentiate the influence of dust on the tropical rain belt. The analysis focuses on summer season. The results highlight the role of dust-induced responses in global- and regional-scale circulations in determining the strength and the latitudinal extent of the tropical rain belt. A significant response in the strength and position of the local Hadley circulation is predicted in response to meridionally asymmetric distribution of dust and the corresponding radiative effects. Significant responses are also found in regional circulation features such as African Easterly Jet and West African Monsoon circulation. Consistent with these dynamic responses at various scales, the tropical rain belt across MENA strengthens and shifts northward. Importantly, the summer precipitation over the semiarid strip south of Sahara, including Sahel, increases up to 20%. As this region is characterized by the "Sahel drought," the predicted precipitation sensitivity to the dust loading over this region has a wide range of socioeconomic implications. Overall, the study demonstrates the extreme importance of incorporating dust radiative effects and the corresponding circulation responses at various scales, in the simulations and future projections of this region's climate.
NASA Astrophysics Data System (ADS)
Ashfaqur Rahman, M.; Almazroui, Mansour; Nazrul Islam, M.; O'Brien, Enda; Yousef, Ahmed Elsayed
2018-02-01
A new version of the Community Land Model (CLM) was introduced to the Saudi King Abdulaziz University Atmospheric Global Climate Model (Saudi-KAU AGCM) for better land surface component representation, and so to enhance climate simulation. CLM replaced the original land surface model (LSM) in Saudi-KAU AGCM, with the aim of simulating more accurate land surface fluxes globally, but especially over the Arabian Peninsula. To evaluate the performance of Saudi-KAU AGCM, simulations were completed with CLM and LSM for the period 1981-2010. In comparison with LSM, CLM generates surface air temperature values that are closer to National Centre for Environmental Prediction (NCEP) observations. The global annual averages of land surface air temperature are 9.51, 9.52, and 9.57 °C for NCEP, CLM, and LSM respectively, although the same atmospheric radiative and surface forcing from Saudi-KAU AGCM are provided to both LSM and CLM at every time step. The better temperature simulations when using CLM can be attributed to the more comprehensive plant functional type and hierarchical tile approach to the land cover type in CLM, along with better parameterization of upward land surface fluxes compared to LSM. At global scale, CLM exhibits smaller annual and seasonal mean biases of temperature with respect to NCEP data. Moreover, at regional scale, CLM demonstrates reasonable seasonal and annual mean temperature over the Arabian Peninsula as compared to the Climatic Research Unit (CRU) data. Finally, CLM generated better matches to single point-wise observations of surface air temperature and surface fluxes for some case studies.
Understanding the predictability of seasonal precipitation over northeast Brazil
NASA Astrophysics Data System (ADS)
Misra, Vasubandhu
2006-05-01
Using multiple long-term simulations of the Center for Ocean-Land-Atmosphere Studies (COLA) atmospheric general circulation model (AGCM) forced with observed sea surface temperature (SST), it is shown that the model has high skill in simulating the February-March-April (FMA) rainy season over northeast Brazil (Nordeste). Separate sensitivity experiments conducted with the same model that entails suppression of all variability except for the climatological annual cycle in SST over the Pacific and Atlantic Oceans reveal that this skill over Nordeste is sensitive to SST anomalies in the tropical Atlantic Ocean. However, the spatial pattern of SST anomalies in the tropical Atlantic Ocean that correlate with FMA Nordeste rainfall are in fact a manifestation of El Niño Southern Oscillation (ENSO) phenomenon in the Pacific Ocean. This study also analyzes the failure of the COLA AGCM in capturing the correct FMA precipitation anomalies over Nordeste in several years of the simulation. It is found that this failure occurs when the SST anomalies over the northern tropical Atlantic Ocean are large and not significantly correlated with contemporaneous SST anomalies over the eastern Pacific Ocean. In two of the relatively large ENSO years when the model failed to capture the correct signal of the interannual variability of precipitation over Nordeste, it was found that the meridional gradient of SST anomalies over the tropical Atlantic Ocean was inconsistent with the canonical development of ENSO. The analysis of the probabilistic skill of the model revealed that it has more skill in predicting flood years than drought. Furthermore, the model has no skill in predicting normal seasons. These model features are consistent with the model systematic errors.
A sensitivity study of the coupled simulation of the Northeast Brazil rainfall variability
NASA Astrophysics Data System (ADS)
Misra, Vasubandhu
2007-06-01
Two long-term coupled ocean-land-atmosphere simulations with slightly different parameterization of the diagnostic shallow inversion clouds in the atmospheric general circulation model (AGCM) of the Center for Ocean-Land-Atmosphere Studies (COLA) coupled climate model are compared for their annual cycle and interannual variability of the northeast Brazil (NEB) rainfall variability. It is seen that the solar insolation affected by the changes to the shallow inversion clouds results in large scale changes to the gradients of the SST and the surface pressure. The latter in turn modulates the surface convergence and the associated Atlantic ITCZ precipitation and the NEB annual rainfall variability. In contrast, the differences in the NEB interannual rainfall variability between the two coupled simulations is attributed to their different remote ENSO forcing.
Simulation of Rainfall Variability Over West Africa
NASA Astrophysics Data System (ADS)
Bader, J.; Latif, M.
The impact of sea surface temperature (SST) and vegetation on precipitation over West Africa is investigated with the atmospheric general circulation model ECHAM4.x/T42. Ensemble experiments -driven with observed SST- show that At- lantic SST has a significant influence on JJA precipitation over West Africa. Four- teen experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropi- cal Atlantic only caused significant changes along the Guinea Coast, with a positive SSTA increasing rainfall and a negative reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, es- pecially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. Four simulations with a coupled model (the simple dynamic vegetation model (SVege) and the ECHAM4-AGCM were coupled) were also performed, driven with observed SST from 1945 to 1998. The standard ECHAM-AGCM -forced by the same observed SST- was able to reproduce the drying trend from the fifties to the mid-eighties in the Sahel, but failed to mirror the magnitude of the rainfall anomalies. The coupled model was not only able to reproduce this drying trend, but was also able to better reproduce the amplitudes of the rainfall anomalies. The dynamic vegetation acted like an amplifier, increasing the SST induced rainfall anomalies.
NASA Astrophysics Data System (ADS)
Bracco, Annalisa; Kucharski, Fred; Molteni, Franco; Hazeleger, Wilco; Severijns, Camiel
2007-04-01
This study investigates how accurately the interannual variability over the Indian Ocean basin and the relationship between the Indian summer monsoon and the El Niño Southern Oscillation (ENSO) can be simulated by different modelling strategies. With a hierarchy of models, from an atmospherical general circulation model (AGCM) forced by observed SST, to a coupled model with the ocean component limited to the tropical Pacific and Indian Oceans, the role of heat fluxes and of interactive coupling is analyzed. Whenever sea surface temperature anomalies in the Indian basin are created by the coupled model, the inverse relationship between the ENSO index and the Indian summer monsoon rainfall is recovered, and it is preserved if the atmospherical model is forced by the SSTs created by the coupled model. If the ocean model domain is limited to the Indian Ocean, changes in the Walker circulation over the Pacific during El-Niño years induce a decrease of rainfall over the Indian subcontinent. However, the observed correlation between ENSO and the Indian Ocean zonal mode (IOZM) is not properly modelled and the two indices are not significantly correlated, independently on season. Whenever the ocean domain extends to the Pacific, and ENSO can impact both the atmospheric circulation and the ocean subsurface in the equatorial Eastern Indian Ocean, modelled precipitation patterns associated both to ENSO and to the IOZM closely resemble the observations.
The role of internal variability in prolonging the California drought
NASA Astrophysics Data System (ADS)
Buenning, N. H.; Stott, L. D.
2015-12-01
The current drought in California has been one of the driest on record. Using atmospheric general circulation models (AGCMs), recent studies have demonstrated that the low precipitation anomalies observed during the first three winters of the current drought are mostly attributable to changes in sea surface temperature (SST) and sea ice forcing. Here we show through AGCM simulations that the fourth and latest winter of the current drought is not attributable to SST and sea ice forcing, but instead a consequence of higher internal variability. Using the Global Spectral Model (GSM) we demonstrate how the surface forcing reproduces dry conditions over California for the first three winters of the current drought, similar to what other models produced. However, when forced with the SST and sea ice conditions for the winter of 2014-2015, GSM robustly simulates high precipitation conditions over California. This significantly differs with observed precipitation anomalies, which suggests a model deficiency or large influence of internal variability within the climate system during the winter of 2014-2015. Ensemble simulations with 234 realizations reveal that the surface forcing created a broader range of precipitation possibilities over California. Thus, the surface forcing caused a greater degree of internal variations, which was driven by a reduced latitudinal temperature gradient and amplified planetary waves over the Pacific. Similar amplified waves are also seen in 21st century climate projections of upper-level geopotential heights, suggesting that 21st century precipitation over California will become more variable and increasingly difficult to predict on seasonal timescales. When an El Nino pattern is applied to the surface forcing the precipitation further increases and the variance amongst model realizations is reduced, which indicates a strong likelihood of an anomalously wet 2015-2016 winter season.
Impact of DYNAMO observations on NASA GEOS-5 reanalyses and the representation of MJO initiation
NASA Astrophysics Data System (ADS)
Achuthavarier, D.; Wang, H.; Schubert, S. D.; Sienkiewicz, M.
2017-01-01
This study examines the impact of the Dynamics of the Madden-Julian Oscillation (DYNAMO) campaign in situ observations on NASA Goddard Earth Observing System version 5 (GEOS-5) reanalyses and the improvements gained thereby in the representation of the Madden-Julian Oscillation (MJO) initiation processes. To this end, we produced a global, high-resolution (1/4° spatially) reanalysis that assimilates the level-4, quality-controlled DYNAMO upper air soundings from about 87 stations in the equatorial Indian Ocean region along with a companion data-denied control reanalysis. The DYNAMO reanalysis produces a more realistic vertical structure of the temperature and moisture in the central tropical Indian Ocean by correcting the model biases, namely, the cold and dry biases in the lower troposphere and warm bias in the upper troposphere. The reanalysis horizontal winds are substantially improved, in that, the westerly acceleration and vertical shear of the zonal wind are enhanced. The DYNAMO reanalysis shows enhanced low-level diabatic heating, moisture anomalies and vertical velocity during the MJO initiation. Due to the warmer lower troposphere, the deep convection is invigorated, which is evident in convective cloud fraction. The GEOS-5 atmospheric general circulation model (AGCM) employed in the reanalysis is overall successful in assimilating the additional DYNAMO observations, except for an erroneous model response for medium rain rates, between 700 and 600 hPa, reminiscent of a bias in earlier versions of the AGCM. The moist heating profile shows a sharp decrease there due to the excessive convective rain re-evaporation, which is partly offset by the temperature increment produced by the analysis.
Incorporation of UK Met Office's radiation scheme into CPTEC's global model
NASA Astrophysics Data System (ADS)
Chagas, Júlio C. S.; Barbosa, Henrique M. J.
2009-03-01
Current parameterization of radiation in the CPTEC's (Center for Weather Forecast and Climate Studies, Cachoeira Paulista, SP, Brazil) operational AGCM has its origins in the work of Harshvardhan et al. (1987) and uses the formulation of Ramaswamy and Freidenreich (1992) for the short-wave absorption by water vapor. The UK Met Office's radiation code (Edwards and Slingo, 1996) was incorporated into CPTEC's global model, initially for short-wave only, and some impacts of that were shown by Chagas and Barbosa (2006). Current paper presents some impacts of the complete incorporation (both short-wave and long-wave) of UK Met Office's scheme. Selected results from off-line comparisons with line-by-line benchmark calculations are shown. Impacts on the AGCM's climate are assessed by comparing output of climate runs of current and modified AGCM with products from GEWEX/SRB (Surface Radiation Budget) project.
Seasonal-to-Interannual Variability and Land Surface Processes
NASA Technical Reports Server (NTRS)
Koster, Randal
2004-01-01
Atmospheric chaos severely limits the predictability of precipitation on subseasonal to interannual timescales. Hope for accurate long-term precipitation forecasts lies with simulating atmospheric response to components of the Earth system, such as the ocean, that can be predicted beyond a couple of weeks. Indeed, seasonal forecasts centers now rely heavily on forecasts of ocean circulation. Soil moisture, another slow component of the Earth system, is relatively ignored by the operational seasonal forecasting community. It is starting, however, to garner more attention. Soil moisture anomalies can persist for months. Because these anomalies can have a strong impact on evaporation and other surface energy fluxes, and because the atmosphere may respond consistently to anomalies in the surface fluxes, an accurate soil moisture initialization in a forecast system has the potential to provide additional forecast skill. This potential has motivated a number of atmospheric general circulation model (AGCM) studies of soil moisture and its contribution to variability in the climate system. Some of these studies even suggest that in continental midlatitudes during summer, oceanic impacts on precipitation are quite small relative to soil moisture impacts. The model results, though, are strongly model-dependent, with some models showing large impacts and others showing almost none at all. A validation of the model results with observations thus naturally suggests itself, but this is exceedingly difficult. The necessary contemporaneous soil moisture, evaporation, and precipitation measurements at the large scale are virtually non-existent, and even if they did exist, showing statistically that soil moisture affects rainfall would be difficult because the other direction of causality - wherein rainfall affects soil moisture - is unquestionably active and is almost certainly dominant. Nevertheless, joint analyses of observations and AGCM results do reveal some suggestions of land-atmosphere feedback in the observational record, suggestions that soil moisture can affect precipitation over seasonal timescales and across certain large continental areas. The strength of this observed feedback in nature is not large but is still significant enough to be potentially useful, e.g., for forecasts. This talk will address all of these issues. It will begin with a brief overview of land surface modeling in atmospheric models but will then focus on recent research - using both observations and models - into the impact of land surface processes on variability in the climate system.
Funk, Christopher C.; Hoell. Andrew,
2015-01-01
WPWM circulation changes appear consistent with a Matsuno–Gill-like atmospheric response associated with an ocean–atmosphere dipole structure contrasting increased (decreased) western (eastern) Pacific precipitation, SSHs, and ocean temperatures. These changes have enhanced the Walker circulation and modulated weather on a global scale. An AGCM experiment and the WPWM of global boreal spring precipitation indicate significant drying across parts of East Africa, the Middle East, the southwestern United States, southern South America, and Asia. Changes in the WPWM have tracked closely with precipitation and the increase in drought frequency over the semiarid and water-insecure areas of East Africa, the Middle East, and southwest Asia.
Demonstrating the Importance of `` Good" Models of Land Surface Hydrological Processes
NASA Astrophysics Data System (ADS)
Pitman, A.; Irannejad, P.; McGuffie, K.; Henderson-Sellers, A.
2003-12-01
To reduce the uncertainty in the prediction of land surface climates,, the Atmospheric Model Intercomparison Project (AMIP) Diagnostic Subproject 12 (DSP 12) and the Project for Intercomparison of Land-surface Parameterisation Schemes (PILPS) have analysed dependence of climate simulations on the land-surface schemes (LSSs). This analysis has comprised three efforts: (i) proving that LSSs matter in coupled simulations; (ii) investigating whether improvements in LSSs have occurred over time; and (iii) searching for novel means of validating LSS predictions. In the first, Irannejad et al. (2003) introduce a novel method for evaluating the dependence of 19 AMIP AGCMs' LH on the LSS by excluding the impact of the atmosphere. Pseudo LSSs (PLSSs) for LH in the form of multi-variable linear models expressing mean monthly LH as a function of atmospheric forcing are developed. Analysis over three large and climatically diverse river basins shows estimates of mean annual LH from the PLSSs agreeing well with the AGCMs' simulations. RMS errors range from 0.4 to 2.2 W m-2 depending on the region and the AGCM. When the PLSSs are driven by single atmospheric forcings, different LSSs behave differently, and the variability of mean annual LH among AGCMs increases. The second strand of our investigation uncovered a clear generational sequence of land-surface schemes: first generation 'no canopy'; second generation ` SiBlings'; and ` recent schemes'. We conclude that although continental surface modelling has improved over the last 30 years, full confidence remains elusive, in part due to tuning to available observations. Finally, we show that stable water isotopes challenge predictions of evaporation and condensation processes. These three-pronged findings prove that LSSs are important to AGCM and coupled climate predictions; demonstrate that new, or changed, land-surface components increase diversity among simulations; underline the need for validation data and also challenge current parameterisations with novel observations.
NASA Astrophysics Data System (ADS)
Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.
2018-02-01
Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying SST forcing.
NASA Technical Reports Server (NTRS)
Farrara, John D.; Drummond, Leroy A.; Mechoso, Carlos R.; Spahr, Joseph A.
1998-01-01
The design, implementation and performance optimization on the CRAY T3E of an atmospheric general circulation model (AGCM) which includes the transport of, and chemical reactions among, an arbitrary number of constituents is reviewed. The parallel implementation is based on a two-dimensional (longitude and latitude) data domain decomposition. Initial optimization efforts centered on minimizing the impact of substantial static and weakly-dynamic load imbalances among processors through load redistribution schemes. Recent optimization efforts have centered on single-node optimization. Strategies employed include loop unrolling, both manually and through the compiler, the use of an optimized assembler-code library for special function calls, and restructuring of parts of the code to improve data locality. Data exchanges and synchronizations involved in coupling different data-distributed models can account for a significant fraction of the running time. Therefore, the required scattering and gathering of data must be optimized. In systems such as the T3E, there is much more aggregate bandwidth in the total system than in any particular processor. This suggests a distributed design. The design and implementation of a such distributed 'Data Broker' as a means to efficiently couple the components of our climate system model is described.
NASA Astrophysics Data System (ADS)
Shin, H. H.; Zhao, M.; Ming, Y.; Chen, X.; Lin, S. J.
2017-12-01
Surface layer (SL) parameters in atmospheric models - such as 2-m air temperature (T2), 10-m wind speed (U10), and surface turbulent fluxes - are computed by applying the Monin-Obukhov Similarity Theory (MOST) to the lowest model level height (LMH) in the models. The underlying assumption is that LMH is within surface layer height (SLH), but most AGCMs hardly meet the condition in stable boundary layers (SBLs) over land. To assess the errors in modeled SL parameters caused by this, offline computations of the MOST are performed with different LMHs from 1 to 100 m, for an idealized SBL case with prescribed surface parameters (surface temperature, roughness length and Obukhov length), and vertical profiles of temperature and winds. The results show that when LMH is higher than SLH, T2 and U10 are underestimated by O(1 K) and O(1 m/s), respectively, and the biases increase as LMH increases. Based on this, the refined vertical resolution with an additional layer in the SL is applied to the GFDL AGCM, and it reduces the systematic cold biases in T2 and the systematic underestimation of U10.
Meridional Propagation of the MJO/ISO and Asian Monsoon Variability
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Schubert, Siegfried; Suarez, Max; Pegion, Phil; Waliser, D.
2003-01-01
In this study we examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the Asian monsoon. We are particularly interested in isolating the nature of the poleward propagation of the ISO/MJO in the monsoon region. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the idealized 10-member ensemble simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. In order to understand the impact of SST on the off equatorial convection (or Rossby-wave response), a second set of 10-member ensemble simulations is carried out with the climatological SSTs shifted in time by 6-months. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. This includes the well-known meridional propagation that affects the summer monsoons of both hemispheres. The AGCM experiments with the idealized eastward propagating MJO-like heating reproduce the observed meridional propagation including the observed seasonal differences. The impact of the SSTs are to enhance the magnitude of the propagation into the summer hemispheres. The results suggest that the winter/summer differences associated with the MJO/ISO are auxiliary features that depend on the MJO's environment (basic state and boundary conditions) and are not the result of fundamental differences in the MJO itself.
The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation
NASA Astrophysics Data System (ADS)
Lofverstrom, Marcus; Liakka, Johan
2018-04-01
Coupled climate-ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.
Decadal Prediction Efforts in GMAO (Global Modeling and Assimilation Office)
NASA Technical Reports Server (NTRS)
Rienecker, Michele M.; Suarez, Max; Schubert, Siegfried
2010-01-01
The Global Modeling and Assimilation Office (GMAO) plans to use our GEOS-5 atmosphere-ocean general circulation model (AOGCM) to explore issues associated with predictability on decadal time scales and to contribute to the decadal prediction project that is part ofCMIP5. The GEOS-5 AOGCM is comprised of the GEOS-5 AGCM with the Catchment Land Surface Model, coupled to GFDL's MOM, version 4. We have assimilation systems for both the atmosphere and ocean. For our climate prediction efforts, the atmosphere will be initialized from the GEOS-5 Modem Era Retrospective-analysis for Research and Applications (MERRA), available from 1979 to present at 112 resolution, and from 1948 to present at 2 resolution. The ocean assimilation is conducted within the coupled model framework, using the MERRA as a constraint for both the atmosphere and the ocean. The decadal prediction experiments will be conducted with a 1 atmosphere and a 112 ocean. Some initial results will be presented, focusing on initialization aspects of the GEOS-5 system.
Predictive susceptibility analysis of typhoon induced landslides in Central Taiwan
NASA Astrophysics Data System (ADS)
Shou, Keh-Jian; Lin, Zora
2017-04-01
Climate change caused by global warming affects Taiwan significantly for the past decade. The increasing frequency of extreme rainfall events, in which concentrated and intensive rainfalls generally cause geohazards including landslides and debris flows. The extraordinary, such as 2004 Mindulle and 2009 Morakot, hit Taiwan and induced serious flooding and landslides. This study employs rainfall frequency analysis together with the atmospheric general circulation model (AGCM) downscaling estimation to understand the temporal rainfall trends, distributions, and intensities in the adopted Wu River watershed in Central Taiwan. To assess the spatial hazard of the landslides, landslide susceptibility analysis was also applied. Different types of rainfall factors were tested in the susceptibility models for a better accuracy. In addition, the routes of typhoons were also considered in the predictive analysis. The results of predictive analysis can be applied for risk prevention and management in the study area.
Climate Downscaling over Nordeste, Brazil, Using the NCEP RSM97.
NASA Astrophysics Data System (ADS)
Sun, Liqiang; Ferran Moncunill, David; Li, Huilan; Divino Moura, Antonio; de Assis de Souza Filho, Francisco
2005-02-01
The NCEP Regional Spectral Model (RSM), with horizontal resolution of 60 km, was used to downscale the ECHAM4.5 AGCM (T42) simulations forced with observed SSTs over northeast Brazil. An ensemble of 10 runs for the period January-June 1971-2000 was used in this study. The RSM can resolve the spatial patterns of observed seasonal precipitation and capture the interannual variability of observed seasonal precipitation as well. The AGCM bias in displacement of the Atlantic ITCZ is partially corrected in the RSM. The RSM probability distribution function of seasonal precipitation anomalies is in better agreement with observations than that of the driving AGCM. Good potential prediction skills are demonstrated by the RSM in predicting the interannual variability of regional seasonal precipitation. The RSM can also capture the interannual variability of observed precipitation at intraseasonal time scales, such as precipitation intensity distribution and dry spells. A drought index and a flooding index were adopted to indicate the severity of drought and flooding conditions, and their interannual variability was reproduced by the RSM. The overall RSM performance in the downscaled climate of the ECHAM4.5 AGCM is satisfactory over Nordeste. The primary deficiency is a systematic dry bias for precipitation simulation.
Orographic control of the Bay of Bengal cold pool rainfall
NASA Astrophysics Data System (ADS)
Arushi, P. V.; Chakraborty, Arindam; Nanjundiah, Ravi S.
2017-12-01
In boreal summer (June-September), most of the Indian land and its surroundings experience rainrates exceeding 6 mm day^{-1} with considerable spatial variability. Over southern Bay of Bengal (BoB) along the east coast of the Indian peninsula (henceforth referred to as the Bay of Bengal cold pool or BoB-CP), the rain intensity is significantly lower (<2 mm day^{-1}) than its surroundings. This low rainfall occurs despite the fact that the sea surface temperature in this region is well above the threshold for convection and the mean vorticity of the boundary layer is cyclonic with a magnitude comparable to that over the central Indian monsoon trough where the rainrate is about 10 mm day^{-1}. It is also noteworthy that the seasonal cycle of convection over the BoB-CP shows a primary peak in November and a secondary peak in May. This is in contrast to the peak in June-July over most of the oceanic locations surrounding the BoB-CP. In this study, we investigate the role of the Western Ghat (WG) mountains in an Atmospheric General Circulation Model (AGCM) to understand this paradox. Decade-long simulations of the AGCM were carried out with varying (from 0 to 2 times the present) heights of the WG. We find that the lee waves generated by the strong westerlies in the lower troposphere in the presence of the WG mountains cause descent over the BoB-CP. Thus, an increase in the height of the WG strengthens the lee waves and reduces rainfall over the BoB-CP. More interestingly in the absence of WG mountains, the BoB-CP shows a rainfall maxima in the boreal summer similar to that over its surrounding oceans. The WG also impacts the climate over the middle and high latitude regions by modifying the upper tropospheric circulation. The results of this study underline the importance of narrow mountains like the WG in the tropics in determining the global climate and possibly calls for a better representation of such mountains in climate models.
Nonrotating Convective Self-Aggregation in a Limited Area AGCM
NASA Astrophysics Data System (ADS)
Arnold, Nathan P.; Putman, William M.
2018-04-01
We present nonrotating simulations with the Goddard Earth Observing System (GEOS) atmospheric general circulation model (AGCM) in a square limited area domain over uniform sea surface temperature. As in previous studies, convection spontaneously aggregates into humid clusters, driven by a combination of radiative and moisture-convective feedbacks. The aggregation is qualitatively independent of resolution, with horizontal grid spacing from 3 to 110 km, with both explicit and parameterized deep convection. A budget for the spatial variance of column moist static energy suggests that longwave radiative and surface flux feedbacks help establish aggregation, while the shortwave feedback contributes to its maintenance. Mechanism-denial experiments confirm that aggregation does not occur without interactive longwave radiation. Ice cloud radiative effects help support the humid convecting regions but are not essential for aggregation, while liquid clouds have a negligible effect. Removing the dependence of parameterized convection on tropospheric humidity reduces the intensity of aggregation but does not prevent the formation of dry regions. In domain sizes less than (5,000 km)2, the aggregation forms a single cluster, while larger domains develop multiple clusters. Larger domains initialized with a single large cluster are unable to maintain them, suggesting an upper size limit. Surface wind speed increases with domain size, implying that maintenance of the boundary layer winds may limit cluster size. As cluster size increases, large boundary layer temperature anomalies develop to maintain the surface pressure gradient, leading to an increase in the depth of parameterized convective heating and an increase in gross moist stability.
Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max
2016-01-01
This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.
NASA Astrophysics Data System (ADS)
Dennis, L.; Roesler, E. L.; Guba, O.; Hillman, B. R.; McChesney, M.
2016-12-01
The Atmospheric Radiation Measurement (ARM) climate research facility has three siteslocated on the North Slope of Alaska (NSA): Barrrow, Oliktok, and Atqasuk. These sites, incombination with one other at Toolik Lake, have the potential to become a "megasite" whichwould combine observational data and high resolution modeling to produce high resolutiondata products for the climate community. Such a data product requires high resolutionmodeling over the area of the megasite. We present three variable resolution atmosphericgeneral circulation model (AGCM) configurations as potential alternatives to stand-alonehigh-resolution regional models. Each configuration is based on a global cubed-sphere gridwith effective resolution of 1 degree, with a refinement in resolution down to 1/8 degree overan area surrounding the ARM megasite. The three grids vary in the size of the refined areawith 13k, 9k, and 7k elements. SquadGen, NCL, and GIMP are used to create the grids.Grids vary based upon the selection of areas of refinement which capture climate andweather processes that may affect a proposed NSA megasite. A smaller area of highresolution may not fully resolve climate and weather processes before they reach the NSA,however grids with smaller areas of refinement have a significantly reduced computationalcost compared with grids with larger areas of refinement. Optimal size and shape of thearea of refinement for a variable resolution model at the NSA is investigated.
Role of Microphysical Parameterizations with Droplet Relative Dispersion in IAP AGCM 4.1
Xie, Xiaoning; Zhang, He; Liu, Xiaodong; ...
2018-01-10
In previous studies we see that accurate descriptions of the cloud droplet effective radius (Re) and the autoconversion process of cloud droplets to raindrops (Au) can effectively improve simulated clouds and surface precipitation, and reduce the uncertainty of aerosol indirect effects in global climate models (GCMs). In this paper, we implement cloud microphysical schemes including two-moment Au and R e considering relative dispersion of the cloud droplet size distribution into version 4.1 of the Institute of Atmospheric Physics atmospheric GCM (IAP AGCM 4.1), which is the atmospheric component of the Chinese Academy of Sciences-Earth System model (CAS-ESM 1.0). An analysismore » of the effects of different schemes shows that the newly implemented schemes can improve both the simulated shortwave (SWCF) and longwave cloud radiative forcings (LWCF) as compared to the standard scheme in IAP AGCM 4.1. The new schemes also effectively enhance the large-scale precipitation, especially over low latitudes, although the influences of total precipitation are insignificant for different schemes. Further studies show that similar results can be found with the Community Atmosphere Model 5.1 (CAM5.1).« less
Role of Microphysical Parameterizations with Droplet Relative Dispersion in IAP AGCM 4.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xiaoning; Zhang, He; Liu, Xiaodong
In previous studies we see that accurate descriptions of the cloud droplet effective radius (Re) and the autoconversion process of cloud droplets to raindrops (Au) can effectively improve simulated clouds and surface precipitation, and reduce the uncertainty of aerosol indirect effects in global climate models (GCMs). In this paper, we implement cloud microphysical schemes including two-moment Au and R e considering relative dispersion of the cloud droplet size distribution into version 4.1 of the Institute of Atmospheric Physics atmospheric GCM (IAP AGCM 4.1), which is the atmospheric component of the Chinese Academy of Sciences-Earth System model (CAS-ESM 1.0). An analysismore » of the effects of different schemes shows that the newly implemented schemes can improve both the simulated shortwave (SWCF) and longwave cloud radiative forcings (LWCF) as compared to the standard scheme in IAP AGCM 4.1. The new schemes also effectively enhance the large-scale precipitation, especially over low latitudes, although the influences of total precipitation are insignificant for different schemes. Further studies show that similar results can be found with the Community Atmosphere Model 5.1 (CAM5.1).« less
Effects of high-frequency activity on latent heat flux of MJO
NASA Astrophysics Data System (ADS)
Gao, Yingxia; Hsu, Pang-Chi; Li, Tim
2018-04-01
The effect of high-frequency (HF) variability on latent heat flux (LHF) associated with the Madden-Julian Oscillation (MJO) during the boreal winter is investigated through diagnosis using two reanalysis datasets and numerical experiments of an atmospheric general circulation model (AGCM). The diagnostic results show that the HF activities exert an impact on the variability of MJO LHF mainly through their interactions with the longer than 90-day low-frequency background state (LFBS). The contribution of intraseasonal LHF induced by the interactions between LFBS and HF activities accounts for more than 20% of the total intraseasonal LHF over active MJO regions. The intraseasonal LHF induced by the LFBS-HF interaction is in phase with the MJO convection, while the total intraseasonal LHF appears at and to the west of the MJO convection center. This suggests that the intraseasonal LHF via the feedback of HF activity interacting with LFBS is conducive to the maintenance and eastward propagation of MJO convection. To confirm the role of HF disturbances in MJO convection activity, we carry out a series of experiments using the AGCM of ECHAM4, which captures well the general features of MJO. We select a number of MJO cases with enhanced convective signals and significant eastward propagation from a 30-year climatological simulation. Once the HF components of surface wind and moisture fields in LHF are excluded in model integration for each MJO case, most of the simulated MJO convection shows weakened activity and a slower propagation speed compared to the simulations containing all time-scale components. The outputs of these sensitivity experiments support the diagnostic results that HF activities contribute to the maintenance and propagation of MJO convection through the intraseasonal LHF induced by the scale interaction of HF activities with lower frequency variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ben; Zhang, Yaocun; Qian, Yun
In this study, we apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM version 2.1 (BCC_AGCM2.1). Our results show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, e.g. increasedmore » precipitation over the equator Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic Meiyu distribution over Eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It shows the simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Niño decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs. over ocean in observation) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean-western Pacific tele-connection as observed. Our model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed.« less
Tinkering With AGCMs To Investigate Atmospheric Behavior
NASA Astrophysics Data System (ADS)
Bitz, C. M.
2014-12-01
My experience teaching a course in global climate modeling has proven that students (and instructors) with wide-ranging backgrounds in earth-science learn effectively about the complexity of climate by tinker with model components. As an example, I will present a series of experiments in an AGCM with highly simplified geometries for ocean and land to test the response of the atmosphere to variations in basic parameters. The figure below shows an example of how the zonal wind changes with surface roughness and orography. The pinnacle of experiments explored in my course was the outcome of a homework assignment where students reduced the cloud droplet radius by 40% over ocean, and the results surprised students and instructor alike.
Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations
NASA Astrophysics Data System (ADS)
Jaiser, Ralf; Nakamura, Tetsu; Handorf, Dörthe; Romanowsky, Erik; Dethloff, Klaus; Ukita, Jinro; Yamazaki, Koji
2017-04-01
In recent years, Arctic regions showcased the most pronounced signals of a changing climate: Sea ice is reduced by more the ten percent per decade. At the same time, global warming trends have their maximum in Arctic latitudes often labled Arctic Amplification. There is strong evidence that amplified Arctic changes feed back into mid-latitudes in winter. We identified mechanisms that link recent Arctic changes through vertically propagating planetary waves to events of a weakened stratospheric polar vortex. Related anomalies propagate downward and lead to negative AO-like situations in the troposphere. European winter climate is sensitive to negative AO situations in terms of cold air outbreaks that are likely to occur more often in that case. These results based on ERA-Interim reanalysis data do not allow to dismiss other potential forcing factors leading to observed mid-latitude climate changes. Nevertheless, properly designed Atmospheric General Circulation Model (AGCM) experiments with AFES and ECHAM6 are able to reproduce observed atmospheric circulation changes if only observed sea ice changes in the Arctic are prescribed. This allows to deduce mechanisms that explain how Arctic Amplification can lead to a negative AO response via a stratospheric pathway. Further investigation of these mechanisms may feed into improved prediction systems.
Tethered Balloon Operations at ARM AMF3 Site at Oliktok Point, AK
NASA Astrophysics Data System (ADS)
Dexheimer, D.; Lucero, D. A.; Helsel, F.; Hardesty, J.; Ivey, M.
2015-12-01
Oliktok Point has been the home of the Atmospheric Radiation Measurement Program's (ARM) third ARM Mobile Facility, or AMF3, since October 2013. The AMF3 is operated through Sandia National Laboratories and hosts instrumentation collecting continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. The Arctic region is warming more quickly than any other region due to climate change and Arctic sea ice is declining to record lows. Sparsity of atmospheric data from the Arctic leads to uncertainty in process comprehension, and atmospheric general circulation models (AGCM) are understood to underestimate low cloud presence in the Arctic. Increased vertical resolution of meteorological properties and cloud measurements will improve process understanding and help AGCMs better characterize Arctic clouds. SNL is developing a tethered balloon system capable of regular operation at AMF3 in order to provide increased vertical resolution atmospheric data. The tethered balloon can be operated within clouds at altitudes up to 7,000' AGL within DOE's R-2204 restricted area. Pressure, relative humidity, temperature, wind speed, and wind direction are recorded at multiple altitudes along the tether. These data were validated against stationary met tower data in Albuquerque, NM. The altitudes of the sensors were determined by GPS and calculated using a line counter and clinometer and compared. Wireless wetness sensors and supercooled liquid water content sensors have also been deployed and their data has been compared with other sensors. This presentation will provide an overview of the balloons, sensors, and test flights flown, and will provide a preliminary look at data from sensor validation campaigns and test flights.
A possible impact of cooling over the Tibetan Plateau on the mid-Holocene East Asian monsoon climate
NASA Astrophysics Data System (ADS)
Jin, Liya; Wang, Huijun; Chen, Fahu; Jiang, Dabang
2006-12-01
By using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics (IAP9L-AGCM) under the Chinese Academy of Sciences, the authors investigated the response of the East Asian monsoon climate to changes both in orbital forcing and the snow and glaciers over the Tibetan Plateau at the mid-Holocene, about 600 calendar years before the present (6 kyr BP). With the Earth’s orbital parameters appropriate for the mid-Holocene, the IAP9L-AGCM computed warmer and wetter conditions in boreal summer than for the present day. Under the precondition of continental snow and glacier cover existing over part of the Tibetan Plateau at the mid-Holocene, the authors examined the regional climate response to the Tibetan Plateau cooling. The simulations indicated that climate changes in South Asia and parts of central Asia as well as in East Asia are sensitive to the Tibetan Plateau cooling at the mid-Holocene, showing a significant decrease in precipitation in northern India, northern China and southern Mongolia and an increase in Southeast Asia during boreal summer. The latter seems to correspond to the weakening, southeastward shift of the Asian summer monsoon system resulting from reduced heat contrast between the Eurasian continent and the Pacific and Indian Oceans when a cooling over the Tibetan Plateau was imposed. The simulation results suggest that the snow and glacier environment over the Tibetan Plateau is an important factor for mid-Holocene climate change in the areas highly influenced by the Asian monsoon.
AGCM hindcasts with SST and other forcings: Responses from global to agricultural scales
NASA Astrophysics Data System (ADS)
Shah, Kathryn Pierce; Rind, David; Druyan, Leonard; Lonergan, Patrick; Chandler, Mark
2000-08-01
Multiple realizations of the 1969-1998 time period have been simulated by the GISS AGCM to explore its responsiveness to accumulated forcings, particularly over sensitive agricultural regions. A microwave radiative transfer postprocessor has produced the AGCM lower tropospheric, tropospheric, and lower stratospheric brightness temperature (Tb) time series for correlations with microwave sounding unit (MSU) time series. AGCM regional surface air temperature and precipitation were also correlated with GISTEMP temperature data and with rain gage data. Seven realizations by the AGCM were forced solely by observed sea surface temperatures. Subsequent runs hindcast January 1969 through April 1998 with an accumulation of forcings: observed sea surface temperatures (SSTs), greenhouse gases, stratospheric volcanic aerosols, stratospheric and tropospheric ozone, and tropospheric sulfate and black carbon aerosols. Lower stratospheric Tb correlations between the AGCM and the MSU for 1979-1998 reached as high as 0.93 globally given SST, greenhouse gases, volcanic aerosol, and stratospheric ozone forcings. Midtropospheric Tb correlations reached as high as 0.66 globally and 0.84 across the equatorial, 20°S-20°N band. Oceanic lower tropospheric Tb correlations were less high at 0.59 globally and 0.79 across the equatorial band. Of the sensitive agricultural areas considered, Nordeste in northeastern Brazil was simulated best with midtropospheric Tb correlations up to 0.80. The two other agricultural regions, in Africa and in the northern midlatitudes, suffered from higher levels of non-SST-induced variability. Zimbabwe had a maximum midtropospheric correlation of 0.54, while the U.S. Corn Belt reached only 0.25. Hindcast surface temperatures and precipitation were also correlated with observations, up to 0.46 and 0.63, respectively, for Nordeste. Correlations between AGCM and observed time series improved with addition of certain atmospheric forcings in zonal bands but not in agricultural regions encompassing only six AGCM grid cells.
Changes in the Asian monsoon climate during 1700-1850 induced by preindustrial cultivation.
Takata, Kumiko; Saito, Kazuyuki; Yasunari, Tetsuzo
2009-06-16
Preindustrial changes in the Asian summer monsoon climate from the 1700s to the 1850s were estimated with an atmospheric general circulation model (AGCM) using historical global land cover/use change data reconstructed for the last 300 years. Extended cultivation resulted in a decrease in monsoon rainfall over the Indian subcontinent and southeastern China and an associated weakening of the Asian summer monsoon circulation. The precipitation decrease in India was marked and was consistent with the observational changes derived from examining the Himalayan ice cores for the concurrent period. Between the 1700s and the 1850s, the anthropogenic increases in greenhouse gases and aerosols were still minor; also, no long-term trends in natural climate variations, such as those caused by the ocean, solar activity, or volcanoes, were reported. Thus, we propose that the land cover/use change was the major source of disturbances to the climate during that period. This report will set forward quantitative examination of the actual impacts of land cover/use changes on Asian monsoons, relative to the impact of greenhouse gases and aerosols, viewed in the context of global warming on the interannual, decadal, and centennial time scales.
Probabilistic Climate Scenario Information for Risk Assessment
NASA Astrophysics Data System (ADS)
Dairaku, K.; Ueno, G.; Takayabu, I.
2014-12-01
Climate information and services for Impacts, Adaptation and Vulnerability (IAV) Assessments are of great concern. In order to develop probabilistic regional climate information that represents the uncertainty in climate scenario experiments in Japan, we compared the physics ensemble experiments using the 60km global atmospheric model of the Meteorological Research Institute (MRI-AGCM) with multi-model ensemble experiments with global atmospheric-ocean coupled models (CMIP3) of SRES A1b scenario experiments. The MRI-AGCM shows relatively good skills particularly in tropics for temperature and geopotential height. Variability in surface air temperature of physical ensemble experiments with MRI-AGCM was within the range of one standard deviation of the CMIP3 model in the Asia region. On the other hand, the variability of precipitation was relatively well represented compared with the variation of the CMIP3 models. Models which show the similar reproducibility in the present climate shows different future climate change. We couldn't find clear relationships between present climate and future climate change in temperature and precipitation. We develop a new method to produce probabilistic information of climate change scenarios by weighting model ensemble experiments based on a regression model (Krishnamurti et al., Science, 1999). The method can be easily applicable to other regions and other physical quantities, and also to downscale to finer-scale dependent on availability of observation dataset. The prototype of probabilistic information in Japan represents the quantified structural uncertainties of multi-model ensemble experiments of climate change scenarios. Acknowledgments: This study was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.
Ekman pumping mechanism driving precipitation anomalies in response to equatorial heating
NASA Astrophysics Data System (ADS)
Hamouda, Mostafa E.; Kucharski, Fred
2018-03-01
In this paper some basic mechanisms for rainfall teleconnections to a localized tropical sea surface temperature anomaly are re-visited using idealized AGCM aqua-planet simulations. The dynamical response is generally in good agreement with the Gill-Matsuno theory. The mechanisms analyzed are (1) the stabilization of the tropical troposphere outside the heating region, (2) the Walker circulation modification and (3) Ekman pumping induced by the low-level circulation responses. It is demonstrated that all three mechanisms, and in particular (2) and (3), contribute to the remote rainfall teleconnections. However, mechanism (3) best coincides with the overall horizontal structure of rainfall responses. It is shown by using the models boundary layer parameterization that low-level vertical velocities are indeed caused by Ekman pumping and that this induces vertical velocities in the whole tropospheric column through convective feedbacks. Also the modification of the responses due to the presence of idealized warm pools is investigated. It is shown that warm pools modify the speed of the tropical waves, consistent with Doppler shifts and are thus able to modify the Walker circulation adjustments and remote rainfall responses. The sensitivity of the responses, and in particular the importance of the Ekman pumping mechanism, to large variations in the drag coefficient is also tested, and it is shown that the Ekman pumping mechanism is robust for a wide range of values.
Modeling the Influences of Aerosols on Pre-Monsoon Circulation and Rainfall over Southeast Asia
NASA Technical Reports Server (NTRS)
Lee, D.; Sud, Y. C.; Oreopoulos, L.; Kim, K.-M.; Lau, W. K.; Kang, I.-S.
2014-01-01
We conduct several sets of simulations with a version of NASA's Goddard Earth Observing System, version 5, (GEOS-5) Atmospheric Global Climate Model (AGCM) equipped with a two-moment cloud microphysical scheme to understand the role of biomass burning aerosol (BBA) emissions in Southeast Asia (SEA) in the pre-monsoon period of February-May. Our experiments are designed so that both direct and indirect aerosol effects can be evaluated. For climatologically prescribed monthly sea surface temperatures, we conduct sets of model integrations with and without biomass burning emissions in the area of peak burning activity, and with direct aerosol radiative effects either active or inactive. Taking appropriate differences between AGCM experiment sets, we find that BBA affects liquid clouds in statistically significantly ways, increasing cloud droplet number concentrations, decreasing droplet effective radii (i.e., a classic aerosol indirect effect), and locally suppressing precipitation due to a deceleration of the autoconversion process, with the latter effect apparently also leading to cloud condensate increases. Geographical re-arrangements of precipitation patterns, with precipitation increases downwind of aerosol sources are also seen, most likely because of advection of weakly precipitating cloud fields. Somewhat unexpectedly, the change in cloud radiative effect (cloud forcing) at surface is in the direction of lesser cooling because of decreases in cloud fraction. Overall, however, because of direct radiative effect contributions, aerosols exert a net negative forcing at both the top of the atmosphere and, perhaps most importantly, the surface, where decreased evaporation triggers feedbacks that further reduce precipitation. Invoking the approximation that direct and indirect aerosol effects are additive, we estimate that the overall precipitation reduction is about 40% due to the direct effects of absorbing aerosols, which stabilize the atmosphere and reduce surface latent heat fluxes via cooler land surface temperatures. Further refinements of our two-moment cloud microphysics scheme are needed for a more complete examination of the role of aerosol-convection interactions in the seasonal development of the SEA monsoon.
Wehner, Michael F.; Bala, G.; Duffy, Phillip; ...
2010-01-01
We present a set of high-resolution global atmospheric general circulation model (AGCM) simulations focusing on the model's ability to represent tropical storms and their statistics. We find that the model produces storms of hurricane strength with realistic dynamical features. We also find that tropical storm statistics are reasonable, both globally and in the north Atlantic, when compared to recent observations. The sensitivity of simulated tropical storm statistics to increases in sea surface temperature (SST) is also investigated, revealing that a credible late 21st century SST increase produced increases in simulated tropical storm numbers and intensities in all ocean basins. Whilemore » this paper supports previous high-resolution model and theoretical findings that the frequency of very intense storms will increase in a warmer climate, it differs notably from previous medium and high-resolution model studies that show a global reduction in total tropical storm frequency. However, we are quick to point out that this particular model finding remains speculative due to a lack of radiative forcing changes in our time-slice experiments as well as a focus on the Northern hemisphere tropical storm seasons.« less
Seasonal Atmospheric and Oceanic Predictions
NASA Technical Reports Server (NTRS)
Roads, John; Rienecker, Michele (Technical Monitor)
2003-01-01
Several projects associated with dynamical, statistical, single column, and ocean models are presented. The projects include: 1) Regional Climate Modeling; 2) Statistical Downscaling; 3) Evaluation of SCM and NSIPP AGCM Results at the ARM Program Sites; and 4) Ocean Forecasts.
Simulation and Prediction of Warm Season Drought in North America
NASA Technical Reports Server (NTRS)
Wang, Hailan; Chang, Yehui; Schubert, Siegfried D.; Koster, Randal D.
2018-01-01
This presentation presents our recent work on model simulation and prediction of warm season drought in North America. The emphasis will be on the contribution from the leading modes of subseasonal atmospheric circulation variability, which are often present in the form of stationary Rossby waves. Here we take advantage of the results from observations, reanalyses, and simulations and reforecasts performed using the NASA Goddard Earth Observing System (GEOS-5) atmospheric and coupled General Circulation Model (GCM). Our results show that stationary Rossby waves play a key role in Northern Hemisphere (NH) atmospheric circulation and surface meteorology variability on subseasonal timescales. In particular, such waves have been crucial to the development of recent short-term warm season heat waves and droughts over North America (e.g. the 1988, 1998, and 2012 summer droughts) and northern Eurasia (e.g., the 2003 summer heat wave over Europe and the 2010 summer drought and heat wave over Russia). Through an investigation of the physical processes by which these waves lead to the development of warm season drought in North America, it is further found that these waves can serve as a potential source of drought predictability. In order to properly represent their effect and exploit this source of predictability, a model needs to correctly simulate the Northern Hemisphere (NH) mean jet streams and be able to predict the sources of these waves. Given the NASA GEOS-5 AGCM deficiency in simulating the NH jet streams and tropical convection during boreal summer, an approach has been developed to artificially remove much of model mean biases, which leads to considerable improvement in model simulation and prediction of stationary Rossby waves and drought development in North America. Our study points to the need to identify key model biases that limit model simulation and prediction of regional climate extremes, and diagnose the origin of these biases so as to inform modeling group for model improvement.
Investigating the Climatic Impacts of Globally Shifted Anthropogenic Emissions
NASA Astrophysics Data System (ADS)
Wang, Y.; Jiang, J. H.; Su, H.
2014-12-01
With a quasi-exponential growth in industrialization since the mid-1990s, Asia has undergone a dramatic increase in anthropogenic emissions of aerosol and precursor gases to the atmosphere. Meanwhile, such emissions have been stabilized or reduced over North America and Europe. This geographical shift of global emission sources could potentially perturb the regional and global climate due to impact of aerosols on cloud properties, precipitation, and large-scale circulation. We use an atmospheric general circulation model (AGCM) with different aerosol scenarios to investigate the radiative and microphysical effects of anthropogenic aerosols on the large-scale circulation and regional climate over the globe. We conduct experiments to simulate the continental shift of aerosol distribution by contrasting two simulations using 1970 and 2010 anthropogenic emission sources. We found the elevation of aerosol concentrations in East and South Asia results in regional surface temperature cooling of -0.10° to -0.17°C, respectively, due to the enhanced solar extinction by aerosols and cloud reflectivity. The reduction of the local aerosol loadings in Europe causes a significant warming of +0.4°C. However, despite recent decreasing in aerosol emission, North America shows a cooling of -0.13°C, likely caused by increasing of cloudiness under the influence of modulated general circulation. These aerosol induced temperature changes are consistent with the observed temperature trends from 1980 to 2013 in the reanalysis data. Our study also predicts weaker East/South Asia summer monsoons due to strong regional aerosol forcing. Moreover, the ascending motion in the northern tropics is found to be weakened by asymmetrical aerosol forcing, resulting in the cross-equatorial shift of Hadley Circulation.
NASA Astrophysics Data System (ADS)
Chao, Y.; Cheng, C. T.; Hsiao, Y. H.; Hsu, C. T.; Yeh, K. C.; Liu, P. L.
2017-12-01
There are 5.3 typhoons hit Taiwan per year on average in last decade. Typhoon Morakot in 2009, the most severe typhoon, causes huge damage in Taiwan, including 677 casualties and roughly NT 110 billion (3.3 billion USD) in economic loss. Some researches documented that typhoon frequency will decrease but increase in intensity in western North Pacific region. It is usually preferred to use high resolution dynamical model to get better projection of extreme events; because coarse resolution models cannot simulate intense extreme events. Under that consideration, dynamical downscaling climate data was chosen to describe typhoon satisfactorily, this research used the simulation data from AGCM of Meteorological Research Institute (MRI-AGCM). Considering dynamical downscaling methods consume massive computing power, and typhoon number is very limited in a single model simulation, using dynamical downscaling data could cause uncertainty in disaster risk assessment. In order to improve the problem, this research used four sea surfaces temperatures (SSTs) to increase the climate change scenarios under RCP 8.5. In this way, MRI-AGCMs project 191 extreme typhoons in Taiwan (when typhoon center touches 300 km sea area of Taiwan) in late 21th century. SOBEK, a two dimensions flood simulation model, was used to assess the flood risk under four SSTs climate change scenarios in Tainan, Taiwan. The results show the uncertainty of future flood risk assessment is significantly decreased in Tainan, Taiwan in late 21th century. Four SSTs could efficiently improve the problems of limited typhoon numbers in single model simulation.
Variance and Predictability of Precipitation at Seasonal-to-Interannual Timescales
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Suarez, Max J.; Heiser, Mark
1999-01-01
A series of atmospheric general circulation model (AGCM) simulations, spanning a total of several thousand years, is used to assess the impact of land-surface and ocean boundary conditions on the seasonal-to-interannual variability and predictability of precipitation in a coupled modeling system. In the first half of the analysis, which focuses on precipitation variance, we show that the contributions of ocean, atmosphere, and land processes to this variance can be characterized, to first order, with a simple linear model. This allows a clean separation of the contributions, from which we find: (1) land and ocean processes have essentially different domains of influence, i.e., the amplification of precipitation variance by land-atmosphere feedback is most important outside of the regions (mainly in the tropics) that are most affected by sea surface temperatures; and (2) the strength of land-atmosphere feedback in a given region is largely controlled by the relative availability of energy and water there. In the second half of the analysis, the potential for seasonal-to-interannual predictability of precipitation is quantified under the assumption that all relevant surface boundary conditions (in the ocean and on land) are known perfectly into the future. We find that the chaotic nature of the atmospheric circulation imposes fundamental limits on predictability in many extratropical regions. Associated with this result is an indication that soil moisture initialization or assimilation in a seasonal-to-interannual forecasting system would be beneficial mainly in transition zones between dry and humid regions.
NASA Astrophysics Data System (ADS)
Kawase, H.; Sasaki, H.; Murata, A.; Nosaka, M.; Ito, R.; Dairaku, K.; Sasai, T.; Yamazaki, T.; Sugimoto, S.; Watanabe, S.; Fujita, M.; Kawazoe, S.; Okada, Y.; Ishii, M.; Mizuta, R.; Takayabu, I.
2017-12-01
We performed large ensemble climate experiments to investigate future changes in extreme weather events using Meteorological Research Institute-Atmospheric General Circulation Model (MRI-AGCM) with about 60 km grid spacing and Non-Hydrostatic Regional Climate Model with 20 km grid spacing (NHRCM20). The global climate simulations are prescribed by the past and future sea surface temperature (SST). Two future climate simulations are conducted so that the global-mean surface air temperature rise 2 K and 4 K from the pre-industrial period. The non-warming simulations are also conducted by MRI-AGCM and NHRCM20. We focus on the future changes in snowfall in Japan. In winter, the Sea of Japan coast experiences heavy snowfall due to East Asian winter monsoon. The cold and dry air from the continent obtains abundant moisture from the warm Sea of Japan, causing enormous amount of snowfall especially in the mountainous area. The NHRCM20 showed winter total snowfall decreases in the most parts of Japan. In contrast, extremely heavy daily snowfall could increase at mountainous areas in the Central Japan and Northern parts of Japan when strong cold air outbreak occurs and the convergence zone appears over the Sea of Japan. The warmer Sea of Japan in the future climate could supply more moisture than that in the present climate, indicating that the cumulus convections could be enhanced around the convergence zone in the Sea of Japan. However, the horizontal resolution of 20 km is not enough to resolve Japan`s complex topography. Therefore, dynamical downscaling with 5 km grid spacing (NHRCM05) is also conducted using NHRCM20. The NHRCM05 does a better job simulating the regional boundary of snowfall and shows more detailed changes in future snowfall characteristics. The future changes in total and extremely heavy snowfall depend on the regions, elevations, and synoptic conditions around Japan.
NASA Astrophysics Data System (ADS)
Lui, Yuk Sing; Tam, Chi-Yung; Lau, Ngar-Cheung
2018-04-01
This study examines the impacts of climate change on precipitation extremes in the Asian monsoon region during boreal summer, based on simulations from the 20-km Meteorological Research Institute atmospheric general circulation model. The model can capture the summertime monsoon rainfall, with characteristics similar to those from Tropical Rainfall Measuring Mission and Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation. By comparing the 2075-2099 with the present-day climate simulations, there is a robust increase of the mean rainfall in many locations due to a warmer climate. Over southeastern China, the Baiu rainband, Bay of Bengal and central India, extreme precipitation rates are also enhanced in the future, which can be inferred from increases of the 95th percentile of daily precipitation, the maximum accumulated precipitation in 5 consecutive days, the simple daily precipitation intensity index, and the scale parameter of the fitted gamma distribution. In these regions, with the exception of the Baiu rainband, most of these metrics give a fractional change of extreme rainfall per degree increase of the lower-tropospheric temperature of 5 to 8.5% K-1, roughly consistent with the Clausius-Clapeyron relation. However, over the Baiu area extreme precipitation change scales as 3.5% K-1 only. We have also stratified the rainfall data into those associated with tropical cyclones (TC) and those with other weather systems. The AGCM gives an increase of the accumulated TC rainfall over southeastern China, and a decrease in southern Japan in the future climate. The latter can be attributed to suppressed TC occurrence in southern Japan, whereas increased accumulated rainfall over southeastern China is due to more intense TC rain rate under global warming. Overall, non-TC weather systems are the main contributor to enhanced precipitation extremes in various locations. In the future, TC activities over southeastern China tend to further exacerbate the precipitation extremes, whereas those in the Baiu region lead to weaker changes of these extremes.
Predictability of the 1997 and 1998 South Asian Summer Monsoons
NASA Technical Reports Server (NTRS)
Schubert, Siegfred D.; Wu, Man Li
2000-01-01
The predictability of the 1997 and 1998 south Asian summer monsoon winds is examined from an ensemble of 10 Atmospheric General Circulation Model (AGCM) simulations with prescribed sea surface temperatures (SSTs) and soil moisture, The simulations are started in September 1996 so that they have lost all memory of the atmospheric initial conditions for the periods of interest. The model simulations show that the 1998 monsoon is considerably more predictable than the 1997 monsoon. During May and June of 1998 the predictability of the low-level wind anomalies is largely associated with a local response to anomalously warm Indian Ocean SSTs. Predictability increases late in the season (July and August) as a result of the strengthening of the anomalous Walker circulation and the associated development of easterly low level wind anomalies that extend westward across India and the Arabian Sea. During these months the model is also the most skillful with the observations showing a similar late-season westward extension of the easterly CD wind anomalies. The model shows little predictability or skill in the low level winds over southeast Asia during, 1997. Predictable wind anomalies do occur over the western Indian Ocean and Indonesia, however, over the Indian Ocean they are a response to SST anomalies that were wind driven and they show no skill. The reduced predictability in the low level winds during 1997 appears to be the result of a weaker (compared with 1998) simulated anomalous Walker circulation, while the reduced skill is associated with pronounced intraseasonal activity that is not well captured by the model. Remarkably, the model does produce an ensemble mean Madden-Julian Oscillation (MJO) response that is approximately in phase with (though weaker than) the observed MJ0 anomalies. This is consistent with the idea that SST coupling may play an important role in the MJO.
Zhang, Ning; Liu, Yangang; Gao, Zhiqiu; ...
2015-04-27
The critical bulk Richardson number (Ri cr) is an important parameter in planetary boundary layer (PBL) parameterization schemes used in many climate models. This paper examines the sensitivity of a Global Climate Model, the Beijing Climate Center Atmospheric General Circulation Model, BCC_AGCM to Ri cr. The results show that the simulated global average of PBL height increases nearly linearly with Ri cr, with a change of about 114 m for a change of 0.5 in Ri cr. The surface sensible (latent) heat flux decreases (increases) as Ri cr increases. The influence of Ri cr on surface air temperature and specificmore » humidity is not significant. The increasing Ri cr may affect the location of the Westerly Belt in the Southern Hemisphere. Further diagnosis reveals that changes in Ri cr affect stratiform and convective precipitations differently. Increasing Ri cr leads to an increase in the stratiform precipitation but a decrease in the convective precipitation. Significant changes of convective precipitation occur over the inter-tropical convergence zone, while changes of stratiform precipitation mostly appear over arid land such as North Africa and Middle East.« less
Role of meteorology in simulating methane seasonal cycle and growth rate
NASA Astrophysics Data System (ADS)
Ghosh, A.; Patra, P. K.; Ishijima, K.; Morimoto, S.; Aoki, S.; Nakazawa, T.
