Sample records for circulation technology development

  1. Use of minimal invasive extracorporeal circulation in cardiac surgery: principles, definitions and potential benefits. A position paper from the Minimal invasive Extra-Corporeal Technologies international Society (MiECTiS)

    PubMed Central

    Anastasiadis, Kyriakos; Murkin, John; Antonitsis, Polychronis; Bauer, Adrian; Ranucci, Marco; Gygax, Erich; Schaarschmidt, Jan; Fromes, Yves; Philipp, Alois; Eberle, Balthasar; Punjabi, Prakash; Argiriadou, Helena; Kadner, Alexander; Jenni, Hansjoerg; Albrecht, Guenter; van Boven, Wim; Liebold, Andreas; de Somer, Fillip; Hausmann, Harald; Deliopoulos, Apostolos; El-Essawi, Aschraf; Mazzei, Valerio; Biancari, Fausto; Fernandez, Adam; Weerwind, Patrick; Puehler, Thomas; Serrick, Cyril; Waanders, Frans; Gunaydin, Serdar; Ohri, Sunil; Gummert, Jan; Angelini, Gianni; Falk, Volkmar; Carrel, Thierry

    2016-01-01

    Minimal invasive extracorporeal circulation (MiECC) systems have initiated important efforts within science and technology to further improve the biocompatibility of cardiopulmonary bypass components to minimize the adverse effects and improve end-organ protection. The Minimal invasive Extra-Corporeal Technologies international Society was founded to create an international forum for the exchange of ideas on clinical application and research of minimal invasive extracorporeal circulation technology. The present work is a consensus document developed to standardize the terminology and the definition of minimal invasive extracorporeal circulation technology as well as to provide recommendations for the clinical practice. The goal of this manuscript is to promote the use of MiECC systems into clinical practice as a multidisciplinary strategy involving cardiac surgeons, anaesthesiologists and perfusionists. PMID:26819269

  2. Borehole model for simulation transport geothermal heat with heat pipe system and with forced circulation of heat carrier

    NASA Astrophysics Data System (ADS)

    Jakubský, Michal; Lenhard, Richard; Vantúch, Martin; Malcho, Milan

    2012-04-01

    In the call OPVaV-2008/2.2/01-SORO Operational Programme Research and Development - knowledge and technology transfer from research and development into practice (ITMS-26220220057), whose strategic goal is "Device to use low-potential geothermal heat without forced circulation of heat carrier deep in the well "in the Department of Energy laboratory techniques to construct a simulator of transport low potential of geothermal energy in comparative test-drilling in the laboratory. The article describes a device that was designed as a scale model of two deep boreholes each of which withdraws the earth's heat by heat transfer technology and heat carrier. Device using forced circulation of heat carrier will respond in the construction of equipment currently used to transport heat from deep borehole. As the heat carrier will be used CO2. Facilities without using forced circulation of heat carrier, the new technology, which will be used as heat carrier ammonia (NH3).

  3. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less

  4. An Active Flow Circulation Controlled Flap Concept for General Aviation Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Viken, Sally A.; Washburn, Anthony E.; Jenkins, Luther N.; Cagle, C. Mark

    2002-01-01

    A recent focus on revolutionary aerodynamic concepts has highlighted the technology needs of general aviation and personal aircraft. New and stringent restrictions on these types of aircraft have placed high demands on aerodynamic performance, noise, and environmental issues. Improved high lift performance of these aircraft can lead to slower takeoff and landing speeds that can be related to reduced noise and crash survivability issues. Circulation Control technologies have been around for 65 years, yet have been avoided due to trade offs of mass flow, pitching moment, perceived noise etc. The need to improve the circulation control technology for general aviation and personal air-vehicle applications is the focus of this paper. This report will describe the development of a 2-D General Aviation Circulation Control (GACC) wing concept that utilizes a pulsed pneumatic flap.

  5. Considerations in the development of circulating tumor cell technology for clinical use

    PubMed Central

    2012-01-01

    This manuscript summarizes current thinking on the value and promise of evolving circulating tumor cell (CTC) technologies for cancer patient diagnosis, prognosis, and response to therapy, as well as accelerating oncologic drug development. Moving forward requires the application of the classic steps in biomarker development–analytical and clinical validation and clinical qualification for specific contexts of use. To that end, this review describes methods for interactive comparisons of proprietary new technologies, clinical trial designs, a clinical validation qualification strategy, and an approach for effectively carrying out this work through a public-private partnership that includes test developers, drug developers, clinical trialists, the US Food & Drug Administration (FDA) and the US National Cancer Institute (NCI). PMID:22747748

  6. Development of the Technologies for Stabilization Treatment of the Water of the Recycling Cooling Systems at Thermal Power Plants

    NASA Astrophysics Data System (ADS)

    Vlasov, S. M.; Chichirova, N. D.; Chichirov, A. A.; Vlasova, A. Yu.; Filimonova, A. A.; Prosvirnina, D. V.

    2018-02-01

    A turbine-condensate cooling system is one of the less stable and most hard-to-control systems of maintaining optimal water chemistry. A laboratory recycling cooling water test facility, UVO-0.3, was developed for physical simulation of innovative zero-discharge water chemistry conditions and improvement of technological flowcharts of stabilization treatment of the initial and circulating water of the recycling cooling systems at thermal power plants. Experiments were conducted in the UVO-0.3 facility to investigate the processes that occur in the recycling water supply system and master new technologies of stabilization of the initial and circulating water. It is shown that, when using untreated initial water, scaling cannot be prevented even under low concentration levels. The main reason for the activation of scale depositing is the desorption of carbon dioxide that results in alkalization of the circulating water and, as a consequence, a displacement of the chemical reaction equilibrium towards the formation of slightly soluble hardness ions. Some techniques, viz., liming and alkalization of the initial water and the by-pass treatment of the circulating water, are considered. New engineering solutions have been developed for reducing the amount of scale-forming substances in the initial and circulating water. The best results were obtained by pretreating the initial water with alkalizing agents and simultaneously bypassing and treating part of the circulating water. The obtained experimental data underlie the process flowcharts of stabilization treatment of the initial and circulating TPP water that ensure scale-free and noncorrosive operation and meet the corresponding environmental requirements. Under the bypassing, the specific rates of the agents and the residual hardness are reduced compared with the conventional pretreatment.

  7. Continued Development and Application of Circulation Control Pneumatic Technology to Advanced Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1998-01-01

    Personnel of the Georgia Tech Research Institute (GTRI) Aerospace and Transportation Lab have completed a four-year grant program to develop and evaluate the pneumatic aerodynamic technology known as Circulation Control (CC) or Circulation Control Wing (CCW) for advanced transport aircraft. This pneumatic technology, which employs low-level blowing from tangential slots over round or near-round trailing edges of airfoils, greatly augments the circulation around a lifting or control surface and thus enhances the aerodynamic forces and moments generated by that surface. Two-dimensional force augmentations as high as 80 times the input blowing momentum coefficient have been recorded experimentally for these blown devices, thus providing returns of 8000% on the jet momentum expended. A further benefit is the absence of moving parts such as mechanical flaps, slats, spoilers, ailerons, elevators and rudders from these pneumatic surfaces, or the use of only very small, simple, blown aerodynamic surfaces on synergistic designs which integrate the lift, drag and control surfaces. The application of these devices to advanced aircraft can offer significant benefits in their performance, efficiency, simplicity, reliability, economic cost of operation, noise reduction, and safety of flight. To further develop and evaluate this potential, this research effort was conducted by GTRI under grant for the NASA Langley Research Center, Applied Aerodynamics Division, Subsonic Aerodynamics Branch, between June 14, 1993 and May 31, 1997.

  8. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential

    PubMed Central

    Immordino, Maria Laura; Dosio, Franco; Cattel, Luigi

    2006-01-01

    Among several promising new drug-delivery systems, liposomes represent an advanced technology to deliver active molecules to the site of action, and at present several formulations are in clinical use. Research on liposome technology has progressed from conventional vesicles (“first-generation liposomes”) to “second-generation liposomes”, in which long-circulating liposomes are obtained by modulating the lipid composition, size, and charge of the vesicle. Liposomes with modified surfaces have also been developed using several molecules, such as glycolipids or sialic acid. A significant step in the development of long-circulating liposomes came with inclusion of the synthetic polymer poly-(ethylene glycol) (PEG) in liposome composition. The presence of PEG on the surface of the liposomal carrier has been shown to extend blood-circulation time while reducing mononuclear phagocyte system uptake (stealth liposomes). This technology has resulted in a large number of liposome formulations encapsulating active molecules, with high target efficiency and activity. Further, by synthetic modification of the terminal PEG molecule, stealth liposomes can be actively targeted with monoclonal antibodies or ligands. This review focuses on stealth technology and summarizes pre-clinical and clinical data relating to the principal liposome formulations; it also discusses emerging trends of this promising technology. PMID:17717971

  9. Market assessment of PFBC ash use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bland, A. E.; Brown, T. H., Western Research Institute

    1998-01-01

    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBCmore » technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).« less

  10. Proceedings of the Circulation-Control Workshop, 1986

    NASA Technical Reports Server (NTRS)

    Nielsen, Jack N. (Compiler)

    1987-01-01

    A Circulation Control Workshop was held at NASA Ames by respresentatives of academia, industry, and government. A total of 32 papers were given in six technical sessions covering turbulence, circulation control airfoil theory, circulation control airfoil wing experiments, circulation control rotor theory, x-wing technology, fixed wing technology, and other concepts. The last session of the workshop was devoted to circulation control research planning.

  11. Bioreactor Technology in Cardiovascular Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Mertsching, H.; Hansmann, J.

    Cardiovascular tissue engineering is a fast evolving field of biomedical science and technology to manufacture viable blood vessels, heart valves, myocar-dial substitutes and vascularised complex tissues. In consideration of the specific role of the haemodynamics of human circulation, bioreactors are a fundamental of this field. The development of perfusion bioreactor technology is a consequence of successes in extracorporeal circulation techniques, to provide an in vitro environment mimicking in vivo conditions. The bioreactor system should enable an automatic hydrodynamic regime control. Furthermore, the systematic studies regarding the cellular responses to various mechanical and biochemical cues guarantee the viability, bio-monitoring, testing, storage and transportation of the growing tissue.

  12. Circulating Tumor Cells Versus Circulating Tumor DNA in Colorectal Cancer: Pros and Cons

    PubMed Central

    Tan, Carlyn Rose C.; Zhou, Lanlan

    2016-01-01

    Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging noninvasive multifunctional biomarkers in liquid biopsy allowing for early diagnosis, accurate prognosis, therapeutic target selection, spatiotemporal monitoring of metastasis, as well as monitoring response and resistance to treatment. CTCs and ctDNA are released from different tumor types at different stages and contribute complementary information for clinical decision. Although big strides have been taken in technology development for detection, isolation and characterization of CTCs and sensitive and specific detection of ctDNA, CTC-, and ctDNA-based liquid biopsies may not be widely adopted for routine cancer patient care until the suitability, accuracy, and reliability of these tests are validated and more standardized protocols are corroborated in large, independent, prospectively designed trials. This review covers CTC- and ctDNA-related technologies and their application in colorectal cancer. The promise of CTC-and ctDNA-based liquid biopsies is envisioned. PMID:27516729

  13. Circulating Tumor Cells Versus Circulating Tumor DNA in Colorectal Cancer: Pros and Cons.

    PubMed

    Tan, Carlyn Rose C; Zhou, Lanlan; El-Deiry, Wafik S

    2016-06-01

    Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging noninvasive multifunctional biomarkers in liquid biopsy allowing for early diagnosis, accurate prognosis, therapeutic target selection, spatiotemporal monitoring of metastasis, as well as monitoring response and resistance to treatment. CTCs and ctDNA are released from different tumor types at different stages and contribute complementary information for clinical decision. Although big strides have been taken in technology development for detection, isolation and characterization of CTCs and sensitive and specific detection of ctDNA, CTC-, and ctDNA-based liquid biopsies may not be widely adopted for routine cancer patient care until the suitability, accuracy, and reliability of these tests are validated and more standardized protocols are corroborated in large, independent, prospectively designed trials. This review covers CTC- and ctDNA-related technologies and their application in colorectal cancer. The promise of CTC-and ctDNA-based liquid biopsies is envisioned.

  14. Liquid Biopsy for Cancer: Circulating Tumor Cells, Circulating Free DNA or Exosomes?

    PubMed

    Zhang, Wei; Xia, Wenjie; Lv, Zhengye; Ni, Chao; Xin, Yin; Yang, Liu

    2017-01-01

    Precision medicine and personalized medicine are based on the development of biomarkers, and liquid biopsy has been reported to be able to detect biomarkers that carry information on tumor development and progression. Compared with traditional 'solid biopsy', which cannot always be performed to determine tumor dynamics, liquid biopsy has notable advantages in that it is a noninvasive modality that can provide diagnostic and prognostic information prior to treatment, during treatment and during progression. In this review, we describe the source, characteristics, technology for detection and current situation of circulating tumor cells, circulating free DNA and exosomes used for diagnosis, recurrence monitoring, prognosis assessment and medication planning. © 2017 The Author(s)Published by S. Karger AG, Basel.

  15. Prospects for using the technology of circulating fluidized bed for technically refitting Russian thermal power stations

    NASA Astrophysics Data System (ADS)

    Ryabov, G. A.; Folomeev, O. M.; Litun, D. S.; Sankin, D. A.; Dmitryukova, I. G.

    2009-01-01

    The present state and development of circulating fluidized bed (CFB) technology around the world are briefly reviewed. Questions of increasing the capacity of single boiler units and raising the parameters of steam are discussed. CFB boilers for 225- and 330-MW power units are described and their parameters are estimated as applied to the conditions of firing different Russian fuels. Indicators characterizing CFB boilers and pulverized-coal boilers are given. Capital outlays and operational costs for new coal-fired units are compared, and the results from this comparison are used to show the field of the most promising use of the CFB technology during technical refitting of Russian thermal power stations.

  16. A potential flight evaluation of an upper-surface-blowing/circulation-control-wing concept

    NASA Technical Reports Server (NTRS)

    Riddle, Dennis W.; Eppel, Joseph C.

    1987-01-01

    The technology data base for powered lift aircraft design has advanced over the last 15 years. NASA's Quiet Short Haul Research Aircraft (QSRA) has provided a flight verification of upper surface blowing (USB) technology. The A-6 Circulation Control Wing flight demonstration aricraft has provide data for circulation control wing (CCW) technology. Recent small scale wind tunnel model tests and full scale static flow turning test have shown the potential of combining USB with CCW technology. A flight research program is deemed necessary to fully explore the performance and control aspects of CCW jet substitution for the mechanical USB Coanda flap. The required hardware design would also address questions about the development of flight weight ducts and CCW jets and the engine bleed-air capabilities vs requirements. NASA's QSRA would be an optimum flight research vehicle for modification to the USB/CCW configuration. The existing QSRA data base, the design simplicity of the QSRA wing trailing edge controls, availability of engine bleed-air, and the low risk, low cost potential of the suggested program is discussed.

  17. Flow Cytometric Methods for Circulating Tumor Cell Isolation and Molecular Analysis.

    PubMed

    Bhagwat, Neha; Carpenter, Erica L

    2017-01-01

    Circulating tumor cells provide a non-invasive source of tumor material that can be valuable at all stages of disease management, including screening and early diagnosis, monitoring response to therapy, identifying therapeutic targets, and assessing development of drug resistance. Cells isolated from the blood of cancer patients can be used for phenotypic analysis, tumor genotyping, transcriptional profiling, as well as for ex vivo culture of isolated cells. There are a variety of novel technologies currently being developed for the detection and analysis of rare cells in circulation of cancer patients. Flow cytometry is a powerful cell analysis platform that is increasingly being used in this field of study due to its relatively high throughput and versatility with respect to the large number of commercially available antibodies and fluorescent probes available to translational and clinical researchers. More importantly, it offers the ability to easily recover viable cells with high purity that are suitable for downstream molecular analysis, thus making it an attractive technology for cancer research and as a diagnostic tool.

  18. Optical circulation in a multimode optomechanical resonator.

    PubMed

    Ruesink, Freek; Mathew, John P; Miri, Mohammad-Ali; Alù, Andrea; Verhagen, Ewold

    2018-05-04

    Breaking the symmetry of electromagnetic wave propagation enables important technological functionality. In particular, circulators are nonreciprocal components that can route photons directionally in classical or quantum photonic circuits and offer prospects for fundamental research on electromagnetic transport. Developing highly efficient circulators thus presents an important challenge, especially to realise compact reconfigurable implementations that do not rely on magnetic fields to break reciprocity. We demonstrate optical circulation utilising radiation pressure interactions in an on-chip multimode optomechanical system. Mechanically mediated optical mode conversion in a silica microtoroid provides a synthetic gauge bias for light, enabling four-port circulation that exploits tailored interference between appropriate light paths. We identify two sideband conditions under which ideal circulation is approached. This allows to experimentally demonstrate ~10 dB isolation and <3 dB insertion loss in all relevant channels. We show the possibility of actively controlling the circulator properties, enabling ideal opportunities for reconfigurable integrated nanophotonic circuits.

  19. Debunking the Computer Science Digital Library: Lessons Learned in Collection Development at Seneca College of Applied Arts & Technology

    ERIC Educational Resources Information Center

    Buczynski, James Andrew

    2005-01-01

    Developing a library collection to support the curriculum of Canada's largest computer studies school has debunked many myths about collecting computer science and technology information resources. Computer science students are among the heaviest print book and e-book users in the library. Circulation statistics indicate that the demand for print…

  20. Brushless dc motors. [applications in non-space technology

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Brushless dc motors were intensively developed and tested over several years before qualification as the prime movers for Apollo Spacecraft life support blowers, and for circulating oxygen in the lunar portable life support system. Knowledge gained through prototype development and critical testing has significantly influenced the technology employed, broadened markets and applications, and reduced the cost of present day motors.

  1. Effects of Synchronous Web-Based Instruction on Students' Thinking Styles and Creativity

    ERIC Educational Resources Information Center

    Kuo, Ping-Hong

    2016-01-01

    Technology and innovation are the power of human civilization. In face of such a changeable era, the rapid development and circulation of information technology has hastened the diversification of society. To cope with the approach of information society, teaching methods should also be changed, as traditional injection education could no longer…

  2. Fluorescence detection, enumeration and characterization of single circulating cells in vivo: technology, applications and future prospects

    NASA Astrophysics Data System (ADS)

    Hartmann, Carolin; Patil, Roshani; Lin, Charles P.; Niedre, Mark

    2018-01-01

    There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immunology, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most currently used methods require drawing and enriching blood samples from the body, but these suffer from a number of limitations. In contrast, ‘in vivo flow cytometry’ (IVFC) refers to set of technologies that allow study of cells directly in the bloodstream of the organism in vivo. In recent years the IVFC field has grown significantly and new techniques have been developed, including fluorescence microscopy, multi-photon, photo-acoustic, and diffuse fluorescence IVFC. In this paper we review recent technical advances in IVFC, with emphasis on instrumentation, contrast mechanisms, and detection sensitivity. We also describe key applications in biomedical research, including cancer research and immunology. Last, we discuss future directions for IVFC, as well as prospects for broader adoption by the biomedical research community and translation to humans clinically.

  3. Nanotechnology-Based Strategies for Early Cancer Diagnosis Using Circulating Tumor Cells as a Liquid Biopsy

    PubMed Central

    Huang, Qinqin; Wang, Yin; Chen, Xingxiang; Wang, Yimeng; Li, Zhiqiang; Du, Shiming; Wang, Lianrong; Chen, Shi

    2018-01-01

    Circulating tumor cells (CTCs) are cancer cells that shed from a primary tumor and circulate in the bloodstream. As a form of “tumor liquid biopsy”, CTCs provide important information for the mechanistic investigation of cancer metastasis and the measurement of tumor genotype evolution during treatment and disease progression. However, the extremely low abundance of CTCs in the peripheral blood and the heterogeneity of CTCs make their isolation and characterization major technological challenges. Recently, nanotechnologies have been developed for sensitive CTC detection; such technologies will enable better cell and molecular characterization and open up a wide range of clinical applications, including early disease detection and evaluation of treatment response and disease progression. In this review, we summarize the nanotechnology-based strategies for CTC isolation, including representative nanomaterials (such as magnetic nanoparticles, gold nanoparticles, silicon nanopillars, nanowires, nanopillars, carbon nanotubes, dendrimers, quantum dots, and graphene oxide) and microfluidic chip technologies that incorporate nanoroughened surfaces and discuss their key challenges and perspectives in CTC downstream analyses, such as protein expression and genetic mutations that may reflect tumor aggressiveness and patient outcome. PMID:29291161

  4. Fluorescence detection, enumeration and characterization of single circulating cells in vivo: technology, applications and future prospects.

    PubMed

    Hartmann, Carolin; Patil, Roshani; Lin, Charles P; Niedre, Mark

    2017-12-14

    There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immunology, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most currently used methods require drawing and enriching blood samples from the body, but these suffer from a number of limitations. In contrast, 'in vivo flow cytometry' (IVFC) refers to set of technologies that allow study of cells directly in the bloodstream of the organism in vivo. In recent years the IVFC field has grown significantly and new techniques have been developed, including fluorescence microscopy, multi-photon, photo-acoustic, and diffuse fluorescence IVFC. In this paper we review recent technical advances in IVFC, with emphasis on instrumentation, contrast mechanisms, and detection sensitivity. We also describe key applications in biomedical research, including cancer research and immunology. Last, we discuss future directions for IVFC, as well as prospects for broader adoption by the biomedical research community and translation to humans clinically.

  5. JPRS Report, Science & Technology. China: Energy.

    DTIC Science & Technology

    1992-12-24

    desulfurization tech- nology at the present time. The wet method technology accounts for 86 percent of all of the world’s flue gas desulfurization facilities...Limestone-gypsum wet method desulfurization tech- nology Huaneng’s Luohuang Power Plant has already imported two sets of 360MW generator boiler flue gas ...Circulating Fluidized-Bed Technology Development [LinZhaokui, Wang Dun’en, et al; DONGLIGONGCHENG, 15 Oct 92] 27 Selection of Flue

  6. Linguistic Layering: Social Language Development in the Context of Multimodal Design and Digital Technologies

    ERIC Educational Resources Information Center

    Domingo, Myrrh

    2012-01-01

    In our contemporary society, digital texts circulate more readily and extend beyond page-bound formats to include interactive representations such as online newsprint with hyperlinks to audio and video files. This is to say that multimodality combined with digital technologies extends grammar to include voice, visual, and music, among other modes…

  7. Maternal plasma DNA testing for aneuploidy in pregnancies achieved by assisted reproductive technologies.

    PubMed

    Lambert-Messerlian, Geralyn; Kloza, Edward M; Williams, John; Loucky, Jaroslav; O'Brien, Barbara; Wilkins-Haug, Louise; Mahoney, Maurice J; De Biasio, Pierangela; Borrell, Antoni; Ehrich, Mathias; van den Boom, Dirk; Bombard, Allan T; Deciu, Cosmin; Palomaki, Glenn E

    2014-05-01

    We sought to compare measurements of circulating cell-free DNA as well as Down syndrome test results in women with naturally conceived pregnancies with those conceived using assisted reproductive technologies. Data regarding assisted reproductive technologies were readily available from seven enrollment sites participating in an external clinical validation trial of nested case/control design. Measurements of circulating cell-free fetal and total DNA, fetal fraction (ratio of fetal to total DNA), chromosome-specific z-scores, and karyotype results were available for analysis. Analyses were restricted to 632 euploid (5.2% assisted reproductive technologies) and 73 Down syndrome (13.7% assisted reproductive technologies), including 16 twin pregnancies. No differences were found for fetal or total circulating cell-free DNA, or for the fetal fraction in euploid (P = 0.70) or Down syndrome (P = 0.58) pregnancies by method of conception. There appeared to be systematic z-score reductions for chromosomes 21, 18, and 13 in assisted reproductive technologies versus natural euploid pregnancies (P = 0.048, 0.0032, and 0.36, respectively). Assisted reproductive technologies and naturally conceived pregnancies contribute similar levels of circulating cell-free DNA into maternal circulation. Small differences in the z-scores of pregnancies achieved by assisted reproductive technologies were observed and do not appear to be test-related artifacts. However, the findings need confirmation before any consideration of changes to testing and reporting protocols.

  8. Beyond "Classroom" Technology: The Equipment Circulation Program at Rasmuson Library, University of Alaska Fairbanks

    ERIC Educational Resources Information Center

    Jensen, Karen

    2008-01-01

    The library at the University of Alaska Fairbanks offers a unique equipment lending program through its Circulation Desk. The program features a wide array of equipment types, generous circulation policies, and unrestricted borrowing, enabling students, staff, and faculty to experiment with the latest in audio, video, and computer technologies,…

  9. Size-Based Enrichment Technologies for Non-cancerous Tumor-Derived Cells in Blood.

    PubMed

    Mong, Jamie; Tan, Min-Han

    2018-05-01

    Enumeration of circulating tumor cells (CTCs) in the bloodstream can predict prognosis and survival in cancer patients. However, CTC rarity and heterogeneity pose challenges in using them as biomarkers. Recent publications have reported new classes of circulating, non-cancerous tumor-derived cells present in cancer patients but not in healthy controls; these include cancer-associated macrophages, tumor-endothelial clusters (TECs), and cancer-associated fibroblasts (CAFs). Well-established marker-dependent CTC enrichment technologies will miss this group of circulating cells. To maximize our chance of finding useful circulating biomarkers in cancer patients, we propose the use of size-based enrichment technologies to isolate both cancerous and non-cancerous cells in circulation. We review their biological properties and discuss device features to consider in their enrichment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Diffuse fluorescence fiber probe for in vivo detection of circulating cells

    NASA Astrophysics Data System (ADS)

    Pera, Vivian; Tan, Xuefei; Runnels, Judith; Sardesai, Neha; Lin, Charles P.; Niedre, Mark

    2017-03-01

    There has been significant recent interest in the development of technologies for enumeration of rare circulating cells directly in the bloodstream in many areas of research, for example, in small animal models of circulating tumor cell dissemination during cancer metastasis. We describe a fiber-based optical probe that allows fluorescence detection of labeled circulating cells in vivo in a diffuse reflectance configuration. We validated this probe in a tissue-mimicking flow phantom model in vitro and in nude mice injected with fluorescently labeled multiple myeloma cells in vivo. Compared to our previous work, this design yields an improvement in detection signal-to-noise ratio of 10 dB, virtually eliminates problematic motion artifacts due to mouse breathing, and potentially allows operation in larger animals and limbs.

  11. Study on the key technology of grain logistics tracking system

    NASA Astrophysics Data System (ADS)

    Zhen, Tong; Ge, Hongyi; Jiang, Yuying; Che, Yi

    2010-07-01

    In recent year, with the rapid development of GIS technology, more and more programming problems depend on the GIS technology and professional model system. The solution of auxiliary programming problem by using GIS technology, which has become very popular. GIS is an important tool and technology, that captures, stores, analyzes, manages, and presents data that are linked to location. A grain logistics distribution system based on GIS is established, which provides a visualization scheme during the process of grain circulation and supports users making decision and analyzing for grain logistics enterprise.

  12. Fluorescence detection, enumeration and characterization of single circulating cells in vivo: technology, applications and future prospects.

    PubMed

    Hartmann, Carolin; Patil, Roshani; Lin, Charles P; Niedre, Mark J

    2017-11-08

    There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immune reaction/inflammation, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most currently used methods require drawing and enriching blood samples from the body, but these suffer from a number of limitations. In contrast, "in vivo flow cytometry" (IVFC) refers to set of technologies that allow study of cells directly in the bloodstream of the organism in vivo. In recent years the IVFC field has grown significantly and new techniques have been developed, including fluorescence microscopy, multi-photon, photo-acoustic, and diffuse fluorescence IVFC. In this paper we review recent technical advances in IVFC, with emphasis on instrumentation, contrast mechanisms, and detection sensitivity. We also describe key applications in biomedical research, including cancer research and immunology. Last, we discuss future directions for IVFC, as well as prospects for broader adoption by the biomedical research community and translation to humans clinically. © 2017 Institute of Physics and Engineering in Medicine.

  13. Size-based separation methods of circulating tumor cells.

    PubMed

    Hao, Si-Jie; Wan, Yuan; Xia, Yi-Qiu; Zou, Xin; Zheng, Si-Yang

    2018-02-01

    Circulating tumor cells (CTCs) originate from the primary tumor mass and enter into the peripheral bloodstream. Compared to other "liquid biopsy" portfolios such as exosome, circulating tumor DNA/RNA (ctDNA/RNA), CTCs have incomparable advantages in analyses of transcriptomics, proteomics, and signal colocalization. Hence, CTCs hold the key to understanding the biology of metastasis and play a vital role in cancer diagnosis, treatment monitoring, and prognosis. Size-based enrichment features are prominent in CTC isolation. It is a label-free, simple and fast method. Enriched CTCs remain unmodified and viable for a wide range of subsequent analyses. In this review, we comprehensively summarize the differences of size and deformability between CTCs and blood cells, which would facilitate the development of technologies of size-based CTC isolation. Then we review representative size-/deformability-based technologies available for CTC isolation and highlight the recent achievements in molecular analysis of isolated CTCs. To wrap up, we discuss the substantial challenges facing the field, and elaborate on prospects. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Circulation Control in NASA's Vehicle Systems

    NASA Technical Reports Server (NTRS)

    Rich, Paul; McKinley, Bob; Jones, Greg

    2005-01-01

    Specific to the application of any technology to a vehicle, such as circulation control, it is important to understand the process that NASA is using to set its direction in research and development. To see how circulation control fits into any given NASA program requires the reader to understand NASA's Vehicle Systems (VS) Program. The VS Program recently celebrated its first year of existence with an annual review - an opportunity to look back on accomplishments, solicit feedback, expand national advocacy and support for the program, and recognize key contributions. Since its formation last year, Vehicle Systems has coordinated seven existing entities in a streamlined aeronautics research effort. It invests in vehicle technologies to protect the environment, make air travel more accessible and affordable for Americans, enable exploration through new aerospace missions, and augment national security. This past year has seen a series of valuable partnerships with industry, academia, and government agencies to make crucial aeronautics advances and assure America s future in flight.

  15. Development and Analysis of Cold Trap for Use in Fission Surface Power-Primary Test Circuit

    NASA Technical Reports Server (NTRS)

    Wolfe, T. M.; Dervan, C. A.; Pearson, J. B.; Godfroy, T. J.

    2012-01-01

    The design and analysis of a cold trap proposed for use in the purification of circulated eutectic sodium potassium (NaK-78) loops is presented. The cold trap is designed to be incorporated into the Fission Surface Power-Primary Test Circuit (FSP-PTC), which incorporates a pumped NaK loop to simulate in-space nuclear reactor-based technology using non-nuclear test methodology as developed by the Early Flight Fission-Test Facility. The FSP-PTC provides a test circuit for the development of fission surface power technology. This system operates at temperatures that would be similar to those found in a reactor (500-800 K). By dropping the operating temperature of a specified percentage of NaK flow through a bypass containing a forced circulation cold trap, the NaK purity level can be increased by precipitating oxides from the NaK and capturing them within the cold trap. This would prevent recirculation of these oxides back through the system, which may help prevent corrosion.

  16. Application of CFB technology for large power generating units and CO{sub 2} capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryabov, G. A., E-mail: georgy.ryabov@gmail.com; Folomeev, O. M.; Sankin, D. A.

    2010-07-15

    Data on the development of the circulating fluidized bed (CFB) technology for combustion of fuels in large power generating units are examined. The problems with raising the steam parameters and unit power of boilers with a circulating fluidized bed are examined. With the boiler system at the 460 MW unit at Lagisza (Poland) as an example, the feasibility of raising the efficiency of units with CFB boilers through deep recovery of the heat of the effluent gases and reducing expenditure for in-house needs is demonstrated. Comparative estimates of the capital and operating costs of 225 and 330 MW units aremore » used to determine the conditions for optimum use of CFB boilers in the engineering renovation of thermal power plants in Russia. New areas for the application of CFB technology in CO{sub 2} capture are analyzed in connection with the problem of reducing greenhouse gas emissions.« less

  17. JPRS Report, Science & Technology USSR: Chemistry

    DTIC Science & Technology

    1991-06-20

    extremely water -intensive technological process that results in the pollution of natural waters by finely dispersed silt-and-clay suspensions that...against pollution . This review examines ways and means of reagent conditioning of circulating and waste waters during the development of placer deposits...in Water by Using Porous Sulfo Cation Exchange Resin [A. V Mamchenko, M.S. Novozhenyuk; KHIMIYA I TEKHNOLOGIYA VODY, Vol 13 No 1, Jan 91] ... 5

  18. Design and Fabrication of Millimeter Wave Hexagonal Nano-Ferrite Circulator on Silicon CMOS Substrate

    NASA Astrophysics Data System (ADS)

    Oukacha, Hassan

    The rapid advancement of Complementary Metal Oxide Semiconductor (CMOS) technology has formed the backbone of the modern computing revolution enabling the development of computationally intensive electronic devices that are smaller, faster, less expensive, and consume less power. This well-established technology has transformed the mobile computing and communications industries by providing high levels of system integration on a single substrate, high reliability and low manufacturing cost. The driving force behind this computing revolution is the scaling of semiconductor devices to smaller geometries which has resulted in faster switching speeds and the promise of replacing traditional, bulky radio frequency (RF) components with miniaturized devices. Such devices play an important role in our society enabling ubiquitous computing and on-demand data access. This thesis presents the design and development of a magnetic circulator component in a standard 180 nm CMOS process. The design approach involves integration of nanoscale ferrite materials on a CMOS chip to avoid using bulky magnetic materials employed in conventional circulators. This device constitutes the next generation broadband millimeter-wave circulator integrated in CMOS using ferrite materials operating in the 60GHz frequency band. The unlicensed ultra-high frequency spectrum around 60GHz offers many benefits: very high immunity to interference, high security, and frequency re-use. Results of both simulations and measurements are presented in this thesis. The presented results show the benefits of this technique and the potential that it has in incorporating a complete system-on-chip (SoC) that includes low noise amplifier, power amplier, and antenna. This system-on-chip can be used in the same applications where the conventional circulator has been employed, including communication systems, radar systems, navigation and air traffic control, and military equipment. This set of applications of circulator shows how crucial this device is to many industries and the need for smaller, cost effective RF components.

  19. DEMONSTRATION BULLETIN: CIRCULATING BED COMBUSTOR - OGDEN ENVIRONMENTAL SERVICES, INC.

    EPA Science Inventory

    An evaluation of the Ogden Environmental Services (OES) circulating bed combustor (CBC) technology was carried out under the superfund Innovative Technology Evaluation (SITE) Program to determine its applicabilitY as an on-site treatment method for waste site cleanups, and more s...

  20. Fourier Ptychographic Microscopy for Rapid, High-Resolution Imaging of Circulating Tumor Cells Enriched by Microfiltration.

    PubMed

    Williams, Anthony; Chung, Jaebum; Yang, Changhuei; Cote, Richard J

    2017-01-01

    Examining the hematogenous compartment for evidence of metastasis has increased significantly within the oncology research community in recent years, due to the development of technologies aimed at the enrichment of circulating tumor cells (CTCs), the subpopulation of primary tumor cells that gain access to the circulatory system and are responsible for colonization at distant sites. In contrast to other technologies, filtration-based CTC enrichment, which exploits differences in size between larger tumor cells and surrounding smaller, non-tumor blood cells, has the potential to improve CTC characterization through isolation of tumor cell populations with greater molecular heterogeneity. However, microscopic analysis of uneven filtration surfaces containing CTCs is laborious, time-consuming, and inconsistent, preventing widespread use of filtration-based enrichment technologies. Here, integrated with a microfiltration-based CTC and rare cell enrichment device we have previously described, we present a protocol for Fourier Ptychographic Microscopy (FPM), a method that, unlike many automated imaging platforms, produces high-speed, high-resolution images that can be digitally refocused, allowing users to observe objects of interest present on multiple focal planes within the same image frame. The development of a cost-effective and high-throughput CTC analysis system for filtration-based enrichment technologies could have profound clinical implications for improved CTC detection and analysis.

  1. Computational Evaluation of the Steady and Pulsed Jet Effects on the Performance of a Circulation Control Wing Section

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.; Gaeta, R.

    2005-01-01

    Circulation Control technology is a very effective way of achieving high lift forces required by aircraft during take-off and landing. This technology can also directly control the flow field over the wing. Compared to a conventional high-lift system, a Circulation Control Wing (CCW) can generate comparable or higher lift forces during take-off/landing with fewer or no moving parts and much less complexity. In this work, an unsteady three-dimensional Navier-Stokes analysis procedure has been developed and applied to Circulation Control Wing configurations. The effects of 2-D steady jets and 2-D pulsed jets on the aerodynamic performance of CCW airfoils have been investigated. It is found that a steady jet can generate very high lift at zero angle of attack without stall, and that a small amount of blowing can eliminate vortex shedding at the trailing edge, a potential noise source. It is also found that a pulsed jet can achieve the same high lift as a steady jet at lower mass flow rates, especially at a high frequency, and that the Strouhal number has a more dominant effect on the pulsed jet performance than just the frequency or the free-stream velocity.

  2. Noise Reduction Through Circulation Control

    NASA Technical Reports Server (NTRS)

    Munro, Scott E.; Ahuja, K. K.; Englar, Robert J.

    2005-01-01

    Circulation control technology uses tangential blowing around a rounded trailing edge or a leading edge to change the force and moment characteristics of an aerodynamic body. This technology has been applied to circular cylinders, wings, helicopter rotors, and even to automobiles for improved aerodynamic performance. Only limited research has been conducted on the acoustic of this technology. Since wing flaps contribute to the environmental noise of an aircraft, an alternate blown high lift system without complex mechanical flaps could prove beneficial in reducing the noise of an approaching aircraft. Thus, in this study, a direct comparison of the acoustic characteristics of high lift systems employing a circulation control wing configuration and a conventional wing flapped configuration has been made. These results indicate that acoustically, a circulation control wing high lift system could be considerably more acceptable than a wing with conventional mechanical flaps.