2012-12-01
Methane (CH4) is the second most important anthropogenically produced greenhouse gas whose radiative effect is comparable to that of carbon dioxide since the preindustrial time. Methane also contributes to formation of tropospheric ozone and water vapor in the stratosphere, further increasing its importance to the Earth's radiative balance. In the present study, model simulation of CH4 for three different emission scenarios has been conducted using the CCSR/NIES/FRCGC Atmospheric General Circulation Model (AGCM) based Chemistry Transport Model (ACTM) with and without nudging of meteorological parameters for the period of 1981-2011. The model simulations are compared with measurements at monthly timescale at surface monitoring stations. We show the overall trends in CH4 growth rate and seasonal cycle at most measurement sites can be fairly successfully modeled by using existing knowledge of CH4 flux trends and seasonality. Detailed analysis reveals the model simulation without nudging has greater seasonal cycle amplitude compared to observation as well as the model simulation with nudging. The growth rate is slightly overestimated for the model simulation without nudging. For better representation of regional/global flux distribution pattern and strength in the future, we are exploring various dynamical and chemical aspects in the forward model with and without nudging.
NASA Astrophysics Data System (ADS)
Schiemann, Reinhard; Roberts, Charles J.; Bush, Stephanie; Demory, Marie-Estelle; Strachan, Jane; Vidale, Pier Luigi; Mizielinski, Matthew S.; Roberts, Malcolm J.
2015-04-01
Precipitation over land exhibits a high degree of variability due to the complex interaction of the precipitation generating atmospheric processes with coastlines, the heterogeneous land surface, and orography. Global general circulation models (GCMs) have traditionally had very limited ability to capture this variability on the mesoscale (here ~50-500 km) due to their low resolution. This has changed with recent investments in resolution and ensembles of multidecadal climate simulations of atmospheric GCMs (AGCMs) with ~25 km grid spacing are becoming increasingly available. Here, we evaluate the mesoscale precipitation distribution in one such set of simulations obtained in the UPSCALE (UK on PrACE - weather-resolving Simulations of Climate for globAL Environmental risk) modelling campaign with the HadGEM-GA3 AGCM. Increased model resolution also poses new challenges to the observational datasets used to evaluate models. Global gridded data products such as those provided by the Global Precipitation Climatology Project (GPCP) are invaluable for assessing large-scale features of the precipitation distribution but may not sufficiently resolve mesoscale structures. In the absence of independent estimates, the intercomparison of different observational datasets may be the only way to get some insight into the uncertainties associated with these observations. Here, we focus on mid-latitude continental regions where observations based on higher-density gauge networks are available in addition to the global data sets: Europe/the Alps, South and East Asia, and the continental US. The ability of GCMs to represent mesoscale variability is of interest in its own right, as climate information on this scale is required by impact studies. An additional motivation for the research proposed here arises from continuing efforts to quantify the components of the global radiation budget and water cycle. Recent estimates based on radiation measurements suggest that the global mean precipitation/evaporation may be up to 10 Wm-2 (about 0.35 mm day-1) larger than the estimate obtained from GPCP. While the main part of this discrepancy is thought to be due to the underestimation of remotely-sensed ocean precipitation, there is also considerable uncertainty about 'unobserved' precipitation over land, in particular in the form of snow in regions of high latitude/altitude. We aim to contribute to this discussion, at least at a qualitative level, by considering case studies of how area-averaged mountain precipitation is represented in different observational datasets and by HadGEM3-GA3 at different resolutions. Our results show that the AGCM simulates considerably more orographic precipitation at higher resolution. We find this at the global scale both for the winter and summer hemispheres, as well as in several case studies in mid-latitude regions. Gridded observations based on gauge measurements generally capture the mesoscale spatial variability of precipitation, but differ strongly from one another in the magnitude of area-averaged precipitation, so that they are of very limited use for evaluating this aspect of the modelled climate. We are currently conducting a sensitivity experiment (coarse-grained orography in high-resolution HadGEM3) to further investigate the resolution sensitivity seen in the model.
The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35° AGCM
NASA Astrophysics Data System (ADS)
Johnson, Stephanie J.; Levine, Richard C.; Turner, Andrew G.; Martin, Gill M.; Woolnough, Steven J.; Schiemann, Reinhard; Mizielinski, Matthew S.; Roberts, Malcolm J.; Vidale, Pier Luigi; Demory, Marie-Estelle; Strachan, Jane
2016-02-01
The South Asian monsoon is one of the most significant manifestations of the seasonal cycle. It directly impacts nearly one third of the world's population and also has substantial global influence. Using 27-year integrations of a high-resolution atmospheric general circulation model (Met Office Unified Model), we study changes in South Asian monsoon precipitation and circulation when horizontal resolution is increased from approximately 200-40 km at the equator (N96-N512, 1.9°-0.35°). The high resolution, integration length and ensemble size of the dataset make this the most extensive dataset used to evaluate the resolution sensitivity of the South Asian monsoon to date. We find a consistent pattern of JJAS precipitation and circulation changes as resolution increases, which include a slight increase in precipitation over peninsular India, changes in Indian and Indochinese orographic rain bands, increasing wind speeds in the Somali Jet, increasing precipitation over the Maritime Continent islands and decreasing precipitation over the northern Maritime Continent seas. To diagnose which resolution-related processes cause these changes, we compare them to published sensitivity experiments that change regional orography and coastlines. Our analysis indicates that improved resolution of the East African Highlands results in the improved representation of the Somali Jet and further suggests that improved resolution of orography over Indochina and the Maritime Continent results in more precipitation over the Maritime Continent islands at the expense of reduced precipitation further north. We also evaluate the resolution sensitivity of monsoon depressions and lows, which contribute more precipitation over northeast India at higher resolution. We conclude that while increasing resolution at these scales does not solve the many monsoon biases that exist in GCMs, it has a number of small, beneficial impacts.
What is in the flask? Going beyond inventories
NASA Astrophysics Data System (ADS)
Andres, R. J.; Patra, P. K.; Piper, S.
2010-12-01
Compiling accurate inventories is tough work. Spatial, temporal, and altitudinal constraints all impact inventory accuracy and utility. However, while there is considerable challenge in creating inventories, the creation process needs to be mindful of inventory utilization. No inventory is perfect for all needs, yet inventories can be constructed to meet many needs. This presentation focuses on the use of a global, monthly, fossil-fuel carbon dioxide inventory. This inventory serves as one input into an atmospheric general circulation model (AGCM) based chemistry-transport model (ACTM). The inquiry centers on if fossil fuel emissions significantly impact the seasonal cycle of measured atmospheric carbon dioxide concentrations. Model results will be compared to Scripps Institution of Oceanography (SIO) flask and continuous analyzer data. Primary metrics to be used in the comparison are slope and correlation analyses. Slope analysis will help assess the degree to which model results agree with SIO data. Correlation analysis will help assess the degree to which the various model components (i.e., fossil fuels, terrestrial biosphere, oceans) contribute to the overall seasonal cycle. The importance of this example is that it couples inventory creation with inventory utilization. This demonstration of a new inventory data set shows the utility of carefully crafted inventory data sets to the broader community.
NASA Astrophysics Data System (ADS)
DeConto, R. M.; MacConnell, A.; Leckie, R.
2001-05-01
During the middle to late Miocene, the northward drift of Australia and New Guinea progressively restricted Indonesian throughflow (ITF). Today, ITF plays an important role in modulating inter-basin fresh water flux, heat transport, and the volume of the Western Pacific Warm Pool (WPWP). Today's WPWP is a center for deep convection that contributes considerable diabatic heating to the tropical atmosphere, affecting both the Walker and Hadley circulation. The WPWP fuels the East Asian Monsoon with moisture and latent heat and is an important component of ENSO. As the Indonesian Seaway became restricted, India was impinging on Asia. Asian continentality was increased and Himalayan/Tibetan uplift begun affecting zonal atmospheric flow and land-surface albedo. In order to better understand the climate system's response to changing Miocene paleogeography (horizontal and vertical tectonics), we have begun a series of climate model experiments using atmosphere, ocean, and coupled atmosphere-ocean general circulation models (GCMs). The GCM experiments are designed to isolate the possible response to effective Indonesian gateway closure within the framework of evolving Miocene Paleogeography between 11 and 7 Ma. In the first phase of our modeling study, an AGCM was used to test the sensitivity of tropical Indo-Pacific and Asian climate (including monsoonal intensity) to the presence of a WPWP in a pre and post Himalayan/Tibetan Plateau world. The results of the GCM simulations will be discussed in the context of the hypotheses that 1) a proto-WPWP became established as the Indonesian Seaway became increasingly restricted during the late middle to late Miocene; and 2) the growth of the WPWP had a first order affect on tropical Pacific climate and the East Asian monsoon.
Spin-up simulation behaviors in a climate model to build a basement of long-time simulation
NASA Astrophysics Data System (ADS)
Lee, J.; Xue, Y.; De Sales, F.
2015-12-01
It is essential to develop start-up information when conducting long-time climate simulation. In case that the initial condition is already available from the previous simulation of same type model this does not necessary; however, if not, model needs spin-up simulation to have adjusted and balanced initial condition with the model climatology. Otherwise, a severe spin may take several years. Some of model variables such as deep soil temperature fields and temperature in ocean deep layers in initial fields would affect model's further long-time simulation due to their long residual memories. To investigate the important factor for spin-up simulation in producing an atmospheric initial condition, we had conducted two different spin-up simulations when no atmospheric condition is available from exist datasets. One simulation employed atmospheric global circulation model (AGCM), namely Global Forecast System (GFS) of National Center for Environmental Prediction (NCEP), while the other employed atmosphere-ocean coupled global circulation model (CGCM), namely Climate Forecast System (CFS) of NCEP. Both models share the atmospheric modeling part and only difference is in applying of ocean model coupling, which is conducted by Modular Ocean Model version 4 (MOM4) of Geophysical Fluid Dynamics Laboratory (GFDL) in CFS. During a decade of spin-up simulation, prescribed sea-surface temperature (SST) fields of target year is forced to the GFS daily basis, while CFS digested only first time step ocean condition and freely iterated for the rest of the period. Both models were forced by CO2 condition and solar constant given from the target year. Our analyses of spin-up simulation results indicate that freely conducted interaction between the ocean and the atmosphere is more helpful to produce the initial condition for the target year rather than produced by fixed SST forcing. Since the GFS used prescribed forcing exactly given from the target year, this result is unexpected. The detail analysis will be discussed in this presentation.
NASA Astrophysics Data System (ADS)
Wu, G. X.; Liu, Y.; Bao, Q.; Chen, X.; Li, J.
2017-12-01
One of the mid-term progresses of the NSFC- Key Research Program "Land-air Coupling over the Tibetan Plateau and Its Climate Impact " is presented. The elevated heating in summer and cooling in winter of the Tibetan Plateau significantly regulate the seasonal change of the atmospheric circulation and exert remarkable impacts on world climate. Recent studies have demonstrated that the majority of the Phase-5 Coupled Model Inter-comparison Project (CMIP5) models underestimate annual and seasonal mean surface air temperatures (Ta) over the Tibetan Plateau (TP). In addition, more than half of the models underestimate annual and seasonal mean surface temperatures (Ts) over the TP. These cold biases are larger over the western TP. By decomposing the Ts bias using the surface energy budget equation, it was demonstrated that this TP's cold bias can be attributed to various factors, in which the stronger bias in surface albedo (a-) and the weaker bias in clear-sky downward Longwave radiation (DLR) play the most significant roles. Since a- and DLR are respectively affected by snow coverage fraction at the ground surface and water vapor content in the atmosphere, these results then imply that the cold bias over the TP is caused by too large snow coverage fraction and too less water vapor content over the TP in the models. The FAMIL AGCM model developed at LASG also suffers from the similar cold bias over the TP. By introducing the 3D- Radiative Transfer Parameterization Over Mountains/Snow (Liou, 2013) into the model, the total solar radiation reaching the ground surface is increased during the daytime, resulting in more snowmelt and less snow coverage. Accordingly, surface albedo is decreased on the sunny side of the mountains, and the surface cold bias over mountain areas is decreased. It is shown that the improvement is sensitive to the model resolution: increased the horizontal resolution of Community Land Model version 4.0 (CLM 4.0) from nearly 200km (1.9o×2.5o) to about 25km (0.23o×0.31o) can significantly improve the parameterization effect and accuracy, with more notably improvement appearing in Spring. It is demonstrated that, by stimulating a Rossby wave and strengthen the precipitation in subtropical frontal zone of East Asia, the decrement of clod bias over the TP can greatly improve the climate simulations of the model.
High Resolution Nature Runs and the Big Data Challenge
NASA Technical Reports Server (NTRS)
Webster, W. Phillip; Duffy, Daniel Q.
2015-01-01
NASA's Global Modeling and Assimilation Office at Goddard Space Flight Center is undertaking a series of very computationally intensive Nature Runs and a downscaled reanalysis. The nature runs use the GEOS-5 as an Atmospheric General Circulation Model (AGCM) while the reanalysis uses the GEOS-5 in Data Assimilation mode. This paper will present computational challenges from three runs, two of which are AGCM and one is downscaled reanalysis using the full DAS. The nature runs will be completed at two surface grid resolutions, 7 and 3 kilometers and 72 vertical levels. The 7 km run spanned 2 years (2005-2006) and produced 4 PB of data while the 3 km run will span one year and generate 4 BP of data. The downscaled reanalysis (MERRA-II Modern-Era Reanalysis for Research and Applications) will cover 15 years and generate 1 PB of data. Our efforts to address the big data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS), a specialization of the concept of business process-as-a-service that is an evolving extension of IaaS, PaaS, and SaaS enabled by cloud computing. In this presentation, we will describe two projects that demonstrate this shift. MERRA Analytic Services (MERRA/AS) is an example of cloud-enabled CAaaS. MERRA/AS enables MapReduce analytics over MERRA reanalysis data collection by bringing together the high-performance computing, scalable data management, and a domain-specific climate data services API. NASA's High-Performance Science Cloud (HPSC) is an example of the type of compute-storage fabric required to support CAaaS. The HPSC comprises a high speed Infinib and network, high performance file systems and object storage, and a virtual system environments specific for data intensive, science applications. These technologies are providing a new tier in the data and analytic services stack that helps connect earthbound, enterprise-level data and computational resources to new customers and new mobility-driven applications and modes of work. In our experience, CAaaS lowers the barriers and risk to organizational change, fosters innovation and experimentation, and provides the agility required to meet our customers' increasing and changing needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Xinyu; Liu, Zhengyu; Chen, Zhongxiao
Water isotopes in precipitation have played a key role in the reconstruction of past climate on millennial timescales and longer. But, for midlatitude regions like East Asia with complex terrain, the reliability behind the basic assumptions of the temperature effect and amount effect is based on modern observational data and still remains unclear for past climate. In the present work, we reexamine the two basic effects on seasonal, interannual, and millennial timescales in a set of time slice experiments for the period 22–0 ka using an isotope-enabled atmospheric general circulation model (AGCM). Our study confirms the robustness of the temperaturemore » and amount effects on the seasonal cycle over China in the present climatic conditions, with the temperature effect dominating in northern China and the amount effect dominating in the far south of China but no distinct effect in the transition region of central China. However, our analysis shows that neither temperature nor amount effect is significantly dominant over China on millennial and interannual timescales, which is a challenge to those classic assumptions in past climate reconstruction. This work helps shed light on the interpretation of the proxy record of δ 18O from a modeling point of view.« less
Wen, Xinyu; Liu, Zhengyu; Chen, Zhongxiao; ...
2016-11-06
Water isotopes in precipitation have played a key role in the reconstruction of past climate on millennial timescales and longer. But, for midlatitude regions like East Asia with complex terrain, the reliability behind the basic assumptions of the temperature effect and amount effect is based on modern observational data and still remains unclear for past climate. In the present work, we reexamine the two basic effects on seasonal, interannual, and millennial timescales in a set of time slice experiments for the period 22–0 ka using an isotope-enabled atmospheric general circulation model (AGCM). Our study confirms the robustness of the temperaturemore » and amount effects on the seasonal cycle over China in the present climatic conditions, with the temperature effect dominating in northern China and the amount effect dominating in the far south of China but no distinct effect in the transition region of central China. However, our analysis shows that neither temperature nor amount effect is significantly dominant over China on millennial and interannual timescales, which is a challenge to those classic assumptions in past climate reconstruction. This work helps shed light on the interpretation of the proxy record of δ 18O from a modeling point of view.« less
NASA Astrophysics Data System (ADS)
Sohl, L.
2014-04-01
The Neoproterozoic "Snowball Earth" glaciations ( 750-635 Ma) have been a special focus for outer habitable zone investigations, owing in large part to a captivating and controversial hypothesis suggesting that Earth may have only narrowly escaped a runaway icehouse state on multiple occasions (a.k.a. "the hard snowball"; Hoffman and Schrag 2001). A review of climate simulations exploring snowball inception (Godderis et al. 2011) reveals that a broad range of models (EBMs, EMICs and AGCMs) tend to yield hard snowball solutions, whereas models with greater 3-D dynamic response capabilities (AOGCMs) typically do not, unless some of their climate feedback responses (e.g., wind-driven ocean circulation, cloud forcings) are disabled (Poulsen and Jacobs 2004). This finding raises the likelihood that models incorporating dynamic climate feedbacks are essential to understanding how much flexibility there may be in the definition of a planet's habitable zone boundaries for a given point in its history. In the first of a series of new Snowball Earth simulations, we use the NASA/GISS ModelE2 Global Climate Model - a 3-D coupled atmosphere/ocean model with dynamic sea ice response - to explore the impacts of wind-driven ocean circulation, clouds and deep ocean circulation on the sea ice front when solar luminosity and atmospheric carbon dioxide are reduced to Neoproterozoic levels (solar = 94%, CO2 = 40 ppmv). The simulation includes a realistic Neoproterozoic land mass distribution, which is concentrated at mid- to tropical latitudes. After 300 years, the sea ice front is established near 30 degrees latitude, and after 600 years it remains stable. As with earlier coupled model simulations we conclude that runaway glacial states would have been difficult to achieve during the Neoproterozoic, and would be more likely to have occurred during earlier times in Earth history when solar luminosity was less. Inclusion of dynamic climate feedback capabilities in habitable zone modeling studies is likely to result in an expansion of our view of what a "Goldilocks" state can entail. Future simulations with a modified version of the NASA/GISS GCM, ROCKE-3D, will take advantage of newly-added model capabilities that evaluate the influence of rotation rate, solar spectral variability, CO2 surface condensation and CO2 clouds on the outer edge of Earth's habitable zone.
Response of the Asian summer monsoon to changes in El Niño properties
NASA Astrophysics Data System (ADS)
Annamalai, H.; Liu, P.
2005-04-01
Diagnostics from observed precipitation and National Centers for Environmental Prediction-National Center for Atmospheric Research re-analysis products reveal that after the 1976-77 climate shift in the Pacific there was a dramatic change in the response of the Indian summer monsoon (ISM) to El Niño, particularly during the months of July and August. Based on 1950-75 (PRE76) and 1977-2001 (POST76) El Niño composites: the western North Pacific monsoon (WNPM) was stronger than normal in both periods; the ISM was weaker than normal during the entire monsoon season in PRE76, but in POST76 was weaker only during the onset and withdrawal phases. In terms of observed sea surface temperature (SST) during July-August, the major differences between the two periods are the presence of cold SST anomalies over the Indo-Pacific warm pool and the intensity of warm SST anomalies in the central Pacific in POST76. The effect of these differences on the ISM is investigated in a suite of experiments with an Atmospheric General Circulation Model (AGCM) that has a realistic monsoon precipitation climatology.Separate ten-member ensemble simulations with the AGCM were conducted for PRE76 and POST76 El Niño events with SST anomalies inserted as follows: (i) tropical Indo-Pacific (TIP), (ii) tropical Pacific only (TPO), and (iii) tropical Indian Ocean only (TIO). Qualitatively, TPO solutions reproduce the observed differences in the monsoon response in both periods. Specifically, during July-August of POST76 the cold SST anomalies in conjunction with remote subsidence suppress precipitation (3-5 mm day-1) over the maritime continent and equatorial central Indian Ocean. Inclusion of Indian Ocean SST anomalies in the TIP runs further suppresses precipitation over the entire equatorial Indian Ocean. The low-level anticyclonic circulation anomalies that develop as a Rossby-wave response to these convective anomalies increase the south-westerlies over the northern Indian Ocean, and favour a stronger ISM and WNPM. During PRE76 the non-occurrence of cold SST anomalies over the Indo-Pacific warm pool reinforces El Niño's suppression on the ISM.In contrast, TIO solutions show a reduced ISM during July-August of POST76; the solutions, however, show a significant effect on the WNPM during both PRE76 and POST76 periods. It is argued that SSTs over the entire tropical Indo-Pacific region need to be considered to understand the El Niño Southern Oscillation-monsoon linkage, and to make predictions of rainfall over India and the western North Pacific.
Mapping Heat-related Risks for Community-based Adaptation Planning under Uncertainty
NASA Astrophysics Data System (ADS)
Bai, Yingjiu; Kaneko, Ikuyo; Kobayashi, Hikaru; Kurihara, Kazuo; Sasaki, Hidetaka; Murata, Akihiko; Takayabu, Izuru
2016-04-01
Climate change is leading to more frequent and intense heat waves. Recently, epidemiologic findings on heat-related health impacts have reinforced our understanding of the mortality impacts of extreme heat. This research has several aims: 1) to promote climate prediction services with spatial and temporal information on heat-related risks, using GIS (Geographical Information System), and digital mapping techniques; 2) to propose a visualization approach to articulating the evolution of local heat-health responses over time and the evaluation of new interventions for the implementation of valid community-based adaptation strategies and reliable actionable planning; and 3) to provide an appropriate and simple method of adjusting bias and quantifying the uncertainty in future outcomes, so that regional climate projections may be transcribed into useful forms for a wide variety of different users. Following the 2003 European heat wave, climatologists, medical specialists, and social scientists expedited efforts to revise and integrate risk governance frameworks for communities to take appropriate and effective actions themselves. Recently, the Coupled Model Intercomparison Project (CMIP) methodology has made projections possible for anyone wanting to openly access state-of-the-art climate model outputs and climate data to provide the backbone for decisions. Furthermore, the latest high-solution regional climate model (RCM) has been a huge increase in the volumes of data available. In this study, we used high-quality hourly projections (5-km resolution) from the Non-Hydrostatic Regional Climate Model (NHRCM-5km), following the SRES-A1B scenario developed by the Meteorological Research Institute (MRI) and observational data from the Automated Meteorological Data Acquisition System, Japan Meteorological Agency (JMA). The NHRCM-5km is a dynamic downscaling of results from the MRI-AGCM3.2S (20-km resolution), an atmospheric general circulation model (AGCM) driven by the ensemble of mean sea surface temperatures derived from the CMIP3 coupled GCMs. This contribution demonstrates how composite heat-related risk maps with a visualization of combined predicted population and the 5-km resolution climate projections, can be used in community-based adaptation planning in Japan. To test this approach, Tokyo (area 2190.9 km2; population 13.50 million as of 1 December 2015), a Japanese megacity, was chosen for a pilot study. Our challenges will be facilitated by the formation of research partnerships involving epidemiologists, climate scientists, and local stakeholders. Hopefully, the methodology could be transferred to developing countries to aid in planning heat adaptation.
Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system.
Akella, Santha; Todling, Ricardo; Suarez, Max
2017-01-01
The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts.
Assimilation for Skin SST in the NASA GEOS Atmospheric Data Assimilation System
NASA Technical Reports Server (NTRS)
Akella, Santha; Todling, Ricardo; Suarez, Max
2017-01-01
The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modelling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near-surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extend beyond the thermal infrared bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld insitu buoy measurement of near-surface SST. Evaluation of forecast skill scores show neutral to marginal benefit from the modified Ts.
NASA Astrophysics Data System (ADS)
Wei, Wei; Li, Wenhong; Deng, Yi; Yang, Song; Jiang, Jonathan H.; Huang, Lei; Liu, W. Timothy
2018-04-01
This study investigates dynamical and thermodynamical coupling between the North Atlantic subtropical high (NASH), marine boundary layer (MBL) clouds, and the local sea surface temperatures (SSTs) over the North Atlantic in boreal summer for 1984-2009 using NCEP/DOE Reanalysis 2 dataset, various cloud data, and the Hadley Centre sea surface temperature. On interannual timescales, the summer mean subtropical MBL clouds to the southeast of the NASH is actively coupled with the NASH and local SSTs: a stronger (weaker) NASH is often accompanied with an increase (a decrease) of MBL clouds and abnormally cooler (warmer) SSTs along the southeast flank of the NASH. To understand the physical processes between the NASH and the MBL clouds, the authors conduct a data diagnostic analysis and implement a numerical modeling investigation using an idealized anomalous atmospheric general circulation model (AGCM). Results suggest that significant northeasterly anomalies in the southeast flank of the NASH associated with an intensified NASH tend to induce stronger cold advection and coastal upwelling in the MBL cloud region, reducing the boundary surface temperature. Meanwhile, warm advection associated with the easterly anomalies from the African continent leads to warming over the MBL cloud region at 700 hPa. Such warming and the surface cooling increase the atmospheric static stability, favoring growth of the MBL clouds. The anomalous diabatic cooling associated with the growth of the MBL clouds dynamically excites an anomalous anticyclone to its north and contributes to strengthening of the NASH circulation in its southeast flank. The dynamical and thermodynamical couplings and their associated variations in the NASH, MBL clouds, and SSTs constitute an important aspect of the summer climate variability over the North Atlantic.
Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change
NASA Technical Reports Server (NTRS)
1997-01-01
This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the Goddard Institute for Space Studies (GISS) 8 deg x lO deg atmospheric General Circulation Model (GCM) to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.
NASA Astrophysics Data System (ADS)
Frederiksen, Carsten; Grainger, Simon; Zheng, Xiaogu; Sisson, Janice
2013-04-01
ENSO variability is an important driver of the Southern Hemisphere (SH) atmospheric circulation. Understanding the observed and projected changes in ENSO variability is therefore important to understanding changes in Australian surface climate. Using a recently developed methodology (Zheng et al., 2009), the coherent patterns, or modes, of ENSO-related variability in the SH atmospheric circulation can be separated from modes that are related to intraseasonal variability or to changes in radiative forcings. Under this methodology, the seasonal mean SH 500 hPa geopotential height is considered to consist of three components. These are: (1) an intraseasonal component related to internal dynamics on intraseasonal time scales; (2) a slow-internal component related to internal dynamics on slowly varying (interannual or longer) time scales, including ENSO; and (3) a slow-external component related to external (i.e. radiative) forcings. Empirical Orthogonal Functions (EOFs) are used to represent the modes of variability of the interannual covariance of the three components. An assessment is first made of the modes in models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) dataset for the SH summer and winter seasons in the 20th century. In reanalysis data, two EOFs of the slow component (which includes the slow-internal and slow-external components) have been found to be related to ENSO variability (Frederiksen and Zheng, 2007). In SH summer, the CMIP5 models reproduce the leading ENSO mode very well when the structures of the EOF and the associated SST, and associated variance are considered. There is substantial improvement in this mode when compared with the CMIP3 models shown in Grainger et al. (2012). However, the second ENSO mode in SH summer has a poorly reproduced EOF structure in the CMIP5 models, and the associated variance is generally underestimated. In SH winter, the performance of the CMIP5 models in reproducing the structure and variance is similar for both ENSO modes, with the associated variance being generally underestimated. Projected changes in the modes in the 21st century are then investigated using ensembles of CMIP5 models that reproduce well the 20th century slow modes. The slow-internal and slow-external components are examined separately, allowing the projected changes in the response to ENSO variability to be separated from the response to changes in greenhouse gas concentrations. By using several ensembles, the model-dependency of the projected changes in the ENSO-related slow-internal modes is examined. Frederiksen, C. S., and X. Zheng, 2007: Variability of seasonal-mean fields arising from intraseasonal variability. Part 3: Application to SH winter and summer circulations. Climate Dyn., 28, 849-866. Grainger, S., C. S. Frederiksen, and X. Zheng, 2012: Modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP3 models: Assessment and Projections. Climate Dyn., in press. Zheng, X., D. M. Straus, C. S. Frederiksen, and S. Grainger, 2009: Potentially predictable patterns of extratropical tropospheric circulation in an ensemble of climate simulations with the COLA AGCM. Quart. J. Roy. Meteor. Soc., 135, 1816-1829.
CATS Near Real Time Data Products: Applications for Assimilation Into the NASA GEOS-5 AGCM
NASA Technical Reports Server (NTRS)
Hlavka, D. L.; Nowottnick, E. P.; Yorks, J. E.; Da Silva, A.; McGill, M. J.; Palm, S. P.; Selmer, P. A.; Pauly, R. M.; Ozog, S.
2017-01-01
From February 2015 through October 2017, the NASA Cloud-Aerosol Transport System (CATS) backscatter lidar operated on the International Space Station (ISS) as a technology demonstration for future Earth Science Missions, providing vertical measurements of cloud and aerosols properties. Owing to its location on the ISS, a cornerstone technology demonstration of CATS was the capability to acquire, process, and disseminate near-real time (NRT) data within 6 hours of observation time. CATS NRT data has several applications, including providing notification of hazardous events for air traffic control and air quality advisories, field campaign flight planning, as well as for constraining cloud and aerosol distributions in via data assimilation in aerosol transport models. Â Recent developments in aerosol data assimilation techniques have permitted the assimilation of aerosol optical thickness (AOT), a 2-dimensional column integrated quantity that is reflective of the simulated aerosol loading in aerosol transport models. While this capability has greatly improved simulated AOT forecasts, the vertical position, a key control on aerosol transport, is often not impacted when 2-D AOT is assimilated. Here, we present preliminary efforts to assimilate CATS aerosol observations into the NASA Goddard Earth Observing System version 5 (GEOS-5) atmospheric general circulation model and assimilation system using a 1-D Variational (1-D VAR) ensemble approach, demonstrating the utility of CATS for future Earth Science Missions.
New Approaches to Quantifying Transport Model Error in Atmospheric CO2 Simulations
NASA Technical Reports Server (NTRS)
Ott, L.; Pawson, S.; Zhu, Z.; Nielsen, J. E.; Collatz, G. J.; Gregg, W. W.
2012-01-01
In recent years, much progress has been made in observing CO2 distributions from space. However, the use of these observations to infer source/sink distributions in inversion studies continues to be complicated by difficulty in quantifying atmospheric transport model errors. We will present results from several different experiments designed to quantify different aspects of transport error using the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM). In the first set of experiments, an ensemble of simulations is constructed using perturbations to parameters in the model s moist physics and turbulence parameterizations that control sub-grid scale transport of trace gases. Analysis of the ensemble spread and scales of temporal and spatial variability among the simulations allows insight into how parameterized, small-scale transport processes influence simulated CO2 distributions. In the second set of experiments, atmospheric tracers representing model error are constructed using observation minus analysis statistics from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA). The goal of these simulations is to understand how errors in large scale dynamics are distributed, and how they propagate in space and time, affecting trace gas distributions. These simulations will also be compared to results from NASA's Carbon Monitoring System Flux Pilot Project that quantified the impact of uncertainty in satellite constrained CO2 flux estimates on atmospheric mixing ratios to assess the major factors governing uncertainty in global and regional trace gas distributions.
NASA Technical Reports Server (NTRS)
Wang, Hailan; Schubert, Siegfried D.
2013-01-01
The dominant pattern of annual mean SST variability in the Pacific (in its cold phase) produces pronounced precipitation deficits over the continental United States (U.S.) throughout the annual cycle. This study investigates the physical and dynamical processes through which the cold Pacific pattern affects the U.S. precipitation, particularly the causes for the peak dry impacts in fall, as well as the nature of the differences between the summer and fall responses. Results, based on observations and reanalyses, show that the peak precipitation deficit over the U.S. during fall is primarily due to reduced atmospheric moisture transport from the Gulf of Mexico into the central and eastern U.S., and secondarily due to a reduction in local evaporation from land-atmosphere feedback. The former is associated with a strong and systematic low-level northeasterly flow anomaly over the southeastern U.S. that counteracts the northwest branch of the climatological flow associated with the north Atlantic subtropical high. The above northeasterly anomaly is maintained by both diabatic heating anomalies in the nearby Intra-American Seas and diabatic cooling anomalies in the tropical Pacific. In contrast, the modest summertime precipitation deficit over the U.S. is mainly the result of local land-atmosphere feedback; the rather weak and disorganized atmospheric circulation anomalies over and to the south of the U.S. make little contribution. An evaluation of NSIPP-1 AGCM simulations shows it to be deficient in simulating the warm season tropical convection responses over the Intra-American Seas to the cold Pacific pattern and thereby the precipitation responses over the U.S., a problem that appears to be common to many AGCMs.
NASA Astrophysics Data System (ADS)
Braga, Ana Cláudia F. Medeiros; Silva, Richarde Marques da; Santos, Celso Augusto Guimarães; Galvão, Carlos de Oliveira; Nobre, Paulo
2013-08-01
The coastal zone of northeastern Brazil is characterized by intense human activities and by large settlements and also experiences high soil losses that can contribute to environmental damage. Therefore, it is necessary to build an integrated modeling-forecasting system for rainfall-runoff erosion that assesses plans for water availability and sediment yield that can be conceived and implemented. In this work, we present an evaluation of an integrated modeling system for a basin located in this region with a relatively low predictability of seasonal rainfall and a small area (600 km2). The National Center for Environmental Predictions - NCEP’s Regional Spectral Model (RSM) nested within the Center for Weather Forecasting and Climate Studies - CPTEC’s Atmospheric General Circulation Model (AGCM) were investigated in this study, and both are addressed in the simulation work. The rainfall analysis shows that: (1) the dynamic downscaling carried out by the regional RSM model approximates the frequency distribution of the daily observed data set although errors were detected in the magnitude and timing (anticipation of peaks, for example) at the daily scale, (2) an unbiased precipitation forecast seemed to be essential for use of the results in hydrological models, and (3) the information directly extracted from the global model may also be useful. The simulated runoff and reservoir-stored volumes are strongly linked to rainfall, and their estimation accuracy was significantly improved at the monthly scale, thus rendering the results useful for management purposes. The runoff-erosion forecasting displayed a large sediment yield that was consistent with the predicted rainfall.
NASA Astrophysics Data System (ADS)
Wegmann, Martin; Broennimann, Stefan
2014-05-01
During the last two decades, the Arctic was put into the scientific focus as one of the most impacted regions worldwide concerning anthropogenic global warming. However, the warming between 1920 and 1940 proofs the importance of internal variability on yearly and decadal scale. Therefore, it is important to further investigate the role of external and internal forcings on the Arctic climate attribute process and causes leading to changes in the Arctic climate regime (Serreze & Barry 2009). Although much research effort was spent to understand the links and influences of and on the Arctic climate, there is still a need for further insights concerning this topic. Especially the results and discussion about anthropogenic global warming and Arctic amplification put the Arctic into the public and academic focus (Serreze & Barry 2011). However, the early 20th century Arctic warming, although discovered immediately, was scientifically forgotten until recently (Delworth & Knutson 2000, Bengtsson et al 2004, Grant et al 2009, Bekryaev et al 2010). The comparison of this earlier Arctic warming and the recent warming period grants a chance to deepen knowledge about the drivers of Arctic climate and can be used to evaluate the anthropogenic impact. The authors use the Twentieth Century Reanalysis (20CR) dataset and a nudged, reanalysis-driven Aerosol Global Circulation Model (A-GCM) to investigate the impact of atmospheric energy and aerosol fluxes into the Arctic during the 20th century. The 20CR dataset covers the period of 1871 - 2010 with a temporal resolution of 6hr and a spatial resolution of 2° x 2°. For the first time, this dataset (and ist 56 ensemble member) is used to compute the atmospheric energy flux, consisting of sensble heat, latent heat, potential energy and kinetic energy. The values are integrated around 70° N and between 1000 - 100 hPa. Aerosol fluxes for the same domain but for the years 1957 - 2000 are calculated based on the A-GCM nudged to the ECMWF 40 year Re-analysis (ERA) and correlated to circulation patterns. Based on these dataset we analyze timeseries and patterns of several variables, with a focus on the temperature changes in the Arctic domain. We show that the 20CR can recreate recent sensible heat fluxes, meaning from the 1950s onward. Before this timeperiod 20CR exhibits a strong positive energy influx between 1920 and 1930, which is difficult to validate, however probably arises due to missrepresentation of local wind maxima, mostly over the Canadian Arctic. The authors highlight the impact of this flaw by investigating snow cover and atmospheric stability over the Arctic. Finally, the two datasets are compared and exemplary extreme events in aerosol fluxes are analysed in terms of warming impact and the related circulation patterns. Possible implications for the future use of 20CR are discussed, together with the impact of our findings for the interpretation of the early 20th warming in todays context.
Vertical Motion Changes Related to North-East Brazil Rainfall Variability: a GCM Simulation
NASA Astrophysics Data System (ADS)
Roucou, Pascal; Oribe Rocha de Aragão, José; Harzallah, Ali; Fontaine, Bernard; Janicot, Serge
1996-08-01
The atmospheric structure over north-east Brazil during anomalous rainfall years is studied in the 11 levels of the outputs of the Laboratoire de Météorologie Dynamique atmospheric general circulation model (LMD AGCM). Seven 19-year simulations were performed using observed sea-surface temperature (SST) corresponding to the period 1970- 1988. The ensemble mean is calculated for each month of the period, leading to an ensemble-averaged simulation. The simulated March-April rainfall is in good agreement with observations. Correlations of simulated rainfall and three SST indices relative to the equatorial Pacific and northern and southern parts of the Atlantic Ocean exhibit stronger relationships in the simulation than in the observations. This is particularly true with the SST gradient in the Atlantic (Atlantic dipole). Analyses on 200 ;hPa velocity potential, vertical velocity, and vertical integral of the zonal component of mass flux are performed for years of abnormal rainfall and positive/negative SST anomalies in the Pacific and Atlantic oceans in March-April during the rainy season over the Nordeste region. The results at 200 hPa show a convergence anomaly over Nordeste and a divergence anomaly over the Pacific concomitant with dry seasons associated with warm SST anomalies in the Pacific and warm (cold) waters in the North (South) Atlantic. During drought years convection inside the ITCZ indicated by the vertical velocity exhibits a displacement of the convection zone corresponding to a northward migration of the ITCZ. The east-west circulation depicted by the zonal divergent mass flux shows subsiding motion over Nordeste and ascending motion over the Pacific in drought years, accompanied by warm waters in the eastern Pacific and warm/cold waters in northern/southern Atlantic. Rainfall variability of the Nordeste rainfall is linked mainly to vertical motion and SST variability through the migration of the ITCZ and the east-west circulation.
Models and the paleo record of biome responses to glacial climate and CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prentice; Colin, I.; Haxeltine
1995-06-01
Continental-scale reconstructions of the distribution of biomes at the last glacial maximum (LGM) indicate big changes, which can primarily be explained by climate. The climate was different from today mainly because of a combination of low concentrations of CO{sub 2} and other greenhouse gases and the presence of large continental ice sheets. Atmospheric general circulation model (AGCM) simulations, driven by these factors and linked to simple biome models in {open_quotes}diagnostic{close_quotes} mode, account for the broad outlines of the changes in vegetation patterns, including encroachment of C4 grasslands and savannas on what are now tropical forests. Physiological effects of low CO{submore » 2} might also have played a role by altering the partitioning of precipitation to evapotranspiration and runoff, and altering the competitive balance of C3 and C4 plants. Such effects have not been quantified until recently, with the development of integrated biome/biochemistry models like those used in the VEMAP project. In these models, vegetation composition affects the coupled C and H{sub 2}O fluxes, which in turn influence the competitive balance of the constituent plant types. The relative importance of climatic and physiological effects of CO{sub 2} on biome distributions is a key issue for the future. This is gives added impetus to research that aims to exploit the potential of palaeo, data, through global data synthesis projects like BIOME 6000, to provide objective benchmarks against which to test models of the biosphere and climate.« less
Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system
Akella, Santha; Todling, Ricardo; Suarez, Max
2018-01-01
The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts. PMID:29628531
NASA Astrophysics Data System (ADS)
Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.
2002-12-01
The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).
CATS Near Real Time Data Products: Applications for Assimilation into the NASA GEOS-5 AGCM
NASA Astrophysics Data System (ADS)
Nowottnick, E. P.; Hlavka, D. L.; Yorks, J. E.; da Silva, A. M., Jr.; McGill, M. J.; Palm, S. P.; Selmer, P. A.; Pauly, R.; Ozog, S.
2017-12-01
Since February 2015, the NASA Cloud-Aerosol Transport System (CATS) backscatter lidar has been operating on the International Space Station (ISS) as a technology demonstration for future Earth Science Missions, providing vertical measurements of cloud and aerosols properties. Owing to its location on the ISS, a cornerstone technology demonstration of CATS is the capability to acquire, process, and disseminate near-real time (NRT) data within 6 hours of observation time. Here, we present CATS NRT data products and outline improved CATS algorithms used to discriminate clouds from aerosols, and subsequently identify cloud and aerosol type. CATS NRT data has several applications, including providing notification of hazardous events for air traffic control and air quality advisories, field campaign flight planning, as well as for constraining cloud and aerosol distributions in via data assimilation in aerosol transport models. Recent developments in aerosol data assimilation techniques have permitted the assimilation of aerosol optical thickness (AOT), a 2-dimensional column integrated quantity that is reflective of the simulated aerosol loading in aerosol transport models. While this capability has greatly improved simulated AOT forecasts, the vertical position, a key control on aerosol transport, is often not impacted when 2-D AOT is assimilated. Here, we also present preliminary efforts to assimilate CATS observations into the NASA Goddard Earth Observing System version 5 (GEOS-5) atmospheric general circulation model and assimilation system using a 1-D Variational (1-D VAR) approach, demonstrating the utility of CATS for future Earth Science Missions.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Wang, Hailan; Koster, Randal; Weaver, Scott; Gutzler, David; Dai, Aiguo; Delworth, Tom; Deser, Clara; Findell, Kristen; Fu, Rong;
2009-01-01
The USCLI VAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include: What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCM5), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This paper provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models.
Causes of Long-Term Drought in the United States Great Plains
NASA Technical Reports Server (NTRS)
Schubert, Siegfried D.; Suarez, Max J.; Pegion, Philip J.; Koster, Randal D.; Bacmeister, Julio T.
2003-01-01
This study examines the causes of long term droughts in the United States Great Plains (USGP). The focus is on the relative roles of slowly varying SSTs and interactions with soil moisture. The results from ensembles of long term (1930-1999) simulations carried out with the NASA Seasonal-to- Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) show that the SSTs account for about 1/3 of the total low frequency rainfall variance in the USGP. Results from idealized experiments with climatological SST suggest that the remaining low frequency variance in the USGP precipitation is the result of interactions with soil moisture. In particular, simulations with soil moisture feedback show a five-fold increase in the variance in annual USGP precipitation compared with simulations in which the soil feedback is excluded. In addition to increasing variance, the interactions with the soil introduce year-to-year memory in the hydrological cycle that is consistent with a red noise process, in which the deep soil is forced by white noise and damped with a time scale of about 2 years. As such, the role of low frequency SST variability is to introduce a bias to the net forcing on the soil moisture that drives the random process preferentially to either wet or dry conditions.
Roberts, H.M.; Muhs, D.R.; Wintle, A.G.; Duller, G.A.T.; Bettis, E. Arthur
2003-01-01
A high-resolution chronology for Peoria (last glacial period) Loess from three sites in Nebraska, midcontinental North America, is determined by applying optically stimulated luminescence (OSL) dating to 35-50 ??m quartz. At Bignell Hill, Nebraska, an OSL age of 25,000 yr near the contact of Peoria Loess with the underlying Gilman Canyon Formation shows that dust accumulation occurred early during the last glacial maximum (LGM), whereas at Devil's Den and Eustis, Nebraska, basal OSL ages are significantly younger (18,000 and 21,000 yr, respectively). At all three localities, dust accumulation ended at some time after 14,000 yr ago. Mass accumulation rates (MARs) for western Nebraska, calculated using the OSL ages, are extremely high from 18,000 to 14,000 yr-much higher than those calculated for any other pre-Holocene location worldwide. These unprecedented MARs coincide with the timing of a mismatch between paleoenvironmental evidence from central North America, and the paleoclimate simulations from atmospheric global circulation models (AGCMs). We infer that the high atmospheric dust loading implied by these MARs may have played an important role, through radiative forcing, in maintaining a colder-than-present climate over central North America for several thousand years after summer insolation exceeded present-day values. ?? 2003 Elsevier Science (USA). All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Hui; Sriver, Ryan L.
2018-01-01
High-resolution Atmosphere General Circulation Models (AGCMs) are capable of directly simulating realistic tropical cyclone (TC) statistics, providing a promising approach for TC-climate studies. Active air-sea coupling in a coupled model framework is essential to capturing TC-ocean interactions, which can influence TC-climate connections on interannual to decadal time scales. Here we investigate how the choices of ocean coupling can affect the directly simulated TCs using high-resolution configurations of the Community Earth System Model (CESM). We performed a suite of high-resolution, multidecadal, global-scale CESM simulations in which the atmosphere (˜0.25° grid spacing) is configured with three different levels of ocean coupling: prescribed climatological sea surface temperature (SST) (ATM), mixed layer ocean (SLAB), and dynamic ocean (CPL). We find that different levels of ocean coupling can influence simulated TC frequency, geographical distributions, and storm intensity. ATM simulates more storms and higher overall storm intensity than the coupled simulations. It also simulates higher TC track density over the eastern Pacific and the North Atlantic, while TC tracks are relatively sparse within CPL and SLAB for these regions. Storm intensification and the maximum wind speed are sensitive to the representations of local surface flux feedbacks in different coupling configurations. Key differences in storm number and distribution can be attributed to variations in the modeled large-scale climate mean state and variability that arise from the combined effect of intrinsic model biases and air-sea interactions. Results help to improve our understanding about the representation of TCs in high-resolution coupled Earth system models, with important implications for TC-climate applications.
Evaluating cloudiness in an AGCM with Cloud Vertical Structure classes and their radiative effects
NASA Astrophysics Data System (ADS)
Lee, D.; Cho, N.; Oreopoulos, L.; Barahona, D.
2017-12-01
Clouds are recognized not only as the main modulator of Earth's Radiation Budget but also as the atmospheric constituent carrying the largest uncertainty in future climate projections. The presentation will showcase a new framework for evaluating clouds and their radiative effects in Atmospheric Global Climate Models (AGCMs) using Cloud Vertical Structure (CVS) classes. We take advantage of a new CVS reference dataset recently created from CloudSat's 2B-CLDCLASS-LIDAR product and which assigns observed cloud vertical configurations to nine simplified CVS classes based on cloud co-occurrence in three standard atmospheric layers. These CVS classes can also be emulated in GEOS-5 using the subcolumn cloud generator currently paired with the RRTMG radiation package as an implementation of the McICA scheme. Comparisons between the observed and modeled climatologies of the frequency of occurrence of the various CVS classes provide a new vantage point for assessing the realism of GEOS-5 clouds. Furthermore, a comparison between observed and modeled cloud radiative effects according to their CVS is also possible thanks to the availability of CloudSat's 2B-FLXHR-LIDAR product and our ability to composite radiative fluxes by CVS class - both in the observed and modeled realm. This latter effort enables an investigation of whether the contribution of the various CVS classes to the Earth's radiation budget is represented realistically in GEOS-5. Making this new pathway of cloud evaluation available to the community is a major step towards the improved representation of clouds in climate models.
Understanding climate variability and global climate change using high-resolution GCM simulations
NASA Astrophysics Data System (ADS)
Feng, Xuelei
In this study, three climate processes are examined using long-term simulations from multiple climate models with increasing horizontal resolutions. These simulations include the European Center for Medium-range Weather Forecasts (ECMWF) atmospheric general circulation model (AGCM) runs forced with observed sea surface temperatures (SST) (the Athena runs) and a set of coupled ocean-atmosphere seasonal hindcasts (the Minerva runs). Both sets of runs use different AGCM resolutions, the highest at 16 km. A pair of the Community Climate System Model (CCSM) simulations with ocean general circulation model (OGCM) resolutions at 100 and 10 km are also examined. The higher resolution CCSM run fully resolves oceanic mesoscale eddies. The resolution influence on the precipitation climatology over the Gulf Stream (GS) region is first investigated. In the Athena simulations, the resolution increase generates enhanced mean GS precipitation moderately in both large-scale and sub-scale rainfalls in the North Atlantic, with the latter more tightly confined near the oceanic front. However, the non-eddy resolving OGCM in the Minerva runs simulates a weaker oceanic front and weakens the mean GS precipitation response. On the other hand, an increase in CCSM oceanic resolutions from non-eddy-resolving to eddy resolving regimes greatly improves the model's GS precipitation climatology, resulting in both stronger intensity and more realistic structure. Further analyses show that the improvement of the GS precipitation climatology due to resolution increases is caused by the enhanced atmospheric response to an increased SST gradient near the oceanic front, which leads to stronger surface convergence and upper level divergence. Another focus of this study is on the global warming impacts on precipitation characteristic changes using the high-resolution Athena simulations under the SST forcing from the observations and a global warming scenario. As a comparison, results from the coarse resolution simulation are also analyzed to examine the dependence on resolution. The increasing rates of globally averaged precipitation amount for the high and low resolution simulations are 1.7%/K-1 and 1.8%/K-1, respectively. The sensitivities for heavy, moderate, light and drizzle rain are 6.8, -1.2, 0.0, 0.2%/K-1 for low and 6.3, -1.5, 0.4, -0.2%/K -1 for high resolution simulations. The number of rainy days decreases in a warming scenario, by 3.4 and 4.2 day/year-1, respectively. The most sensitive response of 6.3-6.8%/K-1 for the heavy rain approaches that of the 7%/K-1 for the Clausius-Clapeyron scaling limit. During the twenty-first century simulation, the increases in precipitation are larger over high latitude and wet regions in low and mid-latitudes. Over the dry regions, such as the subtropics, the precipitation amount and frequency decrease. There is a higher occurrence of low and heavy rain from the tropics to mid-latitudes at the expense of the decreases in the frequency of moderate rain. In the third part, the inter-annual variability of the northern hemisphere storm tracks is examined. In the Athena simulations, the leading modes of the observed storm track variability are reproduced realistically by all runs. In general, the fluctuations of the model storm tracks in the North Pacific and Atlantic basins are largely independent of each other. Within each basin, the variations are characterized by the intensity change near the climatological center and the meridional shift of the storm track location. These two modes are associated with major teleconnection patterns of the low frequency atmospheric variations. These model results are not sensitive to resolution. Using the Minerva hindcast initialized in November, it is shown that a portion of the winter (December-January) storm track variability is predictable, mainly due to the influences of the atmospheric wave trains induced by the El Nino and Southern Oscillation.
Study of the global and regional climatic impacts of ENSO magnitude using SPEEDY AGCM
NASA Astrophysics Data System (ADS)
Dogar, Muhammad Mubashar; Kucharski, Fred; Azharuddin, Syed
2017-03-01
ENSO is considered as a strong atmospheric teleconnection that has pronounced global and regional circulation effects. It modifies global monsoon system, especially, Asian and African monsoons. Previous studies suggest that both the frequency and magnitude of ENSO events have increased over the last few decades resulting in a need to study climatic impacts of ENSO magnitude both at global and regional scales. Hence, to better understand the impact of ENSO amplitude over the tropical and extratropical regions focussing on the Asian and African domains, ENSO sensitivity experiments are conducted using ICTPAGCM (`SPEEDY'). It is anticipated that the tropical Pacific SST forcing will be enough to produce ENSO-induced teleconnection patterns; therefore, the model is forced using NINO3.4 regressed SST anomalies over the tropical Pacific only. SPEEDY reproduces the impact of ENSO over the Pacific, North and South America and African regions very well. However, it underestimates ENSO teleconnection patterns and associated changes over South Asia, particularly in the Indian region, which suggests that the tropical Pacific SST forcing is not sufficient to represent ENSO-induced teleconnection patterns over South Asia. Therefore, SST forcing over the tropical Indian Ocean together with air-sea coupling is also required for better representation of ENSO-induced changes in these regions. Moreover, results obtained by this pacemaker experiment show that ENSO impacts are relatively stronger over the Inter-Tropical Convergence Zone (ITCZ) compared to extratropics and high latitude regions. The positive phase of ENSO causes weakening in rainfall activity over African tropical rain belt, parts of South and Southeast Asia, whereas, the La Niña phase produces more rain over these regions during the summer season. Model results further reveal that ENSO magnitude has a stronger impact over African Sahel and South Asia, especially over the Indian region because of its significant impact over the tropical Atlantic and the Indian Ocean through Walker circulation. ENSO-induced negative (positive) NAO-like response and associated changes over Southern Europe and North Africa get significantly strong following increased intensity of El Niño (La Niña) in the northern (southern) hemisphere in the boreal winter (summer) season. We further find that ENSO magnitude significantly impacts Hadley and Walker circulations. The positive phase of ENSO (El Niño) overall strengthens Hadley cell and a reverse is true for the La Niña phase. ENSO-induced strengthening and weakening of Hadley cell induces significant impact over South Asian and African ITCZ convective regions through modification of ITCZ/monsoon circulation system.
Causes of Long-Term Drought in the United States Great Plains
NASA Technical Reports Server (NTRS)
Schubert, Siegfried D.; Suarez, Max J.; Pegion, Philip J.; Koster, Randal
2002-01-01
The United States Great Plains (USGP) experienced a number of multi-year droughts during the last century, most notably the droughts of the 1930s and 1950s. This study examines the causes of such droughts using ensembles of long term (1930-1999) simulations carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTs). The results show that the model produces long-term (multi-year) variations in the USGP precipitation that are similar to those observed. A correlative analysis suggests that the ensemble mean low frequency (time scales longer than about 6 years) rainfall variations in the USGP are linked to a pan-Pacific pattern of SST variability that is the leading empirical orthogonal function (EOF) in the low frequency SST data. The link between the SST and the Great Plains precipitation is confirmed in idealized AGCM simulations, in which the model is forced by the 2 polarities of the pan-Pacific SST pattern. The idealized simulations further show that it is primarily the tropical part of the SST anomalies that influence the USGP. As such, the USGP tend to have above normal precipitation when the tropical Pacific SSTs are above normal, while there is a tendency for drought when the tropical SSTs are cold. The upper tropospheric response to the pan-Pacific SST EOF shows a global-scale pattern with a strong wave response in the Pacific and a substantial zonally-symmetric component in which USGP pluvial (drought) conditions are associated with reduced (enhanced) heights throughout the extra-tropics. The potential predictability of rainfall in the USGP associated with SSTs is rather modest, with on average about 1/3 of the total low frequency rainfall variance forced by SST anomalies. Further idealized experiments with climatological SST, suggest that the remaining low frequency variance in the USGP precipitation is the result of interactions with soil moisture. In particular, simulations with soil moisture feedback show a six-fold increase in the variance in annual USGP precipitation compared with simulations in which the soil feedback is excluded. In addition to increasing variance, the interactions with the soil introduce year-to-year memory in the hydrological cycle that is consistent with a red noise process, in which the low frequencies in the deep soil are the result of integrating a net forcing (precipitation-evaporation-runoff) that is white noise on interannual time scales. As such, the role of low frequency SST variability is to introduce a bias to the net forcing on the soil moisture that drives the random process preferentially to either wet or dry conditions.
NASA Astrophysics Data System (ADS)
Okajima, S.; Nakamura, H.; Nishii, K.; Miyasaka, T.; Kuwano-Yoshida, A.; Taguchi, B.
2016-02-01
A decadal-scale warm SST anomaly observed in the North Pacific subarctic frontal zone (SAFZ) tends to accompany a basin-scale anticyclonic anomaly in the troposphere that peaks in January. A set of sensitivity experiments conducted with an AGCM simulates an anticyclonic ensemble response over the North Pacific in January. As observed, the simulated anticyclonic response is in equivalent barotropic structure and maintained mainly through energy conversion from the ensemble mean circulation realized under the climatological SST, suggesting that the anomaly may have a characteristic of a dynamical mode. Conversion of both available potential energy (APE) and kinetic energy (KE) from the mean flow is important for the observed anomaly, while only the former is important for the model response. This is because the model response is located to the north of the jet core region whereas the observed anomaly is straddling the jet exit region, which appears to be in correspondence to the northwestward displacement of the center of the dominant atmospheric internal variability in our model relative to the observed center. Transient eddy feedback forcing also acts to maintain the observed anomaly rather efficiently, while its efficiency is much lower for the simulated response, which seems to be consistent with the poleward displacement of the anticyclonic response from the jet and stormtrack axes. A multi-decadal integration of our coupled GCM also suggests that atmospheric internal variability may be important for determining atmospheric response to the decadal SST variability of the SAFZ.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2009-01-01
The USCLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include, What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCMs), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This talk provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models. It is hoped that these early results will serve to stimulate further analysis of these simulations, as well as suggest new research on the physical mechanisms contributing to hydroclimatic variability and change throughout the world.
The North Atlantic Oscillation and the ITCZ in a climate simulation
NASA Astrophysics Data System (ADS)
Cavalcanti, I. F. A.; Souza, P.
2009-04-01
The North Atlantic Oscillation (NAO) and the Atlantic Intertropical Convergence Zone (ITCZ) features are analyzed in a climate simulation with the CPTEC/COLA AGCM. The CPTEC/COLA AGCM reproduces the ITCZ seasonal north-south displacement as well as the seasonal east-west intensity, but the model overestimates the convection. The two phases of NAO are well simulated in the four seasons and also the largest intensity in DJF. The main mode of atmospheric variability considering the North and South Atlantic region, which displays a shifting of the NAO centers and a center of action over South Atlantic to the south of Africa is also reproduced. This mode, in DJF, is associated with the north-south ITCZ displacement in April, in the observed data. The displacement of the NAO centers southwestward allows the increase of pressure over the tropical North Atlantic Ocean and the increase of trade winds and displacement of the confluence and convergence zone southwards. The opposite occurs when the centers are displaced northeastward. The model Atlantic ITCZ position in April is associated with the anomalous (observed) Atlantic SST and the southward displacement of the confluence zone, but the simulated atmospheric features in DJF does not display the main mode of variability, as in the observations. This occurs due to the lack of interaction between the atmosphere and ocean in the atmospheric model. While in the observations the physical mechanism that links the NAO centers of action to the ITCZ position is the ocean-atmosphere interaction, from DJF to April, the atmospheric model responds to the prescribed SST at the same month, in April.