  3. Gold Nanoparticle Based Platforms for Circulating Cancer Marker Detection

    PubMed Central

    Huang, Xiaohua; O'Connor, Ryan; Kwizera, Elyahb Allie

    2017-01-01

    Detection of cancer-related circulating biomarkers in body fluids has become a cutting-edge technology that has the potential to noninvasively screen cancer, diagnose cancer at early stage, monitor tumor progression, and evaluate therapy responses. Traditional molecular and cellular detection methods are either insensitive for early cancer intervention or technically costly and complicated making them impractical for typical clinical settings. Due to their exceptional structural and functional properties that are not available from bulk materials or discrete molecules, nanotechnology is opening new horizons for low cost, rapid, highly sensitive, and highly specific detection of circulating cancer markers. Gold nanoparticles have emerged as a unique nanoplatform for circulating biomarker detection owning to their advantages of easy synthesis, facile surface chemistry, excellent biocompatibility, and remarkable structure and environment sensitive optical properties. In this review, we introduce current gold nanoparticle-based technology platforms for the detection of four major classes of circulating cancer markers - circulating tumor cells, vesicles, nucleic acids, and proteins. The techniques will be summarized in terms of signal detection strategies. Distinctive examples are provided to highlight the state-of-the-art technologies that significantly advance basic and clinical cancer research. PMID:28217434

  4. A microfluidic device for label-free, physical capture of circulating tumor cell-clusters

    PubMed Central

    Sarioglu, A. Fatih; Aceto, Nicola; Kojic, Nikola; Donaldson, Maria C.; Zeinali, Mahnaz; Hamza, Bashar; Engstrom, Amanda; Zhu, Huili; Sundaresan, Tilak K.; Miyamoto, David T.; Luo, Xi; Bardia, Aditya; Wittner, Ben S.; Ramaswamy, Sridhar; Shioda, Toshi; Ting, David T.; Stott, Shannon L.; Kapur, Ravi; Maheswaran, Shyamala; Haber, Daniel A.; Toner, Mehmet

    2015-01-01

    Cancer cells metastasize through the bloodstream either as single migratory circulating tumor cells (CTCs) or as multicellular groupings (CTC-clusters). Existing technologies for CTC enrichment are designed primarily to isolate single CTCs, and while CTC-clusters are detectable in some cases, their true prevalence and significance remain to be determined. Here, we developed a microchip technology (Cluster-Chip) specifically designed to capture CTC-clusters independent of tumor-specific markers from unprocessed blood. CTC-clusters are isolated through specialized bifurcating traps under low shear-stress conditions that preserve their integrity and even two-cell clusters are captured efficiently. Using the Cluster-Chip, we identify CTC-clusters in 30–40% of patients with metastatic cancers of the breast, prostate and melanoma. RNA sequencing of CTC-clusters confirms their tumor origin and identifies leukocytes within the clusters as tissue-derived macrophages. Together, the development of a device for efficient capture of CTC-clusters will enable detailed characterization of their biological properties and role in cancer metastasis. PMID:25984697

  5. Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips†

    PubMed Central

    Earhart, Christopher M.; Hughes, Casey E.; Gaster, Richard S.; Ooi, Chin Chun; Wilson, Robert J.; Zhou, Lisa Y.; Humke, Eric W.; Xu, Lingyun; Wong, Dawson J.; Willingham, Stephen B.; Schwartz, Erich J.; Weissman, Irving L.; Jeffrey, Stefanie S.; Neal, Joel W.; Rohatgi, Rajat; Wakelee, Heather A.; Wang, Shan X.

    2014-01-01

    Detection and characterization of circulating tumor cells (CTCs) may reveal insights into the diagnosis and treatment of malignant disease. Technologies for isolating CTCs developed thus far suffer from one or more limitations, such as low throughput, inability to release captured cells, and reliance on expensive instrumentation for enrichment or subsequent characterization. We report a continuing development of a magnetic separation device, the magnetic sifter, which is a miniature microfluidic chip with a dense array of magnetic pores. It offers high efficiency capture of tumor cells, labeled with magnetic nanoparticles, from whole blood with high throughput and efficient release of captured cells. For subsequent characterization of CTCs, an assay, using a protein chip with giant magnetoresistive nanosensors, has been implemented for mutational analysis of CTCs enriched with the magnetic sifter. The use of these magnetic technologies, which are separate devices, may lead the way to routine preparation and characterization of “liquid biopsies” from cancer patients. PMID:23969419

  6. Lessons Learned: Transfer of the High-Definition Circulating Tumor Cell Assay Platform to Development as a Commercialized Clinical Assay Platform.

    PubMed

    Kuhn, P; Keating, S M; Baxter, G T; Thomas, K; Kolatkar, A; Sigman, C C

    2017-11-01

    Planning and transfer of a new technology platform developed in an academic setting to a start-up company for medical diagnostic product development may appear daunting and costly in terms of complexity, time, and resources. In this review we outline the key steps taken and lessons learned when a technology platform developed in an academic setting was transferred to a start-up company for medical diagnostic product development in the interest of elucidating development toolkits for academic groups and small start-up companies starting on the path to commercialization and regulatory approval. © 2017, The American Society for Clinical Pharmacology and Therapeutics.

  7. Restoration of metal properties of circulation pump blades by the method of surface ultrasonic impact treatment

    NASA Astrophysics Data System (ADS)

    Povarov, V. P.; Urazov, O. V.; Bakirov, M. B.; Pakhomov, S. S.; Belunik, I. A.

    2017-10-01

    During the transition period to a market economy, the works producing equipment for the nuclear industry became lame duck companies. The market of heavy industry equipment reduced dramatically, and quality control requirements imposed to goods became lower. Deviations from regulations' requirements and technical specifications for equipment manufacture results in inevitable decrease of reliability during operation but also to failure during check tests. It is not always possible to replace promptly ill-conditioned equipment; in such cases, it is necessary to carry out compensatory measures for restoring working properties up to an acceptable level in order to ensure operational reliability due to the strength improvement of the components of machines and constructions during the whole service life or up to the scheduled date of equipment replacement. This paper is dedicated to development and practical implementation of restorative technology of strengthening ultrasonic treatment used for the metal of the blades of impellers of 16DPA10-28 circulation pumps of 10URS unit pump station located at Novovoronezh NPP-2. The dynamic surface treatment was implemented for compensating the technological defects of the metal of blades. It was revealed that the impact elastic-plastic deformation has a comprehensive compensation effect on the metal of blades in the initial state of delivery and creates the surface-strengthening layer with higher strength properties (strain hardening) of the depth up to 1.5 mm. The surface strain hardening increases the cyclic strength, re-distributes beneficially the residual technological and repair stresses, and heals small surface cracks improving the surface quality. The developed technology was used for treatment of 32 blades of impellers of 10PAC01AP001, 10PAC02AP001, 10PAC03AP001, 10PAC04AP001 circulation pumps. The implemented 100-h full-scale test of the pumps revealed the high efficiency of the developed technology and made it possible to recommend it for application at both the stage of blade manufacture and during the pump operation for prolongation of their service life.

  8. Pneumatic Flap Performance for a 2D Circulation Control Airfoil, Steady and Pulsed

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.

    2005-01-01

    Circulation Control technologies have been around for 65 years, and have been successfully demonstrated in laboratories and flight vehicles alike, yet there are few production aircraft flying today that implement these advances. Circulation Control techniques may have been overlooked due to perceived unfavorable trade offs of mass flow, pitching moment, cruise drag, noise, etc. Improvements in certain aspects of Circulation Control technology are the focus of this paper. This report will describe airfoil and blown high lift concepts that also address cruise drag reduction and reductions in mass flow through the use of pulsed pneumatic blowing on a Coanda surface. Pulsed concepts demonstrate significant reductions in mass flow requirements cor Circulation Control, as well as cruise drag concepts that equal or exceed conventional airfoil systems.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salnykov, A. A., E-mail: admin@rasnpp.org.ru

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  10. Taking Battery Technology from the Lab to the Big City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Sanjoy; Shmukler, Michael; Martin, Cheryl

    2013-07-29

    Urban Electric Power, a startup formed by researchers from the City University of New York (CUNY) Energy Institute, is taking breakthroughs in battery technology from the lab to the market. With industry and government funding, including a grant from the Energy Department, Urban Electric Power developed a zinc-nickel oxide battery electrolyte that circulates constantly, eliminating dendrite formation and preventing battery shortages. Their new challenge is to take this technology to the market, where they can scale up the batteries for reducing peak energy demand in urban areas and storing variable renewable electricity.

  11. Taking Battery Technology from the Lab to the Big City

    ScienceCinema

    Banerjee, Sanjoy; Shmukler, Michael; Martin, Cheryl

    2018-02-02

    Urban Electric Power, a startup formed by researchers from the City University of New York (CUNY) Energy Institute, is taking breakthroughs in battery technology from the lab to the market. With industry and government funding, including a grant from the Energy Department, Urban Electric Power developed a zinc-nickel oxide battery electrolyte that circulates constantly, eliminating dendrite formation and preventing battery shortages. Their new challenge is to take this technology to the market, where they can scale up the batteries for reducing peak energy demand in urban areas and storing variable renewable electricity.

  12. Cardiac Monitor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under contract to Johnson Space Center, the University of Minnesota developed the concept of impedance cardiography as an alternative to thermodilution to access astronaut heart function in flight. NASA then contracted Space Labs, Inc. to construct miniature space units based on this technology. Several companies then launched their own impedance cardiography, including Renaissance Technologies, which manufactures the IQ System. The IQ System is 5 to 17 times cheaper than thermodilution, and features the signal processing technology called TFD (Time Frequency Distribution). TFD provides three- dimensional distribution of the blood circulation force signals, allowing visualization of changes in power, frequency and time.

  13. Circulating tumor cells: advances in isolation and analysis, and challenges for clinical applications

    PubMed Central

    Harouaka, Ramdane; Kang, Zhigang; Zheng, Siyang; Cao, Liang

    2013-01-01

    Circulating tumor cells (CTCs) are rare cancer cells released from tumors into the bloodstream that are thought to have a key role in cancer metastasis. The presence of CTCs has been associated with worse prognosis in several major cancer types, including breast, prostate and colorectal cancer. There is considerable interest in CTC research and technologies for their potential use as cancer biomarkers that may enhance cancer diagnosis and prognosis, facilitate drug development, and improve the treatment of cancer patients. This review provides an update on recent progress in CTC isolation and molecular characterization technologies. Furthermore, the review covers significant advances and limitations in the clinical applications of CTC-based assays for cancer prognosis, response to anti-cancer therapies, and exploratory studies in biomarkers predictive of sensitivity and resistance to cancer therapies. PMID:24134902

  14. Circulating tumor cells: advances in isolation and analysis, and challenges for clinical applications.

    PubMed

    Harouaka, Ramdane; Kang, Zhigang; Zheng, Si-Yang; Cao, Liang

    2014-02-01

    Circulating tumor cells (CTCs) are rare cancer cells released from tumors into the bloodstream that are thought to have a key role in cancer metastasis. The presence of CTCs has been associated with worse prognosis in several major cancer types, including breast, prostate and colorectal cancer. There is considerable interest in CTC research and technologies for their potential use as cancer biomarkers that may enhance cancer diagnosis and prognosis, facilitate drug development, and improve the treatment of cancer patients. This review provides an update on recent progress in CTC isolation and molecular characterization technologies. Furthermore, the review covers significant advances and limitations in the clinical applications of CTC-based assays for cancer prognosis, response to anti-cancer therapies, and exploratory studies in biomarkers predictive of sensitivity and resistance to cancer therapies. Published by Elsevier Inc.

  15. Long range forecasts of the Northern Hemisphere anomalies with antecedent sea surface temperature patterns

    NASA Technical Reports Server (NTRS)

    Kung, Ernest C.

    1994-01-01

    The contract research has been conducted in the following three major areas: analysis of numerical simulations and parallel observations of atmospheric blocking, diagnosis of the lower boundary heating and the response of the atmospheric circulation, and comprehensive assessment of long-range forecasting with numerical and regression methods. The essential scientific and developmental purpose of this contract research is to extend our capability of numerical weather forecasting by the comprehensive general circulation model. The systematic work as listed above is thus geared to developing a technological basis for future NASA long-range forecasting.

  16. Measurement of Circulating Cytokines and Immune-Activation Markers by Multiplex Technology in the Clinical Setting: What Are We Really Measuring?

    PubMed

    Aziz, Najib

    2015-01-01

    Measurement of circulating cytokine levels can provide important information in the study of the pathogenesis of disease. John L. Fahey was a pioneer in the measurement of circulating cytokines and immune-activation markers and a leader in the quality assessment/control of assays for measurement of circulating cytokines. Insights into the measurement of circulating cytokines, including consideration of multiplex assays, are presented here.

  17. Nanobiotechnology for the capture and manipulation of circulating tumor cells.

    PubMed

    Hughes, Andrew D; King, Michael R

    2012-01-01

    A necessary step in metastasis is the dissemination of malignant cells into the bloodstream, where cancer cells travel throughout the body as circulating tumor cells (CTC) in search of an opportunity to seed a secondary tumor. CTC represent a valuable diagnostic tool: evidence indicates that the quantity of CTC in the blood has been shown to relate to the severity of the illness, and samples are readily obtained through routine blood draws. As such, there has been a push toward developing technologies to reliably detect CTC using a variety of molecular and immunocytochemical techniques. In addition to their use in diagnostics, CTC detection systems that isolate CTC in such a way that the cells remain viable will allow for the performance of live-cell assays to facilitate the development of personalized cancer therapies. Moreover, techniques for the direct manipulation of CTC in circulation have been developed, intending to block metastasis in situ. We review a number of current and emerging micro- and nanobiotechnology approaches for the detection, capture, and manipulation of rare CTC aimed at advancing cancer treatment. Copyright © 2011 Wiley Periodicals, Inc.

  18. A magnetic micropore chip for rapid (<1 hour) unbiased circulating tumor cell isolation and in situ RNA analysis.

    PubMed

    Ko, Jina; Bhagwat, Neha; Yee, Stephanie S; Black, Taylor; Redlinger, Colleen; Romeo, Janae; O'Hara, Mark; Raj, Arjun; Carpenter, Erica L; Stanger, Ben Z; Issadore, David

    2017-09-12

    The use of microtechnology for the highly selective isolation and sensitive detection of circulating tumor cells has shown enormous promise. One challenge for this technology is that the small feature sizes - which are the key to this technology's performance - can result in low sample throughput and susceptibility to clogging. Additionally, conventional molecular analysis of CTCs often requires cells to be taken off-chip for sample preparation and purification before analysis, leading to the loss of rare cells. To address these challenges, we have developed a microchip platform that combines fast, magnetic micropore based negative immunomagnetic selection (>10 mL h -1 ) with rapid on-chip in situ RNA profiling (>100× faster than conventional RNA labeling). This integrated chip can isolate both rare circulating cells and cell clusters directly from whole blood and allow individual cells to be profiled for multiple RNA cancer biomarkers, achieving sample-to-answer in less than 1 hour for 10 mL of whole blood. To demonstrate the power of this approach, we applied our device to the circulating tumor cell based diagnosis of pancreatic cancer. We used a genetically engineered lineage-labeled mouse model of pancreatic cancer (KPCY) to validate the performance of our chip. We show that in a cohort of patient samples (N = 25) that this device can detect and perform in situ RNA analysis on circulating tumor cells in patients with pancreatic cancer, even in those with extremely sparse CTCs (<1 CTC mL -1 of whole blood).

  19. Multiplex Detection of Rare Mutations by Picoliter Droplet Based Digital PCR: Sensitivity and Specificity Considerations.

    PubMed

    Zonta, Eleonora; Garlan, Fanny; Pécuchet, Nicolas; Perez-Toralla, Karla; Caen, Ouriel; Milbury, Coren; Didelot, Audrey; Fabre, Elizabeth; Blons, Hélène; Laurent-Puig, Pierre; Taly, Valérie

    2016-01-01

    In cancer research, the accuracy of the technology used for biomarkers detection is remarkably important. In this context, digital PCR represents a highly sensitive and reproducible method that could serve as an appropriate tool for tumor mutational status analysis. In particular, droplet-based digital PCR approaches have been developed for detection of tumor-specific mutated alleles within plasmatic circulating DNA. Such an approach calls for the development and validation of a very significant quantity of assays, which can be extremely costly and time consuming. Herein, we evaluated assays for the detection and quantification of various mutations occurring in three genes often misregulated in cancers: the epidermal growth factor receptor (EGFR), the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and the Tumoral Protein p53 (TP53) genes. In particular, commercial competitive allele-specific TaqMan® PCR (castPCR™) technology, as well as TaqMan® and ZEN™ assays, have been evaluated for EGFR p.L858R, p.T790M, p.L861Q point mutations and in-frame deletions Del19. Specificity and sensitivity have been determined on cell lines DNA, plasmatic circulating DNA of lung cancer patients or Horizon Diagnostics Reference Standards. To show the multiplexing capabilities of this technology, several multiplex panels for EGFR (several three- and four-plexes) have been developed, offering new "ready-to-use" tests for lung cancer patients.

  20. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  1. Noninvasive prenatal testing for Wilson disease by use of circulating single-molecule amplification and resequencing technology (cSMART).

    PubMed

    Lv, Weigang; Wei, Xianda; Guo, Ruolan; Liu, Qin; Zheng, Yu; Chang, Jiazhen; Bai, Ting; Li, Haoxian; Zhang, Jianguang; Song, Zhuo; Cram, David S; Liang, Desheng; Wu, Lingqian

    2015-01-01

    Noninvasive prenatal testing (NIPT) for monogenic diseases by use of PCR-based strategies requires precise quantification of mutant fetal alleles circulating in the maternal plasma. The study describes the development and validation of a novel assay termed circulating single-molecule amplification and resequencing technology (cSMART) for counting single allelic molecules in plasma. Here we demonstrate the suitability of cSMART for NIPT, with Wilson Disease (WD) as proof of concept. We used Sanger and whole-exome sequencing to identify familial ATP7B (ATPase, Cu(++) transporting, β polypeptide) gene mutations. For cSMART, single molecules were tagged with unique barcodes and circularized, and alleles were targeted and replicated by inverse PCR. The unique single allelic molecules were identified by sequencing and counted, and the percentage of mutant alleles in the original maternal plasma sample was used to determine fetal genotypes. Four families with WD pedigrees consented to the study. Using Sanger and whole-exome sequencing, we mapped the pathogenic ATP7B mutations in each pedigree and confirmed the proband's original diagnosis of WD. After validation of cSMART with defined plasma models mimicking fetal inheritance of paternal, maternal, or both parental mutant alleles, we retrospectively showed in second pregnancies that the fetal genotypes assigned by invasive testing and NIPT were concordant. We developed a reliable and accurate NIPT assay that correctly diagnosed the fetal genotypes in 4 pregnancies at risk for WD. This novel technology has potential as a universal strategy for NIPT of other monogenic disorders, since it requires only knowledge of the parental pathogenic mutations. © 2014 American Association for Clinical Chemistry.

  2. The Evolution of the Georgia Tech Library Circulation Department

    ERIC Educational Resources Information Center

    Glover, Karen

    2006-01-01

    The author reviews the evolution of the Circulation Department at the Georgia Institute of Technology (Georgia Tech) Library and Information Center from 2001 to the present. It is shown how a traditional circulation department with poor customer relations transformed itself by adopting innovative policies and services leading to improved customer…

  3. HOX Genes as Potential Markers of Circulating Tumour Cells.

    PubMed

    Morgan, R; El-Tanani, M

    2016-01-01

    Circulating tumour cells (CTCs) have significant diagnostic potential as they can reflect both the presence and recurrence of a wide range of cancers. However, this potential continues to be limited by the lack of robust and accessible isolation technologies. An alternative to isolation might be their direct detection amongst other peripheral blood cells, although this would require markers that allow them to be distinguished from an exceptionally high background signal. This review assesses the potential role of HOX genes, a family of homeodomain containing transcription factors with key roles in both embryonic development and oncogenesis, as unique and possibly disease specific markers of CTCs.

  4. Circulating Cell-Free Tumour DNA in the Management of Cancer

    PubMed Central

    Francis, Glenn; Stein, Sandra

    2015-01-01

    With the development of new sensitive molecular techniques, circulating cell-free tumour DNA containing mutations can be identified in the plasma of cancer patients. The applications of this technology may result in significant changes to the care and management of cancer patients. Whilst, currently, these “liquid biopsies” are used to supplement the histological diagnosis of cancer and metastatic disease, in the future these assays may replace the need for invasive procedures. Applications include the monitoring of tumour burden, the monitoring of minimal residual disease, monitoring of tumour heterogeneity, monitoring of molecular resistance and early diagnosis of tumours and metastatic disease. PMID:26101870

  5. Self-organizing magnetic beads for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gusenbauer, Markus; Kovacs, Alexander; Reichel, Franz; Exl, Lukas; Bance, Simon; Özelt, Harald; Schrefl, Thomas

    2012-03-01

    In the field of biomedicine magnetic beads are used for drug delivery and to treat hyperthermia. Here we propose to use self-organized bead structures to isolate circulating tumor cells using lab-on-chip technologies. Typically blood flows past microposts functionalized with antibodies for circulating tumor cells. Creating these microposts with interacting magnetic beads makes it possible to tune the geometry in size, position and shape. We developed a simulation tool that combines micromagnetics and discrete particle dynamics, in order to design micropost arrays made of interacting beads. The simulation takes into account the viscous drag of the blood flow, magnetostatic interactions between the magnetic beads and gradient forces from external aligned magnets. We developed a particle-particle particle-mesh method for effective computation of the magnetic force and torque acting on the particles.

  6. Performance of computer vision in vivo flow cytometry with low fluorescence contrast

    NASA Astrophysics Data System (ADS)

    Markovic, Stacey; Li, Siyuan; Niedre, Mark

    2015-03-01

    Detection and enumeration of circulating cells in the bloodstream of small animals are important in many areas of preclinical biomedical research, including cancer metastasis, immunology, and reproductive medicine. Optical in vivo flow cytometry (IVFC) represents a class of technologies that allow noninvasive and continuous enumeration of circulating cells without drawing blood samples. We recently developed a technique termed computer vision in vivo flow cytometry (CV-IVFC) that uses a high-sensitivity fluorescence camera and an automated computer vision algorithm to interrogate relatively large circulating blood volumes in the ear of a mouse. We detected circulating cells at concentrations as low as 20 cells/mL. In the present work, we characterized the performance of CV-IVFC with low-contrast imaging conditions with (1) weak cell fluorescent labeling using cell-simulating fluorescent microspheres with varying brightness and (2) high background tissue autofluorescence by varying autofluorescence properties of optical phantoms. Our analysis indicates that CV-IVFC can robustly track and enumerate circulating cells with at least 50% sensitivity even in conditions with two orders of magnitude degraded contrast than our previous in vivo work. These results support the significant potential utility of CV-IVFC in a wide range of in vivo biological models.

  7. 1300°F 800 MWe USC CFB Boiler Design Study

    NASA Astrophysics Data System (ADS)

    Robertson, Archie; Goidich, Steve; Fan, Zhen

    Concern about air emissions and the effect on global warming is one of the key factors for developing and implementing new advanced energy production solutions today. One state-of-the-art solution is circulating fluidized bed (CFB) combustion technology combined with a high efficiency once-through steam cycle. Due to this extremely high efficiency, the proven CFB technology offers a good solution for CO2 reduction. Its excellent fuel flexibility further reduces CO2 emissions by co-firing coal with biomass. Development work is under way to offer CFB technology up to 800MWe capacities with ultra-supercritical (USC) steam parameters. In 2009 a 460MWe once-through supercritical (OTSC) CFB boiler designed and constructed by Foster Wheeler will start up. However, scaling up the technology further to 600-800MWe with net efficiency of 45-50% is needed to meet the future requirements of utility operators. To support the move to these larger sizes, an 800MWe CFB boiler conceptual design study was conducted and is reported on herein. The use of USC conditions (˜11 00°F steam) was studied and then the changes, that would enable the unit to generate 1300°F steam, were identified. The study has shown that by using INTREX™ heat exchangers in a unique internal-external solids circulation arrangement, Foster Wheeler's CFB boiler configuration can easily accommodate 1300°F steam and will not require a major increase in heat transfer surface areas.

  8. Development of environmental friendly lost circulation material from banana peel

    NASA Astrophysics Data System (ADS)

    Sauki, Arina; Hasan, Nur â.€˜Izzati; Naimi, Fardelen Binti Md; Othman, Nur Hidayati

    2017-12-01

    Loss of expensive mud could lead to major financial problem in executing a drilling project and is one of the biggest problems that need to be tackled during drilling. Synthetic Based Mud (SBM) is the most stable state of the art drilling mud used in current drilling technologies. However, the problem with lost circulation is still inevitable. The focus of this project is to develop a new potential waste material from banana peel in order to combat lost circulation in SBM. Standard industrial Lost Circulation Material (LCM) is used to compare the performance of banana peel as LCM in SBM. The effects of different sizing of banana peels (600 micron, 300 micron and 100 micron) were studied on the rheological and filtration properties of SBM and the bridging performance of banana peel as LCM additive. The tests were conducted using viscometer, HTHP filter press and sand bed tester. Thermal analysis of banana peel was also studied using TGA. According to the results obtained, 300 and 100 micron size of banana peel LCM exhibited an improved bridging performance by 65% as compared to industrial LCM. However, banana peel LCM with the size of 600 micron failed to act as LCM due to the total invasion of mud into the sand bed.

  9. Final report on the design and development of a Rolling Float Meter for drilling-fluid outflow measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staller, G.E.; Westmoreland, J.J.; Whitlow, G.L.

    1998-03-01

    Lost circulation, which is the loss of well drilling fluids to the formation while drilling, is a common problem encountered while drilling geothermal wells. The rapid detection of the loss of well drilling fluids is critical to the successful and cost-effective treatment of the wellbore to stop or minimize lost circulation. Sandia National Laboratories has developed an instrument to accurately measure the outflow rate of drilling fluids while drilling. This instrument, the Rolling Float Meter, has been under development at Sandia since 1991 and is now available for utilization by interested industry users. This report documents recent Rolling Float Metermore » design upgrades resulting from field testing and industry input, the effects of ongoing testing and evaluation both in the laboratory and in the field, and the final design package that is available to transfer this technology to industry users.« less

  10. The application and value of virtual animation in Jinzhai revolutionary site

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Zhou, Xiaocheng

    2017-04-01

    A virtual interactive technology in Jinzhai revolutionary site virtual interactive animation, with “Internet plus Jinzhai revolutionary site virtual animation” spread display, to achieve a variety of ways to carry forward the patriotic education, Jinzhai red culture, but also promote benign circulation of red tourism and economic development of Jinzhai revolutionary site protection investment group.

  11. Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 1

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S. (Editor); Joslin, Ronald D. (Editor)

    2005-01-01

    As technological advances influence the efficiency and effectiveness of aerodynamic and hydrodynamic applications, designs and operations, this workshop was intended to address the technologies, systems, challenges and successes specific to Coanda driven circulation control in aerodynamics and hydrodynamics. A major goal of this workshop was to determine the 2004 state-of-the-art in circulation control and understand the roadblocks to its application. The workshop addressed applications, CFD, and experiments related to circulation control, emphasizing fundamental physics, systems analysis, and applied research. The workshop consisted of 34 single session oral presentations and written papers that focused on Naval hydrodynamic vehicles (e.g. submarines), Fixed Wing Aviation, V/STOL platforms, propulsion systems (including wind turbine systems), ground vehicles (automotive and trucks) and miscellaneous applications (e.g., poultry exhaust systems and vacuum systems). Several advanced CFD codes were benchmarked using a two-dimensional NCCR circulation control airfoil. The CFD efforts highlighted inconsistencies in turbulence modeling, separation and performance predictions.

  12. Multiplex Detection of Rare Mutations by Picoliter Droplet Based Digital PCR: Sensitivity and Specificity Considerations

    PubMed Central

    Zonta, Eleonora; Garlan, Fanny; Pécuchet, Nicolas; Perez-Toralla, Karla; Caen, Ouriel; Milbury, Coren; Didelot, Audrey; Fabre, Elizabeth; Blons, Hélène; Laurent-Puig, Pierre; Taly, Valérie

    2016-01-01

    In cancer research, the accuracy of the technology used for biomarkers detection is remarkably important. In this context, digital PCR represents a highly sensitive and reproducible method that could serve as an appropriate tool for tumor mutational status analysis. In particular, droplet-based digital PCR approaches have been developed for detection of tumor-specific mutated alleles within plasmatic circulating DNA. Such an approach calls for the development and validation of a very significant quantity of assays, which can be extremely costly and time consuming. Herein, we evaluated assays for the detection and quantification of various mutations occurring in three genes often misregulated in cancers: the epidermal growth factor receptor (EGFR), the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and the Tumoral Protein p53 (TP53) genes. In particular, commercial competitive allele-specific TaqMan® PCR (castPCR™) technology, as well as TaqMan® and ZEN™ assays, have been evaluated for EGFR p.L858R, p.T790M, p.L861Q point mutations and in-frame deletions Del19. Specificity and sensitivity have been determined on cell lines DNA, plasmatic circulating DNA of lung cancer patients or Horizon Diagnostics Reference Standards. To show the multiplexing capabilities of this technology, several multiplex panels for EGFR (several three- and four-plexes) have been developed, offering new "ready-to-use" tests for lung cancer patients. PMID:27416070

  13. Computational Evaluation of the Steady and Pulsed Jet Effects on the Performance of a Circulation Control Wing Section

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Sankar, Lakshmi N.; Englar, Robert; Ahuja, K.; Gaeta, R.

    2003-01-01

    Circulation Control Wing (CCW) technology is a very effective way of achieving very high lift coefficients needed by aircraft during take-off and landing. This technology can also be used to directly control the flow field over the wing. Compared to a conventional high-lift system, a Circulation Control Wing (CCW) can generate the required values of lift coefficient C(sub L,max) during take-off/landing with fewer or no moving parts and much less complexity. Earlier designs of CCW configurations used airfoils with a large radius rounded trailing edge to maximize the lift benefit. However, these designs also produced very high drag. These high drag levels associated with the blunt, large radius trailing edge can be prohibitive under cruise conditions when Circulation Control is no longer necessary. To overcome this difficulty, an advanced CCW section, i.e., a circulation hinged flap was developed to replace the original rounded trailing edge CC airfoil. This concept developed by Englar is shown. The upper surface of the CCW flap is a large-radius arc surface, but the lower surface of the flap is flat. The flap could be deflected from 0 degrees to 90 degrees. When an aircraft takes-off or lands, the flap is deflected as in a conventional high lift system. Then this large radius on the upper surface produces a large jet turning angle, leading to high lift. When the aircraft is in cruise, the flap is retracted and a conventional sharp trailing edge shape results, greatly reducing the drag. This kind of flap does have some moving elements that increase the weight and complexity over an earlier CCW design. But overall, the hinged flap design still maintains most of the Circulation Control high lift advantages, while greatly reducing the drag in cruising condition associated with the rounded trailing edge CCW design. In the present work, an unsteady three-dimensional Navier-Stokes analysis procedure has been developed and applied to this advanced CCW configuration. The solver can be used in both a 2-D and a 3-D mode, and can thus model airfoils as well as finite wings. The jet slot location, slot height, and the flap angle can all be varied easily and individually in the grid generator and the flow solver. Steady jets, pulsed jets, the leading edge and trailing edge blowing can all be studied with this solver.

  14. The impact of circulation control on rotary aircraft controls systems

    NASA Technical Reports Server (NTRS)

    Kingloff, R. F.; Cooper, D. E.

    1987-01-01

    Application of circulation to rotary wing systems is a new development. Efforts to determine the near and far field flow patterns and to analytically predict those flow patterns have been underway for some years. Rotary wing applications present a new set of challenges in circulation control technology. Rotary wing sections must accommodate substantial Mach number, free stream dynamic pressure and section angle of attack variation at each flight condition within the design envelope. They must also be capable of short term circulation blowing modulation to produce control moments and vibration alleviation in addition to a lift augmentation function. Control system design must provide this primary control moment, vibration alleviation and lift augmentation function. To accomplish this, one must simultaneously control the compressed air source and its distribution. The control law algorithm must therefore address the compressor as the air source, the plenum as the air pressure storage and the pneumatic flow gates or valves that distribute and meter the stored pressure to the rotating blades. Also, mechanical collective blade pitch, rotor shaft angle of attack and engine power control must be maintained.

  15. Research and Development of Large Capacity CFB Boilers in TPRI

    NASA Astrophysics Data System (ADS)

    Xianbin, Sun; Minhua, Jiang

    This paper presents an overview of advancements of circulating fluidized bed (CFB) technology in Thermal Power Research Institute (TPRI),including technologies and configuration and progress of scaling up. For devoloping large CFB boiler, the CFB combustion test facilities have been established, the key technologies of large capacity CFB boiler have been research systematically, the 100MW ˜330MW CFB boiler have been developed and manufactured. The first domestically designed 100MW and 210MW CFB boiler have been put into commericial operation and have good operating performance. Domestic 330MW CFB boiler demonstration project also has been put into commericial operation,which is H type CFB boiler with Compact heat exchanger. This boiler is China's largest CFB boiler. The technical plan of domestic 600MW supercritical CFB boiler are also briefly introduced.

  16. Nanostructured Substrates for Capturing Circulating Tumor Cells in Whole Blood

    NASA Astrophysics Data System (ADS)

    Tseng, Hsian-Rong

    2009-03-01

    Over the past decade, circulating tumor cells (CTCs) has become an emerging ``biomarker'' for detecting early-stage cancer metastasis, predicting patient prognosis, as well as monitoring disease progression and therapeutic outcomes. However, isolation of CTCs has been technically challenging due to the extremely low abundance (a few to hundreds per ml) of CTCs among a high number of hematologic cells (109 per mL) in the blood. Our joint research team at UCLA has developed a new cell capture technology for quantification of CTCs in whole blood samples. Similar to most of the existing approaches, epithelial cell adhesion molecule antibody (anti-EpCAM) was grafted onto the surfaces to distinguish CTCs from the surrounding hematologic cells. The uniqueness of our technology is the use of nanostructured surfaces, which facilitates local topographical interactions between CTCs and substrates at the very first cell/substrate contacting time point. We demonstrated the ability of these nanostructured substrates to capture CTCs in whole blood samples with significantly improved efficiency and selectivity. The successful demonstration of this cell capture technology using brain, breast and prostate cancer cell lines encouraged us to test this approach in clinical setting. We have been able to bond our first validation study with a commercialized technology based on the use of immunomagnetic nanoparticles. A group of clinically well-characterized prostate cancer patients at UCLA hospital have been recruited and tested in parallel by these two technologies.

  17. Single-Cell Sequencing Technology in Oncology: Applications for Clinical Therapies and Research.

    PubMed

    Ye, Baixin; Gao, Qingping; Zeng, Zhi; Stary, Creed M; Jian, Zhihong; Xiong, Xiaoxing; Gu, Lijuan

    2016-01-01

    Cellular heterogeneity is a fundamental characteristic of many cancers. A lack of cellular homogeneity contributes to difficulty in designing targeted oncological therapies. Therefore, the development of novel methods to determine and characterize oncologic cellular heterogeneity is a critical next step in the development of novel cancer therapies. Single-cell sequencing (SCS) technology has been recently employed for analyzing the genetic polymorphisms of individual cells at the genome-wide level. SCS requires (1) precise isolation of the single cell of interest; (2) isolation and amplification of genetic material; and (3) descriptive analysis of genomic, transcriptomic, and epigenomic data. In addition to targeted analysis of single cells isolated from tumor biopsies, SCS technology may be applied to circulating tumor cells, which may aid in predicting tumor progression and metastasis. In this paper, we provide an overview of SCS technology and review the current literature on the potential application of SCS to clinical oncology and research.

  18. Hybrid Continuous-Flow Total Artificial Heart.

    PubMed

    Fox, Carson; Chopski, Steven; Murad, Nohra; Allaire, Paul; Mentzer, Robert; Rossano, Joseph; Arabia, Francisco; Throckmorton, Amy

    2018-05-01

    Clinical studies using total artificial hearts (TAHs) have demonstrated that pediatric and adult patients derive quality-of-life benefits from this form of therapy. Two clinically-approved TAHs and other pumps under development, however, have design challenges and limitations, including thromboembolic events, neurologic impairment, infection risk due to large size and percutaneous drivelines, and lack of ambulation, to name a few. To address these limitations, we are developing a hybrid-design, continuous-flow, implantable or extracorporeal, magnetically-levitated TAH for pediatric and adult patients with heart failure. This TAH has only two moving parts: an axial impeller for the pulmonary circulation and a centrifugal impeller for the systemic circulation. This device will utilize the latest generation of magnetic bearing technology. Initial geometries were established using pump design equations, and computational modeling provided insight into pump performance. The designs were the basis for prototype manufacturing and hydraulic testing. The study results demonstrate that the TAH is capable of delivering target blood flow rates of 1-6.5 L/min with pressure rises of 1-92 mm Hg for the pulmonary circulation and 24-150 mm Hg for the systemic circulation at 1500-10 000 rpm. This initial design of the TAH was successful and serves as the foundation to continue its development as a novel, more compact, nonthrombogenic, and effective therapeutic alternative for infants, children, adolescents, and adults with heart failure. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. Optimization of EGFR high positive cell isolation procedure by design of experiments methodology.

    PubMed

    Levi, Ofer; Tal, Baruch; Hileli, Sagi; Shapira, Assaf; Benhar, Itai; Grabov, Pavel; Eliaz, Noam

    2015-01-01

    Circulating tumor cells (CTCs) in blood circulation may play a role in monitoring and even in early detection of metastasis patients. Due to the limited presence of CTCs in blood circulation, viable CTCs isolation technology must supply a very high recovery rate. Here, we implement design of experiments (DOE) methodology in order to optimize the Bio-Ferrography (BF) immunomagnetic isolation (IMI) procedure for the EGFR high positive CTCs application. All consequent DOE phases such as screening design, optimization experiments and validation experiments were used. A significant recovery rate of more than 95% was achieved while isolating 100 EGFR high positive CTCs from 1 mL human whole blood. The recovery achievement in this research positions BF technology as one of the most efficient IMI technologies, which is ready to be challenged with patients' blood samples. © 2015 International Clinical Cytometry Society.

  20. The ECCO Family of State Estimates: An Overview

    NASA Astrophysics Data System (ADS)

    Wunsch, C.

    2008-12-01

    The idea of ECCO (Estimating the Circulation and Climate of the Ocean)originated in the middle 1980s, when it became apparent that a global oceanographic observing system for the general circulation would become a reality as it did through the World Ocean Circulation Experiment. Observational design involved extremely diverse technologies and oceanic flow regimes. To be physically interpretable, these diverse data and physical processes would need to be combined into a useful, coherent, whole. Such a synthesis can only be done with a skillful GCM having useful resolution. ECCO originated as an experiment to demonstrate the technical feasibility of such a synthesis and to determine if any of several possible methods was preferable. In contrast to a number of other superficially similar efforts, mainly derived from weather forecasting methods, the ECCO goal was to estimate the long-term circulation mean and its variability on climate (decadal and longer) time scales in a form exactly satisfying known equations of motion. ECCO was made feasible with the simultaneous construction of a new GCM (MIT) along with the development of an automatic differentiation (AD) software tool(now called TAF) which rendered practical the method of Lagrange multipliers (called the adjoint method in oceanography). Parallel developments of simplified sequential methods (smoothers) provided an alternative, also practical, methodology. One can now use the existing (publicly available) machinery to discuss the ocean circulation and its variability. The huge variety of issues connected with the global circulation has meant that an entire family of estimates has grown up, each having different emphases (primarily global; but some primarily regional---the tropics, the Southern Ocean); some focussed on physics---the role of eddies or sea ice). The methodology leads, usefully, to intense scrutiny of data and model errors and spatio-temporal coverage. As with any estimation problem, no uniquely 'correct' solution is now or ever going to be possible-- -only evolving best estimates. Further development of these and similar methodologies appears to be a necessary, inevitable, and growing component of oceanography and climate.

  1. Utilization of virtual learning environments in the allied health professions.

    PubMed

    Butina, Michelle; Brooks, Donna; Dominguez, Paul J; Mahon, Gwendolyn M

    2013-01-01

    Multiple technology based tools have been used to enhance skill development in allied health education, which now includes virtual learning environments. The purpose of this study was to explore whether, and how, this latest instructional technology is being adapted in allied health education. An online survey was circulated to all Association of Schools of Allied Health Professions (ASAHP) member institutions and focused on three broad areas of virtual learning environments: the uses of, the perceived pros and cons of, and the outcomes of utilizing them. Results show 40% (17 of 42) of the respondent use some form of the technology. The use of virtual learning technology in other healthcare professions (e.g., medicine) demonstrates the potential benefits to allied health education.

  2. No Moving Parts

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under a NASA SBIR (Small Business Innovative Research), Research International developed the solid state micromachined pump used for cooling electronics in space, circulation of heat transfer fluids on spacecraft, and monitoring fire and gas hazards aboard naval warships. Incorporating Lewis Research Center's pumping technology, commercial applications for this product include both detection of toxins and pollutants in coal mines, and early warning smoke detectors for industrial applications.

  3. Problem Solving with Workstations. Program Description, Teacher Materials, and Student Information. Teacher Developed Technology Education for the Nineties (TD-TEN).

    ERIC Educational Resources Information Center

    Garey, Robert W.

    The Randolph, New Jersey Intermediate School updated its industrial arts program to reflect the challenges and work force of the Twentieth Century in which students apply a design/problem-solving process to solve real-world problems. In the laboratory portion of the program, students circulate between workstations to define problems, complete…

  4. Liquid Biopsies in the Screening of Oncogenic Mutations in NSCLC and its Application in Targeted Therapy.

    PubMed

    Tang, Jason H; Chia, David

    2015-01-01

    Non-small cell lung cancer (NSCLC) still dominates cancer-related deaths in America. Despite this, new discoveries and advancements in technology are helping with the detection and treatment of NSCLC. The discovery of circulating tumor DNA in blood and other biofluids is essential for the creation of a DNA biomarker. Limitations in technology and sequencing have stunted assay development, but with recent advancements in the next-generation sequencing, droplet digital PCR, and EFIRM, the detection of mutations in biofluids has become possible with reasonable sensitivity and specificity. These methods have been applied to the detection of mutations in NSCLC by measuring the levels of circulating tumor DNA. ALK fusion genes along with mutations in EGFR and KRAS have been shown to correlate to tumor size and metastasis. These methods allow for noninvasive, affordable, and efficient diagnoses of oncogenic mutations that overcome the issues of traditional biopsies. These issues include tumor heterogeneity and early detection of cancers with asymptomatic early stages. Early detection and treatment remain the best way to ensure survival. This review aims to describe these new technologies along with their application in mutation detection in NSCLC in order to proactively utilize targeted anticancer therapy.

  5. Performance of computer vision in vivo flow cytometry with low fluorescence contrast

    PubMed Central

    Markovic, Stacey; Li, Siyuan; Niedre, Mark

    2015-01-01

    Abstract. Detection and enumeration of circulating cells in the bloodstream of small animals are important in many areas of preclinical biomedical research, including cancer metastasis, immunology, and reproductive medicine. Optical in vivo flow cytometry (IVFC) represents a class of technologies that allow noninvasive and continuous enumeration of circulating cells without drawing blood samples. We recently developed a technique termed computer vision in vivo flow cytometry (CV-IVFC) that uses a high-sensitivity fluorescence camera and an automated computer vision algorithm to interrogate relatively large circulating blood volumes in the ear of a mouse. We detected circulating cells at concentrations as low as 20  cells/mL. In the present work, we characterized the performance of CV-IVFC with low-contrast imaging conditions with (1) weak cell fluorescent labeling using cell-simulating fluorescent microspheres with varying brightness and (2) high background tissue autofluorescence by varying autofluorescence properties of optical phantoms. Our analysis indicates that CV-IVFC can robustly track and enumerate circulating cells with at least 50% sensitivity even in conditions with two orders of magnitude degraded contrast than our previous in vivo work. These results support the significant potential utility of CV-IVFC in a wide range of in vivo biological models. PMID:25822954

  6. COLD-PCR Technologies in the Area of Personalized Medicine: Methodology and Applications.

    PubMed

    Mauger, Florence; How-Kit, Alexandre; Tost, Jörg

    2017-06-01

    Somatic mutations bear great promise for use as biomarkers for personalized medicine, but are often present only in low abundance in biological material and are therefore difficult to detect. Many assays for mutation analysis in cancer-related genes (hotspots) have been developed to improve diagnosis, prognosis, prediction of drug resistance, and monitoring of the response to treatment. Two major approaches have been developed: mutation-specific amplification methods and methods that enrich and detect mutations without prior knowledge on the exact location and identity of the mutation. CO-amplification at Lower Denaturation temperature Polymerase Chain Reaction (COLD-PCR) methods such as full-, fast-, ice- (improved and complete enrichment), enhanced-ice, and temperature-tolerant COLD-PCR make use of a critical temperature in the polymerase chain reaction to selectively denature wild-type-mutant heteroduplexes, allowing the enrichment of rare mutations. Mutations can subsequently be identified using a variety of laboratory technologies such as high-resolution melting, digital polymerase chain reaction, pyrosequencing, Sanger sequencing, or next-generation sequencing. COLD-PCR methods are sensitive, specific, and accurate if appropriately optimized and have a short time to results. A large variety of clinical samples (tumor DNA, circulating cell-free DNA, circulating cell-free fetal DNA, and circulating tumor cells) have been studied using COLD-PCR in many different applications including the detection of genetic changes in cancer and infectious diseases, non-invasive prenatal diagnosis, detection of microorganisms, or DNA methylation analysis. In this review, we describe in detail the different COLD-PCR approaches, highlighting their specificities, advantages, and inconveniences and demonstrating their use in different fields of biological and biomedical research.

  7. 2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.; Jones, Gregory S.; Allan, Brian G.; Lin, Johb C.

    2009-01-01

    A current NASA Research Announcement (NRA) project being conducted by Georgia Tech Research Institute (GTRI) personnel and NASA collaborators includes the development of Circulation Control (CC) blown airfoils to improve subsonic aircraft high-lift and cruise performance. The emphasis of this program is the development of CC active flow control concepts for both high-lift augmentation, drag control, and cruise efficiency. A collaboration in this project includes work by NASA research engineers, whereas CFD validation and flow physics experimental research are part of NASA s systematic approach to developing design and optimization tools for CC applications to fixed-wing aircraft. The design space for CESTOL type aircraft is focusing on geometries that depend on advanced flow control technologies that include Circulation Control aerodynamics. The ability to consistently predict advanced aircraft performance requires improvements in design tools to include these advanced concepts. Validation of these tools will be based on experimental methods applied to complex flows that go beyond conventional aircraft modeling techniques. This paper focuses on recent/ongoing benchmark high-lift experiments and CFD efforts intended to provide 2-D CFD validation data sets related to NASA s Cruise Efficient Short Take Off and Landing (CESTOL) study. Both the experimental data and related CFD predictions are discussed.

  8. Circulating Tumor Cell Analysis in Preclinical Mouse Models of Metastasis.

    PubMed

    Kitz, Jenna; Lowes, Lori E; Goodale, David; Allan, Alison L

    2018-04-28

    The majority of cancer deaths occur because of metastasis since current therapies are largely non-curative in the metastatic setting. The use of in vivo preclinical mouse models for assessing metastasis is, therefore, critical for developing effective new cancer biomarkers and therapies. Although a number of quantitative tools have been previously developed to study in vivo metastasis, the detection and quantification of rare metastatic events has remained challenging. This review will discuss the use of circulating tumor cell (CTC) analysis as an effective means of tracking and characterizing metastatic disease progression in preclinical mouse models of breast and prostate cancer and the resulting lessons learned about CTC and metastasis biology. We will also discuss how the use of clinically-relevant CTC technologies such as the CellSearch ® and Parsortix™ platforms for preclinical CTC studies can serve to enhance the study of cancer biology, new biomarkers, and novel therapies from the bench to the bedside.

  9. [Circulating tumor cells: cornerstone of personalized medicine].

    PubMed

    Rafii, A; Vidal, F; Rathat, G; Alix-Panabières, C

    2014-11-01

    Cancer treatment has evolved toward personalized medicine. It is mandatory for clinicians to ascertain tumor biological features in order to optimize patients' treatment. Identification and characterization of circulating tumor cells demonstrated a prognostic value in many solid tumors. Here, we describe the main technologies for identification and characterization of circulating tumor cells and their clinical application in gynecologic and breast cancers. Copyright © 2014. Published by Elsevier Masson SAS.

  10. Development of circulation control technology for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1987-01-01

    The flow entraining capabilities of the Circulation Control Wing high lift system were employed to provide an even stronger STOL potential when synergistically combined with upper surface mounted engines. The resulting configurations generate very high supercirculation lift in addition to a vertical component of the pneumatically deflected engine thrust. A series of small scale wind tunnel tests and full scale static thrust deflection tests are discussed which provide a sufficient data base performance. These tests results show thrust deflections of greater than 90 deg produced pneumatically by nonmoving aerodynamic surfaces, and the ability to maintain constant high lift while varying the propulsive force from high thrust recovery required for short takeoff to high drag generation required for short low speed landings.

  11. Recent advances in circulating tumor cells and cell-free DNA in metastatic prostate cancer: a review.

    PubMed

    Parimi, Sunil; Ko, Jenny J

    2017-10-01

    The treatment landscape of metastatic prostate cancer has changed dramatically over the past five years. As new discoveries are made and further novel therapies become available, there is a heightened urgency to develop biomarkers that can guide prognoses and predict therapy responses. Circulating tumor cells (CTCs) and cell-free circulating tumor DNA (ctDNA) in the blood have emerged as potential promising tumor avatars. Areas covered: In this review, we describe technological breakthroughs and clinical implementation of the CTCs and ctDNA. We also discuss the key challenges that must be overcome before circulating blood-based biomarkers can be universally adopted into the management of patients with metastatic prostate cancer. Expert commentary: Both CTCs and ctDNA have the potential to be incorporated into routine patient care, with increasing numbers of prospective trials incorporating them into clinical designs. CTCs and ctDNA will thus have an increasingly valuable role in augmenting our understanding of prostate cancer at a molecular level, aiding in prognostication of prostate cancer patients, acting as a surrogate for OS in clinical trials, and helping us prioritize our treatment selections by elucidating resistance mechanisms.

  12. Impact of four-dimensional data assimilation (FDDA) on urban climate analysis

    NASA Astrophysics Data System (ADS)

    Pan, Linlin; Liu, Yubao; Liu, Yuewei; Li, Lei; Jiang, Yin; Cheng, Will; Roux, Gregory

    2015-12-01

    This study investigates the impact of four-dimensional data assimilation (FDDA) on urban climate analysis, which employs the NCAR (National Center for Atmospheric Research) WRF (the weather research and forecasting model) based on climate FDDA (CFDDA) technology to develop an urban-scale microclimatology database for the Shenzhen area, a rapidly developing metropolitan located along the southern coast of China, where uniquely high-density observations, including ultrahigh-resolution surface AWS (automatic weather station) network, radio sounding, wind profilers, radiometers, and other weather observation platforms, have been installed. CFDDA is an innovative dynamical downscaling regional climate analysis system that assimilates diverse regional observations; and has been employed to produce a 5 year multiscale high-resolution microclimate analysis by assimilating high-density observations at Shenzhen area. The CFDDA system was configured with four nested-grid domains at grid sizes of 27, 9, 3, and 1 km, respectively. This research evaluates the impact of assimilating high-resolution observation data on reproducing the refining features of urban-scale circulations. Two experiments were conducted with a 5 year run using CFSR (climate forecast system reanalysis) as boundary and initial conditions: one with CFDDA and the other without. The comparisons of these two experiments with observations indicate that CFDDA greatly reduces the model analysis error and is able to realistically analyze the microscale features such as urban-rural-coastal circulation, land/sea breezes, and local-hilly terrain thermal circulations. It is demonstrated that the urbanization can produce 2.5 k differences in 2 m temperatures, delays/speeds up the land/sea breeze development, and interacts with local mountain-valley circulations.

  13. Blood-Based Analyses of Cancer: Circulating Tumor Cells and Circulating Tumor DNA

    PubMed Central

    Haber, Daniel A.; Velculescu, Victor E.

    2015-01-01

    The ability to study nonhematologic cancers through noninvasive sampling of blood is one of the most exciting and rapidly advancing fields in cancer diagnostics. This has been driven both by major technologic advances, including the isolation of intact cancer cells and the analysis of cancer cell–derived DNA from blood samples, and by the increasing application of molecularly driven therapeutics, which rely on such accurate and timely measurements of critical biomarkers. Moreover, the dramatic efficacy of these potent cancer therapies drives the selection for additional genetic changes as tumors acquire drug resistance, necessitating repeated sampling of cancer cells to adjust therapy in response to tumor evolution. Together, these advanced noninvasive diagnostic capabilities and their applications in guiding precision cancer therapies are poised to change the ways in which we select and monitor cancer treatments. Significance Recent advances in technologies to analyze circulating tumor cells and circulating tumor DNA are setting the stage for real-time, noninvasive monitoring of cancer and providing novel insights into cancer evolution, invasion, and metastasis. PMID:24801577

  14. Cardiac arrest: resuscitation and reperfusion.

    PubMed

    Patil, Kaustubha D; Halperin, Henry R; Becker, Lance B

    2015-06-05

    The modern treatment of cardiac arrest is an increasingly complex medical procedure with a rapidly changing array of therapeutic approaches designed to restore life to victims of sudden death. The 2 primary goals of providing artificial circulation and defibrillation to halt ventricular fibrillation remain of paramount importance for saving lives. They have undergone significant improvements in technology and dissemination into the community subsequent to their establishment 60 years ago. The evolution of artificial circulation includes efforts to optimize manual cardiopulmonary resuscitation, external mechanical cardiopulmonary resuscitation devices designed to augment circulation, and may soon advance further into the rapid deployment of specially designed internal emergency cardiopulmonary bypass devices. The development of defibrillation technologies has progressed from bulky internal defibrillators paddles applied directly to the heart, to manually controlled external defibrillators, to automatic external defibrillators that can now be obtained over-the-counter for widespread use in the community or home. But the modern treatment of cardiac arrest now involves more than merely providing circulation and defibrillation. As suggested by a 3-phase model of treatment, newer approaches targeting patients who have had a more prolonged cardiac arrest include treatment of the metabolic phase of cardiac arrest with therapeutic hypothermia, agents to treat or prevent reperfusion injury, new strategies specifically focused on pulseless electric activity, which is the presenting rhythm in at least one third of cardiac arrests, and aggressive post resuscitation care. There are discoveries at the cellular and molecular level about ischemia and reperfusion pathobiology that may be translated into future new therapies. On the near horizon is the combination of advanced cardiopulmonary bypass plus a cocktail of multiple agents targeted at restoration of normal metabolism and prevention of reperfusion injury, as this holds the promise of restoring life to many patients for whom our current therapies fail. © 2015 American Heart Association, Inc.

  15. Electrochemical Genosensing of Circulating Biomarkers

    PubMed Central

    Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José Manuel

    2017-01-01

    Management and prognosis of diseases requires the measurement in non- or minimally invasively collected samples of specific circulating biomarkers, consisting of any measurable or observable factors in patients that indicate normal or disease-related biological processes or responses to therapy. Therefore, on-site, fast and accurate determination of these low abundance circulating biomarkers in scarcely treated body fluids is of great interest for health monitoring and biological applications. In this field, electrochemical DNA sensors (or genosensors) have demonstrated to be interesting alternatives to more complex conventional strategies. Currently, electrochemical genosensors are considered very promising analytical tools for this purpose due to their fast response, low cost, high sensitivity, compatibility with microfabrication technology and simple operation mode which makes them compatible with point-of-care (POC) testing. In this review, the relevance and current challenges of the determination of circulating biomarkers related to relevant diseases (cancer, bacterial and viral infections and neurodegenerative diseases) are briefly discussed. An overview of the electrochemical nucleic acid–based strategies developed in the last five years for this purpose is given to show to both familiar and non-expert readers the great potential of these methodologies for circulating biomarker determination. After highlighting the main features of the reported electrochemical genosensing strategies through the critical discussion of selected examples, a conclusions section points out the still existing challenges and future directions in this field. PMID:28420103

  16. Variety of RNAs in Peripheral Blood Cells, Plasma, and Plasma Fractions

    PubMed Central

    Kuligina, Elena V.; Bariakin, Dmitry N.; Kozlov, Vadim V.; Richter, Vladimir A.; Semenov, Dmitry V.

    2017-01-01

    Human peripheral blood contains RNA in cells and in extracellular membrane vesicles, microvesicles and exosomes, as well as in cell-free ribonucleoproteins. Circulating mRNAs and noncoding RNAs, being internalized, possess the ability to modulate vital processes in recipient cells. In this study, with SOLiD sequencing technology, we performed identification, classification, and quantification of RNAs from blood fractions: cells, plasma, plasma vesicles pelleted at 16,000g and 160,000g, and vesicle-depleted plasma supernatant of healthy donors and non-small cell lung cancer (NSCLC) patients. It was determined that 16,000g blood plasma vesicles were enriched with cell-free mitochondria and with a set of mitochondrial RNAs. The variable RNA set of blood plasma 160,000g pellets reflected the prominent contribution of U1, U5, and U6 small nuclear RNAs' fragments and at the same time was characterized by a remarkable depletion of small nucleolar RNAs. Besides microRNAs, the variety of fragments of mRNAs and snoRNAs dominated in the set of circulating RNAs differentially expressed in blood fractions of NSCLC patients. Taken together, our data emphasize that not only extracellular microRNAs but also circulating fragments of messenger and small nuclear/nucleolar RNAs represent prominent classes of circulating regulatory ncRNAs as well as promising circulating biomarkers for the development of disease diagnostic approaches. PMID:28127559

  17. Liquid biopsy on chip: a paradigm shift towards the understanding of cancer metastasis.

    PubMed

    Tadimety, Amogha; Syed, Abeer; Nie, Yuan; Long, Christina R; Kready, Kasia M; Zhang, John X J

    2017-01-23

    This comprehensive review serves as a guide for developing scalable and robust liquid biopsies on chip for capture, detection, and analysis of circulating tumor cells (CTCs). Liquid biopsy, the detection of biomarkers from body fluids, has proven challenging because of CTC rarity and the heterogeneity of CTCs shed from tumors. The review starts with the underlying biological mechanisms that make liquid biopsy a challenge before moving into an evaluation of current technological progress. Then, a framework for evaluation of the technologies is presented with special attention to throughput, capture rate, and cell viability for analysis. Technologies for CTC capture, detection, and analysis will be evaluated based on these criteria, with a focus on current approaches, limitations and future directions. The paper provides a critical review for microchip developers as well as clinical investigators to build upon the existing progress towards the goal of designing CTC capture, detection, and analysis platforms.

  18. CFB: technology of the future?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankship, S.

    2008-02-15

    Fuel flexibility and a smaller carbon footprint are behind renewed interest in circulating fluidized bed (CFB) technology. The article explains the technology of CFB and discusses development of CFB units since the late 1990s. China is seeing an explosion in the number of utility-size CFBs. Alstom, Foster Wheeler, Babcock and Wilson and Alex Kvaener are today's major CFB boiler manufacturers. Alstom is testing and developing oxy-firing and post-combustion carbon capture strategies on CFB boilers. One CFB asset is its ability to burn a variety of fuels including waste coal, high sulfur coal and even discarded tires. The article mentions successfulmore » CFB projects at the Seward Station using waste coal and at the Gilbert 3 plant in the USA. Lamar is converting its Light and Power Plant from natural gas to burn coal in a 38.5 MW CFB boiler. 1 tab., 3 photos.« less

  19. Wake Vortex Wingtip-Turbine Powered Circulation Control High-Lift System

    NASA Technical Reports Server (NTRS)

    Moore, Mark D.

    2005-01-01

    NASA s Vehicle Systems Program is investing in aeronautics technology development across six vehicle sectors, in order to improve future air travel. These vehicle sectors include subsonic commercial transports, supersonic vehicles, Uninhabited Aerial Vehicles (UAVs), Extreme Short Takeoff and Landing (ESTOL) vehicles, Rotorcraft, and Personal Air Vehicles (PAVs). While the subsonic transport is firmly established in U.S. markets, the other vehicle sectors have not developed a sufficient technology or regulatory state to permit widespread, practical use. The PAV sector has legacy products in the General Aviation (GA) market, but currently only accounts for negligible revenue miles, sales, or market share of personal travel. In order for PAV s to ever capture a significant market, these small aircraft require technologies that permit them to be less costly, environmentally acceptable, safer, easier to operate, more efficient, and less dependent on large support infrastructures.

  20. Speckle-correlation analysis of the microcapillary blood circulation in nail bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilenskii, M A; Agafonov, D N; Zimnyakov, D A

    2011-04-30

    We present the results of the experimental studies of the possibility of monitoring the blood microcirculation in human finger nail bed with application of speckle-correlation analysis, based on estimating the contrast of time-averaged dynamic speckles. The hemodynamics at normal blood circulation and under conditions of partially suppressed blood circulation is analysed. A microscopic analysis is performed to visualise the structural changes in capillaries that are caused by suppressing blood circulation. The problems and prospects of speckle-correlation monitoring of the nail bed microhemodynamics under laboratory and clinical conditions are discussed. (optical technologies in biophysics and medicine)

  1. The use of PFBC ashes to ameliorate acid conditions: An equilibrium and greenhouse study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T.H.; Bland, A.E.

    1999-07-01

    Pilot-scale development at the Foster Wheeler Energia Oy 10 MW{sub th} circulating PFBC at Karhula, Finland, has demonstrated the advantages of pressurized fluidized bed combustion (PFBC) technology. Commercial scale deployment of the technology at the Lakeland Utilities MacIntosh Unit No. 4 has been proposed. Development of uses for the ashes from PFBC systems is being actively pursued as part of commercial demonstration of PFBC technologies. Western Research Institute (WRI), in conjunction with the US Department of Energy (DOE), Federal Energy Technology Center (FETC), Foster Wheeler Energy International, Inc., and the Electric Power Research Institute (EPRI), conducted a laboratory scale investigationmore » of the technical feasibility of PFBC ash as an amendment for acidic soils and spoils encountered in agricultural and reclamation applications. Ashes were collected from the Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low-sulfur subbituminous and (2) high-sulfur bituminous coals. The results of the technical feasibility testing indicated the following: (1) PFBC fly ash (Karhula-low S fly ash) and ag-lime (CaCO{sub 3}) were used as amendments attempting to ameliorate acid spoil conditions. These materials were found to be effective acid mine spoil amendments. (2) The greenhouse study demonstrated that PFBC ash and/or bed ash amended spoils resulted in similar seed germination numbers as compared to the ag-lime amended spoils. (3) The greenhouse study also demonstrated that PFBC fly ash and/or bed ash amended spoils resulted in comparable plant productivity to the ag-lime amended spoils. In fact, all amendments resulted in statistically the same levels of plant production for each plant species.« less

  2. Modular minimally invasive extracorporeal circulation systems; can they become the standard practice for performing cardiac surgery?

    PubMed

    Anastasiadis, K; Antonitsis, P; Argiriadou, H; Deliopoulos, A; Grosomanidis, V; Tossios, P

    2015-04-01

    Minimally invasive extracorporeal circulation (MiECC) has been developed in an attempt to integrate all advances in cardiopulmonary bypass technology in one closed circuit that shows improved biocompatibility and minimizes the systemic detrimental effects of CPB. Despite well-evidenced clinical advantages, penetration of MiECC technology into clinical practice is hampered by concerns raised by perfusionists and surgeons regarding air handling together with blood and volume management during CPB. We designed a modular MiECC circuit, bearing an accessory circuit for immediate transition to an open system that can be used in every adult cardiac surgical procedure, offering enhanced safety features. We challenged this modular circuit in a series of 50 consecutive patients. Our results showed that the modular AHEPA circuit design offers 100% technical success rate in a cohort of random, high-risk patients who underwent complex procedures, including reoperation and valve and aortic surgery, together with emergency cases. This pilot study applies to the real world and prompts for further evaluation of modular MiECC systems through multicentre trials. © The Author(s) 2015.

  3. PrediCTC, liquid biopsy in precision oncology: a technology transfer experience in the Spanish health system.

    PubMed

    Alonso-Alconada, L; Barbazan, J; Candamio, S; Falco, J L; Anton, C; Martin-Saborido, C; Fuster, G; Sampedro, M; Grande, C; Lado, R; Sampietro-Colom, L; Crego, E; Figueiras, S; Leon-Mateos, L; Lopez-Lopez, R; Abal, M

    2018-05-01

    Management of metastatic disease in oncology includes monitoring of therapy response principally by imaging techniques like CT scan. In addition to some limitations, the irruption of liquid biopsy and its application in personalized medicine has encouraged the development of more efficient technologies for prognosis and follow-up of patients in advanced disease. PrediCTC constitutes a panel of genes for the assessment of circulating tumor cells (CTC) in metastatic colorectal cancer patients, with demonstrated improved efficiency compared to CT scan for the evaluation of early therapy response in a multicenter prospective study. In this work, we designed and developed a technology transfer strategy to define the market opportunity for an eventual implementation of PrediCTC in the clinical practice. This included the definition of the regulatory framework, the analysis of the regulatory roadmap needed for CE mark, a benchmarking study, the design of a product development strategy, a revision of intellectual property, a cost-effectiveness study and an expert panel consultation. The definition and analysis of an appropriate technology transfer strategy and the correct balance among regulatory, financial and technical determinants are critical for the transformation of a promising technology into a viable technology, and for the decision of implementing liquid biopsy in the monitoring of therapy response in advanced disease.

  4. Efficacy of forming biofilms by Pseudomonas migulae AN-1 toward in situ bioremediation of aniline-contaminated aquifer by groundwater circulation wells.

    PubMed

    Zhao, Yongsheng; Qu, Dan; Zhou, Rui; Yang, Shuai; Ren, Hejun

    2016-06-01

    The formation and activity of aniline-degrading biofilms developed by the psychrotrophic Pseudomonas migulae AN-1 were studied for the in situ remediation of contaminated aquifer using in-well bioreactor of groundwater circulating wells (GCWs). Biofilms grown in mineral salt medium with aniline exhibited tolerance to high concentrations of aniline. In aniline degradation rate, AN-1 biofilms exhibited slight differences compared with planktonic cells. The effectiveness and bio-implication of AN-1 biofilms in GCWs were investigated to treat aniline-contaminated aquifer. The results demonstrate that AN-1 biofilms survived the GCWs treatment process with high aniline-degrading efficiency. This system provides a novel environmentally friendly technology for the in situ bioremediation of low-volatile contaminants.

  5. The 20 GHz spacecraft IMPATT solid state transmitter

    NASA Technical Reports Server (NTRS)

    Best, T.; Ngan, Y. C.

    1986-01-01

    The engineering development of a solid-state transmitter amplifier operating in the 20-GHz frequency range is described. This effort involved a multitude of disciplines including IMPATT device development, circulator design, multiple-diode circuit design, and amplifier integration and test. The objective was to develop a transmitter amplifier demonstrating the feasibility of providing an efficient, reliable, lightweight solid-state transmitter to be flown on a 30 to 20 GHz communication demonstration satellite. The work was done under contract from NASA/Lewis Research Center for a period of three years. The result was the development of a GaAs IMPACT diode amplifier capable of an 11-W CW output power and a 2-dB bandwidth of 300 MHz. GaAs IMPATT diodes incorporating diamond heatsink and double-Read doping profile capable of 5.3-W CW oscillator output power and 15.5% efficiency were developed. Up to 19% efficiency was also observed for an output power level of 4.4 W. High performance circulators with a 0.2 dB inserting loss and bandwidth of 5 GHz have also been developed. These represent a significant advance in both device and power combiner circuit technologies in K-band frequencies.

  6. Developments in TurboBrayton Technology for Low Temperature Applications

    NASA Technical Reports Server (NTRS)

    Swift, W. L.; Zagarola, M. V.; Nellis, G. F.; McCormick, J. A.; Gibbon, Judy

    1999-01-01

    A single stage reverse Brayton cryocooler using miniature high-speed turbomachines recently completed a successful space shuttle test flight demonstrating its capabilities for use in cooling the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope (HST). The NICMOS CryoCooler (NCC) is designed for a cooling load of about 8 W at 65 K, and comprises a closed loop cryocooler coupled to an independent cryogenic circulating loop. Future space applications involve instruments that will require 5 mW to 200 mW of cooling at temperatures between 4 K and 10 K. This paper discusses the extension of Turbo-Brayton technology to meet these requirements.

  7. NASA tech brief evaluations

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1994-01-01

    A major step in transferring technology is to disseminate information about new developments to the appropriate sector(s). A useful vehicle for transferring technology from the government sector to industry has been demonstrated with the use of periodical and journal announcements to highlight technological achievements which may meet the needs of industries other than the one who developed the innovation. To meet this end, NASA has very successfully pursued the goal of identifying technical innovations through the national circulation publication; NASA Tech Briefs. At one time the Technology Utilization Offices of the various centers coordinated the selection of appropriate technologies through a common channel. In recent years, each NASA field center has undertaken the task of evaluating submittals for Tech Brief publication independently of the others. The University of Alabama in Huntsville was selected to assist MSFC in evaluating technology developed under the various programs managed by the NASA center for publication in the NASA Tech Briefs journal. The primary motivation for the NASA Tech Briefs publication is to bring to the attention of industry the various NASA technologies which, in general, have been developed for a specific aerospace requirement, but has application in other areas. Since there are a number of applications outside of NASA that can benefit from innovative concepts developed within the MSPC programs, the ability to transfer technology to other sectors is very high. In most cases, the innovator(s) are not always knowledgeable about other industries which might potentially benefit from their innovation. The evaluation process can therefore contribute to the list of potential users through a knowledgeable evaluator.

  8. Smarten up garments through knitting

    NASA Astrophysics Data System (ADS)

    Schwarz-Pfeiffer, A.; Obermann, M.; Weber, M. O.; Ehrmann, A.

    2016-07-01

    Smart textiles are a growing and fascinating field with enormous potential in the field of wearable electronics: shirts with integrated electrodes, socks stimulating the blood circulation or heating clothing are just a few examples of wearable, smart textile products. Most often, the technology of choice for on-the-body-worn smart textiles is knitting as it results in stretchable and, hence comfortable garments. This presentation explores the knitting technology in respect to smart textiles giving an overview of current research activities as well as commercially available products on the market. It further intends to foster the transfer of research approaches into business applications as well as to develop new challenging research ideas.

  9. Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells.

    PubMed

    Jackson, Joshua M; Witek, Małgorzata A; Kamande, Joyce W; Soper, Steven A

    2017-07-17

    We present a critical review of microfluidic technologies and material effects on the analyses of circulating tumour cells (CTCs) selected from the peripheral blood of cancer patients. CTCs are a minimally invasive source of clinical information that can be used to prognose patient outcome, monitor minimal residual disease, assess tumour resistance to therapeutic agents, and potentially screen individuals for the early diagnosis of cancer. The performance of CTC isolation technologies depends on microfluidic architectures, the underlying principles of isolation, and the choice of materials. We present a critical review of the fundamental principles used in these technologies and discuss their performance. We also give context to how CTC isolation technologies enable downstream analysis of selected CTCs in terms of detecting genetic mutations and gene expression that could be used to gain information that may affect patient outcome.

  10. Y-Circulator with Dielectric Filler

    DTIC Science & Technology

    1981-12-10

    Y , y LU UL iLU V Shch, shch SK K, k ’b 7p•• S. WA L,b/ V Y , y M m M, m bb b b H H H N N , n 33 a 9 E, e 0 o 0 0 O, o m 00 m Yu, yu n n 17 m...ii ’I ! DOC 1275 PAGE 1 Y -CIRCULATOR WITH DIELECTRIC FILLER A. K. Stolyarov, I. P. Tyukov, V. N . Shakhgedanov, A. A. Shilova. The known Y -circulators...FTD-ID( RS)T-1275-81 FOREIGN TECHNOLOGY DIVISION 0, Y -CIRCULATOR WIrH DIELECTRIC FILLER by A.K. Stolyarov, I.P. Tyukov, et

  11. Clinical utility of circulating tumour cell detection in non-small-cell lung cancer.

    PubMed

    Fusi, Alberto; Metcalf, Robert; Krebs, Matthew; Dive, Caroline; Blackhall, Fiona

    2013-12-01

    Recent years have witnessed increased interest in the detection of circulating tumour cells (CTCs) for diagnosis, monitoring, and treatment decision making in patients with cancer. Factors that have led to accelerated research in this field include advances in technologies for examination of intact CTCs, personalised medicine with treatment selection according to molecular characteristics, and continued lack of understanding of the biology of treatment resistance and metastasis. CTCs offer promise as a surrogate for tissue where there is insufficient tissue for molecular analysis and where there is a requirement to serially monitor molecular changes in cancer cells through treatment or on progression. In patients with either small cell or non-small cell lung cancer (NSCLC), there is evidence that CTC number is prognostic and that CTCs counted before and after treatment mirror treatment response. In patients with molecularly defined subtypes of NSCLC, CTCs demonstrate the same molecular changes as the cancer cells of the tumour. However, CTCs are not quite ready for "primetime" in the lung cancer clinic. There are still more questions than answers with respect to the optimal technologies for their detection and analysis, their biological significance, and their clinical utility. Despite this the current pace of progress in CTC technology development seems set to make "liquid biopsies" a clinical reality within the next decade. For the everyday clinician and clinical trialist, it will be important to maintain knowledge of the strengths and weaknesses of the technologies and evolving evidence base for CTCs as a routinely used diagnostic tool.

  12. Circulating predictive and diagnostic biomarkers for hepatitis B virus-associated hepatocellular carcinoma

    PubMed Central

    Van Hees, Stijn; Michielsen, Peter; Vanwolleghem, Thomas

    2016-01-01

    Chronic hepatitis B virus (HBV) infected patients have an almost 100-fold increased risk to develop hepatocellular carcinoma (HCC). HCC is the fifth most common and third most deadly cancer worldwide. Up to 50% of newly diagnosed HCC cases are attributed to HBV infection. Early detection improves survival and can be achieved through regular screening. Six-monthly abdominal ultrasound, either alone or in combination with alpha-fetoprotein serum levels, has been widely endorsed for this purpose. Both techniques however yield limited diagnostic accuracy, which is not improved when they are combined. Alternative circulating or histological markers to predict or diagnose HCC are therefore urgently needed. Recent advances in systems biology technologies have enabled the identification of several new putative circulating biomarkers. Although results from studies assessing combinations of these biomarkers are promising, evidence for their clinical utility remains low. In addition, most of the studies conducted so far show limitations in design. Attention must be paid for instance to different ethnicities and different etiologies when studying biomarkers for hepatocellular carcinoma. This review provides an overview on the current understandings and recent progress in the field of diagnostic and predictive circulating biomarkers for hepatocellular carcinoma in chronically infected HBV patients and discusses the future prospects. PMID:27729734

  13. Development of a Bunched Beam Electron Cooler based on ERL and Circulator Ring Technology for the Jefferson Lab Electron-Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Stephen V.; Derbenev, Yaroslav S.; Douglas, David R.

    Jefferson Lab is in the process of designing an electron ion collider with unprecedented luminosity at a 45 GeV center-of-mass energy. This luminosity relies on ion cooling in both the booster and the storage ring of the accelerator complex. The cooling in the booster will use a conventional DC cooler similar to the one at COSY. The high-energy storage ring, operating at a momentum of up to 100 GeV/nucleon, requires novel use of bunched-beam cooling. There are two designs for such a cooler. The first uses a conventional Energy Recovery Linac (ERL) with a magnetized beam while the second usesmore » a circulating ring to enhance both peak and average currents experienced by the ion beam. This presentation will describe the design of both the Circulator Cooling Ring (CCR) design and that of the backup option using the stand-alone ERL operated at lower charge but higher repetition rate than the ERL injector required by the CCR-based design.« less

  14. Clinical challenges in the molecular characterization of circulating tumour cells in breast cancer.

    PubMed

    Lianidou, E S; Mavroudis, D; Georgoulias, V

    2013-06-25

    Blood testing for circulating tumour cells (CTC) has emerged as one of the hottest fields in cancer research. CTC detection and enumeration can serve as a 'liquid biopsy' and an early marker of response to systemic therapy, whereas their molecular characterisation has a strong potential to be translated to individualised targeted treatments and spare breast cancer (BC) patients unnecessary and ineffective therapies. Different analytical systems for CTC detection and isolation have been developed and new areas of research are directed towards developing novel assays for CTC molecular characterisation. Molecular characterisation of single CTC holds considerable promise for predictive biomarker assessment and to explore CTC heterogeneity. The application of extremely powerful next-generation sequencing technologies in the area of CTC molecular characterisation in combination with reliable single CTC isolation opens new frontiers for the management of patients in the near future. This review is mainly focused on the clinical potential of the molecular characterisation of CTC in BC.

  15. Clinical challenges in the molecular characterization of circulating tumour cells in breast cancer

    PubMed Central

    Lianidou, E S; Mavroudis, D; Georgoulias, V

    2013-01-01

    Blood testing for circulating tumour cells (CTC) has emerged as one of the hottest fields in cancer research. CTC detection and enumeration can serve as a ‘liquid biopsy' and an early marker of response to systemic therapy, whereas their molecular characterisation has a strong potential to be translated to individualised targeted treatments and spare breast cancer (BC) patients unnecessary and ineffective therapies. Different analytical systems for CTC detection and isolation have been developed and new areas of research are directed towards developing novel assays for CTC molecular characterisation. Molecular characterisation of single CTC holds considerable promise for predictive biomarker assessment and to explore CTC heterogeneity. The application of extremely powerful next-generation sequencing technologies in the area of CTC molecular characterisation in combination with reliable single CTC isolation opens new frontiers for the management of patients in the near future. This review is mainly focused on the clinical potential of the molecular characterisation of CTC in BC. PMID:23756869

  16. Bio optofluidics cell sorter: cell-BOCS concept and applications

    NASA Astrophysics Data System (ADS)

    Roth, Tue; Glückstad, Jesper

    2012-03-01

    The cell-BOCS is a novel microfluidics based cell-sorting instrument utilizing next generation optical trapping technology developed at the Technical University of Denmark. It is targeted emerging bio-medical research and diagnostics markets where it for certain applications offers a number of advantages over conventional fluorescence activated cell-sorting (FACSTM) technology. Advantages include gentle handling of cells, sterile sorting, easy operation, small footprint and lower cost allowing out-of-core-facility use. Application examples are found within sorting of fragile transfected cells, high value samples and primary cell lines, where traditional FACS technology has limited application due to it's droplet-based approach to cell-sorting. In the diagnostics field, in particular applying the cell-BOCS for isolating pure populations of circulating tumor cells is an area that has generated a lot of interest.