NASA Technical Reports Server (NTRS)
Ose, Tomoaki; Mechoso, Carlos; Halpern, David
1994-01-01
Simulations with the UCLA atmospheric general circulation model (AGCM) using two different global sea surface temperature (SST) datasets for January 1979 are compared. One of these datasets is based on Comprehensive Ocean-Atmosphere Data Set (COADS) (SSTs) at locations where there are ship reports, and climatology elsewhere; the other is derived from measurements by instruments onboard NOAA satellites. In the former dataset (COADS SST), data are concentrated along shipping routes in the Northern Hemisphere; in the latter dataset High Resolution Infrared Sounder (HIRS SST), data cover the global domain. Ensembles of five 30-day mean fields are obtained from integrations performed in the perpetual-January mode. The results are presented as anomalies, that is, departures of each ensemble mean from that produced in a control simulation with climatological SSTs. Large differences are found between the anomalies obtained using COADS and HIRS SSTs, even in the Northern Hemisphere where the datasets are most similar to each other. The internal variability of the circulation in the control simulation and the simulated atmospheric response to anomalous forcings appear to be linked in that the pattern of geopotential height anomalies obtained using COADS SSTs resembles the first empirical orthogonal function (EOF 1) in the control simulation. The corresponding pattern obtained using HIRS SSTs is substantially different and somewhat resembles EOF 2 in the sector from central North America to central Asia. To gain insight into the reasons for these results, three additional simulations are carried out with SST anomalies confined to regions where COADS SSTs are substantially warmer than HIRS SSTs. The regions correspond to warm pools in the northwest and northeast Pacific, and the northwest Atlantic. These warm pools tend to produce positive geopotential height anomalies in the northeastern part of the corresponding oceans. Both warm pools in the Pacific produce large-scale circulation anomalies with a pattern that resembles that obtained using COADS SSTs as well as EOF 1 of the control simulation; the warm pool in the Atlantic does not. These results suggest that the differences obtained with COADS SSTs and HIRS SSTs are mostly due to the differences in the datasets over the northern Pacific. There was a blocking episode near Greenland in late January 1979. Both simulations with warm SST anomalies over the northwest and northeast Pacific show a tendency toward increased incidence of North Atlantic blocking; the simulation with warm SST anomalies over the northwest Atlantic shows a tendency toward decreased incidence. These results suggest that features in both SST datasets that do not have a counterpart in the other dataset contribute signficantly to the differences between the simulated and observed fields. The results of this study imply that uncertainties in current SST distributions for the world oceans can be as important as the SST anomalies themselves in terms of their impact on the atmospheric circulation. Caution should be exercised, therefore, when linking anomalous circulation and SST patterns, especially in long-range prediction.
Future changes in atmospheric condition for the baiu under RCP scenarios
NASA Astrophysics Data System (ADS)
Okada, Y.; Takemi, T.; Ishikawa, H.
2015-12-01
This study focuses on atmospheric circulation fields during the baiu in Japan with global warming projection experimental data conducted using a 20-km mesh global atmospheric model (MRI-AGCM3.2) under Representative Concentration Pathways (RCP) scenarios. This model also used 4 different sea surface temperature (SST) initial conditions. Support of this dataset is provided by the Meteorological Research Institute (MRI). The baiu front indicated by the north-south gradient of moist static energy moves northward in present-day climate, whereas this northward shift in future climate simulations is very slow during May and June. In future late baiu season, the baiu front stays in the northern part of Japan even in August. As a result, the rich water vapor is transported around western Japan and the daily precipitation amount will increase in August. This northward shift of baiu front is associated with the westward expansion of the enhanced the North Pacific subtropical high (NPSH) into Japan region. However, the convective activity around northwest Pacific Ocean is inactive and is unlikely to occur convective jump (CJ). These models show that the weak trough exists in upper troposphere around Japan. Therefore, the cold advection stays in the northern part of Japan during June. In July, the front due to the strengthening of the NPSH moves northward, and then it stays until August. This feature is often found between the clustered SSTs, Cluster 2 and 3. The mean field of future August also show the inflow of rich water vapor content to Japan islands. In this model, the extreme rainfall suggested tends to almost increase over the Japan islands during future summer. This work was conducted under the Program for Risk Information on Climate Change supported by the Ministry of Education, Culture, Sports, Science, and Technology-Japan (MEXT).
NASA Astrophysics Data System (ADS)
Miyamoto, K.
2005-12-01
I investigate how the intensity and the activity of mid-latitude cyclones change as a result of global warming, based on a time-slice experiment with a super-high resolution Atmospheric General Circulation Model (20-km mesh TL959L60 MRI/JMA AGCM). The model was developed by the RR2002 project "Development of Super High Resolution Global and Regional Climate Models" funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology. In this context, I use a 10-year control simulation with the climatological SST and a 10-year time-slice global warming simulation using the SST anomalies derived from the SRES A1B scenario run with the MRI-CGCM2.3 (T42L30 atmosphere, 0.5-2.0 x 2.5 L23 ocean) corresponding to the end of the 21st century. I have analyzed the sea-level pressure field and the kinetic energy field of the wind at the 500 hPa pressure level associated with mid-latitude transients from October through April. According to a comparison of 10-day average fields between present and future in the North Pacific, some statistically significant changes are found in a warmer climate for the both of sea-level pressure and the kinetic energy fields. In particular, from late winter through early spring, the sea-level pressure decreases on many parts of the whole Pacific. The kinetic energy of the wind becomes higher on center of the basin. Therefore, I suppose the Aleutian Low is likely to settle in longer by about one month than the present. Hereafter, I plan to investigate what kind of phenomena may accompany the changes on mid-latitude transients.
NASA Technical Reports Server (NTRS)
Arnold, Nathan; Barahona, Donifan; Achuthavarier, Deepthi
2017-01-01
Weather and climate models have long struggled to realistically simulate the Madden-Julian Oscillation (MJO). Here we present a significant improvement in MJO simulation in NASA's GEOS atmospheric model with the implementation of 2-moment microphysics and the UW shallow cumulus parameterization. Comparing ten-year runs (2007-2016) with the old (1mom) and updated (2mom+shlw) model physics, the updated model has increased intra-seasonal variance with increased coherence. Surface fluxes and OLR are found to vary more realistically with precipitation, and a moisture budget suggests that changes in rain reevaporation and the cloud longwave feedback help support heavy precipitation. Preliminary results also show improved MJO hindcast skill.
A flexible climate model for use in integrated assessments
NASA Astrophysics Data System (ADS)
Sokolov, A. P.; Stone, P. H.
Because of significant uncertainty in the behavior of the climate system, evaluations of the possible impact of an increase in greenhouse gas concentrations in the atmosphere require a large number of long-term climate simulations. Studies of this kind are impossible to carry out with coupled atmosphere ocean general circulation models (AOGCMs) because of their tremendous computer resource requirements. Here we describe a two dimensional (zonally averaged) atmospheric model coupled with a diffusive ocean model developed for use in the integrated framework of the Massachusetts Institute of Technology (MIT) Joint Program on the Science and Policy of Global Change. The 2-D model has been developed from the Goddard Institute for Space Studies (GISS) GCM and includes parametrizations of all the main physical processes. This allows it to reproduce many of the nonlinear interactions occurring in simulations with GCMs. Comparisons of the results of present-day climate simulations with observations show that the model reasonably reproduces the main features of the zonally averaged atmospheric structure and circulation. The model's sensitivity can be varied by changing the magnitude of an inserted additional cloud feedback. Equilibrium responses of different versions of the 2-D model to an instantaneous doubling of atmospheric CO2 are compared with results of similar simulations with different AGCMs. It is shown that the additional cloud feedback does not lead to any physically inconsistent results. On the contrary, changes in climate variables such as precipitation and evaporation, and their dependencies on surface warming produced by different versions of the MIT 2-D model are similar to those shown by GCMs. By choosing appropriate values of the deep ocean diffusion coefficients, the transient behavior of different AOGCMs can be matched in simulations with the 2-D model, with a unique choice of diffusion coefficients allowing one to match the performance of a given AOGCM for a variety of transient forcing scenarios. Both surface warming and sea level rise due to thermal expansion of the deep ocean in response to a gradually increasing forcing are reasonably reproduced on time scales of 100-150 y. However a wide range of diffusion coefficients is needed to match the behavior of different AOGCMs. We use results of simulations with the 2-D model to show that the impact on climate change of the implied uncertainty in the rate of heat penetration into the deep ocean is comparable with that of other significant uncertainties.
Arctic sea ice loss and recent extreme cold winter in Eurasia
NASA Astrophysics Data System (ADS)
Mori, Masato; Watanabe, Masahiro; Ishii, Masayoshi; Kimoto, Masahide
2014-05-01
Extreme cold winter over the Eurasia has occurred more frequently in recent years. Observational evidence in recent studies shows that the wintertime cold anomalies over the Eurasia are associated with decline of Arctic sea ice in preceding autumn to winter season. However, the tropical and/or mid-latitude sea surface temperature (SST) anomalies have great influence on the mid- and high-latitude atmospheric variability, it is difficult to isolate completely the impacts of sea ice change from observational data. In this study, we examine possible linkage between the Arctic sea ice loss and the extreme cold winter over the Eurasia using a state-of-the-art MIROC4 (T106L56) atmospheric general circulation model (AGCM) to assess the pure atmospheric responses to sea ice reduction. We perform two sets of experiments with different realistic sea ice boundary conditions calculated by composite of observed sea ice concentration; one is reduced sea ice extent case (referred to as LICE run) and another is enhanced case (HICE run). In both experiments, the model is integrated 6-month from September to February with 100-member ensemble under the climatological SST boundary condition. The difference in ensemble mean of each experiment (LICE minus HICE) shows cold anomalies over the Eurasia in winter and its spatial pattern is very similar to corresponding observation, though the magnitude is smaller than observation. This result indicates that a part of observed cold anomaly can be attributed to the Arctic sea ice loss. We would like to introduce more important results and mechanisms in detail in my presentation.
NASA Astrophysics Data System (ADS)
DeMott, C. A.; Klingaman, N. P.
2017-12-01
Skillful prediction of the Madden-Julian oscillation (MJO) passage across the Maritime Continent (MC) has important implications for global forecasts of high-impact weather events, such as atmospheric rivers and heat waves. The North American teleconnection response to the MJO is strongest when MJO convection is located in the western Pacific Ocean, but many climate and forecast models are deficient in their simulation of MC-crossing MJO events. Compared to atmosphere-only general circulation models (AGCMs), MJO simulation skill generally improves with the addition of ocean feedbacks in coupled GCMs (CGCMs). Using observations, previous studies have noted that the degree of ocean coupling may vary considerably from one MJO event to the next. The coupling mechanisms may be linked to the presence of ocean Equatorial Rossby waves, the sign and amplitude of Equatorial surface currents, and the upper ocean temperature and salinity profiles. In this study, we assess the role of ocean feedbacks to MJO prediction skill using a subset of CGCMs participating in the Subseasonal-to-Seasonal (S2S) Project database. Oceanic observational and reanalysis datasets are used to characterize the upper ocean background state for observed MJO events that do and do not propagate beyond the MC. The ability of forecast models to capture the oceanic influence on the MJO is first assessed by quantifying SST forecast skill. Next, a set of previously developed air-sea interaction diagnostics is applied to model output to measure the role of SST perturbations on the forecast MJO. The "SST effect" in forecast MJO events is compared to that obtained from reanalysis data. Leveraging all ensemble members of a given forecast helps disentangle oceanic model biases from atmospheric model biases, both of which can influence the expression of ocean feedbacks in coupled forecast systems. Results of this study will help identify areas of needed model improvement for improved MJO forecasts.
NASA Astrophysics Data System (ADS)
Colleoni, Florence; Florindo, Fabio; McKay, Robert; Golledge, Nicholas; Sangiorgi, Francesca; Montoli, Enea; Masina, Simona; Cherchi, Annalisa; De Santis, Laura
2017-04-01
Sea Surface Temperatures (SST) reconstructions have shown that the Pliocene global zonal and meridional temperature gradients were different from today, implying changes of atmospheric and oceanic circulations, and thus of the main teleconnections. The impact of the main atmospheric teleconnections on the surface mass balance (SMB) of the Antarctic ice sheet (AIS) in the past has been seldom investigated. The ANDRILL marine record have shown that at the end of the Pliocene, the ice sheet expanded in the Ross Sea concomitantly with the expansion of the sea ice cover. This would have enhanced the formation of bottom waters that in turn, would have fostered upwelling along the West African coast and along the coast of Peru. The impact of Antarctica on the tropical climate dynamics has been shown by previous studies. To close the loop, this work investigates the impact of the tropical and high-latitude SST cooling on the main atmospheric teleconnections and then on the Antarctic SMB through the Plio/Pleistocene transition. Idealized Atmospheric General Circulation Model simulations are performed, in which high-latitude and tropical SST cooling are prescribed starting from the Pliocene SST. The atmospheric conditions obtained are then used to force an ice sheet model and a stand-alone energy balance model to investigate the impact on the SMB of the two main atmospheric teleconnections active in the Southern Hemisphere, namely the Southern Annular Mode (SAM) and the Pacific-South-American oscillation (PSA. In agreement with ANDRILL marine records, results show that the Easterlies strengthen along the Antarctic coasts during the Plio/Pleistocene transition. This, however, occurs only after cooling the tropical SSTs in the AGCM simulations. More importantly, the cooling of the tropical SST, through the strengthening of the PSA, has the largest influence on the spatial distribution of the climatic anomalies over Antarctica. This explains most of the SMB patterns simulated by the ice sheet model. In particular, the PSA fosters positive SMB over the Victoria Land, the Wilson Basin, the Aurora Basin and Prydz Bay that were partly deglaciated during the warm Pliocene. While the amplitude of the ice thickness changes due to the SAM and the PSA remains of the same order of today, i.e, few tens of meters, the main impact occurs in strategic areas of the AIS dynamics.
NASA Technical Reports Server (NTRS)
Keppenne, Christian; Vernieres, Guillaume; Rienecker, Michele; Jacob, Jossy; Kovach, Robin
2011-01-01
Satellite altimetry measurements have provided global, evenly distributed observations of the ocean surface since 1993. However, the difficulties introduced by the presence of model biases and the requirement that data assimilation systems extrapolate the sea surface height (SSH) information to the subsurface in order to estimate the temperature, salinity and currents make it difficult to optimally exploit these measurements. This talk investigates the potential of the altimetry data assimilation once the biases are accounted for with an ad hoc bias estimation scheme. Either steady-state or state-dependent multivariate background-error covariances from an ensemble of model integrations are used to address the problem of extrapolating the information to the sub-surface. The GMAO ocean data assimilation system applied to an ensemble of coupled model instances using the GEOS-5 AGCM coupled to MOM4 is used in the investigation. To model the background error covariances, the system relies on a hybrid ensemble approach in which a small number of dynamically evolved model trajectories is augmented on the one hand with past instances of the state vector along each trajectory and, on the other, with a steady state ensemble of error estimates from a time series of short-term model forecasts. A state-dependent adaptive error-covariance localization and inflation algorithm controls how the SSH information is extrapolated to the sub-surface. A two-step predictor corrector approach is used to assimilate future information. Independent (not-assimilated) temperature and salinity observations from Argo floats are used to validate the assimilation. A two-step projection method in which the system first calculates a SSH increment and then projects this increment vertically onto the temperature, salt and current fields is found to be most effective in reconstructing the sub-surface information. The performance of the system in reconstructing the sub-surface fields is particularly impressive for temperature, but not as satisfactory for salt.
Early-Holocene warming in Beringia and its mediation by sea-level and vegetation changes
Bartlein, P.J.; Edwards, M.E.; Hostetler, Steven W.; Shafer, Sarah; Anderson, P.M.; Brubaker, L. B; Lozhkin, A. V
2015-01-01
Arctic land-cover changes induced by recent global climate change (e.g., expansion of woody vegetation into tundra and effects of permafrost degradation) are expected to generate further feedbacks to the climate system. Past changes can be used to assess our understanding of feedback mechanisms through a combination of process modeling and paleo-observations. The subcontinental region of Beringia (northeastern Siberia, Alaska, and northwestern Canada) was largely ice-free at the peak of deglacial warming and experienced both major vegetation change and loss of permafrost when many arctic regions were still ice covered. The evolution of Beringian climate at this time was largely driven by global features, such as the amplified seasonal cycle of Northern Hemisphere insolation and changes in global ice volume and atmospheric composition, but changes in regional land-surface controls, such as the widespread development of thaw lakes, the replacement of tundra by deciduous forest or woodland, and the flooding of the Bering–Chukchi land bridge, were probably also important. We examined the sensitivity of Beringia's early Holocene climate to these regional-scale controls using a regional climate model (RegCM). Lateral and oceanic boundary conditions were provided by global climate simulations conducted using the GENESIS V2.01 atmospheric general circulation model (AGCM) with a mixed-layer ocean. We carried out two present-day simulations of regional climate – one with modern and one with 11 ka geography – plus another simulation for 6 ka. In addition, we performed five ~ 11 ka climate simulations, each driven by the same global AGCM boundary conditions: (i) 11 ka Control, which represents conditions just prior to the major transitions (exposed land bridge, no thaw lakes or wetlands, widespread tundra vegetation), (ii) sea-level rise, which employed present-day continental outlines, (iii) vegetation change, with deciduous needleleaf and deciduous broadleaf boreal vegetation types distributed as suggested by the paleoecological record, (iv) thaw lakes, which used the present-day distribution of lakes and wetlands, and (v) post-11 ka All, incorporating all boundary conditions changed in experiments (ii)–(iv). We find that regional-scale controls strongly mediate the climate responses to changes in the large-scale controls, amplifying them in some cases, damping them in others, and, overall, generating considerable spatial heterogeneity in the simulated climate changes. The change from tundra to deciduous woodland produces additional widespread warming in spring and early summer over that induced by the 11 ka insolation regime alone, and lakes and wetlands produce modest and localized cooling in summer and warming in winter. The greatest effect is the flooding of the land bridge and shelves, which produces generally cooler conditions in summer but warmer conditions in winter and is most clearly manifest on the flooded shelves and in eastern Beringia. By 6 ka continued amplification of the seasonal cycle of insolation and loss of the Laurentide ice sheet produce temperatures similar to or higher than those at 11 ka, plus a longer growing season.
Temperature influence on Hadley cell dynamics
NASA Astrophysics Data System (ADS)
Molnos, S.
2016-12-01
Over the last decades, satellite observations indicate that the Hadley cells have widened and possibly also intensified [1,2]. This might lead to a shift of fertile habitats with implications for biodiversity and agriculture [3]. Causes for these observed changes are uncertain and the possible role of global warming is debated. To better understand the key dynamical forcings involved, we investigate Hadley cell dynamics with an idealized atmosphere model [4,5] and compare its results with reanalysis data. This statistical-dynamical atmosphere model (SDAM) is based on time-averaged equations, and therefore much faster than the more widely used Atmospheric general circulations models (AGCMs).With SDAMS it is possible to perform climate simulations up to multi-millennia timescales. Here, we employ it to study the dominant processes related to the observed strengthening and widening of the Hadley cell using a very large ensemble sensitivity experiment testing the following possible underlying drivers: meridional temperature gradient, temperature anomaly and global mean temperature GMT. Interestingly, whereas the width of the Hadley cell depends nonlinearly on the temperature gradient, while its Intensification is nearly independent on temperature gradient. In contrast, a larger GMT always leads to an intensified Hadley cell. References: [1] Mitas, C. M.: Has the Hadley cell been strengthening in recent decades?, Geophys. Res. Lett., 32(3), 2005. [2] Seidel, D., Fu, Q., Randel, W. and Reichler, T.: Widening of the tropical belt in a changing climate, Nat. Geosci., 1(1), 21-248, 2008. [3] Heffernan, O.: The Mystery of Expanding Tropics, Nature, 530, 20-22, 2016. [4] Coumou, D., Petoukhov, V. and Eliseev, A. V.: Three-dimensional parameterizations of the synoptic scale kinetic energy and momentum flux in the Earth's atmosphere, Nonlinear Process. Geophys., 18(6), 807-827, 2011. [5] Eliseev, A. V., Coumou, D., Chernokulsky, A. V., Petoukhov, V. and Petri, S.: Scheme for calculation of multi-layer cloudiness and precipitation for climate models of intermediate complexity, Geosci. Model Dev., 6(5), 1745-1765, 2013.
Comparing Apples to Apples: Paleoclimate Model-Data comparison via Proxy System Modeling
NASA Astrophysics Data System (ADS)
Dee, Sylvia; Emile-Geay, Julien; Evans, Michael; Noone, David
2014-05-01
The wealth of paleodata spanning the last millennium (hereinafter LM) provides an invaluable testbed for CMIP5-class GCMs. However, comparing GCM output to paleodata is non-trivial. High-resolution paleoclimate proxies generally contain a multivariate and non-linear response to regional climate forcing. Disentangling the multivariate environmental influences on proxies like corals, speleothems, and trees can be complex due to spatiotemporal climate variability, non-stationarity, and threshold dependence. Given these and other complications, many paleodata-GCM comparisons take a leap of faith, relating climate fields (e.g. precipitation, temperature) to geochemical signals in proxy data (e.g. δ18O in coral aragonite or ice cores) (e.g. Braconnot et al., 2012). Isotope-enabled GCMs are a step in the right direction, with water isotopes providing a connector point between GCMs and paleodata. However, such studies are still rare, and isotope fields are not archived as part of LM PMIP3 simulations. More importantly, much of the complexity in how proxy systems record and transduce environmental signals remains unaccounted for. In this study we use proxy system models (PSMs, Evans et al., 2013) to bridge this conceptual gap. A PSM mathematically encodes the mechanistic understanding of the physical, geochemical and, sometimes biological influences on each proxy. To translate GCM output to proxy space, we have synthesized a comprehensive, consistently formatted package of published PSMs, including δ18O in corals, tree ring cellulose, speleothems, and ice cores. Each PSM is comprised of three sub-models: sensor, archive, and observation. For the first time, these different components are coupled together for four major proxy types, allowing uncertainties due to both dating and signal interpretation to be treated within a self-consistent framework. The output of this process is an ensemble of many (say N = 1,000) realizations of the proxy network, all equally plausible under assumed dating uncertainties. We demonstrate the utility of the PSM framework with an integrative multi-PSM simulation. An intermediate-complexity AGCM with isotope physics (SPEEDY-IER, (Molteni, 2003, Dee et al., in prep)) is used to simulate the isotope hydrology and atmospheric response to SSTs derived from the LM PMIP3 integration of the CCSM4 model (Landrum et al., 2012). Relevant dynamical and isotope variables are then used to drive PSMs, emulating a realistic multiproxy network (Emile-Geay et al., 2013). We then ask the following question: given our best knowledge of proxy systems, what aspects of GCM behavior may be validated, and with what uncertainties? We approach this question via a three-tiered 'perfect model' study. A random realization of the simulated proxy data (hereafter 'PaleoObs') is used as a benchmark in the following comparisons: (1) AGCM output (without isotopes) vs. PaleoObs; (2) AGCM output (with isotopes) vs. PaleoObs; (3) coupled AGCM-PSM-simulated proxy ensemble vs. PaleoObs. Enhancing model-data comparison using PSMs highlights uncertainties that may arise from ignoring non-linearities in proxy-climate relationships, or the presence of age uncertainties (as is most typically done is paleoclimate model-data intercomparison). Companion experiments leveraging the 3 sub-model compartmentalization of PSMs allows us to quantify the contribution of each sub-system to the observed model-data discrepancies. We discuss potential repercussions for model-data comparison and implications for validating predictive climate models using paleodata. References Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., Zhao, Y., 06 2012. Evaluation of climate models using palaeoclimatic data. Nature Clim. Change 2 (6), 417-424. URL http://dx.doi.org/10.1038/nclimate1456 Emile-Geay, J., Cobb, K. M., Mann, M. E., Wittenberg, A. T., Apr 01 2013. Estimating central equatorial pacific sst variability over the past millennium. part i: Methodology and validation. Journal of Climate 26 (7), 2302-2328. URL http://search.proquest.com/docview/1350277733?accountid=14749 Evans, M., Tolwinski-Ward, S. E., Thompson, D. M., Anchukaitis, K. J., 2013. Applications of proxy system modeling in high resolution paleoclimatology. Quaternary Science Reviews. URL http://adsabs.harvard.edu/abs/2012QuInt.279U.134E Landrum, L., Otto-Bliesner, B. L., Wahl, E. R., Capotondi, A., Lawrence, P. J., Teng, H., 2012. Last Millennium Climate and Its Variability in CCSM4. Journal of Climate (submitted) Molteni, F., 2003. Atmospheric simulations using a GCM with simplified physical parametrizations. I model climatology and variability in multi-decadal experiments. Climate Dynamics, 175-191
NASA Astrophysics Data System (ADS)
Song, Fengfei; Zhou, Tianjun; Wang, Lu
2013-05-01
In this study, two modes of the Silk Road pattern were investigated using NCEP2 reanalysis data and the simulation produced by Spectral Atmospheric Circulation Model of IAP LASG, Version 2 (SAMIL2.0) that was forced by SST observation data. The horizontal distribution of both modes were reasonably reproduced by the simulation, with a pattern correlation coefficient of 0.63 for the first mode and 0.62 for the second mode. The wave train was maintained by barotropic energy conversion (denoted as CK) and baroclinic energy conversion (denoted as CP) from the mean flow. The distribution of CK was dominated by its meridional component (CK y ) in both modes. When integrated spatially, CK y was more efficient than its zonal component (CK x ) in the first mode but less in the second mode. The distribution and efficiency of CK were not captured well by SAMIL2.0. However, the model performed reasonably well at reproducing the distribution and efficiency of CP in both modes. Because CP is more efficient than CK, the spatial patterns of the Silk Road pattern were well reproduced. Interestingly, the temporal phase of the second mode was well captured by a single-member simulation. However, further analysis of other ensemble runs demonstrated that the successful reproduction of the temporal phase was a result of internal variability rather than a signal of SST forcing. The analysis shows that the observed temporal variations of both CP and CK were poorly reproduced, leading to the low accuracy of the temporal phase of the Silk Road pattern in the simulation.
Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA
NASA Astrophysics Data System (ADS)
Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.
2012-12-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.
Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA
NASA Astrophysics Data System (ADS)
Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.
2012-08-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologues data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and interferences from humidity are the leading error sources. We introduce an a posteriori correction method of the humidity interference error and we recommend applying it for isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.
Predictability of Zonal Means During Boreal Summer
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Suarez, Max J.; Pegion, Philip J.; Kistler, Michael A.; Kumar, Arun; Einaudi, Franco (Technical Monitor)
2001-01-01
This study examines the predictability of seasonal means during boreal summer. The results are based on ensembles of June-July-August (JJA) simulations (started in mid May) carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTS) and sea ice for the years 1980-1999. We find that the predictability of the JJA extra-tropical height field is primarily in the zonal mean component of the response to the SST anomalies. This contrasts with the cold season (January-February-March) when the predictability of seasonal means in the boreal extratropics is primarily in the wave component of the El Nino/Southern Oscillation (ENSO) response. Two patterns dominate the interannual variability of the ensemble mean JJA zonal mean height field. One has maximum variance in the tropical/subtropical upper troposphere, while the other has substantial variance in middle latitudes of both hemispheres. Both are symmetric with respect to the equator. A regression analysis suggests that the tropical/subtropical pattern is associated with SST anomalies in the far eastern tropical Pacific and the Indian Ocean, while the middle latitude pattern is forced by SST anomalies in the tropical Pacific just east of the dateline. The two leading zonal height patterns are reproduced in model runs forced with the two leading JJA SST patterns of variability. A comparison with observations shows a signature of the middle latitude pattern that is consistent with the occurrence of dry and wet summers over the United States. We hypothesize that both patterns, while imposing only weak constraints on extratropical warm season continental-scale climates, may play a role in the predilection for drought or pluvial conditions.
NASA Astrophysics Data System (ADS)
Jing, Xianwen; Zhang, Hua; Peng, Jie; Li, Jiangnan; Barker, Howard W.
2016-03-01
Vertical decorrelation length (Lcf) as used to determine overlap of cloudy layers in GCMs was obtained from CloudSat/CALIPSO measurements, made between 2007 and 2010, and analyzed in terms of monthly means. Global distributions of Lcf were produced for several cross-sectional lengths. Results show that: Lcf over the tropical convective regions typically exceeds 2 km and shift meridionally with season; the smallest Lcf (< 1 km) tends to occur in regions dominated by marine stratiform clouds; Lcf for mid-to-high latitude continents of the Northern Hemisphere (NH) ranges from 5-6 km during winter to 2-3 km during summer; and there are marked differences between continental and oceanic values of Lcf in the mid-latitudes of the NH. These monthly-gridded, observationally-based values of Lcf data were then used by the Monte Carlo Independent Column Approximation (McICA) radiation routines within the Beijing Climate Center's GCM (BCC_AGCM2.0.1). Additionally, the GCM was run with two other descriptions of Lcf: one varied with latitude only, and the other was simply 2 km everywhere all the time. It is shown that using the observationally-based Lcf in the GCM led to local and seasonal changes in total cloud fraction and shortwave (longwave) cloud radiative effects that serve mostly to reduce model biases. This indicates that usage of Lcf that vary according to location and time has the potential to improve climate simulations.
NASA Technical Reports Server (NTRS)
Da Silva, A. M.; Randles, C. A.; Buchard, V.; Darmenov, A.; Colarco, P. R.; Govindaraju, R.
2015-01-01
This document describes the gridded output files produced by the Goddard Earth Observing System version 5 (GEOS-5) Goddard Aerosol Assimilation System (GAAS) from July 2002 through December 2014. The MERRA Aerosol Reanalysis (MERRAero) is produced with the hydrostatic version of the GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), ozone, carbon monoxide and carbon dioxide. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic emission sources. Meteorology is replayed from the MERRA Reanalysis.
Numerical simulation on the southern flood and northern drought in summer 2014 over Eastern China
NASA Astrophysics Data System (ADS)
Xu, Lianlian; He, Shengping; Li, Fei; Ma, Jiehua; Wang, Huijun
2017-12-01
In summer 2014, Eastern China suffered a typical "southern flood and northern drought" anomalous climate. Observational analyses indicated that the anomalous vertical motion, East Asian subtropical westerly jet stream, and the East Asian summer monsoon (EASM) played important roles in the formation of such precipitation anomaly. Furthermore, using the climate model (IAP-AGCM-4.1) perturbed by simultaneous observed sea surface temperature anomalies (SSTAs) in global scale and four different regions (North Pacific, Indian Ocean, North Atlantic, and Equatorial Pacific), this study investigated the potential contribution of ocean to such "southern flood and northern drought" over Eastern China in summer 2014. The simulations forced by global-scale SSTAs or North Pacific SSTAs displayed the most similarity to the observed "southern flood and northern drought" over Eastern China. It was revealed that the global-scale and North Pacific SSTAs influenced the rainfall over Eastern China via modulating the EASM. The related simulations successfully reproduced the associated atmospheric circulation anomalies. The experiment driven by Indian Ocean SSTAs could also reproduce the similar precipitation anomaly pattern and suggested that the Indian Ocean exerted pronounced influence on the North Pacific Subtropical High. Additionally, the simulations forced by SSTAs in the North Atlantic and Equatorial Pacific successfully reproduced the northern drought but failed to capture the southern flood. The simulations suggested that precipitation anomaly over Eastern China in summer 2014 was a comprehensive effect of global SSTAs and the dominant contribution to the "southern flood and northern drought" pattern came from the North Pacific and Indian Ocean.
NASA Astrophysics Data System (ADS)
Küttel, M.; Steig, E. J.; Ding, Q.; Battisti, D. S.
2010-12-01
Recent evidence suggests that West Antarctica has been warming since at least the 1950s. With the instrumental record being limited to the mid-20th century, indirect information from stable isotopes (δ18O and δD, hereafter collectively δ) preserved within ice cores have commonly been used to place this warming into a long term context. Here, using a large number of δ records obtained during the International Trans-Antarctic Scientific Expedition (ITASE), past variations in West Antarctic δ are not only investigated over time but also in space. This study therefore provides an important complement to longer records from single locations as e.g. the currently being processed West Antarctic ice sheet (WAIS) Divide ice core. Although snow accumulation rates at the ITASE sites in West Antarctica are variable, they are generally high enough to allow studies on sub-annual scale over the last 50-100 years. Here, we show that variations in δ in this region are strongly related to the state of the large-scale atmospheric circulation as well as sea ice variations in the adjacent Southern Ocean, with important seasonal changes. While a strong relationship to sea ice changes in the Ross and Amundsen Sea as well as to the atmospheric circulation offshore is found during austral fall (MAM) and winter (JJA), only modest correlations are found during spring (SON) and summer (DJF). Interestingly, the correlations with the atmospheric circulation in the latter two seasons have the strongest signal over the Antarctic continent, but not offshore - an important difference to MAM and JJA. These seasonal changes are in good agreement with the seasonally varying predominant circulation: meridional with more frequent storms in the Amundsen Sea during MAM and JJA and more zonal and stable during SON and DJF. The relationship to regional temperature is similarly seasonally variable with highest correlations found during MAM and JJA. Notably, the circulation pattern found to be strongest related to West Antarctic MAM and JJA δ variations is comparable to the tropical-polar wave train found by Ding et al. (this meeting, and in review) during JJA, a pattern which appears to be the dominant forcing behind the West Antarctic JJA temperature increase since the 1950s or earlier (Steig et al. 2009). The coupled atmosphere/sea ice influence can be observed for most of the large δ anomalies with, however, 1980 standing out as the prime example with a record-high δ anomaly of up to 3 standard deviations in the ITASE cores. While the anomalously strong northerly onshore winds certainly are a relevant factor, the spatial pattern and seasonal evolution of the δ peaks in the spatial ITASE network indicates that the record-low sea ice concentration in the Ross/Amundsen Sea during 1980 is an important contributor to this δ anomaly. Using observational evidence as well as model simulations from the ECHAM4.6 AGCM, a general framework for the atmosphere/sea ice coupling and its influence on West Antarctic δ is established and presented.
NASA Technical Reports Server (NTRS)
Kim, Dongmin; Lee, Myong-In; Kim, Hye-Mi; Schubert, Siegfried D.; Yoo, Jin Ho
2014-01-01
This study examines the influence of the Madden-Julian Oscillation (MJO) on tropical storm (TS) activity in the western North Pacific, using observations and GEOS-5 simulations at 50-km horizontal resolution. While GEOS-5 produces an MJO of faster propagation and weaker amplitude, it nevertheless reproduces the observed modulation of TS activity by the MJO with the highest TS genesis and increased track density in the active phases of MJO. The study suggests that the simulation of the sub-seasonal variability of TS activity could be improved by improving the simulations of the MJO in climate models.
NASA Astrophysics Data System (ADS)
Takhsha, Maryam; Nikiéma, Oumarou; Lucas-Picher, Philippe; Laprise, René; Hernández-Díaz, Leticia; Winger, Katja
2017-10-01
As part of the CORDEX project, the fifth-generation Canadian Regional Climate Model (CRCM5) is used over the Arctic for climate simulations driven by reanalyses and by the MPI-ESM-MR coupled global climate model (CGCM) under the RCP8.5 scenario. The CRCM5 shows adequate skills capturing general features of mean sea level pressure (MSLP) for all seasons. Evaluating 2-m temperature (T2m) and precipitation is more problematic, because of inconsistencies between observational reference datasets over the Arctic that suffer of a sparse distribution of weather stations. In our study, we additionally investigated the effect of large-scale spectral nudging (SN) on the hindcast simulation driven by reanalyses. The analysis shows that SN is effective in reducing the spring MSLP bias, but otherwise it has little impact. We have also conducted another experiment in which the CGCM-simulated sea-surface temperature (SST) is empirically corrected and used as lower boundary conditions over the ocean for an atmosphere-only global simulation (AGCM), which in turn provides the atmospheric lateral boundary conditions to drive the CRCM5 simulation. This approach, so-called 3-step approach of dynamical downscaling (CGCM-AGCM-RCM), which had considerably improved the CRCM5 historical simulations over Africa, exhibits reduced impact over the Arctic domain. The most notable positive effect over the Arctic is a reduction of the T2m bias over the North Pacific Ocean and the North Atlantic Ocean in all seasons. Future projections using this method are compared with the results obtained with the traditional 2-step dynamical downscaling (CGCM-RCM) to assess the impact of correcting systematic biases of SST upon future-climate projections. The future projections are mostly similar for the two methods, except for precipitation.
NASA Astrophysics Data System (ADS)
Wang, Qiuyan; Wang, Zhili; Zhang, Hua
2017-01-01
The impact of the total effects due to anthropogenic aerosols from global, East Asian, and non-East Asian sources on East Asian summer monsoon (EASM) system is studied using an aerosol-climate online model BCC_AGCM2.0.1_CUACE/Aero. The results show that the summer mean net all-sky shortwave fluxes averaged over East Asian monsoon region (EAMR) at the top of the atmosphere (TOA) and surface reduce by 4.8 and 5.0 W m- 2, respectively, due to the increases of global aerosol emissions in 2000 relative to 1850. Changes in radiations and their resulting changes in heat and water transport and cloud fraction contribute together to the surface cooling over EAMR in summer. The increases in global anthropogenic aerosols lead to a decrease of 2.1 K in summer mean surface temperature and an increase of 0.4 hPa in summer mean surface pressure averaged over EAMR, respectively. It is shown that the changes in surface temperature and pressure are significantly larger over land than ocean, thus decreasing the contrast of land-sea surface temperature and pressure. This results in the marked anomalies of north and northeast winds over eastern and southern China and the surrounding oceans in summer, thereby weakening the EASM. The summer mean precipitation averaged over the EAMR reduces by 12%. The changes in non-East Asian aerosol emissions play a more important role in inducing the changes of local temperature and pressure, and thus significantly exacerbate the weakness of the EASM circulation due to local aerosol changes. The weakening of circulation due to both is comparable, and even the effect of non-local aerosols is larger in individual regions. The changes of local and non-local aerosols contribute comparably to the reductions in precipitation over oceans, whereas cause opposite changes over eastern China. Our results highlight the importance of aerosol changes outside East Asia in the impact of the changes of anthropogenic aerosols on EASM.
Climatic Consequences of a Large-Scale Desertification in Northeast Brazil: A GCM Simulation Study.
NASA Astrophysics Data System (ADS)
Oyama, Marcos Daisuke; Nobre, Carlos Afonso
2004-08-01
The climatic impacts of a large-scale desertification in northeast Brazil (NEB) are assessed by using the Center for Weather Forecasting and Climate Studies Center for Ocean Land Atmosphere Studies (CPTEC COLA) AGCM. Two numerical runs are performed. In the control run, NEB is covered by its natural vegetation (most of NEB is covered by a xeromorphic vegetation known as caatinga); in the desertification run, NEB vegetation is changed to desert (bare soil). Each run consists of five 1-yr numerical integrations. The results for NEB wet season (March May) are analyzed. Desertification results in hydrological cycle weakening: precipitation, evapotranspiration, moisture convergence, and runoff decrease. Surface net radiation decreases and this reduction is almost evenly divided between sensible and latent heat flux. Atmospheric diabatic heating decreases and subsidence anomalies confined at lower atmospheric levels are found. The climatic impacts result from the cooperative action of feedback processes related to albedo increase, plant transpiration suppression, and roughness length decrease. On a larger scale, desertification leads to precipitation increase in the oceanic belt close to the northernmost part of NEB (NNEB). In the NEB NNEB dipole, the anomalies of vertical motion and atmospheric circulation are confined to lower atmospheric levels, that is, 850 700 hPa. At these levels, circulation anomalies resemble the linear baroclinic response of a shallow atmospheric layer (850 700 hPa) to a tropical heat sink placed over NEB at the middle-layer level. Therefore, NEB climate does show sensitivity to a vegetation change to desert. The present work shows the possibility of significant and pronounced climate impacts, on both regional and large scales, if the environmental degradation in NEB continues unchecked.
NASA Astrophysics Data System (ADS)
Demory, Marie-Estelle; Vidale, Pier-Luigi; Schiemann, Reinhard; Roberts, Malcolm; Mizielinski, Matthew
2014-05-01
A traceable hierarchy of global climate models (based on the Met Office Unified Model, GA3 formulation), with mesh sizes ranging from 130km to 25km, has been developed in order to study the impact of improved representation of small-scale processes on the mean climate, its variability and extremes. Five-member ensembles of atmosphere-only integrations were completed at these resolutions, each 27 years in length, using both present day forcing and a future climate scenario. These integrations, collectively known as the "UPSCALE campaign", were completed using time provided by the European PrACE project on supercomputer HERMIT (HLRS Stuttgart). A wide variety of processes are being studied to assess these integrations, in particular with regards to the role of resolution. It has been shown that the relatively coarse resolution of atmospheric general circulation models (AGCMs) limits their ability to represent moisture transport from ocean to land. Understanding of the processes underlying this observed improvement with higher resolution remains insufficient. Atmospheric Rivers (ARs) are an important process of moisture transport onto land in mid-latitude eddies and have been shown by Lavers et al. (2012) to be involved in creating the moisture supply that sustains extreme precipitation events. We investigated the ability of a state-of-the art climate model to represent the location, frequency and 3D structure of atmospheric rivers affecting Western Europe, with a focus on the UK. We show that the climatology of atmospheric rivers, in particular frequency, is underrepresented in the GCM at standard resolution and that this is slightly improved at high resolution (25km): our results are in better agreement with reanalysis data, even if sizable biases remain. The three-dimensional structure of the atmospheric rivers is also more credibly represented at high-resolution. Some aspects of the relationship between the improved simulation in current climate conditions, and how this impacts on changes in the future climate, with much larger atmospheric moisture availability, will also be discussed. In particular, we aim to quantify the relative roles of atmospheric transport and increased precipitation rates in the higher quantiles.
GLACE: The Global Land-Atmosphere Coupling Experiment. Part 1; Overview
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Guo, Zhi-Chang; Dirmeyer, Paul A.; Bonan, Gordon; Chan, Edmond; Cox, Peter; Davies, Harvey; Gordon, C. T.; Kanae, Shinjiro; Kowalczyk, Eva
2005-01-01
GLACE is a model intercomparison study focusing on a typically neglected yet critical element of numerical weather and climate modeling: land-atmosphere coupling strength, or the degree to which anomalies in land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric processes. The twelve AGCM groups participating in GLACE performed a series of simple numerical experiments that allow the objective quantification of this element. The derived coupling strengths vary widely. Some similarity, however, is found in the spatial patterns generated by the models, enough similarity to pinpoint multi-model "hot spots" of land-atmosphere coupling. For boreal summer, such hot spots for precipitation and temperature are found over large regions of Africa, central North America and India; a hot spot for temperature is also found over eastern China. The design of the GLACE simulations are described in full detail so that any interested modeling group can repeat them easily and thereby place their model s coupling strength within the broad range of those documented here.
Event attribution using data assimilation in an intermediate complexity atmospheric model
NASA Astrophysics Data System (ADS)
Metref, Sammy; Hannart, Alexis; Ruiz, Juan; Carrassi, Alberto; Bocquet, Marc; Ghil, Michael
2016-04-01
A new approach, coined DADA (Data Assimilation for Detection and Attribution) has been recently introduced by Hannart et al. 2015, and is potentially useful for near real time, systematic causal attribution of weather and climate-related events The method is purposely designed to allow its operability at meteorological centers by synergizing causal attribution with Data Assimilation (DA) methods usually designed to deal with large nonlinear models. In Hannart et al. 2015, the DADA proposal is illustrated in the context of a low-order nonlinear model (forced three-variable Lorenz model) that is of course not realistic to represent the events considered. As a continuation of this stream of work, we therefore propose an implementation of the DADA approach in a realistic intermediate complexity atmospheric model (ICTP AGCM, nicknamed SPEEDY). The SPEEDY model is based on a spectral dynamical core developed at the Geophysical Fluid Dynamics Laboratory (see Held and Suarez 1994). It is a hydrostatic, r-coordinate, spectral-transform model in the vorticity-divergence form described by Bourke (1974). A synthetic dataset of observations of an extreme precipitation event over Southeastern South America is extracted from a long SPEEDY simulation under present climatic conditions (i.e. factual conditions). Then, following the DADA approach, observations of this event are assimilated twice in the SPEEDY model: first in the factual configuration of the model and second under its counterfactual, pre-industrial configuration. We show that attribution can be performed based on the likelihood ratio as in Hannart et al. 2015, but we further extend this result by showing that the likelihood can be split in space, time and variables in order to help identify the specific physical features of the event that bear the causal signature. References: Hannart A., A. Carrassi, M. Bocquet, M. Ghil, P. Naveau, M. Pulido, J. Ruiz, P. Tandeo (2015) DADA: Data assimilation for the detection and attribution of weather and climate-related events, Climatic Change, (in press). Held I. M. and M. J. Suarez, (1994): A Proposal for the Intercomparison of the Dynamical Cores of Atmospheric General Circulation Models. Bull. Amer. Meteor. Soc., 75, 1825-1830. Bourke W. (1972): A multi-level spectral model. I. Formulation and hemispheric integrations. Mon. Wea. Rev., 102, 687-701.
NASA Astrophysics Data System (ADS)
Adnan Abid, Mohammad; Almazroui, Mansour; Kucharski, Fred
2017-04-01
Summer seasonal rainfall falls mainly over the south and southwestern parts of the Arabian Peninsula (AP). The relationship between this mean summer seasonal rainfall pattern and El Niño Southern Oscillation (ENSO) is analyzed with the aid of a 15-member ensemble of simulations using the King Abdulaziz University (KAU) Atmospheric Global Climate Model (AGCM). Each simulation is forced with Hadley Sea Surface Temperature (SST) for the period 1980-2015. The southwestern peninsula rainfall is linked towith the SST anomalies in the central-eastern pacific region. This relation is established through an atmospheric teleconnection which shows an upper-level convergence (divergence) anomalies over the southern Arabian Peninsula compensating the central-eastern Pacific region upper-level divergence (convergence) anomalies for the warm (cold) El Niño Southern Oscillaton (ENSO) phase. The upper-level convergence (divergence) over the southern Arabian Peninsula leads to sinking (rising) motion, low-level divergence (convergence) and consequently to reduced (enhanced) rainfall. The correlation coefficient between the observed area-averged Niño3.4 index and athe South Arabian Rainfall Index (SARI) is -0.54. This indicates that AP receives less rainfall during the warm (El Niño) phase, while the opposite happens in the cold (La Niña) El Niño Southern Oscillaton (ENSO) phase. The lower tropospheric cyclonic circulation anomalies strongly modulate the ENSO-related rainfall in the region. Overall, the model shows a 43% potential predictability (PP) for the Southern Arabian Peninsula Rainfall Index (SARI). Further, the predictability during the warm ENSO (El Niño) events is higher than during cold ENSO (La Niña) events. This is not only because of a stronger signal, but also noise reduction contributes to the increase of the regional PP in El Niño compared to that of La Niña years.
NASA Astrophysics Data System (ADS)
Funk, C. C.; Shukla, S.; Hoerling, M. P.; Robertson, F. R.; Hoell, A.; Liebmann, B.
2013-12-01
During boreal spring, eastern portions of Kenya and Somalia have experienced more frequent droughts since 1999. Given the region's high levels of food insecurity, better predictions of these droughts could provide substantial humanitarian benefits. We show that dynamical-statistical seasonal climate forecasts, based on the latest generation of coupled atmosphere-ocean and uncoupled atmospheric models, effectively predict boreal spring rainfall in this area. Skill sources are assessed by comparing ensembles driven with full-ocean forcing with ensembles driven with ENSO-only sea surface temperatures (SSTs). Our analysis suggests that both ENSO and non-ENSO Indo-Pacific SST forcing have played an important role in the increase in drought frequencies. Over the past 30 years, La Niña drought teleconnections have strengthened, while non-ENSO Indo-Pacific convection patterns have also supported increased (decreased) Western Pacific (East African) rainfall. To further examine the relative contribution of ENSO, low frequency warming and the Pacific Decadal Oscillation, we present decompositions of ECHAM5, GFS, CAM4 and GMAO AMIP simulations. These decompositions suggest that rapid warming in the western Pacific and steeper western-to-central Pacific SST gradients have likely played an important role in the recent intensification of the Walker circulation, and the associated increase in East African aridity. A linear combination of time series describing the Pacific Decadal Oscillation and the strength of Indo-Pacific warming are shown to track East African rainfall reasonably well. The talk concludes with a few thoughts linking the potentially important interplay of attribution and prediction. At least for recent East African droughts, it appears that a characteristic Indo-Pacific SST and precipitation anomaly pattern can be linked statistically to support forecasts and attribution analyses. The combination of traditional AGCM attribution analyses with simple yet physically plausible statistical estimation procedures may help us better untangle some climate mysteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fuyu; Collins, William D.; Wehner, Michael F.
High-resolution climate models have been shown to improve the statistics of tropical storms and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea level pressure, andmore » mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariant.« less
NASA Technical Reports Server (NTRS)
Pawson, Steven; Ott, Lesley E.; Zhu, Zhengxin; Bowman, Kevin; Brix, Holger; Collatz, G. James; Dutkiewicz, Stephanie; Fisher, Joshua B.; Gregg, Watson W.; Hill, Chris;
2011-01-01
Forward GEOS-5 AGCM simulations of CO2, with transport constrained by analyzed meteorology for 2009-2010, are examined. The CO2 distributions are evaluated using AIRS upper tropospheric CO2 and ACOS-GOSAT total column CO2 observations. Different combinations of surface C02 fluxes are used to generate ensembles of runs that span some uncertainty in surface emissions and uptake. The fluxes are specified in GEOS-5 from different inventories (fossil and biofuel), different data-constrained estimates of land biological emissions, and different data-constrained ocean-biology estimates. One set of fluxes is based on the established "Transcom" database and others are constructed using contemporary satellite observations to constrain land and ocean process models. Likewise, different approximations to sub-grid transport are employed, to construct an ensemble of CO2 distributions related to transport variability. This work is part of NASA's "Carbon Monitoring System Flux Pilot Project,"
NASA Astrophysics Data System (ADS)
Biasutti, M.; Voigt, A.; Scheff, J.
2016-12-01
TRACMIP consists of a set of five experiments performed by an ensemble of GCMs and conceived as a link in the hierarchy between the CFMIP/CMIP5 Aqua experiments and the CMIP5 comprehensive simulations. The basic configuration is an aquaplanet AGCM coupled to a slab ocean. By using interactive sea-surface temperatures and seasonally-varying insolation TRACMIP fills the gap between Aquaplanets with prescribed SSTs and fully-coupled realistic CMIP5 simulations. Adding to the basic Aquaplanet configuration a highly-idealized tropical continent allows the investigation of the role of zonal asymmetries in the dynamics of the ITCZ and of the source of the observed differences between land convection and monsoon circulations on one hand, and oceanic convection in the ITCZ and the Warm Pool on the other. Finally, by including both key forcings of the future (greenhouse gases) and of the Holocene (orbital changes in insolation), TRACMIP contributes to the "past to future (P2F)" efforts to connect the climate response to different forcings via a basic understanding of the mechanisms at play. TRACMIP includes the participation of both CMIP5 comprehensive climate models and a simplified model that neglects cloud and water-vapor radiative feedbacks, thus allowing a more direct connection between GCMs results and theoretical studies of tropical rain belt dynamics. We will present preliminary results from the ensemble, aiming to examine the mechanisms controlling tropical precipitation in the context of forced variability. First and foremost, we are interested in the largest forced variation: the annual cycle. We will draw out the similarities and the distinctions between the climatologies of the oceanic and continental rain bands, study the ways in which the two interact with each other, and investigate the extent to which established zonal-mean ITCZ frameworks contain information about regional rainfall characteristics. Second, we will investigate the response to quadrupling the CO2 concentration and to orbital changes, comparing the multi-model mean response and the inter-model scatter to responses in the CMIP5 ensemble, paying special attention to the way in which land responds differently than ocean and even, with its presence, modifies the response of the oceanic ITCZ to external forcings.
Data Assimilation using Artificial Neural Networks for the global FSU atmospheric model
NASA Astrophysics Data System (ADS)
Cintra, Rosangela; Cocke, Steven; Campos Velho, Haroldo
2015-04-01
Data assimilation is the process by which measurements and model predictions are combined to obtain an accurate representation of the state of the modeled system. Uncertainty is the characteristic of the atmosphere, coupled with inevitable inadequacies in observations and computer models and increase errors in weather forecasts. Data assimilation is a technique to generate an initial condition to a weather or climate forecasts. This paper shows the results of a data assimilation technique using artificial neural networks (ANN) to obtain the initial condition to the atmospheric general circulation model (AGCM) for the Florida State University in USA. The Local Ensemble Transform Kalman filter (LETKF) is implemented with Florida State University Global Spectral Model (FSUGSM). The ANN data assimilation is made to emulate the initial condition from LETKF to run the FSUGSM. LETKF is a version of Kalman filter with Monte-Carlo ensembles of short-term forecasts to solve the data assimilation problem. The model FSUGSM is a multilevel (27 vertical levels) spectral primitive equation model with a vertical sigma coordinate. All variables are expanded horizontally in a truncated series of spherical harmonic functions (at resolution T63) and a transform technique is applied to calculate the physical processes in real space. The LETKF data assimilation experiments are based in synthetic observations data (surface pressure, absolute temperature, zonal component wind, meridional component wind and humidity). For the ANN data assimilation scheme, we use Multilayer Perceptron (MLP-DA) with supervised training algorithm where ANN receives input vectors with their corresponding response or target output from LETKF scheme. An automatic tool that finds the optimal representation to these ANNs configures the MLP-DA in this experiment. After the training process, the scheme MLP-DA is seen as a function of data assimilation where the inputs are observations and a short-range forecast to each model grid point. The ANNs were trained with data from each month of 2001, 2002, 2003, and 2004. A hind-casting experiment for data assimilation cycle using MLP-DA was performed with synthetic observations for January 2005. The numerical results demonstrate the effectiveness of the ANN technique for atmospheric data assimilation, since the analyses (initial conditions) have similar quality to LETKF analyses. The major advantage of using MLP-DA is the computational performance, which is faster than LETKF. The reduced computational cost allows the inclusion of greater number of observations and new data sources and the use of high resolution of models, which ensures the accuracy of analysis and of its weather prediction
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Lee, Dongmin; Norris, Peter; Yuan, Tianle
2011-01-01
It has been shown that the details of how cloud fraction overlap is treated in GCMs has substantial impact on shortwave and longwave fluxes. Because cloud condensate is also horizontally heterogeneous at GCM grid scales, another aspect of cloud overlap should in principle also be assessed, namely the vertical overlap of hydrometeor distributions. This type of overlap is usually examined in terms of rank correlations, i.e., linear correlations between hydrometeor amount ranks of the overlapping parts of cloud layers at specific separation distances. The cloud fraction overlap parameter and the rank correlation of hydrometeor amounts can be both expressed as inverse exponential functions of separation distance characterized by their respective decorrelation lengths (e-folding distances). Larger decorrelation lengths mean that hydrometeor fractions and probability distribution functions have high levels of vertical alignment. An analysis of CloudSat and CALIPSO data reveals that the two aspects of cloud overlap are related and their respective decorrelation lengths have a distinct dependence on latitude that can be parameterized and included in a GCM. In our presentation we will contrast the Cloud Radiative Effect (CRE) of the GEOS-5 atmospheric GCM (AGCM) when the observationally-based parameterization of decorrelation lengths is used to represent overlap versus the simpler cases of maximum-random overlap and globally constant decorrelation lengths. The effects of specific overlap representations will be examined for both diagnostic and interactive radiation runs in GEOS-5 and comparisons will be made with observed CREs from CERES and CloudSat (2B-FLXHR product). Since the radiative effects of overlap depend on the cloud property distributions of the AGCM, the availability of two different cloud schemes in GEOS-5 will give us the opportunity to assess a wide range of potential cloud overlap consequences on the model's climate.
A Modeling Study of the On-Going Drought and Heat Wave over the United States
NASA Technical Reports Server (NTRS)
Schubert, S.; Wang, H.; Koster, R.; Suarez, M.
2012-01-01
Ensembles of AGCM experiments have been conducted to examine the causes of the on-going drought and heat wave affecting much of the United States. The results show that the drought and hot temperatures that have been especially severe over Texas and parts of Mexico since late 2010 are the result of a combination of SST forcing from both the tropical Pacific and the tropical Atlantic, with the latter playing a particularly important role during later half of the summer of 2011, and the warm SSTs off the East Coast contributing to the warm conditions along the East Coast. An extension of the model simulations into the summer of 2012 suggests that the warm conditions are again primarily driven by SST forcing - despite the return of the tropical Pacific to neutral conditions. The results of additional experiments currently being conducted to separate the influences of the 2012 SST anomalies in the various ocean basins will be discussed.
Hadano, Mayumi; Nasahara, Kenlo Nishida; Motohka, Takeshi; Noda, Hibiki Muraoka; Murakami, Kazutaka; Hosaka, Masahiro
2013-06-01
Reports indicate that leaf onset (leaf flush) of deciduous trees in cool-temperate ecosystems is occurring earlier in the spring in response to global warming. In this study, we created two types of phenology models, one driven only by warmth (spring warming [SW] model) and another driven by both warmth and winter chilling (parallel chill [PC] model), to predict such phenomena in the Japanese Islands at high spatial resolution (500 m). We calibrated these models using leaf onset dates derived from satellite data (Terra/MODIS) and in situ temperature data derived from a dense network of ground stations Automated Meteorological Data Acquisition System. We ran the model using future climate predictions created by the Japanese Meteorological Agency's MRI-AGCM3.1S model. In comparison to the first decade of the 2000s, our results predict that the date of leaf onset in the 2030s will advance by an average of 12 days under the SW model and 7 days under the PC model throughout the study area. The date of onset in the 2090s will advance by 26 days under the SW model and by 15 days under the PC model. The greatest impact will occur on Hokkaido (the northernmost island) and in the central mountains.
GEOS-5 Seasonal Forecast System: ENSO Prediction Skill and Bias
NASA Technical Reports Server (NTRS)
Borovikov, Anna; Kovach, Robin; Marshak, Jelena
2018-01-01
The GEOS-5 AOGCM known as S2S-1.0 has been in service from June 2012 through January 2018 (Borovikov et al. 2017). The atmospheric component of S2S-1.0 is Fortuna-2.5, the same that was used for the Modern-Era Retrospective Analysis for Research and Applications (MERRA), but with adjusted parameterization of moist processes and turbulence. The ocean component is the Modular Ocean Model version 4 (MOM4). The sea ice component is the Community Ice CodE, version 4 (CICE). The land surface model is a catchment-based hydrological model coupled to the multi-layer snow model. The AGCM uses a Cartesian grid with a 1 deg × 1.25 deg horizontal resolution and 72 hybrid vertical levels with the upper most level at 0.01 hPa. OGCM nominal resolution of the tripolar grid is 1/2 deg, with a meridional equatorial refinement to 1/4 deg. In the coupled model initialization, selected atmospheric variables are constrained with MERRA. The Goddard Earth Observing System integrated Ocean Data Assimilation System (GEOS-iODAS) is used for both ocean state and sea ice initialization. SST, T and S profiles and sea ice concentration were assimilated.
NASA Astrophysics Data System (ADS)
Lucarini, V.
2010-09-01
We present an intercomparison and verification analysis of several GCMs and RCMs included in the 4th IPCC assessment report on their representation of the hydrological cycle on the Danube river basin for present and (in the case of the GCMs) projected future climate conditions. The basin-scale properties of the hydrological cycle are computed by spatially integrating the precipitation, evaporation, and runoff fields using the Voronoi-Thiessen tessellation formalism. Large discrepancies exist among RCMs for the monthly climatology as well as for the mean and variability of the annual balances, and only few data sets are consistent with the observed discharge values of the Danube at its Delta. This occurs in spite of common nesting of the RCMs into the same run of the same AGCM, and even if the driving AGCM provides itself an excellent estimate. We find consistently that, for a given model, increases in the resolution do not alter the net water balance, while speeding up the hydrological cycle through the enhancement of both precipitation and evaporation by the same amount. We propose that the atmospheric components of RCMs still face difficulties in representing the water balance even on a relatively large scale. Moreover, since for some models the hydrological balance estimates obtained with the runoff fields do not agree with those obtained via precipitation and evaporation, some deficiencies of the land models are also apparent. In the case of the GCMs, the span of the model- simulated mean annual water balances is of the same order of magnitude of the observed Danube discharge of the Delta; the true value is within the range simulated by the models. Some land components seem to have deficiencies since there are cases of violation of water conservation when annual means are considered. The overall performance and the degree of agreement of the GCMs are, surprisingly, comparable to those of the RCMs. Both RCMs and GCMs greatly outperform the NCEP-NCAR and ERA-40 reanalyses in representing the present climate conditions. The reanalyses result to be largely inadequate for describing the hydrology of the Danube river basin, both for the reconstruction of the long-term averages and of the seasonal cycle. The reanalyses cannot in any sense be used as verification. In global warming conditions, for basically all models the water balance decreases, whereas its interannual variability increases. Changes in the strength of the hydrological cycle are not consistent among models: it is confirmed that capturing the impact of climate change on the hydrological cycle is not an easy task over land areas. We note that for some of the diagnostics the ensemble mean does not represent any sort of "average" model, and it often falls between the models’ clusters. We suggest that these results should be carefully considered in the perspective of auditing climate models and assessing their ability to simulate future climate changes.
NASA Astrophysics Data System (ADS)
Wilson, E. L.; DiGregorio, A.; Carter, L. M.; Euskirchen, E. S.; Edgar, C.; Hoffman, C.; Ramanathan, A. K.; Mao, J.; Duncan, B. N.; Ott, L. E.; Liang, Q.; Melocik, K. A.; Tucker, C. J.
2016-12-01
We present field measurements from a May 2016 campaign funded under NASA's Interdisciplinary Science (IDS) program to track methane (CH4) and carbon dioxide (CO2) emissions above thawing permafrost at three sites near Fairbanks, AK. Each of the sites, located in the Bonanza Creek Research Forest, represent a different ecosystem including black spruce with cold soils and stable permafrost, collapse scar bog with thermokarst formation, and a site with moderately rich fen lacking near surface permafrost. Field experiments were carried out in May during the seasonal ground thaw of the active layer. Measurements included permafrost depth and subsurface structure using ground penetrating radar, meteorological variables (air and soil temperature, net radiation, albedo, precipitation, snow depth, vapor pressure, etc.), eddy covariance data from a 3-D sonic anemometer, and surface and column concentrations of CH4 and CO2 with an open-path infrared gas analyzer (LICOR) and Miniaturized Laser Heterodyne Radiometer (Mini-LHR) respectively. We have referred to this effort as a pilot study because our intent is to expand our observational network in the future to other sites in North America, which will aid in the monitoring of changes in GHG emissions in the Arctic as well as complement and help interpret data collected by space-borne instruments, such as GOSAT, IASI, and AIRS. This is the first time that these types of measurements have been combined to provide a holistic view of the evolution of, and the atmospheric response to permafrost thaw. The final year of this effort will focus on estimating a global source of GHG emissions from thawing permafrosts. We will use MODIS and Landsat-8 Operational Land Imager and Thermal Infrared Sensor data to "scale up" the data collected at the three sites on the basis of land surface type information. Based on the data collected at the three sites and a variety of existing satellite data sets, we will develop a computationally-efficient parameterization of emissions from thawing permafrosts for use in the NASA GEOS-5 Atmospheric General Circulation Model (AGCM), thus benefiting ongoing efforts in the NASA Global Modeling and Assimilation Office (GMAO) to build an Earth System Model which is used for both retrospective and predictive simulations of important GHGs.
Impact of Subsurface Temperature Variability on Meteorological Variability: An AGCM Study
NASA Astrophysics Data System (ADS)
Mahanama, S. P.; Koster, R. D.; Liu, P.
2006-05-01
Anomalous atmospheric conditions can lead to surface temperature anomalies, which in turn can lead to temperature anomalies deep in the soil. The deep soil temperature (and the associated ground heat content) has significant memory -- the dissipation of a temperature anomaly may take weeks to months -- and thus deep soil temperature may contribute to the low frequency variability of energy and water variables elsewhere in the system. The memory may even provide some skill to subseasonal and seasonal forecasts. This study uses two long-term AGCM experiments to isolate the contribution of deep soil temperature variability to variability elsewhere in the climate system. The first experiment consists of a standard ensemble of AMIP-type simulations, simulations in which the deep soil temperature variable is allowed to interact with the rest of the system. In the second experiment, the coupling of the deep soil temperature to the rest of the climate system is disabled -- at each grid cell, the local climatological seasonal cycle of deep soil temperature (as determined from the first experiment) is prescribed. By comparing the variability of various atmospheric quantities as generated in the two experiments, we isolate the contribution of interactive deep soil temperature to that variability. The results show that interactive deep soil temperature contributes significantly to surface temperature variability. Interactive deep soil temperature, however, reduces the variability of the hydrological cycle (evaporation and precipitation), largely because it allows for a negative feedback between evaporation and temperature.
Electrical Lumped Model Examination for Load Variation of Circulation System
NASA Astrophysics Data System (ADS)
Koya, Yoshiharu; Ito, Mitsuyo; Mizoshiri, Isao
Modeling and analysis of the circulation system enables the characteristic decision of circulation system in the body to be made. So, many models of circulation system have been proposed. But, they are complicated because the models include a lot of elements. Therefore, we proposed a complete circulation model as a lumped electrical circuit, which is comparatively simple. In this paper, we examine the effectiveness of the complete circulation model as a lumped electrical circuit. We use normal, angina pectoris, dilated cardiomyopathy and myocardial infarction for evaluation of the ventricular contraction function.
Hadano, Mayumi; Nasahara, Kenlo Nishida; Motohka, Takeshi; Noda, Hibiki Muraoka; Murakami, Kazutaka; Hosaka, Masahiro
2013-01-01
Reports indicate that leaf onset (leaf flush) of deciduous trees in cool-temperate ecosystems is occurring earlier in the spring in response to global warming. In this study, we created two types of phenology models, one driven only by warmth (spring warming [SW] model) and another driven by both warmth and winter chilling (parallel chill [PC] model), to predict such phenomena in the Japanese Islands at high spatial resolution (500 m). We calibrated these models using leaf onset dates derived from satellite data (Terra/MODIS) and in situ temperature data derived from a dense network of ground stations Automated Meteorological Data Acquisition System. We ran the model using future climate predictions created by the Japanese Meteorological Agency's MRI-AGCM3.1S model. In comparison to the first decade of the 2000s, our results predict that the date of leaf onset in the 2030s will advance by an average of 12 days under the SW model and 7 days under the PC model throughout the study area. The date of onset in the 2090s will advance by 26 days under the SW model and by 15 days under the PC model. The greatest impact will occur on Hokkaido (the northernmost island) and in the central mountains. PMID:23789086
Forced and Free Intra-Seasonal Variability Over the South Asian Monsoon Region Simulated by 10 AGCMs
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Kang, In-Sik; Waliser, Duane; Atlas, Robert (Technical Monitor)
2001-01-01
This study examines intra-seasonal (20-70 day) variability in the South Asian monsoon region during 1997/98 in ensembles of 10 simulations with 10 different atmospheric general circulation models. The 10 ensemble members for each model are forced with the same observed weekly sea surface temperature (SST) but differ from each other in that they are started from different initial atmospheric conditions. The results show considerable differences between the models in the simulated 20-70 day variability, ranging from much weaker to much stronger than the observed. A key result is that the models do produce, to varying degrees, a response to the imposed weekly SST. The forced variability tends to be largest in the Indian and western Pacific Oceans where, for some models, it accounts for more than 1/4 of the 20-70 day intra-seasonal variability in the upper level velocity potential during these two years. A case study of a strong observed MJO (intraseasonal oscillation) event shows that the models produce an ensemble mean eastward propagating signal in the tropical precipitation field over the Indian Ocean and western Pacific, similar to that found in the observations. The associated forced 200 mb velocity potential anomalies are strongly phase locked with the precipitation anomalies, propagating slowly to the east (about 5 m/s) with a local zonal wave number two pattern that is generally consistent with the developing observed MJO. The simulated and observed events are, however, approximately in quadrature, with the simulated response 2 leading by 5-10 days. The phase lag occurs because, in the observations, the positive SST anomalies develop upstream of the main convective center in the subsidence region of the MJO, while in the simulations, the forced component is in phase with the SST. For all the models examined here, the intraseasonal variability is dominated by the free (intra-ensemble) component. The results of our case study show that the free variability has a predominately zonal wave number one pattern, and has propagation speeds (10 - 15 m/s) that are more typical of observed MJO behavior away from the convectively active regions. The free variability appears to be synchronized with the forced response, at least, during the strong event examined here. The results of this study support the idea that coupling with SSTs plays an important, though probably not dominant, role in the MJO. The magnitude of the atmospheric response to the SST appears to be in the range of 15% - 30% of the 20-70 day variability over much of the tropical eastern Indian and western Pacific Oceans. The results also highlight the need to use caution when interpreting atmospheric model simulations in which the prescribed SST resolve MJO time scales.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Wang, Hailan; Suarez, Max; Koster, Randal
2010-01-01
The USCLIV AR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. The runs were done with several global atmospheric models including NASA/NSIPP-l, NCEP/GFS, GFDLlAM2, and NCAR CCM3 and CAM3.5. Specific questions that the runs are designed to address include: What are mechanisms that maintain drought across the seasonal cycle and from one year to the next. To what extent can droughts develop independently of ocean variability due to year-to-year memory that may be inherent to the land. What is the role of the different ocean basins? Here we focus on the potential predictability of drought conditions over the United States. Specific issues addressed include the seasonality and regionality of the signal-to-noise ratios associated with Pacific and Atlantic SST forcing, and the sensitivity of the results to the climatological stationary waves simulated by the different AGCMs.
Future stable water isotope projection with an isotope-AGCM driven by CMIP5 SSTs
NASA Astrophysics Data System (ADS)
Yoshimura, K.
2016-12-01
Stable water isotope ratios (dD and d18O) are widely used as proxy of past climate changes, and it is extremely important to understand and predict the mechanism of current isotopic spatio-temporal behavior with regard to the on-going climate change. However, as compared many studies on reproduction of isotopes for the past, there are few studies on future projection of isotopes. Therefore, in this study, a set of experiments using an isotope-incorporate AGCM (IsoGSM) with SST and sea ice field simulated from multiple CMIP5 models, namely MIROC5, CCSM4, and MRI-CGCM3, were conducted for the end of 20th century (1980-1990) and the end of 21st century (2080-2090) under RCP2.6 and RCP8.5 scenarios. Thus the responses in stable water isotope ratio in precipitation and water vapor in accordance to the global warming were investigated. As results, the changes in global surface air temperature were about +1K and +3K with RCP2.6 and RCP8.5, respectively. Similarly, the global precipitation changes were about +0.07mm/day (about +2%) and +0.18mm/day (about +5%), and the global precipitable water changes were about +2mm (+7%) and +6mm (+24%), respectively. The moisture was increased in accordance to the Clausius-Clapayron theory (7%/K), but the increase in precipitation is not that large. This indicates that the global hydrological cycle was slowed down in the globally warmed experiments. On the other hand, for the isotopic signals, the changes in globally averaged d18O in precipitation were about 0.2‰ and 0.4‰, and those in precipitable water were 0.2‰ and 0.5‰, in RCP2.6 and RCP8.5, respectively. It is well-known that there are temperature effect (positive correlation in air temperature and precipitation isotopes) and amount effect (negative correlation in precipitation amount and isotopes), but in the globally warmed world, these effects were offset, and only weaker temperature effect was appeared in the global mean isotope signals. Regional details will be shown in the presentation.
Collaborative Research: Robust Climate Projections and Stochastic Stability of Dynamical Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghil, Michael; McWilliams, James; Neelin, J. David
The project was completed along the lines of the original proposal, with additional elements arising as new results were obtained. The originally proposed three thrusts were expanded to include an additional, fourth one. (i) The e ffects of stochastic perturbations on climate models have been examined at the fundamental level by using the theory of deterministic and random dynamical systems, in both nite and in nite dimensions. (ii) The theoretical results have been implemented first on a delay-diff erential equation (DDE) model of the El-Nino/Southern-Oscillation (ENSO) phenomenon. (iii) More detailed, physical aspects of model robustness have been considered, as proposed,more » within the stripped-down ICTP-AGCM (formerly SPEEDY) climate model. This aspect of the research has been complemented by both observational and intermediate-model aspects of mid-latitude and tropical climate. (iv) An additional thrust of the research relied on new and unexpected results of (i) and involved reduced-modeling strategies and associated prediction aspects have been tested within the team's empirical model reduction (EMR) framework. Finally, more detailed, physical aspects have been considered within the stripped-down SPEEDY climate model. The results of each of these four complementary e fforts are presented in the next four sections, organized by topic and by the team members concentrating on the topic under discussion.« less
NASA Astrophysics Data System (ADS)
Hu, Shujuan; Chou, Jifan; Cheng, Jianbo
2018-04-01
In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.
Understanding and Portraying the Global Atmospheric Circulation.
ERIC Educational Resources Information Center
Harrington, John, Jr.; Oliver, John E.
2000-01-01
Examines teaching models of atmospheric circulation and resultant surface pressure patterns, focusing on the three-cell model and the meaning of meridional circulation as related to middle and high latitudes. Addresses the failure of the three-cell model to explain seasonal variations in atmospheric circulation. Suggests alternative models. (CMK)
An introduction of a new stochastic tropical cyclone model for Japan area
NASA Astrophysics Data System (ADS)
Suzuki, K.; Nakano, S.; Ueno, G.; Mori, N.; Nakajo, S.
2015-12-01
The extreme events such as tropical cyclones (TC), downpours, floods, and so on, have huge influences on the human life in the past, present, and future. In particular, the change in their risks on the human life under the future climate has been concerned by the governments and researchers. Our aim is to estimate the probabilities for frequencies of TC which could attack to Japan under the future climate that calculated by GCMs. For carrying out this subject, it is needed a suitable rare event sampling method to find TCs that land on big cities in Japan. Moreover, it requires sufficient reproductions of TCs for calculation of their probabilities, too. The model for TC reproductions is designed with three parts following the lifecycle of TC; formation, maturity and decay. However, we don't treat the part of maturity with physical equations because the maturity process is complicated to express as a stochastic model. The TC intensity model will take the place of this physical part. Several stochastic TC models have been developed for different purposes and problems. Our model is developed for the establishment of a rare event sampling method. Here, the comparisons of behaviors of TC tracks among several stochastic TC models will be discussed using Best Track data provided by Japan Meteorological Agency and MRI-AGCM data for the present climate.
NASA Astrophysics Data System (ADS)
Pezzi, L. P.; Cavalcanti, I. F. A.
The role of tropical Atlantic sea surface temperature (SST) anomalies during ENSO episodes over northeast Brazil (Nordeste) is investigated using the CPTEC/COLA Atmospheric General Circulation Model (AGCM). Four sets of integrations are performed using SST in El Niño and La Niña (ENSO) episodes, changing the SST of the Atlantic Ocean. A positive dipole (SST higher than normal in the tropical North Atlantic and below normal in the tropical South Atlantic) and a negative dipole (opposite conditions), are set as the boundary conditions of SST in the Atlantic Ocean. The four experiments are performed using El Niño or La Niña SST in all oceans, except in the tropical Atlantic where the two phases of the SST dipole are applied. Five initial conditions were integrated in each case in order to obtain four ensemble results. The positive SST dipole over the tropical Atlantic Ocean and El Niño conditions over the Pacific Ocean resulted in dry conditions over the Nordeste. When the negative dipole and El Niño conditions over the Pacific Ocean were applied, the results showed precipitation above normal over the north of Nordeste. When La Niña conditions over Pacific Ocean were tested together with a negative dipole, positive precipitation anomalies occurred over the whole Nordeste. Using the positive dipole over the tropical Atlantic, the precipitation over Nordeste was below average. During La Niña episodes, the Atlantic Ocean conditions have a larger effect on the precipitation of Nordeste than the Pacific Ocean. In El Niño conditions, only the north region of Nordeste is affected by the Atlantic SST. Other tropical areas of South America show a change only in the intensity of anomalies. Central and southeast regions of South America are affected by the Atlantic conditions only during La Niña conditions, whereas during El Niño these regions are influenced only by conditions in the Pacific Ocean.
Long Term trends in Meridional ISO Activity as seen in CMIP5 Simulations
NASA Astrophysics Data System (ADS)
Srivastava, G.; Chakraborty, A.; Nanjundaiah, R. S.
2016-12-01
Active and break phases of Indian Summer Monsoon (ISM) are manifested as subseasonal increase and decrease of convection. Major part of this intra-seasonal variability comes from low-frequency oscillations. Previous studies showed that northward propagating convective cloud bands are associated with these low-frequency intra-seasonal oscillations. Therefore, a thorough understanding of their spatial extent, location and intensity will be useful to understand and model the ISM. In this study, we have used Continous Wavelet Transform (CWT) technique to estimate the spatial extent (scale), center and intensity of these poleward propagating oscillatory systems. Using observation datasets, we show that scale, centre and intensity of these nothward propagating modes show different characteristics during floods and droughts of ISM. We have analysed different scenarios of CMIP5 and find that the change in mean ISM is related to changes in scale, center and intensity of northward propagations. We further show using AGCM simulations that SST over different regions of the world can modulate ISO over the Indian region.
NASA Astrophysics Data System (ADS)
Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan
2018-04-01
The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional and zonal components of global atmospheric circulation.
Secular spring rainfall variability at local scale over Ethiopia: trend and associated dynamics
NASA Astrophysics Data System (ADS)
Tsidu, Gizaw Mengistu
2017-10-01
Spring rainfall secular variability is studied using observations, reanalysis, and model simulations. The joint coherent spatio-temporal secular variability of gridded monthly gauge rainfall over Ethiopia, ERA-Interim atmospheric variables and sea surface temperature (SST) from Hadley Centre Sea Ice and SST (HadISST) data set is extracted using multi-taper method singular value decomposition (MTM-SVD). The contemporaneous associations are further examined using partial Granger causality to determine presence of causal linkage between any of the climate variables. This analysis reveals that only the northwestern Indian Ocean secular SST anomaly has direct causal links with spring rainfall over Ethiopia and mean sea level pressure (MSLP) over Africa inspite of the strong secular covariance of spring rainfall, SST in parts of subtropical Pacific, Atlantic, Indian Ocean and MSLP. High secular rainfall variance and statistically significant linear trend show consistently that there is a massive decline in spring rain over southern Ethiopia. This happened concurrently with significant buildup of MSLP over East Africa, northeastern Africa including parts of the Arabian Peninsula, some parts of central Africa and SST warming over all ocean basins with the exception of the ENSO regions. The east-west pressure gradient in response to the Indian Ocean warming led to secular southeasterly winds over the Arabian Sea, easterly over central Africa and equatorial Atlantic. These flows weakened climatological northeasterly flow over the Arabian Sea and southwesterly flow over equatorial Atlantic and Congo basins which supply moisture into the eastern Africa regions in spring. The secular divergent flow at low level is concurrent with upper level convergence due to the easterly secular anomalous flow. The mechanisms through which the northwestern Indian Ocean secular SST anomaly modulates rainfall are further explored in the context of East Africa using a simplified atmospheric general circulation model (AGCM) coupled to mixed-layer oceanic model. The rainfall anomaly (with respect to control simulation), forced by the northwestern Indian Ocean secular SST anomaly and averaged over the 30-year period, exhibits prevalence of dry conditions over East and equatorial Africa in agreement with observation. The atmospheric response to secular SST warming anomaly led to divergent flow at low levels and subsidence at the upper troposphere over regions north of 5° S on the continent and vice versa over the Indian Ocean. This surface difluence over East Africa, in addition to its role in suppressing convective activity, deprives the region of moisture supply from the Indian Ocean as well as the Atlantic and Congo basins.
Using a Gravity Model to Predict Circulation in a Public Library System.
ERIC Educational Resources Information Center
Ottensmann, John R.
1995-01-01
Describes the development of a gravity model based upon principles of spatial interaction to predict the circulation of libraries in the Indianapolis-Marion County Public Library (Indiana). The model effectively predicted past circulation figures and was tested by predicting future library circulation, particularly for a new branch library.…
Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing
NASA Astrophysics Data System (ADS)
Vecchi, Gabriel A.; Soden, Brian J.; Wittenberg, Andrew T.; Held, Isaac M.; Leetmaa, Ants; Harrison, Matthew J.
2006-05-01
Since the mid-nineteenth century the Earth's surface has warmed, and models indicate that human activities have caused part of the warming by altering the radiative balance of the atmosphere. Simple theories suggest that global warming will reduce the strength of the mean tropical atmospheric circulation. An important aspect of this tropical circulation is a large-scale zonal (east-west) overturning of air across the equatorial Pacific Ocean-driven by convection to the west and subsidence to the east-known as the Walker circulation. Here we explore changes in tropical Pacific circulation since the mid-nineteenth century using observations and a suite of global climate model experiments. Observed Indo-Pacific sea level pressure reveals a weakening of the Walker circulation. The size of this trend is consistent with theoretical predictions, is accurately reproduced by climate model simulations and, within the climate models, is largely due to anthropogenic forcing. The climate model indicates that the weakened surface winds have altered the thermal structure and circulation of the tropical Pacific Ocean. These results support model projections of further weakening of tropical atmospheric circulation during the twenty-first century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiogama, Hideo; Imada, Yukiko; Mori, Masato
Here, we describe two unprecedented large (100-member), longterm (61-year) ensembles based on MRI-AGCM3.2, which were driven by historical and non-warming climate forcing. These ensembles comprise the "Database for Policy Decision making for Future climate change (d4PDF)". We compare these ensembles to large ensembles based on another climate model, as well as to observed data, to investigate the influence of anthropogenic activities on historical changes in the numbers of record-breaking events, including: the annual coldest daily minimum temperature (TNn), the annual warmest daily maximum temperature (TXx) and the annual most intense daily precipitation event (Rx1day). These two climate model ensembles indicatemore » that human activity has already had statistically significant impacts on the number of record-breaking extreme events worldwide mainly in the Northern Hemisphere land. Specifically, human activities have altered the likelihood that a wider area globally would suffer record-breaking TNn, TXx and Rx1day events than that observed over the 2001- 2010 period by a factor of at least 0.6, 5.4 and 1.3, respectively. However, we also find that the estimated spatial patterns and amplitudes of anthropogenic impacts on the probabilities of record-breaking events are sensitive to the climate model and/or natural-world boundary conditions used in the attribution studies.« less
Regional climates in the GISS global circulation model - Synoptic-scale circulation
NASA Technical Reports Server (NTRS)
Hewitson, B.; Crane, R. G.
1992-01-01
A major weakness of current general circulation models (GCMs) is their perceived inability to predict reliably the regional consequences of a global-scale change, and it is these regional-scale predictions that are necessary for studies of human-environmental response. For large areas of the extratropics, the local climate is controlled by the synoptic-scale atmospheric circulation, and it is the purpose of this paper to evaluate the synoptic-scale circulation of the Goddard Institute for Space Studies (GISS) GCM. A methodology for validating the daily synoptic circulation using Principal Component Analysis is described, and the methodology is then applied to the GCM simulation of sea level pressure over the continental United States (excluding Alaska). The analysis demonstrates that the GISS 4 x 5 deg GCM Model II effectively simulates the synoptic-scale atmospheric circulation over the United States. The modes of variance describing the atmospheric circulation of the model are comparable to those found in the observed data, and these modes explain similar amounts of variance in their respective datasets. The temporal behavior of these circulation modes in the synoptic time frame are also comparable.
NASA Astrophysics Data System (ADS)
Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.
2018-04-01
Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with ENSO-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of ENSO-ISM teleconnections in G1 models. Warm Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which ENSO-ISM teleconnections are underestimated. On the other hand, many G2 models are able to represent most of large-scale circulation over Indo-Pacific region associated with El Niño and hence provide more realistic ENSO-ISM teleconnections. Therefore, this study advocates the importance of representation/simulation of large-scale circulation patterns during El Niño years in coupled models in order to capture El Niño-monsoon teleconnections well.
Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere-ocean model
NASA Astrophysics Data System (ADS)
Tolstykh, M. A.; Diansky, N. A.; Gusev, A. V.; Kiktev, D. B.
2014-03-01
A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989-2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997-1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.
Library Circulation Systems: An Overview
ERIC Educational Resources Information Center
Surace, Cecily J.
1972-01-01
The model circulation system outlined is an on-line real time system in which the circulation file is created from the shelf list. The model extends beyond the operational limits of most existing circulation systems and can be considered a reflection of the current state of the art. (36 references) (Author/NH)
NASA Astrophysics Data System (ADS)
Li, Puxi; Zhou, Tianjun; Zou, Liwei
2016-04-01
The authors evaluated the performance of Meteorological Research Institute (MRI) AGCM3.2 models in the simulations of climatology and interannual variability of the Spring Persistent Rains (SPR) over southeastern China. The possible impacts of different horizontal resolutions were also investigated based on the experiments with three different horizontal resolutions (i.e., 120, 60, and 20km). The model could reasonably reproduce the main rainfall center over southeastern China in boreal spring under the three different resolutions. In comparison with 120 simulation, it revealed that 60km and 20km simulations show the superiority in simulating rainfall centers anchored by the Nanling-Wuyi Mountains, but overestimate rainfall intensity. Water vapor budget diagnosis showed that, the 60km and 20km simulations tended to overestimate the water vapor convergence over southeastern China, which leads to wet biases. In the aspect of interannual variability of SPR, the model could reasonably reproduce the anomalous lower-tropospheric anticyclone in the western North Pacific (WNPAC) and positive precipitation anomalies over southeastern China in El Niño decaying spring. Compared with the 120km resolution, the large positive biases are substantially reduced in the mid and high resolution models which evidently improve the simulation of horizontal moisture advection in El Niño decaying spring. We highlight the importance of developing high resolution climate model as it could potentially improve the climatology and interannual variability of SPR.
A blood circulation model for reference man
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, R.W.; Eckerman, K.F.; Williams, L.R.
This paper describes a dynamic blood circulation model that predicts the movement and gradual dispersal of a bolus of material in the circulation after its intravascular injection into an adult human. The main purpose of the model is to improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The total blood volume is partitioned into the blood contents of 24 separate organs or tissues, right heart chambers, left heart chambers, pulmonary circulation, arterial outflow to the systemic tissues (aorta and large arteries), and venous return from the systemic tissues (large veins). As amore » compromise between physical reality and computational simplicity, the circulation of blood is viewed as a system of first-order transfers between blood pools, with the delay time depending on the mean transit time across the pool. The model allows consideration of incomplete, tissue-dependent extraction of material during passage through the circulation and return of material from tissues to plasma.« less
Solar related waves in the Venusian atmosphere from the cloud tops to 100 km
NASA Technical Reports Server (NTRS)
Elson, L. S.
1983-01-01
A quasi-linear diagnostic model using observed solar-related temperatures and a specified solar mean circulation and surface structure to find the solar-related circulation above the clouds of Venus is presented. Despite the greater dependence of model-derived, solar-related circulation on the mean flow than is the case for terrestrial tides, as well as the uncertainty concerning this mean flow, significant conclusions are drawn for the solar-related circulation and thermal structure of Venus. An anomalously large response is found in the polar regions, due to the model's requirement of a process such as dissipation which will act as a major sink for momentum. Dissipation is specified in the model as Rayleigh friction with an unknown free parameter coefficient. In view of this, dissipation is either very efficient by terrestrial standards and accompanied by small solar-related circulation, or similar to that of earth and possessed of a circulation large enough to have an impact on the mean circulation.
A Modeling Study of the Spring 2011 Extreme US Weather Activity
NASA Technical Reports Server (NTRS)
Schubert, S.; Suarez, M.; Chang, Y.
2012-01-01
The spring of 2011 was characterized by record-breaking tornadic activity with substantial loss of life and destruction of property. While a waning La Nina and other atmospheric teleconnections have been implicated in the development of these extreme weather events, a quantitative assessment of their causes is still lacking. This study uses high resolution (1/4 lat/lon) GEOS-5 AGCM experiments to quantify the role of SSTs and soil moisture in the development of the extreme weather activity with a focus on April - the month of peak tornadic activity. The simulations, consisting of 22-member ensembles of three-month long simulations (initialized March 1st) reproduce the main features of the observed large-scale changes including the below-normal temperature and above-normal precipitation in the Central US, and the hot and dry conditions to the south. Various sensitivity experiments are conducted to separate the roles of the SST, soil moisture and the initial atmospheric conditions in the development and predictability of the atmospheric conditions (wind shear, moisture, etc.) favoring the severe weather activity and flooding.
Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change
NASA Technical Reports Server (NTRS)
1998-01-01
This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the GISS 8 deg x lO deg atmospheric GCM to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.
Ganju, Neil K.; Lentz, Steven J.; Kirincich, Anthony R.; Farrar, J. Thomas
2011-01-01
Inner-shelf circulation is governed by the interaction between tides, baroclinic forcing, winds, waves, and frictional losses; the mean circulation ultimately governs exchange between the coast and ocean. In some cases, oscillatory tidal currents interact with bathymetric features to generate a tidally rectified flow. Recent observational and modeling efforts in an overlapping domain centered on the Martha's Vineyard Coastal Observatory (MVCO) provided an opportunity to investigate the spatial and temporal complexity of circulation on the inner shelf. ADCP and surface radar observations revealed a mean circulation pattern that was highly variable in the alongshore and cross-shore directions. Nested modeling incrementally improved representation of the mean circulation as grid resolution increased and indicated tidal rectification as the generation mechanism of a counter-clockwise gyre near the MVCO. The loss of model skill with decreasing resolution is attributed to insufficient representation of the bathymetric gradients (Δh/h), which is important for representing nonlinear interactions between currents and bathymetry. The modeled momentum balance was characterized by large spatial variability of the pressure gradient and horizontal advection terms over short distances, suggesting that observed inner-shelf momentum balances may be confounded. Given the available observational and modeling data, this work defines the spatially variable mean circulation and its formation mechanism—tidal rectification—and illustrates the importance of model resolution for resolving circulation and constituent exchange near the coast. The results of this study have implications for future observational and modeling studies near the MVCO and other inner-shelf locations with alongshore bathymetric variability.
An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1998-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical 'cores' of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical 'simple physics' parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1998-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Cen- ter and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical "cores" of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. ne two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical "simple physics" parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
NASA Technical Reports Server (NTRS)
Kim, J.-H.; Sud, Y. C.
1993-01-01
A 10-year (1979-1988) integration of Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) under Atmospheric Model Intercomparison Project (AMIP) is analyzed and compared with observation. The first momentum fields of circulation variables and also hydrological variables including precipitation, evaporation, and soil moisture are presented. Our goals are (1) to produce a benchmark documentation of the GLA GCM for future model improvements; (2) to examine systematic errors between the simulated and the observed circulation, precipitation, and hydrologic cycle; (3) to examine the interannual variability of the simulated atmosphere and compare it with observation; and (4) to examine the ability of the model to capture the major climate anomalies in response to events such as El Nino and La Nina. The 10-year mean seasonal and annual simulated circulation is quite reasonable compared to the analyzed circulation, except the polar regions and area of high orography. Precipitation over tropics are quite well simulated, and the signal of El Nino/La Nina episodes can be easily identified. The time series of evaporation and soil moisture in the 12 biomes of the biosphere also show reasonable patterns compared to the estimated evaporation and soil moisture.
An Isopycnal Box Model with predictive deep-ocean structure for biogeochemical cycling applications
NASA Astrophysics Data System (ADS)
Goodwin, Philip
2012-07-01
To simulate global ocean biogeochemical tracer budgets a model must accurately determine both the volume and surface origins of each water-mass. Water-mass volumes are dynamically linked to the ocean circulation in General Circulation Models, but at the cost of high computational load. In computationally efficient Box Models the water-mass volumes are simply prescribed and do not vary when the circulation transport rates or water mass densities are perturbed. A new computationally efficient Isopycnal Box Model is presented in which the sub-surface box volumes are internally calculated from the prescribed circulation using a diffusive conceptual model of the thermocline, in which upwelling of cold dense water is balanced by a downward diffusion of heat. The volumes of the sub-surface boxes are set so that the density stratification satisfies an assumed link between diapycnal diffusivity, κd, and buoyancy frequency, N: κd = c/(Nα), where c and α are user prescribed parameters. In contrast to conventional Box Models, the volumes of the sub-surface ocean boxes in the Isopycnal Box Model are dynamically linked to circulation, and automatically respond to circulation perturbations. This dynamical link allows an important facet of ocean biogeochemical cycling to be simulated in a highly computationally efficient model framework.
Tawhai, Merryn H.; Clark, Alys R.; Burrowes, Kelly S.
2011-01-01
Biophysically-based computational models provide a tool for integrating and explaining experimental data, observations, and hypotheses. Computational models of the pulmonary circulation have evolved from minimal and efficient constructs that have been used to study individual mechanisms that contribute to lung perfusion, to sophisticated multi-scale and -physics structure-based models that predict integrated structure-function relationships within a heterogeneous organ. This review considers the utility of computational models in providing new insights into the function of the pulmonary circulation, and their application in clinically motivated studies. We review mathematical and computational models of the pulmonary circulation based on their application; we begin with models that seek to answer questions in basic science and physiology and progress to models that aim to have clinical application. In looking forward, we discuss the relative merits and clinical relevance of computational models: what important features are still lacking; and how these models may ultimately be applied to further increasing our understanding of the mechanisms occurring in disease of the pulmonary circulation. PMID:22034608
Shiogama, Hideo; Imada, Yukiko; Mori, Masato; ...
2016-08-07
Here, we describe two unprecedented large (100-member), longterm (61-year) ensembles based on MRI-AGCM3.2, which were driven by historical and non-warming climate forcing. These ensembles comprise the "Database for Policy Decision making for Future climate change (d4PDF)". We compare these ensembles to large ensembles based on another climate model, as well as to observed data, to investigate the influence of anthropogenic activities on historical changes in the numbers of record-breaking events, including: the annual coldest daily minimum temperature (TNn), the annual warmest daily maximum temperature (TXx) and the annual most intense daily precipitation event (Rx1day). These two climate model ensembles indicatemore » that human activity has already had statistically significant impacts on the number of record-breaking extreme events worldwide mainly in the Northern Hemisphere land. Specifically, human activities have altered the likelihood that a wider area globally would suffer record-breaking TNn, TXx and Rx1day events than that observed over the 2001- 2010 period by a factor of at least 0.6, 5.4 and 1.3, respectively. However, we also find that the estimated spatial patterns and amplitudes of anthropogenic impacts on the probabilities of record-breaking events are sensitive to the climate model and/or natural-world boundary conditions used in the attribution studies.« less
Seasonal overturning circulation in the Red Sea: 2. Winter circulation
NASA Astrophysics Data System (ADS)
Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Köhl, Armin; Gopalakrishnan, Ganesh; Rivas, David
2014-04-01
The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.
Tracer transport by the diabatic circulation deduced from satellite observations
NASA Technical Reports Server (NTRS)
Solomon, S.; Kiehl, J. T.; Garcia, R. R.; Grose, W.
1986-01-01
Nimbus-7 sensor data were used to track the diabatic circulation in the stratosphere to study the advective transport of CH4 and N2O as tracer species. Advective transport by the mean circulation was found to be a function of the temperature field and associated deviations from radiative equilibrium. A photochemical model was applied to account for the disappearance of the tracer species from the stratosphere. Comparisons between the SAMS data and modeling on the basis of the chemical loss rates of the tracers and the LIMS circulation data showed that the model predictions underestimated the resident abundances, although the global distributions and circulations exhibited a good match.
Does coupled ocean enhance ozone-hole-induced Southern Hemisphere circulation changes?
NASA Astrophysics Data System (ADS)
Son, S. W.; Han, B. R.; Kim, S. Y.; Park, R.
2017-12-01
The ozone-hole-induced Southern Hemisphere (SH) circulation changes, such as poleward shift of westerly jet and Hadley cell widening, have been typically explored with either coupled general circulation models (CGCMs) prescribing stratospheric ozone or chemistry-climate models (CCMs) prescribing surface boundary conditions. Only few studies have utilized ocean-coupled CCMs with a relatively coarse resolution. To better quantify the role of interactive chemistry and coupled ocean in the ozone-hole-induced SH circulation changes, the present study examines a set of CGCM and CCM simulations archived for the Coupled Model Intercomparison Project phase 5 (CMIP5) and CCM initiative (CCMI). Although inter-model spread of Antarctic ozone depletion is substantially large especially in the austral spring, both CGCMs with relatively simple ozone chemistry and CCMs with fully interactive comprehensive chemistry reasonably well reproduce long-term trends of Antarctic ozone and the associated polar-stratospheric temperature changes. Most models reproduce a poleward shift of SH jet and Hadley-cell widening in the austral summer in the late 20th century as identified in reanalysis datasets. These changes are quasi-linearly related with Antarctic ozone changes, confirming the critical role of Antarctic ozone depletion in the austral-summer zonal-mean circulation changes. The CGCMs with simple but still interactive ozone show slightly stronger circulation changes than those with prescribed ozone. However, the long-term circulation changes in CCMs are largely insensitive to the coupled ocean. While a few models show the enhanced circulation changes when ocean is coupled, others show essentially no changes or even weakened circulation changes. This result suggests that the ozone-hole-related stratosphere-troposphere coupling in the late 20th century may be only weakly sensitive to the coupled ocean.
U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model
2008-09-30
major contributors to the strength of the Gulf Stream, (1) the wind forcing, (2) the Atlantic meridional overturning circulation (AMOC), and (3) a...convergence and sensitivity studies with North Atlantic circulation models. Part I. The western boundary current system. Ocean Model., 16, 141-159...a baroclinic version of ADvanced CIRCulation (ADCIRC), the latter an unstructured grid model for baroclinic coastal/estuarian applications. NCOM is
NASA Astrophysics Data System (ADS)
Kanada, S.; Nakano, M.; Nakamura, M.; Hayashi, S.; Kato, T.; Kurihara, K.; Sasaki, H.; Uchiyama, T.; Aranami, K.; Honda, Y.; Kitoh, A.
2008-12-01
In order to study changes in the regional climate in the vicinity of Japan during the summer rainy season due to global warming, experiments by a semi-cloud resolving non-hydrostatic model with a horizontal resolution of 5km (NHM-5km) have been conducted from June to October by nesting within the results of the 10-year time-integrated experiments using a hydrostatic atmospheric general circulation model with a horizontal grid of 20 km (AGCM-20km: TL959L60) for the present and future up to the year 2100. A non-hydrostatic model developed by the Japan Meteorological Agency (JMA) (JMA-NHM; Saito et al. 2001, 2006) was adopted. Detailed descriptions of the NHM-5km are shown by the poster of Nakano et al. Our results show that rainy days over most of the Japanese Islands will decrease in June and July and increase in August and September in the future climate. Especially, remarkable increases in intense precipitations such as larger than 150 - 300 mm/day are projected from the present to future climate. The 90th percentiles of regional largest values among maximum daily precipitations (R-MDPs) grow 156 to 207 mm/day in the present and future climates, respectively. It is well-known that the horizontal distribution of precipitation, especially the heavy rainfall in the vicinity of Japan, much depends on the topography. Therefore, higher resolution experiments by a cloud-resolving model with a horizontal resolution of 1km (NHM-1km) are one-way nested within the results of NHM-5km. The basic frame and design of the NHM-1km is the same as those of the NHM-5km, but the topography is finer and no cumulus parameterization is used in the NHM-1km experiments. The NHM-1km, which treats the convection and cloud microphysics explicitly, can represent not only horizontal distributions of rainfall in detail but also the 3-dimensional structures of meso-beta-scale convective systems (MCSs). Because of the limitation of computation resources, only heavy rainfall events that rank in top 10 % of all rainfall events are selected for the NHM-1km experiments (Heavy rainfall events are defined by R-MDPs > 156 and 207 mm/day for the present and future climates, respectively, from the results of the NHM-5km). Tentative comparisons between the results of the NHM-1km and NHM-1km experiments reveal that the NHM-1km can re-produce more detailed and realistic horizontal distributions of rainfall in many cases. (This study is supported by the Ministry of Education, Culture, Sports, Science and Technology under the framework of the KAKUSHIN program. Numerical simulations are performed in the Earth Simulator)
Minimal modeling of the extratropical general circulation
NASA Technical Reports Server (NTRS)
O'Brien, Enda; Branscome, Lee E.
1989-01-01
The ability of low-order, two-layer models to reproduce basic features of the mid-latitude general circulation is investigated. Changes in model behavior with increased spectral resolution are examined in detail. Qualitatively correct time-mean heat and momentum balances are achieved in a beta-plane channel model which includes the first and third meridional modes. This minimal resolution also reproduces qualitatively realistic surface and upper-level winds and mean meridional circulations. Higher meridional resolution does not result in substantial changes in the latitudinal structure of the circulation. A qualitatively correct kinetic energy spectrum is produced when the resolution is high enough to include several linearly stable modes. A model with three zonal waves and the first three meridional modes has a reasonable energy spectrum and energy conversion cycle, while also satisfying heat and momentum budget requirements. This truncation reproduces the basic mechanisms and zonal circulation features that are obtained at higher resolution. The model performance improves gradually with higher resolution and is smoothly dependent on changes in external parameters.
NASA Astrophysics Data System (ADS)
Yanase, W.; Satoh, M.; Iga, S.; Tomita, H.
2007-12-01
We are developing an icosahedral-grid non-hydrostatic AGCM, which can explicitly represent cumulus or meso-scale convection over the entire globe. We named the model NICAM (Nonhydrostatic ICosahedral Atmospheric Model). On 2005, we have performed a simulations with horizontal grid intervals of 14, 7 and 3.5 km using realistic topography and sea surface temperature in April 2004 (Miura et al., 2007; GRL). It simulated a typhoon Sudal that actually developed over the Northwestern Pacific in 2004. In the present study, the NICAM model with the horizontal grid interval of 14 km was used for perpetual July experiment with 30 forecasting days. In this simulation, several tropical cyclones formed over the wesetern and eastern North Pacific, althought the formation over the western North Pacific occured a little further north to the actually observed region. The mature tropical cyclones with intense wind speed had a structure of a cloud-free eye and eye wall. We have found that the enviromental parameters associated with the tropical cyclone genesis explain well the simulated region of tropical cyclone generation. Over the North Atlantic and eastern North Pacific, westward-moving disturbances like African wave are simulated, which seems to be related to the cyclone formation over the eastern North Pacific. On the other hand, the simulated tropical cyclones over the western North Pacifis seem to form by different factors as has been suggested by the previous studies based on observation. Although the model still has some problems and is under continuous improvement, we can discuss what dynamics is to be represented using a global high-resolution model.
Library Circulation Systems -- An Overview.
ERIC Educational Resources Information Center
Surace, Cecily J.
The model circulation system outlined is an on-line real time system in which the circulation file is created from the shelf list and the terminal inquiry system includes the capability to query and browse through the bibliographic system and the circulation subsystem together to determine the availability for circulation of specific documents, or…
Bui, T D; Dabdub, D; George, S C
1998-06-01
The steady-state exchange of inert gases across an in situ canine trachea has recently been shown to be limited equally by diffusion and perfusion over a wide range (0.01-350) of blood solubilities (betablood; ml . ml-1 . atm-1). Hence, we hypothesize that the exchange of ethanol (betablood = 1,756 at 37 degrees C) in the airways depends on the blood flow rate from the bronchial circulation. To test this hypothesis, the dynamics of the bronchial circulation were incorporated into an existing model that describes the simultaneous exchange of heat, water, and a soluble gas in the airways. A detailed sensitivity analysis of key model parameters was performed by using the method of Latin hypercube sampling. The model accurately predicted a previously reported experimental exhalation profile of ethanol (R2 = 0.991) as well as the end-exhalation airstream temperature (34.6 degrees C). The model predicts that 27, 29, and 44% of exhaled ethanol in a single exhalation are derived from the tissues of the mucosa and submucosa, the bronchial circulation, and the tissue exterior to the submucosa (which would include the pulmonary circulation), respectively. Although the concentration of ethanol in the bronchial capillary decreased during inspiration, the three key model outputs (end-exhaled ethanol concentration, the slope of phase III, and end-exhaled temperature) were all statistically insensitive (P > 0.05) to the parameters describing the bronchial circulation. In contrast, the model outputs were all sensitive (P < 0.05) to the thickness of tissue separating the core body conditions from the bronchial smooth muscle. We conclude that both the bronchial circulation and the pulmonary circulation impact soluble gas exchange when the entire conducting airway tree is considered.
Understanding variability of the Southern Ocean overturning circulation in CORE-II models
NASA Astrophysics Data System (ADS)
Downes, S. M.; Spence, P.; Hogg, A. M.
2018-03-01
The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.
Diagnostics of severe convection and subsynoptic scale ageostrophic circulations
NASA Technical Reports Server (NTRS)
1985-01-01
Diagnostics of severe convection and subsynoptic scale ageostrophic circulations are reported. Mesoscale circulations through forcing of ageostrophic motion by adiabatic, diabatic and frictional processes were studied. The development and application of a hybrid isentropic sigma coordinate numerical model was examined. The numerical model simulates mesoscale ageostrophic circulations associated with propagating jet streaks and severe convection. A complete list of publications and these completed through support of the NASA severe storms research project is included.
Evaluation and Sensitivity Analysis of an Ocean Model Response to Hurricane Ivan (PREPRINT)
2009-05-18
analysis of upper-limb meridional overturning circulation interior ocean pathways in the tropical/subtropical Atlantic . In: Interhemispheric Water...diminishing returns are encountered when either resolution is increased. 3 1. Introduction Coupled ocean-atmosphere general circulation models have become...northwest Caribbean Sea 4 and GOM. Evaluation is difficult because ocean general circulation models incorporate a large suite of numerical algorithms
Can increased poleward oceanic heat flux explain the warm Cretaceous climate?
NASA Astrophysics Data System (ADS)
Schmidt, Gavin A.; Mysak, Lawrence A.
1996-10-01
The poleward transport of heat in the mid-Cretaceous (100 Ma) is examined using an idealized coupled ocean-atmosphere model. The oceanic component consists of two zonally averaged basins representing the proto-Pacific and proto-Indian oceans and models the dynamics of the meridional thermohaline circulation. The atmospheric component is a simple energy and moisture balance model which includes the diffusive meridional transport of sensible heat and moisture. The ocean model is spun up with a variety of plausible Cretaceous surface temperature and salinity profiles, and a consistent atmosphere is objectively derived based on the resultant sea surface temperature and the surface heat and freshwater fluxes. The coupled model does not exhibit climate drift. Multiple equilibria of the coupled model are found that break the initial symmetry of the ocean circulation; several of these equilibria have one-cell (northern or southern sinking) thermohaline circulation patterns. Two main classes of circulation are found: circulations where the densest water is relatively cool and is formed at the polar latitudes and circulations where the densest water is warm, but quite saline, and the strongest sinking occurs at the tropics. In all cases, significant amounts of warm, saline bottom water are formed in the proto-Indian basin which modify the deepwater characteristics in the larger (proto-Pacific) basin. Temperatures in the deep ocean are warm, 10°-17°C, in agreement with benthic foraminiferal oxygen isotope data. The poleward transport of heat in the modeled Cretaceous oceans is larger than in some comparable models of the present day thermohaline circulation and significantly larger than estimates of similar processes in the present-day ocean. It is consistently larger in the polar sinking cases when compared with that seen in the tropical sinking cases, but this represents an increase of only 10%. The largest increase over present-day model transports is in the atmospheric latent heat transport, where an increased hydrological cycle (especially in the tropical sinking cases) contributes up to an extra 1 PW of poleward heat transport. Better constraints on the oceanic deepwater circulation during this period are necessary before the meridional circulation can be unambiguously described.
Numerical simulation of terrain-induced mesoscale circulation in the Chiang Mai area, Thailand
NASA Astrophysics Data System (ADS)
Sathitkunarat, Surachai; Wongwises, Prungchan; Pan-Aram, Rudklao; Zhang, Meigen
2008-11-01
The regional atmospheric modeling system (RAMS) was applied to Chiang Mai province, a mountainous area in Thailand, to study terrain-induced mesoscale circulations. Eight cases in wet and dry seasons under different weather conditions were analyzed to show thermal and dynamic impacts on local circulations. This is the first study of RAMS in Thailand especially investigating the effect of mountainous area on the simulated meteorological data. Analysis of model results indicates that the model can reproduce major features of local circulation and diurnal variations in temperatures. For evaluating the model performance, model results were compared with observed wind speed, wind direction, and temperature monitored at a meteorological tower. Comparison shows that the modeled values are generally in good agreement with observations and that the model captured many of the observed features.
Correlations between the modelled potato crop yield and the general atmospheric circulation
NASA Astrophysics Data System (ADS)
Sepp, Mait; Saue, Triin
2012-07-01
Biology-related indicators do not usually depend on just one meteorological element but on a combination of several weather indicators. One way to establish such integral indicators is to classify the general atmospheric circulation into a small number of circulation types. The aim of present study is to analyse connections between general atmospheric circulation and potato crop yield in Estonia. Meteorologically possible yield (MPY), calculated by the model POMOD, is used to characterise potato crop yield. Data of three meteorological stations and the biological parameters of two potato sorts were applied to the model, and 73 different classifications of atmospheric circulation from catalogue 1.2 of COST 733, domain 05 are used to qualify circulation conditions. Correlation analysis showed that there is at least one circulation type in each of the classifications with at least one statistically significant (99%) correlation with potato crop yield, whether in Kuressaare, Tallinn or Tartu. However, no classifications with circulation types correlating with MPY in all three stations at the same time were revealed. Circulation types inducing a decrease in the potato crop yield are more clearly represented. Clear differences occurred between the observed geographical locations as well as between the seasons: derived from the number of significant circulation types, summer and Kuressaare stand out. Of potato varieties, late 'Anti' is more influenced by circulation. Analysis of MSLP maps of circulation types revealed that the seaside stations (Tallinn, Kuressaare) suffer from negative effects of anti-cyclonic conditions (drought), while Tartu suffers from the cyclonic activity (excessive water).
On the Freshwater Sensitivity of the Arctic-Atlantic Thermohaline Circulation
NASA Astrophysics Data System (ADS)
Lambert, E.; Eldevik, T.; Haugan, P.
2016-02-01
The North Atlantic thermohaline circulation (THC) carries heat and salt toward the Arctic. This circulation is generally believed to be inhibited by northern freshwater input as indicated by the `box-model' of Stommel (1961). The inferred freshwater-sensitivity of the THC, however, varies considerably between studies, both quantitatively and qualitatively. The northernmost branch of the Atlantic THC, which forms a double estuarine circulation in the Arctic Mediterranean, is one example where both strengthening and weakening of the circulation may occur due to increased freshwater input. We have accordingly built on Stommel's original concept to accomodate a THC similar to that in the Arctic Mediterranean. This model consists of three idealized basins, or boxes, connected by two coupled branches of circulation - the double estuary. The net transport of these two branches represents the extension of the Gulf Stream toward the Arctic. Its sensitivity to a change in freshwater forcing depends largely on the distribution of freshwater over the two northern basins. Varying this distribution opens a spectrum of qualitative behaviours ranging from Stommel's original freshwater-inhibited overturning circulation to a freshwater-facilitated estuarine circulation. Between these limiting cases, a Hopf and a cusp bifurcation divide the spectrum into three qualitative regions. In the first region, the circulation behaves similarly to Stommel's circulation, and sufficient freshwater input can induce an abrupt transition into a reversed flow; in the second, a similar transition can be found, although it does not reverse the circulation; in the third, no transition can occur and the circulation is generally facilitated by the northern freshwater input. Overall, the northern THC appears more stable than what would be inferred based on Stommel's model; it requires a larger amount and more localized freshwater input to `collapse' it, and a double estuary circulation is less prone to flow reversal.
Safaei, Soroush; Blanco, Pablo J; Müller, Lucas O; Hellevik, Leif R; Hunter, Peter J
2018-01-01
We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data.
Trends of atmospheric circulation during singular hot days in Europe
NASA Astrophysics Data System (ADS)
Jézéquel, Aglaé; Cattiaux, Julien; Naveau, Philippe; Radanovics, Sabine; Ribes, Aurélien; Vautard, Robert; Vrac, Mathieu; Yiou, Pascal
2018-05-01
The influence of climate change on mid-latitudes atmospheric circulation is still very uncertain. The large internal variability makes it difficult to extract any statistically significant signal regarding the evolution of the circulation. Here we propose a methodology to calculate dynamical trends tailored to the circulation of specific days by computing the evolution of the distances between the circulation of the day of interest and the other days of the time series. We compute these dynamical trends for two case studies of the hottest days recorded in two different European regions (corresponding to the heat-waves of summer 2003 and 2010). We use the NCEP reanalysis dataset, an ensemble of CMIP5 models, and a large ensemble of a single model (CESM), in order to account for different sources of uncertainty. While we find a positive trend for most models for 2003, we cannot conclude for 2010 since the models disagree on the trend estimates.
van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B
2017-07-01
Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO 2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.
On Lagrangian residual currents with applications in south San Francisco Bay, California
Cheng, Ralph T.; Casulli, Vincenzo
1982-01-01
The Lagrangian residual circulation has often been introduced as the sum of the Eulerian residual circulation and the Stokes' drift. Unfortunately, this definition of the Lagrangian residual circulation is conceptually incorrect because both the Eulerian residual circulation and the Stokes' drift are Eulerian variables. In this paper a classification of various residual variables are reviewed and properly defined. The Lagrangian residual circulation is then studied by means of a two-stage formulation of a computer model. The tidal circulation is first computed in a conventional Eulerian way, and then the Lagrangian residual circulation is determined by a method patterned after the method of markers and cells. To demonstrate properties of the Lagrangian residual circulation, application of this approach in South San Francisco Bay, California, is considered. With the aid of the model results, properties of the Eulerian and Lagrangian residual circulation are examined. It can be concluded that estimation of the Lagrangian residual circulation from Eulerian data may lead to unacceptable error, particularly in a tidal estuary where the tidal excursion is of the same order of magnitude as the length scale of the basin. A direction calculation of the Lagrangian residual circulation must be made and has been shown to be feasible.
Strazzo, S. E.; Elsner, J. B.; LaRow, T. E.; ...
2016-07-10
Global climate models (GCMs) are routinely relied upon to study the possible impacts of climate change on a wide range of meteorological phenomena, including tropical cyclones (TCs). Previous studies addressed whether GCMs are capable of reproducing observed TC frequency and intensity distributions. This research builds upon earlier studies by examining how well GCMs capture the physically relevant relationship between TC intensity and SST. Specifically, the influence of model resolution on the ability of a GCM to reproduce the sensitivity of simulated TC intensity to SST is examined for the MRI-AGCM (20 km), the GFDL-HiRAM (50 km), the FSU-COAPS (0.94°) model,more » and two versions of the CAM5 (1° and 0.25°). Results indicate that while a 1°C increase in SST corresponds to a 5.5–7.0 m s -1 increase in observed maximum intensity, the same 1°C increase in SST is not associated with a statistically significant increase in simulated TC maximum intensity for any of the models examined. However, it also is shown that the GCMs all capably reproduce the observed sensitivity of potential intensity to SST. The models generate the thermodynamic environment suitable for the development of strong TCs over the correct portions of the Nort h Atlantic basin, but strong simulated TCs do not develop over these areas, even for models that permit Category 5 TCs. This result supports the notion that direct simulation of TC eyewall convection is necessary to accurately represent TC intensity and intensification processes in climate models, although additional explanations are also explored.« less
McCabe, G.J.; Dettinger, M.D.
1995-01-01
General circulation model (GCM) simulations of atmospheric circulation are more reliable than GCM simulations of temperature and precipitation. In this study, temporal correlations between 700 hPa height anomalies simulated winter precipitation at eight locations in the conterminous United States are compared with corresponding correlations in observations. The objectives are to 1) characterize the relations between atmospheric circulation and winter precipitation simulated by the GFDL, GCM for selected locations in the conterminous USA, ii) determine whether these relations are similar to those found in observations of the actual climate system, and iii) determine if GFDL-simulated precipitation is forced by the same circulation patterns as in the real atmosphere. -from Authors
Dumas, F; Le Gendre, R; Thomas, Y; Andréfouët, S
2012-01-01
Hydrodynamic functioning and water circulation of the semi-closed deep lagoon of Ahe atoll (Tuamotu Archipelago, French Polynesia) were investigated using 1 year of field data and a 3D hydrodynamical model. Tidal amplitude averaged less than 30 cm, but tide generated very strong currents (2 ms(-1)) in the pass, creating a jet-like circulation that partitioned the lagoon into three residual circulation cells. The pass entirely flushed excess water brought by waves-induced radiation stress. Circulation patterns were computed for climatological meteorological conditions and summarized with stream function and flushing time. Lagoon hydrodynamics and general overturning circulation was driven by wind. Renewal time was 250 days, whereas the e-flushing time yielded a lagoon-wide 80-days average. Tide-driven flush through the pass and wind-driven overturning circulation designate Ahe as a wind-driven, tidally and weakly wave-flushed deep lagoon. The 3D model allows studying pearl oyster larvae dispersal in both realistic and climatological conditions for aquaculture applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Multifractal analysis of a GCM climate
NASA Astrophysics Data System (ADS)
Carl, P.
2003-04-01
Multifractal analysis using the Wavelet Transform Modulus Maxima (WTMM) approach is being applied to the climate of a Mintz--Arakawa type, coarse resolution, two--layer AGCM. The model shows a backwards running period multiplication scenario throughout the northern summer, subsequent to a 'hard', subcritical Hopf bifurcation late in spring. This 'route out of chaos' (seen in cross sections of a toroidal phase space structure) is born in the planetary monsoon system which inflates the seasonal 'cycle' into these higher order structures and is blamed for the pronounced intraseasonal--to--centennial model climate variability. Previous analyses of the latter using advanced modal decompositions showed regularity based patterns in the time--frequency plane which are qualitatively similar to those obtained from the real world. The closer look here at the singularity structures, as a fundamental diagnostic supplement, aims at both more complete understanding (and quantification) of the model's qualitative dynamics and search for further tools of model intercomparison and verification in this respect. Analysing wavelet is the 10th derivative of the Gaussian which might suffice to suppress regular patterns in the data. Intraseasonal attractors, studied in time series of model precipitation over Central India, show shifting and braodening singularity spectra towards both more violent extreme events (premonsoon--monsoon transition) and weaker events (late summer to postmonsoon transition). Hints at a fractal basin boundary are found close to transition from period--2 to period--1 in the monsoon activity cycle. Interannual analyses are provided for runs with varied solar constants. To address the (in--)stationarity issue, first results are presented with a windowed multifractal analysis of longer--term runs ("singularity spectrogram").
Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed
NASA Astrophysics Data System (ADS)
Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.
2018-02-01
Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.
Regional climates in the GISS general circulation model: Surface air temperature
NASA Technical Reports Server (NTRS)
Hewitson, Bruce
1994-01-01
One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.
Angular circulation speed of tablets in a vibratory tablet coating pan.
Kumar, Rahul; Wassgren, Carl
2013-03-01
In this work, a single tablet model and a discrete element method (DEM) computer simulation are developed to obtain the angular circulation speed of tablets in a vibratory tablet coating pan for range of vibration frequencies and amplitudes. The models identify three important dimensionless parameters that influence the speed of the tablets: the dimensionless amplitude ratio (a/R), the Froude number (aω2/g), and the tablet-wall friction coefficient, where a is the peak vibration amplitude at the drum center, ω is the vibration angular frequency, R is the drum radius, and g is the acceleration due to gravity. The models predict that the angular circulation speed of tablets increases with an increase in each of these parameters. The rate of increase in the angular circulation speed is observed to decrease for larger values of a/R. The angular circulation speed reaches an asymptote beyond a tablet-wall friction coefficient value of about 0.4. Furthermore, it is found that the Froude number should be greater than one for the tablets to start circulating. The angular circulation speed increases as Froude number increases but then does not change significantly at larger values of the Froude number. Period doubling, where the motion of the bed is repeated every two cycles, occurs at a Froude number larger than five. The single tablet model, although much simpler than the DEM model, is able to predict the maximum circulation speed (the limiting case for a large value of tablet-wall friction coefficient) as well as the transition to period doubling.
Parrish, Judith T.; Peterson, F.