  17. Wireless Technology in the Library: The RIT Experience: Overview of the Project.

    ERIC Educational Resources Information Center

    Pitkin, Pat

    2001-01-01

    Provides an overview of a project at RIT (Rochester Institute of Technology) that experimented with wireless technology, including laptop computers that circulate within the library building. Discusses project requirements, including ease of use, low maintenance, and low cost; motivation, including mobility; implementation; and benefits to the…

  18. Loosening up and Letting Go: Circulating Technology in Support of a Merged Organization

    ERIC Educational Resources Information Center

    Furlong, Katherine

    2009-01-01

    Lafayette College is an undergraduate, private liberal arts and engineering school in Easton, Pennsylvania. In 2005, Lafayette rededicated its newly renovated library, complete with shared library/instructional technology facilities and a media studio. As originally envisioned, instructional technology (ITech) would have its own separate service…

  19. Detection and Characterization of Circulating Tumor Associated Cells in Metastatic Breast Cancer.

    PubMed

    Mu, Zhaomei; Benali-Furet, Naoual; Uzan, Georges; Znaty, Anaëlle; Ye, Zhong; Paolillo, Carmela; Wang, Chun; Austin, Laura; Rossi, Giovanna; Fortina, Paolo; Yang, Hushan; Cristofanilli, Massimo

    2016-09-30

    The availability of blood-based diagnostic testing using a non-invasive technique holds promise for real-time monitoring of disease progression and treatment selection. Circulating tumor cells (CTCs) have been used as a prognostic biomarker for the metastatic breast cancer (MBC). The molecular characterization of CTCs is fundamental to the phenotypic identification of malignant cells and description of the relevant genetic alterations that may change according to disease progression and therapy resistance. However, the molecular characterization of CTCs remains a challenge because of the rarity and heterogeneity of CTCs and technological difficulties in the enrichment, isolation and molecular characterization of CTCs. In this pilot study, we evaluated circulating tumor associated cells in one blood draw by size exclusion technology and cytological analysis. Among 30 prospectively enrolled MBC patients, CTCs, circulating tumor cell clusters (CTC clusters), CTCs of epithelial-mesenchymal transition (EMT) and cancer associated macrophage-like cells (CAMLs) were detected and analyzed. For molecular characterization of CTCs, size-exclusion method for CTC enrichment was tested in combination with DEPArray™ technology, which allows the recovery of single CTCs or pools of CTCs as a pure CTC sample for mutation analysis. Genomic mutations of TP53 and ESR1 were analyzed by targeted sequencing on isolated 7 CTCs from a patient with MBC. The results of genomic analysis showed heterozygous TP53 R248W mutation from one single CTC and pools of three CTCs, and homozygous TP53 R248W mutation from one single CTC and pools of two CTCs. Wild-type ESR1 was detected in the same isolated CTCs. The results of this study reveal that size-exclusion method can be used to enrich and identify circulating tumor associated cells, and enriched CTCs were characterized for genetic alterations in MBC patients, respectively.

  20. Guided self-assembly of magnetic beads for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gusenbauer, Markus; Nguyen, Ha; Reichel, Franz; Exl, Lukas; Bance, Simon; Fischbacher, Johann; Özelt, Harald; Kovacs, Alexander; Brandl, Martin; Schrefl, Thomas

    2014-02-01

    Micromagnetic beads are widely used in biomedical applications for cell separation, drug delivery, and hyperthermia cancer treatment. Here we propose to use self-organized magnetic bead structures which accumulate on fixed magnetic seeding points to isolate circulating tumor cells. The analysis of circulating tumor cells is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. Microfluidic chips for isolating circulating tumor cells use either affinity, size or density capturing methods. We combine multiphysics simulation techniques to understand the microscopic behavior of magnetic beads interacting with soft magnetic accumulation points used in lab-on-chip technologies. Our proposed chip technology offers the possibility to combine affinity and size capturing with special antibody-coated bead arrangements using a magnetic gradient field created by Neodymium Iron Boron permanent magnets. The multiscale simulation environment combines magnetic field computation, fluid dynamics and discrete particle dynamics.

  1. Scientific production and technological production: transforming a scientific paper into patent applications.

    PubMed

    Dias, Cleber Gustavo; Almeida, Roberto Barbosa de

    2013-01-01

    Brazil has been presenting in the last years a scientific production well-recognized in the international scenario, in several areas of knowledge, according to the impact of their publications in important events and especially in indexed journals of wide circulation. On the other hand, the country does not seem to be in the same direction regarding to the technological production and wealth creation from the established scientific development, and particularly from the applied research. The present paper covers such issue and discloses the main similarities and differences between a scientific paper and a patent application, in order to contribute to a better understanding of both types of documents and help the researchers to chose and select the results with technological potential, decide what is appropriated for industrial protection, as well as foster new business opportunities for each technology which has been created.

  2. Scientific production and technological production: transforming a scientific paper into patent applications

    PubMed Central

    Dias, Cleber Gustavo; de Almeida, Roberto Barbosa

    2013-01-01

    ABSTRACT Brazil has been presenting in the last years a scientific production well-recognized in the international scenario, in several areas of knowledge, according to the impact of their publications in important events and especially in indexed journals of wide circulation. On the other hand, the country does not seem to be in the same direction regarding to the technological production and wealth creation from the established scientific development, and particularly from the applied research. The present paper covers such issue and discloses the main similarities and differences between a scientific paper and a patent application, in order to contribute to a better understanding of both types of documents and help the researchers to chose and select the results with technological potential, decide what is appropriated for industrial protection, as well as foster new business opportunities for each technology which has been created. PMID:23579737

  3. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    EPA Science Inventory

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  4. Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples.

    PubMed

    Laird Smith, Melissa; Murrell, Ben; Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E; Kosakovsky Pond, Sergei L; Smith, Davey M

    2016-07-01

    The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences' Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data.

  5. Spent lead-acid battery recycling in China - A review and sustainable analyses on mass flow of lead.

    PubMed

    Sun, Zhi; Cao, Hongbin; Zhang, Xihua; Lin, Xiao; Zheng, Wenwen; Cao, Guoqing; Sun, Yong; Zhang, Yi

    2017-06-01

    Lead is classified to be one of the top heavy metal pollutants in China. The corresponding environmental issues especially during the management of spent lead-acid battery have already caused significant public awareness and concern. This research gives a brief overview on the recycling situation based on an investigation of the lead industry in China and also the development of technologies for spent lead-acid batteries. The main principles and research focuses of different technologies including pyrometallurgy, hydrometallurgy and greener technologies are summarized and compared. Subsequently, the circulability of lead based on the entire life cycle analyses of lead-acid battery is calculated. By considering different recycling schemes, the recycling situation of spent lead-acid battery in China can be understood semi-quantitatively. According to this research, 30% of the primary lead production can be shut down that the lead production can still ensure consecutive life cycle operation of lead-acid battery, if proper management of the spent lead-acid battery is implemented according to current lead industry situation in China. This research provides a methodology on the view of lead circulability in the whole life cycle of a specific product and is aiming to contribute more quantitative guidelines for efficient organization of lead industry in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Terra-Preta-Technology as an innovative system component to create circulation oriented, sustainable land use systems

    NASA Astrophysics Data System (ADS)

    Dotterweich, M.; Böttcher, J.; Krieger, A.

    2012-04-01

    This paper presents current research and application projects on innovative system solutions which are based on the implementation of a regional resource efficient material flow management as well as utilising "Terra-Preta-Technology" as an innovative system component. Terra Preta Substrate (TPS) is a recently developed substance composed of liquid and solid organic matter, including biochar, altered by acid-lactic fermentation. Based on their properties, positive effects on water and nutrient retention, soil microbiological activity, and cation-exchange capacity are expected and currently investigated by different projects. TPS further sequesters carbon and decreases NO2 emissions from fertilized soils as observed by the use of biochar. The production of TPS is based on a circulation oriented organic waste management system directly adapted to the local available inputs and desired soil amendment properties. The production of TPS is possible with simple box systems for subsistence farming but also on a much larger scale as modular industrial plants for farmers or commercial and municipal waste management companies in sizes from 500 and 50,000 m3. The Terra-Preta-Technology enhances solutions to soil conservation, soil amelioration, humic formation, reduced water consumption, long term carbon sequestration, nutrient retention, containment binding, and to biodiversity on local to a regional scale. The projects also involve research of ancient land management systems to enhance resource efficiency by means of an integrative and transdisciplinary approach.

  7. System Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.; Tai, Jimmy C.; Kirby, Michelle M.; Roth, Bryce A.

    1999-01-01

    The primary aspiration of this study was to objectively assess the feasibility of the application of a low speed pneumatic technology, in particular Circulation Control (CC) to an HSCT concept. Circulation Control has been chosen as an enabling technology to be applied on a generic High Speed Civil Transport (HSCT). This technology has been proven for various subsonic vehicles including flight tests on a Navy A-6 and computational application on a Boeing 737. Yet, CC has not been widely accepted for general commercial fixed-wing use but its potential has been extensively investigated for decades in wind tunnels across the globe for application to rotorcraft. More recently, an experimental investigation was performed at Georgia Tech Research Institute (GTRI) with application to an HSCT-type configuration. The data from those experiments was to be applied to a full-scale vehicle to assess the impact from a system level point of view. Hence, this study attempted to quantitatively assess the impact of this technology to an HSCT. The study objective was achieved in three primary steps: 1) Defining the need for CC technology; 2) Wind tunnel data reduction; 3) Detailed takeoff/landing performance assessment. Defining the need for the CC technology application to an HSCT encompassed a preliminary system level analysis. This was accomplished through the utilization of recent developments in modern aircraft design theory at Aerospace Systems Design Laboratory (ASDL). These developments include the creation of techniques and methods needed for the identification of technical feasibility show stoppers. These techniques and methods allow the designer to rapidly assess a design space and disciplinary metric enhancements to enlarge or improve the design space. The takeoff and landing field lengths were identified as the concept "show-stoppers". Once the need for CC was established, the actual application of data and trends was assessed. This assessment entailed a reduction of the wind tunnel data from the experiments performed by Mr. Bob Englar at the GTRI. Relevant data was identified and manipulated based on the required format of the analysis tools utilized. Propulsive, aerodynamic, duct sizing, and vehicle sizing investigations were performed and information supplied to a detailed takeoff and landing tool, From the assessments, CC was shown to improve the low speed performance metrics, which were previously not satisfied. An HSCT with CC augmentation does show potential for full-scale application. Yet, an economic assessment of an HSCT with and without CC showed that a moderate penalty was incurred from the increased RDT&E costs associated with developing the CC technology and slight increases in empty weight.

  8. LAWS (Laser Atmospheric Wind Sounder) earth observing system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wind profiles can be measured from space using current technology. These wind profiles are essential for answering many of the interdisciplinary scientific questions to be addressed by EOS, the Earth Observing System. This report provides guidance for the development of a spaceborne wind sounder, the Laser Atmospheric Wind Sounder (LAWS), discussing the current state of the technology and reviewing the scientific rationale for the instrument. Whether obtained globally from the EOS polar platform or in the tropics and subtropics from the Space Station, wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering knowledge of large-scale atmospheric circulation and climate dynamics, and improving understanding of the global biogeochemical and hydrologic cycles. The LAWS Instrument Panel recommends that it be given high priority for new instrument development because of the pressing scientific need and the availability of the necessary technology. LAWS is to measure wind profiles with an accuracy of a few meters per second and to sample at intervals of 100 km horizontally for layers km thick.

  9. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  10. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling approach to the PB-FHR annular pebble bed core cooled by fluoride salt mixtures generated a model that is called Pod. Pod. was used to show the resilience of the PB-FHR core to generation of hot spots or cold spots, due to the effect of buoyancy on the flow and temperature distribution in the packed bed. Pod. was used to investigate the PB-FHR response to ATWS transients. Based on the functional requirements for the core, Pod. was used to generate an optimized design of the flow distribution in the core. An analysis of natural circulation loops cooled by single-phase Boussinesq fluids is presented here, in the context of reactor design that relies on natural circulation decay heat removal, and design of scaled experiments. The scaling arguments are established for a transient natural circulation loop, for loops that have long fluid residence time, and negligible contribution of fluid inertia to the momentum equation. The design of integral effects tests for the loss of forced circulation (LOFC) for PB-FHR is discussed. The special case of natural circulation decay heat removal from a pebble bed reactor was analyzed. A way to define the Reynolds number in a multi-dimensional pebble bed was identified. The scaling methodology for replicating pebble bed friction losses using an electrically resistance heated annular pipe and a needle valve was developed. The thermophysical properties of liquid fluoride salts lead to design of systems with low flow velocities, and hence long fluid residence times. A comparison among liquid coolants for the performance of steady state natural circulation heat removal from a pebble bed was performed. Transient natural circulation experimental data with simulant fluids for fluoride salts is given here. The low flow velocity and the relatively high viscosity of the fluoride salts lead to low Reynolds number flows, and a low Reynolds number in conjunction with a sufficiently high coefficient of thermal expansion makes the system susceptible to local buoyancy effects Experiments indicate that slow exchange of stagnant fluid in static legs can play a significant role in the transient response of natural circulation loops. The effect of non-linear temperature profiles on the hot or cold legs or other segments of the flow loop, which may develop during transient scenarios, should be considered when modeling the performance of natural circulation loops. The data provided here can be used for validation of the application of thermal-hydraulic systems codes to the modeling of heat removal by natural circulation with liquid fluoride salts and its simulant fluids.

  11. Materials for geothermal production

    NASA Astrophysics Data System (ADS)

    Kukacka, L. E.

    Advances in the development of new materials continue to be made in the geothermal materials project. Many successes have already been accrued and the results used commercially. In FY-91, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO2 resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued, and considerable success was achieved.

  12. Real-driving emissions of circulating Spanish car fleet in 2015 using RSD Technology.

    PubMed

    Pujadas, M; Domínguez-Sáez, A; De la Fuente, J

    2017-01-15

    In this paper we present the results corresponding to on-road traffic emissions measurements obtained during two field campaigns developed in the Madrid region (Spain) during 2014 and 2015 in the framework of the CORETRA project. The experimental strategy was based on the use of a RSD 4600 remote sensor in interurban roads. These measurements have produced a global database of >190,000 vehicles with their associated emission data (NO/CO 2 , HC/CO 2 and CO/CO 2 ), which can be considered representative of the current Spanish circulating fleet. The results of M1 vehicles were analysed according to their distribution by Euro Standard and engine model. One of the relevant findings is that, despite the progressive introduction of increasingly stringent standards, no NO emission reduction is observed for diesel vehicles with time, although this behavior shows significative differences among brands and engine models. We have also investigated the presence of "high emitter" (HE) vehicles in the Spanish M1 circulating fleet and most of the HE detected corresponded to diesel vehicles with very high NO/CO 2 values. With these results at hand, we strongly propose the future incorporation of the "high emitter vehicle" definition into the European environmental legislation, as well as the establishment of specific strategies in each country/region in order to identify these anomalous vehicles. Identification and repair of HE vehicles within the European circulating fleets, although are not easy tasks, should be considered very important for the improvement of air quality in the EU. The use of non-intrusive optical technologies (i.e. RSD) is an excellent option to provide instantaneous real emission data of each individual vehicle without disturbing traffic and for on-road fleet monitoring. In summary, it is a good strategy to obtain valuable information about the long term surveillance of real vehicle emission trends, specially after the introduction of new standard. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The Detour of an Obstetric Technology: Active Management of Labor Across Cultures.

    PubMed

    Maffi, Irene

    2016-01-01

    Active management of labor (AML) is an obstetric technology developed in Ireland in the 1970s to accelerate labor in nulliparous women. This technology achieved rapid success in Great Britain and in English-speaking countries outside America, which adopted it before many other states around the world. In this article, I explore AML's technical and social characteristics when it was first designed, and then examine its local inflections in a Jordanian and a Swiss maternity hospital to shed light on the ways its transnational circulation modifies its script. I argue that its application is shaped by local material constraints and specific sociocultural configurations, gender regimes, and hospital cultures. Finally, I make a comparative analysis of AML practices in these two settings and in the foundational textbook to disentangle the technical and sociocultural components modeling its local applications.

  14. Cost and performance of coal-based energy in Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temchin, J.; DeLallo, M.R.

    1998-07-01

    As part of the US Department of Energy's (DOE) efforts to establish the strategic benefits of Clean Coal Technologies (CCT), there is a need to evaluate the specific market potential where coal is a viable option. One such market is Brazil, where significant growth in economic development requires innovative and reliable technologies to support the use of domestic coal. While coal is Brazil's most abundant and economic fossil energy resource, it is presently under utilized in the production of electrical power. This report presents conceptual design for pulverized coal (PC) and circulating fluidized-bed combustion (CFBC) options with resulting capital, operatingmore » and financial parameters based on Brazil application conditions. Recent PC and CFBC plant capital costs have dropped with competition in the generation market and have established a competitive position in power generation. Key issues addressed in this study include: Application of market based design approach for FBC and PC, which is competitive within the current domestic, and international power generation markets. Design, fabrication, purchase, and construction methods which reduce capital investment while maintaining equipment quality and plant availability. Impact on coast and performance from application of Brazilian coals, foreign trade and tax policies, construction logistics, and labor requirements. Nominal production values of 200 MWe and 400 MWe were selected for the CFBC power plant and 400 MWe for the PC. The 400 MWe size was chosen to be consistent with the two largest Brazilian PC units. Fluidized bed technology, with limited experience in single units over 200 MW, would consist of two 200 MWe circulating fluidized bed boilers supplying steam to one steam turbine for the 400 MWe capacity. A 200 MWe capacity unit was also developed for CFBC option to support opportunities in re-powering and where specific site or other infrastructure constraints limit production.« less

  15. A Study to Determine the Evolution of Advances in Medical Technology Expected in the Next 25 Years and Possible Impacts on Coast Guard Operations and Support Programs.

    DTIC Science & Technology

    1980-05-01

    abnormalities in pressure tracings of the systemic, the central venous or pulmonary arterial circulation. At some sites (especially the Latter-Day Saints...accurate measurement of central venous pressure has been by direct venous cannulation. However, a group of Swiss doctors has extended the principle of... venous stop flow pressure to develop a noninvasive method of measuring central venous pressure. The method consists of venous auscultation at the thoracic

  16. Rapid Sequencing of Complete env Genes from Primary HIV-1 Samples

    PubMed Central

    Eren, Kemal; Ignacio, Caroline; Landais, Elise; Weaver, Steven; Phung, Pham; Ludka, Colleen; Hepler, Lance; Caballero, Gemma; Pollner, Tristan; Guo, Yan; Richman, Douglas; Poignard, Pascal; Paxinos, Ellen E.; Kosakovsky Pond, Sergei L.

    2016-01-01

    Abstract The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences’ Single Molecule, Real-Time (SMRT®) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data. PMID:29492273

  17. Research on the Learning Effects of Multimedia Assisted Instruction Using Information Technology Model

    ERIC Educational Resources Information Center

    Chen, Chen-Yuan

    2012-01-01

    As technology advances, whether from the previous multi-media teaching, online teaching, or now interactive whiteboard, the various changes in both hardware and software resources as well as information are very huge. The information is quickly circulating under the changes in the old and new technology, and the new knowledge has been created.…

  18. Field Applications of In Situ Remediation Technologies: Ground-Water Circulation Wells

    EPA Pesticide Factsheets

    This report is one in a series that show recent pilot demonstrations and full-scale applications that treat soil and ground water in situ or increase the solubility and mobility of contaminants to improve their removal by other remediation technologies.

  19. Circulating Tumor Cells: Moving Biological Insights into Detection

    PubMed Central

    Chen, Lichan; Bode, Ann M; Dong, Zigang

    2017-01-01

    Circulating tumor cells (CTCs) have shown promising potential as liquid biopsies that facilitate early detection, prognosis, therapeutic target selection and monitoring treatment response. CTCs in most cancer patients are low in abundance and heterogeneous in morphological and phenotypic profiles, which complicate their enrichment and subsequent characterization. Several methodologies for CTC enrichment and characterization have been developed over the past few years. However, integrating recent advances in CTC biology into these methodologies and the selection of appropriate enrichment and characterization methods for specific applications are needed to improve the reliability of CTC biopsies. In this review, we summarize recent advances in the studies of CTC biology, including the mechanisms of their generation and their potential forms of existence in blood, as well as the current CTC enrichment technologies. We then critically examine the selection of methods for appropriately enriching CTCs for further investigation of their clinical applications. PMID:28819450

  20. Theranostic nanoemulsions: codelivery of hydrophobic drug and hydrophilic imaging probe for cancer therapy and imaging.

    PubMed

    Yang, Xinggang; Wang, Dun; Ma, Yan; Zhao, Qiang; Fallon, John K; Liu, Dan; Xu, Xian Emma; Wang, Yongjun; He, Zhonggui; Liu, Feng

    2014-12-01

    To develop a theranostic nanoemulsion (TNE) that can codeliver the conjugates of a hydrophobic drug paclitaxel (PTX) and a hydrophilic imaging probe sulforhodamine B (SRB). The TNE was established using core-matched technology, and can achieve high encapsulation efficiency and synchronized release of the loaded cargo. It has been examined for a correlation between the dynamic uptake of PTX and the intensity of SRB imaging signal in different organs. Our data demonstrate that the TNE, with improved circulation time, increases therapeutic efficacy and imaging efficiency in both drug-sensitive and drug-resistant cancer. The TNE could not satisfy the demand of visual diagnosis in the living animal because of interference. We therefore formulated a long-circulating theranostic nanoemulsion (LCTNE). Results showed that the LCTNE can meet imaging requirements in vivo. The LCTNE plays a good therapeutic and diagnostic role for subcutaneous tumors in the living animal.

  1. The evolving history of influenza viruses and influenza vaccines.

    PubMed

    Hannoun, Claude

    2013-09-01

    The isolation of influenza virus 80 years ago in 1933 very quickly led to the development of the first generation of live-attenuated vaccines. The first inactivated influenza vaccine was monovalent (influenza A). In 1942, a bivalent vaccine was produced after the discovery of influenza B. It was later discovered that influenza viruses mutated leading to antigenic changes. Since 1973, the WHO has issued annual recommendations for the composition of the influenza vaccine based on results from surveillance systems that identify currently circulating strains. In 1978, the first trivalent vaccine included two influenza A strains and one influenza B strain. Currently, there are two influenza B lineages circulating; in the latest WHO recommendations, it is suggested that a second B strain could be added to give a quadrivalent vaccine. The history of influenza vaccine and the associated technology shows how the vaccine has evolved to match the evolution of influenza viruses.

  2. Mechanical clearance of red blood cells by the human spleen: Potential therapeutic applications of a biomimetic RBC filtration method.

    PubMed

    Duez, J; Holleran, J P; Ndour, P A; Pionneau, C; Diakité, S; Roussel, C; Dussiot, M; Amireault, P; Avery, V M; Buffet, P A

    2015-08-01

    During their lifespan, circulating RBC are frequently checked for their deformability. This mechanical quality control operates essentially in the human spleen. RBC unable to squeeze though narrow splenic slits are retained and cleared from the blood circulation. Under physiological conditions this prevents microvessels from being clogged by senescent, rigid RBC. Retention of poorly deformable RBC is an important determinant of pathogenesis in malaria and may also impact the clinical benefit of transfusion. Modulating the splenic retention of RBC has already been proposed to support therapeutic approaches in these research fields. To this aim, the development of microplates for high throughput filtration of RBC through microsphere layers (microplate-based microsphiltration) has been undertaken. This review focuses on potential therapeutic applications provided by this technology in malaria chemotherapy and transfusion. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Unitized Regenerative Fuel Cell System Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2003-01-01

    Unitized Regenerative Fuel Cells (URFC) have recently been developed by several fuel cell manufacturers. These manufacturers have concentrated their efforts on the development of the cell stack technology itself, and have not up to this point devoted much effort to the design and development of the balance of plant. A fuel cell technology program at the Glenn Research Center (GRC) that has as its goal the definition and feasibility testing of the URFC system balance of plant. Besides testing the feasibility, the program also intends to minimize the system weight, volume, and parasitic power as its goal. The design concept currently being developed uses no pumps to circulate coolant or reactants, and minimizes the ancillary components to only the oxygen and hydrogen gas storage tanks, a water storage tank, a loop heat pipe to control the temperature and two pressure control devices to control the cell stack pressures during operation. The information contained in this paper describes the design and operational concepts employed in this concept. The paper also describes the NASA Glenn research program to develop this concept and test its feasibility.

  4. Early dialogue between the developers of new technologies and pricing and reimbursement agencies: a pilot study.

    PubMed

    Backhouse, Martin E; Wonder, Michael; Hornby, Edward; Kilburg, Anne; Drummond, Michael; Mayer, Friedrich Karl

    2011-06-01

    It is common practice for developers of new health care technologies to engage in early dialogue with the major regulatory agencies; such discussions frequently center around the proposed clinical trial designs to support the registration of new interventions and suggestions on their improvement. Pricing and reimbursement agencies are increasingly using the results from health technology assessments to inform their decision making for new technologies. Such assessments are invariably underpinned by the phase 3 clinical trial evidence which may not provide answers to the key questions. Technology developers are beginning to realize that direct, early dialogue on the evidence requirements of the major pricing and reimbursement agencies, before phase 3 clinical trial designs for their key development compounds have been finalized, may be beneficial. This article reports on the pioneering efforts of one technology developer in seeking early dialogue with seven pricing and reimbursement agencies in five countries globally in 2007-2008 on their likely evidence requirements for a new oral treatment for patients with chronic plaque psoriasis. The pilot project demonstrated that a feasible process of early dialogue could be established, through a face-to-face meeting with prior circulation of a briefing book. Although there was some variation in the advice the similarities far outweighed the differences. More experience of early dialogue needs to be accumulated, involving a wider range of pricing and reimbursement agencies and compounds. The conclusion of this study, however, was that early dialogue can be a worthwhile process for all parties and can lead to a common understanding about evidence development for market access. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  5. Minimal residual disease in breast cancer: an overview of circulating and disseminated tumour cells.

    PubMed

    Tachtsidis, A; McInnes, L M; Jacobsen, N; Thompson, E W; Saunders, C M

    2016-08-01

    Within the field of cancer research, focus on the study of minimal residual disease (MRD) in the context of carcinoma has grown exponentially over the past several years. MRD encompasses circulating tumour cells (CTCs)-cancer cells on the move via the circulatory or lymphatic system, disseminated tumour cells (DTCs)-cancer cells which have escaped into a distant site (most studies have focused on bone marrow), and resistant cancer cells surviving therapy-be they local or distant, all of which may ultimately give rise to local relapse or overt metastasis. Initial studies simply recorded the presence and number of CTCs and DTCs; however recent advances are allowing assessment of the relationship between their persistence, patient prognosis and the biological properties of MRD, leading to a better understanding of the metastatic process. Technological developments for the isolation and analysis of circulating and disseminated tumour cells continue to emerge, creating new opportunities to monitor disease progression and perhaps alter disease outcome. This review outlines our knowledge to date on both measurement and categorisation of MRD in the form of CTCs and DTCs with respect to how this relates to cancer outcomes, and the hurdles and future of research into both CTCs and DTCs.

  6. Aptamer-Based Methods for Detection of Circulating Tumor Cells and Their Potential for Personalized Diagnostics.

    PubMed

    Zamay, Anna S; Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Berezovski, Maxim V

    2017-01-01

    Cancer diagnostics and treatment monitoring rely on sensing and counting of rare cells such as cancer circulating tumor cells (CTCs) in blood. Many analytical techniques have been developed to reliably detect and quantify CTCs using unique physical shape and size of tumor cells and/or distinctive patterns of cell surface biomarkers. Main problems of CTC bioanalysis are in the small number of cells that are present in the circulation and heterogeneity of CTCs. In this chapter, we describe recent progress towards the selection and application of synthetic DNA or RNA aptamers to capture and detect CTCs in blood. Antibody-based approaches for cell isolation and purification are limited because of an antibody's negative effect on cell viability and purity. Aptamers transform cell isolation technology, because they bind and release cells on-demand. The unique feature of anti-CTC aptamers is that the aptamers are selected for cell surface biomarkers in their native state, and conformation without previous knowledge of their biomarkers. Once aptamers are produced, they can be used to identify CTC biomarkers using mass spectrometry. The biomarkers and corresponding aptamers can be exploited to improve cancer diagnostics and therapies .

  7. Benchtop Technologies for Circulating Tumor Cells Separation Based on Biophysical Properties

    PubMed Central

    Low, Wan Shi; Wan Abas, Wan Abu Bakar

    2015-01-01

    Circulating tumor cells (CTCs) are tumor cells that have detached from primary tumor site and are transported via the circulation system. The importance of CTCs as prognostic biomarker is leveraged when multiple studies found that patient with cutoff of 5 CTCs per 7.5 mL blood has poor survival rate. Despite its clinical relevance, the isolation and characterization of CTCs can be quite challenging due to their large morphological variability and the rare presence of CTCs within the blood. Numerous methods have been employed and discussed in the literature for CTCs separation. In this paper, we will focus on label free CTCs isolation methods, in which the biophysical and biomechanical properties of cells (e.g., size, deformability, and electricity) are exploited for CTCs detection. To assess the present state of various isolation methods, key performance metrics such as capture efficiency, cell viability, and throughput will be reported. Finally, we discuss the challenges and future perspectives of CTC isolation technologies. PMID:25977918

  8. Benchtop technologies for circulating tumor cells separation based on biophysical properties.

    PubMed

    Low, Wan Shi; Wan Abas, Wan Abu Bakar

    2015-01-01

    Circulating tumor cells (CTCs) are tumor cells that have detached from primary tumor site and are transported via the circulation system. The importance of CTCs as prognostic biomarker is leveraged when multiple studies found that patient with cutoff of 5 CTCs per 7.5 mL blood has poor survival rate. Despite its clinical relevance, the isolation and characterization of CTCs can be quite challenging due to their large morphological variability and the rare presence of CTCs within the blood. Numerous methods have been employed and discussed in the literature for CTCs separation. In this paper, we will focus on label free CTCs isolation methods, in which the biophysical and biomechanical properties of cells (e.g., size, deformability, and electricity) are exploited for CTCs detection. To assess the present state of various isolation methods, key performance metrics such as capture efficiency, cell viability, and throughput will be reported. Finally, we discuss the challenges and future perspectives of CTC isolation technologies.

  9. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei-Ping Pan; Andy Wu; John T. Riley

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2004 through December 31, 2004. The following tasks have been completed. First, the renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have proceeded well. Second, the detailed design of supporting and hanging structures for the CFBC was completed. Third, the laboratory-scale simulated fluidized-bed facility was modified after completing a series of pretests. The two problems identified during the pretest were solved.more » Fourth, the carbonization of chicken waste and coal was investigated in a tube furnace and a Thermogravimetric Analyzer (TGA). The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.« less

  10. Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers

    PubMed Central

    Katchman, Benjamin A.; Smith, Joseph T.; Obahiagbon, Uwadiae; Kesiraju, Sailaja; Lee, Yong-Kyun; O’Brien, Barry; Kaftanoglu, Korhan; Blain Christen, Jennifer; Anderson, Karen S.

    2016-01-01

    Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined commercial flat panel OLED display technology with protein microarray technology to enable high-density fluorescent, programmable, multiplexed biorecognition in a compact and disposable configuration with clinical-level sensitivity. Our approach leverages advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm2. Here, we demonstrate quantitative detection of IgG antibodies to multiple viral antigens in patient serum samples with detection limits for human IgG in the 10 pg/mL range. We also demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers. PMID:27374875

  11. Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers.

    PubMed

    Katchman, Benjamin A; Smith, Joseph T; Obahiagbon, Uwadiae; Kesiraju, Sailaja; Lee, Yong-Kyun; O'Brien, Barry; Kaftanoglu, Korhan; Blain Christen, Jennifer; Anderson, Karen S

    2016-07-04

    Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined commercial flat panel OLED display technology with protein microarray technology to enable high-density fluorescent, programmable, multiplexed biorecognition in a compact and disposable configuration with clinical-level sensitivity. Our approach leverages advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm(2). Here, we demonstrate quantitative detection of IgG antibodies to multiple viral antigens in patient serum samples with detection limits for human IgG in the 10 pg/mL range. We also demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers.

  12. Symbols in motion: Flexible cultural boundaries and the fast spread of the Neolithic in the western Mediterranean

    PubMed Central

    Manen, Claire; García-Martínez de Lagrán, Iñigo

    2018-01-01

    The rapid diffusion of farming technologies in the western Mediterranean raises questions about the mechanisms that drove the development of intensive contact networks and circulation routes between incoming Neolithic communities. Using a statistical method to analyze a brand-new set of cultural and chronological data, we document the large-scale processes that led to variations between Mediterranean archaeological cultures, and micro-scale processes responsible for the transmission of cultural practices within farming communities. The analysis of two symbolic productions, pottery decorations and personal ornaments, shed light on the complex interactions developed by Early Neolithic farmers in the western Mediterranean area. Pottery decoration diversity correlates with local processes of circulation and exchange, resulting in the emergence and the persistence of stylistic and symbolic boundaries between groups, while personal ornaments reflect extensive networks and the high level of mobility of Early Neolithic farmers. The two symbolic productions express different degrees of cultural interaction that may have facilitated the successful and rapid expansion of early farming societies in the western Mediterranean. PMID:29715284

  13. Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy

    PubMed Central

    2017-01-01

    Albumin is the most abundant circulating protein in plasma and has recently emerged as a versatile protein carrier for drug targeting and for improving the pharmacokinetic profile of peptide or protein based drugs. Three drug delivery technologies related to albumin have been developed, which include the coupling of low-molecular weight drugs to exogenous or endogenous albumin, conjugating bioactive proteins by albumin fusion technology (AFT), and encapsulation of drugs into albumin nanoparticles. This review article starts with a brief introduction of human serum albumin (HSA), and then summarizes the mainstream chemical strategies of developing HSA binding molecules for coupling with drug molecules. Moreover, we also concisely condense the recent progress of the most important clinical applications of HSA-binding platforms, and specify the current challenges that need to be met for a bright future of HSA-binding. PMID:26771036

  14. Development of Middle Stone Age innovation linked to rapid climate change

    PubMed Central

    Ziegler, Martin; Simon, Margit H.; Hall, Ian R.; Barker, Stephen; Stringer, Chris; Zahn, Rainer

    2013-01-01

    The development of modernity in early human populations has been linked to pulsed phases of technological and behavioural innovation within the Middle Stone Age of South Africa. However, the trigger for these intermittent pulses of technological innovation is an enigma. Here we show that, contrary to some previous studies, the occurrence of innovation was tightly linked to abrupt climate change. Major innovational pulses occurred at times when South African climate changed rapidly towards more humid conditions, while northern sub-Saharan Africa experienced widespread droughts, as the Northern Hemisphere entered phases of extreme cooling. These millennial-scale teleconnections resulted from the bipolar seesaw behaviour of the Atlantic Ocean related to changes in the ocean circulation. These conditions led to humid pulses in South Africa and potentially to the creation of favourable environmental conditions. This strongly implies that innovational pulses of early modern human behaviour were climatically influenced and linked to the adoption of refugia. PMID:23695699

  15. Development of Middle Stone Age innovation linked to rapid climate change.

    PubMed

    Ziegler, Martin; Simon, Margit H; Hall, Ian R; Barker, Stephen; Stringer, Chris; Zahn, Rainer

    2013-01-01

    The development of modernity in early human populations has been linked to pulsed phases of technological and behavioural innovation within the Middle Stone Age of South Africa. However, the trigger for these intermittent pulses of technological innovation is an enigma. Here we show that, contrary to some previous studies, the occurrence of innovation was tightly linked to abrupt climate change. Major innovational pulses occurred at times when South African climate changed rapidly towards more humid conditions, while northern sub-Saharan Africa experienced widespread droughts, as the Northern Hemisphere entered phases of extreme cooling. These millennial-scale teleconnections resulted from the bipolar seesaw behaviour of the Atlantic Ocean related to changes in the ocean circulation. These conditions led to humid pulses in South Africa and potentially to the creation of favourable environmental conditions. This strongly implies that innovational pulses of early modern human behaviour were climatically influenced and linked to the adoption of refugia.

  16. [Advances in Liquid Biopsy and its Clinical Application in the Diagnosis 
and Treatment of Non-small Cell Lung Cancer].

    PubMed

    Zheng, Difan; Chen, Haiquan

    2016-06-20

    With the advances of technology, great progresses have been made in liquid biopsy in recent years. Liquid biopsy is currently playing a more and more important role in early diagnosis and treatment of cancer. Compared with traditional tissue biopsy, liquid biopsy is more popular in clinical practice due to its non-invasiveness, convenience and high repeatability. It has huge potential in the future. This review introduces circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) as the most important objects in liquid biopsy, mainly focusing on their history, biological characteristics, detection technologies, limitations and applications in non-small cell lung cancer.

  17. Ocean Circulation Modeling for Aquatic Dispersion of Liquid Radioactive Effluents from Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Y.G.; Lee, G.B.; Bang, S.Y.

    2006-07-01

    Recently, three-dimensional models have been used for aquatic dispersion of radioactive effluents in relation to nuclear power plant siting based on the Notice No. 2003-12 'Guideline for investigating and assessing hydrological and aquatic characteristics of nuclear facility site' of the Ministry of Science and Technology (MOST) in Korea. Several nuclear power plants have been under construction or planed, which are Shin-Kori Unit 1 and 2, Shin-Wolsong Unit 1 and 2, and Shin-Ulchin Unit 1 and 2. For assessing the aquatic dispersion of radionuclides released from the above nuclear power plants, it is necessary to know the coastal currents around sitesmore » which are affected by circulation of East Sea. In this study, a three dimensional hydrodynamic model for the circulation of the East Sea of Korea has been developed as the first phase, which is based on the RIAMOM (Research Institute of Applied Mechanics' Ocean Model, Kyushu University, Japan). The model uses the primitive equation with hydrostatic approximation, and uses Arakawa-B grid system horizontally and Z coordinate vertically. Model domain is 126.5 deg. E to 142.5 deg. E of east longitude and 33 deg. N and 52 deg. N of the north latitude. The space of the horizontal grid was 1/12 deg. to longitude and latitude direction and vertical level was divided to 20. This model uses Generalized Arakawa Scheme, Slant Advection, and Mode-Splitting Method. The input data were from JODC (Japan Oceanographic Data Center), KNFRDI (Korea National Fisheries Research and Development Institute), and ECMWF (European Center for Medium-Range Weather Forecasts). The modeling results are in fairly good agreement with schematic patterns of the surface circulation in the East Sea/Japan Sea. The local current model and aquatic dispersion model of the coastal region will be developed as the second phase. The oceanic dispersion experiments will be also carried out by using ARGO Drifter around a nuclear power plant site. (authors)« less

  18. Circulation as Assessment: Collection Development Policies Evaluated in Terms of Circulation at a Small Academic Library.