1988-01-01
Wind directions for Middle Pennsylvanian through Jurassic time are predicted from global circulation models for the western United States. These predictions are compared with paleowind directions interpreted from eolian sandstones of Middle Pennsylvanian through Jurassic age. Predicted regional wind directions correspond with at least three-quarters of the paleowind data from the sandstones; the rest of the data may indicate problems with correlation, local effects of paleogeography on winds, and lack of resolution of the circulation models. The data and predictions suggest the following paleoclimatic developments through the time interval studied: predominance of winter subtropical high-pressure circulation in the Late Pennsylvanian; predominance of summer subtropical high-pressure circulation in the Permian; predominance of summer monsoonal circulation in the Triassic and earliest Jurassic; and, during the remainder of the Jurassic, influence of both summer subtropical and summer monsoonal circulation, with the boundary between the two systems over the western United States. This sequence of climatic changes is largely owing to paleogeographic changes, which influenced the buildup and breakdown of the monsoonal circulation, and possibly owing partly to a decrease in the global temperature gradient, which might have lessened the influence of the subtropical high-pressure circulation. The atypical humidity of Triassic time probably resulted from the monsoonal circulation created by the geography of Pangaea. This circulation is predicted to have been at a maximum in the Triassic and was likely to have been powerful enough to draw moisture along the equator from the ocean to the west. ?? 1988.
NASA Astrophysics Data System (ADS)
Fajber, R. A.; Kushner, P. J.; Laliberte, F. B.
2017-12-01
In the midlatitude atmosphere, baroclinic eddies are able to raise warm, moist air from the surface into the midtroposphere where it condenses and warms the atmosphere through latent heating. This coupling between dynamics and moist thermodynamics motivates using a conserved moist thermodynamic variable, such as the equivalent potential temperature, to study the midlatitude circulation and associated heat transport since it implicitly accounts for latent heating. When the equivalent potential temperature is used to zonally average the circulation, the moist isentropic circulation takes the form of a single cell in each hemisphere. By utilising the statistical transformed Eulerian mean (STEM) circulation we are able to parametrize the moist isentropic circulation in terms of second order dynamic and moist thermodynamic statistics. The functional dependence of the STEM allows us to analytically calculate functional derivatives that reveal the spatially varying sensitivity of the moist isentropic circulation to perturbations in different statistics. Using the STEM functional derivatives as sensitivity kernels we interpret changes in the moist isentropic circulation from two experiments: surface heating in an idealised moist model, and a climate change scenario in a comprehensive atmospheric general circulation model. In both cases we find that the changes in the moist isentropic circulation are well predicted by the functional sensitivities, and that the total heat transport is more sensitive to changes in dynamical processes driving local changes in poleward heat transport than it is to thermodynamic and/or radiative processes driving changes to the distribution of equivalent potential temperature.
Optimal control of CPR procedure using hemodynamic circulation model
Lenhart, Suzanne M.; Protopopescu, Vladimir A.; Jung, Eunok
2007-12-25
A method for determining a chest pressure profile for cardiopulmonary resuscitation (CPR) includes the steps of representing a hemodynamic circulation model based on a plurality of difference equations for a patient, applying an optimal control (OC) algorithm to the circulation model, and determining a chest pressure profile. The chest pressure profile defines a timing pattern of externally applied pressure to a chest of the patient to maximize blood flow through the patient. A CPR device includes a chest compressor, a controller communicably connected to the chest compressor, and a computer communicably connected to the controller. The computer determines the chest pressure profile by applying an OC algorithm to a hemodynamic circulation model based on the plurality of difference equations.
To study the circulation and water quality in the Tillamook Bay, Oregon, a high-resolution estuarine model that covers the shallow bay and the surrounding wetland has been developed. The estuarine circulation at Tillamook Bay is mainly driven by the tides and the river flows and ...
The vertical distribution of nutrients and oxygen 18 in the upper Arctic Ocean
NASA Astrophysics Data System (ADS)
BjöRk, GöRan
1990-09-01
The observed vertical nutrient distribution including a maximum at about 100 m depth in the Arctic Ocean is investigated using a one-dimensional time-dependent circulation model together with a simple biological model. The circulation model includes a shelf-forced circulation. This is thought to take place in a box from which the outflow is specified regarding temperature and volume flux at different salinities. It has earlier been shown that the circulation model is able to reproduce the observed mean salinity and temperature stratification in the Arctic Ocean. Before introducing nutrients in the model a test is performed using the conservative tracer δ18 (18O/16O ratio) as one extra state variable in order to verify the circulation model. It is shown that the field measurements can be simulated. The result is, however, rather sensitive to the tracer concentration in the Bering Strait inflow. The nutrients nitrate, phosphate, and silicate are then treated by coupling a simple biological model to the circulation model. The biological model describes some overall effects of production, sinking, and decomposition of organic matter. First a standard case of the biological model is presented. This is followed by some modified cases. It is shown that the observed nutrient distribution including the maximum can be generated. The available nutrient data from the Arctic Ocean are not sufficient to decide which among the cases is the most likely to occur. One case is, however, chosen as the best case. A nutrient budget and estimates of the magnitudes of the new production are presented for this case.
Calibrating the ECCO ocean general circulation model using Green's functions
NASA Technical Reports Server (NTRS)
Menemenlis, D.; Fu, L. L.; Lee, T.; Fukumori, I.
2002-01-01
Green's functions provide a simple, yet effective, method to test and calibrate General-Circulation-Model(GCM) parameterizations, to study and quantify model and data errors, to correct model biases and trends, and to blend estimates from different solutions and data products.
Impact of GODAE Products on Nested HYCOM Simulations of the West Florida Shelf
2009-01-20
circulation and the Atlantic Meridional Overturning Circulation . For temperature, the non-assimilative outer model had a cold...associated with the basin-scale wind-driven gyres and with the Atlantic Meridional Overturning Circulation is incor- rectly represented. In contrast...not contain realistic LC transport variability associated with the wind-driven gyre circulation and the Atlantic Meridio- nal Overturning Circulation
A theoretical model of the variation of the meridional circulation with the solar cycle
NASA Astrophysics Data System (ADS)
Hazra, Gopal; Choudhuri, Arnab Rai
2017-12-01
Observations of the meridional circulation of the Sun, which plays a key role in the operation of the solar dynamo, indicate that its speed varies with the solar cycle, becoming faster during the solar minima and slower during the solar maxima. To explain this variation of the meridional circulation with the solar cycle, we construct a theoretical model by coupling the equation of the meridional circulation (the ϕ component of the vorticity equation within the solar convection zone) with the equations of the flux transport dynamo model. We consider the back reaction due to the Lorentz force of the dynamo-generated magnetic fields and study the perturbations produced in the meridional circulation due to it. This enables us to model the variations of the meridional circulation without developing a full theory of the meridional circulation itself. We obtain results which reproduce the observational data of solar cycle variations of the meridional circulation reasonably well. We get the best results on assuming the turbulent viscosity acting on the velocity field to be comparable to the magnetic diffusivity (i.e. on assuming the magnetic Prandtl number to be close to unity). We have to assume an appropriate bottom boundary condition to ensure that the Lorentz force cannot drive a flow in the subadiabatic layers below the bottom of the tachocline. Our results are sensitive to this bottom boundary condition. We also suggest a hypothesis on how the observed inward flow towards the active regions may be produced.
Methods of testing parameterizations: Vertical ocean mixing
NASA Technical Reports Server (NTRS)
Tziperman, Eli
1992-01-01
The ocean's velocity field is characterized by an exceptional variety of scales. While the small-scale oceanic turbulence responsible for the vertical mixing in the ocean is of scales a few centimeters and smaller, the oceanic general circulation is characterized by horizontal scales of thousands of kilometers. In oceanic general circulation models that are typically run today, the vertical structure of the ocean is represented by a few tens of discrete grid points. Such models cannot explicitly model the small-scale mixing processes, and must, therefore, find ways to parameterize them in terms of the larger-scale fields. Finding a parameterization that is both reliable and plausible to use in ocean models is not a simple task. Vertical mixing in the ocean is the combined result of many complex processes, and, in fact, mixing is one of the less known and less understood aspects of the oceanic circulation. In present models of the oceanic circulation, the many complex processes responsible for vertical mixing are often parameterized in an oversimplified manner. Yet, finding an adequate parameterization of vertical ocean mixing is crucial to the successful application of ocean models to climate studies. The results of general circulation models for quantities that are of particular interest to climate studies, such as the meridional heat flux carried by the ocean, are quite sensitive to the strength of the vertical mixing. We try to examine the difficulties in choosing an appropriate vertical mixing parameterization, and the methods that are available for validating different parameterizations by comparing model results to oceanographic data. First, some of the physical processes responsible for vertically mixing the ocean are briefly mentioned, and some possible approaches to the parameterization of these processes in oceanographic general circulation models are described in the following section. We then discuss the role of the vertical mixing in the physics of the large-scale ocean circulation, and examine methods of validating mixing parameterizations using large-scale ocean models.
Accelerated Edge-Preserving Image Restoration Without Boundary Artifacts
Matakos, Antonios; Ramani, Sathish; Fessler, Jeffrey A.
2013-01-01
To reduce blur in noisy images, regularized image restoration methods have been proposed that use non-quadratic regularizers (like l1 regularization or total-variation) that suppress noise while preserving edges in the image. Most of these methods assume a circulant blur (periodic convolution with a blurring kernel) that can lead to wraparound artifacts along the boundaries of the image due to the implied periodicity of the circulant model. Using a non-circulant model could prevent these artifacts at the cost of increased computational complexity. In this work we propose to use a circulant blur model combined with a masking operator that prevents wraparound artifacts. The resulting model is non-circulant, so we propose an efficient algorithm using variable splitting and augmented Lagrangian (AL) strategies. Our variable splitting scheme, when combined with the AL framework and alternating minimization, leads to simple linear systems that can be solved non-iteratively using FFTs, eliminating the need for more expensive CG-type solvers. The proposed method can also efficiently tackle a variety of convex regularizers including edge-preserving (e.g., total-variation) and sparsity promoting (e.g., l1 norm) regularizers. Simulation results show fast convergence of the proposed method, along with improved image quality at the boundaries where the circulant model is inaccurate. PMID:23372080
The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model
NASA Astrophysics Data System (ADS)
Rodríguez, José M.; Milton, Sean F.; Marzin, Charline
2017-10-01
In this study the low-level monsoon circulation and observed sources of moisture responsible for the maintenance and seasonal evolution of the East Asian monsoon are examined, studying the detailed water budget components. These observational estimates are contrasted with the Met Office Unified Model (MetUM) climate simulation performance in capturing the circulation and water cycle at a variety of model horizontal resolutions and in fully coupled ocean-atmosphere simulations. We study the role of large-scale circulation in determining the hydrological cycle by analyzing key systematic errors in the model simulations. MetUM climate simulations exhibit robust circulation errors, including a weakening of the summer west Pacific Subtropical High, which leads to an underestimation of the southwesterly monsoon flow over the region. Precipitation and implied diabatic heating biases in the South Asian monsoon and Maritime Continent region are shown, via nudging sensitivity experiments, to have an impact on the East Asian monsoon circulation. By inference, the improvement of these tropical biases with increased model horizontal resolution is hypothesized to be a factor in improvements seen over East Asia with increased resolution. Results from the annual cycle of the hydrological budget components in five domains show a good agreement between MetUM simulations and ERA-Interim reanalysis in northern and Tibetan domains. In simulations, the contribution from moisture convergence is larger than in reanalysis, and they display less precipitation recycling over land. The errors are closely linked to monsoon circulation biases.
Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations
Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.
2018-01-01
We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979
NASA Astrophysics Data System (ADS)
Pithan, Felix; Shepherd, Theodore G.; Zappa, Giuseppe; Sandu, Irina
2016-07-01
State-of-the art climate models generally struggle to represent important features of the large-scale circulation. Common model deficiencies include an equatorward bias in the location of the midlatitude westerlies and an overly zonal orientation of the North Atlantic storm track. Orography is known to strongly affect the atmospheric circulation and is notoriously difficult to represent in coarse-resolution climate models. Yet how the representation of orography affects circulation biases in current climate models is not understood. Here we show that the effects of switching off the parameterization of drag from low-level orographic blocking in one climate model resemble the biases of the Coupled Model Intercomparison Project Phase 5 ensemble: An overly zonal wintertime North Atlantic storm track and less European blocking events, and an equatorward shift in the Southern Hemispheric jet and increase in the Southern Annular Mode time scale. This suggests that typical circulation biases in coarse-resolution climate models may be alleviated by improved parameterizations of low-level drag.
Modeling of circulating fluised beds for post-combustion carbon capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.; Shadle, L.; Miller, D.
2011-01-01
A compartment based model for a circulating fluidized bed reactor has been developed based on experimental observations of riser hydrodynamics. The model uses a cluster based approach to describe the two-phase behavior of circulating fluidized beds. Fundamental mass balance equations have been derived to describe the movement of both gas and solids though the system. Additional work is being performed to develop the correlations required to describe the hydrodynamics of the system. Initial testing of the model with experimental data shows promising results and highlights the importance of including end effects within the model.
Huang, Wei; Shi, Jun; Yen, R T
2012-12-01
The objective of our study was to develop a computing program for computing the transit time frequency distributions of red blood cell in human pulmonary circulation, based on our anatomic and elasticity data of blood vessels in human lung. A stochastic simulation model was introduced to simulate blood flow in human pulmonary circulation. In the stochastic simulation model, the connectivity data of pulmonary blood vessels in human lung was converted into a probability matrix. Based on this model, the transit time of red blood cell in human pulmonary circulation and the output blood pressure were studied. Additionally, the stochastic simulation model can be used to predict the changes of blood flow in human pulmonary circulation with the advantage of the lower computing cost and the higher flexibility. In conclusion, a stochastic simulation approach was introduced to simulate the blood flow in the hierarchical structure of a pulmonary circulation system, and to calculate the transit time distributions and the blood pressure outputs.
NASA Astrophysics Data System (ADS)
Florenchie, P.; Verron, J.
1998-10-01
Simulation experiments of South Atlantic Ocean circulations are conducted with a 1/6°, four-layered, quasi-geostrophic model. By means of a simple nudging data assimilation procedure along satellite tracks, TOPEX/POSEIDON and ERS 1 altimeter measurements are introduced into the model to control the simulation of the basin-scale circulation for the period from October 1992 to September 1994. The model circulation appears to be strongly influenced by the introduction of altimeter data, offering a consistent picture of South Atlantic Ocean circulations. Comparisons with observations show that the assimilating model successfully simulates the kinematic behavior of a large number of surface circulation components. The assimilation procedure enables us to produce schematic diagrams of South Atlantic circulation in which patterns ranging from basin-scale currents to mesoscale eddies are portrayed in a realistic way, with respect to their complexity. The major features of the South Atlantic circulation are described and analyzed, with special emphasis on the Brazil-Malvinas Confluence region, the Subtropical Gyre with the formation of frontal structures, and the Agulhas Retroflection. The Agulhas eddy-shedding process has been studied extensively. Fourteen eddies appear to be shed during the 2-year experiment. Because of their strong surface topographic signature, Agulhas eddies have been tracked continuously during the assimilation experiment as they cross the South Atlantic basin westward. Other effects of the assimilation procedure are shown, such as the intensification of the Subtropical Gyre, the appearance of a strong seasonal cycle in the Brazil Current transport, and the increase of the mean Brazil Current transport. This last result, combined with the westward oriention of the Agulhas eddies' trajectories, leads to a southward transport of mean eddy kinetic energy across 30°S.
Development of a hydraulic model of the human systemic circulation
NASA Technical Reports Server (NTRS)
Sharp, M. K.; Dharmalingham, R. K.
1999-01-01
Physical and numeric models of the human circulation are constructed for a number of objectives, including studies and training in physiologic control, interpretation of clinical observations, and testing of prosthetic cardiovascular devices. For many of these purposes it is important to quantitatively validate the dynamic response of the models in terms of the input impedance (Z = oscillatory pressure/oscillatory flow). To address this need, the authors developed an improved physical model. Using a computer study, the authors first identified the configuration of lumped parameter elements in a model of the systemic circulation; the result was a good match with human aortic input impedance with a minimum number of elements. Design, construction, and testing of a hydraulic model analogous to the computer model followed. Numeric results showed that a three element model with two resistors and one compliance produced reasonable matching without undue complication. The subsequent analogous hydraulic model included adjustable resistors incorporating a sliding plate to vary the flow area through a porous material and an adjustable compliance consisting of a variable-volume air chamber. The response of the hydraulic model compared favorably with other circulation models.
NASA Astrophysics Data System (ADS)
Voigt, A.
2013-11-01
I study the Hadley circulation of a completely ice-covered Snowball Earth through simulations with a comprehensive atmosphere general circulation model. Because the Snowball Earth atmosphere is an example of a dry atmosphere, these simulations allow me to test to what extent dry theories and idealized models capture the dynamics of realistic dry Hadley circulations. Perpetual off-equatorial as well as seasonally varying insolation is used, extending a previous study for perpetual on-equatorial (equinox) insolation. Vertical diffusion of momentum, representing the momentum transport of dry convection, is fundamental to the momentum budgets of both the winter and summer cells. In the zonal budget, it is the primary process balancing the Coriolis force. In the meridional budget, it mixes meridional momentum between the upper and the lower branch and thereby decelerates the circulation. Because of the latter, the circulation intensifies by a factor of three when vertical diffusion of momentum is suppressed. For seasonally varying insolation, the circulation undergoes rapid transitions from the weak summer into the strong winter regime. Consistent with previous studies in idealized models, these transitions result from a mean-flow feedback, because of which they are insensitive to the treatment of vertical diffusion of momentum. Overall, the results corroborate previous findings for perpetual on-equatorial insolation. They demonstrate that descriptions of realistic dry Hadley circulations, in particular their strength, need to incorporate the vertical momentum transport by dry convection, a process that is neglected in most dry theories and idealized models. An improved estimate of the strength of the Snowball Earth Hadley circulation will also help to better constrain the climate of a possible Neoproterozoic Snowball Earth and its deglaciation threshold.
NASA Astrophysics Data System (ADS)
Voigt, A.
2013-08-01
I study the Hadley circulation of a completely ice-covered Snowball Earth through simulations with a comprehensive atmosphere general circulation model. Because the Snowball Earth atmosphere is an example of a dry atmosphere, these simulations allow me to test to what extent dry theories and idealized models capture the dynamics of dry Hadley circulations. Perpetual off-equatorial as well as seasonally-varying insolation is used, extending a previous study for perpetual on-equatorial (equinox) insolation. Vertical diffusion of momentum, representing the momentum transport of dry convection, is fundamental to the momentum budgets of both the winter and summer cells. In the zonal budget, it is the primary process balancing the Coriolis force. In the meridional budget, it mixes meridional momentum between the upper and the lower branch and thereby decelerates the circulation. Because of the latter, the circulation intensifies by a factor of three when vertical diffusion of momentum is suppressed. For seasonally-varying insolation, the circulation undergoes rapid transitions from the weak summer into the strong winter regime. Consistent with previous studies in idealized models, these transitions result from a mean-flow feedback, because of which they are insensitive to the treatment of vertical diffusion of momentum. Overall, the results corroborate previous findings for perpetual on-equatorial insolation. They demonstrate that an appropriate description of dry Hadley circulations, in particular their strength, needs to incorporate the vertical momentum transport by dry convection, a process that is neglected in most dry theories and idealized models. An improved estimate of the strength of the Snowball Earth Hadley circulation will also help to better constrain the climate of a possible Neoproterozoic Snowball Earth and its deglaciation threshold.
NASA Astrophysics Data System (ADS)
Sofianos, Sarantis S.; Johns, William E.
2003-03-01
The three-dimensional circulation of the Red Sea is studied using a set of Miami Isopycnic Coordinate Ocean Model (MICOM) simulations. The model performance is tested against the few available observations in the basin and shows generally good agreement with the main observed features of the circulation. The main findings of this analysis include an intensification of the along-axis flow toward the coasts, with a transition from western intensified boundary flow in the south to eastern intensified flow in the north, and a series of strong seasonal or permanent eddy-like features. Model experiments conducted with different forcing fields (wind-stress forcing only, surface buoyancy forcing only, or both forcings combined) showed that the circulation produced by the buoyancy forcing is stronger overall and dominates the wind-driven part of the circulation. The main circulation pattern is related to the seasonal buoyancy flux (mostly due to the evaporation), which causes the density to increase northward in the basin and produces a northward surface pressure gradient associated with the downward sloping of the sea surface. The response of the eastern boundary to the associated mean cross-basin geostrophic current depends on the stratification and β-effect. In the northern part of the basin this results in an eastward intensification of the northward surface flow associated with the presence of Kelvin waves while in the south the traditional westward intensification due to Rossby waves takes place. The most prominent gyre circulation pattern occurs in the north where a permanent cyclonic gyre is present that is involved in the formation of Red Sea Outflow Water (RSOW). Beneath the surface boundary currents are similarly intensified southward undercurrents that carry the RSOW to the sill to flow out of the basin into the Indian Ocean.
Parameterizing Gravity Waves and Understanding Their Impacts on Venus' Upper Atmosphere
NASA Technical Reports Server (NTRS)
Brecht, A. S.; Bougher, S. W.; Yigit, Erdal
2018-01-01
The complexity of Venus’ upper atmospheric circulation is still being investigated. Simulations of Venus’ upper atmosphere largely depend on the utility of Rayleigh Friction (RF) as a driver and necessary process to reproduce observations (i.e. temperature, density, nightglow emission). Currently, there are additional observations which provide more constraints to help characterize the driver(s) of the circulation. This work will largely focus on the impact parameterized gravity waves have on Venus’ upper atmosphere circulation within a three dimensional hydrodynamic model (Venus Thermospheric General Circulation Model).
Impact of moisture variations on the circulation of the south-west monsoon
NASA Astrophysics Data System (ADS)
Kishtawal, C. M.; Pal, P. K.; Narayanan, M. S.; Manna, S. K.; Sharma, O. P.; Agarwal, Sangeeta; Upadhyaya, H. C.
1993-12-01
The impact of moisture anomalies on the circulation of the south-west Indian monsoon has been studied with a general circulation model. Newtonian relaxation is adopted to subject the model atmosphere under sustained moisture anomalies. The impact of negative anomalies of moisture was seen as a divergent circulation anomaly, while the positive anomaly was a stronger convergent anomaly. Although the humidity fields display a resilient behaviour, and relax back to normal patterns 1-2 days after the forcing terms in humidity are withdrawn, the circulation anomalies created by the moisture variation keeps growing. A feedback between positive moisture anomalies and low level convergence exists, which is terminated in the absence of external forcings.
Numerical simulation of the circulation of the atmosphere of Titan
NASA Technical Reports Server (NTRS)
Hourdin, F.; Levan, P.; Talagrand, O.; Courtin, Regis; Gautier, Daniel; Mckay, Christopher P.
1992-01-01
A three dimensional General Circulation Model (GCM) of Titan's atmosphere is described. Initial results obtained with an economical two dimensional (2D) axisymmetric version of the model presented a strong superrotation in the upper stratosphere. Because of this result, a more general numerical study of superrotation was started with a somewhat different version of the GCM. It appears that for a slowly rotating planet which strongly absorbs solar radiation, circulation is dominated by global equator to pole Hadley circulation and strong superrotation. The theoretical study of this superrotation is discussed. It is also shown that 2D simulations systemically lead to instabilities which make 2D models poorly adapted to numerical simulation of Titan's (or Venus) atmosphere.
Temperature field study of hot water circulation pump shaft system
NASA Astrophysics Data System (ADS)
Liu, Y. Y.; Kong, F. Y.; Daun, X. H.; Zhao, R. J.; Hu, Q. L.
2016-05-01
In the process of engineering application under the condition of hot water circulation pump, problems of stress concentration caused by the temperature rise may happen. In order to study the temperature field in bearing and electric motor chamber of the hot water circulation pump and optimize the structure, in present paper, the model of the shaft system is created through CREO. The model is analyzed by ANSYS workbench, in which the thermal boundary conditions are applied to calculate, which include the calorific values from the bearings, the thermal loss from electric motor and the temperature from the transporting medium. From the result, the finite element model can reflect the distribution of thermal field in hot water circulation pump. Further, the results show that the maximum temperature locates in the bearing chamber.The theoretical guidance for the electric motor heat dissipation design of the hot water circulation pump can be achieved.
Physiologically Based Pharmacokinetic Model for Long-Circulating Inorganic Nanoparticles.
Liang, Xiaowen; Wang, Haolu; Grice, Jeffrey E; Li, Li; Liu, Xin; Xu, Zhi Ping; Roberts, Michael S
2016-02-10
A physiologically based pharmacokinetic model was developed for accurately characterizing and predicting the in vivo fate of long-circulating inorganic nanoparticles (NPs). This model is built based on direct visualization of NP disposition details at the organ and cellular level. It was validated with multiple data sets, indicating robust inter-route and interspecies predictive capability. We suggest that the biodistribution of long-circulating inorganic NPs is determined by the uptake and release of NPs by phagocytic cells in target organs.
A Wind Tunnel Model to Explore Unsteady Circulation Control for General Aviation Applications
NASA Technical Reports Server (NTRS)
Cagle, Christopher M.; Jones, Gregory S.
2002-01-01
Circulation Control airfoils have been demonstrated to provide substantial improvements in lift over conventional airfoils. The General Aviation Circular Control model is an attempt to address some of the concerns of this technique. The primary focus is to substantially reduce the amount of air mass flow by implementing unsteady flow. This paper describes a wind tunnel model that implements unsteady circulation control by pulsing internal pneumatic valves and details some preliminary results from the first test entry.
Empirical justification of the elementary model of money circulation
NASA Astrophysics Data System (ADS)
Schinckus, Christophe; Altukhov, Yurii A.; Pokrovskii, Vladimir N.
2018-03-01
This paper proposes an elementary model describing the money circulation for a system, composed by a production system, the government, a central bank, commercial banks and their customers. A set of equations for the system determines the main features of interaction between the production and the money circulation. It is shown, that the money system can evolve independently of the evolution of production. The model can be applied to any national economy but we will illustrate our claim in the context of the Russian monetary system.
NASA Technical Reports Server (NTRS)
Berglund, Judith
2007-01-01
Approximately 2-3 billion metric tons of soil dust are estimated to be transported in the Earth's atmosphere each year. Global transport of desert dust is believed to play an important role in many geochemical, climatological, and environmental processes. This dust carries minerals and nutrients, but it has also been shown to carry pollutants and viable microorganisms capable of harming human, animal, plant, and ecosystem health. Saharan dust, which impacts the eastern United States (especially Florida and the southeast) and U.S. Territories in the Caribbean primarily during the summer months, has been linked to increases in respiratory illnesses in this region and has been shown to carry other human, animal, and plant pathogens. For these reasons, this candidate solution recommends integrating Saharan dust distribution and concentration forecasts from the NASA GOCART global dust cycle model into a public health DSS (decision support system), such as the CDC's (Centers for Disease Control and Prevention's) EPHTN (Environmental Public Health Tracking Network), for the eastern United States and Caribbean for early warning purposes regarding potential increases in respiratory illnesses or asthma attacks, potential disease outbreaks, or bioterrorism. This candidate solution pertains to the Public Health National Application but also has direct connections to Air Quality and Homeland Security. In addition, the GOCART model currently uses the NASA MODIS aerosol product as an input and uses meteorological forecasts from the NASA GEOS-DAS (Goddard Earth Observing System Data Assimilation System) GEOS-4 AGCM. In the future, VIIRS aerosol products and perhaps CALIOP aerosol products could be assimilated into the GOCART model to improve the results.
Impact of Data Assimilation And Resolution On Modeling The Gulf Stream Pathway
2011-11-18
currents could be generated by either the Deep Western Boundary Current (DWBC) associated with the Meridional Overturning Circulation (MOC) or by...abyssal gyre centered directly beneath the surface gyre. Figure 7. Meridional overturning circulation stream function for four 1/12° global HYCOM... circulation and have a weak overturning circulation . The Gulf Stream path is poorly simulated without the steering by the abyssal circulation . A
The Pattern and Dynamics of the Meridional Overturning Circulation in the Upper Ocean
2008-09-01
Atlantic . Figure 4a shows that the center of meridional overturning circulation occurs at a level of about one kilometer. Circulation is weak at...maintenance of the meridional overturning circulation in the Atlantic Ocean. 5. Global Simulation The most exciting experiment would be to fully model the...mechanisms responsible for the strength and maintenance of the meridional overturning circulation in the Atlantic Ocean are not
Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change
NASA Technical Reports Server (NTRS)
Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.
2016-01-01
Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.
NASA Astrophysics Data System (ADS)
Duarte, Pedro; Alvarez-Salgado, Xosé Antón; Fernández-Reiriz, Maria José; Piedracoba, Silvia; Labarta, Uxío
2014-06-01
The present study suggests that both under upwelling and downwelling winds, the residual circulation of Ria de Ares-Betanzos remains positive with a strong influence from river discharge and a positive feedback from wind, unlike what is generally accepted for Galician rias. Furthermore, mussel cultivation areas may reduce residual velocities by almost 40%, suggesting their potential feedbacks on food replenishment for cultivated mussels. The Ria de Ares-Betanzos is a partially stratified estuary in the NW Iberian upwelling system where blue mussels are extensively cultured on hanging ropes. This type of culture depends to a large extent on water circulation and residence times, since mussels feed on suspended particles. Therefore, understanding the role of tides, continental runoff, and winds on the circulation of this embayment has important practical applications. Furthermore, previous works have emphasized the potential importance of aquaculture leases on water circulation within coastal ecosystems, with potential negative feedbacks on production carrying capacity. Here we implemented and validated a 3D hydrodynamic numerical model for the Ria de Ares-Betanzos to (i) evaluate the relative importance of the forcing agents on the circulation within the ria and (ii) estimate the importance of culture leases on circulation patterns at the scale of the mussel farms from model simulations. The model was successfully validated with empirical current velocity data collected during July and October 2007 using an assortment of efficiency criteria. Model simulations were carried out to isolate the effects of wind and river flows on circulation patterns.
Clarifying the Dynamics of the General Circulation: Phillips's 1956 Experiment.
NASA Astrophysics Data System (ADS)
Lewis, John M.
1998-01-01
In the mid-1950s, amid heated debate over the physical mechanisms that controlled the known features of the atmosphere's general circulation, Norman Phillips simulated hemispheric motion on the high-speed computer at the Institute for Advanced Study. A simple energetically consistent model was integrated for a simulated time of approximately 1 month. Analysis of the model results clarified the respective roles of the synoptic-scale eddies (cyclones-anticyclones) and mean meridional circulation in the maintenance of the upper-level westerlies and the surface wind regimes. Furthermore, the modeled cyclones clearly linked surface frontogenesis with the upper-level Charney-Eady wave. In addition to discussing the model results in light of the controversy and ferment that surrounded general circulation theory in the 1940s-1950s, an effort is made to follow Phillips's scientific path to the experiment.
Large-Scale Transport Responses to Tropospheric Circulation Changes Using GEOS-5
NASA Technical Reports Server (NTRS)
Orbe, Clara; Molod, Andrea; Arnold, Nathan; Waugh, Darryn W.; Yang, Huang
2017-01-01
The mean age since air was last at the Northern Hemisphere midlatitude surface is a fundamental property of tropospheric transport. Recent comparisons among chemistry climate models, however, reveal that there are large differences in the mean age among models and that these differences are most likely related to differences in tropical (parameterized) convection. Here we use aquaplanet simulations of the Goddard Earth Observing System Model Version 5 (GEOS-5) to explore the sensitivity of the mean age to changes in the tropical circulation. Tropical circulation changes are forced by prescribed localized off-equatorial warm sea surface temperature anomalies that (qualitatively) reproduce the convection and circulation differences among the comprehensive models. Idealized chemical species subject to prescribed OH loss are also integrated in parallel in order to illustrate the impact of tropical transport changes on interhemispheric constituent transport.
NASA Technical Reports Server (NTRS)
Chan, David T.; Milholen, William E., II; Jones, Gregory S.; Goodliff, Scott L.
2014-01-01
A second wind tunnel test of the FAST-MAC circulation control semi-span model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged flap. The model was configured for transonic testing of the cruise configuration with 0deg flap deflection to determine the potential for drag reduction with the circulation control blowing. Encouraging results from analysis of wing surface pressures suggested that the circulation control blowing was effective in reducing the transonic drag on the configuration, however this could not be quantified until the thrust generated by the blowing slot was correctly removed from the force and moment balance data. This paper will present the thrust removal methodology used for the FAST-MAC circulation control model and describe the experimental measurements and techniques used to develop the methodology. A discussion on the impact to the force and moment data as a result of removing the thrust from the blowing slot will also be presented for the cruise configuration, where at some Mach and Reynolds number conditions, the thrust-removed corrected data showed that a drag reduction was realized as a consequence of the blowing.
Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank
NASA Astrophysics Data System (ADS)
Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao
2003-03-01
The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.
Research on Parallel Three Phase PWM Converters base on RTDS
NASA Astrophysics Data System (ADS)
Xia, Yan; Zou, Jianxiao; Li, Kai; Liu, Jingbo; Tian, Jun
2018-01-01
Converters parallel operation can increase capacity of the system, but it may lead to potential zero-sequence circulating current, so the control of circulating current was an important goal in the design of parallel inverters. In this paper, the Real Time Digital Simulator (RTDS) is used to model the converters parallel system in real time and study the circulating current restraining. The equivalent model of two parallel converters and zero-sequence circulating current(ZSCC) were established and analyzed, then a strategy using variable zero vector control was proposed to suppress the circulating current. For two parallel modular converters, hardware-in-the-loop(HIL) study based on RTDS and practical experiment were implemented, results prove that the proposed control strategy is feasible and effective.
ERIC Educational Resources Information Center
Lee, Shinyoung; Kang, Eunhee; Kim, Heui-Baik
2015-01-01
This study aimed to explore the effect on group dynamics of statements associated with deep learning approaches (DLA) and their contribution to cognitive collaboration and model development during group modeling of blood circulation. A group was selected for an in-depth analysis of collaborative group modeling. This group constructed a model in a…
A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS
A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...
NASA Technical Reports Server (NTRS)
Fukumori, I.; Fu, L. L.; Chao, Y.
1998-01-01
The feasibility of assimilating satellite altimetry data into a global ocean general ocean general circulation model is studied. Three years of TOPEX/POSEIDON data is analyzed using a global, three-dimensional, nonlinear primitive equation model.
NASA Technical Reports Server (NTRS)
Baker, W. E.; Paegle, J.
1983-01-01
An examination is undertaken of the sensitivity of short term Southern Hemisphere circulation prediction to tropical wind data and tropical latent heat release. The data assimilation experiments employ the Goddard Laboratory for Atmospheric Sciences' fourth-order general circulation model. Two of the experiments are identical, but for the fact that one uses tropical wind data while the other does not. A third experiment contains the identical initial conditions of forecasts with tropical winds, while suppressing tropical latent heat release.
NASA Astrophysics Data System (ADS)
Frisbee, Marty D.; Tolley, Douglas G.; Wilson, John L.
2017-04-01
Estimates of groundwater circulation depths based on field data are lacking. These data are critical to inform and refine hydrogeologic models of mountainous watersheds, and to quantify depth and time dependencies of weathering processes in watersheds. Here we test two competing hypotheses on the role of geology and geologic setting in deep groundwater circulation and the role of deep groundwater in the geochemical evolution of streams and springs. We test these hypotheses in two mountainous watersheds that have distinctly different geologic settings (one crystalline, metamorphic bedrock and the other volcanic bedrock). Estimated circulation depths for springs in both watersheds range from 0.6 to 1.6 km and may be as great as 2.5 km. These estimated groundwater circulation depths are much deeper than commonly modeled depths suggesting that we may be forcing groundwater flow paths too shallow in models. In addition, the spatial relationships of groundwater circulation depths are different between the two watersheds. Groundwater circulation depths in the crystalline bedrock watershed increase with decreasing elevation indicative of topography-driven groundwater flow. This relationship is not present in the volcanic bedrock watershed suggesting that both the source of fracturing (tectonic versus volcanic) and increased primary porosity in the volcanic bedrock play a role in deep groundwater circulation. The results from the crystalline bedrock watershed also indicate that relatively deep groundwater circulation can occur at local scales in headwater drainages less than 9.0 km2 and at larger fractions than commonly perceived. Deep groundwater is a primary control on streamflow processes and solute concentrations in both watersheds.
The Atlantic Multidecadal Oscillation without a role for ocean circulation.
Clement, Amy; Bellomo, Katinka; Murphy, Lisa N; Cane, Mark A; Mauritsen, Thorsten; Rädel, Gaby; Stevens, Bjorn
2015-10-16
The Atlantic Multidecadal Oscillation (AMO) is a major mode of climate variability with important societal impacts. Most previous explanations identify the driver of the AMO as the ocean circulation, specifically the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the main features of the observed AMO are reproduced in models where the ocean heat transport is prescribed and thus cannot be the driver. Allowing the ocean circulation to interact with the atmosphere does not significantly alter the characteristics of the AMO in the current generation of climate models. These results suggest that the AMO is the response to stochastic forcing from the mid-latitude atmospheric circulation, with thermal coupling playing a role in the tropics. In this view, the AMOC and other ocean circulation changes would be largely a response to, not a cause of, the AMO. Copyright © 2015, American Association for the Advancement of Science.
A Regression Study of Demand, Cost and Pricing Public Library Circulation Services.
ERIC Educational Resources Information Center
Stratton, Peter J.
This paper examines three aspects of the public library's circulation service: (1) a demand function for the service is estimated; (2) a long-run unit circulation cost curve is developed; and (3) using the economist's notion of "efficiency," a general model for the pricing of the circulation service is presented. The estimated demand…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
Recent helioseismology findings, as well as advances in direct numerical simulations of global dynamics of the Sun, have indicated that in each solar hemisphere meridional circulation may form more than one cell along the radius in the convection zone. In particular, recent helioseismology results revealed a double-cell structure of the meridional circulation. We investigate properties of a mean-field solar dynamo with such double-cell meridional circulation. The dynamo model also includes the realistic profile of solar differential rotation (including the tachocline and subsurface shear layer) and takes into account effects of turbulent pumping, anisotropic turbulent diffusivity, and conservation of magnetic helicity.more » Contrary to previous flux-transport dynamo models, we find that the dynamo model can robustly reproduce the basic properties of the solar magnetic cycles for a wide range of model parameters and circulation speeds. The best agreement with observations is achieved when the surface meridional circulation speed is about 12 m s{sup –1}. For this circulation speed, the simulated sunspot activity shows good synchronization with the polar magnetic fields. Such synchronization was indeed observed during previous sunspot Cycles 21 and 22. We compare theoretical and observed phase diagrams of the sunspot number and the polar field strength and discuss the peculiar properties of Cycle 23.« less
Interannual Variability of the Patagonian Shelf Circulation and Cross-Shelf Exchange
NASA Astrophysics Data System (ADS)
Combes, V.; Matano, R. P.
2016-02-01
Observational studies have already established the general mean circulation and hydrographic characteristics of the Patagonian shelf waters using data from in situ observation, altimetry and more recently from the Aquarius satellite sea surface salinity, but the paucity of those data in time or below the surface leave us with an incomplete picture of the shelf circulation and of its variability. This study discusses the variability of the Patagonian central shelf circulation and off-shelf transport using a high-resolution model experiment for the period 1979-2012. The model solution shows high skill in reproducing the best-known aspects of the shelf and deep-ocean circulations. This study links the variability of the central shelf circulation and off-shelf transport to the wind variability, southern shelf transport variability and large-scale current variability. We find that while the inner and central shelf circulation are principally wind driven, the contribution of the Brazil/Malvinas Confluence (BMC) variability becomes important in the outer shelf and along the shelf break. The model also indicates that whereas the location of the off-shelf transport is controlled by the BMC, its variability is modulated by the southern shelf transport. The variability of the subtropical shelf front, where the fresh southern shelf waters encounters the saline northern shelf waters, is also presented in this study.
Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change
NASA Astrophysics Data System (ADS)
Trossman, D.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.
2016-12-01
We argue that a substantial fraction of the uncertainty in the cloud radiative feedback during transient climate change may be due to uncertainty in the ocean circulation perturbation. A suite of climate model simulations in which the ocean circulation, the cloud radiative feedback, or a combination of both are held fixed while CO2 doubles, shows that changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback. Specifically, a slowdown in the Atlantic Meridional Overturning Circulation (AMOC) helps to maintain low cloud cover in the Northern Hemisphere extratropics. We propose that the AMOC decline increases the meridional SST gradient, strengthening the storm track, its attendant clouds and the amount of shortwave radiation they reflect back to space. If the results of our model were to scale proportionately in the CMIP5 models, whose AMOC decline ranges from 15 to 60% under RCP8.5, then as much as 70% of the intermodel spread in the cloud radiative feedback and 35% of the spread in the transient climate response could possibly stem from the model representations of AMOC decline.
Planning for Downtown Circulation Systems. Volume 3. Appendices.
DOT National Transportation Integrated Search
1983-10-01
This volume contains worksheets for estimating circulator patronage, costs, revenues and travel impacts, detailed discussions of estimation and application procedures for the demand models developed, and a case study of the models' application using ...
[Establishment and evaluation of extracorporeal circulation model in rats].
Xie, Xiao-Jun; Tao, Kai-Yu; Tang, Meng-Lin; Du, Lei; An, Qi; Lin, Ke; Gan, Chang-Ping; Chen, You-Wen; Luo, Shu-Hua
2012-09-01
To establish an extracorporeal circulation (ECC) rat model, and evaluate the inflammatory response and organ injury induced in the model. SD rats were anesthetized and cannulated from right common carotid artery to left femoral vein to establish the bypass of extracorporeal circulation. Then the rats were randomly divided into ECC group and sham group. The rats in ECC group were subjected to extracorporeal circulation for 2 hours and then rest for 2 hours, while the rats in sham group were only observed for 4 hours without extracorporeal circulation. After that, blood routine examination, blood gas analysis, the measurement of pro-inflammatory factors in bronchoalveolar lavage fluid and lung tissue were performed to evaluate the lung injury induced by ECC. Circulating endothelial cells were also calculated by flow cytometry to assess the vascular endothelial injury. At 2 hours after ECC, red blood cell counts in both groups kept normal, while leukocyte and neutrophil counts, plasmatic tumor necrosis factor-a level and neutrophil elastase level, circulating endothelial cells in the rats of ECC group were significantly higher than those in sham group. Tumor necrosis factor-alpha in bronchoalveolar lavage fluid and water content in lung of the ECC rats were also significantly higher, while the oxygenation index was significantly lower. Neutrophil infiltration was also observed in lung tissues with increased thickness of alveolar membrane in ECC group. The ECC model established from right common carotid artery to left femoral vein in our study can successfully induce systemic inflammatory response, and acute lung injury associated with inflammation.
NASA Astrophysics Data System (ADS)
Lips, Urmas; Zhurbas, Victor; Skudra, Maris; Väli, Germo
2016-01-01
A regional model of the Gulf of Riga (GoR) with horizontal grid spacing of 0.5 nautical miles was applied to study the features and driving forces of the whole-basin circulation in the GoR. The initial conditions and atmospheric forcing were taken from the operational models High Resolution Operational Model for the Baltic (HIROMB) and High Resolution Limited Area Model (HIRLAM), respectively. The wind stress curl is shown to be a major contributor to the whole-basin circulation pattern. An anticyclonic circulation pattern in the summer is determined by a combined effect of the negative wind stress curl, thermal density stratification and bottom topography. Positive values of the wind stress curl and a cyclonic circulation pattern prevail during the cold period of the year when seasonal thermocline is absent. During calm periods, the anticyclonic type of circulation is established due to a combined effect of the river runoff, saltier water inflow into and mixed water outflow from the GoR. Two seasonal baroclinic jet-like currents are identified in the summer: the Northward Longshore Current in the western GoR and Southward Subsurface Longshore Current in the eastern GoR. The alteration of the circulation pattern in the GoR from cyclonic in the cold period of the year to anticyclonic in the summer, and vice versa, was shown to be observed not every year due to inter-annual variability of wind forcing.
van der Merwe, Rudolph; Leen, Todd K; Lu, Zhengdong; Frolov, Sergey; Baptista, Antonio M
2007-05-01
We present neural network surrogates that provide extremely fast and accurate emulation of a large-scale circulation model for the coupled Columbia River, its estuary and near ocean regions. The circulation model has O(10(7)) degrees of freedom, is highly nonlinear and is driven by ocean, atmospheric and river influences at its boundaries. The surrogates provide accurate emulation of the full circulation code and run over 1000 times faster. Such fast dynamic surrogates will enable significant advances in ensemble forecasts in oceanography and weather.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karak, Bidya Binay, E-mail: bidya_karak@physics.iisc.ernet.i
2010-12-01
Meridional circulation is an important ingredient in flux transport dynamo models. We have studied its importance on the period, the amplitude of the solar cycle, and also in producing Maunder-like grand minima in these models. First, we model the periods of the last 23 sunspot cycles by varying the meridional circulation speed. If the dynamo is in a diffusion-dominated regime, then we find that most of the cycle amplitudes also get modeled up to some extent when we model the periods. Next, we propose that at the beginning of the Maunder minimum the amplitude of meridional circulation dropped to amore » low value and then after a few years it increased again. Several independent studies also favor this assumption. With this assumption, a diffusion-dominated dynamo is able to reproduce many important features of the Maunder minimum remarkably well. If the dynamo is in a diffusion-dominated regime, then a slower meridional circulation means that the poloidal field gets more time to diffuse during its transport through the convection zone, making the dynamo weaker. This consequence helps to model both the cycle amplitudes and the Maunder-like minima. We, however, fail to reproduce these results if the dynamo is in an advection-dominated regime.« less
NASA Technical Reports Server (NTRS)
Mahanama, Sarith P.; Koster, Randal D.; Walker, Gregory K.; Takacs, Lawrence L.; Reichle, Rolf H.; De Lannoy, Gabrielle; Liu, Qing; Zhao, Bin; Suarez, Max J.
2015-01-01
The Earths land surface boundary conditions in the Goddard Earth Observing System version 5 (GEOS-5) modeling system were updated using recent high spatial and temporal resolution global data products. The updates include: (i) construction of a global 10-arcsec land-ocean lakes-ice mask; (ii) incorporation of a 10-arcsec Globcover 2009 land cover dataset; (iii) implementation of Level 12 Pfafstetter hydrologic catchments; (iv) use of hybridized SRTM global topography data; (v) construction of the HWSDv1.21-STATSGO2 merged global 30 arc second soil mineral and carbon data in conjunction with a highly-refined soil classification system; (vi) production of diffuse visible and near-infrared 8-day MODIS albedo climatologies at 30-arcsec from the period 2001-2011; and (vii) production of the GEOLAND2 and MODIS merged 8-day LAI climatology at 30-arcsec for GEOS-5. The global data sets were preprocessed and used to construct global raster data files for the software (mkCatchParam) that computes parameters on catchment-tiles for various atmospheric grids. The updates also include a few bug fixes in mkCatchParam, as well as changes (improvements in algorithms, etc.) to mkCatchParam that allow it to produce tile-space parameters efficiently for high resolution AGCM grids. The update process also includes the construction of data files describing the vegetation type fractions, soil background albedo, nitrogen deposition and mean annual 2m air temperature to be used with the future Catchment CN model and the global stream channel network to be used with the future global runoff routing model. This report provides detailed descriptions of the data production process and data file format of each updated data set.
Sieber, Sandro; Grossen, Philip; Detampel, Pascal; Siegfried, Salome; Witzigmann, Dominik; Huwyler, Jörg
2017-10-28
Nanomedicines have gained much attention for the delivery of small molecules or nucleic acids as treatment options for many diseases. However, the transfer from experimental systems to in vivo applications remains a challenge since it is difficult to assess their circulation behavior in the body at an early stage of drug discovery. Thus, innovative and improved concepts are urgently needed to overcome this issue and to close the gap between empiric nanoparticle design, in vitro assessment, and first in vivo experiments using rodent animal models. This study was focused on the zebrafish as a vertebrate screening model to assess the circulation in blood and extravasation behavior of nanoparticulate drug delivery systems in vivo. To validate this novel approach, monodisperse preparations of fluorescently labeled liposomes with similar size and zeta potential were injected into transgenic zebrafish lines expressing green fluorescent protein in their vasculature. Phosphatidylcholine-based lipids differed by fatty acid chain length and saturation. Circulation behavior and vascular distribution pattern were evaluated qualitatively and semi-quantitatively using image analysis. Liposomes composed of lipids with lower transition temperature (<28°C) as well as PEGylated liposomes showed longer circulation times and extravasation. In contrast, liposomes composed of lipids with transition temperatures>28°C bound to venous parts of the vasculature. This circulation patterns in the zebrafish model did correlate with published and experimental pharmacokinetic data from mice and rats. Our findings indicate that the zebrafish model is a useful vertebrate screening tool for nanoparticulate drug delivery systems to predict their in vivo circulation behavior with respect to systemic circulation time and exposure. Copyright © 2017 Elsevier B.V. All rights reserved.
Maintenance of Summer Monsoon Circulations: A Planetary-Scale Perspective.
NASA Astrophysics Data System (ADS)
Chen, Tsing-Chang
2003-06-01
The monsoon circulation, which is generally considered to be driven by the landmass-ocean thermal contrast, like a gigantic land-sea breeze circulation, exhibits a phase reversal in its vertical structure; a monsoon high aloft over a continental thermal low is juxtaposed with a midoceanic trough underlaid by an oceanic anticyclone. This classic monsoon circulation model is well matched by the monsoon circulation depicted with the observational data prior to the First Global Atmospheric Research Program (GARP) Global Experiment (FGGE). However, synthesizing findings of the global circulation portrayed with the post-FGGE data, it was found that some basic features of major monsoon circulations in Asia, North America, South America, and Australia differ from those of the classic monsoon circulation model. Therefore, a revision of the classic monsoon theory is suggested. With four different wave regimes selected to fit the horizontal dimensions of these monsoon circulations, basic features common to all four major monsoons are illustrated in terms of diagnostic analyses of the velocity potential maintenance equation (which relates diabatic heating and velocity potential) and the streamfunction budget (which links velocity potential and streamfunction) in these wave regimes. It is shown that a monsoon circulation is actually driven by the east-west differential heating and maintained dynamically by a balance between a vorticity source and advection. This dynamic balance is reflected by a spatial quadrature relationship between the monsoon divergent circulation and the monsoon high (low) at upper (lower) levels.
NASA Astrophysics Data System (ADS)
Kim, Go-Un; Seo, Kyong-Hwan
2018-01-01
A key physical factor in regulating the performance of Madden-Julian oscillation (MJO) simulation is examined by using 26 climate model simulations from the World Meteorological Organization's Working Group for Numerical Experimentation/Global Energy and Water Cycle Experiment Atmospheric System Study (WGNE and MJO-Task Force/GASS) global model comparison project. For this, intraseasonal moisture budget equation is analyzed and a simple, efficient physical quantity is developed. The result shows that MJO skill is most sensitive to vertically integrated intraseasonal zonal wind convergence (ZC). In particular, a specific threshold value of the strength of the ZC can be used as distinguishing between good and poor models. An additional finding is that good models exhibit the correct simultaneous convection and large-scale circulation phase relationship. In poor models, however, the peak circulation response appears 3 days after peak rainfall, suggesting unfavorable coupling between convection and circulation. For an improving simulation of the MJO in climate models, we propose that this delay of circulation in response to convection needs to be corrected in the cumulus parameterization scheme.
PARTICLE FLOW, MIXING, AND CHEMICAL REACTION IN CIRCULATING FLUIDIZED BED ABSORBERS
A mixing model has been developed to simulate the particle residence time distribution (RTD) in a circulating fluidized bed absorber (CFBA). Also, a gas/solid reaction model for sulfur dioxide (SO2) removal by lime has been developed. For the reaction model that considers RTD dis...
Documentation of the GLAS fourth order general circulation model. Volume 1: Model documentation
NASA Technical Reports Server (NTRS)
Kalnay, E.; Balgovind, R.; Chao, W.; Edelmann, J.; Pfaendtner, J.; Takacs, L.; Takano, K.
1983-01-01
The volume 1, of a 3 volume technical memoranda which contains a documentation of the GLAS Fourth Order General Circulation Model is presented. Volume 1 contains the documentation, description of the stratospheric/tropospheric extension, user's guide, climatological boundary data, and some climate simulation studies.
2013-09-30
Circulation (HC) in terms of the meridional streamfunction. The interannual variability of the Atlantic HC in boreal summer was examined using the EOF...large-scale circulations in the NAVGEM model and the source of predictability for the seasonal variation of the Atlantic TCs. We have been working...EOF analysis of Meridional Circulation (JAS). (a) The leading mode (M1); (b) variance explained by the first 10 modes. 9
Dynamical Evaluation of Ocean Models using the Gulf Stream as an Example
2010-01-01
transport for the Atlantic meridional overturning circulation (AMOC) as the 3 nonlinear solutions discussed in Section 2. The model boundary is...Hellerman and Rosenstein (1983) wind stress climatology and the northward upper ocean flow (14 Sv) of the Atlantic meridional overturning circulation ... overturning circulation (AMOC) streamfunction with a 5 Sv contour interval from (a) 1/12° Atlantic MICOM, (b) 1/12° Atlantic HYCOM, and (c) 1/12
2009-06-30
Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate Global Ocean...2009 4. TITLE AND SUBTITLE Salinity Boundary Conditions and the Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate... Atlantic Meridional Overturning Circulation (AMOC) in global simulations performed with the depth coordinate Parallel Ocean Program (POP) ocean
A Simple Diagnostic Model of the Circulation Beneath an Ice Shelf
NASA Astrophysics Data System (ADS)
Jenkins, Adrian; Nøst, Ole Anders
2017-04-01
The ocean circulation beneath ice shelves supplies the heat required to melt ice and exports the resulting freshwater. It therefore plays a key role in determining the mass balance and geometry of the ice shelves and hence the restraint they impose on the outflow of grounded ice from the interior of the ice sheet. Despite this critical role in regulating the ice sheet's contribution to eustatic sea level, an understanding of some of the most basic features of the circulation is lacking. The conventional paradigm is one of a buoyancy-forced overturning circulation, with inflow of warm, salty water along the seabed and outflow of cooled and freshened waters along the ice base. However, most sub-ice-shelf cavities are broad relative to the internal Rossby radius, so a horizontal circulation accompanies the overturning. Primitive equation ocean models applied to idealised geometries produce cyclonic gyres of comparable magnitude, but in the absence of a theoretical understanding of what controls the gyre strength, those solutions can only be validated against each other. Furthermore, we have no understanding of how the gyre circulation should change given more complex geometries. To begin to address this gap in our theoretical understanding we present a simple, linear, steady-state model for the circulation beneath an ice shelf. Our approach in analogous to that of Stommel's classic analysis of the wind-driven gyres, but is complicated by the fact that his most basic assumption of homogeneity is inappropriate. The only forcing on the flow beneath an ice shelf arises because of the horizontal density gradients set up by melting. We thus arrive at a diagnostic model which gives us the depth-dependent horizontal circulation that results from an imposed geometry and density distribution. We describe the development of the model and present some preliminary solutions for the simplest cavity geometries.
3D Visualization of Global Ocean Circulation
NASA Astrophysics Data System (ADS)
Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.
2015-12-01
Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.
NASA Technical Reports Server (NTRS)
Nese, Jon M.; Dutton, John A.
1993-01-01
The predictability of the weather and climatic states of a low-order moist general circulation model is quantified using a dynamic systems approach, and the effect of incorporating a simple oceanic circulation on predictability is evaluated. The predictability and the structure of the model attractors are compared using Liapunov exponents, local divergence rates, and the correlation and Liapunov dimensions. It was found that the activation of oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10 percent and decreases the variance of the largest local divergence rate by 20 percent. When an oceanic circulation develops, the average predictability of annually averaged states is improved by 25 percent and the variance of the largest local divergence rate decreases by 25 percent.
Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS
Haas, Kevin A.; Warner, John C.
2009-01-01
Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales.
Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS
Haas, K.A.; Warner, J.C.
2009-01-01
Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales. ?? 2008 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Belucz, B.; Dikpati, M.; Forgacs-Dajka, E.
2014-12-01
Babcock-Leighton type solar dynamo models with single cell meridional circulation are successful in reproducing many solarcycle features, and recently such a model was applied for solarcycle 24 amplitude prediction. It seems that cycle 24 amplitudeforecast may not be validated. One of the reasons is the assumption of a single cell meridional circulation. Recent observations andtheoretical models of meridional circulation do not indicate a single-celledflow pattern. So it is nessecary to examine the role of complexmulti-cellular circulation patterns in a Babcock-Leighton solar dynamo model in the advection and diffusion dominated regimes.By simulating a Babcock-Leighton solar dynamo model with multi-cellularflow, we show that the presence of a weak, second, high-latitudereverse cell speeds up the cycle and slighty enhances the poleward branch in the butterfly diagram, whereas the presence of a second cellin depth reverses the tilt of the butterfly wing and leads to ananti-solar type feature. If, instead, the butterfly diagram isconstructed from the middle of the convection zone in that case, a solar-like pattern can be retrieved. All the above cases behavequalitatively similar in advection and diffusion-dominated regimes.However, our dynamo with a meridional circulation containing fourcells in latitude behaves distinctly different in the two regimes, producing a solar-like butterfly diagram with fast cycles indiffusion-dominated regime, and a complex branches in the butterflydiagram in the advection-dominated regime. Another interestingfinding from our studies is that a four-celled flow pattern containing two in radius and two in latitude always producesquadrupolar parity as the relaxed solution.
NASA Astrophysics Data System (ADS)
Simpson, I.
2015-12-01
A long standing bias among global climate models (GCMs) is their incorrect representation of the wintertime circulation of the North Atlantic region. Specifically models tend to exhibit a North Atlantic jet (and associated storm track) that is too zonal, extending across central Europe, when it should tilt northward toward Scandinavia. GCM's consistently predict substantial changes in the large scale circulation in this region, consisting of a localized anti-cyclonic circulation, centered over the Mediterranean and accompanied by increased aridity there and increased storminess over Northern Europe.Here, we present preliminary results from experiments that are designed to address the question of what the impact of the climatological circulation biases might be on this predicted future response. Climate change experiments will be compared in two versions of the Community Earth System Model: the first is a free running version of the model, as typically used in climate prediction; the second is a bias corrected version of the model in which a seasonally varying cycle of bias correction tendencies are applied to the wind and temperature fields. These bias correction tendencies are designed to account for deficiencies in the fast parameterized processes, with an aim to push the model toward a more realistic climatology.While these experiments come with the caveat that they assume the bias correction tendencies will remain constant with time, they allow for an initial assessment, through controlled experiments, of the impact that biases in the climatological circulation can have on future predictions in this region. They will also motivate future work that can make use of the bias correction tendencies to understand the underlying physical processes responsible for the incorrect tilt of the jet.
Attribution of changes in precipitation patterns in African rainforests
NASA Astrophysics Data System (ADS)
Otto, F. E.; Jones, R. G.; Halladay, K.; Allen, M. R.
2013-12-01
The effects of projected future global and regional climate change on the water cycle and thus on global water security are amongst the most economically and politically important challenges that society faces in the 21st century. The provision of secure access to water resources and the protection of communities from water-related risks have emerged as top priorities amongst policymakers within the public and private sectors alike. Investment decisions on water infrastructure rely heavily on quantitative assessments of risks and uncertainties associated with future changes in water-related threats. Especially with the introduction of loss and damages on the agenda of the UNFCCC additionally the attribution of such changes to anthropogenic climate change and other external climate drivers is crucial. Probabilistic event attribution (PEA) provides a method of evaluating the extent to which human-induced climate change is affecting localised weather events and impacts of such events that relies on good observations as well as climate modelling. The overall approach is to simulate both, the statistics of observed weather, and the statistics of the weather that would have occurred had specific external drivers of climate change been absent. The majority of studies applying PEA have focused on quantifying attributable risk, with changes in risk depending on an assumption of 'all other things being equal', including natural drivers of climate change and vulnerability. Most previous attribution studies have focused on European extreme weather events, but the most vulnerable regions to climate change are in Asia and Africa. One of the most complex hydrological systems is the tropical rainforest, with the rainforests in tropical Africa being some of the most under-researched regions in the world. Research in the Amazonian rainforest suggests potential vulnerability to climate change. We will present results from using the large ensemble of atmosphere-only general circulation model (AGCM) simulations within the weather@home project, and analysing statistics of precipitation in the dry season of the Congo Basin rainforests. Because observed data sets in that region are of very poor quality we show how validation methods not only relying on such data have been used to investigate the applicability of PEA analysis from large model ensembles to this tropical region. Additionally we will present results for the same region but generated with a very large ensemble of regional climate simulations which allows analysing the importance of a realistic simulation of small scale precipitation processes for attribution studies in a tropical climate. We highlight that PEA analysis has the potential to provide valuable scientific evidence of recent or anticipated climatological changes in the water cycle, especially in regions with sparse observational data and unclear projections of future changes. However, the strong influence of SST tele-connection patterns on tropical precipitation provides more challenges in the set-up of attribution studies than studies on mid-latitude rainfall.
Computer Simulation of the Circulation Subsystem of a Library
ERIC Educational Resources Information Center
Shaw, W. M., Jr.
1975-01-01
When circulation data are used as input parameters for a computer simulation of a library's circulation subsystem, the results of the simulation provide information on book availability and delays. The model may be used to simulate alternative loan policies. (Author/LS)
Residual estuarine circulation in the Mandovi, a monsoonal estuary: A three-dimensional model study
NASA Astrophysics Data System (ADS)
Vijith, V.; Shetye, S. R.; Baetens, K.; Luyten, P.; Michael, G. S.
2016-05-01
Observations in the Mandovi estuary, located on the central west coast of India, have shown that the salinity field in this estuary is remarkably time-dependent and passes through all possible states of stratification (riverine, highly-stratified, partially-mixed and well-mixed) during a year as the runoff into the estuary varies from high values (∼1000 m3 s-1) in the wet season to negligible values (∼1 m3 s-1) at end of the dry season. The time-dependence is forced by the Indian Summer Monsoon (ISM) and hence the estuary is referred to as a monsoonal estuary. In this paper, we use a three-dimensional, open source, hydrodynamic, numerical model to reproduce the observed annual salinity field in the Mandovi. We then analyse the model results to define characteristics of residual estuarine circulation in the Mandovi. Our motivation to study this aspect of the Mandovi's dynamics is derived from the following three considerations. First, residual circulation is important to long-term evolution of an estuary; second, we need to understand how this circulation responds to strongly time-dependent runoff forcing experienced by a monsoonal estuary; and third, Mandovi is among the best studied estuaries that come under the influence of ISM, and has observations that can be used to validate the model. Our analysis shows that the residual estuarine circulation in the Mandovi shows four distinct phases during a year: a river like flow that is oriented downstream throughout the estuary; a salt-wedge type circulation, with flow into the estuary near the bottom and out of the estuary near the surface restricted close to the mouth of the estuary; circulation associated with a partially-mixed estuary; and, the circulation associated with a well-mixed estuary. Dimensional analysis of the field of residual circulation helped us to establish the link between strength of residual circulation at a location and magnitude of river runoff and rate of mixing at the location. We then derive an analytical expression that approximates exchange velocity (bottom velocity minus near freshwater velocity at a location) as a function of freshwater velocity and rate of mixing.
2010-05-01
circulation from December 2003 to June 2008 . The model is driven by tidal harmonics, realistic atmospheric forcing, and dynamically consistent initial and open...important element of the regional circulation (He and Wilkin 2006). We applied the method of Mellor and Yamada (1982) to compute vertical turbulent...shelfbreak ROMS hindcast ran continuously from December 2003 through January 2008 . Initial conditions were taken from the MABGOM ROMS simulation on 1
Risk mapping of West Nile virus circulation in Spain, 2015.
Sánchez-Gómez, Amaya; Amela, Carmen; Fernández-Carrión, Eduardo; Martínez-Avilés, Marta; Sánchez-Vizcaíno, José Manuel; Sierra-Moros, María José
2017-05-01
West Nile fever is an emergent disease in Europe. The objective of this study was to conduct a predictive risk mapping of West Nile Virus (WNV) circulation in Spain based on historical data of WNV circulation. Areas of Spain with evidence of WNV circulation were mapped based on data from notifications to the surveillance systems and a literature review. A logistic regression-based spatial model was used to assess the probability of WNV circulation. Data were analyzed at municipality level. Mean temperatures of the period from June to October, presence of wetlands and presence of Special Protection Areas for birds were considered as potential predictors. Two predictors of WNV circulation were identified: higher temperature [adjusted odds ratio (AOR) 2.07, 95% CI 1.82-2.35, p<0.01] and presence of wetlands (3.37, 95% CI 1.89-5.99, p<0.01). Model validations indicated good predictions: area under the ROC curve was 0.895 (95% CI 0.870-0.919) for internal validation and 0.895 (95% CI 0.840-0.951) for external validation. This model could support improvements of WNV risk- based surveillance in Spain. The importance of a comprehensive surveillance for WNF, including human, animal and potential vectors is highlighted, which could additionally result in model refinements. Copyright © 2017 Elsevier B.V. All rights reserved.
Deep water characteristics and circulation in the South China Sea
NASA Astrophysics Data System (ADS)
Wang, Aimei; Du, Yan; Peng, Shiqiu; Liu, Kexiu; Huang, Rui Xin
2018-04-01
This study investigates the deep circulation in the South China Sea (SCS) using oceanographic observations combined with results from a bottom layer reduced gravity model. The SCS water, 2000 m below the surface, is quite different from that in the adjacent Pacific Ocean, and it is characterized by its low dissolved oxygen (DO), high temperature and low salinity. The horizontal distribution of deep water properties indicates a basin-scale cyclonic circulation driven by the Luzon overflow. The results of the bottom layer reduced gravity model are consistent with the existence of the cyclonic circulation in the deep SCS. The circulation is stronger at the northern/western boundary. After overflowing the sill of the Luzon Strait, the deep water moves broadly southwestward, constrained by the 3500 m isobath. The broadening of the southward flow is induced by the downwelling velocity in the interior of the deep basin. The main deep circulation bifurcates into two branches after the Zhongsha Islands. The southward branch continues flowing along the 3500 m isobath, and the eastward branch forms the sub-basin scale cyclonic circulation around the seamounts in the central deep SCS. The returning flow along the east boundary is fairly weak. The numerical experiments of the bottom layer reduced gravity model reveal the important roles of topography, bottom friction, and the upwelling/downwelling pattern in controlling the spatial structure, particularly the strong, deep western boundary current.
Circulating DNA and its methylation level in inflammatory bowel disease and related colon cancer.
Bai, Xuming; Zhu, Yaqun; Pu, Wangyang; Xiao, Li; Li, Kai; Xing, Chungen; Jin, Yong
2015-01-01
Both of chronic inflammation and abnormal immune in inflammatory bowel disease can induce colon cancer. Previous research showed that cell apoptosis and necrosis become the main source of circulating DNA in the peripheral blood during tumorigenesis that reduced along with methylation degree. However, its role in the process of colitis transforming to colon cancer is not clarified. Drinking 3% DSS was used to establish colitis model, while 3% dextran sodium sulfate (DSS) combined with azo oxidation methane (AOM) intraperitoneal injection was applied to establish colitis related colon cancer model. Circulating DNA and its methylation level in peripheral blood were tested. Morphology observation, HE staining, and p53 and β-catenin expression detection confirmed that drinking 3% DSS and 3% DSS combined with AOM intraperitoneal injection can successfully establish colitis and colitis associated colorectal cancer models. Circulating DNA level in colitis and colon cancer mice increased by gradient compared with control, while significant difference was observed between each other. Circulating DNA methylation level decreased obviously in colitis and colon cancer, and significant difference was observed between each other. Abnormal protein expression, circulating DNA and its methylation level in ulcerative colitis associated colorectal tissues change in gradient, suggesting that circulating DNA and its methylation level can be treated as new markers for colitis cancer transformation that has certain significance to explore the mechanism of human ulcerative colitis canceration.
ERIC Educational Resources Information Center
Lee, Shinyoung; Kim, Heui-Baik
2014-01-01
The purpose of this study is to identify the epistemological features and model qualities depending on model evaluation levels and to explore the reasoning process behind high-level evaluation through small group interaction about blood circulation. Nine groups of three to four students in the eighth grade participated in the modeling practice.…
Mathematical modelling of the maternal cardiovascular system in the three stages of pregnancy.
Corsini, Chiara; Cervi, Elena; Migliavacca, Francesco; Schievano, Silvia; Hsia, Tain-Yen; Pennati, Giancarlo
2017-09-01
In this study, a mathematical model of the female circulation during pregnancy is presented in order to investigate the hemodynamic response to the cardiovascular changes associated with each trimester of pregnancy. First, a preliminary lumped parameter model of the circulation of a non-pregnant female was developed, including the heart, the systemic circulation with a specific block for the uterine district and the pulmonary circulation. The model was first tested at rest; then heart rate and vascular resistances were individually varied to verify the correct response to parameter alterations characterising pregnancy. In order to simulate hemodynamics during pregnancy at each trimester, the main changes applied to the model consisted in reducing vascular resistances, and simultaneously increasing heart rate and ventricular wall volumes. Overall, reasonable agreement was found between model outputs and in vivo data, with the trends of the cardiac hemodynamic quantities suggesting correct response of the heart model throughout pregnancy. Results were reported for uterine hemodynamics, with flow tracings resembling typical Doppler velocity waveforms at each stage, including pulsatility indexes. Such a model may be used to explore the changes that happen during pregnancy in female with cardiovascular diseases. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Observations and Modeling of the Transient General Circulation of the North Pacific Basin
NASA Technical Reports Server (NTRS)
McWilliams, James C.
2000-01-01
Because of recent progress in satellite altimetry and numerical modeling and the accumulation and archiving of long records of hydrographic and meteorological variables, it is becoming feasible to describe and understand the transient general circulation of the ocean (i.e., variations with spatial scales larger than a few hundred kilometers and time scales of seasonal and longer-beyond the mesoscale). We have carried out various studies in investigation of the transient general circulation of the Pacific Ocean from a coordinated analysis of satellite altimeter data, historical hydrographic gauge data, scatterometer wind observations, reanalyzed operational wind fields, and a variety of ocean circulation models. Broadly stated, our goal was to achieve a phenomenological catalogue of different possible types of large-scale, low-frequency variability, as a context for understanding the observational record. The approach is to identify the simplest possible model from which particular observed phenomena can be isolated and understood dynamically and then to determine how well these dynamical processes are represented in more complex Oceanic General Circulation Models (OGCMs). Research results have been obtained on Rossby wave propagation and transformation, oceanic intrinsic low-frequency variability, effects of surface gravity waves, pacific data analyses, OGCM formulation and developments, and OGCM simulations of forced variability.
NASA Astrophysics Data System (ADS)
Shan, Shiliang; Sheng, Jinyu; Greenan, Blair John William
2014-01-01
The Sable Gully is a broad deep underwater canyon located to the east of Sable Island on the edge of the Scotian Shelf. Being the home of many marine species including the endangered Northern Bottlenose Whale, the Gully was designated as a marine protected area (MPA) in 2004. Better understanding of physical environmental conditions over this MPA is needed for sustainable ecosystem management. In this study, a multi-nested ocean circulation model and a particle tracking model are used to examine the three-dimensional (3D) circulation and movement of particles carried passively by the flow over the Sable Gully. The 3D circulation model is driven by tides, wind, and surface heat/freshwater fluxes. The model performance is assessed by comparing the results with the previous numerical tidal results and current meter observations made in the Gully. The simulated tidal circulation over the Gully and adjacent waters is relatively strong on shallow banks and relatively weak on the continental slope. Below the depth of the Gully rim ( ˜ 200 m), the tidal currents are constrained by the thalweg of the Gully and amplified toward the Gully head. The simulated subtidal circulation in the Gully has a complex spatial structure and significant seasonal variability. The simulated time-dependent 3D flow fields are then used in a particle tracking model to study the particle movements, downstream and upstream areas, and residence time of the Gully. Based on the movements of particles released at the depth of the Gully rim and tracked forward in time, the e-folding residence time is estimated to be about 7 and 13 days in February and August 2006, respectively. The Gully flanks are identified as high retention areas with the typical residence time of 10 and 20 days in February and August 2006, respectively. Tracking particles with and without tides reveals that tidal circulation reduces the value of residence time in the Gully, particularly along the Gully flanks.
Magnetic Flux Circulation During Dawn-Dusk Oriented Interplanetary Magnetic Field
NASA Technical Reports Server (NTRS)
Mitchell, E. J.; Lopez, R. E.; Fok, M.-C.; Deng, Y.; Wiltberger, M.; Lyon, J.
2010-01-01
Magnetic flux circulation is a primary mode of energy transfer from the solar wind into the ionosphere and inner magnetosphere. For southward interplanetary magnetic field (IMF), magnetic flux circulation is described by the Dungey cycle (dayside merging, night side reconnection, and magnetospheric convection), and both the ionosphere and inner magnetosphere receive energy. For dawn-dusk oriented IMF, magnetic flux circulation is not well understood, and the inner magnetosphere does not receive energy. Several models have been suggested for possible reconnection patterns; the general pattern is: dayside merging; reconnection on the dayside or along the dawn/dusk regions; and, return flow on dayside only. These models are consistent with the lack of energy in the inner magnetosphere. We will present evidence that the Dungey cycle does not explain the energy transfer during dawn-dusk oriented IMF. We will also present evidence of how magnetic flux does circulate during dawn-dusk oriented IMF, specifically how the magnetic flux reconnects and circulates back.
Seasonal Overturning Circulation in the Red Sea
NASA Astrophysics Data System (ADS)
Yao, F.; Hoteit, I.; Koehl, A.
2010-12-01
The Red Sea exhibits a distinct seasonal overturning circulation. In winter, a typical two-layer exchange structure, with a fresher inflow from the Gulf of Aden on top of an outflow from the Red Sea, is established. In summer months (June to September) this circulation pattern is changed to a three-layer structure: a surface outflow from the Red Sea on top of a subsurface intrusion of the Gulf of Aden Intermediate Water and a weakened deep outflow. This seasonal variability is studied using a general circulation model, MITgcm, with 6 hourly NCEP atmospheric forcing. The model is able to reproduce the observed seasonal variability very well. The forcing mechanisms of the seasonal variability related to seasonal surface wind stress and buoyancy flux, and water mass transformation processes associated with the seasonal overturning circulation are analyzed and presented.
The Twist Tensor Nuclear Norm for Video Completion.
Hu, Wenrui; Tao, Dacheng; Zhang, Wensheng; Xie, Yuan; Yang, Yehui
2017-12-01
In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.
Vivas, M; Silveira, S F; Viana, A P; Amaral, A T; Cardoso, D L; Pereira, M G
2014-07-02
Diallel crossing methods provide information regarding the performance of genitors between themselves and their hybrid combinations. However, with a large number of parents, the number of hybrid combinations that can be obtained and evaluated become limited. One option regarding the number of parents involved is the adoption of circulant diallels. However, information is lacking regarding diallel analysis using mixed models. This study aimed to evaluate the efficacy of the method of linear mixed models to estimate, for variable resistance to foliar fungal diseases, components of general and specific combining ability in a circulant table with different s values. Subsequently, 50 diallels were simulated for each s value, and the correlations and estimates of the combining abilities of the different diallel combinations were analyzed. The circulant diallel method using mixed modeling was effective in the classification of genitors regarding their combining abilities relative to the complete diallels. The numbers of crosses in which each genitor(s) will compose the circulant diallel and the estimated heritability affect the combining ability estimates. With three crosses per parent, it is possible to obtain good concordance (correlation above 0.8) between the combining ability estimates.
NASA Technical Reports Server (NTRS)
Li, Feng; Stolarski, Richard S.; Pawson, Steven; Newman, Paul A.; Waugh, Darryn
2010-01-01
Changes in the width of the upwelling branch of the Brewer-Dobson circulation and Hadley cell in the 21st Century are investigated using simulations from a coupled chemistry-climate model. In these model simulations the tropical upwelling region narrows in the troposphere and lower stratosphere. The narrowing of the Brewer-Dobson circulation is caused by an equatorward shift of Rossby wave critical latitudes and Eliassen-Palm flux convergence in the subtropical lower stratosphere. In the troposphere, the model projects an expansion of the Hadley cell's poleward boundary, but a narrowing of the Hadley rising branch. Model results suggest that the narrowing of the Hadley cell ascent is also eddy-driven.
NASA Astrophysics Data System (ADS)
Galperin, Boris; Mellor, George L.
1990-09-01
The three-dimensional model of Delaware Bay, River and adjacent continental shelf was described in Part 1. Here, Part 2 of this two-part paper demonstrates that the model is capable of realistic simulation of current and salinity distributions, tidal cycle variability, events of strong mixing caused by high winds and rapid salinity changes due to high river runoff. The 25-h average subtidal circulation strongly depends on the wind forcing. Monthly residual currents and salinity distributions demonstrate a classical two-layer estuarine circulation wherein relatively low salinity water flows out at the surface and compensating high salinity water from the shelf flows at the bottom. The salinity intrusion is most vigorous along deep channels in the Bay. Winds can generate salinity fronts inside and outside the Bay and enhance or weaken the two-layer circulation pattern. Since the portion of the continental shelf included in the model is limited, the model shelf circulation is locally wind-driven and excludes such effects as coastally trapped waves and interaction with Gulf Stream rings; nevertheless, a significant portion of the coastal elevation variability is hindcast by the model. Also, inclusion of the shelf improves simulation of salinity inside the Bay compared with simulations where the salinity boundary condition is specified at the mouth of the Bay.
Adhikari, Dinesh; Jiang, Tianyi; Kawagoe, Taiki; Kai, Takamitsu; Kubota, Kenzo; Araki, Kiwako S; Kubo, Motoki
2017-12-04
Improvement of phosphorus circulation in the soil is necessary to enhance phosphorus availability to plants. Phosphorus circulation activity is an index of soil's ability to supply soluble phosphorus from organic phosphorus in the soil solution. To understand the relationship among phosphorus circulation activity; bacterial biomass; pH; and Fe, Al, and Ca concentrations (described as mineral concentration in this paper) in agricultural soil, 232 soil samples from various agricultural fields were collected and analyzed. A weak relationship between phosphorus circulation activity and bacterial biomass was observed in all soil samples ( R ² = 0.25), and this relationship became significantly stronger at near-neutral pH (6.0-7.3; R ² = 0.67). No relationship between phosphorus circulation activity and bacterial biomass was observed at acidic (pH < 6.0) or alkaline (pH > 7.3) pH. A negative correlation between Fe and Al concentrations and phosphorus circulation activity was observed at acidic pH ( R ² = 0.72 and 0.73, respectively), as well as for Ca at alkaline pH ( R ² = 0.64). Therefore, bacterial biomass, pH, and mineral concentration should be considered together for activation of phosphorus circulation activity in the soil. A relationship model was proposed based on the effects of bacterial biomass and mineral concentration on phosphorus circulation activity. The suitable conditions of bacterial biomass, pH, and mineral concentration for phosphorus circulation activity could be estimated from the relationship model.
Yuan, Jing; Wang, Xinguo; Xie, Yudou; Wang, Yuzhi; Dong, Lei; Li, Hong; Zhu, Tongyu
2017-07-04
Patients with preeclampsia have higher circulating asymmetric dimethylarginine (ADMA). However, whether circulating ADMA is elevated before the diagnosis of preeclampsia has not been determined. A meta-analysis of observational studies that reported circulating ADMA level before the onset of preeclampsia was performed. Pubmed and Embase were searched. Standardized mean differences (SMD) with 95% confidence intervals (CI) were used to estimate the differences in circulating ADMA. A random effect model or a fixed effect model was applied depending on the heterogeneity. The predictive efficacy of circulating ADMA for the incidence of preeclampsia was also explored. Eleven comparisons with 1338 pregnant women were included. The pooled results showed that the circulating ADMA was significantly higher in women who subsequently developed preeclampsia as compared with those did not (SMD: 0.71, p < 0.001) with a moderate heterogeneity (I2 = 43%). Stratified analyses suggested elevation of circulating ADMA is more remarkable in studies with GA of ADMA sampling ≥ 20 weeks (SMD: 0.89, p < 0.01) as compared those with GA of ADMA sampling < 20 weeks (SMD: 0.56, p < 0.01; p for subgroup interaction = 0.03). Differences of maternal age, study design, and ADMA measurement methods did not significantly affect the results. Only two studies evaluated the potential predicting ability of circulating ADMA for subsequent preeclampsia, and retrieved moderate predictive efficacy. Circulating ADMA is elevated before the development of preeclampsia. Studies are needed to evaluate the predictive efficacy of ADMA for the incidence of preeclampsia.
NASA Astrophysics Data System (ADS)
Zhao, X.; Allen, R.
2017-12-01
In a warming world, the tropical atmospheric overturning circulation-including the Walker Circulation-is expected to weaken due to thermodynamic constraints. Tropical precipitation increases at a slower rate than water vapor-which increases according to Clausius Clapeyron scaling, assuming constant relative humidity-so the tropical overturning circulation slows down. This is supported by both observations and model simulations, which show a slowdown of the Walker Circulation over the 20th century. Model projections suggest a further weakening of the Walker Circulation in the 21st century. However, over the last several decades (1979-2014), multiple observations reveal a robust strengthening of the Walker Circulation. Although coupled CMIP5 simulations are unable to reproduce this strengthening, AMIP simulations-which feature the observed evolution of SSTs-are generally able to reproduce it. Assuming the ensemble mean sea surface temperatures (SSTs) from historical CMIP5 simulations accurately represent the externally forced SST response, the observed SSTs can be decomposed into a forced and an unforced component. CAM5 AMIP-type simulations driven by the unforced component of observed SSTs reproduce the observed strengthening of the Walker Circulation. Corresponding simulations driven by the forced component of observed SSTs yield a weaker Walker Circulation. These results are consistent with the zonal tropical SST gradient and the Bjerknes feedback. The unforced component of SSTs yield an increased SST gradient over tropical Pacific (a La Nina like pattern) and strengthening of the tropical trade winds, which constitute the lower branch of the Walker Circulation. The forced component of SSTs yields a zonally uniform tropical Pacific SST warming and a marginal weakening of the Walker Circulation. Our results suggest significant modulation of the tropical Walker Circulation by natural SST variability over the last several decades.
NASA Technical Reports Server (NTRS)
Roble, R. G.; Killeen, T. L.; Spencer, N. W.; Heelis, R. A.; Reiff, P. H.
1988-01-01
Time-dependent aurora and magnetospheric convection parameterizations have been derived from solar wind and aurora particle data for November 21-22, 1981, and are used to drive the auroral and magnetospheric convection models that are embedded in the National Center for Atmospheric Research thermospheric general circulation model (TGCM). Neutral wind speeds and transition boundaries between the midlatitude solar-driven circulation and the high-latitude magnetospheric convection-driven circulation are examined on an orbit-by-orbit basis. The results show that TGCM-calculated winds and reversal boundary locations are in generally good agreement with Dynamics Explorer 2 measurements for the orbits studied. This suggests that, at least for this particular period of relatively moderate geomagnetic activity, the TGCM parameterizations on the eveningside of the auroral oval and polar cap are adequate.
Parameterized and resolved Southern Ocean eddy compensation
NASA Astrophysics Data System (ADS)
Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman
2018-04-01
The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.
Representation of Clear and Cloudy Boundary Layers in Climate Models. Chapter 14
NASA Technical Reports Server (NTRS)
Randall, D. A.; Shao, Q.; Branson, M.
1997-01-01
The atmospheric general circulation models which are being used as components of climate models rely on their boundary layer parameterizations to produce realistic simulations of the surface turbulent fluxes of sensible heat. moisture. and momentum: of the boundary-layer depth over which these fluxes converge: of boundary layer cloudiness: and of the interactions of the boundary layer with the deep convective clouds that grow upwards from it. Two current atmospheric general circulation models are used as examples to show how these requirements are being addressed: these are version 3 of the Community Climate Model. which has been developed at the U.S. National Center for Atmospheric Research. and the Colorado State University atmospheric general circulation model. The formulations and results of both models are discussed. Finally, areas for future research are suggested.
Renewed circulation scheme of the Baltic Sea - based on the 40-year simulation with GETM.
NASA Astrophysics Data System (ADS)
Maljutenko, Ilja; Raudsepp, Urmas
2015-04-01
The general circulation of the Baltic Sea has been characterized as cyclonic in all sub-basins based on numerous measurements and model simulations. From the long-term hydrodynamical simulation our model results have verified the general cyclonic circulation in the Baltic Proper and in the Gulf of Bothnia, but the Gulf of Finland and the Gulf of Riga have shown tendency to anticyclonic circulation. We have applied the General Estuarine Transport Model ( GETM ) for the period of 1966 - 2006 with a 1 nautical mile horizontal resolution and density adaptive bottom following vertical coordinates to make it possible to simulate horizontal and vertical density gradients with better precision. The atmospheric forcing from dynamically downscaled ERA40-HIRLAM and parametrized lateral boundary conditions are applied. Model simulation show close agreement with measurements conducted in the main monitoring stations in the BS during the simulation period. The geostrophic adjustment of density driven currents along with the upward salinity flux due to entrainment could explain the anticyclonic circulation and strong coastal current. Mean vertical velocities show that upward and downward movements are forming closed vertical circulation loops along the bottom slope of the Baltic Proper and the Gulf of Bothnia. The model has also reproduced patchy vertical movement across the BS with some distinctive areas of upward advective fluxes in the GoF along the thalweg. The distinctive areas of deepwater upwelling are also evident in the Gdansk Basin, western Gotland Basin, northern Gotland Basin and in the northen part of the Bothnia Sea.
Documentation of the GLAS fourth order general circulation model. Volume 2: Scalar code
NASA Technical Reports Server (NTRS)
Kalnay, E.; Balgovind, R.; Chao, W.; Edelmann, D.; Pfaendtner, J.; Takacs, L.; Takano, K.
1983-01-01
Volume 2, of a 3 volume technical memoranda contains a detailed documentation of the GLAS fourth order general circulation model. Volume 2 contains the CYBER 205 scalar and vector codes of the model, list of variables, and cross references. A variable name dictionary for the scalar code, and code listings are outlined.
NASA Technical Reports Server (NTRS)
McCormick, S.; Ruge, John W.
1998-01-01
This work represents a part of a project to develop an atmospheric general circulation model based on the semi-Lagrangian advection of potential vorticity (PC) with divergence as the companion prognostic variable.
NASA Astrophysics Data System (ADS)
Zappa, G.; Pithan, F.; Shepherd, T. G.
2018-01-01
Previous single-model experiments have found that Arctic sea ice loss can influence the atmospheric circulation. To evaluate this process in a multimodel ensemble, a novel methodology is here presented and applied to infer the influence of Arctic sea ice loss in the CMIP5 future projections. Sea ice influence is estimated by comparing the circulation response in the RCP8.5 scenario against the circulation response to sea surface warming and CO2 increase inferred from the AMIPFuture and AMIP4xCO2 experiments, where sea ice is unperturbed. Multimodel evidence of the impact of sea ice loss on midlatitude atmospheric circulation is identified in late winter (January-March), when the sea ice-related surface heat flux perturbation is largest. Sea ice loss acts to suppress the projected poleward shift of the North Atlantic jet, to increase surface pressure in northern Siberia, and to lower it in North America. These features are consistent with previous single-model studies, and the present results indicate that they are robust to model formulation.
Zappa, G; Pithan, F; Shepherd, T G
2018-01-28
Previous single-model experiments have found that Arctic sea ice loss can influence the atmospheric circulation. To evaluate this process in a multimodel ensemble, a novel methodology is here presented and applied to infer the influence of Arctic sea ice loss in the CMIP5 future projections. Sea ice influence is estimated by comparing the circulation response in the RCP8.5 scenario against the circulation response to sea surface warming and CO 2 increase inferred from the AMIPFuture and AMIP4xCO2 experiments, where sea ice is unperturbed. Multimodel evidence of the impact of sea ice loss on midlatitude atmospheric circulation is identified in late winter (January-March), when the sea ice-related surface heat flux perturbation is largest. Sea ice loss acts to suppress the projected poleward shift of the North Atlantic jet, to increase surface pressure in northern Siberia, and to lower it in North America. These features are consistent with previous single-model studies, and the present results indicate that they are robust to model formulation.
NASA Astrophysics Data System (ADS)
Liu, Zedong; Wan, Xiuquan
2018-04-01
The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.
NASA Astrophysics Data System (ADS)
Lenhart, Hermann J.; Radach, Günther; Backhaus, Jan O.; Pohlmann, Thomas
The rationale is given of how the gross physical features of the circulation and the stratification of the North Sea have been aggregated for inclusion in the ecosystem box model ERSEM. As the ecosystem dynamics are to a large extent determined by small-scale physical events, the ecosystem model is forced with the circulation of a specific year rather than using the long-term mean circulation field. Especially the vertical exchange processes have been explicitly included, because the primary production strongly depends on them. Simulations with a general circulation model (GCM), forced by three-hourly meteorological fields, have been utilized to derive daily horizontal transport values driving ERSEM on boxes of sizes of a few 100 km. The daily vertical transports across a fixed 30-m interface provide the necessary short-term event character of the vertical exchange. For the years 1988 and 1989 the properties of the hydrodynamic flow fields are presented in terms of trajectories of the flow, thermocline depths, of water budgets, flushing times and diffusion rates. The results of the standard simulation with ERSEM show that the daily variability of the circulation, being smoothed by the box integration procedure, is transferred to the chemical and biological state variables to a very limited degree only.
NASA Astrophysics Data System (ADS)
Crasemann, Berit; Handorf, Dörthe; Jaiser, Ralf; Dethloff, Klaus; Nakamura, Tetsu; Ukita, Jinro; Yamazaki, Koji
2017-12-01
In the framework of atmospheric circulation regimes, we study whether the recent Arctic sea ice loss and Arctic Amplification are associated with changes in the frequency of occurrence of preferred atmospheric circulation patterns during the extended winter season from December to March. To determine regimes we applied a cluster analysis to sea-level pressure fields from reanalysis data and output from an atmospheric general circulation model. The specific set up of the two analyzed model simulations for low and high ice conditions allows for attributing differences between the simulations to the prescribed sea ice changes only. The reanalysis data revealed two circulation patterns that occur more frequently for low Arctic sea ice conditions: a Scandinavian blocking in December and January and a negative North Atlantic Oscillation pattern in February and March. An analysis of related patterns of synoptic-scale activity and 2 m temperatures provides a synoptic interpretation of the corresponding large-scale regimes. The regimes that occur more frequently for low sea ice conditions are resembled reasonably well by the model simulations. Based on those results we conclude that the detected changes in the frequency of occurrence of large-scale circulation patterns can be associated with changes in Arctic sea ice conditions.
Cloud Feedback in Atmospheric General Circulation Models: An Update
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, M. H.; Ingram, W. J.; Potter, G. L.; Alekseev, V.; Barker, H. W.; Cohen-Solal, E.; Colman, R. A.; Dazlich, D. A.; DelGenio, A. D.;
1996-01-01
Six years ago, we compared the climate sensitivity of 19 atmospheric general circulation models and found a roughly threefold variation among the models; most of this variation was attributed to differences in the models' depictions of cloud feedback. In an update of this comparison, current models showed considerably smaller differences in net cloud feedback, with most producing modest values. There are, however, substantial differences in the feedback components, indicating that the models still have physical disagreements.
Mars atmospheric circulation - Aspects from Viking Landers
NASA Technical Reports Server (NTRS)
Ryan, J. A.
1985-01-01
Winds measured by the two Viking Landers have been filtered and then compared with predictions from the general circulation model and to Orbiter observations of clouds and surface phenomena that indicate wind direction. This was done to determine the degree to which filtered winds may represent aspects of the general circulation. Excellent agreement was found between wind direction data from Lander 1 and the model predictions and Orbiter observations. For Lander 2, agreement was generally good, but there were periods of disagreement which indicate that the filtering did not remove other extraneous effects. It is concluded that Lander 1 gives a good representation of the general circulation at 22.5 deg N latitude but that Lander 2 is suspect. Most wind data from Lander 1 have yet to be analyzed. It appears that when analyzed these Lander 1 data (covering 3.5 Mars years) can provide information about interannual variations in the general circulation at the Lander latitude.
NASA Astrophysics Data System (ADS)
Bellomo, K.; Polvani, L. M.
2017-12-01
It is widely believed that the Walker Circulation will weaken in response to increasing greenhouse gases (GHG) by the end of the 21st century. But over the 20th century, the existence of a statistical significant weakening trends in the observations remains unclear. We here present new modelling evidence showing that Ozone Depleting Substances (ODS) may have significantly contributed to the weakening of the Walker Circulation over the years 1955-2005. While the primary impact of increasing ODS has been the formation of the ozone hole, it is perhaps not as widely appreciated that ODS are also powerful greenhouse gases. Using an ensemble of integrations with the the Whole Atmosphere Chemistry Climate Model, we show that the surface warming caused by increasing ODS over the second half of the 20th century causes a statistically significant weakening of the Walker Circulation in the model. In fact, we find that the increase of the other well-mixed GHG alone leads to a strengthening, not a weakening of the Walker Circulation, over that period in our model. When ODS concentrations are held fixed at 1950's levels, the effect of the other GHG is not sufficient, and a warming delay in the eastern tropical Pacific SST leads to an increase in the east-west SST gradient which is accompanied by a strengthening of the Walker Circulation. But, when the forcing from ODS is added in, the additional radiative forcing causes the eastern Pacific to warm faster, and the trend in the Walker Circulation reverses sign and becomes negative over the second half of the 20th century.
Variational data assimilative modeling of the Gulf of Maine in spring and summer 2010
NASA Astrophysics Data System (ADS)
Li, Yizhen; He, Ruoying; Chen, Ke; McGillicuddy, Dennis J.
2015-05-01
A data assimilative ocean circulation model is used to hindcast the Gulf of Maine [GOM) circulation in spring and summer 2010. Using the recently developed incremental strong constraint 4D Variational data assimilation algorithm, the model assimilates satellite sea surface temperature and in situ temperature and salinity profiles measured by expendable bathythermograph, Argo floats, and shipboard CTD casts. Validation against independent observations shows that the model skill is significantly improved after data assimilation. The data-assimilative model hindcast reproduces the temporal and spatial evolution of the ocean state, showing that a sea level depression southwest of the Scotian Shelf played a critical role in shaping the gulf-wide circulation. Heat budget analysis further demonstrates that both advection and surface heat flux contribute to temperature variability. The estimated time scale for coastal water to travel from the Scotian Shelf to the Jordan Basin is around 60 days, which is consistent with previous estimates based on in situ observations. Our study highlights the importance of resolving upstream and offshore forcing conditions in predicting the coastal circulation in the GOM.
Stratospheric wind errors, initial states and forecast skill in the GLAS general circulation model
NASA Technical Reports Server (NTRS)
Tenenbaum, J.
1983-01-01
Relations between stratospheric wind errors, initial states and 500 mb skill are investigated using the GLAS general circulation model initialized with FGGE data. Erroneous stratospheric winds are seen in all current general circulation models, appearing also as weak shear above the subtropical jet and as cold polar stratospheres. In this study it is shown that the more anticyclonic large-scale flows are correlated with large forecast stratospheric winds. In addition, it is found that for North America the resulting errors are correlated with initial state jet stream accelerations while for East Asia the forecast winds are correlated with initial state jet strength. Using 500 mb skill scores over Europe at day 5 to measure forecast performance, it is found that both poor forecast skill and excessive stratospheric winds are correlated with more anticyclonic large-scale flows over North America. It is hypothesized that the resulting erroneous kinetic energy contributes to the poor forecast skill, and that the problem is caused by a failure in the modeling of the stratospheric energy cycle in current general circulation models independent of vertical resolution.
NASA Astrophysics Data System (ADS)
Marchesiello, P.; Barnier, B.; de Miranda, A. P.
1998-04-01
The mean and seasonal variability of the circulation and meridional heat transport in the South Atlantic are investigated using a set of numerical experiments. The primitive equation model uses a topography-following (sigma) coordinate. The model domain is limited to the South Atlantic basin. Artificial boundaries at Drake Passage, between Brazil and Angola, and between South Africa and Antarctica are treated as open boundaries. Finally, recent and self-consistent estimates of seasonal fluxes are used to define a model-dependent atmospheric forcing. Quasi-diagnostic simulations forced by constant climatological winds are first conducted to determine the sensitivity of model solutions to bottom topography smoothing, and to diagnose meridional fluxes from a mass field that is relaxed to the annual climatology of Levitus (1982). Model results show good agreement with known climatological circulation features in this basin, especially in the Confluence Region, where coarse resolution models usually give smooth structures. Sensitivity studies show that the more detailed features of the circulation are influenced by the model bathymetry. The model simulates a meridional circulation whose upper branch (the return flow that balances the southward flow of North Atlantic Deep Water) is composed of Intermediate (IW) and Thermocline (TW) Waters. The transport of IW is found to be predominant, and the value of meridional heat transport consequently falls within the low estimates. We notice that the meridional heat balance is sensitive to the position of the Confluence. When this region occurs too far south, the amount of IW contributing to the return flow of the overturning cell is reduced. Prognostic simulations forced by seasonal winds and heat fluxes are studied to quantify the impact of wind forcing on the circulation in the South Atlantic. Particular attention is focused on meridional transports at 30°S. Analysis of the mean annual circulation confirms that the upper branch of the meridional circulation is predominantly composed of IW (9 Sv), rather than TW (5.3 Sv). The mean transport of the lower branch is 16 Sv, in agreement with recent estimates by Schlitzer (1996). The annual meridional heat transport (0.29 PW) is still within the low estimates, but agrees well with other estimates that give a dominant role to IW (Rintoul, 1991). Original results also concern the variability of the upper branch of the meridional circulation. It is shown that the wind creates seasonal variability in the Subtropical Gyre, which has a marked impact on the water mass balance in the South Atlantic. In winter, a large convergence to the north of the Subtropical Gyre (27°S) reduces the northward flow of IW, whereas stronger Ekman pumping favors an equatorward transport of TW. In summer, this convergence disappears and a larger transport of IW is allowed. Thus a more complex scheme is proposed for the meridional circulation, in which local wind forcing in the South Atlantic Basin has a significant role in preconditioning the surface waters of the global overturning cell.
NASA Technical Reports Server (NTRS)
Fowlis, W. W. (Editor); Davis, M. H. (Editor)
1981-01-01
The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.
Can the Ocean's Heat Engine Control Horizontal Circulation? Insights From the Caspian Sea
NASA Astrophysics Data System (ADS)
Bruneau, Nicolas; Zika, Jan; Toumi, Ralf
2017-10-01
We investigate the role of the ocean's heat engine in setting horizontal circulation using a numerical model of the Caspian Sea. The Caspian Sea can be seen as a virtual laboratory—a compromise between realistic global models that are hampered by long equilibration times and idealized basin geometry models, which are not constrained by observations. We find that increases in vertical mixing drive stronger thermally direct overturning and consequent conversion of available potential to kinetic energy. Numerical solutions with water mass structures closest to observations overturn 0.02-0.04 × 106 m3/s (sverdrup) representing the first estimate of Caspian Sea overturning. Our results also suggest that the overturning is thermally forced increasing in intensity with increasing vertical diffusivity. Finally, stronger thermally direct overturning is associated with a stronger horizontal circulation in the Caspian Sea. This suggests that the ocean's heat engine can strongly impact broader horizontal circulations in the ocean.
A continuum model for pressure-flow relationship in human pulmonary circulation.
Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T
2011-06-01
A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.
Linear thermal circulator based on Coriolis forces.
Li, Huanan; Kottos, Tsampikos
2015-02-01
We show that the presence of a Coriolis force in a rotating linear lattice imposes a nonreciprocal propagation of the phononic heat carriers. Using this effect we propose the concept of Coriolis linear thermal circulator which can control the circulation of a heat current. A simple model of three coupled harmonic masses on a rotating platform permits us to demonstrate giant circulating rectification effects for moderate values of the angular velocities of the platform.
SpaceX Dragon Air Circulation System
NASA Technical Reports Server (NTRS)
Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro
2011-01-01
The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.
Validation of the BASALT model for simulating off-axis hydrothermal circulation in oceanic crust
NASA Astrophysics Data System (ADS)
Farahat, Navah X.; Archer, David; Abbot, Dorian S.
2017-08-01
Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems appear to produce considerable diversity of circulation behaviors. Circulation of seawater and seawater-derived fluids controls the extent of fluid-rock interaction, resulting in significant geochemical impacts. However, the primary regional characteristics that control how seawater is distributed within upper oceanic crust are still poorly understood. In this paper we present the details of the two-dimensional (2-D) BASALT (Basement Activity Simulated At Low Temperatures) numerical model of heat and fluid transport in an off-axis hydrothermal system. This model is designed to simulate a wide range of conditions in order to explore the dominant controls on circulation. We validate the BASALT model's ability to reproduce observations by configuring it to represent a thoroughly studied transect of the Juan de Fuca Ridge eastern flank. The results demonstrate that including series of narrow, ridge-parallel fractures as subgrid features produces a realistic circulation scenario at the validation site. In future projects, a full reactive transport version of the validated BASALT model will be used to explore geochemical fluxes in a variety of off-axis hydrothermal environments.
NASA Technical Reports Server (NTRS)
Shukla, Sonali P.; Puma, Michael J.; Cook, Benjamin I.
2013-01-01
Agricultural intensification in South Asia has resulted in the expansion and intensification of surface irrigation over the twentieth century. The resulting changes to the surface energy balance could affect the temperature contrasts between the South Asian land surface and the equatorial Indian Ocean, potentially altering the South Asian Summer Monsoon (SASM) circulation. Prior studies have noted apparent declines in the monsoon intensity over the twentieth century and have focused on how altered surface energy balances impact the SASM rainfall distribution. Here, we use the coupled Goddard Institute for Space Studies ModelE-R general circulation model to investigate the impact of intensifying irrigation on the large-scale SASM circulation over the twentieth century, including how the effect of irrigation compares to the impact of increasing greenhouse gas (GHG) forcing. We force our simulations with time-varying, historical estimates of irrigation, both alone and with twentieth century GHGs and other forcings. In the irrigation only experiment, irrigation rates correlate strongly with lower and upper level temperature contrasts between the Indian sub-continent and the Indian Ocean (Pearson's r = -0.66 and r = -0.46, respectively), important quantities that control the strength of the SASM circulation. When GHG forcing is included, these correlations strengthen: r = -0.72 and r = -0.47 for lower and upper level temperature contrasts, respectively. Under irrigated conditions, the mean SASM intensity in the model decreases only slightly and insignificantly. However, in the simulation with irrigation and GHG forcing, inter-annual variability of the SASM circulation decreases by *40 %, consistent with trends in the reanalysis products. This suggests that the inclusion of irrigation may be necessary to accurately simulate the historical trends and variability of the SASM system over the last 50 years. These findings suggest that intensifying irrigation, in concert with increased GHG forcing, is capable of reducing the variability of the simulated SASM circulation and altering the regional moisture transport by limiting the surface warming and reducing land-sea temperature gradients.
Uncertainties in Carbon Dioxide Radiative Forcing in Atmospheric General Circulation Models
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, M.-H.; Potter, G. L.; Gates, W. L.; Taylor, K. E.; Barker, H. W.; Colman, R. A.; Fraser, J. R.; McAvaney, B. J.; Dazlich, D. A.;
1993-01-01
Global warming, caused by an increase in the concentrations of greenhouse gases, is the direct result of greenhouse gas-induced radiative forcing. When a doubling of atmospheric carbon dioxide is considered, this forcing differed substantially among 15 atmospheric general circulation models. Although there are several potential causes, the largest contributor was the carbon dioxide radiation parameterizations of the models.
Do Coupled Climate Models Correctly SImulate the Upward Branch of the Deept Ocean Global Conveyor?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarmiento, Jorge L; Downes, Stephanie; Bianchi, Daniele
The large-scale meridional overturning circulation (MOC) connects the deep ocean, a major reservoir of carbon, to the other components of the climate system and must therefore be accurately represented in Earth System Models. Our project aims to address the specific question of the pathways and mechanisms controlling the upwelling branch of the MOC, a subject of significant disagreement between models and observational syntheses, and among general circulation models. Observations of these pathways are limited, particularly in regions of complex hydrography such as the Southern Ocean. As such, we rely on models to examine theories of the overturning circulation, both physicallymore » and biogeochemically. This grant focused on a particular aspect of the meridional overturning circulation (MOC) where there is currently significant disagreement between models and observationally based analyses of the MOC, and amongst general circulation models. In particular, the research focused on addressing the following questions: 1. Where does the deep water that sinks in the polar regions rise to the surface? 2. What processes are responsible for this rise? 3. Do state-of-the-art coupled GCMs capture these processes? Our research had three key components: observational synthesis, model development and model analysis. In this final report we outline the key results from these areas of research for the 2007 to 2012 grant period. The research described here was carried out primarily by graduate student, Daniele Bianchi (now a Postdoc at McGill University, Canada), and Postdoc Stephanie Downes (now a Research Fellow at The Australian national University, Australia). Additional support was provided for programmers Jennifer Simeon as well as Rick Slater.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Khangaonkar, Tarang
2010-11-19
Water circulation in Puget Sound, a large complex estuary system in the Pacific Northwest coastal ocean of the United States, is governed by multiple spatially and temporally varying forcings from tides, atmosphere (wind, heating/cooling, precipitation/evaporation, pressure), and river inflows. In addition, the hydrodynamic response is affected strongly by geomorphic features, such as fjord-like bathymetry and complex shoreline features, resulting in many distinguishing characteristics in its main and sub-basins. To better understand the details of circulation features in Puget Sound and to assist with proposed nearshore restoration actions for improving water quality and the ecological health of Puget Sound, a high-resolutionmore » (around 50 m in estuaries and tide flats) hydrodynamic model for the entire Puget Sound was needed. Here, a threedimensional circulation model of Puget Sound using an unstructured-grid finite volume coastal ocean model is presented. The model was constructed with sufficient resolution in the nearshore region to address the complex coastline, multi-tidal channels, and tide flats. Model open boundaries were extended to the entrance of the Strait of Juan de Fuca and the northern end of the Strait of Georgia to account for the influences of ocean water intrusion from the Strait of Juan de Fuca and the Fraser River plume from the Strait of Georgia, respectively. Comparisons of model results, observed data, and associated error statistics for tidal elevation, velocity, temperature, and salinity indicate that the model is capable of simulating the general circulation patterns on the scale of a large estuarine system as well as detailed hydrodynamics in the nearshore tide flats. Tidal characteristics, temperature/salinity stratification, mean circulation, and river plumes in estuaries with tide flats are discussed.« less
Montane ecosystem productivity responds more to global circulation patterns than climatic trends.
Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Eugster, W; Montagnani, L; Gianelle, D; Mauder, M; Schmid, H-P
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
Montane ecosystem productivity responds more to global circulation patterns than climatic trends
NASA Astrophysics Data System (ADS)
Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
NASA Astrophysics Data System (ADS)
Kracher, D.; Manzini, E.; Reick, C. H.; Schultz, M. G.; Stein, O.
2014-12-01
Greenhouse gas induced climate change will modify the physical conditions of the atmosphere. One of the projected changes is an acceleration of the Brewer-Dobson circulation in the stratosphere, as it has been shown in many model studies. This change in the stratospheric circulation consequently bears an effect on the transport and distribution of atmospheric components such as N2O. Since N2O is involved in ozone destruction, a modified distribution of N2O can be of importance for ozone chemistry. N2O is inert in the troposphere and decays only in the stratosphere. Thus, changes in the exchange between troposphere and stratosphere can also affect the stratospheric sink of N2O, and consequently its atmospheric lifetime. N2O is a potent greenhouse gas with a global warming potential of currently approximately 300 CO2-equivalents in a 100-year perspective. A faster decay in atmospheric N2O mixing ratios, i.e. a decreased atmospheric lifetime of N2O, will also reduce its global warming potential. In order to assess the impact of climate change on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O, we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean-atmosphere N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation. Increasing surface temperatures and CO2 concentrations in the stratosphere impact atmospheric circulation differently. Thus, we conduct a series of transient runs with the atmospheric model of MPI-ESM to isolate different factors governing a shift in atmospheric circulation. From those transient simulations we diagnose decreasing tropospheric N2O concentrations, increased transport of N2O from the troposphere to the stratosphere, and increasing stratospheric decay of N2O leading to a reduction in atmospheric lifetime of N2O, in dependency to climate change evolution.
Circulating a Good Service Model at Its Core: Circulation!
ERIC Educational Resources Information Center
Hernandez, Edmee Sofia; Germain, Carol Anne, Ed.
2009-01-01
Circulation is the library's tireless foot soldier: it serves as the front gate to the library's services and resources. This service point is where most patrons enter and leave; and experience their first and last impressions--impressions that linger. In an age when academic libraries are facing meager budgets and declining usage statistics, this…
Dispensing with the DVD Circulation Dilemma
ERIC Educational Resources Information Center
Ellis, Mark
2008-01-01
Richmond Public Library (RPL) is a four-branch suburban library with the highest per capita circulation of any comparable library in Canada. While DVDs naturally fit into RPL's emphasis on popular material, circulating them using the standard model proved problematic: Long hold queues built up, DVDs idled on the hold shelves, and the circulation…
A comparison of two- and three-dimensional tracer transport within a stratospheric circulation model
NASA Technical Reports Server (NTRS)
Schneider, H.-R.; Geller, M. A.
1985-01-01
Use of the residual circulation for stratospheric tracer transport has been compared to a fully three-dimensional calculation. The wind fields used in this study were obtained from a global, semispectral, primitive equation model, extending from 10 to 100 km in altitude. Comparisons were done with a passive tracer and an ozone-like substance over a two-month period corresponding to a Northern Hemisphere winter. It was found that the use of the residual circulation can lead to errors in the tracer concentrations of about a factor of 2. The error is made up of two components. One is fluctuating with a period of approximately one month and reflects directly the wave transience that occurs on that time-scale. The second part is increasing steadily over the integration period and results from an overestimate of the vertical transport by the residual circulation. Furthermore, the equatorward and upward mixing that occurs with transport by the three-dimensional circulation at low latitudes is not well reproduced when the residual circulation is used.
Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion
NASA Astrophysics Data System (ADS)
Yang, Haijun; Wang, Kun; Dai, Haijin; Wang, Yuxing; Li, Qing
2016-06-01
Effects of wind and fresh water on the Atlantic meridional overturning circulation (AMOC) are investigated using a fully coupled climate model. The AMOC can change significantly when perturbed by either wind stress or freshwater flux in the North Atlantic. This study focuses on wind stress effect. Our model results show that the wind forcing is crucial in maintaining the AMOC. Reducing wind forcing over the ocean can cause immediately weakening of the vertical salinity diffusion and convection in the mid-high latitudes Atlantic, resulting in an enhancement of vertical salinity stratification that restrains the deep water formation there, triggering a slowdown of the thermohaline circulation. As the thermohaline circulation weakens, the sea ice expands southward and melts, providing the upper ocean with fresh water that weakens the thermohaline circulation further. The wind perturbation experiments suggest a positive feedback between sea-ice and thermohaline circulation strength, which can eventually result in a complete shutdown of the AMOC. This study also suggests that sea-ice variability may be also important to the natural AMOC variability on decadal and longer timescales.
Changes in present and future circulation types frequency in northwest Iberian Peninsula.
Lorenzo, María N; Ramos, Alexandre M; Taboada, Juan J; Gimeno, Luis
2011-01-21
The aim of the work described herein was to study projection scenarios in order to find changes in the synoptic variability of the northwest Iberian Peninsula in the 21st century. To this end, we investigated the changes in the frequency of the different circulation types computed for the study area using three different models used in the IPCC 4(th) assessment report. The circulation types were computed using the procedure known as Lamb circulation types. The control simulation for the late 20th century was evaluated objectively from the results obtained using data from the NCEP/NCAR reanalysis, as to evaluate the ability of the model to reproduce the present climate. We have compared not only seasonal mean sea level pressure fields but also the mean seasonal frequency of circulation types. The results for the end of the 21st century show a decrease in the frequency of cyclonic, W, and SW circulation types in the spring and summer months. This trend also appears in the autumn, with a concomitant increase in the anticyclonic types.
Changes in Present and Future Circulation Types Frequency in Northwest Iberian Peninsula
Lorenzo, María N.; Ramos, Alexandre M.; Taboada, Juan J.; Gimeno, Luis
2011-01-01
The aim of the work described herein was to study projection scenarios in order to find changes in the synoptic variability of the northwest Iberian Peninsula in the 21st century. To this end, we investigated the changes in the frequency of the different circulation types computed for the study area using three different models used in the IPCC 4th assessment report. The circulation types were computed using the procedure known as Lamb circulation types. The control simulation for the late 20th century was evaluated objectively from the results obtained using data from the NCEP/NCAR reanalysis, as to evaluate the ability of the model to reproduce the present climate. We have compared not only seasonal mean sea level pressure fields but also the mean seasonal frequency of circulation types. The results for the end of the 21st century show a decrease in the frequency of cyclonic, W, and SW circulation types in the spring and summer months. This trend also appears in the autumn, with a concomitant increase in the anticyclonic types. PMID:21283703
Using the Gamma-Poisson Model to Predict Library Circulations.
ERIC Educational Resources Information Center
Burrell, Quentin L.
1990-01-01
Argues that the gamma mixture of Poisson processes, for all its perceived defects, can be used to make predictions regarding future library book circulations of a quality adequate for general management requirements. The use of the model is extensively illustrated with data from two academic libraries. (Nine references) (CLB)
The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscal...
An integrated coronary circulation teaching model.
van Oostrom, Johannes H; Kentgens, S; Beneken, J E W; Gravenstein, J S
2006-08-01
We present in this paper a model of the coronary circulation. This model is integrated with a model of the systemic circulation, and contains models for oxygen supply and demand. Three compartments are created: one for the right ventricle, one for the epicardial segment of the left ventricle and one for the endo-cardial segment of the left ventricle. The model was implemented in the Java programming language and contains a visual representation of the left and right ventricles which beat in real time. Color shading is used to represent the partial pressure of oxygen in the segments. A multitude of model parameters can be changed to simulate different scenarios. The output of the model was characterized under different conditions and the results verified by clinicians. Educational models of human physiology can be very useful for a more in depth understanding of complete physiologic systems. The models must however have enough complexity, interaction with other systems, and realism to show the concepts being taught.
Adaptation of a general circulation model to ocean dynamics
NASA Technical Reports Server (NTRS)
Turner, R. E.; Rees, T. H.; Woodbury, G. E.
1976-01-01
A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.
On a sparse pressure-flow rate condensation of rigid circulation models
Schiavazzi, D. E.; Hsia, T. Y.; Marsden, A. L.
2015-01-01
Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol’ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219
1989-06-01
coefficients vortex circulation, symbols used in vorticity plots representing circulation values derived from different vortex core models injection...derived from different vortex core models dimensionless core size parameter: t wice the a verage core radius divided by t h e i n jection hole...Wall Heating, xjd=109.2, m=0.5, Single Injection Hole Vortex w, Temp. Difference Range (.5- 2.5) degree s 91. Local Temperature Distribution
Mixing parametrizations for ocean climate modelling
NASA Astrophysics Data System (ADS)
Gusev, Anatoly; Moshonkin, Sergey; Diansky, Nikolay; Zalesny, Vladimir
2016-04-01
The algorithm is presented of splitting the total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF), which is used to parameterize the viscosity and diffusion coefficients in ocean circulation models. The turbulence model equations are split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage, the following schemes are implemented: the explicit-implicit numerical scheme, analytical solution and the asymptotic behavior of the analytical solutions. The experiments were performed with different mixing parameterizations for the modelling of Arctic and the Atlantic climate decadal variability with the eddy-permitting circulation model INMOM (Institute of Numerical Mathematics Ocean Model) using vertical grid refinement in the zone of fully developed turbulence. The proposed model with the split equations for turbulence characteristics is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. Parameterizations with using the split turbulence model make it possible to obtain more adequate structure of temperature and salinity at decadal timescales, compared to the simpler Pacanowski-Philander (PP) turbulence parameterization. Parameterizations with using analytical solution or numerical scheme at the generation-dissipation step of the turbulence model leads to better representation of ocean climate than the faster parameterization using the asymptotic behavior of the analytical solution. At the same time, the computational efficiency left almost unchanged relative to the simple PP parameterization. Usage of PP parametrization in the circulation model leads to realistic simulation of density and circulation with violation of T,S-relationships. This error is majorly avoided with using the proposed parameterizations containing the split turbulence model. The high sensitivity of the eddy-permitting circulation model to the definition of mixing is revealed, which is associated with significant changes of density fields in the upper baroclinic ocean layer over the total considered area. For instance, usage of the turbulence parameterization instead of PP algorithm leads to increasing circulation velocity in the Gulf Stream and North Atlantic Current, as well as the subpolar cyclonic gyre in the North Atlantic and Beaufort Gyre in the Arctic basin are reproduced more realistically. Consideration of the Prandtl number as a function of the Richardson number significantly increases the modelling quality. The research was supported by the Russian Foundation for Basic Research (grant № 16-05-00534) and the Council on the Russian Federation President Grants (grant № MK-3241.2015.5)
NASA Astrophysics Data System (ADS)
Alvera-Azcarate, A.; Barth, A.; Virmani, J. I.; Weisberg, R. H.
2007-05-01
The Intra-Americas Sea (IAS) surface circulation is characterized by large scale currents. The Caribbean current, which originates in the Lesser Antilles, travels westwards through the Caribbean Sea and eastern Mexico and passes through the Gulf of Mexico to finally form the Gulf Stream. This complex system of currents is also characterized by a high mesoscale variability, such as eddies and meanders. The objectives of this work are twofold: first, the multi-scale surface circulation of the IAS is described using satellite altimetry. The topographic influence of the different basins forming the IAS, the characteristic time and spatial scales, and the time variability of the surface circulation will be addressed. The second objective is to analyze the influence of this large scale circulation on a small scale coastal domain with a ROMS-based model of the Cariaco basin (Venezuela). Cariaco is a deep (1400 m), semi-enclosed basin connected to the open ocean by two shallow channels (Tortuga and Centinela Channels). Its connection with the open sea, and therefore the ventilation of the basin, occurs in the surface layers. The Cariaco ROMS model will be used to study the exchanges of mass, heat and salt through the channels. A 1/60 degree ROMS model nested in the global 1/12 degree HYCOM model from the Naval Research Laboratory will be used for this study. In addition, a series of observations (satellite altimetry and in situ temperature, salinity and velocity data), will be used to assess the influence of the Caribbean circulation on the basin.
The Southern Ocean's role in ocean circulation and climate transients
NASA Astrophysics Data System (ADS)
Thompson, A. F.; Stewart, A.; Hines, S.; Adkins, J. F.