    ERIC Educational Resources Information Center

    Dinkins, Debbi

    2003-01-01

    Discusses the use of academic library circulation statistics to assess whether user needs are being met and describes a study at Stetson University that investigated collection development practices by comparing circulation statistics for books selected by faculty in support of departmental curricula with those of librarian selections. (Author/LRW)

  19. Prospects for the commercial development of hot dry rock geothermal energy in New Mexico

    NASA Astrophysics Data System (ADS)

    Duchane, D. V.; Goff, F.

    A vast store of energy is available to the world in the form of hot dry rock (HDR) which exists almost everywhere beneath the surface of the earth. The Los Alamos National Laboratory has developed technology to mine the heat from HDR by using techniques developed in the petroleum industry. In practice, an artificial reservoir is created in the hot rock and water is circulated through the reservoir to extract the thermal energy and bring it to the surface. There are virtually no adverse environmental effects from an HDR plant when the system is operated in a closed-loop mode with the process water continually recirculated. An experimental plant at Fenton Hill, NM is now undergoing long-term testing to demonstrate that energy can be obtained from HDR on a sustained basis with operational procedures which are readily adaptable to industry. Significant HDR resources exist in the state of New Mexico. Resources in the Valles Caldera, Zuni Uplift, and Rio Grande Rift have been evaluated in detail. Studies indicate that it should be possible to economically develop high grade HDR resources with technology available today. As advanced concepts for developing and operating HDR systems are investigated, even more widespread utilization of the technology will be commercially feasible.

  20. A stochastic model for tropical cyclone tracks based on Reanalysis data and GCM output

    NASA Astrophysics Data System (ADS)

    Ito, K.; Nakano, S.; Ueno, G.

    2014-12-01

    In the present study, we try to express probability distribution of tropical cyclone (TC) trajectories estimated on the basis of GCM output. The TC tracks are mainly controlled by the atmospheric circulation such as the trade winds and the Westerlies as well as are influenced to move northward by the Beta effect. The TC tracks, which calculated with trajectory analysis, would thus correspond to the movement of TCs due to the atmospheric circulation. Comparing the result of the trajectory analysis from reanalysis data with the Best Track (BT) of TC in the present climate, the structure of the trajectory seems to be similar to the BT. However, here is a significant problem for the calculation of a trajectory in the reanalysis wind field because there are many rotation elements including TCs in the reanalysis data. We assume that a TC would move along the steering current and the rotations would not have a great influence on the direction of moving. We are designing a state-space model based on the trajectory analysis and put an adjustment parameter for the moving vector. Here, a simple track generation model is developed. This model has a possibility to gain the probability distributions of calculated TC tracks by fitting to the BT using data assimilation. This work was conducted under the framework of the "Development of Basic Technology for Risk Information on Climate Change" supported by the SOUSEI Program of the Ministry of Education, Culture, Sports, Science, and Technology.

  1. Potential Technology Transfer to the DoD Unmanned Ground Vehicle Program.

    DTIC Science & Technology

    1996-10-01

    Germany. This process combines x-ray lithography, galvanic casting, and micromolding technology and can be used to produce a variety of sensors and...whether circulation is being obstructed by atherosclerosis . Finally, work is being done at the University of Minnesota on a microrobotic device

  2. Fiber-Optic Array Scanning Technology (FAST) for Detection and Molecular Characterization of Circulating Tumor Cells.

    PubMed

    Ao, Zheng; Liu, Xiaohe

    2017-01-01

    Circulating tumor cell (CTC) as an important component in "liquid biopsy" holds crucial clinical relevance in cancer prognosis, treatment efficiency evaluation, prediction and potentially early detection. Here, we present a Fiber-optic Array Scanning Technology (FAST) that enables antigen-agnostic, size-agnostic detection of CTC. By immunofluorescence staining detection of a combination of a panel of markers, FAST technology can be applied to detect rare CTC in non-small cell lung cancer (NSCLC) setting with high sensitivity and specificity. In combination with Automated Digital Microscopy (ADM) platform, companion markers on CTC such as Vimentin and Programmed death-ligand 1 (PD-L1) can also be analyzed to further characterize these CTCs. FAST data output is also compatible with downstream single cell picking platforms. Single cell can be isolated post ADM confirmation and used for "actionable" genetic mutations analysis.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutanen, K.I.

    Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the USmore » the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.« less

  4. Development of Flexi-Burn™ CFB Power Plant to Meet the Challenge of Climate Change

    NASA Astrophysics Data System (ADS)

    Hackt, Horst; Fant, Zhen; Seltzert, Andrew; Hotta, Arto; Erikssoni, Timo; Sippu, Ossi

    Carbon-dioxide capture and storage (CCS) offers the potential for major reductions in carbon- dioxide emissions of fossil fuel-based power generation in the fairly short term, and oxyfuel combustion is one of the identified CCS technology options. Foster Wheeler (FW) is working on reduction of carbon-dioxide with its integrated Flexi-Burn™ CFB technology. The proven high efficiency circulating fluidized-bed (CFB) technology, when coupled with air separation units and carbon purification units, offers a solution for carbon dioxide reduction both in re-powering and in greenfield power plants. CFB technology has the advantages over pulverized coal technology of a more uniform furnace heat flux, increased fuel flexibility and offers the opportunity to further reduce carbon dioxide emissions by co-firing coal with bio-fuels. Development and design of an integrated Flexi-Bum™ CFB steam generator and balance of plant system was conducted for both air mode and oxyfuel mode. Through proper configuration and design, the same steam generator can be switched from air mode to oxyfuel mode without the need for unit shutdown for modifications. The Flexi-Burn™ CFB system incorporates features to maximize plant efficiency and power output when operating in the oxy-firing mode through firing more fuel in the same boiler.

  5. Flow Control Research at NASA Langley in Support of High-Lift Augmentation

    NASA Technical Reports Server (NTRS)

    Sellers, William L., III; Jones, Gregory S.; Moore, Mark D.

    2002-01-01

    The paper describes the efforts at NASA Langley to apply active and passive flow control techniques for improved high-lift systems, and advanced vehicle concepts utilizing powered high-lift techniques. The development of simplified high-lift systems utilizing active flow control is shown to provide significant weight and drag reduction benefits based on system studies. Active flow control that focuses on separation, and the development of advanced circulation control wings (CCW) utilizing unsteady excitation techniques will be discussed. The advanced CCW airfoils can provide multifunctional controls throughout the flight envelope. Computational and experimental data are shown to illustrate the benefits and issues with implementation of the technology.

  6. AIRS-Light Instrument Concept and Critical Technology Development

    NASA Technical Reports Server (NTRS)

    Maschhoff, Kevin

    2001-01-01

    Understanding Earth's climate, atmospheric transport mechanisms, and the hydrologic cycle requires a precise knowledge of global atmospheric circulation, temperature profiles, and water vapor distribution. The accuracy of advanced sounders such as AIRS/AMSU/HSB on NASA's Aqua spacecraft can match radiosonde accuracy. It is essential to fold those capabilities fully into the NPOESS, enabling soundings of radiosonde accuracy, every 6 hours around the globe on an operational basis. However, the size, mass, power demands, and thermal characteristics of the Aqua sounding instrument suite cannot be accommodated on the NPOESS spacecraft. AIRS-Light is an instrument concept, developed under the Instrument Incubator Program, which provides IR sounding performance identical to the AIRS instrument, but uses advances in HgCdTe FPA technology and pulse tube cooler technology, as well as design changes to dramatically reduce the size, mass, and power demand, allowing AIRS-Light to meet all NPOESS spacecraft interface requirements. The instrument concept includes substantial re-use of AIRS component designs, including the complex AIRS FPA, to reduce development risk and cost. The AIRS-Light Instrument Incubator program fostered the development of photovoltaic-mode HgCdTe detector array technology for the 13.5-15.4 micron band covered by photoconductive-mode HgCdTe arrays in AIRS, achieved state of the art results in this band, and substantially reduced the development risk for this last new technology needed for AIRS-Light implementation, A demonstration of a prototype 14.5-15.4 micron band IRFPA in a reduced heat-load dewar together with the IMAS pulse tube cryocooler is in progress.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, P.A.; Patel, N.M.; Painter, A.

    Energy recovery from municipal solid waste (MSW) is an important component of an integrated waste management strategy. Waste management programs which remove or recover materials for recycling are particularly suited for considering the option of energy recovery via fluidized bed combustion (FBC). The last few years have seen growing interest in the application of FBC technology to the MSW treatment/disposal problem. This paper reviews and reports on the world-wide experience in fluidized bed combustion of MSW focusing particularly on the types and scales of the systems in operation in Japan and Scandinavia. In addition the paper also reports on themore » development of an energy from waste project employing circulating fluidized bed technology that is proposed for a local municipality in the UK. Japan currently has over 100 bubbling bed units in operation firing on 100% MSW; the technology is firmly established at scales of operation up to 160,000t/y (the largest single unit operates at 6.25t/h). The bubbling bed units accept MSW which has undergone only minimal pre-processing -- the waste is shredded to a nominal 300mm size fraction before being introduced to the furnace. There are distinct (combustion control) advantages to further processing of the waste stream prior to combustion. The Scandinavian countries in particular have been the prime movers in pioneering this technology to work in combination with circulating fluidized bed systems. Currently 2 units are in operation cofiring pre-processed MSW with a range of other biofuels. A number of FBC units firing 100% MSW are currently in the planning or construction stage around the world; they seem set to secure an increased market share particularly at the smaller scale of operation (up to about 200,000t/y).« less

  8. Emerging Role of Nanomaterials in Circulating Tumor Cell Isolation and Analysis

    PubMed Central

    2015-01-01

    Circulating tumor cells (CTCs) are low frequency cells found in the bloodstream after having been shed from a primary tumor. These cells are research targets because of the information they may potentially provide about both an individual cancer as well as the mechanisms through which cancer spreads in the process of metastasis. Established technologies exist for CTC isolation, but the recent progress and future of this field lie in nanomaterials. In this review, we provide perspective into historical CTC capture as well as current research being conducted, emphasizing the significance of the materials being used to fabricate these devices. The modern investigation into CTCs initially featured techniques that have since been commercialized. A major innovation in the field was the development of a microfluidic capture device, first fabricated in silicon and followed up with glass and thermopolymer devices. We then specifically highlight the technologies incorporating magnetic nanoparticles, carbon nanotubes, nanowires, nanopillars, nanofibers, and nanoroughened surfaces, graphene oxide and their fabrication methods. The nanoscale provides a new set of tools that has the potential to overcome current limitations associated with CTC capture and analysis. We believe the current trajectory of the field is in the direction of nanomaterials, allowing the improvements necessary to further CTC research. PMID:24601556

  9. Voice Technologies in Libraries: A Look into the Future.

    ERIC Educational Resources Information Center

    Lange, Holley R., Ed.; And Others

    1991-01-01

    Discussion of synthesized speech and voice recognition focuses on a forum that addressed the potential for speech technologies in libraries. Topics discussed by three contributors include possible library applications in technical processing, book receipt, circulation control, and database access; use by disabled and illiterate users; and problems…

  10. IM and SMS for the Circulation Desk

    ERIC Educational Resources Information Center

    Power, June L.

    2012-01-01

    It's been well documented in a number of articles regarding the contemporary library patron that with the rise in mobile computing and smart phone technology, patrons are looking for fast and easy service from whichever technological avenue they are using to access library services. Libraries are responding with increasing numbers of online…

  11. A Low-Cost Indigenous Intervention which has Revolutionized the Drilling Technology and Changed the Life of Millions of Farmers in the State of Uttar Pradesh, India

    NASA Astrophysics Data System (ADS)

    Chaurasia, Pratik Ranjan; Subhash

    2018-06-01

    An unknown indigenous driller combined the percussion and circulation drilling principles, resulting in the development of low cost, low weight manual boring set in the year 1990-1991/1991-1992, which revolutionized the shallow well drilling technology and made possible to drill about 4.5 million shallow bore wells in the State. This has changed the landscape of irrigated agriculture, changing the life of millions of small and marginal farmers and contributed a lot in increasing crop production and crop productivity. The developed drilling equipment locally known as "Pressure Boring Set" is manually operated, low cost and can be transported on bicycles. Drilling cost is also less. This low cost and simple technology made it possible to drill large number of shallow bore wells in comparatively short time span and less cost, consequently enhancing the rate of increase in irrigated area and in turn crop production and productivity. Cost of the boring set is also low, as compared to traditional sand pump hand boring set and suitable for alluvial areas.

  12. A Low-Cost Indigenous Intervention which has Revolutionized the Drilling Technology and Changed the Life of Millions of Farmers in the State of Uttar Pradesh, India

    NASA Astrophysics Data System (ADS)

    Chaurasia, Pratik Ranjan; Subhash

    2018-02-01

    An unknown indigenous driller combined the percussion and circulation drilling principles, resulting in the development of low cost, low weight manual boring set in the year 1990-1991/1991-1992, which revolutionized the shallow well drilling technology and made possible to drill about 4.5 million shallow bore wells in the State. This has changed the landscape of irrigated agriculture, changing the life of millions of small and marginal farmers and contributed a lot in increasing crop production and crop productivity. The developed drilling equipment locally known as "Pressure Boring Set" is manually operated, low cost and can be transported on bicycles. Drilling cost is also less. This low cost and simple technology made it possible to drill large number of shallow bore wells in comparatively short time span and less cost, consequently enhancing the rate of increase in irrigated area and in turn crop production and productivity. Cost of the boring set is also low, as compared to traditional sand pump hand boring set and suitable for alluvial areas.

  13. Circulating microRNAs as novel biomarkers for bone diseases - Complex signatures for multifactorial diseases?

    PubMed

    Hackl, Matthias; Heilmeier, Ursula; Weilner, Sylvia; Grillari, Johannes

    2016-09-05

    Biomarkers are essential tools in clinical research and practice. Useful biomarkers must combine good measurability, validated association with biological processes or outcomes, and should support clinical decision making if used in clinical practice. Several types of validated biomarkers have been reported in the context of bone diseases. However, because these biomarkers face certain limitations there is an interest in the identification of novel biomarkers for bone diseases, specifically in those that are tightly linked to the disease pathology leading to increased fracture-risk. MicroRNAs (miRNAs) are the most abundant RNA species to be found in cell-free blood. Encapsulated within microvesicles or bound to proteins, circulating miRNAs are remarkably stable analytes that can be measured using gold-standard technologies such as quantitative polymerase-chain-reaction (qPCR). Nevertheless, the analysis of circulating miRNAs faces several pre-analytical as well as analytical challenges. From a biological view, there is accumulating evidence that miRNAs play essential roles in the regulation of various biological processes including bone homeostasis. Moreover, specific changes in miRNA transcription levels or miRNA secretory levels have been linked to the development and progression of certain bone diseases. Only recently, results from circulating miRNAs analysis in patients with osteopenia, osteoporosis and fragility fractures have been reported. By comparing these findings to studies on circulating miRNAs in cellular senescence and aging or muscle physiology and sarcopenia, several overlaps were observed. This suggests that signatures observed during osteoporosis might not be specific to the pathophysiology in bone, but rather integrate information from several tissue types. Despite these promising first data, more work remains to be done until circulating miRNAs can serve as established and robust diagnostic tools for bone diseases in clinical research, clinical routine and in personalized medicine. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. DESIGN OF A GAMMA-RAY SOURCE BASED ON INVERSE COMPTON SCATTERING AT THE FAST SUPERCONDUCTING LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, D.; Jacobson, B.; Murokh, A.

    2016-10-10

    A watt-level average-power gamma-ray source is currently under development at the Fermilab Accelerator Science & Technology (FAST) facility. The source is based on the Inverse Compton Scattering of a high-brightness 300-MeV beam against a high-power laser beam circulating in an optical cavity. The back scattered gamma rays are expected to have photon energies up to 1.5 MeV. This paper discusses the optimization of the source, its performances, and the main challenges ahead.

  15. Commercialization of the Stone and Webster/Conoco SCB technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, R.C.; Johnson, W.B.; Ratliff, B.D.

    1982-06-01

    Stone and Webster have developed a second generation recirculating fluidized bed boiler system, named Solids Circulation Boiler (SCB). The heart of the system is the recirculating fluidized bed, which is schematized, and explained. In November 1981 Conoco announced plans to construct an SCB at Lake Charles LA. Preliminary plot plan and elevation drawings are provided. The advantages of SCB are its rapid and controlled turn on and turn down capability, high carbon efficiency, simple coal and limestone feed system, high sulphur capture, compact design, and low NOx emission.

  16. Review of the clinical applications and technological advances of circulating tumor DNA in cancer monitoring.

    PubMed

    Chang, Yi; Tolani, Bhairavi; Nie, Xiuhong; Zhi, Xiuyi; Hu, Mu; He, Biao

    2017-01-01

    Circulating cell-free DNA (cfDNA) released by tumor cells, termed ctDNA, closely reflects the heterogeneity of primary cancers and their metastases. As a noninvasive, real-time monitoring biomarker, ctDNA is a promising tool for detecting driver gene mutations, assessing tumor burden and acquired resistance, and early diagnosis. However, isolation and enrichment of cfDNA is a big challenge due to the high degree of DNA fragmentation and its relatively low abundance in the bloodstream. This review aims to provide insights into the recent technological advances in acquisition of optimal quality cfDNA, the use of preservatives, isolation methods, processing timelines, and detection techniques. It also describes clinical applications of ctDNA in cancer patient management.

  17. Federal Geothermal Research Program Update, FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less

  18. Federal Geothermal Research Program Update Fiscal Year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less

  19. Current Technologies and Recent Developments for Screening of HPV-Associated Cervical and Oropharyngeal Cancers

    PubMed Central

    Shah, Sunny S.; Senapati, Satyajyoti; Klacsmann, Flora; Miller, Daniel L.; Johnson, Jeff J.; Chang, Hsueh-Chia; Stack, M. Sharon

    2016-01-01

    Mucosal infection by the human papillomavirus (HPV) is responsible for a growing number of malignancies, predominantly represented by cervical cancer and oropharyngeal squamous cell carcinoma. Because of the prevalence of the virus, persistence of infection, and long latency period, novel and low-cost methods are needed for effective population level screening and monitoring. We review established methods for screening of cervical and oral cancer as well as commercially-available techniques for detection of HPV DNA. We then describe the ongoing development of microfluidic nucleic acid-based biosensors to evaluate circulating host microRNAs that are produced in response to an oncogenic HPV infection. The goal is to develop an ideal screening platform that is low-cost, portable, and easy to use, with appropriate signal stability, sensitivity and specificity. Advances in technologies for sample lysis, pre-treatment and concentration, and multiplexed nucleic acid detection are provided. Continued development of these devices provides opportunities for cancer screening in low resource settings, for point-of-care diagnostics and self-screening, and for monitoring response to vaccination or surgical treatment. PMID:27618102

  20. Revisiting Gill's Circulation. Dynamic Response to Diabatic Heating of Different Horizontal Extents

    NASA Astrophysics Data System (ADS)

    Reboredo, B.; Bellon, G.

    2017-12-01

    The horizontal extent of diabatic heating associated with the MJO is thought to be crucial to its development, and the inability of GCMs to simulate the spatial, horizontal organization of clouds is considered a leading hypothesis to explain their limited capacity to simulate MJO events. This prevents the MJO large-circulation response from developing and feeding back on the development of clouds. We apply mid-tropospheric heating of different size in simple linear and non-linear models of the tropical atmosphere following Gill's seminal work on heat-induced tropical circulations. Results show that there is a scale for which the characteristic circulation {Γ c} for the vertical advection of moisture to produce the latent heat mean {Q} gives a rough estimate of the real world MJO scale. Overturning circulation flow rates above {Γ c} account for a circulation that transports more moisture than necessary to be maintained, and below {Γ c}, circulation would not transport enough moisture to maintain circulation. This dynamic scale might constrain the size of the spatially-organised convection necessary to the development of an MJO event. However, other effects are expected to modulate this scale, such as vertical advection of moisture anomalies, horizontal advection, evaporation, radiative heating, and sensible heat fluxes.

  1. E-Books and New Library Service Models: An Analysis of the Impact of E-Book Technology on Academic Libraries.

    ERIC Educational Resources Information Center

    Jantz, Ronald

    2001-01-01

    Analyzes the implications of electronic book technology (e-books) on academic libraries. Discusses new business models for publishers, including self-publishing, Internet publishing, and partnerships with libraries as publishers; impact on library services, including cataloging, circulation, and digital preservation; user benefits; standards;…

  2. Affinity Versus Label-Free Isolation of Circulating Tumor Cells: Who Wins?

    PubMed

    Murlidhar, Vasudha; Rivera-Báez, Lianette; Nagrath, Sunitha

    2016-09-01

    The study of circulating tumor cells (CTCs) has been made possible by many technological advances in their isolation. Their isolation has seen many fronts, but each technology brings forth a new set of challenges to overcome. Microfluidics has been a key player in the capture of CTCs and their downstream analysis, with the aim of shedding light into their clinical application in cancer and metastasis. Researchers have taken diverging paths to isolate such cells from blood, ranging from affinity-based isolation targeting surface antigens expressed on CTCs, to label-free isolation taking advantage of the size differences between CTCs and other blood cells. For both major groups, many microfluidic technologies have reported high sensitivity and specificity for capturing CTCs. However, the question remains as to the superiority among these two isolation techniques, specifically to identify different CTC populations. This review highlights the key aspects of affinity and label-free microfluidic CTC technologies, and discusses which of these two would be the highest benefactor for the study of CTCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mechanical regulation of cardiac development

    PubMed Central

    Lindsey, Stephanie E.; Butcher, Jonathan T.; Yalcin, Huseyin C.

    2014-01-01

    Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development. PMID:25191277

  4. Bench-scale Development of an Advanced Solid Sorbent-based CO 2 Capture Process for Coal-fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Thomas; Kataria, Atish; Soukri, Mustapha

    It is increasingly clear that CO 2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO 2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO 2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO 2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO 2 capture processes – such as RTI’s Advancedmore » Solid Sorbent CO 2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO 2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO 2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO 2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO 2 capture. The overall objective of this project was to mitigate the technical and economic risks associated with the scale-up of solid sorbent-based CO 2 capture processes, enabling subsequent larger pilot demonstrations and ultimately commercial deployment. An integrated development approach has been a key focus of this project in which process development, sorbent development, and economic analyses have informed each of the other development processes. Development efforts have focused on improving the performance stability of sorbent candidates, refining process engineering and design, and evaluating the viability of the technology through detailed economic analyses. Sorbent advancements have led to a next generation, commercially-viable CO 2 capture sorbent exhibiting performance stability in various gas environments and a physically strong fluidizable form. The team has reduced sorbent production costs and optimized the production process and scale-up of PEI-impregnated, fluidizable sorbents. Refinement of the process engineering and design, as well as the construction and operation of a bench-scale research unit has demonstrated promising CO 2 capture performance under simulated coal-fired flue gas conditions. Parametric testing has shown how CO 2 capture performance is impacted by changing process variables, such as Adsorber temperature, Regenerator temperature, superficial flue gas velocity, solids circulation rate, CO 2 partial pressure in the Regenerator, and many others. Long-term testing has generated data for the project team to set the process conditions needed to operate a solids-based system for optimal performance, with continuous 90% CO 2 capture, and no operational interruptions. Data collected from all phases of testing has been used to develop a detailed techno-economic assessment of RTI’s technology. These detailed analyses show that RTI’s technology has significant economic advantages over current amine scrubbing and potential to achieve the DOE’s Carbon Capture Program’s goal of >90% CO 2 capture rate at a cost of < $40/T-CO 2 captured by 2025. Through this integrated technology development approach, the project team has advanced RTI’s CO 2 capture technology to TRL-4 (nearly TRL-5, with the missing variable being testing on actual, coal-fired flue gas), according to the DOE/FE definitions for Technology Readiness Levels. At a broader level, this project has advanced the whole of the solid sorbent CO 2 capture field, with advancements in process engineering and design, technical risk mitigation, sorbent scale-up optimization, and an understanding of the commercial viability and applicability of solid sorbent CO 2 capture technologies for the U.S. existing fleet of coal-fired power plants.« less

  5. The Sterilization Effect of Cooperative Treatment of High Voltage Electrostatic Field and Variable Frequency Pulsed Electromagnetic Field on Heterotrophic Bacteria in Circulating Cooling Water

    NASA Astrophysics Data System (ADS)

    Gao, Xuetong; Liu, Zhian; Zhao, Judong

    2018-01-01

    Compared to other treatment of industrial circulating cooling water in the field of industrial water treatment, high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization technology, an advanced technology, is widely used because of its special characteristics--low energy consumption, nonpoisonous and environmentally friendly. In order to get a better cooling water sterilization effect under the premise of not polluting the environment, some experiments about sterilization of heterotrophic bacteria in industrial circulating cooling water by cooperative treatment of high voltage electrostatic field and variable frequency pulsed electromagnetic field were carried out. The comparison experiment on the sterilization effect of high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization on heterotrophic bacteria in industrial circulating cooling water was carried out by change electric field strength and pulse frequency. The results show that the bactericidal rate is selective to the frequency and output voltage, and the heterotrophic bacterium can only kill under the condition of sweep frequency range and output voltage. When the voltage of the high voltage power supply is 4000V, the pulse frequency is 1000Hz and the water temperature is 30°C, the sterilization rate is 48.7%, the sterilization rate is over 90%. Results of this study have important guiding significance for future application of magnetic field sterilization.

  6. Advances in Nonlinear Non-Scaling FFAGs

    NASA Astrophysics Data System (ADS)

    Johnstone, C.; Berz, M.; Makino, K.; Koscielniak, S.; Snopok, P.

    Accelerators are playing increasingly important roles in basic science, technology, and medicine. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS) and many HEP programs (Muon Collider) but remain particularly challenging, encountering duty cycle and space-charge limits in the synchrotron and machine size concerns in the weaker-focusing cyclotrons; a 10-20 MW proton driver is not presently considered technically achievable with conventional re-circulating accelerators. One, as-yet, unexplored re-circulating accelerator, the Fixed-field Alternating Gradient or FFAG, is an attractive alternative to the other approaches to a high-power beam source. Its strong focusing optics can mitigate space charge effects and achieve higher bunch charges than are possible in a cyclotron, and a recent innovation in design has coupled stable tunes with isochronous orbits, making the FFAG capable of fixed-frequency, CW acceleration, as in the classical cyclotron but beyond their energy reach, well into the relativistic regime. This new concept has been advanced in non-scaling nonlinear FFAGs using powerful new methodologies developed for FFAG accelerator design and simulation. The machine described here has the high average current advantage and duty cycle of the cyclotron (without using broadband RF frequencies) in combination with the strong focusing, smaller losses, and energy variability that are more typical of the synchrotron. The current industrial and medical standard is a cyclotron, but a competing CW FFAG could promote a shift in this baseline. This paper reports on these new advances in FFAG accelerator technology and presents advanced modeling tools for fixed-field accelerators unique to the code COSY INFINITY.1

  7. Deep sequencing of near full-length HIV-1 genomes from plasma identifies circulating subtype C and infrequent occurrence of AC recombinant form in Southern India

    PubMed Central

    Sampathkumar, Raghavan; Sivaraman, Karthi; U. K. J., Anto Jesuraj; Dhar, Chirag; D. Souza, George; Berry, Neil

    2017-01-01

    India has the third largest number of HIV-1-infected individuals accounting for approximately 2.1 million people, with a predominance of circulating subtype C strains and a low prevalence of subtype A and A1C and BC recombinant forms, identified over the past two decades. Recovery of near full-length HIV-1 genomes from a plasma source coupled with advances in next generation sequencing (NGS) technologies and development of universal methods for amplifying whole genomes of HIV-1 circulating in a target geography or population provides the opportunity for a detailed analysis of HIV-1 strain identification, evolution and dynamics. Here we describe the development and implementation of approaches for HIV-1 NGS analysis in a southern Indian cohort. Plasma samples (n = 20) were obtained from HIV-1-confirmed individuals living in and around the city of Bengaluru. Near full-length genome recovery was obtained for 9 Indian HIV-1 patients, with recovery of full-length gag and env genes for 10 and 2 additional subjects, respectively. Phylogenetic analyses indicate the majority of sequences to be represented by subtype C viruses branching within a monophyletic clade, comprising viruses from India, Nepal, Myanmar and China and closely related to a southern African cluster, with a low prevalence of the A1C recombinant form also present. Development of algorithms for bespoke recovery and analysis at a local level will further aid clinical management of HIV-1 infected Indian subjects and delineate the progress of the HIV-1 pandemic in this and other geographical regions. PMID:29220350

  8. 76 FR 12217 - Exempt Discretionary Program Grants (Section 5309) for Urban Circulator Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... redevelopment of urban spaces into walkable mixed use, high density environments. FOR FURTHER INFORMATION... development. FTA's approval to advance the Urban Circulator projects through project development and grant... urban circulators shall be required to submit information that describes the impact of the urban...

  9. Kinetic model of continuous ethanol fermentation in closed-circulating process with pervaporation membrane bioreactor by Saccharomyces cerevisiae.

    PubMed

    Fan, Senqing; Chen, Shiping; Tang, Xiaoyu; Xiao, Zeyi; Deng, Qing; Yao, Peina; Sun, Zhaopeng; Zhang, Yan; Chen, Chunyan

    2015-02-01

    Unstructured kinetic models were proposed to describe the principal kinetics involved in ethanol fermentation in a continuous and closed-circulating fermentation (CCCF) process with a pervaporation membrane bioreactor. After ethanol was removed in situ from the broth by the membrane pervaporation, the secondary metabolites accumulated in the broth became the inhibitors to cell growth. The cell death rate related to the deterioration of the culture environment was described as a function of the cell concentration and fermentation time. In CCCF process, 609.8 g L(-1) and 750.1 g L(-1) of ethanol production were obtained in the first run and second run, respectively. The modified Gompertz model, correlating the ethanol production with the fermentation period, could be used to describe the ethanol production during CCCF process. The fitting results by the models showed good agreement with the experimental data. These models could be employed for the CCCF process technology development for ethanol fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Circulating Tumor Cells (CTCs): Emerging Technologies for Detection, Diagnosis and Treatment

    NASA Astrophysics Data System (ADS)

    McCarty, Owen

    2010-03-01

    Circulating tumor cell enumeration and characterization have the potential of providing real-time access to epithelial cancers in patients. This fluid phase biopsy of solid phase tumors is crucial to the development of quantitative diagnostic aiding personalized medicine. Cancer is a highly heterogeneous disease over space and time. Our goal is to generate a mechanistic, yet comprehensive view of both the `FORCE-journey' of a cancer cell during the metastatic phase, and a `TIME-journey' of the disease as it progresses. The approach will correlate the `FORCE' and `TIME' journey with both the bio-clinical aspects and the genomics of this complex problem. Presented will be results from a case study in lung cancer patients for which CTC analysis is compared with clinical progression. Morphologic and molecular characterization at the single cell level will be discussed in the context of the data set and in the context of individual patient management. Preliminary data will be shown to guide a future research agenda to investigate the fluid phase of solid tumors.

  11. Cost analysis of oxygen recovery systems

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1973-01-01

    Report is made of the cost analysis of four leading oxygen recovery subsystems which include two carbon dioxide reduction subsystems and two water electrolysis subsystems, namely, the solid polymer electrolyte and the circulating KOH electrolyte. The four oxygen recovery systems were quantitatively evaluated. System characteristics, including process flows, performance, and physical characteristics were also analyzed. Additionally, the status of development of each of the systems considered and the required advance technology efforts required to bring conceptual and/or pre-prototype hardware to an operational prototype status were defined. Intimate knowledge of the operations, development status, and capabilities of the systems to meet space mission requirements were found to be essential in establishing the cost estimating relationships for advanced life support systems.

  12. Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system

    NASA Astrophysics Data System (ADS)

    Kostyukevych, Sergey A.; Kostyukevych, Kateryna V.; Khristosenko, Roman V.; Lysiuk, Viktor O.; Koptyukh, Anastasiya A.; Moscalenko, Nadiya L.

    2017-12-01

    The problems related to the development of a multielement immunosensor device with the prism type of excitation of a surface plasmon resonance in the Kretschmann configuration and with the scanning of the incidence angle of monochromatic light aimed at the reliable determination of the levels of three molecular markers of the system of hemostasis (fibrinogen, soluble fibrin, and D-dimer) are considered. We have analyzed the influence of a technology for the production of a gold coating, modification of its surface, and noise effects on the enhancement of sensitivity and stability of the operation of devices. A means of oriented immobilization of monoclonal antibodies on the surface of gold using a multilayer film of copper aminopentacyanoferrate is developed. For the model proteins of studied markers, the calibrating curves (maximum sensitivity of 0.5 μg/ml) are obtained, and the level of fibrinogen in blood plasma of donors is determined. A four-channel modification of the device with an application of a reference channel for comparing the elimination of the noise of temperature fluctuations has been constructed. This device allows one to execute the express-diagnostics of prethrombotic states and the monitoring of the therapy of diseases of the blood circulation system.

  13. Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives.

    PubMed

    Cima, Igor; Wen Yee, Chay; Iliescu, Florina S; Phyo, Wai Min; Lim, Kiat Hon; Iliescu, Ciprian; Tan, Min Han

    2013-01-01

    This review will cover the recent advances in label-free approaches to isolate and manipulate circulating tumor cells (CTCs). In essence, label-free approaches do not rely on antibodies or biological markers for labeling the cells of interest, but enrich them using the differential physical properties intrinsic to cancer and blood cells. We will discuss technologies that isolate cells based on their biomechanical and electrical properties. Label-free approaches to analyze CTCs have been recently invoked as a valid alternative to "marker-based" techniques, because classical epithelial and tumor markers are lost on some CTC populations and there is no comprehensive phenotypic definition for CTCs. We will highlight the advantages and drawbacks of these technologies and the status on their implementation in the clinics.

  14. A New Dry Flue Gas Desulfurization Process-Underfeed Circulating Spouted Bed

    NASA Astrophysics Data System (ADS)

    Tao, M.; Jin, B. S.; Yang, Y. P.

    Applying an underfeed system, the underfeed circulating spouted bed was designed as a desulfurization reactor. The main objective of the technology is to improve the mixing effect and distribution uniformity of solid particles, and therefore to advance the desulfurization efficiency and calcium utility. In this article, a series of experimental studies were conducted to investigate the fluidization behavior of the solid-gas two-phase flow in the riser. The results show that the technology can distinctly improve the distribution of gas velocity and particle flux on sections compared with the facefeed style. Analysis of pressure fluctuation signals indicates that the operation parameters have significant influence on the flow field in the reaction bed. The existence of injecting flow near the underfeed nozzle has an evident effect on strengthening the particle mixing.

  15. Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 2

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S. (Editor); Joslin, Ronald D. (Editor)

    2005-01-01

    This conference proceeding is comprised of papers that were presented at the NASA/ONR Circulation Control Workshop held 16-17 March 2004 at the Radisson-Hampton in Hampton, VA. Over two full days, 30 papers and 4 posters were presented with 110 scientists and engineers in attendance, representing 3 countries. As technological advances influence the efficiency and effectiveness of aerodynamic and hydrodynamic applications, designs, and operations, this workshop was intended to address the technologies, systems, challenges and successes specific to Coanda driven circulation control in aerodynamics and hydrodynamics. A major goal of this workshop was to determine the state-of-the-art in circulation control and to assess the future directions and applications for circulation control. The 2004 workshop addressed applications, experiments, computations, and theories related to circulation control, emphasizing fundamental physics, systems analysis, and applied research. The workshop consisted of single session oral presentations, posters, and written papers that are documented in this unclassified conference proceeding. The format of this written proceeding follows the agenda of the workshop. Each paper is followed with the presentation given at the workshop. the editors compiled brief summaries for each effort that is at the end of this proceeding. These summaries include the paper, oral presentation, and questions or comments that occurred during the workshop. The 2004 Circulation Control Workshop focused on applications including Naval vehicles (Surface and Underwater vehicles), Fixed Wing Aviation (general aviation, commercial, cargo, and business aircraft); V/STOL platforms (helicopters, military aircraft, tilt rotors); propulsion systems (propellers, jet engines, gas turbines), and ground vehicles (automotive, trucks, and other); wind turbines, and other nontraditional applications (e.g., vacuum cleaner, ceiling fan). As part of the CFD focus area of the 2004 CC Workshop, CFD practitioners were invited to compute a two-dimensional benchmark problem for which geometry, flow conditions, grids, and experimental data were available before the workshop. The purpose was to accumulate a database of simulations for a single problem using a range of CFD codes, turbulence models, and grid strategies so as to expand knowledge of model performance/requirements and guide simulation of practical CC configurations.

  16. Selective phenol methylation to 2,6-dimethylphenol in a fluidized bed of iron-chromium mixed oxide catalyst with o-cresol circulation.

    PubMed

    Zukowski, Witold; Berkowicz, Gabriela; Baron, Jerzy; Kandefer, Stanisław; Jamanek, Dariusz; Szarlik, Stefan; Wielgosz, Zbigniew; Zielecka, Maria

    2014-01-01

    2,6-dimethylphenol (2,6-DMP) is a product of phenol methylation, especially important for the plastics industry. The process of phenol methylation in the gas phase is strongly exothermic. In order to ensure good temperature equalization in the catalyst bed, the process was carried out using a catalyst in the form of a fluidized bed - in particular, the commercial iron-chromium catalyst TZC-3/1. Synthesis of 2,6-dimethylphenol from phenol and methanol in fluidized bed of iron-chromium catalyst was carried out and the fluidization of the catalyst was examined. Stable state of fluidized bed of iron-chromium catalyst was achieved. The measured velocities allowed to determine the minimum flow of reactants, ensuring introduction of the catalyst bed in the reactor into the state of fluidization. Due to a high content of o-cresol in products of 2,6-dimethylphenol synthesis, circulation in the technological node was proposed. A series of syntheses with variable amount of o-cresol in the feedstock allowed to determine the parameters of stationary states. A stable work of technological node with o-cresol circulation is possible in the temperature range of350-380°C, and o-cresolin/phenolin molar ratio of more than 0.48. Synthesis of 2,6-DMP over the iron-chromium catalyst is characterized by more than 90% degree of phenol conversion. Moreover, the O-alkylation did not occur (which was confirmed by GC-MS analysis). By applying o-cresol circulation in the 2,6-DMP process, selectivity of more than 85% degree of 2,6-DMP was achieved. The participation levels of by-products: 2,4-DMP and 2,4,6-TMP were low. In the optimal conditions based on the highest yield of 2,6-DMP achieved in the technological node applying o-cresol circulation, there are 2%mol. of 2,4-DMP and 6%mol. of 2,4,6-TMP in the final mixture, whereas 2,4,6-TMP can be useful as a chain stopper and polymer's molar mass regulator during the polymerization of 2,6-DMP.