2017-12-01
The ventilation of deep and intermediate density classes at the surface of the Southern Ocean impacts water mass modification and the air-sea exchange of heat and trace gases, which in turn influences the global overturning circulation and Earth's climate. Zonal variability occurs along the Antarctic Circumpolar Current and the Antarctic margins related to flow-topography interactions, variations in surface boundary conditions, and exchange with northern basins. Information about these zonal variations, and their impact on mass and tracer transport, are suppressed when the overturning is depicted as a two-dimensional (depth-latitude) streamfunction. Here we present an idealized, multi-basin, time-dependent circulation model that applies residual circulation theory in the Southern Ocean and allows for zonal water mass transfer between different ocean basins. This model efficiently determines the temporal evolution of the ocean's stratification, ventilation and overturning strength in response to perturbations in the external forcing. With this model we explore the dynamics that lead to transitions in the circulation structure between multiple, isolated cells and a three-dimensional, "figure-of-eight," circulation in which traditional upper and lower cells are interleaved. The transient model is also used to support a mechanistic explanation of the hemispheric asymmetry and phase lag associated with Dansgaard-Oeschger (DO) events during the last glacial period. In particular, the 200 year lag in southern hemisphere temperatures, following a perturbation in North Atlantic deep water formation, depends critically on the migration of Southern Ocean isopycnal outcropping in response to low-latitude stratification changes. Our results provide a self-consistent dynamical framework to explain various ocean overturning transitions that have occurred over the Earth's last 100,000 years, and motivate an exploration of these mechanisms in more sophisticated climate models.
NASA Astrophysics Data System (ADS)
Holzer, Mark; DeVries, Timothy; Bianchi, Daniele; Newton, Robert; Schlosser, Peter; Winckler, Gisela
2017-01-01
Hydrothermal vents along the ocean's tectonic ridge systems inject superheated water and large amounts of dissolved metals that impact the deep ocean circulation and the oceanic cycling of trace metals. The hydrothermal fluid contains dissolved mantle helium that is enriched in 3He relative to the atmosphere, providing an isotopic tracer of the ocean's deep circulation and a marker of hydrothermal sources. This work investigates the potential for the 3He/4He isotope ratio to constrain the ocean's mantle 3He source and to provide constraints on the ocean's deep circulation. We use an ensemble of 11 data-assimilated steady-state ocean circulation models and a mantle helium source based on geographically varying sea-floor spreading rates. The global source distribution is partitioned into 6 regions, and the vertical profile and source amplitude of each region are varied independently to determine the optimal 3He source distribution that minimizes the mismatch between modeled and observed δ3He. In this way, we are able to fit the observed δ3He distribution to within a relative error of ∼15%, with a global 3He source that ranges from 640 to 850 mol yr-1, depending on circulation. The fit captures the vertical and interbasin gradients of the δ3He distribution very well and reproduces its jet-sheared saddle point in the deep equatorial Pacific. This demonstrates that the data-assimilated models have much greater fidelity to the deep ocean circulation than other coarse-resolution ocean models. Nonetheless, the modelled δ3He distributions still display some systematic biases, especially in the deep North Pacific where δ3He is overpredicted by our models, and in the southeastern tropical Pacific, where observed westward-spreading δ3He plumes are not well captured. Sources inferred by the data-assimilated transport with and without isopycnally aligned eddy diffusivity differ widely in the Southern Ocean, in spite of the ability to match the observed distributions of CFCs and radiocarbon for either eddy parameterization.
NASA Astrophysics Data System (ADS)
Son, Seok-Woo; Han, Bo-Reum; Garfinkel, Chaim I.; Kim, Seo-Yeon; Park, Rokjin; Abraham, N. Luke; Akiyoshi, Hideharu; Archibald, Alexander T.; Butchart, N.; Chipperfield, Martyn P.; Dameris, Martin; Deushi, Makoto; Dhomse, Sandip S.; Hardiman, Steven C.; Jöckel, Patrick; Kinnison, Douglas; Michou, Martine; Morgenstern, Olaf; O’Connor, Fiona M.; Oman, Luke D.; Plummer, David A.; Pozzer, Andrea; Revell, Laura E.; Rozanov, Eugene; Stenke, Andrea; Stone, Kane; Tilmes, Simone; Yamashita, Yousuke; Zeng, Guang
2018-05-01
The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling.
A simple biosphere model (SiB) for use within general circulation models
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Mintz, Y.; Sud, Y. C.; Dalcher, A.
1986-01-01
A simple realistic biosphere model for calculating the transfer of energy, mass and momentum between the atmosphere and the vegetated surface of the earth has been developed for use in atmospheric general circulation models. The vegetation in each terrestrial model grid is represented by an upper level, representing the perennial canopy of trees and shrubs, and a lower level, representing the annual cover of grasses and other heraceous species. The vegetation morphology and the physical and physiological properties of the vegetation layers determine such properties as: the reflection, transmission, absorption and emission of direct and diffuse radiation; the infiltration, drainage, and storage of the residual rainfall in the soil; and the control over the stomatal functioning. The model, with prescribed vegetation parameters and soil interactive soil moisture, can be used for prediction of the atmospheric circulation and precipitaion fields for short periods of up to a few weeks.
On the validation of a code and a turbulence model appropriate to circulation control airfoils
NASA Technical Reports Server (NTRS)
Viegas, J. R.; Rubesin, M. W.; Maccormack, R. W.
1988-01-01
A computer code for calculating flow about a circulation control airfoil within a wind tunnel test section has been developed. This code is being validated for eventual use as an aid to design such airfoils. The concept of code validation being used is explained. The initial stages of the process have been accomplished. The present code has been applied to a low-subsonic, 2-D flow about a circulation control airfoil for which extensive data exist. Two basic turbulence models and variants thereof have been successfully introduced into the algorithm, the Baldwin-Lomax algebraic and the Jones-Launder two-equation models of turbulence. The variants include adding a history of the jet development for the algebraic model and adding streamwise curvature effects for both models. Numerical difficulties and difficulties in the validation process are discussed. Turbulence model and code improvements to proceed with the validation process are also discussed.
Rafkin, Scot C R; Sta Maria, Magdalena R V; Michaels, Timothy I
2002-10-17
Mesoscale (<100 km) atmospheric phenomena are ubiquitous on Mars, as revealed by Mars Orbiter Camera images. Numerical models provide an important means of investigating martian atmospheric dynamics, for which data availability is limited. But the resolution of general circulation models, which are traditionally used for such research, is not sufficient to resolve mesoscale phenomena. To provide better understanding of these relatively small-scale phenomena, mesoscale models have recently been introduced. Here we simulate the mesoscale spiral dust cloud observed over the caldera of the volcano Arsia Mons by using the Mars Regional Atmospheric Modelling System. Our simulation uses a hierarchy of nested models with grid sizes ranging from 240 km to 3 km, and reveals that the dust cloud is an indicator of a greater but optically thin thermal circulation that reaches heights of up to 30 km, and transports dust horizontally over thousands of kilometres.
NASA Technical Reports Server (NTRS)
Cess, R. D.; Potter, G. L.; Blanchet, J. P.; Boer, G. J.; Del Genio, A. D.
1990-01-01
The present study provides an intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. This intercomparison uses sea surface temperature change as a surrogate for climate change. The interpretation of cloud-climate interactions is given special attention. A roughly threefold variation in one measure of global climate sensitivity is found among the 19 models. The important conclusion is that most of this variation is attributable to differences in the models' depiction of cloud feedback, a result that emphasizes the need for improvements in the treatment of clouds in these models if they are ultimately to be used as reliable climate predictors. It is further emphazied that cloud feedback is the consequence of all interacting physical and dynamical processes in a general circulation model. The result of these processes is to produce changes in temperature, moisture distribution, and clouds which are integrated into the radiative response termed cloud feedback.
Integrated and spectral energetics of the GLAS general circulation model
NASA Technical Reports Server (NTRS)
Tenenbaum, J.
1981-01-01
Integrated and spectral error energetics of the Goddard Laboratory for Atmospheric Sciences (GLAS) general circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level. General circulation model spectral energetics predictions are compared with the corresponding observational spectra on a day by day basis. Eddy kinetic energy can be correct while significant errors occur in the kinetic energy of wavenumber three. Single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetic and potential energy are demonstrated.
Yang, Eun-Jin; Wilczynski, Walter
2002-09-01
We investigated the relationship between aggressive behavior and circulating androgens in the context of agonistic social interaction and examined the effect of this interaction on the androgen-aggression relationship in response to a subsequent social challenge in male Anolis carolinensis lizards. Individuals comprising an aggressive encounter group were exposed to an aggressive conspecific male for 10 min per day during a 5-day encounter period, while controls were exposed to a neutral stimulus for the same period. On the sixth day, their responses to an intruder test were observed. At intervals, individuals were sacrificed to monitor plasma androgen levels. Structural equation modeling (SEM) was used to test three a priori interaction models of the relationship between social stimulus, aggressive behavior, and androgen. Model 1 posits that exposure to a social stimulus influences androgen and aggressive behavior independently. In Model 2, a social stimulus triggers aggressive behavior, which in turn increases circulating levels of androgen. In Model 3, exposure to a social stimulus influences circulating androgen levels, which in turn triggers aggressive behavior. During the 5 days of the encounter period, circulating testosterone (T) levels of the aggressive encounter group followed the same pattern as their aggressive behavioral responses, while the control group did not show significant changes in their aggressive behavior or T level. Our SEM results supported Model 2. A means analysis showed that during the intruder test, animals with 5 days of aggressive encounters showed more aggressive responses than did control animals, while their circulating androgen levels did not differ. This further supports Model 2, suggesting that an animal's own aggressive behavior may trigger increases in levels of plasma androgen. Copyright 2002 Elsevier Science (USA)
NASA Astrophysics Data System (ADS)
Chadwick, Robin; Douville, Hervé; Skinner, Christopher B.
2017-11-01
A set of atmosphere-only timeslice experiments are described, designed to examine the processes that cause regional climate change and inter-model uncertainty in coupled climate model responses to CO_2 forcing. The timeslice experiments are able to reproduce the pattern of regional climate change in the coupled models, and are applied here to two cases where inter-model uncertainty in future projections is large: the tropical hydrological cycle, and European winter circulation. In tropical forest regions, the plant physiological effect is the largest cause of hydrological cycle change in the two models that represent this process. This suggests that the CMIP5 ensemble mean may be underestimating the magnitude of water cycle change in these regions, due to the inclusion of models without the plant effect. SST pattern change is the dominant cause of precipitation and circulation change over the tropical oceans, and also appears to contribute to inter-model uncertainty in precipitation change over tropical land regions. Over Europe and the North Atlantic, uniform SST increases drive a poleward shift of the storm-track. However this does not consistently translate into an overall polewards storm-track shift, due to large circulation responses to SST pattern change, which varies across the models. Coupled model SST biases influence regional rainfall projections in regions such as the Maritime Continent, and so projections in these regions should be treated with caution.
Impact of lakes and wetlands on present and future boreal climate
NASA Astrophysics Data System (ADS)
Poutou, E.; Krinner, G.; Genthon, C.
2002-12-01
Impact of lakes and wetlands on present and future boreal climate The role of lakes and wetlands in present-day high latitude climate is quantified using a general circulation model of the atmosphere. The atmospheric model includes a lake module which is presented and validated. Seasonal and spatial wetland distribution is calculated as a function of the hydrological budget of the wetlands themselves and of continental soil whose runoff feeds them. Wetland extent is simulated and discussed both in simulations forced by observed climate and in general circulation model simulations. In off-line simulations, forced by ECMWF reanalyses, the lake model simulates correctly observed lake ice durations, while the wetland extent is somewhat underestimated in the boreal regions. Coupled to the general circulation model, the lake model yields satisfying ice durations, although the climate model biases have impacts on the modeled lake ice conditions. Boreal wetland extents are overestimated in the general circulation model as simulated precipitation is too high. The impact of inundated surfaces on the simulated climate is strongest in summer when these surfaces are ice-free. Wetlands seem to play a more important role than lakes in cooling the boreal regions in summer and in humidifying the atmosphere. The role of lakes and wetlands in future climate change is evaluated by analyzing simulations of present and future climate with and without prescribed inland water bodies.
U. S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model
2009-01-01
2008). There are three major contributors to the strength of the Gulf Stream, (1) the wind forcing, (2) the Atlantic meridional overturning ...Smith, 2007. Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I. The western boundary current system...σ-z coordinates, and (3) a baroclinic version of ADvanced CIRCulation (ADCIRC), the latter an unstructured grid model for baroclinic coastal
NASA Technical Reports Server (NTRS)
Vincent, Dayton G.; Robertson, Franklin
1993-01-01
The research sponsored by this grant is a continuation and an extension of the work conducted under a previous contract, 'South Pacific Convergence Zone and Global-Scale Circulations'. In the prior work, we conducted a detailed investigation of the South Pacific convergence zone (SPCZ), and documented many of its significant features and characteristics. We also conducted studies of its interaction with global-scale circulation features through the use of both observational and modeling studies. The latter was accomplished toward the end of the contract when Dr. James Hurrell, then a Ph.D. candidate, successfully ported the NASA GLA general circulation model (GCM) to Purdue University. In our present grant, we have expanded our previous research to include studies of other convectively-driven circulation systems in the tropics besides the SPCZ. Furthermore, we have continued to examine the relationship between these convective systems and global-scale circulation patterns. Our recent research efforts have focused on three objectives: (1) determining the periodicity of large-scale bands of organized convection in the tropics, primarily synoptic to intraseasonal time scales in the Southern Hemisphere; (2) examining the relative importance of tropical versus mid-latitude forcing for Southern Hemisphere summertime subtropical jets, particularly over the Pacific Ocean; and (3) estimating tropical precipitation, especially over oceans, using observational and budget methods. A summary list of our most significant accomplishments in the past year is given.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Takacs, Lawrence L.; Molod, Andrea; Wang, Tina
1994-01-01
This technical report documents Version 1 of the Goddard Earth Observing System (GEOS) General Circulation Model (GCM). The GEOS-1 GCM is being used by NASA's Data Assimilation Office (DAO) to produce multiyear data sets for climate research. This report provides a documentation of the model components used in the GEOS-1 GCM, a complete description of model diagnostics available, and a User's Guide to facilitate GEOS-1 GCM experiments.
NASA Technical Reports Server (NTRS)
Ganachaud, Alexandre; Wunsch, Carl; Kim, Myung-Chan; Tapley, Byron
1997-01-01
A global estimate of the absolute oceanic general circulation from a geostrophic inversion of in situ hydrographic data is tested against and then combined with an estimate obtained from TOPEX/POSEIDON altimetric data and a geoid model computed using the JGM-3 gravity-field solution. Within the quantitative uncertainties of both the hydrographic inversion and the geoid estimate, the two estimates derived by very different methods are consistent. When the in situ inversion is combined with the altimetry/geoid scheme using a recursive inverse procedure, a new solution, fully consistent with both hydrography and altimetry, is found. There is, however, little reduction in the uncertainties of the calculated ocean circulation and its mass and heat fluxes because the best available geoid estimate remains noisy relative to the purely oceanographic inferences. The conclusion drawn from this is that the comparatively large errors present in the existing geoid models now limit the ability of satellite altimeter data to improve directly the general ocean circulation models derived from in situ measurements. Because improvements in the geoid could be realized through a dedicated spaceborne gravity recovery mission, the impact of hypothetical much better, future geoid estimates on the circulation uncertainty is also quantified, showing significant hypothetical reductions in the uncertainties of oceanic transport calculations. Full ocean general circulation models could better exploit both existing oceanographic data and future gravity-mission data, but their present use is severely limited by the inability to quantify their error budgets.
NASA Technical Reports Server (NTRS)
Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.
1995-01-01
This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.
On the design of an interactive biosphere for the GLAS general circulation model
NASA Technical Reports Server (NTRS)
Mintz, Y.; Sellers, P. J.; Willmott, C. J.
1983-01-01
Improving the realism and accuracy of the GLAS general circulation model (by adding an interactive biosphere that will simulate the transfers of latent and sensible heat from land surface to atmosphere as functions of the atmospheric conditions and the morphology and physiology of the vegetation) is proposed.
NASA Technical Reports Server (NTRS)
Mukkamala, R.; Cohen, R. J.; Mark, R. G.
2002-01-01
Guyton developed a popular approach for understanding the factors responsible for cardiac output (CO) regulation in which 1) the heart-lung unit and systemic circulation are independently characterized via CO and venous return (VR) curves, and 2) average CO and right atrial pressure (RAP) of the intact circulation are predicted by graphically intersecting the curves. However, this approach is virtually impossible to verify experimentally. We theoretically evaluated the approach with respect to a nonlinear, computational model of the pulsatile heart and circulation. We developed two sets of open circulation models to generate CO and VR curves, differing by the manner in which average RAP was varied. One set applied constant RAPs, while the other set applied pulsatile RAPs. Accurate prediction of intact, average CO and RAP was achieved only by intersecting the CO and VR curves generated with pulsatile RAPs because of the pulsatility and nonlinearity (e.g., systemic venous collapse) of the intact model. The CO and VR curves generated with pulsatile RAPs were also practically independent. This theoretical study therefore supports the validity of Guyton's graphical analysis.
Potential effects of climate change on ground water in Lansing, Michigan
Croley, T.E.; Luukkonen, C.L.
2003-01-01
Computer simulations involving general circulation models, a hydrologic modeling system, and a ground water flow model indicate potential impacts of selected climate change projections on ground water levels in the Lansing, Michigan, area. General circulation models developed by the Canadian Climate Centre and the Hadley Centre generated meteorology estimates for 1961 through 1990 (as a reference condition) and for the 20 years centered on 2030 (as a changed climate condition). Using these meteorology estimates, the Great Lakes Environmental Research Laboratory's hydrologic modeling system produced corresponding period streamflow simulations. Ground water recharge was estimated from the streamflow simulations and from variables derived from the general circulation models. The U.S. Geological Survey developed a numerical ground water flow model of the Saginaw and glacial aquifers in the Tri-County region surrounding Lansing, Michigan. Model simulations, using the ground water recharge estimates, indicate changes in ground water levels. Within the Lansing area, simulated ground water levels in the Saginaw aquifer declined under the Canadian predictions and increased under the Hadley.
Srokosz, M A; Bryden, H L
2015-06-19
The importance of the Atlantic Meridional Overturning Circulation (AMOC) heat transport for climate is well acknowledged. Climate models predict that the AMOC will slow down under global warming, with substantial impacts, but measurements of ocean circulation have been inadequate to evaluate these predictions. Observations over the past decade have changed that situation, providing a detailed picture of variations in the AMOC. These observations reveal a surprising degree of AMOC variability in terms of the intraannual range, the amplitude and phase of the seasonal cycle, the interannual changes in strength affecting the ocean heat content, and the decline of the AMOC over the decade, both of the latter two exceeding the variations seen in climate models. Copyright © 2015, American Association for the Advancement of Science.
Diffuse fluorescence fiber probe for in vivo detection of circulating cells
NASA Astrophysics Data System (ADS)
Pera, Vivian; Tan, Xuefei; Runnels, Judith; Sardesai, Neha; Lin, Charles P.; Niedre, Mark
2017-03-01
There has been significant recent interest in the development of technologies for enumeration of rare circulating cells directly in the bloodstream in many areas of research, for example, in small animal models of circulating tumor cell dissemination during cancer metastasis. We describe a fiber-based optical probe that allows fluorescence detection of labeled circulating cells in vivo in a diffuse reflectance configuration. We validated this probe in a tissue-mimicking flow phantom model in vitro and in nude mice injected with fluorescently labeled multiple myeloma cells in vivo. Compared to our previous work, this design yields an improvement in detection signal-to-noise ratio of 10 dB, virtually eliminates problematic motion artifacts due to mouse breathing, and potentially allows operation in larger animals and limbs.
NASA Astrophysics Data System (ADS)
Rotstayn, L. D.; Jeffrey, S. J.; Collier, M. A.; Dravitzki, S. M.; Hirst, A. C.; Syktus, J. I.; Wong, K. K.
2012-07-01
We use a coupled atmosphere-ocean global climate model (CSIRO-Mk3.6) to investigate the drivers of trends in summer rainfall and circulation in the vicinity of northern Australia. As part of the Coupled Model Intercomparison Project Phase 5 (CMIP5), we perform a 10-member 21st century ensemble driven by Representative Concentration Pathway 4.5 (RCP4.5). To investigate the roles of different forcing agents, we also perform multiple 10-member ensembles of historical climate change, which are analysed for the period 1951-2010. The historical runs include ensembles driven by "all forcings" (HIST), all forcings except anthropogenic aerosols (NO_AA) and forcing only from long-lived greenhouse gases (GHGAS). Anthropogenic aerosol-induced effects in a warming climate are calculated from the difference of HIST minus NO_AA. CSIRO-Mk3.6 simulates a strong summer rainfall decrease over north-western Australia (NWA) in RCP4.5, whereas simulated trends in HIST are weakly positive (but insignificant) during 1951-2010. The weak rainfall trends in HIST are due to compensating effects of different forcing agents: there is a significant decrease in GHGAS, offset by an aerosol-induced increase. Observations show a significant increase of summer rainfall over NWA during the last few decades. The large magnitude of the observed NWA rainfall trend is not captured by 440 unforced 60-yr trends calculated from a 500-yr pre-industrial control run, even though the model's decadal variability appears to be realistic. This suggests that the observed trend includes a forced component, despite the fact that the model does not simulate the magnitude of the observed rainfall increase in response to "all forcings" (HIST). We investigate the mechanism of simulated and observed NWA rainfall changes by exploring changes in circulation over the Indo-Pacific region. The key circulation feature associated with the rainfall increase in reanalyses is a lower-tropospheric cyclonic circulation trend off the coast of NWA, which enhances the monsoonal flow. The model shows an aerosol-induced cyclonic circulation trend off the coast of NWA in HIST minus NO_AA, whereas GHGAS shows an anticyclonic circulation trend. This explains why the aerosol-induced effect is an increase of rainfall over NWA, and the greenhouse gas-induced effect is of opposite sign. Possible explanations for the cyclonic (anticyclonic) circulation trend in HIST minus NO_AA (GHGAS) involve changes in the Walker circulation or the local Hadley circulation. In either case, a plausible atmospheric mechanism is that the circulation anomaly is a Rossby wave response to convective heating anomalies south of the Equator. We also discuss the possible role of air-sea interactions, e.g. an increase (decrease) of sea-surface temperatures off the coast of NWA in HIST minus NO_AA (GHGAS). Further research is needed to better understand the mechanisms and the extent to which these are model-dependent. In summary, our results suggest that anthropogenic aerosols may have "masked" greenhouse gas-induced changes in rainfall over NWA and in circulation over the wider Indo-Pacific region. Due to the opposing effects of greenhouse gases and anthropogenic aerosols, future trends may be very different from trends observed over the last few decades.
Simulating effects of highway embankments on estuarine circulation
Lee, Jonathan K.; Schaffranek, Raymond W.; Baltzer, Robert A.
1994-01-01
A two-dimensional depth-averaged, finite-difference, numerical model was used to simulate tidal circulation and mass transport in the Port Royal Sound. South Carolina, estuarine system. The purpose of the study was to demonstrate the utility of the Surface-Water. Integrated. Flow and Transport model (SWIFT2D) for evaluating changes in circulation patterns and mass transport caused by highway-crossing embankments. A model of subregion of Port Royal Sound including the highway crossings and having a grid size of 61 m (200ft) was derived from a 183-m (600-ft) model of the entire Port Royal Sound estuarine system. The 183-m model was used to compute boundary-value data for the 61-m submodel, which was then used to simulate flow conditions with and without the highway embankments in place. The numerical simulations show that, with the highway embankment in place, mass transport between the Broad River and Battery Creek is reduced and mass transport between the Beaufort River and Battery Creek is increased. The net result is that mass transport into and out of upper Battery Creek is reduced. The presence of the embankments also alters circulation patterns within Battery Creek.
NASA Astrophysics Data System (ADS)
Li, Xiaoqiong; Ting, Mingfang
2017-10-01
Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.
Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM
NASA Technical Reports Server (NTRS)
Crane, Robert G.; Hewitson, Bruce
1990-01-01
Model simulations of global climate change are seen as an essential component of any program aimed at understanding human impact on the global environment. A major weakness of current general circulation models (GCMs), however, is their inability to predict reliably the regional consequences of a global scale change, and it is these regional scale predictions that are necessary for studies of human/environmental response. This research is directed toward the development of a methodology for the validation of the synoptic scale climatology of GCMs. This is developed with regard to the Goddard Institute for Space Studies (GISS) GCM Model 2, with the specific objective of using the synoptic circulation form a doubles CO2 simulation to estimate regional climate change over North America, south of Hudson Bay. This progress report is specifically concerned with validating the synoptic climatology of the GISS GCM, and developing the transfer function to derive grid-point temperatures from the synoptic circulation. Principal Components Analysis is used to characterize the primary modes of the spatial and temporal variability in the observed and simulated climate, and the model validation is based on correlations between component loadings, and power spectral analysis of the component scores. The results show that the high resolution GISS model does an excellent job of simulating the synoptic circulation over the U.S., and that grid-point temperatures can be predicted with reasonable accuracy from the circulation patterns.
NASA Astrophysics Data System (ADS)
Scarlat, Raluca Olga
This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling approach to the PB-FHR annular pebble bed core cooled by fluoride salt mixtures generated a model that is called Pod. Pod. was used to show the resilience of the PB-FHR core to generation of hot spots or cold spots, due to the effect of buoyancy on the flow and temperature distribution in the packed bed. Pod. was used to investigate the PB-FHR response to ATWS transients. Based on the functional requirements for the core, Pod. was used to generate an optimized design of the flow distribution in the core. An analysis of natural circulation loops cooled by single-phase Boussinesq fluids is presented here, in the context of reactor design that relies on natural circulation decay heat removal, and design of scaled experiments. The scaling arguments are established for a transient natural circulation loop, for loops that have long fluid residence time, and negligible contribution of fluid inertia to the momentum equation. The design of integral effects tests for the loss of forced circulation (LOFC) for PB-FHR is discussed. The special case of natural circulation decay heat removal from a pebble bed reactor was analyzed. A way to define the Reynolds number in a multi-dimensional pebble bed was identified. The scaling methodology for replicating pebble bed friction losses using an electrically resistance heated annular pipe and a needle valve was developed. The thermophysical properties of liquid fluoride salts lead to design of systems with low flow velocities, and hence long fluid residence times. A comparison among liquid coolants for the performance of steady state natural circulation heat removal from a pebble bed was performed. Transient natural circulation experimental data with simulant fluids for fluoride salts is given here. The low flow velocity and the relatively high viscosity of the fluoride salts lead to low Reynolds number flows, and a low Reynolds number in conjunction with a sufficiently high coefficient of thermal expansion makes the system susceptible to local buoyancy effects Experiments indicate that slow exchange of stagnant fluid in static legs can play a significant role in the transient response of natural circulation loops. The effect of non-linear temperature profiles on the hot or cold legs or other segments of the flow loop, which may develop during transient scenarios, should be considered when modeling the performance of natural circulation loops. The data provided here can be used for validation of the application of thermal-hydraulic systems codes to the modeling of heat removal by natural circulation with liquid fluoride salts and its simulant fluids.
NASA Astrophysics Data System (ADS)
Yamamoto, A.; Abe-Ouchi, A.; Shigemitsu, M.; Oka, A.; Takahashi, K.; Ohgaito, R.; Yamanaka, Y.
2016-12-01
Long-term oceanic oxygen change due to global warming is still unclear; most future projections (such as CMIP5) are only performed until 2100. Indeed, few previous studies using conceptual models project oxygen change in the next thousands of years, showing persistent global oxygen reduction by about 30% in the next 2000 years, even after atmospheric carbon dioxide stops rising. Yet, these models cannot sufficiently represent the ocean circulation change: the key driver of oxygen change. Moreover, considering serious effect oxygen reduction has on marine life and biogeochemical cycling, long-term oxygen change should be projected for higher validity. Therefore, we used a coupled atmosphere-ocean general circulation model (AOGCM) and an offline ocean biogeochemical model, investigating realistic long-term changes in oceanic oxygen concentration and ocean circulation. We integrated these models for 2000 years under atmospheric CO2 doubling and quadrupling. After global oxygen reduction in the first 500 years, oxygen concentration in deep ocean globally recovers and overshoots, despite surface oxygen decrease and weaker Atlantic Meridional Overturning Circulation. Deep ocean convection in the Weddell Sea recovers and overshoots, after initial cessation. Thus, enhanced deep convection and associated Antarctic Bottom Water supply oxygen-rich surface waters to deep ocean, resulting global deep ocean oxygenation. We conclude that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in the deep ocean; contrary to past reported long-term oxygen reduction and general expectation. In presentation, we will discuss the mechanism of response of deep ocean convection in the Weddell Sea and show the volume changes of hypoxic waters.
Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models
NASA Astrophysics Data System (ADS)
Dietmüller, Simone; Eichinger, Roland; Garny, Hella; Birner, Thomas; Boenisch, Harald; Pitari, Giovanni; Mancini, Eva; Visioni, Daniele; Stenke, Andrea; Revell, Laura; Rozanov, Eugene; Plummer, David A.; Scinocca, John; Jöckel, Patrick; Oman, Luke; Deushi, Makoto; Kiyotaka, Shibata; Kinnison, Douglas E.; Garcia, Rolando; Morgenstern, Olaf; Zeng, Guang; Stone, Kane Adam; Schofield, Robyn
2018-05-01
The stratospheric age of air (AoA) is a useful measure of the overall capabilities of a general circulation model (GCM) to simulate stratospheric transport. Previous studies have reported a large spread in the simulation of AoA by GCMs and coupled chemistry-climate models (CCMs). Compared to observational estimates, simulated AoA is mostly too low. Here we attempt to untangle the processes that lead to the AoA differences between the models and between models and observations. AoA is influenced by both mean transport by the residual circulation and two-way mixing; we quantify the effects of these processes using data from the CCM inter-comparison projects CCMVal-2 (Chemistry-Climate Model Validation Activity 2) and CCMI-1 (Chemistry-Climate Model Initiative, phase 1). Transport along the residual circulation is measured by the residual circulation transit time (RCTT). We interpret the difference between AoA and RCTT as additional aging by mixing. Aging by mixing thus includes mixing on both the resolved and subgrid scale. We find that the spread in AoA between the models is primarily caused by differences in the effects of mixing and only to some extent by differences in residual circulation strength. These effects are quantified by the mixing efficiency, a measure of the relative increase in AoA by mixing. The mixing efficiency varies strongly between the models from 0.24 to 1.02. We show that the mixing efficiency is not only controlled by horizontal mixing, but by vertical mixing and vertical diffusion as well. Possible causes for the differences in the models' mixing efficiencies are discussed. Differences in subgrid-scale mixing (including differences in advection schemes and model resolutions) likely contribute to the differences in mixing efficiency. However, differences in the relative contribution of resolved versus parameterized wave forcing do not appear to be related to differences in mixing efficiency or AoA.
High-Reynolds Number Circulation Control Testing in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.
2012-01-01
A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. The first active flow control experiment was completed using the new FAST-MAC semi-span model to study Reynolds number scaling effects for several circulation control concepts. Testing was conducted over a wide range of Mach numbers, up to chord Reynolds numbers of 30 million. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. Preliminary analysis of the uncorrected lift data showed that the circulation control increased the low-speed maximum lift coefficient by 33%. At transonic speeds, the circulation control was capable of positively altering the shockwave pattern on the upper wing surface and reducing flow separation. Furthermore, application of the technique to only the outboard portion of the wing demonstrated the feasibility of a pneumatic based roll control capability.
A case study of sea breeze circulation at Thumba Coast through observations and modelling
NASA Astrophysics Data System (ADS)
Kunhikrishnan, P. K.; Ramachandran, Radhika; Alappattu, Denny P.; Kiran Kumar, N. V. P.; Balasubrahamanyam, D.
2006-12-01
A case study of sea breeze circulation at a coastal region Thumba (8.5°N, 76.9°E) was carried out using Doppler Sodar, surface wind, temperature, humidity measurements and radiosonde ascents. The analysis of surface meteorological data showed that the onset of sea breeze on 12th April 2006 was at 0945 hrs. GPS sonde observation over sea at 1425 hrs and Radiosonde observation over land at 1730 showed a well developed sea breeze circulation over Thumba coast by afternoon hours. The vertical extent of sea breeze circulation was ~1000m over sea as well as on land. The Thermal Internal Boundary Layer (TIBL) depth associated with sea breeze circulation was about 400m at 8 km away from coast. The marine mixed layer height was ~500m about 12 km away from the coast. Numerical simulation of sea breeze was made using HRM (High Resolution Model) and compared the results with the observations.
NASA Technical Reports Server (NTRS)
Roble, R. G.
1986-01-01
The NCAR thermospheric general circulation model (TGCM) has been used for a variety of thermospheric dynamic studies. It has also been used to compare model predictions with measurements made from various ground-based Fabry-Perot interferometer stations, incoherent scatter radar stations and the Dynamics Explorer satellites. The various input and output features of the model are described. These include the specification of solar EUV fluxes, and descriptions of empirical models to specify auroral particle precipitation, ion drag, and magnetospheric convection. Results are presented for solstice conditions giving the model perturbation temperature and circulation response to solar heating forcing alone and also with the inclusion of magnetospheric convections for two different dawn-dusk potential drops, 20 and 60 kV respectively. Results at two constant pressure levels Z =+1 at 300 km and Z= -4 at 120 km are presented for both the winter and summer polar cap regions. The circulation over the Northern Hemisphere polar cap in both the upper and lower thermosphere are presented along with a figure showing that the circulation is mainly a non-divergent irrotational flow responding to ion drag. The results of a study made on the Southern Hemisphere polar cap during October 1981 where Dynamics Explorer satellite measurements of winds, temperature and composition are compared to TGCM predictions are also presented. A diagnostic package that has been developed to analyze the balance of forces operating in the TGCM is presented next illustrating that in the F-region ion drag and pressure provide the main force balance and in the E-region ion drag, pressure and the coriolis forces provide the main balance. The TGCM prediction for the June 10, 1983 total solar eclipse are next presented showing a thermospheric disturbance following the path of totality. Finally, results are presented giving the global circulation, temperature and composition structure of the thermosphere for solar minimum conditions at equinox with 60 kV magnetospheric convection forcing at high latitudes.
Numerical simulation and prediction of coastal ocean circulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, P.
1992-01-01
Numerical simulation and prediction of coastal ocean circulation have been conducted in three cases. 1. A process-oriented modeling study is conducted to study the interaction of a western boundary current (WBC) with coastal water, and its responses to upstream topographic irregularities. It is hypothesized that the interaction of propagating WBC frontal waves and topographic Rossby waves are responsible for upstream variability. 2. A simulation of meanders and eddies in the Norwegian Coastal Current (NCC) for February and March of 1988 is conducted with a newly developed nested dynamic interactive model. The model employs a coarse-grid, large domain to account formore » non-local forcing and a fine-grid nested domain to resolve meanders and eddies. The model is forced by wind stresses, heat fluxes and atmospheric pressure corresponding Feb/March of 1988, and accounts for river/fjord discharges, open ocean inflow and outflow, and M[sub 2] tides. The simulation reproduced fairly well the observed circulation, tides, and salinity features in the North Sea, Norwegian Trench and NCC region in the large domain and fairly realistic meanders and eddies in the NCC in the nested region. 3. A methodology for practical coastal ocean hindcast/forecast is developed, taking advantage of the disparate time scales of various forcing and considering wind to be the dominant factor in affecting density fluctuation in the time scale of 1 to 10 days. The density field obtained from a prognostic simulation is analyzed by the empirical orthogonal function method (EOF), and correlated with the wind; these information are then used to drive a circulation model which excludes the density calculation. The method is applied to hindcast the circulation in the New York Bight for spring and summer season of 1988. The hindcast fields compare favorably with the results obtained from the prognostic circulation model.« less
NASA Astrophysics Data System (ADS)
Zodiatis, George; Radhakrishnan, Hari; Lardner, Robin; Hayes, Daniel; Gertman, Isaac; Menna, Milena; Poulain, Pierre-Marie
2014-05-01
The general anticlockwise circulation along the coastline of the Eastern Mediterranean Levantine Basin was first proposed by Nielsen in 1912. Half a century later the schematic of the circulation in the area was enriched with sub-basin flow structures. In late 1980s, a more detailed picture of the circulation composed of eddies, gyres and coastal-offshore jets was defined during the POEM cruises. In 2005, Millot and Taupier-Letage have used SST satellite imagery to argue for a simpler pattern similar to the one proposed almost a century ago. During the last decade, renewed in-situ multi-platforms investigations under the framework of CYBO, CYCLOPS, NEMED, GROOM, HaiSec and PERSEUS projects, as well the development of the operational ocean forecasts and hindcasts in the framework of the MFS, ECOOP, MERSEA and MyOcean projects, have made possible to obtain an improved, higher spatial and temporal resolution picture of the circulation in the area. After some years of scientific disputes on the circulation pattern of the region, the new in-situ data sets and the operational numerical simulations confirm the relevant POEM results. The existing POM-based Cyprus Coastal Ocean Forecasting System (CYCOFOS), downscaling the MyOcean MFS, has been providing operational forecasts in the Eastern Mediterranean Levantine Basin region since early 2002. Recently, Radhakrishnan et al. (2012) parallelized the CYCOFOS hydrodynamic flow model using MPI to improve the accuracy of predictions while reducing the computational time. The parallel flow model is capable of modeling the Eastern Mediterranean Levantine Basin flow at a resolution of 500 m. The model was run in hindcast mode during which the innovations were computed using the historical data collected using gliders and cruises. Then, DD-OceanVar (D'Amore et al., 2013), a data assimilation tool based on 3DVAR developed by CMCC was used to compute the temperature and salinity field corrections. Numerical modeling results after the data assimilation will be presented.
Liu, W.-C.; Chen, W.-B.; Cheng, R.T.; Hsu, M.-H.; Kuo, A.Y.
2007-01-01
A 3-D, time-dependent, baroclinic, hydrodynamic and salinity model was implemented and applied to the Danshuei River estuarine system and the adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundaries and freshwater inflows from the main stream and major tributaries in the Danshuei River estuarine system. The bottom friction coefficient was adjusted to achieve model calibration and verification in model simulations of barotropic and baroclinic flows. The turbulent diffusivities were ascertained through comparison of simulated salinity time series with observations. The model simulation results are in qualitative agreement with the available field data. The validated model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow condition in the Danshuei River estuarine system. The model results reveal that the characteristic two-layered estuarine circulation prevails most of the time at Kuan-Du station near the river mouth. Comparing the estuarine circulation under low- and mean flow conditions, the circulation strengthens during low-flow period and its strength decreases at moderate river discharge. The river discharge is a dominating factor affecting the salinity intrusion in the estuarine system. A correlation between the distance of salt intrusion and freshwater discharge has been established allowing prediction of salt intrusion for different inflow conditions. ?? 2007 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Smith, Katharine A.; Schlag, Zachary; North, Elizabeth W.
2018-07-01
Coupled three-dimensional circulation and biogeochemical models predict changes in water properties that can be used to define fish habitat, including physiologically important parameters such as temperature, salinity, and dissolved oxygen. However, methods for calculating the volume of habitat defined by the intersection of multiple water properties are not well established for coupled three-dimensional models. The objectives of this research were to examine multiple methods for calculating habitat volume from three-dimensional model predictions, select the most robust approach, and provide an example application of the technique. Three methods were assessed: the "Step," "Ruled Surface", and "Pentahedron" methods, the latter of which was developed as part of this research. Results indicate that the analytical Pentahedron method is exact, computationally efficient, and preserves continuity in water properties between adjacent grid cells. As an example application, the Pentahedron method was implemented within the Habitat Volume Model (HabVol) using output from a circulation model with an Arakawa C-grid and physiological tolerances of juvenile striped bass (Morone saxatilis). This application demonstrates that the analytical Pentahedron method can be successfully applied to calculate habitat volume using output from coupled three-dimensional circulation and biogeochemical models, and it indicates that the Pentahedron method has wide application to aquatic and marine systems for which these models exist and physiological tolerances of organisms are known.
NASA Technical Reports Server (NTRS)
HARSHVARDHAN
1990-01-01
Broad-band parameterizations for atmospheric radiative transfer were developed for clear and cloudy skies. These were in the shortwave and longwave regions of the spectrum. These models were compared with other models in an international effort called ICRCCM (Intercomparison of Radiation Codes for Climate Models). The radiation package developed was used for simulations of a General Circulation Model (GCM). A synopsis is provided of the research accomplishments in the two areas separately. Details are available in the published literature.
NASA Astrophysics Data System (ADS)
Carroll, D.; Sutherland, D.; Nash, J. D.; Shroyer, E.; de Steur, L.; Catania, G. A.; Stearns, L. A.
2016-12-01
The acceleration, retreat, and thinning of Greenland's outlet glaciers coincided with a warming of Atlantic waters, suggesting that marine-terminating glaciers are sensitive to ocean forcing. However, we still lack a precise understanding of what factors control the variability of ocean heat transport toward the glacier terminus. Here we use an idealized ocean general circulation model (3D MITgcm) to systematically evaluate how fjord circulation driven by subglacial plumes, wind stress (along-fjord and along-shelf), and tides depends on grounding line depth, fjord width, sill height, and latitude. Our results indicate that while subglacial plumes in deeply grounded systems can draw shelf waters over a sill and toward the glacier, shallowly grounded systems require external forcing to renew basin waters. We use a coupled sea ice model to explore the competing influence of tidal mixing and surface buoyancy forcing on fjord stratification. Passive tracers injected in the plume, fjord basin, and shelf waters are used to quantify turnover timescales. Finally, we compare our model results with a two-year mooring record to explain fundamental differences in observed circulation and hydrography in Rink Isbræ and Kangerlussuup Sermia fjords in west Greenland. Our results underscore the first-order effect that geometry has in controlling fjord circulation and, thus, ocean heat flux to the ice.
NASA Astrophysics Data System (ADS)
Gusev, Anatoly; Diansky, Nikolay; Zalesny, Vladimir
2010-05-01
The original program complex is proposed for the ocean circulation sigma-model, developed in the Institute of Numerical Mathematics (INM), Russian Academy of Sciences (RAS). The complex can be used in various curvilinear orthogonal coordinate systems. In addition to ocean circulation model, the complex contains a sea ice dynamics and thermodynamics model, as well as the original system of the atmospheric forcing implementation on the basis of both prescribed meteodata and atmospheric model results. This complex can be used as the oceanic block of Earth climate model as well as for solving the scientific and practical problems concerning the World ocean and its separate oceans and seas. The developed program complex can be effectively used on parallel shared memory computational systems and on contemporary personal computers. On the base of the complex proposed the ocean general circulation model (OGCM) was developed. The model is realized in the curvilinear orthogonal coordinate system obtained by the conformal transformation of the standard geographical grid that allowed us to locate the system singularities outside the integration domain. The horizontal resolution of the OGCM is 1 degree on longitude, 0.5 degree on latitude, and it has 40 non-uniform sigma-levels in depth. The model was integrated for 100 years starting from the Levitus January climatology using the realistic atmospheric annual cycle calculated on the base of CORE datasets. The experimental results showed us that the model adequately reproduces the basic characteristics of large-scale World Ocean dynamics, that is in good agreement with both observational data and results of the best climatic OGCMs. This OGCM is used as the oceanic component of the new version of climatic system model (CSM) developed in INM RAS. The latter is now ready for carrying out the new numerical experiments on climate and its change modelling according to IPCC (Intergovernmental Panel on Climate Change) scenarios in the scope of the CMIP-5 (Coupled Model Intercomparison Project). On the base of the complex proposed the Pacific Ocean circulation eddy-resolving model was realized. The integration domain covers the Pacific from Equator to Bering Strait. The model horizontal resolution is 0.125 degree and it has 20 non-uniform sigma-levels in depth. The model adequately reproduces circulation large-scale structure and its variability: Kuroshio meandering, ocean synoptic eddies, frontal zones, etc. Kuroshio high variability is shown. The distribution of contaminant was simulated that is admittedly wasted near Petropavlovsk-Kamchatsky. The results demonstrate contaminant distribution structure and provide us understanding of hydrological fields formation processes in the North-West Pacific.
An investigation of anticyclonic circulation in the southern Gulf of Riga during the spring period
NASA Astrophysics Data System (ADS)
Soosaar, Edith; Maljutenko, Ilja; Raudsepp, Urmas; Elken, Jüri
2014-04-01
Previous studies of the gulf-type Region of Freshwater Influence (ROFI) have shown that circulation near the area of freshwater inflow sometimes becomes anticyclonic. Such a circulation is different from basic coastal ocean buoyancy-driven circulation where an anticyclonic bulge develops near the source and a coastal current is established along the right hand coast (in the northern hemisphere), resulting in the general cyclonic circulation. The spring (from March to June) circulation and spreading of river discharge water in the southern Gulf of Riga (GoR) in the Baltic Sea was analyzed based on the results of a 10-year simulation (1997-2006) using the General Estuarine Transport Model (GETM). Monthly mean currents in the upper layer of the GoR revealed a double gyre structure dominated either by an anticyclonic or cyclonic gyre in the near-head southeastern part and corresponding cyclonic/anticyclonic gyre in the near-mouth northwestern part of the gulf. Time series analysis of PCA and vorticity, calculated from velocity data and model sensitivity tests, showed that in spring the anticyclonic circulation in the upper layer of the southern GoR is driven primarily by the estuarine type density field. This anticyclonic circulation is enhanced by easterly winds but blocked or even reversed by westerly winds. The estuarine type density field is maintained by salt flux in the northwestern connection to the Baltic Proper and river discharge in the southern GoR.
An investigation of anticyclonic circulation in the southern Gulf of Riga during the spring period
NASA Astrophysics Data System (ADS)
Soosaar, Edith; Maljutenko, Ilja; Raudsepp, Urmas; Elken, Jüri
2015-04-01
Previous studies of the gulf-type Region of Freshwater Influence (ROFI) have shown that circulation near the area of freshwater inflow sometimes becomes anticyclonic. Such a circulation is different from basic coastal ocean buoyancy-driven circulation where an anticyclonic bulge develops near the source and a coastal current is established along the right hand coast (in the northern hemisphere), resulting in the general cyclonic circulation. The spring (from March to June) circulation and spreading of river discharge water in the southern Gulf of Riga (GoR) in the Baltic Sea was analyzed based on the results of a 10-year simulation (1997-2006) using the General Estuarine Transport Model (GETM). Monthly mean currents in the upper layer of the GoR revealed a double gyre structure dominated either by an anticyclonic or cyclonic gyre in the near-head southeastern part and corresponding cyclonic/anticyclonic gyre in the near-mouth northwestern part of the gulf. Time series analysis of PCA and vorticity, calculated from velocity data and model sensitivity tests, showed that in spring the anticyclonic circulation in the upper layer of the southern GoR is driven primarily by the estuarine type density field. This anticyclonic circulation is enhanced by easterly winds but blocked or even reversed by westerly winds. The estuarine type density field is maintained by salt flux in the northwestern connection to the Baltic Proper and river discharge in the southern GoR.
Reconciling the Observed and Modeled Southern Hemisphere Circulation Response to Volcanic Eruptions
NASA Astrophysics Data System (ADS)
McGraw, M. C.; Barnes, E. A.; Deser, C.
2016-12-01
Confusion exists regarding the tropospheric circulation response to volcanic eruptions, with models and observations seeming to disagree on the sign of the response. The forced Southern Hemisphere circulation response to the eruptions of Pinatubo and El Chichon is shown to be a robust positive annular mode, using over 200 ensemble members from 38 climate models. It is demonstrated that the models and observations are not at odds, but rather, internal climate variability is large and can overwhelm the forced response. It is further argued that the state of ENSO can at least partially explain the sign of the observed anomalies, and may account for the perceived discrepancy between model and observational studies. The eruptions of both El Chichon and Pinatubo occurred during El Nino events, and it is demonstrated that the SAM anomalies following volcanic eruptions are weaker during El Nino events compared to La Nina events.
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Douglass, Anne R.; Chandra, Sushil; Stolarski, Richard S.; Rosenfield, Joan E.; Kaye, Jack A.
1991-01-01
Values of the monthly mean heating rates and the residual circulation characteristics were calculated using NMC data for temperature and the solar backscattered UV ozone for the period between 1979 and 1986. The results were used in a two-dimensional photochemical model in order to examine the effects of temperature and residual circulation on the interannual variability of ozone. It was found that the calculated total ozone was more sensitive to variations in interannual residual circulation than in the interannual temperature. The magnitude of the modeled ozone variability was found to be similar to the observed variability, but the observed and modeled year-to-year deviations were, for the most part, uncorrelated, due to the fact that the model did not account for most of the QBO forcing and for some of the observed tropospheric changes.
On the stability of the Atlantic meridional overturning circulation.
Hofmann, Matthias; Rahmstorf, Stefan
2009-12-08
One of the most important large-scale ocean current systems for Earth's climate is the Atlantic meridional overturning circulation (AMOC). Here we review its stability properties and present new model simulations to study the AMOC's hysteresis response to freshwater perturbations. We employ seven different versions of an Ocean General Circulation Model by using a highly accurate tracer advection scheme, which minimizes the problem of numerical diffusion. We find that a characteristic freshwater hysteresis also exists in the predominantly wind-driven, low-diffusion limit of the AMOC. However, the shape of the hysteresis changes, indicating that a convective instability rather than the advective Stommel feedback plays a dominant role. We show that model errors in the mean climate can make the hysteresis disappear, and we investigate how model innovations over the past two decades, like new parameterizations and mixing schemes, affect the AMOC stability. Finally, we discuss evidence that current climate models systematically overestimate the stability of the AMOC.
NASA Astrophysics Data System (ADS)
Bowden, Jared H.; Nolte, Christopher G.; Otte, Tanya L.
2013-04-01
The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscaling of global climate model (GCM) output for air quality applications under a changing climate. In this study we downscale the NCEP-Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis using three continuous 20-year WRF simulations: one simulation without interior grid nudging and two using different interior grid nudging methods. The biases in 2-m temperature and precipitation for the simulation without interior grid nudging are unreasonably large with respect to the North American Regional Reanalysis (NARR) over the eastern half of the contiguous United States (CONUS) during the summer when air quality concerns are most relevant. This study examines how these differences arise from errors in predicting the large-scale atmospheric circulation. It is demonstrated that the Bermuda high, which strongly influences the regional climate for much of the eastern half of the CONUS during the summer, is poorly simulated without interior grid nudging. In particular, two summers when the Bermuda high was west (1993) and east (2003) of its climatological position are chosen to illustrate problems in the large-scale atmospheric circulation anomalies. For both summers, WRF without interior grid nudging fails to simulate the placement of the upper-level anticyclonic (1993) and cyclonic (2003) circulation anomalies. The displacement of the large-scale circulation impacts the lower atmosphere moisture transport and precipitable water, affecting the convective environment and precipitation. Using interior grid nudging improves the large-scale circulation aloft and moisture transport/precipitable water anomalies, thereby improving the simulated 2-m temperature and precipitation. The results demonstrate that constraining the RCM to the large-scale features in the driving fields improves the overall accuracy of the simulated regional climate, and suggest that in the absence of such a constraint, the RCM will likely misrepresent important large-scale shifts in the atmospheric circulation under a future climate.
Mid-latitude afforestation shifts general circulation and tropical precipitation.
Swann, Abigail L S; Fung, Inez Y; Chiang, John C H
2012-01-17
We show in climate model experiments that large-scale afforestation in northern mid-latitudes warms the Northern Hemisphere and alters global circulation patterns. An expansion of dark forests increases the absorption of solar energy and increases surface temperature, particularly in regions where the land surface is unable to compensate with latent heat flux due to water limitation. Atmospheric circulation redistributes the anomalous energy absorbed in the northern hemisphere, in particular toward the south, through altering the Hadley circulation, resulting in the northward displacement of the tropical rain bands. Precipitation decreases over parts of the Amazon basin affecting productivity and increases over the Sahel and Sahara regions in Africa. We find that the response of climate to afforestation in mid-latitudes is determined by the amount of soil moisture available to plants with the greatest warming found in water-limited regions. Mid-latitude afforestation is found to have a small impact on modeled global temperatures and on global CO(2), but regional heating from the increase in forest cover is capable of driving unintended changes in circulation and precipitation. The ability of vegetation to affect remote circulation has implications for strategies for climate mitigation.
Comparison of Climatological Planetary Boundary Layer Depth Estimates Using the GEOS-5 AGCM
NASA Technical Reports Server (NTRS)
Mcgrath-Spangler, Erica Lynn; Molod, Andrea M.
2014-01-01
Planetary boundary layer (PBL) processes, including those influencing the PBL depth, control many aspects of weather and climate and accurate models of these processes are important for forecasting changes in the future. However, evaluation of model estimates of PBL depth are difficult because no consensus on PBL depth definition currently exists and various methods for estimating this parameter can give results that differ by hundreds of meters or more. In order to facilitate comparisons between the Goddard Earth Observation System (GEOS-5) and other modeling and observational systems, seven PBL depth estimation methods are used to produce PBL depth climatologies and are evaluated and compared here. All seven methods evaluate the same atmosphere so all differences are related solely to the definition chosen. These methods depend on the scalar diffusivity, bulk and local Richardson numbers, and the diagnosed horizontal turbulent kinetic energy (TKE). Results are aggregated by climate class in order to allow broad generalizations. The various PBL depth estimations give similar midday results with some exceptions. One method based on horizontal turbulent kinetic energy produces deeper PBL depths in the winter associated with winter storms. In warm, moist conditions, the method based on a bulk Richardson number gives results that are shallower than those given by the methods based on the scalar diffusivity. The impact of turbulence driven by radiative cooling at cloud top is most significant during the evening transition and along several regions across the oceans and methods sensitive to this cooling produce deeper PBL depths where it is most active. Additionally, Richardson number-based methods collapse better at night than methods that depend on the scalar diffusivity. This feature potentially affects tracer transport.
Potential predictability of Northern America surface temperature in AGCMs and CGCMs
NASA Astrophysics Data System (ADS)
Tang, Youmin; Chen, Dake; Yan, Xiaoqin
2015-07-01
In this study, the potential predictability of the Northern America (NA) surface air temperature (SAT) was explored using an information-based predictability framework and two multiple model ensemble products: a one-tier prediction by coupled models (T1), and a two-tier prediction by atmospheric models only (T2). Furthermore, the potential predictability was optimally decomposed into different modes for both T1 and T2, by extracting the most predictable structures. Emphasis was placed on the comparison of the predictability between T1 and T2. It was found that the potential predictability of the NA SAT is seasonal and spatially dependent in both T1 and T2. Higher predictability occurs in spring and winter and over the southeastern US and northwestern Canada. There is no significant difference of potential predictability between T1 and T2 for most areas of NA, although T1 has higher potential predictability than T2 in the southeastern US. Both T1 and T2 display similar most predictable components (PrCs) for the NA SAT, characterized by the inter-annual variability mode and the long-term trend mode. The first one is inherent to the tropical Pacific sea surface temperature forcing, such as the El Nino-Southern Oscillation, whereas the second one is closely associated with global warming. In general, the PrC modes can better characterize the predictability in T1 than in T2, in particular for the inter-annual variability mode in the fall. The prediction skill against observations is better measured by the PrC analysis than by principal component analysis for all seasons, indicating the stronger capability of PrCA in extracting prediction targets.
Experimental Study and CFD Simulation of a 2D Circulating Fluidized Bed
NASA Astrophysics Data System (ADS)
Kallio, S.; Guldén, M.; Hermanson, A.
Computational fluid dynamics (CFD) gains popularity in fluidized bed modeling. For model validation, there is a need of detailed measurements under well-defined conditions. In the present study, experiments were carried out in a 40 em wide and 3 m high 2D circulating fluidized bed. Two experiments were simulated by means of the Eulerian multiphase models of the Fluent CFD software. The vertical pressure and solids volume fraction profiles and the solids circulation rate obtained from the simulation were compared to the experimental results. In addition, lateral volume fraction profiles could be compared. The simulated CFB flow patterns and the profiles obtained from simulations were in general in a good agreement with the experimental results.
Observed variations in U.S. frost timing linked to atmospheric circulation patterns
NASA Astrophysics Data System (ADS)
Strong, Courtenay; McCabe, Gregory J.
2017-05-01
Several studies document lengthening of the frost-free season within the conterminous United States (U.S.) over the past century, and report trends in spring and fall frost timing that could stem from hemispheric warming. In the absence of warming, theory and case studies link anomalous frost timing to atmospheric circulation anomalies. However, recent efforts to relate a century of observed changes in U.S. frost timing to various atmospheric circulations yielded only modest correlations, leaving the relative importance of circulation and warming unclear. Here, we objectively partition the U.S. into four regions and uncover atmospheric circulations that account for 25-48% of spring and fall-frost timing. These circulations appear responsive to historical warming, and they consistently account for more frost timing variability than hemispheric or regional temperature indices. Reliable projections of future variations in growing season length depend on the fidelity of these circulation patterns in global climate models.
Research on the identification of inefficient and invalid circulation in ultra-high water cut stage
NASA Astrophysics Data System (ADS)
Han, Shaoxin
2018-06-01
After oil field entered into ultra-high water cut stage, big channels are formed in some oil and water wells and lead to the inefficient and ineffective circulation of injected water, which not only inhibit the increase of recovery ratio of oil and gas, but also cause the waste of resources. This article selects three static parameters and four dynamic parameters which can perform inefficient and ineffective circulation characteristics between oil and water wells, integrates the fuzzy mathematics theory, establishes fuzzy comprehensive evaluation model to identify the inefficient and ineffective circulation wells in the research area, on this basis, inefficient and ineffective circulation position is further determined through the logging curve characteristics and logging ratio method, the identification of inefficient and ineffective circulation "determine well and layer" is achieved, and provide powerful basis for governance work of inefficient and ineffective circulation.
Observed variations in U.S. frost timing linked to atmospheric circulation patterns
Strong, Courtenay; McCabe, Gregory J.
2017-01-01
Several studies document lengthening of the frost-free season within the conterminous United States (U.S.) over the past century, and report trends in spring and fall frost timing that could stem from hemispheric warming. In the absence of warming, theory and case studies link anomalous frost timing to atmospheric circulation anomalies. However, recent efforts to relate a century of observed changes in U.S. frost timing to various atmospheric circulations yielded only modest correlations, leaving the relative importance of circulation and warming unclear. Here, we objectively partition the U.S. into four regions and uncover atmospheric circulations that account for 25–48% of spring and fall-frost timing. These circulations appear responsive to historical warming, and they consistently account for more frost timing variability than hemispheric or regional temperature indices. Reliable projections of future variations in growing season length depend on the fidelity of these circulation patterns in global climate models.
Observed variations in U.S. frost timing linked to atmospheric circulation patterns.
Strong, Courtenay; McCabe, Gregory J
2017-05-23
Several studies document lengthening of the frost-free season within the conterminous United States (U.S.) over the past century, and report trends in spring and fall frost timing that could stem from hemispheric warming. In the absence of warming, theory and case studies link anomalous frost timing to atmospheric circulation anomalies. However, recent efforts to relate a century of observed changes in U.S. frost timing to various atmospheric circulations yielded only modest correlations, leaving the relative importance of circulation and warming unclear. Here, we objectively partition the U.S. into four regions and uncover atmospheric circulations that account for 25-48% of spring and fall-frost timing. These circulations appear responsive to historical warming, and they consistently account for more frost timing variability than hemispheric or regional temperature indices. Reliable projections of future variations in growing season length depend on the fidelity of these circulation patterns in global climate models.
Atmospheric Circulation and Composition of GJ1214b
NASA Astrophysics Data System (ADS)
Menou, Kristen
2012-01-01
The exoplanet GJ1214b presents an interesting example of compositional degeneracy for low-mass planets. Its atmosphere may be composed of water, super-solar or solar metallicity material. We present atmospheric circulation models of GJ1214b for these three compositions, with explicit gray radiative transfer and an optional treatment of MHD bottom drag. All models develop strong, superrotating zonal winds (~1-2 km s-1). The degree of eastward heat advection, which can be inferred from secondary eclipse and thermal phase curve measurements, varies greatly between the models. These differences are understood as resulting from variations in the radiative times at the thermal photosphere, caused by separate molecular weight and opacity effects. Our GJ1214b models illustrate how atmospheric circulation can be used as a probe of composition for similar tidally locked exoplanets in the mini-Neptune/waterworld class.
The 1997/98 El Nino: A Test for Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, R; Dong, B; Cess, R D
Version 3 of the Hadley Centre Atmospheric Model (HadAM3) has been used to demonstrate one means of comparing a general circulation model with observations for a specific climate perturbation, namely the strong 1997/98 El Nino. This event was characterized by the collapse of the tropical Pacific's Walker circulation, caused by the lack of a zonal sea surface temperature gradient during the El Nino. Relative to normal years, cloud altitudes were lower in the western portion of the Pacific and higher in the eastern portion. HadAM3 likewise produced the observed collapse of the Walker circulation, and it did a reasonable jobmore » of reproducing the west/east cloud structure changes. This illustrates that the 1997/98 El Nino serves as a useful means of testing cloud-climate interactions in climate models.« less
A Weak Constraint 4D-Var Assimilation System for the Navy Coastal Model Using the Representer Method
2013-01-01
the help of the Parametric Fortrai compiler (PFC), Erwig et al. 2007 . Some general circulation models of the complexity of NCOM have seen 1 similar...the Mir general circulation model (MITgcm, Marotzke et al. 1999) also used in the ECCO consortium assimilation experiments ( Stammer et al. 2002...using the« inverse Regional Ocean Modeling System (IROMS, Di Lorenzo et al. 2007 ) with horizontal resolutions of 10 and 30km. The CCS is a large
NASA Astrophysics Data System (ADS)
Elison Timm, O.; Flamholtz, W. M.; Li, S.; Massa, C.; Beilman, D. W.
2016-12-01
The motivation for this study was sparked by the idea that paleoclimate temperature and precipitation proxies provide sufficient information to make inferences about extratropical atmospheric circulation changes over the North Pacific during the Holocene. Typical targets for the circulation reconstruction problem include the strength and position of the Aleutian Low and the storm tracks. The reconstruction problem was investigated under idealized conditions using model simulation results from the TraCE-21ka transient climate simulation (http://www.cgd.ucar.edu/ccr/TraCE/), which covers the Last Glacial Maximum to present. It is demonstrated that modes of variability found on interannual to multidecadal timescales during the preindustrial era provide inadequate pattern for reconstructing long-term mean changes during the past 22,000 years. Our circulation reconstruction target was the geopotential height field at 500hPa (Z500) over the North Pacific Ocean during winter. We applied a field reconstruction method using Maximum Covariance Analysis (MCA). The MCA was applied to Z500 and surface temperatures as predictor information. The MCA was given model data containing interannual to multidecadal variability from the pre-industrial climate (1000BP-900BP). We worked with ten leading MCA modes in the reconstruction, which can reproduce about 90% of the covariability during the preindustrial period. Within the model simulation, we validated the field reconstructions against the model's circulation states over the last 22,000 years. Spatial skill scores show that the reconstruction skill drops significantly prior to the late Holocene. Reasons for the loss of reconstruction skill are due to the fact that externally forced climate changes do not resemble the internal modes of variability and that covariance between circulation and temperatures on interannual-multidecadal time scales changes with the background climate state. However, the reconstruction can be improved by including data from the early Holocene and the LGM era in the MCA. Based on these results, we advocate that paleoclimate model simulation results should be used define a set of first-guess pattern for the reconstruction of circulation anomalies from sparse and noisy proxy data.
Numerical model of the circulation and dispersion in the east Adriatic coastal waters
NASA Astrophysics Data System (ADS)
Beg Paklar, Gordana; Dzoic, Tomislav; Koracin, Darko; Matijevic, Slavica; Grbec, Branka; Ivatek-Sahdan, Stjepan
2017-04-01
The Regional Ocean Modeling System (ROMS) was implemented to reproduce physical properties of the area around submarine outlet Stobrec in the middle Adriatic coastal area. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and dynamics of the surrounding area imposed at the open boundaries. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Simulated fields from the Adriatic and shelf scale models were used to prescribe the initial and open boundary conditions for fine resolution coastal domain. Model results were compared with available CTD measurements and discussed in the light of the climatological circulation and thermohaline properties of the middle Adriatic coastal area. Variability in the circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the open boundaries. Basic features of the coastal circulation are well reproduced by the ROMS model, as well as temperatures and salinities which are within corresponding seasonal intervals, although with lower stratification than measured ones. In order to reproduce dispersion of the passive tracer the ROMS model was coupled with Lagrangian dispersion model. Multiyear monitoring of the physical, chemical and biological parameters around the sewage outlet was used to assess the quality of the dispersion model results. Among measured parameters, redox potential of the surface sediment layer was selected to be compared with model results as its negative values are direct consequence of increased organic matter input that can be attributed to the sewage system inflow.
NASA Astrophysics Data System (ADS)
Jacobs, Zoe; Popova, Katya; Hirschi, Joel; Coward, Andrew; Yool, Andrew; van Gennip, Simon; Anifowose, Babtunde; Harrington-Missin, Liam
2017-04-01
Although oil blowouts from deep-water drilling happen very rarely, they can cause catastrophic damage to the environment. Despite such potentially high impacts, relatively little research effort has gone into understanding subsurface oil plumes in the deep ocean. In this study, we demonstrate the significance of this problem and offer potential solutions using a novel approach based on a leading-edge, high-resolution global ocean circulation model. We present examples demonstrating: (a) the importance of ocean circulation in the propagation of oil spills; and (b) likely circulation footprints for oil spills at four key locations in the Atlantic Ocean that exist in different circulation regimes - the shelves of Brazil, the Gulf of Guinea, the Gulf of Mexico and the Faroe-Shetland Channel. In order to quantify the variability at each site on seasonal timescales, interannual timescales and at different depths, we utilize the Modified Hausdorff Distance (MHD), which is a shape-distance metric that measures the similarity between two shapes. The scale of the footprints across the four focus locations varies considerably and is determined by the main circulation features in their vicinity. For example, the hypothetical oil plume can be affected by variations in the speed and location of a particular current (e.g. Brazil Current at the Brazilian shelf site) or be influenced by different currents entirely depending on the release depth, month and year (e.g. Angola Current or Southern Equatorial Current at the Gulf of Guinea site). Overall, our results demonstrate the need to use state of the art global, or basin-scale, ocean circulation models when assessing the environmental impacts of proposed oil drilling activities.
NASA Astrophysics Data System (ADS)
Wang, Huiqun; Yuan, Yaochu; Guan, Weibing; Lou, Ruyun; Wang, Kangshan
2004-07-01
On the basis of the recently obtained hydrographic data in the South China Sea, the improved Princeton Ocean Model with a generalized topography-following coordinate system is used to study the circulation in the region during summer 2000. Several sensitivity experiments are carried out to achieve reasonable model parameters for the South China Sea (SCS). It is shown from the resting stratification experiments that the generalized topography-following coordinate scheme is better than the standard sigma grid scheme for reducing the pressure gradient errors. The combination of sea surface height anomaly derived from TOPEX/Poseidon and numerical results with both diagnostic and semidiagnostic simulations provides a consistent circulation pattern for the SCS in August, and the main circulation features can be summarized as follows: (1) There is a notable anticyclonic warm eddy southeast of Vietnam with a horizontal scale of ˜300 km, and there is a cyclonic cold eddy. The simultaneous existence of these cold and warm eddies is one of the important circulation characteristics in the SCS during summer 2000. (2) A secondary cold eddy is found east of Vietnam. (3) The northwestern part of the SCS is dominated by an anticyclonic circulation system. (4) There is also a secondary warm eddy southwest off the Luzon Island. (5) A cyclonic eddy is found west off the Borneo Island. (6) A western intensification phenomenon obviously occurs in the SCS. The dynamical mechanisms of the above-mentioned circulation pattern in the SCS are the interaction between the wind stress and bottom topography and the joint effect of baroclinicity and relief.
NASA Astrophysics Data System (ADS)
Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Barisevičiūtė, Ruta; Baziukė, Dalia; Ertürk, Ali; Gasiūnaitė, Jovita; Gulbinskas, Saulius; Lubienė, Irma; Maračkinaite, Jurgita; Petkuvienė, Jolita; Pilkaitytė, Renata; Ruginis, Tomas; Zemlys, Petras; Žilius, Mindaugas
2013-04-01
The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by the European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Overall, the project will develop according to 4 main phases: 1) A pilot study to measure the isotope composition of different carbon compounds (dissolved and suspended) in different water bodies that feed water into the central lagoon. Through this pilot study the optimal study sites for the seasonal campaign will be identified as well. 2) Seasonal field campaigns in the monitoring stations identified in phase 1 to measure the carbon isotope ratio. 3) Development of a model that describes the kinetics of carbon isotopes and its transformation. 4) Application of a hydrodynamic model that includes the kinetic model and uses the data in order to describe the overall circulation patterns in the Curonian lagoon. Project activities will be carried out as common co-ordinated effort of field an SI group and the modeling group that will have to calibrate the hydrodynamic model. In this way the expertise of different groups (physicists and oceanographers) will result in added value, providing the best available expertise along the eastern coast of the Baltic.
NASA Astrophysics Data System (ADS)
Kracher, Daniela; Manzini, Elisa; Reick, Christian H.; Schultz, Martin; Stein, Olaf
2014-05-01
Climate change is driven by an increasing release of anthropogenic greenhouse gases (GHGs) such as carbon dioxide and nitrous oxide (N2O). Besides fossil fuel burning, also land use change and land management are anthropogenic sources of GHGs. Especially inputs of reactive nitrogen via fertilizer and deposition lead to enhanced emissions of N2O. One effect of a drastic future increase in surface temperature is a modification of atmospheric circulation, e.g. an accelerated Brewer Dobson circulation affecting the exchange between troposphere and stratosphere. N2O is inert in the troposphere and decayed only in the stratosphere. Thus, changes in atmospheric circulation, especially changes in the exchange between troposphere and stratosphere, will affect the atmospheric transport, decay, and distribution of N2O. In our study we assess the impact of global warming on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O. As terrestrial N2O emissions are highly determined by inputs of reactive nitrogen - the location of which being determined by human choice - we examine in particular the importance of latitudinal source regions of N2O for its global distribution. For this purpose we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation.
The Regional Water Cycle and Water Ice Clouds in the Tharsis - Valles Marineris System
NASA Astrophysics Data System (ADS)
Leung, C. W. S.; Rafkin, S. C.
2017-12-01
The regional atmospheric circulation on Mars is highly influenced by local topographic gradients. Terrain-following air parcels forced along the slopes of the major Tharsis volcanoes and the steep canyon walls of Valles Marineris significantly impact the local water vapor concentration and the associated conditions for cloud formation. Using a non-hydrostatic mesoscale atmospheric model with aerosol & cloud microphysics, we investigate the meteorological conditions for water ice cloud formation in the coupled Tharsis - Valles Marineris system near the aphelion season. The usage of a limited area regional model ensures that topographic slopes are well resolved compared to the typical resolutions of a global-coverage general circulation model. The effects of shadowing and slope angle geometries on the energy budget is also taken into account. Diurnal slope winds in complex terrains are typically characterized by the reversal of wind direction twice per sol: upslope during the day, and downslope at night. However, our simulation results of the regional circulation and diurnal water cycle indicate substantial asymmetries in the day-night circulation. The convergence of moist air masses enters Valles Marineris via easterly flows, whereas dry air sweep across the plateau of the canyon system from the south towards the north. We emphasize the non-uniform vertical distribution of water vapor in our model results. Water vapor mixing ratios in the lower planetary boundary layer may be factors greater than the mixing ratio aloft. Water ice clouds are important contributors to the climatic forcing on Mars, and their effects on the mesoscale circulations in the Tharsis - Valles Marineris region significantly contribute to the regional perturbations in the large-scale global atmospheric circulation.
Effect of potential vorticity flux on the circulation in the South China Sea
NASA Astrophysics Data System (ADS)
Zhu, Yaohua; Sun, Junchuan; Wang, Yonggang; Wei, Zexun; Yang, Dezhou; Qu, Tangdong
2017-08-01
This study analyzes temperature and salinity products from the U.S. Navy Generalized Digital Environment Model. To avoid the fictitious assumption of no-motion reference level, a P-vector inverse method is employed to derive geostrophic velocity. Line integral of geostrophic velocity shows evidence for the existence of a sandwiched circulation in the South China Sea (SCS), i.e., cyclonic circulation in the subsurface and deep layers and anticyclonic in the intermediate layer. To reveal the factors responsible for the sandwiched circulation, we derive the potential vorticity equation based on a four-and-a-half-layer quasi-geostrophic model and apply theoretical potential vorticity constraint to density layers. The result shows that the sandwiched circulation is largely induced by planetary potential vorticity flux through lateral boundaries, mainly the Luzon Strait. This dynamical mechanism lies in the fact that the net potential vorticity inflow in the subsurface and deep layers leads to a positive layer-average vorticity in the SCS basin, yielding vortex stretching and a cyclonic basin-wide circulation. On the contrary, the net potential vorticity outflow in the intermediate layer induces a negative layer-average vorticity, generating an anticyclonic basin-wide circulation in the SCS. Furthermore, by illustrating different consequence from depth/density layers, we clarify that density layers are essential for applying theoretical potential vorticity constraint to the isolated deep SCS basin.
Hinske, Ludwig Christian; Hoechter, Dominik Johannes; Schröeer, Eva; Kneidinger, Nikolaus; Schramm, René; Preissler, Gerhard; Tomasi, Roland; Sisic, Alma; Frey, Lorenz; von Dossow, Vera; Scheiermann, Patrick
2017-06-01
The factors leading to the implementation of unplanned extracorporeal circulation during lung transplantation are poorly defined. Consequently, the authors aimed to identify patients at risk for unplanned extracorporeal circulation during lung transplantation. Retrospective data analysis. Single-center university hospital. A development data set of 170 consecutive patients and an independent validation cohort of 52 patients undergoing lung transplantation. The authors investigated a cohort of 170 consecutive patients undergoing single or sequential bilateral lung transplantation without a priori indication for extracorporeal circulation and evaluated the predictive capability of distinct preoperative and intraoperative variables by using automated model building techniques at three clinically relevant time points (preoperatively, after endotracheal intubation, and after establishing single-lung ventilation). Preoperative mean pulmonary arterial pressure was the strongest predictor for unplanned extracorporeal circulation. A logistic regression model based on preoperative mean pulmonary arterial pressure and lung allocation score achieved an area under the receiver operating characteristic curve of 0.85. Consequently, the authors developed a novel 3-point scoring system based on preoperative mean pulmonary arterial pressure and lung allocation score, which identified patients at risk for unplanned extracorporeal circulation and validated this score in an independent cohort of 52 patients undergoing lung transplantation. The authors showed that patients at risk for unplanned extracorporeal circulation during lung transplantation could be identified by their novel 3-point score. Copyright © 2017 Elsevier Inc. All rights reserved.
A local-circulation model for Darrieus vertical-axis wind turbines
NASA Astrophysics Data System (ADS)
Masse, B.
1986-04-01
A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.
2014-10-01
AD_________________ Award Number: W81XWH-13-1-0325 TITLE: Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using ...Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING ORGANIZATION ...Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER W81XWH-13-1-0325 Carcinoma Using Genetically Engineered Mouse Models and 5b
Walker circulation in a transient climate
NASA Astrophysics Data System (ADS)
Plesca, Elina; Grützun, Verena; Buehler, Stefan A.
2016-04-01
The tropical overturning circulations modulate the heat exchange across the tropics and between the tropics and the poles. The anthropogenic influence on the climate system will affect these circulations, impacting the dynamics of the Earth system. In this work we focus on the Walker circulation. We investigate its temporal and spatial dynamical changes and their link to other climate features, such as surface and sea-surface temperature patterns, El-Niño Southern Oscillation (ENSO), and ocean heat-uptake, both at global and regional scale. In order to determine the impact of anthropogenic climate change on the tropical circulation, we analyze the outputs of 28 general circulation models (GCMs) from the CMIP5 project. We use the experiment with 1% year-1 increase in CO2 concentration from pre-industrial levels to quadrupling of the concentration. Consistent with previous studies (ex. Ma and Xie 2013), we find that for this experiment most GCMs associate a weakening Walker circulation to a warming transient climate. Due to the role of the Walker Pacific cell in the meridional heat and moisture transport across the tropical Pacific and also the connection to ENSO, we find that a weakened Walker circulation correlates with more extreme El-Niño events, although without a change in their frequency. The spatial analysis of the Pacific Walker cell suggests an eastward displacement of the ascending branch, which is consistent with positive SST anomalies over the tropical Pacific and the link of the Pacific Walker cell to ENSO. Recent studies (ex. England et al. 2014) have linked a strengthened Walker circulation to stronger ocean heat uptake, especially in the western Pacific. The inter-model comparison of the correlation between Walker circulation intensity and ocean heat uptake does not convey a robust response for the investigated experiment. However, there is some evidence that a stronger weakening of the Walker circulation is linked to a higher transient climate response (temperature change by the time of CO2 doubling), which in turn might be related to a decreased ocean heat uptake. This uncertainty across the models we attribute to the multitude of factors controlling ocean and atmosphere heat exchange, both at global and regional scales, as well as to the present capabilities of GCMs in simulating this exchange. References: England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A. S., McPhaden, M. J., Purich, A., and Santoso, A., 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change 4 (3): 222-227. Ma, J., and Xie, S. P., 2013. Regional Patterns of Sea Surface Temperature Change: A Source of Uncertainty in Future Projections of Precipitation and Atmospheric Circulation*. Journal of Climate, 26 (8): 2482-2501
O'Loughlin, Aonghus; Kulkarni, Mangesh; Vaughan, Erin E; Creane, Michael; Liew, Aaron; Dockery, Peter; Pandit, Abhay; O'Brien, Timothy
2013-01-01
Diabetic foot ulceration is the leading cause of amputation in people with diabetes mellitus. Peripheral vascular disease is present in the majority of patients with diabetic foot ulcers. Despite standard treatments there exists a high amputation rate. Circulating angiogenic cells previously known as early endothelial progenitor cells are derived from peripheral blood and support angiogenesis and vasculogenesis, providing a potential topical treatment for non-healing diabetic foot ulcers. A scaffold fabricated from Type 1 collagen facilitates topical cell delivery to a diabetic wound. Osteopontin is a matricellular protein involved in wound healing and increases the angiogenic potential of circulating angiogenic cells. A collagen scaffold seeded with circulating angiogenic cells was developed. Subsequently the effect of autologous circulating angiogenic cells that were seeded in a collagen scaffold and topically delivered to a hyperglycemic cutaneous wound was assessed. The alloxan-induced diabetic rabbit ear ulcer model was used to determine healing in response to the following treatments: collagen seeded with autologous circulating angiogenic cells exposed to osteopontin, collagen seeded with autologous circulating angiogenic cells, collagen alone and untreated wound. Stereology was used to assess angiogenesis in wounds. The cells exposed to osteopontin and seeded on collagen increased percentage wound closure as compared to other groups. Increased angiogenesis was observed with the treatment of collagen and collagen seeded with circulating angiogenic cells. These results demonstrate that topical treatment of full thickness cutaneous ulcers with autologous circulating angiogenic cells increases wound healing. Cells exposed to the matricellular protein osteopontin result in superior wound healing. The wound healing benefit is associated with a more efficient vascular network. This topical therapy provides a potential novel therapy for the treatment of non-healing diabetic foot ulcers in humans.
NASA Astrophysics Data System (ADS)
Peña-Ortiz, C.; Ribera, P.; García-Herrera, R.; Giorgetta, M. A.; García, R. R.
2008-08-01
The seasonality of the quasi-biennial oscillation (QBO) and its secondary circulation is analyzed in the European Reanalysis (ERA-40) and Middle Atmosphere European Centre Hamburg Model (MAECHAM5) general circulation model data sets through the multitaper method-singular value decomposition (MTM-SVD). In agreement with previous studies, the results reveal a strong seasonal dependence of the QBO secondary circulation. This is characterized by a two-cell structure symmetric about the equator during autumn and spring. However, anomalies strongly weaken in the summer hemisphere and strengthen in the winter hemisphere, leading to an asymmetric QBO secondary circulation characterized by a single-cell structure displaced into the winter hemisphere during the solstices. In ERA-40, this asymmetry is more pronounced during the northern than during the southern winter. These results provide the first observation of the QBO secondary circulation asymmetries in the ERA-40 reanalysis data set across the full stratosphere and the lower mesosphere, up to 0.1 hPa. The MTM-SVD reconstruction of the seasonal QBO signals in the residual circulation and the QBO signals in Eliassen Palm (EP) flux divergences suggest a particular mechanism for the seasonal asymmetries of the QBO secondary circulation and its extension across the midlatitudes. The analysis shows that the QBO modulates the EP flux in the winter hemispheric surf zone poleward of the QBO jets. The zonal wind forcing by EP flux divergence is transformed by the Coriolis effect into a meridional wind signal. The seasonality in the stratospheric EP flux and the hemispheric differences in planetary wave forcing cause the observed seasonality in the QBO secondary circulation and its hemispheric differences.
NASA Astrophysics Data System (ADS)
Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.
2015-12-01
Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are being simulated for plausible physical reasons, boosting confidence in future projections of temperature extremes. Conversely, where model skill is identified to be lower, caution should be exercised in interpreting future projections.
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Yao, Chung-Sheng; Allan, Brian G.
2006-01-01
Recent efforts in extreme short takeoff and landing aircraft configurations have renewed the interest in circulation control wing design and optimization. The key to accurately designing and optimizing these configurations rests in the modeling of the complex physics of these flows. This paper will highlight the physics of the stagnation and separation regions on two typical circulation control airfoil sections.
NASA Astrophysics Data System (ADS)
Beck, Christoph; Philipp, Andreas; Jacobeit, Jucundus
2015-08-01
This contribution investigates the relationship between the large-scale atmospheric circulation and interannual variations of the standardized precipitation index (SPI) in Central Europe. To this end, circulation types (CT) have been derived from a variety of circulation type classifications (CTC) applied to daily sea level pressure (SLP) data and mean circulation indices of vorticity ( V), zonality ( Z) and meridionality ( M) have been calculated. Occurrence frequencies of CTs and circulation indices have been utilized as predictors within multiple regression models (MRM) for the estimation of gridded 3-month SPI values over Central Europe, for the period 1950 to 2010. CTC-based MRMs used in the analyses comprise variants concerning the basic method for CT classification, the number of CTs, the size and location of the spatial domain used for CTCs and the exclusive use of CT frequencies or the combined use of CT frequencies and mean circulation indices as predictors. Adequate MRM predictor combinations have been identified by applying stepwise multiple regression analyses within a resampling framework. The performance (robustness) of the resulting MRMs has been quantified based on a leave-one-out cross-validation procedure applying several skill scores. Furthermore, the relative importance of individual predictors has been estimated for each MRM. From these analyses, it can be stated that model skill is improved by (i) the consideration of vorticity characteristics within CTCs, (ii) a relatively small size of the spatial domain to which CTCs are applied and (iii) the inclusion of mean circulation indices. However, model skill exhibits distinct variations between seasons and regions. Whereas promising skill can be stated for the western and northwestern parts of the Central European domain, only unsatisfactory skill is reached in the more continental regions and particularly during summer. Thus, it can be concluded that the presented approaches feature the potential for the downscaling of Central European drought index variations from the large-scale circulation, at least for some regions. Further improvements of CTC-based approaches may be expected from the optimization of CTCs for explaining the SPI, e.g. via the inclusion of additional variables in the classification procedure.
Tidal and tidally averaged circulation characteristics of Suisun Bay, California
Smith, Lawrence H.; Cheng, Ralph T.
1987-01-01
Availability of extensive field data permitted realistic calibration and validation of a hydrodynamic model of tidal circulation and salt transport for Suisun Bay, California. Suisun Bay is a partially mixed embayment of northern San Francisco Bay located just seaward of the Sacramento-San Joaquin Delta. The model employs a variant of an alternating direction implicit finite-difference method to solve the hydrodynamic equations and an Eulerian-Lagrangian method to solve the salt transport equation. An upwind formulation of the advective acceleration terms of the momentum equations was employed to avoid oscillations in the tidally averaged velocity field produced by central spatial differencing of these terms. Simulation results of tidal circulation and salt transport demonstrate that tides and the complex bathymetry determine the patterns of tidal velocities and that net changes in the salinity distribution over a few tidal cycles are small despite large changes during each tidal cycle. Computations of tidally averaged circulation suggest that baroclinic and wind effects are important influences on tidally averaged circulation during low freshwater-inflow conditions. Exclusion of baroclinic effects would lead to overestimation of freshwater inflow by several hundred m3/s for a fixed set of model boundary conditions. Likewise, exclusion of wind would cause an underestimation of flux rates between shoals and channels by 70–100%.
Integrated and spectral energetics of the GLAS general circulation model
NASA Technical Reports Server (NTRS)
Tenenbaum, J.
1982-01-01
Integrated and spectral error energetics of the GLAS General circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level, particularly above strong initial jet streams associated in part with regions of steep terrain. The spectral error growth study represents the first comparison of general circulation model spectral energetics predictions with the corresponding observational spectra on a day by day basis. The major conclusion is that eddy kinetics energy can be correct while significant errors occur in the kinetic energy of wavenumber 3. Both the model and observations show evidence of single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetics and potential energy.
NASA Technical Reports Server (NTRS)
Shen, B.-W.; Atlas, R.; Chern, J.-D.; Reale, O.; Lin, S.-J.; Lee, T.; Chang, J.
2005-01-01
The NASA Columbia supercomputer was ranked second on the TOP500 List in November, 2004. Such a quantum jump in computing power provides unprecedented opportunities to conduct ultra-high resolution simulations with the finite-volume General Circulation Model (fvGCM). During 2004, the model was run in realtime experimentally at 0.25 degree resolution producing remarkable hurricane forecasts [Atlas et al., 2005]. In 2005, the horizontal resolution was further doubled, which makes the fvGCM comparable to the first mesoscale resolving General Circulation Model at the Earth Simulator Center [Ohfuchi et al., 2004]. Nine 5-day 0.125 degree simulations of three hurricanes in 2004 are presented first for model validation. Then it is shown how the model can simulate the formation of the Catalina eddies and Hawaiian lee vortices, which are generated by the interaction of the synoptic-scale flow with surface forcing, and have never been reproduced in a GCM before.)
NASA Astrophysics Data System (ADS)
Jiang, Mingshun; Charette, Matthew A.; Measures, Christopher I.; Zhu, Yiwu; Zhou, Meng
2013-06-01
The seasonal cycle of circulation and transport in the Antarctic Peninsula shelf region is investigated using a high-resolution (˜2 km) regional model based on the Regional Oceanic Modeling System (ROMS). The model also includes a naturally occurring tracer with a strong source over the shelf (radium isotope 228Ra, t1/2=5.8 years) to investigate the sediment Fe input and its transport. The model is spun-up for three years using climatological boundary and surface forcing and then run for the 2004-2006 period using realistic forcing. Model results suggest a persistent and coherent circulation system throughout the year consisting of several major components that converge water masses from various sources toward Elephant Island. These currents are largely in geostrophic balance, driven by surface winds, topographic steering, and large-scale forcing. Strong off-shelf transport of the Fe-rich shelf waters takes place over the northeastern shelf/slope of Elephant Island, driven by a combination of topographic steering, extension of shelf currents, and strong horizontal mixing between the ACC and shelf waters. These results are generally consistent with recent and historical observational studies. Both the shelf circulation and off-shelf transport show a significant seasonality, mainly due to the seasonal changes of surface winds and large-scale circulation. Modeled and observed distributions of 228Ra suggest that a majority of Fe-rich upper layer waters exported off-shelf around Elephant Island are carried by the shelfbreak current and the Bransfield Strait Current from the shallow sills between Gerlache Strait and Livingston Island, and northern shelf of the South Shetland Islands, where strong winter mixing supplies much of the sediment derived nutrients (including Fe) input to the surface layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khangaonkar, Tarang; Yang, Zhaoqing; Kim, Tae Yun
2011-07-20
Through extensive field data collection and analysis efforts conducted since the 1950s, researchers have established an understanding of the characteristic features of circulation in Puget Sound. The pattern ranges from the classic fjordal behavior in some basins, with shallow brackish outflow and compensating inflow immediately below, to the typical two-layer flow observed in many partially mixed estuaries with saline inflow at depth. An attempt at reproducing this behavior by fitting an analytical formulation to past data is presented, followed by the application of a three-dimensional circulation and transport numerical model. The analytical treatment helped identify key physical processes and parameters,more » but quickly reconfirmed that response is complex and would require site-specific parameterization to include effects of sills and interconnected basins. The numerical model of Puget Sound, developed using unstructured-grid finite volume method, allowed resolution of the sub-basin geometric features, including presence of major islands, and site-specific strong advective vertical mixing created by bathymetry and multiple sills. The model was calibrated using available recent short-term oceanographic time series data sets from different parts of the Puget Sound basin. The results are compared against (1) recent velocity and salinity data collected in Puget Sound from 2006 and (2) a composite data set from previously analyzed historical records, mostly from the 1970s. The results highlight the ability of the model to reproduce velocity and salinity profile characteristics, their variations among Puget Sound subbasins, and tidally averaged circulation. Sensitivity of residual circulation to variations in freshwater inflow and resulting salinity gradient in fjordal sub-basins of Puget Sound is examined.« less
Three-dimensional circulation dynamics of along-channel flow in stratified estuaries
NASA Astrophysics Data System (ADS)
Musiak, Jeffery Daniel
Estuaries are vital because they are the major interface between humans and the oceans and provide valuable habitat for a wide range of organisms. Therefore it is important to model estuarine circulation to gain a better comprehension of the mechanics involved and how people effect estuaries. To this end, this dissertation combines analysis of data collected in the Columbia River estuary (CRE) with novel data processing and modeling techniques to further the understanding of estuaries that are strongly forced by riverflow and tides. The primary hypothesis tested in this work is that the three- dimensional (3-D) variability in along-channel currents in a strongly forced estuary can be largely accounted for by including the lateral variations in density and bathymetry but neglecting the secondary, or lateral, flow. Of course, the forcing must also include riverflow and oceanic tides. Incorporating this simplification and the modeling ideas put forth by others with new modeling techniques and new ideas on estuarine circulation will allow me to create a semi-analytical quasi 3-D profile model. This approach was chosen because it is of intermediate complexity to purely analytical models, that, if tractable, are too simple to be useful, and 3-D numerical models which can have excellent resolution but require large amounts of time, computer memory and computing power. Validation of the model will be accomplished using velocity and density data collected in the Columbia River Estuary and by comparison to analytical solutions. Components of the modeling developed here include: (1) development of a 1-D barotropic model for tidal wave propagation in frictionally dominated systems with strong topography. This model can have multiple tidal constituents and multiply connected channels. (2) Development and verification of a new quasi 3-D semi-analytical velocity profile model applicable to estuarine systems which are strongly forced by both oceanic tides and riverflow. This model includes diurnal and semi-diurnal tidal and non- linearly generated overtide circulation and residual circulation driven by riverflow, baroclinic forcing, surface wind stress and non-linear tidal forcing. (3) Demonstration that much of the lateral variation in along-channel currents is caused by variations in along- channel density forcing and bathymetry.
ERIC Educational Resources Information Center
de Carvalho, Marta Maria Chagas
2005-01-01
This article addresses the issue of school and modernity representations that circulated in Brazil as from the end of the nineteenth century until the middle of the twentieth century and determined the configuration process of the Republican school. First, the article examines the pedagogical models that guided the process of school…
2012-09-30
oscillation (SAO) and quasi-biennial oscillation ( QBO ) of stratospheric equatorial winds in long-term (10-year) nature runs. The ability of these new schemes...to generate and maintain tropical SAO and QBO circulations in Navy models for the first time is an important breakthrough, since these circulations
NASA Astrophysics Data System (ADS)
Kamada, A.; Kuroda, T.; Kasaba, Y.; Terada, N.; Akiba, T.
2017-09-01
Our Mars General Circulation Model was used to reproduce the early Martian climate which was thought to be warm and wet. Our simulation with high thermal inertia assuming wet soils and ancient ocean/lakes succeeded in producing the surface temperature above 273K throughout a year in low-mid latitudes of northern hemisphere.
NASA Astrophysics Data System (ADS)
Biastoch, Arne; Sein, Dmitry; Durgadoo, Jonathan V.; Wang, Qiang; Danilov, Sergey
2018-01-01
Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing.
EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation
NASA Astrophysics Data System (ADS)
Bony, Sandrine; Stevens, Bjorn; Ament, Felix; Bigorre, Sebastien; Chazette, Patrick; Crewell, Susanne; Delanoë, Julien; Emanuel, Kerry; Farrell, David; Flamant, Cyrille; Gross, Silke; Hirsch, Lutz; Karstensen, Johannes; Mayer, Bernhard; Nuijens, Louise; Ruppert, James H.; Sandu, Irina; Siebesma, Pier; Speich, Sabrina; Szczap, Frédéric; Totems, Julien; Vogel, Raphaela; Wendisch, Manfred; Wirth, Martin
2017-11-01
Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of trade-cumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of trade-cumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air-sea interactions and convective organization.
Transonic Drag Reduction Through Trailing-Edge Blowing on the FAST-MAC Circulation Control Model
NASA Technical Reports Server (NTRS)
Chan, David T.; Jones, Gregory S.; Milholen, William E., II; Goodliff, Scott L.
2017-01-01
A third wind tunnel test of the FAST-MAC circulation control semi-span model was completed in the National Transonic Facility at the NASA Langley Research Center where the model was configured for transonic testing of the cruise configuration with 0deg flap detection to determine the potential for transonic drag reduction with the circulation control blowing. The model allowed independent control of four circulation control plenums producing a high momentum jet from a blowing slot near the wing trailing edge that was directed over a 15% chord simple-hinged ap. Recent upgrades to transonic semi-span flow control testing at the NTF have demonstrated an improvement to overall data repeatability, particularly for the drag measurement, that allows for increased confidence in the data results. The static thrust generated by the blowing slot was removed from the wind-on data using force and moment balance data from wind-o thrust tares. This paper discusses the impact of the trailing-edge blowing to the transonic aerodynamics of the FAST-MAC model in the cruise configuration, where at flight Reynolds numbers, the thrust-removed corrected data showed that an overall drag reduction and increased aerodynamic efficiency was realized as a consequence of the blowing.
Modeling the periodic stratification and gravitational circulation in San Francisco Bay, California
Cheng, Ralph T.; Casulli, Vincenzo
1996-01-01
A high resolution, three-dimensional (3-D) hydrodynamic numerical model is applied to San Francisco Bay, California to simulate the periodic tidal stratification caused by tidal straining and stirring and their long-term effects on gravitational circulation. The numerical model is formulated using fixed levels in the vertical and uniform computational mesh on horizontal planes. The governing conservation equations, the 3-D shallow water equations, are solved by a semi-implicit finite-difference scheme. Numerical simulations for estuarine flows in San Francisco Bay have been performed to reproduce the hydrodynamic properties of tides, tidal and residual currents, and salt transport. All simulations were carried out to cover at least 30 days, so that the spring-neap variance in the model results could be analyzed. High grid resolution used in the model permits the use of a simple turbulence closure scheme which has been shown to be sufficient to reproduce the tidal cyclic stratification and well-mixed conditions in the water column. Low-pass filtered 3-D time-series reveals the classic estuarine gravitational circulation with a surface layer flowing down-estuary and an up-estuary flow near the bottom. The intensity of the gravitational circulation depends upon the amount of freshwater inflow, the degree of stratification, and spring-neap tidal variations.
EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation
NASA Astrophysics Data System (ADS)
Bony, Sandrine; Stevens, Bjorn; Ament, Felix; Bigorre, Sebastien; Chazette, Patrick; Crewell, Susanne; Delanoë, Julien; Emanuel, Kerry; Farrell, David; Flamant, Cyrille; Gross, Silke; Hirsch, Lutz; Karstensen, Johannes; Mayer, Bernhard; Nuijens, Louise; Ruppert, James H.; Sandu, Irina; Siebesma, Pier; Speich, Sabrina; Szczap, Frédéric; Totems, Julien; Vogel, Raphaela; Wendisch, Manfred; Wirth, Martin
Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of tradecumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of tradecumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air-sea interactions and convective organization.
Impact of Seawater Nonlinearities on Nordic Seas Circulation
NASA Astrophysics Data System (ADS)
Helber, R. W.; Wallcraft, A. J.; Shriver, J. F.
2017-12-01
The Nordic Seas (Greenland, Iceland, and Norwegian Seas) form an ocean basin important for Arctic-mid-latitude climate linkages. Cold fresh water from the Arctic Ocean and warm salty water from the North Atlantic Ocean meet in the Nordic Seas, where a delicate balance between temperature and salinity variability results in deep water formation. Seawater non-linearities are stronger at low temperatures and salinities making high-latitude oceans highly subject to thermbaricity and cabbeling. This presentation highlights and quantifies the impact of seawater non-linearities on the Nordic Seas circulation. We use two layered ocean circulation models, the Hybrid Coordinate Ocean Model (HYOCM) and the Modular Ocean Model version 6 (MOM6), that enable accurate representation of processes along and across density or neutral density surfaces. Different equations-of-state and vertical coordinates are evaluated to clarify the impact of seawater non-linearities. Present Navy systems, however, do not capture some features in the Nrodic Seas vertical structure. For example, observations from the Greenland Sea reveal a subsurface temperature maximum that deepens from approximately 1500 m during 1998 to 1800 m during 2005. We demonstrate that in terms of density, salinity is the largest source of error in Nordic Seas Navy forecasts, regional scale models can represent mesoscale features driven by thermobaricity, vertical coordinates are a critical issue in Nordic Sea circulation modeling.
Mesoscale mixing of the Denmark Strait Overflow in the Irminger Basin
NASA Astrophysics Data System (ADS)
Koszalka, Inga M.; Haine, Thomas W. N.; Magaldi, Marcello G.
2017-04-01
The Denmark Strait Overflow (DSO) is a major export route for dense waters from the Nordic Seas forming the lower limb of the Atlantic Meridional Overturning Circulation, an important element of the climate system. Mixing processes along the DSO pathway influence its volume transport and properties contributing to the variability of the deep overturning circulation. They are poorly sampled by observations, however, which hinders development of a proper DSO representation in global circulation models. We employ a high resolution regional ocean model of the Irminger Basin to quantify impact of the mesoscale flows on DSO mixing focusing on geographical localization and the time-modulation of water property changes. The model reproduces the observed bulk warming of the DSO plume 100-200 km downstream of the Denmark Strait sill. It also reveals that mesoscale variability of the overflow ('DSO-eddies', of 20-30 km extent and a time scale of 2-5 day) modulates water property changes and turbulent mixing, diagnosed with the vertical shear of horizontal velocity and the eddy heat flux divergence. The space-time localization of the DSO mixing and warming and the role of coherent mesoscale structures should be explored by turbulence measurements and factored into the coarse circulation models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Taiping; Yang, Zhaoqing
Increased eutrophication and degraded water quality in estuarine and coastal waters have been a worldwide environmental concern. While it is commonly accepted that anthropogenic impact plays a major role in many emerging water quality issues, natural conditions such as restricted water circulations controlled by geometry may also substantially contribute to unfavorable water quality in certain ecosystems. To elucidate the contributions from different factors, a hydrodynamic-water quality model that integrates both physical transport and pollutant loadings is particularly warranted. A preliminary modeling study using the Environmental Fluid Dynamic Code (EFDC) is conducted to investigate hydrodynamic circulation and low dissolved oxygen (DO)more » in Hood Canal, a representative fjord in the U.S. Pacific Northwest. Because the water quality modeling work is still ongoing, this paper focuses on the progress in hydrodynamic modeling component. The hydrodynamic model has been set up using the publicly available forcing data and was calibrated against field observations or NOAA predictions for tidal elevation, current, salinity and temperature. The calibrated model was also used to estimate physical transport timescales such as residence time in the estuary. The preliminary model results demonstrate that the EFDC Hood Canal model is capable of capturing the general circulation patterns in Hood Canal, including weak tidal current and strong vertical stratification. The long residence time (i.e., on the order of 100 days for the entire estuary) also indicates that restricted water circulation could contribute to low DO in the estuary and also makes the system especially susceptible to anthropogenic disturbance, such as excess nutrient input.« less
NASA Astrophysics Data System (ADS)
Yoo, Yeon-Jong
The purpose of this study is to investigate the performance and stability of the gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems. The target system is STAR-LM, which is a 400-MWt-class advanced lead-cooled fast reactor under development by Argonne National Laboratory and Oregon State University. The primary loop of STAR-LM relies on natural circulation to eliminate main circulation pumps for enhancement of passive safety. To significantly increase the natural circulation flow rate for the incorporation of potential future power uprates, the injection of noncondensable gas into the coolant above the core is envisioned ("gas lift pump"). Reliance upon gas-injection enhanced natural circulation raises the concern of flow instability due to the relatively high temperature change in the reactor core and the two-phase flow condition in the riser. For this study, the one-dimensional flow field equations were applied to each flow section and the mixture models of two-phase flow, i.e., both the homogeneous and drift-flux equilibrium models were used in the two-phase region of the riser. For the stability analysis, the linear perturbation technique based on the frequency-domain approach was used by employing the Nyquist stability criterion and a numerical root search method. It has been shown that the thermal power of the STAR-LM natural circulation system could be increased from 400 up to 1152 MW with gas injection under the limiting void fraction of 0.30 and limiting coolant velocity of 2.0 m/s from the steady-state performance analysis. As the result of the linear stability analysis, it has turned out that the STAR-LM natural circulation system would be stable even with gas injection. In addition, through the parametric study, it has been found that the thermal inertia effects of solid structures such as fuel rod and heat exchanger tube should be considered in the stability analysis model. The results of this study will be a part of the optimized stable design of the gas-injection enhanced natural circulation of STAR-LM with substantially improved power level and economical competitiveness. Furthermore, combined with the parametric study, this research could contribute a guideline for the design of other similar heavy-liquid-metal-cooled natural circulation systems with gas injection.
Model-free adaptive control of supercritical circulating fluidized-bed boilers
Cheng, George Shu-Xing; Mulkey, Steven L
2014-12-16
A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
Keynesian multiplier versus velocity of money
NASA Astrophysics Data System (ADS)
Wang, Yougui; Xu, Yan; Liu, Li
2010-08-01
In this paper we present the relation between Keynesian multiplier and the velocity of money circulation in a money exchange model. For this purpose we modify the original exchange model by constructing the interrelation between income and expenditure. The random exchange yields an agent's income, which along with the amount of money he processed determines his expenditure. In this interactive process, both the circulation of money and Keynesian multiplier effect can be formulated. The equilibrium values of Keynesian multiplier are demonstrated to be closely related to the velocity of money. Thus the impacts of macroeconomic policies on aggregate income can be understood by concentrating solely on the variations of money circulation.
Rotor Wake Development During the First Revolution
NASA Technical Reports Server (NTRS)
McAlister, Kenneth W.
2003-01-01
The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.
Chuang, Shu-Chun; Rota, Matteo; Gunter, Marc J; Zeleniuch-Jacquotte, Anne; Eussen, Simone J P M; Vollset, Stein Emil; Ueland, Per Magne; Norat, Teresa; Ziegler, Regina G; Vineis, Paolo
2013-10-01
Most epidemiologic studies on folate intake suggest that folate may be protective against colorectal cancer, but the results on circulating (plasma or serum) folate are mostly inconclusive. We conducted a meta-analysis of case-control studies nested within prospective studies on circulating folate and colorectal cancer risk by using flexible meta-regression models to test the linear and nonlinear dose-response relationships. A total of 8 publications (10 cohorts, representing 3,477 cases and 7,039 controls) were included in the meta-analysis. The linear and nonlinear models corresponded to relative risks of 0.96 (95% confidence interval (CI): 0.91, 1.02) and 0.99 (95% CI: 0.96, 1.02), respectively, per 10 nmol/L of circulating folate in contrast to the reference value. The pooled relative risks when comparing the highest with the lowest category were 0.80 (95% CI: 0.61, 0.99) for radioimmunoassay and 1.03 (95% CI: 0.83, 1.22) for microbiological assay. Overall, our analyses suggest a null association between circulating folate and colorectal cancer risk. The stronger association for the radioimmunoassay-based studies could reflect differences in cohorts and study designs rather than assay performance. Further investigations need to integrate more accurate measurements and flexible modeling to explore the effects of folate in the presence of genetic, lifestyle, dietary, and hormone-related factors.
Bathymetric Changes Shaped by Longshore Currents on a Natural Beach
NASA Astrophysics Data System (ADS)
Reilly, W. L.; Slinn, D.; Plant, N.
2004-12-01
The goal of the project is to simulate beach morphology on time scales of hours to days. Our approach is to develop finite difference solutions from a coupled modeling system consisting of existing nearshore circulation, wave, and sediment flux models. We initialize the model with bathymetry from a dense data set north of the pier at the Field Research Facility (FRF) in Duck, NC. We integrate the model system forward in time and compare the results of the hind-cast of the beach evolution with the field observations. The model domain extends 1000 meters in the alongshore direction and 500 meters in the cross-shore direction with 5 meter grid spacing. The bathymetry is interpolated and filtered from CRAB transects. A second-degree exponential smoothing method is used to return the cross-shore beach profile near the edges of the modeled domain back to the mean alongshore profile, because the circulation model implements periodic boundary conditions in the alongshore direction. The offshore wave height and direction are taken from the 8-meter bipod at the FRF and input to the wave-model, SWAN (Spectral Wave Nearshore), with a Gaussian-shaped frequency spectrum and a directional spreading of 5 degrees. A constant depth induced wave breaking parameter of 0.73 is used. The resulting calculated wave induced force per unit surface area (gradient of the radiation stress) output from SWAN is used to drive the currents in the circulation model. The circulation model is based on the free-surface non-linear shallow water equations and uses the fourth order compact scheme to calculate spatial derivatives and a third order Adams-Bashforth time discretization scheme. Free slip, symmetry boundary conditions are applied at both the shoreline and offshore boundaries. The time averaged sediment flux is calculated at each location after one hour of circulation. The sediment flux model is based on the approach of Bagnold and includes approximations for both bed-load and suspended load. The bathymetry is then updated by computing the divergence of the time averaged sediment fluxes. The process is then repeated using the updated bathymetry in both SWAN and the circulation model. The cycle continues for a simulation of 10 hours. The results of bathymetric change vary for different time-dependent wave conditions and initial bathymetric profiles. Typical results indicate that for wave heights on the order of one meter, shoreline advancement and sandbar evolution is observed on the order of tens of centimeters.
NASA Astrophysics Data System (ADS)
Qian, Y.; Wang, L.; Leung, L. R.; Lin, G.; Lu, J.; Gao, Y.; Zhang, Y.
2017-12-01
Projecting precipitation changes is challenging because of incomplete understanding of the climate system and biases and uncertainty in climate models. In East Asia where summer precipitation is dominantly influenced by the monsoon circulation and the global models from Coupled Model Intercomparison Project Phase 5 (CMIP5), however, give various projection of precipitation change for 21th century. It is critical for community to know which models' projection are more reliable in response to natural and anthropogenic forcings. In this study we defined multiple-dimensional metrics, measuring the model performance in simulating the present-day of large-scale circulation, regional precipitation and relationship between them. The large-scale circulation features examined in this study include the lower tropospheric southwesterly winds, the western North Pacific subtropical high, the South China Sea Subtropical High, and the East Asian westerly jet in the upper troposphere. Each of these circulation features transport moisture to East Asia, enhancing the moist static energy and strengthening the Meiyu moisture front that is the primary mechanism for precipitation generation in eastern China. Based on these metrics, 30 models in CMIP5 ensemble are classified into three groups. Models in the top performing group projected regional precipitation patterns that are more similar to each other than the bottom or middle performing group and consistently projected statistically significant increasing trends in two of the large-scale circulation indices and precipitation. In contrast, models in the bottom or middle performing group projected small drying or no trends in precipitation. We also find the models that only reasonably reproduce the observed precipitation climatology does not guarantee more reliable projection of future precipitation because good simulation skill could be achieved through compensating errors from multiple sources. Herein the potential for more robust projections of precipitation changes at regional scale is demonstrated through the use of discriminating metric to subsample the multi-model ensemble. The results from this study provides insights for how to select models from CMIP ensemble to project regional climate and hydrological cycle changes.
NASA Astrophysics Data System (ADS)
Plancherel, Yves
2015-01-01
Comparison of the volumetric θ/S distribution of models participating in the Climate Model Intercomparison Project 3 (CMIP3) indicates that these models differ widely in their ability to represent the thermohaline properties of water masses. Relationships between features of the quasi-equilibrium hydrographic mean state of these models and aspects of their overturning circulations are investigated. This is achieved quantitatively with the help of seven diagnostic hydrographic stations. These few stations were specifically selected to provide a minimalist schematic of the global water mass system. Relationships between hydrographic conditions in the North Atlantic measured with a subset of these stations suggest that hydrographic properties in the subpolar North Atlantic are set by the circulation field of each model, pointing towards deficiencies in the models ability to resolve the Gulf Stream-North Atlantic Current system as a major limitation. Since diapycnal mixing and viscosity parameterizations differ across CMIP3 models and exert a strong control on the overturning, it is likely that these architectural differences ultimately explain the main across-model differences in overturning circulation, temperature and salinity in the North Atlantic. The analysis of properties across the quasi-equilibrium states of the CMIP3 models agrees with previously reported relationships between meridional steric height gradients or horizontal density contrasts at depth and the strength of the deep water cell. Robust relationships are also found in the Southern Ocean linking measures of vertical stratification with the strength of the abyssal circulations across the CMIP3 models. Consistent correlations between aspects of the quasi-equilibrium hydrography in the Southern Ocean and the sensitivity of the abyssal cell to increasing radiative forcing by 2100 were found. Using these relations in conjunction with modern hydrographic observations to interpolate the fate of the abyssal cell suggests that the Southern abyssal cell may decrease by roughly 20 % by the end of the century. Similar systematic relationships between the quasi-equilibrium hydrographic states of the models and the sensitivity of their Atlantic deep water cell could not be found.
NASA Astrophysics Data System (ADS)
Fomin, Vladimir; Diansky, Nikolay; Gusev, Anatoly; Kabatchenko, Ilia; Panasenkova, Irina
2017-04-01
The diagnosis and forecast system for simulating hydrometeorological characteristics of the Russian Western Arctic seas is presented. It performs atmospheric forcing computation with the regional non-hydrostatic atmosphere model Weather Research and Forecasting model (WRF) with spatial resolution 15 km, as well as computation of circulation, sea level, temperature, salinity and sea ice with the marine circulation model INMOM (Institute of Numerical Mathematics Ocean Model) with spatial resolution 2.7 km, and the computation of wind wave parameters using the Russian wind-wave model (RWWM) with spatial resolution 5 km. Verification of the meteorological characteristics is done for air temperature, air pressure, wind velocity, water temperature, currents, sea level anomaly, wave characteristics such as wave height and wave period. The results of the hydrometeorological characteristic verification are presented for both retrospective and forecast computations. The retrospective simulation of the hydrometeorological characteristics for the White, Barents, Kara and Pechora Seas was performed with the diagnosis and forecast system for the period 1986-2015. The important features of the Kara Sea circulation are presented. Water exchange between Pechora and Kara Seas is described. The importance is shown of using non-hydrostatic atmospheric circulation model for the atmospheric forcing computation in coastal areas. According to the computation results, extreme values of hydrometeorological characteristics were obtained for the Russian Western Arctic seas.
Past Asian Monsoon circulation from multiple tree-ring proxies and models (Invited)
NASA Astrophysics Data System (ADS)
Anchukaitis, K. J.; Herzog, M.; Hernandez, M.; Martin-Benito, D.; Gagen, M.; LeGrande, A. N.; Ummenhofer, C.; Buckley, B.; Cook, E. R.
2013-12-01
The Asian monsoon can be characterized in terms of precipitation variability as well as features of regional atmospheric circulation across a range of spatial and temporal scales. While multicentury time series of tree-ring widths at hundreds of sites across Asia provide estimates of past rainfall, the oxygen isotope ratios of annual rings at some of these sites can reveal broader regional atmosphere-ocean dynamics. Here we present a replicated, multicentury stable isotope series from Vietnam that integrates the influence of monsoon circulation on water isotopes. Stronger (weaker) monsoon flow over Indochina is associated with lower (higher) oxygen isotope values in our long-lived tropical conifers. Ring width and isotopes show particular coherence at multidecadal time scales, and together allow past precipitation amount and circulation strength to be disentangled. Combining multiple tree-ring proxies with simulations from isotope-enabled and paleoclimate general circulation models allows us to independently assess the mechanisms responsible for proxy formation and to evaluate how monsoon rainfall is influenced by ocean-atmosphere interactions at timescales from interannual to multidecadal.
Response to perturbations for granular flow in a hopper
NASA Astrophysics Data System (ADS)
Wambaugh, John F.; Behringer, Robert P.; Matthews, John V.; Gremaud, Pierre A.
2007-11-01
We experimentally investigate the response to perturbations of circular symmetry for dense granular flow inside a three-dimensional right-conical hopper. These experiments consist of particle tracking velocimetry for the flow at the outer boundary of the hopper. We are able to test commonly used constitutive relations and observe granular flow phenomena that we can model numerically. Unperturbed conical hopper flow has been described as a radial velocity field with no azimuthal component. Guided by numerical models based upon continuum descriptions, we find experimental evidence for secondary, azimuthal circulation in response to perturbation of the symmetry with respect to gravity by tilting. For small perturbations we can discriminate between constitutive relations, based upon the agreement between the numerical predictions they produce and our experimental results. We find that the secondary circulation can be suppressed as wall friction is varied, also in agreement with numerical predictions. For large tilt angles we observe the abrupt onset of circulation for parameters where circulation was previously suppressed. Finally, we observe that for large tilt angles the fluctuations in velocity grow, independent of the onset of circulation.
NASA Astrophysics Data System (ADS)
Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.
2014-12-01
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.
Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.
2014-01-01
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached. PMID:25482065
Boulton, Chris A; Allison, Lesley C; Lenton, Timothy M
2014-12-08
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.
NASA Astrophysics Data System (ADS)
Häusler, K.; Hagan, M. E.; Baumgaertner, A. J. G.; Maute, A.; Lu, G.; Doornbos, E.; Bruinsma, S.; Forbes, J. M.; Gasperini, F.
2014-08-01
We report on a new source of tidal variability in the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). Lower boundary forcing of the TIME-GCM for a simulation of November-December 2009 based on 3-hourly Modern-Era Retrospective Analysis for Research and Application (MERRA) reanalysis data includes day-to-day variations in both diurnal and semidiurnal tides of tropospheric origin. Comparison with TIME-GCM results from a heretofore standard simulation that includes climatological tropospheric tides from the global-scale wave model reveal evidence of the impacts of MERRA forcing throughout the model domain, including measurable tidal variability in the TIME-GCM upper thermosphere. Additional comparisons with measurements made by the Gravity field and steady-state Ocean Circulation Explorer satellite show improved TIME-GCM capability to capture day-to-day variations in thermospheric density for the November-December 2009 period with the new MERRA lower boundary forcing.
Tropical forecasting - Predictability perspective
NASA Technical Reports Server (NTRS)
Shukla, J.
1989-01-01
Results are presented of classical predictability studies and forecast experiments with observed initial conditions to show the nature of initial error growth and final error equilibration for the tropics and midlatitudes, separately. It is found that the theoretical upper limit of tropical circulation predictability is far less than for midlatitudes. The error growth for a complete general circulation model is compared to a dry version of the same model in which there is no prognostic equation for moisture, and diabatic heat sources are prescribed. It is found that the growth rate of synoptic-scale errors for the dry model is significantly smaller than for the moist model, suggesting that the interactions between dynamics and moist processes are among the important causes of atmospheric flow predictability degradation. Results are then presented of numerical experiments showing that correct specification of the slowly varying boundary condition of SST produces significant improvement in the prediction of time-averaged circulation and rainfall over the tropics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataria, Tiffany; Showman, Adam P.; Fortney, Jonathan J.
The hot Jupiter WASP-43b (2 M{sub J}, 1 R{sub J}, T {sub orb} = 19.5 hr) has now joined the ranks of transiting hot Jupiters HD 189733b and HD 209458b as an exoplanet with a large array of observational constraints. Because WASP-43b receives a similar stellar flux as HD 209458b but has a rotation rate four times faster and a higher gravity, studying WASP-43b probes the effect of rotation rate and gravity on the circulation when stellar irradiation is held approximately constant. Here we present three-dimensional (3D) atmospheric circulation models of WASP-43b, exploring the effects of composition, metallicity, and frictional drag. We find thatmore » the circulation regime of WASP-43b is not unlike other hot Jupiters, with equatorial superrotation that yields an eastward-shifted hotspot and large day-night temperature variations (∼600 K at photospheric pressures). We then compare our model results to Hubble Space Telescope (HST)/WFC3 spectrophotometric phase curve measurements of WASP-43b from 1.12 to 1.65 μm. Our results show the 5× solar model light curve provides a good match to the data, with a peak flux phase offset and planet/star flux ratio that is similar to observations; however, the model nightside appears to be brighter. Nevertheless, our 5× solar model provides an excellent match to the WFC3 dayside emission spectrum. This is a major success, as the result is a natural outcome of the 3D dynamics with no model tuning. These results demonstrate that 3D circulation models can help interpret exoplanet atmospheric observations, even at high resolution, and highlight the potential for future observations with HST, James Webb Space Telescope, and other next-generation telescopes.« less
Modeling South Pacific Ice-Ocean Interactions in the Global Climate System
NASA Technical Reports Server (NTRS)
Holland, David M.; Jenkins, Adrian; Jacobs, Stanley S.
2001-01-01
The objective of this project has been to improve the modeling of interactions between large Antarctic ice shelves and adjacent regions of the Southern Ocean. Our larger goal is to gain a better understanding of the extent to which the ocean controls ice shelf attrition, thereby influencing the size and dynamics of the Antarctic Ice Sheet. Melting and freezing under ice shelves also impacts seawater properties, regional upwelling and sinking and the larger-scale ocean circulation. Modifying an isopycnal coordinate general circulation model for use in sub-ice shelf cavities, we found that the abrupt change in water column thickness at an ice shelf front does not form a strong barrier to buoyancy-driven circulation across the front. Outflow along the ice shelf base, driven by melting of the thickest ice, is balanced by deep inflow. Substantial effort was focused on the Filchner-Ronne cavity, where other models have been applied and time-series records are available from instruments suspended beneath the ice. A model comparison indicated that observed changes in the production of High Salinity Shelf Water could have a major impact on circulation within the cavity. This water propagates into the cavity with an asymmetric seasonal signal that has similar phasing and shape in the model and observations, and can be related to winter production at the sea surface. Even remote parts of the sub-ice shelf cavity are impacted by external forcing on sub-annual time scales. This shows that cavity circulations and products, and therefore cavity shape, will respond to interannual variability in sea ice production and longer-term climate change. The isopycnal model gives generally lower net melt rates than have been obtained from other models and oceanographic data, perhaps due to its boundary layer formulation, or the lack of tidal forcing. Work continues on a manuscript describing the Ross cavity results.