  17. The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle

    NASA Astrophysics Data System (ADS)

    Hasvold, Øistein; Johansen, Kjell Håvard; Mollestad, Ole; Forseth, Sissel; Størkersen, Nils

    In 1993, The Norwegian Defence Research Establishment (FFI) demonstrated AUV-Demo, an unmanned (untethered) underwater vehicle (UUV), powered by a magnesium/dissolved oxygen seawater battery (SWB). This technology showed that an underwater range of at least 1000 nautical miles at a speed of 4 knots was possible, but also that the maximum hotel load this battery system could support was very limited. Most applications for UUV technology need more power over a shorter period of time. Seabed mapping using a multibeam echo sounder mounted on an UUV was identified as a viable application and the Hugin project was started in 1995 in cooperation with Norwegian industry. For this application, an endurance of 36 h at 4 knots was required. Development of the UUV hull and electronics system resulted in the UUV Hugin I. It carries a Ni/Cd battery of 3 kW h, allowing up to 6 h under-water endurance. In parallel, we developed a battery based on a combination of alkaline Al/air and SWB technology, using a circulating alkaline electrolyte, aluminium anodes and maintaining the oxidant concentration in the electrolyte by continuously adding hydrogen peroxide (HP) to the electrolyte. This concept resulted in a safe battery, working at ambient pressure (balanced) and with sufficient power and energy density to allow the UUV Hugin II to make a number of successive dives, each of up to 36 h duration and with only 1 h deck time between dives for HP refill and electrolyte exchange. After 100 h, an exchange of anodes takes place. The power source consists of a four-cell Al/HP battery, a DC/DC converter delivering 600 W at 30 V, circulation and dosing pumps and a battery control unit. Hugin II is now in routine use by the Norwegian Underwater Intervention AS (NUI) which operates the UUV for high-precision seabed mapping down to a water depth of 600 m.

  18. Liquid biopsies in lung cancer—time to implement research technologies in routine care?

    PubMed Central

    Köhn, Linda; Johansson, Mikael; Grankvist, Kjell

    2017-01-01

    Lung cancer is the leading cause of cancer mortality. A substantial progress in the understanding of lung cancer biology has resulted in several promising targeted therapies for advanced disease. Druggable targets today include point mutations such as EGFR, BRAF and re-arrangements in genes such as ALK and ROS1. Liquid biopsies collecting e.g., circulating tumor DNA (ctDNA) reflects overall tumor information and is not biased by analyzing of only a small fraction of the tumor and is always accessible in contrast to the lung cancer tissue. Technological advances in detection of low frequency mutation variants in ctDNA have made it the dominating liquid biopsy platform in terms of utility and sensitivity. Circulating DNA or RNA may possible be used to define populations with higher risk of developing lung cancer, thus reducing screening cohorts and increasing the positive predictive value of screening. Blood based-tests may also aid to identify genetic alterations several weeks prior to radiologically verified recurrence and may be of great value in the follow-up of lung cancer patients. Besides being an alternative to invasive biopsies in selected cases, liquid biopsies offer a unique possibility to monitor treatment response following medical treatment as well as treatment response and resistance development after targeted therapy, giving a possibility to modify the treatment after the genetic profile of the tumor. Ideally, genetic alterations found in ctDNA could be tracked in real-time discriminating between fast-growing life-threatening tumors from more indolent slow growing tumors or premalignant growth that are of no concern for the wellbeing of the patient. This review focuses on future perspectives of liquid biopsies in lung cancer care for different clinical settings and present current technological platforms for further discussion of possible strategies for implementation of liquid biopsies in lung cancer. PMID:28758104

  19. Biotechnology Challenges to In Vitro Maturation of Hepatic Stem Cells.

    PubMed

    Chen, Chen; Soto-Gutierrez, Alejandro; Baptista, Pedro M; Spee, Bart

    2018-04-01

    The incidence of liver disease is increasing globally. The only curative therapy for severe end-stage liver disease, liver transplantation, is limited by the shortage of organ donors. In vitro models of liver physiology have been developed and new technologies and approaches are progressing rapidly. Stem cells might be used as a source of liver tissue for development of models, therapies, and tissue-engineering applications. However, we have been unable to generate and maintain stable and mature adult liver cells ex vivo. We review factors that promote hepatocyte differentiation and maturation, including growth factors, transcription factors, microRNAs, small molecules, and the microenvironment. We discuss how the hepatic circulation, microbiome, and nutrition affect liver function, and the criteria for considering cells derived from stem cells to be fully mature hepatocytes. We explain the challenges to cell transplantation and consider future technologies for use in hepatic stem cell maturation, including 3-dimensional biofabrication and genome modification. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Novel protein crystal growth technology: Proof of concept

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz

    1989-01-01

    A technology for crystal growth, which overcomes certain shortcomings of other techniques, is developed and its applicability to proteins is examined. There were several unknowns to be determined: the design of the apparatus for suspension of crystals of varying (growing) diameter, control of the temperature and supersaturation, the methods for seeding and/or controlling nucleation, the effect on protein solutions of the temperature oscillations arising from the circulation, and the effect of the fluid shear on the suspended crystals. Extensive effort was put forth to grow lysozyme crystals. Under conditions favorable to the growth of tetragonal lysozyme, spontaneous nucleation could be produced but the number of nuclei could not be controlled. Seed transfer techniques were developed and implemented. When conditions for the orthorhombic form were tried, a single crystal 1.5 x 0.5 x 0.2 mm was grown (after in situ nucleation) and successfully extracted. A mathematical model was developed to predict the flow velocity as a function of the geometry and the operating temperatures. The model can also be used to scaleup the apparatus for growing larger crystals of other materials such as water soluble non-linear optical materials. This crystal suspension technology also shows promise for high quality solution growth of optical materials such as TGS and KDP.

  1. Microfluidic-Based Enrichment and Retrieval of Circulating Tumor Cells for RT-PCR Analysis.

    PubMed

    Gogoi, Priya; Sepehri, Saedeh; Chow, Will; Handique, Kalyan; Wang, Yixin

    2017-01-01

    Molecular analysis of circulating tumor cells (CTCs) is hindered by low sensitivity and high level of background leukocytes of currently available CTC enrichment technologies. We have developed a novel device to enrich and retrieve CTCs from blood samples by using a microfluidic chip. The Celsee PREP100 device captures CTCs with high sensitivity and allows the captured CTCs to be retrieved for molecular analysis. It uses the microfluidic chip which has approximately 56,320 capture chambers. Based on differences in cell size and deformability, each chamber ensures that small blood escape while larger CTCs of varying sizes are trapped and isolated in the chambers. In this report, we used the Celsee PREP100 to capture cancer cells spiked into normal donor blood samples. We were able to show that the device can capture as low as 10 cells with high reproducibility. The captured CTCs were retrieved from the microfluidic chip. The cell recovery rate of this back-flow procedure is 100% and the level of remaining background leukocytes is very low (about 300-400 cells). RNA from the retrieved cells are extracted and converted to cDNA, and gene expression analysis of selected cancer markers can be carried out by using RT-PCR assays. The sensitive and easy-to-use Celsee PREP100 system represents a promising technology for capturing and molecular characterization of CTCs.

  2. Opportunities and Challenges for Pancreatic Circulating Tumor Cells.

    PubMed

    Nagrath, Sunitha; Jack, Rhonda M; Sahai, Vaibhav; Simeone, Diane M

    2016-09-01

    Sensitive and reproducible platforms have been developed for detection, isolation, and enrichment of circulating tumor cells (CTCs)-rare cells that enter the blood from solid tumors, including those of the breast, prostate gland, lung, pancreas, and colon. These might be used as biomarkers in diagnosis or determination of prognosis. CTCs are no longer simply detected and quantified; they are now used in ex vivo studies of anticancer agents and early detection. We review what we have recently learned about CTCs from pancreatic tumors, describing advances in their isolation and analysis and challenges to their clinical utility. We summarize technologies used to isolate CTCs from blood samples of patients with pancreatic cancer, including immunoaffinity and label-free physical attribute-based capture. We explain methods of CTC analysis and how findings from these studies might be used to detect cancer at earlier stages, monitor disease progression, and determine prognosis. We review studies that have expanded CTCs for testing of anticancer agents and how these approaches might be used to personalize treatment. Advances in the detection, isolation, and analysis of CTCs have increased our understanding of the dissemination and progression of pancreatic cancer. However, standardization of methodologies and prospective studies are needed for this emerging technology to have a significant effect on clinical care. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: insights from computations, experiments, and nature.

    PubMed

    Sen Gupta, Anirban

    2016-01-01

    Packaging of drug molecules within microparticles and nanoparticles has become an important strategy in intravascular drug delivery, where the particles are designed to protect the drugs from plasma effects, increase drug residence time in circulation, and often facilitate drug delivery specifically at disease sites. To this end, over the past few decades, interdisciplinary research has focused on developing biocompatible materials for particle fabrication, technologies for particle manufacture, drug formulation within the particles for efficient loading, and controlled release and refinement of particle surface chemistries to render selectivity toward disease site for site-selective action. Majority of the particle systems developed for such purposes are spherical nano and microparticles and they have had low-to-moderate success in clinical translation. To refine the design of delivery systems for enhanced performance, in recent years, researchers have started focusing on the physicomechanical aspects of carrier particles, especially their shape, size, and stiffness, as new design parameters. Recent computational modeling studies, as well as, experimental studies using microfluidic devices are indicating that these design parameters greatly influence the particles' behavior in hemodynamic circulation, as well as cell-particle interactions for targeted payload delivery. Certain cellular components of circulation are also providing interesting natural cues for refining the design of drug carrier systems. Based on such findings, new benefits and challenges are being realized for the next generation of drug carriers. The current article will provide a comprehensive review of these findings and discuss the emerging design paradigm of incorporating physicomechanical components in fabrication of particulate drug delivery systems. © 2015 Wiley Periodicals, Inc.

  4. Perioperative detection of circulating tumour cells in patients with lung cancer.

    PubMed

    Chudasama, Dimple; Burnside, Nathan; Beeson, Julie; Karteris, Emmanouil; Rice, Alexandra; Anikin, Vladimir

    2017-08-01

    Lung cancer is a leading cause of mortality and despite surgical resection a proportion of patients may develop metastatic spread. The detection of circulating tumour cells (CTCs) may allow for improved prediction of metastatic spread and survival. The current study evaluates the efficacy of the ScreenCell® filtration device, to capture, isolate and propagate CTCs in patients with primary lung cancer. Prior to assessment of CTCs, the present study detected cancer cells in a proof-of-principle- experiment using A549 human lung carcinoma cells as a model. Ten patients (five males and five females) with pathologically diagnosed primary non-small cell lung cancer undergoing surgical resection, had their blood tested for CTCs. Samples were taken from a peripheral vessel at the baseline, from the pulmonary vein draining the lobe containing the tumour immediately prior to division, a further central sample was taken following completion of the resection, and a final peripheral sample was taken three days post-resection. A significant increase in CTCs was observed from baseline levels following lung manipulation. No association was able to be made between increased levels of circulating tumour cells and survival or the development of metastatic deposits. Manipulation of the lung during surgical resection for non-small cell lung carcinoma results in a temporarily increased level of CTCs; however, no clinical impact for this increase was observed. Overall, the study suggests the ScreenCell® device has the potential to be used as a CTC isolation tool, following further work, adaptations and improvements to the technology and validation of results.

  5. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2015-08-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  6. Elevated circulating IGF-I promotes mammary gland development and proliferation.

    PubMed

    Cannata, Dara; Lann, Danielle; Wu, Yingjie; Elis, Sebastien; Sun, Hui; Yakar, Shoshana; Lazzarino, Deborah A; Wood, Teresa L; Leroith, Derek

    2010-12-01

    Animal studies have shown that IGF-I is essential for mammary gland development. Previous studies have suggested that local IGF-I rather than circulating IGF-I is the major mediator of mammary gland development. In the present study we used the hepatic IGF-I transgenic (HIT) and IGF-I knockout/HIT (KO-HIT) mouse models to examine the effects of enhanced circulating IGF-I on mammary development in the presence and absence of local IGF-I. HIT mice express the rat IGF-I transgene under the transthyretin promoter in the liver and have elevated circulating IGF-I and normal tissue IGF-I levels. The KO-HIT mice have no tissue IGF-I and increased circulating IGF-I. Analysis of mammary gland development reveals a greater degree of complexity in HIT mice as compared to control and KO-HIT mice, which demonstrate similar degrees of mammary gland complexity. Immunohistochemical evaluation of glands of HIT mice also suggests an enhanced degree of proliferation of the mammary gland, whereas KO-HIT mice exhibit mammary gland proliferation similar to control mice. In addition, HIT mice have a higher percentage of proliferating myoepithelial and luminal cells than control mice, whereas KO-HIT mice have an equivalent percentage of proliferating myoepithelial and luminal cells as control mice. Thus, our findings show that elevated circulating IGF-I levels are sufficient to promote normal pubertal mammary epithelial development. However, HIT mice demonstrate more pronounced mammary gland development when compared to control and KO-HIT mice. This suggests that both local and endocrine IGF-I play roles in mammary gland development and that elevated circulating IGF-I accelerates mammary epithelial proliferation.

  7. Gene Therapy Approaches to Human Immunodeficiency Virus and Other Infectious Diseases.

    PubMed

    Rogers, Geoffrey L; Cannon, Paula M

    2017-10-01

    Advances in gene therapy technologies, particularly in gene editing, are suggesting new avenues for the treatment of human immunodeficiency virus and other infectious diseases. This article outlines recent developments in antiviral gene therapies, including those based on the disruption of entry receptors or that target viral genomes using targeted nucleases, such as the CRISPR/Cas9 system. In addition, new ways to express circulating antiviral factors, such as antibodies, and approaches to harness and engineer the immune system to provide an antiviral effect that is not naturally achieved are described. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Emerging Technologies for the Diagnosis of Perihilar Cholangiocarcinoma.

    PubMed

    Rizvi, Sumera; Eaton, John; Yang, Ju Dong; Chandrasekhara, Vinay; Gores, Gregory J

    2018-05-01

    The diagnosis of malignant biliary strictures remains problematic, especially in the perihilar region and in primary sclerosing cholangitis (PSC). Conventional cytology obtained during endoscopic retrograde cholangiography (ERC)-guided brushings of biliary strictures is suboptimal due to limited sensitivity, albeit it remains the gold standard with a high specificity. Emerging technologies are being developed and validated to address this pressing unmet patient need. Such technologies include enhanced visualization of the biliary tree by cholangioscopy, intraductal ultrasound, and confocal laser endomicroscopy. Conventional cytology can be aided by employing complementary and advanced cytologic techniques such as fluorescent in situ hybridization (FISH), and this technique should be widely adapted. Interrogation of bile and serum by examining extracellular vesicle number and cargo, and exploiting next-generation sequencing and proteomic technologies, is also being explored. Examination of circulating cell-free deoxyribonucleic acid (cfDNA) for differentially methylated regions is a promising test which is being rigorously validated. The special expertise required for these analyses has to date hampered their validation and adaptation. Herein, we will review these emerging technologies to inform the reader of the progress made and encourage further studies, as well as adaptation of validated approaches. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Cancer, viruses, and mass migration: Paul Berg's venture into eukaryotic biology and the advent of recombinant DNA research and technology, 1967-1980.

    PubMed

    Yi, Doogab

    2008-01-01

    The existing literature on the development of recombinant DNA technology and genetic engineering tends to focus on Stanley Cohen and Herbert Boyer's recombinant DNA cloning technology and its commercialization starting in the mid-1970s. Historians of science, however, have pointedly noted that experimental procedures for making recombinant DNA molecules were initially developed by Stanford biochemist Paul Berg and his colleagues, Peter Lobban and A. Dale Kaiser in the early 1970s. This paper, recognizing the uneasy disjuncture between scientific authorship and legal invention in the history of recombinant DNA technology, investigates the development of recombinant DNA technology in its full scientific context. I do so by focusing on Stanford biochemist Berg's research on the genetic regulation of higher organisms. As I hope to demonstrate, Berg's new venture reflected a mass migration of biomedical researchers as they shifted from studying prokaryotic organisms like bacteria to studying eukaryotic organisms like mammalian and human cells. It was out of this boundary crossing from prokaryotic to eukaryotic systems through virus model systems that recombinant DNA technology and other significant new research techniques and agendas emerged. Indeed, in their attempt to reconstitute 'life' as a research technology, Stanford biochemists' recombinant DNA research recast genes as a sequence that could be rewritten thorough biochemical operations. The last part of this paper shifts focus from recombinant DNA technology's academic origins to its transformation into a genetic engineering technology by examining the wide range of experimental hybridizations which occurred as techniques and knowledge circulated between Stanford biochemists and the Bay Area's experimentalists. Situating their interchange in a dense research network based at Stanford's biochemistry department, this paper helps to revise the canonized history of genetic engineering's origins that emerged during the patenting of Cohen-Boyer's recombinant DNA cloning procedures.

  10. Re-recognizing serological change patterns and antiviral therapy opportunity of patients with acute hepatitis B through highly sensitive detection technology.

    PubMed

    Ma, Haixia; Gao, Min; Li, Jia; Zhou, Li; Guo, Jie; Liu, Junjuan; Han, Xu; Zhai, Lu; Wu, Ting

    2016-11-01

    This study was conducted to re-recognize serological change patterns of patients with acute hepatitis B (AHB) by a highly sensitive detection technology, as well as to explore methods to select the optimal treatment opportunity. The biochemical and virological parameters of 558 AHB patients were analyzed retrospectively. The serological markers of hepatitis B virus and HBV DNA were detected by electrochemiluminescence immunoassay and automatic real-time fluorescent quantitative PCR, respectively. At baseline, the positive rate of hepatitis B surface antigen (HBsAg) (86.2%) was significantly higher than the positive rate of HBV DNA (51.9%). Among the 58 patients with HBsAg-negative AHB, 16 were detected with trace amounts of HBV DNA at baseline. At 12 weeks, the HBsAg of 43 cases remained positive, and the mean level of HBsAg was 587.5IU/mL±313.4IU/mL. A total of 18 patients with HBsAg levels greater than 1500IU/mL at 12 weeks received interferon α-1b treatment and achieved HBsAg clearance within 24 weeks. Unlike traditional changing patterns, the clearance of HBV DNA in peripheral circulation for a few patients with AHB occurred later than HBsAg clearance. Detection of HBV DNA in peripheral circulation by highly sensitive detection technology could provide a diagnostic basis for those AHB patients who rapidly achieved HBsAg clearance before achieving HBV DNA clearance in their peripheral circulation and prevent misdiagnosis. Dynamic monitoring of the changes in HBsAg levels through highly sensitive detection technology could be used as a guide for the timely adoption of antiviral treatment with interferon and then AHB chronicity would be prevented. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Offering More than Just Casebooks: Law Libraries and the Decision to Circulate Mobile Tablets and E-Readers

    ERIC Educational Resources Information Center

    Le, Avery

    2013-01-01

    Libraries today are determined to meet the expanding needs of their patrons by keeping their services and book collections up-to-date with the rapidly growing technological advances. Many have adapted to the innovative changes seamlessly by integrating new technology trends such as: (1) purchasing more ebook titles; (2) using social media sites…

  12. Microfluidic cell isolation technology for drug testing of single tumor cells and their clusters.

    PubMed

    Bithi, Swastika S; Vanapalli, Siva A

    2017-02-02

    Drug assays with patient-derived cells such as circulating tumor cells requires manipulating small sample volumes without loss of rare disease-causing cells. Here, we report an effective technology for isolating and analyzing individual tumor cells and their clusters from minute sample volumes using an optimized microfluidic device integrated with pipettes. The method involves using hand pipetting to create an array of cell-laden nanoliter-sized droplets immobilized in a microfluidic device without loss of tumor cells during the pipetting process. Using this technology, we demonstrate single-cell analysis of tumor cell response to the chemotherapy drug doxorubicin. We find that even though individual tumor cells display diverse uptake profiles of the drug, the onset of apoptosis is determined by accumulation of a critical intracellular concentration of doxorubicin. Experiments with clusters of tumor cells compartmentalized in microfluidic drops reveal that cells within a cluster have higher viability than their single-cell counterparts when exposed to doxorubicin. This result suggests that circulating tumor cell clusters might be able to better survive chemotherapy drug treatment. Our technology is a promising tool for understanding tumor cell-drug interactions in patient-derived samples including rare cells.

  13. WHO initiative to increase global and equitable access to influenza vaccine in the event of a pandemic: supporting developing country production capacity through technology transfer.

    PubMed

    Friede, Martin; Palkonyay, Laszlo; Alfonso, Claudia; Pervikov, Yuri; Torelli, Guido; Wood, David; Kieny, Marie Paule

    2011-07-01

    Should a highly pathogenic avian influenza virus, such as the H5N1 virus type currently circulating in birds, become transmissible among humans, an effective vaccine, rapidly available in vast quantities, would be the best tool to prevent high case-fatalities and the breakdown of health and social services. The number of vaccine doses that could be produced on demand has risen sharply over the last few years; however, it is still alarmingly short of the 13 billion doses that would be needed if two doses were required to protect fully the world's population. Most developing countries would be last in the queue to benefit from a pandemic vaccine. The World Health Organization, together with governments, the pharmaceutical industry and other stakeholders, has been implementing the global pandemic influenza action plan to increase vaccine supply since 2006. Building capacity in developing countries to manufacture influenza vaccine is an integral part of this plan, as well as research and development into more efficacious technologies, e.g. those that allow significant dose-sparing. To this end, the influenza vaccine technology transfer initiative was launched in 2007 and, to date, vaccine manufacturers in 11 developing countries have received grants to acquire the capacity to produce inactivated or live attenuated influenza vaccine for their populations. In addition, a centralized 'hub' has been established to facilitate training in the new technologies for scientists and regulators in the countries. This supplement of Vaccine is devoted to showcasing the interim results of the WHO initiative and the impressive progress made by the developing country manufacturers. Copyright © 2011 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  14. Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran

    NASA Astrophysics Data System (ADS)

    Bannayan, M.; Mansoori, H.; Rezaei, E. Eyshi

    2014-04-01

    Wheat is the main food for the majority of Iran's population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm-1) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from -28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology.

  15. Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran.

    PubMed

    Bannayan, M; Mansoori, H; Rezaei, E Eyshi

    2014-04-01

    Wheat is the main food for the majority of Iran's population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm(-1)) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from -28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology.

  16. [The present and future state of minimized extracorporeal circulation].

    PubMed

    Meng, Fan; Yang, Ming

    2013-05-01

    Minimized extracorporeal circulation improved in the postoperative side effects of conventional extracorporeal circulation is a kind of new extracorporeal circulation. This paper introduces the principle, characteristics, applications and related research of minimized extracorporeal circulation. For the problems of systemic inflammatory response syndrome and limited assist time, the article proposes three development direction including system miniaturization and integration, pulsatile blood pump and the adaptive control by human parameter identification.

  17. Library Computing.

    ERIC Educational Resources Information Center

    Library Journal, 1985

    1985-01-01

    This special supplement to "Library Journal" and "School Library Journal" includes articles on technological dependency, promise of computers for reluctant readers, copyright and database downloading, access to neighborhood of Mister Rogers, library acquisitions, circulating personal computers, "microcomputeritis,"…

  18. Using a Gravity Model to Predict Circulation in a Public Library System.

    ERIC Educational Resources Information Center

    Ottensmann, John R.

    1995-01-01

    Describes the development of a gravity model based upon principles of spatial interaction to predict the circulation of libraries in the Indianapolis-Marion County Public Library (Indiana). The model effectively predicted past circulation figures and was tested by predicting future library circulation, particularly for a new branch library.…

  19. Technology Development for Detection of Circulating Disease Biomarkers from Liquid Biopsies Using Multifunctional Nanomaterials

    NASA Astrophysics Data System (ADS)

    Balcioglu, Mustafa

    Despite the advance health care, devastating health conditions such as cancer and infectious diseases that affect populations worldwide are too often not diagnosed until morbid symptoms become apparent in the late phase. Obtaining an early and accurate diagnosis that reveal a hidden lethal threat before the disease becomes complicated may dramatically reduce the severity of its impact on the patient's life and increase the probability of survival. For example, in the case of ovarian cancer, which is the fifth most common malignancy and the fifth leading cause of cancer mortality in women in the US, the 5-year relative survival is 45%. If the diagnosis is made in stages III and IV when the cancer is well established and spreading, 17% of the women survive at five years. However, if ovarian cancer is found (and treated) before the cancer has spread outside the ovary, the survival rate can reach 93%. The sad fact is only 15% of all ovarian cancers are found at this early stage, whereas the vast majority, 70%, are detected in stages three and four. There is therefore an apparent need for the development of highly sensitive and specific noninvasive diagnostic assays for early detection, prognostic evaluation, and recurrence monitoring. This uneasy task, however, is hindered by three existing major limitations; (1) lack of an easy, inexpensive and noninvasive serial sampling method that can replace medical procedures, which is like colonoscopy for colon cancer or mammography for breast cancer. Second, lack of definitive molecular biomarkers for specific diseases as an alternative to protein biomarkers, like PSA for prostate cancer and (3) lack of a rapid multi-marker detection platform with high sensitivity and excellent specificity. Liquid biopsy, a simple non-invasive blood test, is an emerging novel technology has the potential to overcome these restrictions. Because of its non-invasive nature, liquid biopsy can be serially collected to provide a personalized global snapshot of the total tumor burden at certain time points as well as identify specific mutations that arise during therapy. This potential in large part is driven by the fact that dying tumor cells or pathogens release their genetic materials into body fluids such as blood, urine, and saliva, and the load of circulating cell-free biomarkers are treasure trove for molecular diagnostics as they represent physiological or disease states. These biomarkers could be from whole cancer cells (CTC), to exosomes 'vesicles' containing tumor material, to proteins and peptides, to fragments of circulating cell free nucleic acids; cfDNA and cfRNA (mRNAs, lncRNAs, miRNAs). MicroRNAs (miRNAs) are small non-coding RNAs that act as master regulators of many cellular processes. Because aberrant miRNA expression is an early event in tumorigenesis, circulating miRNAs might reflect tumor status and predict therapy response as noninvasive diagnostic biomarkers. They have been isolated from most of the body fluids and are highly stable in the circulation system, which makes miRNAs attractive diagnostic markers. As several miRNAs may be simultaneously involved in disease progression and development, it is inadequate to generate any meaningful or conclusive information for clinical diagnostics using only a single marker. Therefore having a platform capable of performing multiplexed biological detection is an indispensable tool for accurate clinical diagnostics. To overcome these limitations, this research project exploits the unique tools provided by DNA nanotechnology, which combines two emerging fields--nano-graphene, MoS2, MNcy5.5, and AuNPs as two/three-dimensional nanoparticles in biomedicine and the role of blood-based circulating disease biomarkers (DNA/RNA) in cancer and infectious diseases--to address the challenges in diagnosis, prognosis and therapeutics. Taking advantage of controllable and programmable features of oligonucleotides, in our laboratory, two different multiplexed biomarker detection methods were developed by utilizing nanomaterials as a capture nanoplatform, DNA/RNA as circulating diseases-specific biomarkers and biofluids as minimally invasive sources. The first multi-marker detection approach is to engineer water-soluble two-dimensional nanoassemblies and develop methodologies to detect circulating miRNAs and DNAs in human body fluids for the state-of-the art diagnostics. Nano-graphene oxide in this approach serves as a highly stable and functional template with extraordinary ssDNA adsorption capacity and fast and ultra-efficient fluorescence quenching capability lead us to engineer a fluorescently silent nano-platform. As a first application, we demonstrate the successful utilization of nano-graphene oxide based nanoplatform for the simultaneous detection of circulating prostate cancer biomarkers from various body fluids including blood, urine, and saliva. Later, we advanced nGO-based detection nanoplatform to an easily tunable and very highly controllable stimuli-responsive nano-device by attaching thermo-responsive polymers to advance its applications and minimize the drawbacks. (Abstract shortened by ProQuest.).

  20. SLE-key(®) rule-out serologic test for excluding the diagnosis of systemic lupus erythematosus: Developing the ImmunArray iCHIP(®).

    PubMed

    Putterman, Chaim; Wu, Alan; Reiner-Benaim, Anat; Batty, D Scott; Sanz, Ignacio; Oates, Jim; Jakobi, Keren; Petri, Michelle; Safer, Pennina; Gerwien, Robert; Sorek, Rachel; Blumenstein, Yakov; Cohen, Irun R

    2016-02-01

    We describe here the development, verification and validation of the SLE-key(®) rule-out test for a definitive rule-out of a diagnosis of systemic lupus erythematosus (SLE). The test uses the proprietary iCHIP(®) micro-array technology platform (Fattal et al., 2010) to identify discriminating patterns of circulating autoantibodies among SLE patients compared with self-declared healthy individuals. Given the challenges associated with the diagnosis of SLE and the healthcare costs of delayed diagnosis and misdiagnosis, a definitive rule-out test can provide significant clinical benefits to patients and potentially major cost savings to healthcare systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. 36 CFR 910.17 - Pedestrian circulation system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.17 Pedestrian circulation system...

  2. 36 CFR 910.17 - Pedestrian circulation system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.17 Pedestrian circulation system...

  3. Human rights, health, and capital accumulation in the Third World.

    PubMed

    Chossudovsky, M

    1979-01-01

    This article examines the relationship between human rights and the pattern of capital accumulation in the Third World. The repressive authoritarian State increasingly constitutes the means for enforcing the intensive exploitation of labor in Third World industrial enclaves and commercial agriculture. While the development of center capitalism has evolved toward "the Welfare State" and a framework of liberal sociodemocracy, the "peripheral State" is generally characterized by nondemocratic forms of government. This bipolarity in the state structure between center and periphery is functionally related to the international division of labor and the unity of production and circulation on a world level. The programs and policies of the center Welfare State (health, education, social security, etc.) constitute an input of "human capital" into the high-technology center labor process. Moreover, welfare programs in center countries activate the process of circulation by sustaining high levels of consumer demand. In underdeveloped countries, the underlying vacuum in the social sectors and the important allocations to military expenditure support the requirements of the peripheral labor process. Programs in health in the center and periphery are related to the bipolarity (qualification/dequalification) in the international division of labor. The social and economic functions of health programs are intimately related to the organic structure of the State and the mechanics whereby the State allocates its financial surplus in support of both capitalist production and circulation.

  4. On-chip microwave circulators using quantum Hall plasmonics

    NASA Astrophysics Data System (ADS)

    Mahoney, Alice; Colless, James; Pauka, Sebastian; Hornibrook, John; Doherty, Andrew; Reilly, David; Peeters, Lucas; Fox, Eli; Goldhaber-Gordon, David; Kou, Xuefeng; Pan, Lei; Wang, Kang; Watson, John; Gardner, Geoffrey; Manfra, Michael

    Circulators are directional circuit elements integral to technologies including radar systems, microwave communication transceivers and the readout of quantum information devices. Their non-reciprocity commonly arises from the interference of microwaves over the centimetre-scale of the signal wavelength in the presence of bulky magnetic media that breaks time-reversal symmetry. We present a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, `slow-light' response of a GaAs/AlGaAs 2-dimensional electron gas in the quantum Hall regime. Further, by implementing this circulator design on a thin film of a magnetic topological insulator (Cr0.12(Bi0.26Sb0.62)2Te3), we show that similar non-reciprocity can be achieved at zero magnetic field. This additional mode of operation serves as a non-invasive probe of edge states in the quantum anomalous Hall effect, while also extending the possibility for integration with superconducting devices.

  5. Cell-free fetal nucleic acid testing: a review of the technology and its applications.

    PubMed

    Sayres, Lauren C; Cho, Mildred K

    2011-07-01

    Cell-free fetal nucleic acids circulating in the blood of pregnant women afford the opportunity for early, noninvasive prenatal genetic testing. The predominance of admixed maternal genetic material in circulation demands innovative means for identification and analysis of cell-free fetal DNA and RNA. Techniques using polymerase chain reaction, mass spectrometry, and sequencing have been developed for the purposes of detecting fetal-specific sequences, such as paternally inherited or de novo mutations, or determining allelic balance or chromosome dosage. Clinical applications of these methods include fetal sex determination and blood group typing, which are currently available commercially although not offered routinely in the United States. Other uses of cell-free fetal DNA and RNA being explored are the detection of single-gene disorders, chromosomal abnormalities, and inheritance of parental polymorphisms across the whole fetal genome. The concentration of cell-free fetal DNA may also provide predictive capabilities for pregnancy-associated complications. The roles that cell-free fetal nucleic acid testing assume in the existing framework of prenatal screening and invasive diagnostic testing will depend on factors such as costs, clinical validity and utility, and perceived benefit-risk ratios for different applications. As cell-free fetal DNA and RNA testing continues to be developed and translated, significant ethical, legal, and social questions will arise that will need to be addressed by those with a stake in the use of this technology. Obstetricians & Gynecologists and Family Physicians Learning Objectives: After participating in this activity, physicians should be better able to evaluate techniques and tools for analyzing cell-free fetal nucleic acids, assess clinical applications of prenatal testing, using cell-free fetal nucleic acids and barriers to implementation, and distinguish between relevant clinical features of cell-free fetal nucleic acid testing and existing prenatal genetic screening and diagnostic procedures.

  6. Sex differences and the impact of steroid hormones on the developing human brain.

    PubMed

    Neufang, Susanne; Specht, Karsten; Hausmann, Markus; Güntürkün, Onur; Herpertz-Dahlmann, Beate; Fink, Gereon R; Konrad, Kerstin

    2009-02-01

    Little is known about the hormonal effects of puberty on the anatomy of the developing human brain. In a voxel-based morphometry study, sex-related differences in gray matter (GM) volume were examined in 46 subjects aged 8-15 years. Males had larger GM volumes in the left amygdala, whereas females had larger right striatal and bilateral hippocampal GM volumes than males. Sexually dimorphic areas were related to Tanner stages (TS) of pubertal development and to circulating level of steroid hormones in a subsample of 30 subjects. Regardless of sex, amygdala and hippocampal volumes varied as a function of TS and were associated with circulating testosterone (TEST) levels. By contrast, striatal GM volumes were unrelated to pubertal development and circulating steroid hormones. Whole-brain regression analyses revealed positive associations between circulating estrogen levels and parahippocampal GM volumes as well as between TEST levels and diencephalic brain structures. In addition, a negative association was found between circulating TEST and left parietal GM volumes. These data suggest that GM development in certain brain regions is associated with sexual maturation and that pubertal hormones might have organizational effects on the developing human brain.

  7. A Regression Study of Demand, Cost and Pricing Public Library Circulation Services.

    ERIC Educational Resources Information Center

    Stratton, Peter J.

    This paper examines three aspects of the public library's circulation service: (1) a demand function for the service is estimated; (2) a long-run unit circulation cost curve is developed; and (3) using the economist's notion of "efficiency," a general model for the pricing of the circulation service is presented. The estimated demand…

  8. Complex Recanalization of Chronic Total Occluison Supported by Minimal Extracorporeal Circulation in a Patient with an Aortic Valve Bioprothesis in Extraanatomic Position

    PubMed Central

    Jansen, Ruben; Bathgate, Brigitte; Bufe, Alexander

    2018-01-01

    Percutaneous coronary intervention (PCI) of chronic total occlusion (CTO) still remains a major challenge in interventional cardiology. This case describes a complex PCI of the left main coronary artery and of a CTO of the right coronary artery using a minimal extracorporeal circulation system (MECC) in a patient with an aortic valve bioprothesis in extraanatomic position. It illustrates that complex recanalization strategies can be solved combining it with mechanical circulatory support technologies. PMID:29850264

  9. Production of a small-circulation medical journal using desktop publishing methods.

    PubMed

    Peters, B A

    1994-07-01

    Since its inception in January 1988, the Baylor University Medical Center Proceedings, a quarterly medical journal, has been published by the few staff of the Scientific Publications Office (Baylor Research Institute, Dallas, Texas, USA) using microcomputers and page-makeup software in conjunction with a commercial printing company. This article outlines the establishment of the journal; the steps used in the publication process; the software and hardware used; and the changes in design, content, and circulation that have taken place as the journal and the technology used to create it have evolved.

  10. Progress on DCLL Blanket Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Clement; Abdou, M.; Katoh, Yutai

    2013-09-01

    Under the US Fusion Nuclear Science and Technology Development program, we have selected the Dual Coolant Lead Lithium concept (DCLL) as a reference blanket, which has the potential to be a high performance DEMO blanket design with a projected thermal efficiency of >40%. Reduced activation ferritic/martensitic (RAF/M) steel is used as the structural material. The self-cooled breeder PbLi is circulated for power conversion and for tritium breeding. A SiC-based flow channel insert (FCI) is used as a means for magnetohydrodynamic pressure drop reduction from the circulating liquid PbLi and as a thermal insulator to separate the high-temperature PbLi (~700°C) frommore » the helium-cooled RAF/M steel structure. We are making progress on related R&D needs to address critical Fusion Nuclear Science and Facility (FNSF) and DEMO blanket development issues. When performing the function as the Interface Coordinator for the DCLL blanket concept, we had been developing the mechanical design and performing neutronics, structural and thermal hydraulics analyses of the DCLL TBM module. We had estimated the necessary ancillary equipment that will be needed at the ITER site and a detailed safety impact report has been prepared. This provided additional understanding of the DCLL blanket concept in preparation for the FNSF and DEMO. This paper will be a summary report on the progress of the DCLL TBM design and R&Ds for the DCLL blanket concept.« less

  11. Detoxification of blood using injectable magnetic nanospheres: A conceptual technology description

    NASA Astrophysics Data System (ADS)

    Kaminski, Michael D.; Rosengart, Axel J.

    2005-05-01

    We describe injectable magnetic nanospheres as a vehicle for selective detoxification of blood borne toxins. Surface receptors on the freely circulating nanospheres bind to toxins. A hand-held extracorporeal magnetic filter separates the toxin-loaded nanospheres from the clean blood, which is returned to the patient. Details of the technology concept are given and include a state-of-knowledge and research needs.

  12. Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay.

    PubMed

    Ayers, Lisa; Kohler, Malcolm; Harrison, Paul; Sargent, Ian; Dragovic, Rebecca; Schaap, Marianne; Nieuwland, Rienk; Brooks, Susan A; Ferry, Berne

    2011-04-01

    Circulating cell-derived microparticles (MPs) have been implicated in several disease processes and elevated levels are found in many pathological conditions. The detection and accurate measurement of MPs, although attracting widespread interest, is hampered by a lack of standardisation. The aim of this study was to establish a reliable flow cytometric assay to measure distinct subtypes of MPs in disease and to identify any significant causes of variability in MP quantification. Circulating MPs within plasma were identified by their phenotype (platelet, endothelial, leukocyte and annexin-V positivity (AnnV+). The influence of key variables (i.e. time between venepuncture and centrifugation, washing steps, the number of centrifugation steps, freezing/long-term storage and temperature of thawing) on MP measurement were investigated. Increasing time between venepuncture and centrifugation leads to increased MP levels. Washing samples results in decreased AnnV+MPs (P=0.002) and platelet-derived MPs (PMPs) (P=0.002). Double centrifugation of MPs prior to freezing decreases numbers of AnnV+MPs (P=0.0004) and PMPs (P=0.0004). A single freeze thaw cycle of samples led to an increase in AnnV+MPs (P=0.0020) and PMPs (P=0.0039). Long-term storage of MP samples at -80° resulted in decreased MP levels. This study found that minor protocol changes significantly affected MP levels. This is one of the first studies attempting to standardise a method for obtaining and measuring circulating MPs. Standardisation will be essential for successful development of MP technologies, allowing direct comparison of results between studies and leading to a greater understanding of MPs in disease. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  13. Industrial applications of hot dry rock geothermal energy

    NASA Astrophysics Data System (ADS)

    Duchane, D. V.

    1992-07-01

    Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

  14. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.18 Vehicular circulation and...

  15. Application of single-cell technology in cancer research.

    PubMed

    Liang, Shao-Bo; Fu, Li-Wu

    2017-07-01

    In this review, we have outlined the application of single-cell technology in cancer research. Single-cell technology has made encouraging progress in recent years and now provides the means to detect rare cancer cells such as circulating tumor cells and cancer stem cells. We reveal how this technology has advanced the analysis of intratumor heterogeneity and tumor epigenetics, and guided individualized treatment strategies. The future prospects now are to bring single-cell technology into the clinical arena. We believe that the clinical application of single-cell technology will be beneficial in cancer diagnostics and treatment, and ultimately improve survival in cancer patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Microfluidics cell sample preparation for analysis: Advances in efficient cell enrichment and precise single cell capture

    PubMed Central

    Bian, Shengtai; Cheng, Yinuo; Shi, Guanya; Liu, Peng; Ye, Xiongying

    2017-01-01

    Single cell analysis has received increasing attention recently in both academia and clinics, and there is an urgent need for effective upstream cell sample preparation. Two extremely challenging tasks in cell sample preparation—high-efficiency cell enrichment and precise single cell capture—have now entered into an era full of exciting technological advances, which are mostly enabled by microfluidics. In this review, we summarize the category of technologies that provide new solutions and creative insights into the two tasks of cell manipulation, with a focus on the latest development in the recent five years by highlighting the representative works. By doing so, we aim both to outline the framework and to showcase example applications of each task. In most cases for cell enrichment, we take circulating tumor cells (CTCs) as the target cells because of their research and clinical importance in cancer. For single cell capture, we review related technologies for many kinds of target cells because the technologies are supposed to be more universal to all cells rather than CTCs. Most of the mentioned technologies can be used for both cell enrichment and precise single cell capture. Each technology has its own advantages and specific challenges, which provide opportunities for researchers in their own area. Overall, these technologies have shown great promise and now evolve into real clinical applications. PMID:28217240

  17. Microfluidic Exosome Analysis toward Liquid Biopsy for Cancer.

    PubMed

    He, Mei; Zeng, Yong

    2016-08-01

    Assessment of a tumor's molecular makeup using biofluid samples, known as liquid biopsy, is a prominent research topic in precision medicine for cancer, due to its noninvasive property allowing repeat sampling for monitoring molecular changes of tumors over time. Circulating exosomes recently have been recognized as promising tumor surrogates because they deliver enriched biomarkers, such as proteins, RNAs, and DNA. However, purification and characterization of these exosomes are technically challenging. Microfluidic lab-on-a-chip technology effectively addresses these challenges owing to its inherent advantages in integration and automation of multiple functional modules, enhancing sensing performance, and expediting analysis processes. In this article, we review the state-of-the-art development of microfluidic technologies for exosome isolation and molecular characterization with emphasis on their applications toward liquid biopsy-based analysis of cancer. Finally, we share our perspectives on current challenges and future directions of microfluidic exosome analysis. © 2016 Society for Laboratory Automation and Screening.

  18. A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture.

    PubMed

    Nieto, Daniel; Couceiro, Ramiro; Aymerich, Maria; Lopez-Lopez, Rafael; Abal, Miguel; Flores-Arias, María Teresa

    2015-10-01

    We developed a laser-based technique for fabricating microfluidic microchips on soda-lime glass substrates. The proposed methodology combines a laser direct writing, as a manufacturing tool for the fabrication of the microfluidics structures, followed by a post-thermal treatment with a CO2 laser. This treatment will allow reshaping and improving the morphological (roughness) and optical qualities (transparency) of the generated microfluidics structures. The use of lasers commonly implemented for material processing makes this technique highly competitive when compared with other glass microstructuring approaches. The manufactured chips were tested with tumour cells (Hec 1A) after being functionalized with an epithelial cell adhesion molecule (EpCAM) antibody coating. Cells were successfully arrested on the pillars after being flown through the device giving our technology a translational application in the field of cancer research. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Nanotechnology-based approaches in anticancer research

    PubMed Central

    Jabir, Nasimudeen R; Tabrez, Shams; Ashraf, Ghulam Md; Shakil, Shazi; Damanhouri, Ghazi A; Kamal, Mohammad A

    2012-01-01

    Cancer is a highly complex disease to understand, because it entails multiple cellular physiological systems. The most common cancer treatments are restricted to chemotherapy, radiation and surgery. Moreover, the early recognition and treatment of cancer remains a technological bottleneck. There is an urgent need to develop new and innovative technologies that could help to delineate tumor margins, identify residual tumor cells and micrometastases, and determine whether a tumor has been completely removed or not. Nanotechnology has witnessed significant progress in the past few decades, and its effect is widespread nowadays in every field. Nanoparticles can be modified in numerous ways to prolong circulation, enhance drug localization, increase drug efficacy, and potentially decrease chances of multidrug resistance by the use of nanotechnology. Recently, research in the field of cancer nanotechnology has made remarkable advances. The present review summarizes the application of various nanotechnology-based approaches towards the diagnostics and therapeutics of cancer. PMID:22927757

  20. Numerical Simulation on Hydrodynamics and Combustion in a Circulating Fluidized Bed under O2/CO2 and Air Atmospheres

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Zhao, C. S.; Duan, L. B.; Qu, C. R.; Lu, J. Y.; Chen, X. P.

    Oxy-fuel circulating fluidized bed (CFB) combustion technology is in the stage of initial development for carbon capture and storage (CCS). Numerical simulation is helpful to better understanding the combustion process and will be significant for CFB scale-up. In this paper, a computational fluid dynamics (CFD) model was employed to simulate the hydrodynamics of gas-solid flow in a CFB riser based on the Eulerian-Granular multiphase model. The cold model predicted the main features of the complex gas-solid flow, including the cluster formation of the solid phase along the walls, the flow structure of up-flow in the core and downward flow in the annular region. Furthermore, coal devolatilization, char combustion and heat transfer were considered by coupling semi-empirical sub-models with CFD model to establish a comprehensive model. The gas compositions and temperature profiles were predicted and the outflow gas fractions are validated with the experimental data in air combustion. With the experimentally validated model being applied, the concentration and temperature distributions in O2/CO2 combustion were predicted. The model is useful for the further development of a comprehensive model including more sub-models, such as pollutant emissions, and better understanding the combustion process in furnace.

  1. Development of methane and nitrous oxide emission factors for the biomass fired circulating fluidized bed combustion power plant.

    PubMed

    Cho, Chang-Sang; Sa, Jae-Hwan; Lim, Ki-Kyo; Youk, Tae-Mi; Kim, Seung-Jin; Lee, Seul-Ki; Jeon, Eui-Chan

    2012-01-01

    This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB) boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH(4)), Nitrous oxide (N(2)O). The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF), RDF and Refused Plastic Fuel (RPF) of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH(4) and N(2)O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH(4) and N(2)O exhausted from the CFB boiler. As a result, the emission factors of CH(4) and N(2)O are 1.4 kg/TJ (0.9-1.9 kg/TJ) and 4.0 kg/TJ (2.9-5.3 kg/TJ) within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N(2)O emission, compared to the emission factor of the CFB boiler using fossil fuel.

  2. Quantitative measurement of lymphatic function in mice by noninvasive near-infrared imaging of a peripheral vein

    PubMed Central

    Ma, Qiaoli; Andina, Diana; Leroux, Jean-Christophe; Detmar, Michael

    2017-01-01

    Optical imaging methods have been developed to measure lymphatic function in skin; however, the lymphatic system of many organs is not accessible to this technology. Since lymphatic transport of macromolecules from any organ proceeds to the blood circulation, we aimed to develop a method that can measure lymphatic function by monitoring the fluorescence in a superficial vein of an interstitially injected tracer. We selected a 40-kDa PEGylated near-infrared dye conjugate, as it showed lymphatic system–specific uptake and extended circulation in blood. Lymphatic transport to blood from subcutaneous tissue required a transit time before signal enhancement was seen in blood followed by a steady rise in signal over time. Increased lymphatic transport was apparent in awake mice compared with those under continuous anesthesia. The methods were validated in K14-VEGFR-3-Fc and K14-VEGF-C transgenic mice with loss and gain of lymphatic function, respectively. Reduced lymphatic transport to blood was also found in aged mice. The technique was also able to measure lymphatic transport from the peritoneal cavity, a location not suitable for optical imaging. The method is a promising, simple approach for assessment of lymphatic function and for monitoring of therapeutic regimens in mouse models of disease and may have potential for clinical translation. PMID:28097238

  3. The Future Revisited.

    ERIC Educational Resources Information Center

    Mason, Marilyn Gell

    1996-01-01

    Reviews earlier predictions about technological change in libraries, finds that providing equal access to information remains the library's mission, and forecasts the future. Topics include ownership versus access, electronic resources, information infrastructure, users, levels of service fees, circulation, librarians as "information…

  4. IN SITU BIOREMEDIATION STRATEGIES FOR ORGANIC WOOD PRESERVATIVES

    EPA Science Inventory

    Laboratory biotreatability studies evaluated the use of bioventing and biosparging plus groundwater circulation (UVB technology) for their potential abililty to treat soil and groundwater containing creosote and pentachlorophenol. Soils from two former wood-treatment facilities w...

  5. Microfluidic strategies for understanding the mechanics of cells and cell-mimetic systems

    PubMed Central

    Dahl, Joanna B.; Lin, Jung-Ming G.; Muller, Susan J.; Kumar, Sanjay

    2016-01-01

    Microfluidic systems are attracting increasing interest for the high-throughput measurement of cellular biophysical properties and for the creation of engineered cellular microenvironments. Here we review recent applications of microfluidic technologies to the mechanics of living cells and synthetic cell-mimetic systems. We begin by discussing the use of microfluidic devices to dissect the mechanics of cellular mimics such as capsules and vesicles. We then explore applications to circulating cells, including erythrocytes and other normal blood cells, and rare populations with potential disease diagnostic value, such as circulating tumor cells. We conclude by discussing how microfluidic devices have been used to investigate the mechanics, chemotaxis, and invasive migration of adherent cells. In these ways, microfluidic technologies represent an increasingly important toolbox for investigating cellular mechanics and motility at high throughput and in a format that lends itself to clinical translation. PMID:26134738

  6. Circulating microparticles: square the circle

    PubMed Central

    2013-01-01

    Background The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes. PMID:23607880

  7. The multifaceted interplay between lipids and epigenetics.

    PubMed

    Dekkers, Koen F; Slagboom, P Eline; Jukema, J Wouter; Heijmans, Bastiaan T

    2016-06-01

    The interplay between lipids and epigenetic mechanisms has recently gained increased interest because of its relevance for common diseases and most notably atherosclerosis. This review discusses recent advances in unravelling this interplay with a particular focus on promising approaches and methods that will be able to establish causal relationships. Complementary approaches uncovered close links between circulating lipids and epigenetic mechanisms at multiple levels. A characterization of lipid-associated genetic variants suggests that these variants exert their influence on lipid levels through epigenetic changes in the liver. Moreover, exposure of monocytes to lipids persistently alters their epigenetic makeup resulting in more proinflammatory cells. Hence, epigenetic changes can both impact on and be induced by lipids. It is the combined application of technological advances to probe epigenetic modifications at a genome-wide scale and methodological advances aimed at causal inference (including Mendelian randomization and integrative genomics) that will elucidate the interplay between circulating lipids and epigenetics. Understanding its role in the development of atherosclerosis holds the promise of identifying a new category of therapeutic targets, since epigenetic changes are amenable to reversal.

  8. Blood-based analyses of cancer: Circulating myeloid-derived suppressor cells - is a new era coming?

    PubMed

    Okla, Karolina; Wertel, Iwona; Wawruszak, Anna; Bobiński, Marcin; Kotarski, Jan

    2018-06-21

    Progress in cancer treatment made by the beginning of the 21st century has shifted the paradigm from one-size-fits-all to tailor-made treatment. The popular vision, to study solid tumors through the relatively noninvasive sampling of blood, is one of the most thrilling and rapidly advancing fields in global cancer diagnostics. From this perspective, immune-cell analysis in cancer could play a pivotal role in oncology practice. This approach is driven both by rapid technological developments, including the analysis of circulating myeloid-derived suppressor cells (cMDSCs), and by the increasing application of (immune) therapies, the success or failure of which may depend on effective and timely measurements of relevant biomarkers. Although the implementation of these powerful noninvasive diagnostic capabilities in guiding precision cancer treatment is poised to change the ways in which we select and monitor cancer therapy, challenges remain. Here, we discuss the challenges associated with the analysis and clinical aspects of cMDSCs and assess whether the problems in implementing tumor-evolution monitoring as a global tool in personalized oncology can be overcome.

  9. Circulating MiRNAs of ‘Asian Indian Phenotype’ Identified in Subjects with Impaired Glucose Tolerance and Patients with Type 2 Diabetes

    PubMed Central

    Prabu, Paramasivam; Rome, Sophie; Sathishkumar, Chandrakumar; Aravind, Sankaramoorthy; Mahalingam, Balakumar; Shanthirani, Coimbatore Subramanian; Gastebois, Caroline; Villard, Audrey; Mohan, Viswanathan; Balasubramanyam, Muthuswamy

    2015-01-01

    Several omics technologies are underway worldwide with an aim to unravel the pathophysiology of a complex phenotype such as type 2 diabetes mellitus (T2DM). While recent studies imply a clinically relevant and potential biomarker role of circulatory miRNAs in the etiology of T2DM, there is lack of data on this aspect in Indians—an ethnic population characterized to represent ‘Asian Indian phenotype’ known to be more prone to develop T2DM and cardiovascular disease than Europeans. We performed global serum miRNA profiling and the validation of candidate miRNAs by qRT-PCR in a cohort of subjects comprised of normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and patients with T2DM. Our study revealed 4 differentially expressed miRNAs (miR-128, miR-130b-3p, miR-374a-5p, miR-423-5p) in subjects with IGT and T2DM patients compared to control subjects. They were positively or negatively correlated to cholesterol levels, HbA1C, HOMA-IR and fasting insulin. Interestingly, circulating level of miR-128 and miR-130b-3p were also altered in serum of diet-induced diabetic mice compared to control animals. Among the altered circulating miRNAs, miR-128 had never been described in previous studies/populations and appeared to be a ‘New Lead’ in Indians. It was positively correlated with cholesterol both in prediabetic subjects and in diet-induced diabetic mice, suggesting that its increased level might be associated with the development of dyslipedemia associated with T2DM. Our findings imply directionality towards biomarker potential of miRNAs in the prevention/diagnosis/treatment outcomes of diabetes. PMID:26020947

  10. Circulating MiRNAs of 'Asian Indian Phenotype' Identified in Subjects with Impaired Glucose Tolerance and Patients with Type 2 Diabetes.

    PubMed

    Prabu, Paramasivam; Rome, Sophie; Sathishkumar, Chandrakumar; Aravind, Sankaramoorthy; Mahalingam, Balakumar; Shanthirani, Coimbatore Subramanian; Gastebois, Caroline; Villard, Audrey; Mohan, Viswanathan; Balasubramanyam, Muthuswamy

    2015-01-01

    Several omics technologies are underway worldwide with an aim to unravel the pathophysiology of a complex phenotype such as type 2 diabetes mellitus (T2DM). While recent studies imply a clinically relevant and potential biomarker role of circulatory miRNAs in the etiology of T2DM, there is lack of data on this aspect in Indians--an ethnic population characterized to represent 'Asian Indian phenotype' known to be more prone to develop T2DM and cardiovascular disease than Europeans. We performed global serum miRNA profiling and the validation of candidate miRNAs by qRT-PCR in a cohort of subjects comprised of normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and patients with T2DM. Our study revealed 4 differentially expressed miRNAs (miR-128, miR-130b-3p, miR-374a-5p, miR-423-5p) in subjects with IGT and T2DM patients compared to control subjects. They were positively or negatively correlated to cholesterol levels, HbA1C, HOMA-IR and fasting insulin. Interestingly, circulating level of miR-128 and miR-130b-3p were also altered in serum of diet-induced diabetic mice compared to control animals. Among the altered circulating miRNAs, miR-128 had never been described in previous studies/populations and appeared to be a 'New Lead' in Indians. It was positively correlated with cholesterol both in prediabetic subjects and in diet-induced diabetic mice, suggesting that its increased level might be associated with the development of dyslipedemia associated with T2DM. Our findings imply directionality towards biomarker potential of miRNAs in the prevention/diagnosis/treatment outcomes of diabetes.

  11. Transnational science and collaborative networks. The case of Genetics and Radiobiology in Mexico, 1950-1970.

    PubMed

    Barahona, Ana

    2015-01-01

    The transnational approach of the science and technology studies (S&TS) abandons the nation as a unit of analysis in order to understand the development of science history. It also abandons Euro-US-centred narratives in order to explain the role of international collaborative networks and the circulation of knowledge, people, artefacts and scientific practices. It is precisely under this perspective that the development of genetics and radiobiology in Mexico shall be analyzed, together with the pioneering work of the Mexican physician-turned-geneticist Alfonso León de Garay who spent two years in the Galton Laboratory in London under the supervision of Lionel Penrose. Upon his return de Garay funded the Genetics and Radiobiology Program of the National Commission of Nuclear Energy based on local needs and the aim of working beyond geographical limitations to thus facilitate the circulation of knowledge, practices and people. The three main lines of research conducted in the years after its foundation that were in line with international projects while responding to the national context were, first, cytogenetic studies of certain abnormalities, and the cytogenetics and anthropological studies of the Olympic Games held in Mexico in 1968; second, the study of the effects of radiation on hereditary material; and third, the study of population genetics in Drosophila and in Mexican indigenous groups. The program played a key role in reshaping the scientific careers of Mexican geneticists, and in transferring locally sourced research into broader networks. This case shows the importance of international collaborative networks and circulation in the constitution of national scientific elites, and also shows the national and transnational concerns that shaped local practices.

  12. PCSK9 inhibition: the dawn of a new age in cholesterol lowering?

    PubMed

    Preiss, David; Mafham, Marion

    2017-03-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a circulating enzyme of hepatic origin that plays a key role in LDL receptor turnover. Genetic studies have confirmed that individuals with gain-of-function PCSK9 mutations have increased PCSK9 activity, elevated LDL-cholesterol levels and a severe form of familial hypercholesterolaemia. Those with variants leading to reduced PCSK9 have lower LDL-cholesterol levels and a reduced risk of coronary heart disease, and this has led to the development of various strategies aimed at reducing circulating PCSK9. Monoclonal antibodies to PCSK9, given every 2-4 weeks by subcutaneous injection, have been shown to reduce LDL-cholesterol by 50-60% compared with placebo in individuals with and without diabetes. PCSK9 inhibition also reduces lipoprotein(a), an atherogenic lipid particle, by around 20-30%. Major cardiovascular outcome trials for two agents, evolocumab and alirocumab, are expected to report from 2017. These trials involve over 45,000 participants and are likely to include about 15,000 individuals with diabetes. PCSK9-binding adnectins have been employed as an alternative method of removing circulating PCSK9. Small interfering RNA targeting messenger RNA for PCSK9, which acts by reducing hepatic production of PCSK9, is also under investigation. These agents may only need to be given by subcutaneous injection once every 4-6 months. Ongoing trials will determine whether anti-PCSK9 antibody therapy safely reduces cardiovascular risk, although high cost may limit its use. Development of PCSK9-lowering technologies cheaper than monoclonal antibodies will be necessary for large numbers of individuals to benefit from this approach to lowering cholesterol.

  13. Label-free counting of circulating cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Zhou, Quanyu; Yang, Ping; Wang, Qiyan; Pang, Kai; Zhou, Hui; He, Hao; Wei, Xunbin

    2018-02-01

    Melanoma, developing from melanocytes, is the most serious type of skin cancer. Circulating melanoma cells, the prognosis marker for metastasis, are present in the circulation at the early stage. Thus, quantitative detection of rare circulating melanoma cells is essential for monitoring tumor metastasis and prognosis evaluation. Compared with in vitro assays, in vivo flow cytometry is able to identify circulating tumor cells without drawing blood. Here, we built in vivo photoacoustic flow cytometry based on the high absorption coefficient of melanoma cells, which is applied to labelfree counting of circulating melanoma cells in tumor-bearing mice.

  14. Smart Aquarium as Physics Learning Media for Renewable Energy

    NASA Astrophysics Data System (ADS)

    Desnita, D.; Raihanati, R.; Susanti, D.

    2018-04-01

    Smart aquarium has been developed as a learning media to visualize Micro Hydro Power Generator (MHPG). Its used aquarium water circulation system and Wind Power Generation (WPG) which generated through a wheel as a source. Its also used to teach about energy changes, circular motion and wheel connection, electromagnetic impact, and AC power circuit. The output power and system efficiency was adjusted through the adjustment of water level and wind speed. Specific targets in this research are: to achieved: (i) develop green aquarium technology that’s suitable to used as a medium of physics learning, (ii) improving quality of process and learning result at a senior high school student. Research method used development research by Borg and Gall, which includes preliminary studies, design, product development, expert validation, and product feasibility test, and vinalisation. The validation test by the expert states that props feasible to use. Limited trials conducted prove that this tool can improve students science process skills.

  15. Novel Platforms for the Development of a Universal Influenza Vaccine

    PubMed Central

    Kumar, Arun; Meldgaard, Trine Sundebo; Bertholet, Sylvie

    2018-01-01

    Despite advancements in immunotherapeutic approaches, influenza continues to cause severe illness, particularly among immunocompromised individuals, young children, and elderly adults. Vaccination is the most effective way to reduce rates of morbidity and mortality caused by influenza viruses. Frequent genetic shift and drift among influenza-virus strains with the resultant disparity between circulating and vaccine virus strains limits the effectiveness of the available conventional influenza vaccines. One approach to overcome this limitation is to develop a universal influenza vaccine that could provide protection against all subtypes of influenza viruses. Moreover, the development of a novel or improved universal influenza vaccines may be greatly facilitated by new technologies including virus-like particles, T-cell-inducing peptides and recombinant proteins, synthetic viruses, broadly neutralizing antibodies, and nucleic acid-based vaccines. This review discusses recent scientific advances in the development of next-generation universal influenza vaccines. PMID:29628926

  16. A study of natural circulation in the evaporator of a horizontal-tube heat recovery steam generator

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Pleshanov, K. A.; Sterkhov, K. V.

    2014-07-01

    Results obtained from investigations of stable natural circulation in an intricate circulation circuit with a horizontal layout of the tubes of evaporating surface having a negative useful head are presented. The possibility of making a shift from using multiple forced circulation organized by means of a circulation pump to natural circulation in vertical heat recovery steam generator is estimated. Criteria for characterizing the performance reliability and efficiency of a horizontal evaporator with negative useful head are proposed. The influence of various design solutions on circulation robustness is considered. With due regard of the optimal parameters, the most efficient and least costly methods are proposed for achieving more stable circulation in a vertical heat recovery steam generator when a shift is made from multiple forced to natural circulation. A procedure for calculating the circulation parameters and an algorithm for checking evaporator performance reliability are developed, and recommendations for the design of heat recovery steam generator, nonheated parts of natural circulation circuit, and evaporating surface are suggested.

  17. Design of a walking robot

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Dowling, Kevin

    1994-01-01

    Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.

  18. Design of a walking robot

    NASA Astrophysics Data System (ADS)

    Whittaker, William; Dowling, Kevin

    1994-03-01

    Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.

  19. Quantitation of fetal DNA fraction in maternal plasma using circulating single molecule amplification and re-sequencing technology (cSMART).

    PubMed

    Song, Yijun; Zhou, Xiya; Huang, Saiqiong; Li, Xiaohong; Qi, Qingwei; Jiang, Yulin; Liu, Yiqian; Ma, Chengcheng; Li, Zhifeng; Xu, Mengnan; Cram, David S; Liu, Juntao

    2016-05-01

    Calculation of the fetal DNA fraction (FF) is important for reliable and accurate noninvasive prenatal testing (NIPT) for fetal genetic abnormalities. The aim of the study was to develop and validate a novel method for FF determination. FF was calculated using the chromosome Y (ChrY) sequence read assay and by circulating single molecule amplification and re-sequencing technology of 76 autosomal SNPs. By Pearson correlation for FF (4.73-22.11%) in 33 male pregnancy samples, the R(2) co-efficient for the 76-SNP versus the ChrY assay was 0.9572 (p<0.001). In addition, the co-efficient of variation (CV) of FF measurement by the 76-SNP assay was low (0.15-0.35). As a control, the FF measurement for four non-pregnant plasma samples was virtually zero. In prospective longitudinal studies of 14 women with normal pregnancies, FF generally increased with gestational age. However, in eight women (71%) there was a significant decrease in FF between the first trimester (11-13 weeks) and the second trimester (15-19 weeks), and this was attributable to significant maternal weight gain. The novel 76-SNP cSMART assay has the precision to accurately measure FF in all pregnancies at a detection threshold of 5%. Based on FF trends in individual pregnancies, our results suggest that the end of the first trimester may be a more optimal window for performing NIPT. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Enrichment, Isolation and Molecular Characterization of EpCAM-Negative Circulating Tumor Cells.

    PubMed

    Lampignano, Rita; Schneck, Helen; Neumann, Martin; Fehm, Tanja; Neubauer, Hans

    2017-01-01

    The presence of EpCAM-positive circulating tumor cells (CTCs) in the peripheral blood is associated with poor clinical outcomes in breast, colorectal and prostate cancer, as well as the prognosis of other tumor types. In addition, recent studies have suggested that the presence of CTCs undergoing epithelial-to-mesenchymal transition and, as such, may exhibit reduced or no expression of epithelial proteins e.g. EpCAM, might be related to disease progression in metastatic breast cancer (MBC) patients. Analyzing the neoplastic nature of this EpCAM-low/negative (EpCAM-neg) subpopulation remains an open issue as the current standard detection methods for CTCs are not efficient at identifying this subpopulation of cells. The possible association of EpCAM-neg CTCs with EpCAM-positive (EpCAM-pos) CTCs and role in the clinicopathological features and prognosis of MBC patients has still to be demonstrated. Several technologies have been developed and are currently being tested for the identification and the downstream analyses of EpCAM-pos CTCs. These technologies can be adapted and implemented into workflows to isolate and investigate EpCAM-neg cells to understand their biology and clinical relevance. This chapter will endeavour to explain the rationale behind the identification and analyses of all CTC subgroups, as well as to review the current strategies employed to enrich, isolate and characterize EpCAM-negative CTCs. Finally, the latest findings in the field will briefly be discussed with regard to their clinical relevance.

  1. New photoacoustic platform for early detection of circulating clots to prevent stroke and other fatal thromboembolic complications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Carey, Kai A.

    2017-03-01

    Nearly 800,000 people in the U.S. experience an incident of stroke each year; 80% of these are first time occurrences and 87% are ischemic in nature. Someone dies of a stroke every few minutes in the U.S. but despite its prevalence there have been minimal advances in the early detection and screening of thromboembolic events, especially during patient post-operative periods or in genetically predisposed individuals. Environmental or genetic factors may disrupt the balance between coagulation and lysis of micro-thrombi in circulation and increase the risk of stroke. We introduced here a novel in vivo multicolor negative-contrast photoacoustic (PA) flow cytometry (PAFC ) platform with many innovations including customized high pulse repetition rate 1064 laser from IPG Photonics Corporation, powerful laser diode array, multichannel optical schematic, and time-resolved recording system. Using animal models, we verified the potential of this technology to detect small clots in relatively large vessels in vivo. If future clinical trials using a cost-effective, easy-to-use, safe, watch-like, wearable PA probe are successful, PAFC could provide breakthroughs in early monitoring of the growth in size and number of small clots that may predict and potentially prevent fatal thromboembolic complications. We also believe that this technology could be utilized to assess therapeutic benefits of anticoagulants and develop more efficient dosage in treatments by analyzing changes in the composition and frequency of micro-thrombi

  2. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals

    PubMed Central

    Ferguson, B. Scott; Hoggarth, David A.; Maliniak, Dan; Ploense, Kyle; White, Ryan J.; Woodward, Nick; Hsieh, Kuangwen; Bonham, Andrew J.; Eisenstein, Michael; Kippin, Tod; Plaxco, Kevin W.; Soh, H. Tom

    2014-01-01

    A sensor capable of continuously measuring specific molecules in the bloodstream in vivo would give clinicians a valuable window into patients’ health and their response to therapeutics. Such technology would enable truly personalized medicine, wherein therapeutic agents could be tailored with optimal doses for each patient to maximize efficacy and minimize side effects. Unfortunately, continuous, real-time measurement is currently only possible for a handful of targets, such as glucose, lactose, and oxygen, and the few existing platforms for continuous measurement are not generalizable for the monitoring of other analytes, such as small-molecule therapeutics. In response, we have developed a real-time biosensor capable of continuously tracking a wide range of circulating drugs in living subjects. Our microfluidic electrochemical detector for in vivo continuous monitoring (MEDIC) requires no exogenous reagents, operates at room temperature, and can be reconfigured to measure different target molecules by exchanging probes in a modular manner. To demonstrate the system's versatility, we measured therapeutic in vivo concentrations of doxorubicin (a chemotherapeutic) and kanamycin (an antibiotic) in live rats and in human whole blood for several hours with high sensitivity and specificity at sub-minute temporal resolution. Importantly, we show that MEDIC can also obtain pharmacokineticparameters for individual animals in real-time. Accordingly, just as continuous glucose monitoring technology is currently revolutionizing diabetes care, we believe MEDIC could be a powerful enabler for personalized medicine by ensuring delivery of optimal drug doses for individual patients based on direct detection of physiological parameters. PMID:24285484

  3. Overview of Fundamental High-Lift Research for Transport Aircraft at NASA

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Washburn, A. E.; Wahls, R. A.

    2007-01-01

    NASA has had a long history in fundamental and applied high lift research. Current programs provide a focus on the validation of technologies and tools that will enable extremely short take off and landing coupled with efficient cruise performance, simple flaps with flow control for improved effectiveness, circulation control wing concepts, some exploration into new aircraft concepts, and partnership with Air Force Research Lab in mobility. Transport high-lift development testing will shift more toward mid and high Rn facilities at least until the question: "How much Rn is required" is answered. This viewgraph presentation provides an overview of High-Lift research at NASA.

  4. The human circulating miRNome reflects multiple organ disease risks in association with short-term exposure to traffic-related air pollution.

    PubMed

    Krauskopf, Julian; Caiment, Florian; van Veldhoven, Karin; Chadeau-Hyam, Marc; Sinharay, Rudy; Chung, Kian Fan; Cullinan, Paul; Collins, Peter; Barratt, Benjamin; Kelly, Frank J; Vermeulen, Roel; Vineis, Paolo; de Kok, Theo M; Kleinjans, Jos C

    2018-04-01

    Traffic-related air pollution is a complex mixture of particulate matter (PM) and gaseous pollutants, such as nitrogen dioxide (NO2). PM exposure contributes to the pathogenesis of many diseases including several types of cancer, as well as pulmonary, cardiovascular and neurodegenerative diseases. Also exposure to NO2 has been related to increased cardiovascular mortality. In search of an early diagnostic biomarker for improved air pollution-associated health risk assessment, recent human studies have shown that certain circulating miRNAs are altered upon exposure to traffic-related air pollutants. Here, we present for the first time a global analysis of the circulating miRNA genome in an experimental cross-over study of a human population exposed to traffic-related air pollution. By utilizing next-generation sequencing technology and detailed real-time exposure measurements we identified 54 circulating miRNAs to be dose- and pollutant species-dependently associated with PM10, PM2.5, black carbon, ultrafine particles and NO2 already after 2 h of exposure. Bioinformatics analysis suggests that these circulating miRNAs actually reflect the adverse consequences of traffic pollution-induced toxicity in target tissues including the lung, heart, kidney and brain. This study shows the strong potential of circulating miRNAs as novel biomarkers for environmental health risk assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Science and Technology in Greek Newspapers, 1900-1910. Historiographical Reflections and the Role of Journalists for the Public Images of Science and Technology

    ERIC Educational Resources Information Center

    Mergoupi-Savaidou, Eirini; Papanelopoulou, Faidra; Tzokas, Spyros

    2012-01-01

    Based on our research on two Athenian daily newspapers for the first decade of the twentieth century, we present some historiographical reflections concerning the role of the daily press in the circulation of scientific knowledge, ideas and practices. From the wealth of material provided, we examine some of the ways in which scientific and…

  6. Optimization of circulating cell-free DNA recovery for KRAS mutation and HPV detection in plasma.

    PubMed

    Mazurek, Agnieszka M; Fiszer-Kierzkowska, A; Rutkowski, T; Składowski, K; Pierzyna, M; Scieglińska, D; Woźniak, G; Głowacki, G; Kawczyński, R; Małusecka, E

    2013-01-01

    The precise analysis of tumour markers in blood such as circulating cell-free DNA (cfDNA) could have a significant impact in facilitating monitoring of patients after initial therapy. Although high levels of total cfDNA in plasma of cancer patients are consistently demonstrated, a low sensitivity of DNA alterations is reported. The major question regards the recovery of tumour-specific cfDNA such as KRAS mutated DNA and cancer-associated type 16 of human papillomavirus (HPV16). TaqMan technology was used for detection of KRAS mutation, HPV16 and to quantify cfDNA in blood plasma. Comparison of four different column-based commercial kits shows that the cfDNA purification carried out by the Genomic Mini AX Body Fluids kit and the QIAamp Circulating Nucleic Acid kit gave us the possibility to improve the sensitivity of detection of KRAS mutation and HPV16. The optimized method was used to follow the reduction in cancer-specific cfDNA after therapy. We found that large volume extractions with low volume of DNA eluate enabled trace amounts of tumour-specific cfDNA from cancer patients to be effectively identified. Data presented in this study facilitate detection of tumour-specific cfDNA and improve standards needed for the implementation of cfDNA technology into routine clinical practice.

  7. Review of the role of NICE in promoting the adoption of innovative cardiac technologies.

    PubMed

    Groves, Peter H; Pomfrett, Chris; Marlow, Mirella

    2018-05-17

    The National Institute for Health and Care Excellence (NICE) Medical Technologies Evaluation Programme (MTEP) promotes the adoption of innovative diagnostic and therapeutic technologies into National Health Service (NHS) clinical practice through the publication of guidance and briefing documents. Since the inception of the programme in 2009, there have been 7 medical technologiesguidance, 3 diagnostics guidance and 23 medtechinnovation briefing documents published that are relevant to the heart and circulation. Medical technologies guidance is published by NICE for selected single technologies if they offer plausible additional benefits to patients and the healthcare system. Diagnostic guidance is published for diagnostic technologies if they have the potential to improve health outcomes, but if their introduction may be associated with an increase in overall cost to the NHS. Medtechinnovation briefings provide evidence-based advice to those considering the implementation of new medical devices or diagnostic technologies. This review provides reference to all of the guidance and briefing medical technology documents that NICE has published that are relevant to the heart and circulation and reflect on their diverse recommendations. The interaction of MTEP with other NICE programmes is integral to its effectiveness and the means by which consistency is ensured across the different NICE programmes is described. The importance of the input of clinical experts from the cardiovascular professional community and the engagement by NICE with cardiovascular professional societies is highlighted as being fundamental to ensuring the quality of guidance outputs as well as to promoting their implementation and adoption. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Circulating Tumor Cell Isolation and Analysis

    PubMed Central

    Zhang, J.; Chen, K.; Fan, Z.H.

    2016-01-01

    Isolation and analysis of cancer cells from body fluids have significant implications in diagnosis and therapeutic treatment of cancers. Circulating tumor cells (CTCs) are cancer cells circulating in the peripheral blood or spreading iatrogenically into blood vessels, which is an early step in the cascade of events leading to cancer metastasis. Therefore, CTCs can be used for diagnosing for therapeutic treatment, prognosing a given anticancer intervention, and estimating the risk of metastatic relapse. However, isolation of CTCs is a significant technological challenge due to their rarity and low recovery rate using traditional purification techniques. Recently microfluidic devices represent a promising platform for isolating cancer cells with high efficiency in processing complex cellular fluids, with simplicity, sensitivity, and throughput. This review summarizes recent methods of CTC isolation and analysis, as well as their applications in clinical studies. PMID:27346614

  9. Circulating Tumor Cell Isolation and Analysis.

    PubMed

    Zhang, J; Chen, K; Fan, Z H

    Isolation and analysis of cancer cells from body fluids have significant implications in diagnosis and therapeutic treatment of cancers. Circulating tumor cells (CTCs) are cancer cells circulating in the peripheral blood or spreading iatrogenically into blood vessels, which is an early step in the cascade of events leading to cancer metastasis. Therefore, CTCs can be used for diagnosing for therapeutic treatment, prognosing a given anticancer intervention, and estimating the risk of metastatic relapse. However, isolation of CTCs is a significant technological challenge due to their rarity and low recovery rate using traditional purification techniques. Recently microfluidic devices represent a promising platform for isolating cancer cells with high efficiency in processing complex cellular fluids, with simplicity, sensitivity, and throughput. This review summarizes recent methods of CTC isolation and analysis, as well as their applications in clinical studies. © 2016 Elsevier Inc. All rights reserved.

  10. On-Chip Microwave Quantum Hall Circulator

    NASA Astrophysics Data System (ADS)

    Mahoney, A. C.; Colless, J. I.; Pauka, S. J.; Hornibrook, J. M.; Watson, J. D.; Gardner, G. C.; Manfra, M. J.; Doherty, A. C.; Reilly, D. J.

    2017-01-01

    Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1 /1000 th the wavelength by exploiting the chiral, "slow-light" response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330 μ m diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.

  11. SCIENCE AND TECHNOLOGY OF CLEAN PROCESSING [EDITORIAL

    EPA Science Inventory

    Cleaner production methods, pollution prevention, and industrial ecology are the focuses of several journals in circulation. Aspects of cleaner products and processes are also implicitly covered in many established scientific and engineering journals. This journal has two main o...

  12. Circulating asymmetric dimethylarginine and the risk of preeclampsia: a meta-analysis based on 1338 participants.

    PubMed

    Yuan, Jing; Wang, Xinguo; Xie, Yudou; Wang, Yuzhi; Dong, Lei; Li, Hong; Zhu, Tongyu

    2017-07-04

    Patients with preeclampsia have higher circulating asymmetric dimethylarginine (ADMA). However, whether circulating ADMA is elevated before the diagnosis of preeclampsia has not been determined. A meta-analysis of observational studies that reported circulating ADMA level before the onset of preeclampsia was performed. Pubmed and Embase were searched. Standardized mean differences (SMD) with 95% confidence intervals (CI) were used to estimate the differences in circulating ADMA. A random effect model or a fixed effect model was applied depending on the heterogeneity. The predictive efficacy of circulating ADMA for the incidence of preeclampsia was also explored. Eleven comparisons with 1338 pregnant women were included. The pooled results showed that the circulating ADMA was significantly higher in women who subsequently developed preeclampsia as compared with those did not (SMD: 0.71, p < 0.001) with a moderate heterogeneity (I2 = 43%). Stratified analyses suggested elevation of circulating ADMA is more remarkable in studies with GA of ADMA sampling ≥ 20 weeks (SMD: 0.89, p < 0.01) as compared those with GA of ADMA sampling < 20 weeks (SMD: 0.56, p < 0.01; p for subgroup interaction = 0.03). Differences of maternal age, study design, and ADMA measurement methods did not significantly affect the results. Only two studies evaluated the potential predicting ability of circulating ADMA for subsequent preeclampsia, and retrieved moderate predictive efficacy. Circulating ADMA is elevated before the development of preeclampsia. Studies are needed to evaluate the predictive efficacy of ADMA for the incidence of preeclampsia.

  13. Atmospheric circulation classification comparison based on wildfires in Portugal

    NASA Astrophysics Data System (ADS)

    Pereira, M. G.; Trigo, R. M.

    2009-04-01

    Atmospheric circulation classifications are not a simple description of atmospheric states but a tool to understand and interpret the atmospheric processes and to model the relation between atmospheric circulation and surface climate and other related variables (Radan Huth et al., 2008). Classifications were initially developed with weather forecasting purposes, however with the progress in computer processing capability, new and more robust objective methods were developed and applied to large datasets prompting atmospheric circulation classification methods to one of the most important fields in synoptic and statistical climatology. Classification studies have been extensively used in climate change studies (e.g. reconstructed past climates, recent observed changes and future climates), in bioclimatological research (e.g. relating human mortality to climatic factors) and in a wide variety of synoptic climatological applications (e.g. comparison between datasets, air pollution, snow avalanches, wine quality, fish captures and forest fires). Likewise, atmospheric circulation classifications are important for the study of the role of weather in wildfire occurrence in Portugal because the daily synoptic variability is the most important driver of local weather conditions (Pereira et al., 2005). In particular, the objective classification scheme developed by Trigo and DaCamara (2000) to classify the atmospheric circulation affecting Portugal have proved to be quite useful in discriminating the occurrence and development of wildfires as well as the distribution over Portugal of surface climatic variables with impact in wildfire activity such as maximum and minimum temperature and precipitation. This work aims to present: (i) an overview the existing circulation classification for the Iberian Peninsula, and (ii) the results of a comparison study between these atmospheric circulation classifications based on its relation with wildfires and relevant meteorological variables. To achieve these objectives we consider the main classifications for Iberia developed within the framework of COST action 733 (Radan Huth et al., 2008). This European project aims to provide a wide range of atmospheric circulation classifications for Europe and sub-regions (http://www.cost733.org/) with an ambitious objective of assessing, comparing and classifying all relevant weather situations in Europe. Pereira et al. (2005) "Synoptic patterns associated with large summer forest fires in Portugal". Agricultural and Forest Meteorology,129, 11-25. Radan Huth et al. (2008) "Classifications of Atmospheric circulation patterns. Recent advances and applications". Trends and Directions in Climate Research: Ann. N.Y. Acad. Sci. 1146: 105-152. doi: 10.1196/annals.1446.019. Trigo R.M., DaCamara C. (2000) "Circulation Weather Types and their impact on the precipitation regime in Portugal". Int J of Climatology, 20, 1559-1581.

  14. System Analysis for Decay Heat Removal in Lead-Bismuth Cooled Natural Circulated Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takaaki Sakai; Yasuhiro Enuma; Takashi Iwasaki

    2002-07-01

    Decay heat removal analyses for lead-bismuth cooled natural circulation reactors are described in this paper. A combined multi-dimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural circulation reactors. For the preliminary study, transient analysis has been performed for a 100 MWe lead-bismuth-cooled reactor designed by Argonne National Laboratory (ANL). In addition, decay heat removal characteristics of a 400 MWe lead-bismuth-cooled natural circulation reactor designed by Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. PRACS (Primary Reactor Auxiliary Cooling System) is prepared for the JNC's concept to get sufficient heatmore » removal capacity. During 2000 sec after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 Centigrade, because the buoyancy force in a primary circulation path is temporary reduced. However, the natural circulation is recovered by the PRACS system and the out let temperature decreases successfully. (authors)« less

  15. System Analysis for Decay Heat Removal in Lead-Bismuth-Cooled Natural-Circulation Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Takaaki; Enuma, Yasuhiro; Iwasaki, Takashi

    2004-03-15

    Decay heat removal analyses for lead-bismuth-cooled natural-circulation reactors are described in this paper. A combined multidimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural-circulation reactors. For the preliminary study, transient analysis has been performed for a 300-MW(thermal) lead-bismuth-cooled reactor designed by Argonne National Laboratory. In addition, decay heat removal characteristics of a 400-MW(electric) lead-bismuth-cooled natural-circulation reactor designed by the Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. The primary reactor auxiliary cooling system (PRACS) is prepared for the JNC concept to get sufficient heat removal capacity. During 2000 smore » after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 deg. C because the buoyancy force in a primary circulation path is temporarily reduced. However, the natural circulation is recovered by the PRACS system, and the outlet temperature decreases successfully.« less

  16. Suspension cell culture in microgravity and development of a space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1987-01-01

    NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells.

  17. In vitro microfluidic circulatory system for circulating cancer cells

    PubMed Central

    wan, jiandi; Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-01-01

    Circulating tumor cells (CTCs) experience hemodynamic shear stress in circulation and play critical roles in cancer metastasis. The effect of shear on CTCs, however, remains less studied. Here, we described a protocol to circulate HCT116 human colon cancer cells in a microfluidic circulatory system mimicking physiologically relevant circulating conditions. This protocol represents a useful scaffold to mimic the transportation of CTCs in circulation and thus provides an effective means to study the effect of shear on CTCs. We anticipate that future studies using the developed system will help us to further investigate the regulatory roles of shear in molecular responses of CTCs. PMID:28690779

  18. Gynaecomastia complicating the treatment of myeloma.

    PubMed Central

    Large, D. M.; Jones, J. M.; Shalet, S. M.; Scarffe, J. H.; Gibbs, A. C.

    1983-01-01

    The hormonal mechanisms involved in the development of gynaecomastia accompanying the treatment of multiple myeloma in adult men have been investigated by studying levels of circulating testosterone (T), oestrone (EI), oestradiol (E2), sex-hormone binding globulin (SHBG), prolactin (PRL) and the gonadotrophins LH and FSH, before, during and after development of gynaecomastia in 4 men. These have been compared with 5 closely matched men who did not develop gynaecomastia during similar treatment for myeloma. Levels of circulating T fell, and levels of E1 and E2 rose during treatment periods in all subjects, and the changes were statistically significant in subjects developing gynaecomastia, which resolved as levels of sex steroid returned towards normal following cessation of treatment. We conclude that treatment of adult men for myeloma results in testicular dysfunction with a reduction in circulating T and a rise in circulating oestrogens. These changes are most marked in subjects developing gynaecomastia in whom the normal breast tissue is stimulated by a subtle, transient oestrogen:androgen imbalance in favour of oestrogens. PMID:6409138

  19. Developments in label-free microfluidic methods for single-cell analysis and sorting.

    PubMed

    Carey, Thomas R; Cotner, Kristen L; Li, Brian; Sohn, Lydia L

    2018-04-24

    Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices. © 2018 Wiley Periodicals, Inc.

  20. Recent advances in cytochrome c biosensing technologies.

    PubMed

    Manickam, Pandiaraj; Kaushik, Ajeet; Karunakaran, Chandran; Bhansali, Shekhar

    2017-01-15

    This review is an attempt, for the first time, to describe advancements in sensing technology for cytochrome c (cyt c) detection, at point-of-care (POC) application. Cyt c, a heme containing metalloprotein is located in the intermembrane space of mitochondria and released into bloodstream during pathological conditions. The release of cyt c from mitochondria is a key initiative step in the activation of cell death pathways. Circulating cyt c levels represents a novel in-vivo marker of mitochondrial injury after resuscitation from heart failure and chemotherapy. Thus, cyt c detection is not only serving as an apoptosis biomarker, but also is of great importance to understand certain diseases at cellular level. Various existing techniques such as enzyme-linked immunosorbent assays (ELISA), Western blot, high performance liquid chromatography (HPLC), spectrophotometry and flow cytometry have been used to estimate cyt c. However, the implementation of these techniques at POC application is limited due to longer analysis time, expensive instruments and expertise needed for operation. To overcome these challenges, significant efforts are being made to develop electrochemical biosensing technologies for fast, accurate, selective, and sensitive detection of cyt c. Presented review describes the cutting edge technologies available in the laboratories to detect cyt c. The recent advancements in designing and development of electrochemical cyt c biosensors for the quantification of cyt c are also discussed. This review also highlights the POC cyt c biosensors developed recently, that would prove of interest to biologist and therapist to get real time informatics needed to evaluate death process, diseases progression, therapeutics and processes related with mitochondrial injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Metabolites associated with circulating interleukin-6 in older adults

    USDA-ARS?s Scientific Manuscript database

    Background: Circulating levels of the pro-inflammatory cytokine interleukin-6 (IL-6) levels are elevated in older adults, but mechanisms are unclear. In the current study, we used an untargeted metabolomic approach to develop an improved understanding about mechanisms related to circulating IL-6 in ...

  2. The Errors Sources Affect to the Results of One-Way Nested Ocean Regional Circulation Model

    NASA Astrophysics Data System (ADS)

    Pham, S. V.

    2016-02-01

    Pham-Van Sy1, Jin Hwan Hwang2 and Hyeyun Ku3 Dept. of Civil & Environmental Engineering, Seoul National University, KoreaEmail: 1phamsymt@gmail.com (Corresponding author) Email: 2jinhwang@snu.ac.krEmail: 3hyeyun.ku@gmail.comAbstractThe Oceanic Regional Circulation Model (ORCM) is an essential tool in resolving highly a regional scale through downscaling dynamically the results from the roughly revolved global model. However, when dynamic downscaling from a coarse resolution of the global model or observations to the small scale, errors are generated due to the different sizes of resolution and lateral updating frequency. This research evaluated the effect of four main sources on the results of the ocean regional circulation model (ORCMs) during downscaling and nesting the output data from the ocean global circulation model (OGCMs). Representative four error sources should be the way of the LBC formulation, the spatial resolution difference between driving and driven data, the frequency for up-dating LBCs and domain size. Errors which are contributed from each error source to the results of the ORCMs are investigated separately by applying the Big-Brother Experiment (BBE). Within resolution of 3km grid point of the ORCMs imposing in the BBE framework, it clearly exposes that the simulation results of the ORCMs significantly depend on the domain size and specially the spatial and temporal resolution of lateral boundary conditions (LBCs). The ratio resolution of spatial resolution between driving data and driven model could be up to 3, the updating frequency of the LBCs can be up to every 6 hours per day. The optimal domain size of the ORCMs could be smaller than the OGCMs' domain size around 2 to 10 times. Key words: ORCMs, error source, lateral boundary conditions, domain size Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled as "Developing total management system for the Keum river estuary and coast" and "Development of Technology for CO2 Marine Geological Storage". We also thank to the administrative supports of the Integrated Research Institute of Construction and Environmental Engineering of the Seoul National University.

  3. Noninvasive prenatal diagnosis for single gene disorders.

    PubMed

    Allen, Stephanie; Young, Elizabeth; Bowns, Benjamin

    2017-04-01

    Noninvasive prenatal diagnosis for single gene disorders is coming to fruition in its clinical utility. The presence of cell-free DNA in maternal plasma has been recognized for many years, and a number of applications have developed from this. Noninvasive prenatal diagnosis for single gene disorders has lagged behind due to complexities of technology development, lack of investment and the need for validation samples for rare disorders. Publications are emerging demonstrating a variety of technical approaches and feasibility of clinical application. Techniques for analysis of cell-free DNA including digital PCR, next-generation sequencing and relative haplotype dosage have been used most often for assay development. Analysis of circulating fetal cells in the maternal blood is still being investigated as a viable alternative and more recently transcervical trophoblast cells. Studies exploring ethical and social issues are generally positive but raise concerns around the routinization of prenatal testing. Further work is necessary to make testing available to all patients with a pregnancy at risk of a single gene disorder, and it remains to be seen if the development of more powerful technologies such as isolation and analysis of single cells will shift the emphasis of noninvasive prenatal diagnosis. As testing becomes possible for a wider range of conditions, more ethical questions will become relevant.

  4. Benefits of object-oriented models and ModeliChart: modern tools and methods for the interdisciplinary research on smart biomedical technology.

    PubMed

    Gesenhues, Jonas; Hein, Marc; Ketelhut, Maike; Habigt, Moriz; Rüschen, Daniel; Mechelinck, Mare; Albin, Thivaharan; Leonhardt, Steffen; Schmitz-Rode, Thomas; Rossaint, Rolf; Autschbach, Rüdiger; Abel, Dirk

    2017-04-01

    Computational models of biophysical systems generally constitute an essential component in the realization of smart biomedical technological applications. Typically, the development process of such models is characterized by a great extent of collaboration between different interdisciplinary parties. Furthermore, due to the fact that many underlying mechanisms and the necessary degree of abstraction of biophysical system models are unknown beforehand, the steps of the development process of the application are iteratively repeated when the model is refined. This paper presents some methods and tools to facilitate the development process. First, the principle of object-oriented (OO) modeling is presented and the advantages over classical signal-oriented modeling are emphasized. Second, our self-developed simulation tool ModeliChart is presented. ModeliChart was designed specifically for clinical users and allows independently performing in silico studies in real time including intuitive interaction with the model. Furthermore, ModeliChart is capable of interacting with hardware such as sensors and actuators. Finally, it is presented how optimal control methods in combination with OO models can be used to realize clinically motivated control applications. All methods presented are illustrated on an exemplary clinically oriented use case of the artificial perfusion of the systemic circulation.

  5. Diagnostics of severe convection and subsynoptic scale ageostrophic circulations

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Diagnostics of severe convection and subsynoptic scale ageostrophic circulations are reported. Mesoscale circulations through forcing of ageostrophic motion by adiabatic, diabatic and frictional processes were studied. The development and application of a hybrid isentropic sigma coordinate numerical model was examined. The numerical model simulates mesoscale ageostrophic circulations associated with propagating jet streaks and severe convection. A complete list of publications and these completed through support of the NASA severe storms research project is included.

  6. Report from AmSECT's International Consortium for Evidence-Based Perfusion: American Society of Extracorporeal Technology Standards and Guidelines for Perfusion Practice: 2013.

    PubMed

    Baker, Robert A; Bronson, Shahna L; Dickinson, Timothy A; Fitzgerald, David C; Likosky, Donald S; Mellas, Nicholas B; Shann, Kenneth G

    2013-09-01

    One of the roles of a professional society is to develop standards and guidelines of practice as an instrument to guide safe and effective patient care. The American Society of Extracorporeal Technology (AmSECT) first published its Essentials for Perfusion Practice, Clinical Function: Conduct of Extracorporeal Circulation in 1993. The International Consortium for Evidence-Based Perfusion (ICEBP), a committee within AmSECT, was tasked with updating this document in 2010. The aim of this report is to describe the method of development and content of AmSECT's new professional standards and guidelines. The ICEBP committee independently evaluated and provided input regarding the current "Essentials and Guidelines." Structural changes were made to the entire document, and a draft document was developed, presented, and circulated to the AmSECT Board of Directors and broader membership for comment. Informed by these reviews, a revised document was then presented to the Society for a membership vote. The final document consists of 15 areas of practice covered by 50 Standards and 38 Guidelines (see Appendix 1) with the first standard focusing on the development of institutional protocols to support their implementation and use. A majority of the membership voted to accept the document (81.2% of the voting membership accepting, 18.8% rejecting). After an audit of the balloting process by AmSECT's Ethics Committee, the results were reported to the membership and the document was officially adopted on July 24, 2013. The Standards and Guidelines will serve as a useful guide for cardiac surgical teams that wish to develop institution-specific standards and guidelines to improve the reliability, safety, and effectiveness of adult cardiopulmonary bypass. The ICEBP recognizes that the development of a Standards and Guidelines statement alone will not change care. Safe, reliable, and effective care will be best served through the development and implementation of institutional protocols based on these standards. AmSECT's Standards and Guidelines for Perfusion Practice reflect the changing landscape of our profession as we work toward a safer and optimal provision of cardiopulmonary bypass for all our patients as well as a work environment that is supportive of delivering this care. standards, guidelines, cardiopulmonary bypass, perfusion, cardiac surgery.

  7. Building Transnational Bodies: Norway and the International Development of Laboratory Animal Science, ca. 1956–1980

    PubMed Central

    Druglitrø, Tone; Kirk, Robert G. W.

    2015-01-01

    Argument This article adopts a historical perspective to examine the development of Laboratory Animal Science and Medicine, an auxiliary field which formed to facilitate the work of the biomedical sciences by systematically improving laboratory animal production, provision, and maintenance in the post Second World War period. We investigate how Laboratory Animal Science and Medicine co-developed at the local level (responding to national needs and concerns) yet was simultaneously transnational in orientation (responding to the scientific need that knowledge, practices, objects and animals circulate freely). Adapting the work of Tsing (2004), we argue that national differences provided the creative “friction” that helped drive the formation of Laboratory Animal Science and Medicine as a transnational endeavor. Our analysis engages with the themes of this special issue by focusing on the development of Laboratory Animal Science and Medicine in Norway, which both informed wider transnational developments and was formed by them. We show that Laboratory Animal Science and Medicine can only be properly understood from a spatial perspective; whilst it developed and was structured through national “centers,” its orientation was transnational necessitating international networks through which knowledge, practice, technologies, and animals circulated. More and better laboratory animals are today required than ever before, and this demand will continue to rise if it is to keep pace with the quickening tempo of biological and veterinary research. The provision of this living experimental material is no longer a local problem; local, that is, to the research institute. It has become a national concern, and, in some of its aspects . . . even international. (William Lane-Petter 1957, 240) PMID:24941794

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yalong; Jones, Edward A.; Wang, Fred

    Arm inductor in a modular multilevel converter (MMC) is used to limit the circulating current and dc short circuit fault current. The circulating current in MMC is dominated by second-order harmonic, which can be largely reduced with circulating current suppressing control. By analyzing the mechanism of the circulating current suppressing control, it is found that the circulating current at switching frequency becomes the main harmonic when suppression control is implemented. Unlike the second-order harmonic that circulates only within the three phases, switching frequency harmonic also flows through the dc side and may further cause high-frequency dc voltage harmonic. This articlemore » develops the theoretical relationship between the arm inductance and switching frequency circulating current, which can be used to guide the arm inductance selection. The experimental results with a downscaled MMC prototype verify the existence of the switching frequency circulating current and its relationship with arm inductance.« less

  9. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins. Antiradiation Vaccine and Antiradiation IgG preparations - prospective effective antidote/countermeasure for ϒ-irradiation, heavy ions irradiation, neutron irradiation. Recommendations for treatment and immune-prophylaxis of CNS injury, induced by radiation, were proposed. Specific immune therapy and specific immune prophylaxis reduce symptoms of ACvRS. This manuscript summarizes the results of experiments and considering possibility for blocking toxicological mechanisms of action of Radiation and Radiation Neurotoxins and prevention or diminishing clinical signs of injury of CNS. Experimental data suggest that Antiradiation vaccine and Antiradiation IgG with specific antibodies to Radiation Neurotoxins, Cytotoxins protect CNS against high doses of radiation.

  10. Moral maps and medical imaginaries: clinical tourism at Malawi's College of Medicine.

    PubMed

    Wendland, Claire L

    2012-01-01

    At an understaffed and underresourced urban African training hospital, Malawian medical students learn to be doctors while foreign medical students, visiting Malawi as clinical tourists on short-term electives, learn about “global health.” Scientific ideas circulate fast there; clinical tourists circulate readily from outside to Malawi but not the reverse; medical technologies circulate slowly, erratically, and sometimes not at all. Medicine's uneven globalization is on full display. I extend scholarship on moral imaginations and medical imaginaries to propose that students map these wards variously as places in which—or from which—they seek a better medicine. Clinical tourists, enacting their own moral maps, also become representatives of medicine “out there”: points on the maps of others. Ethnographic data show that for Malawians, clinical tourists are colleagues, foils against whom they construct ideas about a superior and distinctly Malawian medicine and visions of possible alternative futures for themselves.

  11. Cytomorphology of Circulating Colorectal Tumor Cells:A Small Case Series

    PubMed Central

    Marrinucci, Dena; Bethel, Kelly; Lazar, Daniel; Fisher, Jennifer; Huynh, Edward; Clark, Peter; Bruce, Richard; Nieva, Jorge; Kuhn, Peter

    2010-01-01

    Several methodologies exist to enumerate circulating tumor cells (CTCs) from the blood of cancer patients; however, most methodologies lack high-resolution imaging, and thus, little is known about the cytomorphologic features of these cells. In this study of metastatic colorectal cancer patients, we used immunofluorescent staining with fiber-optic array scanning technology to identify CTCs, with subsequent Wright-Giemsa and Papanicolau staining. The CTCs were compared to the corresponding primary and metastatic tumors. The colorectal CTCs showed marked intrapatient pleomorphism. In comparison to the corresponding tissue biopsies, cells from all sites showed similar pleomorphism, demonstrating that colorectal CTCs retain the pleomorphism present in regions of solid growth. They also often retain particular cytomorphologic features present in the patient's primary and/or metastatic tumor tissue. This study provides an initial analysis of the cytomorphologic features of circulating colon cancer cells, providing a foundation for further investigation into the significance and metastatic potential of CTCs. PMID:20111743

  12. Technology and Microcomputers for an Information Centre/Special Library.

    ERIC Educational Resources Information Center

    Daehn, Ralph M.

    1984-01-01

    Discusses use of microcomputer hardware and software, telecommunications methods, and advanced library methods to create a specialized information center's database of literature relating to farm machinery and food processing. Systems and services (electronic messaging, serials control, database creation, cataloging, collections, circulation,…

  13. CFB repowering options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gittinger, J.

    1996-12-31

    Circulating fluidized bed CFB repowering options are summarized. The following topics are discussed: why repower with CFB technology; advantages of repowering; two forms of of repowering; B and N`s internal recirculation CFB; space-saving design features; cost-saving design features; Ukrainian repowering project; and candidates for repowering.

  14. "Mobile" Contexts/"Immobile" Cultures

    ERIC Educational Resources Information Center

    Geoffroy, Christine

    2007-01-01

    Communication technologies and cheap air travel have profoundly reshaped the patterns of international circulation and migration, blurring the distinction between travellers, tourists and migrants. Some tourists have selected their former recreational area as permanent place of residence while other people are choosing or are being forced into…

  15. Circulating Current Suppressing Control’s Impact on Arm Inductance Selection for Modular Multilevel Converter

    DOE PAGES

    Li, Yalong; Jones, Edward A.; Wang, Fred

    2016-10-13

    Arm inductor in a modular multilevel converter (MMC) is used to limit the circulating current and dc short circuit fault current. The circulating current in MMC is dominated by second-order harmonic, which can be largely reduced with circulating current suppressing control. By analyzing the mechanism of the circulating current suppressing control, it is found that the circulating current at switching frequency becomes the main harmonic when suppression control is implemented. Unlike the second-order harmonic that circulates only within the three phases, switching frequency harmonic also flows through the dc side and may further cause high-frequency dc voltage harmonic. This articlemore » develops the theoretical relationship between the arm inductance and switching frequency circulating current, which can be used to guide the arm inductance selection. The experimental results with a downscaled MMC prototype verify the existence of the switching frequency circulating current and its relationship with arm inductance.« less

  16. MicroV Technology to Improve Transcranial Color Coded Doppler Examinations.

    PubMed

    Malferrari, Giovanni; Pulito, Giuseppe; Pizzini, Attilia Maria; Carraro, Nicola; Meneghetti, Giorgio; Sanzaro, Enzo; Prati, Patrizio; Siniscalchi, Antonio; Monaco, Daniela

    2018-05-04

    The purpose of this review is to provide an update on technology related to Transcranial Color Coded Doppler Examinations. Microvascularization (MicroV) is an emerging Power Doppler technology which can allow visualization of low and weak blood flows even at high depths, thus providing a suitable technique for transcranial ultrasound analysis. With MicroV, reconstruction of the vessel shape can be improved, without any overestimation. Furthermore, by analyzing the Doppler signal, MicroV allows a global image of the Circle of Willis. Transcranial Doppler was originally developed for the velocimetric analysis of intracranial vessels, in particular to detect stenoses and the assessment of collateral circulation. Doppler velocimetric analysis was then compared to other neuroimaging techniques, thus providing a cut-off threshold. Transcranial Color Coded Doppler sonography allowed the characterization of vessel morphology. In both Color Doppler and Power Doppler, the signal overestimated the shape of the intracranial vessels, mostly in the presence of thin vessels and high depths of study. In further neurosonology technology development efforts, attempts have been made to address morphology issues and overcome technical limitations. The use of contrast agents has helped in this regard by introducing harmonics and subtraction software, which allowed better morphological studies of vessels, due to their increased signal-to-noise ratio. Having no limitations in the learning curve, in time and contrast agent techniques, and due to its high signal-to-noise ratio, MicroV has shown great potential to obtain the best morphological definition. Copyright © 2018 by the American Society of Neuroimaging.

  17. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology.

    PubMed

    Che, James; Yu, Victor; Dhar, Manjima; Renier, Corinne; Matsumoto, Melissa; Heirich, Kyra; Garon, Edward B; Goldman, Jonathan; Rao, Jianyu; Sledge, George W; Pegram, Mark D; Sheth, Shruti; Jeffrey, Stefanie S; Kulkarni, Rajan P; Sollier, Elodie; Di Carlo, Dino

    2016-03-15

    Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells.

  18. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology

    PubMed Central

    Che, James; Yu, Victor; Dhar, Manjima; Renier, Corinne; Matsumoto, Melissa; Heirich, Kyra; Garon, Edward B.; Goldman, Jonathan; Rao, Jianyu; Sledge, George W.; Pegram, Mark D.; Sheth, Shruti; Jeffrey, Stefanie S.; Kulkarni, Rajan P.; Sollier, Elodie; Di Carlo, Dino

    2016-01-01

    Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells. PMID:26863573

  19. [Study on the law of circulation of meridians].

    PubMed

    Wang, Hong-mo

    2005-03-01

    To study the basic law of circulation of channels and collaterals. Inherit and develop ripe experiences of predecessors based on The Yellow Emperor's Internal Classic and other classic medical books. Circulation of channels and collaterals has the eight laws, including naming law, distribution law, converging law, exterior-interior association law, beginning-ending running law, meridian-qi bidirectional circulation law, zang- and fu-organ pathway liaison law, and liaison law of connecting with trunks and sense organs.

  20. Tablets: A Survey of Circulation Policies at Academic Libraries

    ERIC Educational Resources Information Center

    Derr, Janice; Tolppanen, Bradley P.

    2015-01-01

    This article presents the results of a Web-based survey regarding the circulation of tablets in academic libraries. The survey, which was completed by 61 respondents, identifies the most common circulation policies and procedures used. These results will help other academic institutions develop their own policy or update existing ones. Areas of…

  1. On-Line Circulation: University of Guelph Library. Report No. 8.

    ERIC Educational Resources Information Center

    Beckman, Margaret; And Others

    This report describes the development, design, and evaluation of an online circulation system at the University of Guelph, Ontario. A 1976 study identified the specific problems or inadequacies of the existing circulation system and specified design requirements for a new online system. This 1978 report is divided into six parts: (1) historical…

  2. Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Tolstykh, M. A.; Diansky, N. A.; Gusev, A. V.; Kiktev, D. B.

    2014-03-01

    A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989-2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997-1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.

  3. [Drug delivery systems using nano-sized drug carriers].

    PubMed

    Nakayama, Masamichi; Okano, Teruo

    2005-07-01

    Nanotechnology has attracted great attention all over the world in recent several years and has led to the establishment of the novel technical field of "nanomedicine" through collaboration with advanced medical technology. Particularly, site-specific drug targeting using particle drug carrier systems has made substantial progress and been actively developed. This review explains the essential factors (size and chemical character) of drug carriers to allow long circulation in the bloodstream avoiding the reticuloendothelial system, and shows the present status and future perspective of several types of nano-carrier systems (water-soluble polymer, liposome and polymeric micelle). We also introduce the novel concept of multi-targeting system (combination of two or more targeting methodologies) for ideal drug therapies.

  4. Hypoglycaemia of the newborn: a review.

    PubMed Central

    Williams, A. F.

    1997-01-01

    It is almost a century since hypoglycaemia (a reduction in the glucose concentration of circulating blood) was first described in children, and over 50 years since the condition was first recognized in infants. Nevertheless, controversy still surrounds the definition, significance, and management of neonatal hypoglycaemia. Technological developments such as bedside glucose monitoring have, paradoxically, exacerbated rather than eased the situation. This article reviews the literature on hypoglycaemia of the newborn, and covers the following: historical aspects; glucose homeostasis and metabolic adaptation at birth; the effect of low blood glucose levels on the central nervous system; the definition of hypoglycaemia; screening; prevention; treatment; research needs; and concludes with recommendations for prevention and management. PMID:9277014

  5. Cooling Vest

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  6. Quantitative analyses and transcriptomic profiling of circulating messenger RNAs as biomarkers of rat liver injury.

    PubMed

    Wetmore, Barbara A; Brees, Dominique J; Singh, Reetu; Watkins, Paul B; Andersen, Melvin E; Loy, James; Thomas, Russell S

    2010-06-01

    Serum aminotransferases have been the clinical standard for evaluating liver injury for the past 50-60 years. These tissue enzymes lack specificity, also tracking injury to other tissues. New technologies assessing tissue-specific messenger RNA (mRNA) release into blood should provide greater specificity and permit indirect assessment of gene expression status of injured tissue. To evaluate the potential of circulating mRNAs as biomarkers of liver injury, rats were treated either with hepatotoxic doses of D-(+)-galactosamine (DGAL) or acetaminophen (APAP) or a myotoxic dose of bupivacaine HCl (BPVC). Plasma, serum, and liver samples were obtained from each rat. Serum alanine aminotransferase and aspartate aminotransferase were increased by all three compounds, whereas circulating liver-specific mRNAs were only increased by the hepatotoxicants. With APAP, liver-specific mRNAs were significantly increased in plasma at doses that had no effect on serum aminotransferases or liver histopathology. Characterization of the circulating mRNAs by sucrose density gradient centrifugation revealed that the liver-specific mRNAs were associated with both necrotic debris and microvesicles. DGAL treatment also induced a shift in the size of plasma microvesicles, consistent with active release of microvesicles following liver injury. Finally, gene expression microarray analysis of the plasma following DGAL and APAP treatment revealed chemical-specific profiles. The comparative analysis of circulating liver mRNAs with traditional serum transaminases and histopathology indicated that the circulating liver mRNAs were more specific and more sensitive biomarkers of liver injury. Further, the possibility of identifying chemical-specific transcriptional profiles from circulating mRNAs could open a range of possibilities for identifying the etiology of drug/chemical-induced liver injury.

  7. The Shattered Stereotype: The Academic Library in Technological Transition.

    ERIC Educational Resources Information Center

    Foster, Constance L.

    In academic libraries, neither technical services, public services, nor administration has escaped the impact of online information systems. Online catalogs, network systems, interlibrary lending, database searches, circulation control, automated technical processes, and an increasing number of non-book materials are part of a technological…

  8. Evaluating School Library Information Services in the Digital Age.

    ERIC Educational Resources Information Center

    Everhart, Nancy

    2000-01-01

    Discusses criteria for evaluating school library information services. Highlights include types of services; physical facilities; library usage; circulation statistics; changes due to technology; fill rate, or the percentage of successful searches for library materials; OPAC (online public access catalog) reports; observation; and examining…

  9. Circulating Tumor Cells: A Review of Non-EpCAM-Based Approaches for Cell Enrichment and Isolation.

    PubMed

    Gabriel, Marta Tellez; Calleja, Lidia Rodriguez; Chalopin, Antoine; Ory, Benjamin; Heymann, Dominique

    2016-04-01

    Circulating tumor cells (CTCs) are biomarkers for noninvasively measuring the evolution of tumor genotypes during treatment and disease progression. Recent technical progress has made it possible to detect and characterize CTCs at the single-cell level in blood. Most current methods are based on epithelial cell adhesion molecule (EpCAM) detection, but numerous studies have demonstrated that EpCAM is not a universal marker for CTC detection because it fails to detect both carcinoma cells that undergo epithelial-mesenchymal transition (EMT) and CTCs of mesenchymal origin. Moreover, EpCAM expression has been found in patients with benign diseases. A large proportion of the current studies and reviews about CTCs describe EpCAM-based methods, but there is evidence that not all tumor cells can be detected using this marker. Here we describe the most recent EpCAM-independent methods for enriching, isolating, and characterizing CTCs on the basis of physical and biological characteristics and point out the main advantages and disadvantages of these methods. CTCs offer an opportunity to obtain key biological information required for the development of personalized medicine. However, there is no universal marker of these cells. To strengthen the clinical utility of CTCs, it is important to improve existing technologies and develop new, non-EpCAM-based systems to enrich and isolate CTCs. © 2016 American Association for Clinical Chemistry.

  10. Development of a New Arterial-Line Filter Design Using Computational Fluid Dynamics Analysis

    PubMed Central

    Herbst, Daniel P.; Najm, Hani K.

    2012-01-01

    Abstract: Arterial-line filters used during extracorporeal circulation continue to rely on the physical properties of a wetted micropore and reductions in blood flow velocity to affect air separation from the circulating blood volume. Although problems associated with air embolism during cardiac surgery persist, a number of investigators have concluded that further improvements in filtration are needed to enhance air removal during cardiopulmonary bypass procedures. This article reviews theoretical principles of micropore filter technology and outlines the development of a new arterial-line filter concept using computational fluid dynamics analysis. Manufacturer-supplied data of a micropore screen and experimental results taken from an ex vivo test circuit were used to define the inputs needed for numerical modeling of a new filter design. Flow patterns, pressure distributions, and velocity profiles predicted with computational fluid dynamics softwarewere used to inform decisions on model refinements and how to achieve initial design goals of ≤225 mL prime volume and ≤500 cm2 of screen surface area. Predictions for optimal model geometry included a screen angle of 56° from the horizontal plane with a total surface area of 293.9 cm2 and a priming volume of 192.4 mL. This article describes in brief the developmental process used to advance a new filter design and supports the value of numerical modeling in this undertaking. PMID:23198394

  11. Development of a new arterial-line filter design using computational fluid dynamics analysis.

    PubMed

    Herbst, Daniel P; Najm, Hani K

    2012-09-01

    Arterial-line filters used during extracorporeal circulation continue to rely on the physical properties of a wetted micropore and reductions in blood flow velocity to affect air separation from the circulating blood volume. Although problems associated with air embolism during cardiac surgery persist, a number of investigators have concluded that further improvements in filtration are needed to enhance air removal during cardiopulmonary bypass procedures. This article reviews theoretical principles of micropore filter technology and outlines the development of a new arterial-line filter concept using computational fluid dynamics analysis. Manufacturer-supplied data of a micropore screen and experimental results taken from an ex vivo test circuit were used to define the inputs needed for numerical modeling of a new filter design. Flow patterns, pressure distributions, and velocity profiles predicted with computational fluid dynamics software were used to inform decisions on model refinements and how to achieve initial design goals of < or = 225 mL prime volume and < or = 500 cm2 of screen surface area. Predictions for optimal model geometry included a screen angle of 56 degrees from the horizontal plane with a total surface area of 293.9 cm2 and a priming volume of 192.4 mL. This article describes in brief the developmental process used to advance a new filter design and supports the value of numerical modeling in this undertaking.

  12. Development of Methane and Nitrous Oxide Emission Factors for the Biomass Fired Circulating Fluidized Bed Combustion Power Plant

    PubMed Central

    Cho, Chang-Sang; Sa, Jae-Hwan; Lim, Ki-Kyo; Youk, Tae-Mi; Kim, Seung-Jin; Lee, Seul-Ki; Jeon, Eui-Chan

    2012-01-01

    This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB) boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH4), Nitrous oxide (N2O). The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF), RDF and Refused Plastic Fuel (RPF) of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH4 and N2O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH4 and N2O exhausted from the CFB boiler. As a result, the emission factors of CH4 and N2O are 1.4 kg/TJ (0.9–1.9 kg/TJ) and 4.0 kg/TJ (2.9–5.3 kg/TJ) within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N2O emission, compared to the emission factor of the CFB boiler using fossil fuel. PMID:23365540

  13. Optimization and Modeling of Extreme Freshwater Discharge from Japanese First-Class River Basins to Coastal Oceans

    NASA Astrophysics Data System (ADS)

    Kuroki, R.; Yamashiki, Y. A.; Varlamov, S.; Miyazawa, Y.; Gupta, H. V.; Racault, M.; Troselj, J.

    2017-12-01

    We estimated the effects of extreme fluvial outflow events from river mouths on the salinity distribution in the Japanese coastal zones. Targeted extreme event was a typhoon from 06/09/2015 to 12/09/2015, and we generated a set of hourly simulated river outflow data of all Japanese first-class rivers from these basins to the Pacific Ocean and the Sea of Japan during the period by using our model "Cell Distributed Runoff Model Version 3.1.1 (CDRMV3.1.1)". The model simulated fresh water discharges for the case of the typhoon passage over Japan. We used these data with a coupled hydrological-oceanographic model JCOPE-T, developed by Japan Agency for Marine-earth Science and Technology (JAMSTEC), for estimation of the circulation and salinity distribution in Japanese coastal zones. By using the model, the coastal oceanic circulation was reproduced adequately, which was verified by satellite remote sensing. In addition to this, we have successfully optimized 5 parameters, soil roughness coefficient, river roughness coefficient, effective porosity, saturated hydraulic conductivity, and effective rainfall by using Shuffled Complex Evolution method developed by University of Arizona (SCE-UA method), that is one of the optimization method for hydrological model. Increasing accuracy of peak discharge prediction of extreme typhoon events on river mouths is essential for continental-oceanic mutual interaction.

  14. Design principles of a simple and safe 200-MW(thermal) nuclear district heating plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzmann, C.; Bittermann, D.; Gobel, A.

    Kraftwerk Union AG has almost completed the development of a dedicated 200-MW(thermal) nuclear district heating plant to provide environmentally clean energy at a predictably low cost. The concept can easily be adapted to meet power requirements within the 100- to 500-MW(thermal) range. This technology is the product of the experience gained with large pressurized water reactor and boiling water reactor power plants, with respect to both plant and fuel performance. The major development task is that of achieving sufficiently low capital cost by tailoring components and systems designed for large plants to the specific requirements of district heating. These requirementsmore » are small absolute power, low temperatures and pressures, and modest load following, all of which result in the characteristics that are summarized. A fully integrated primary system with natural circulation permits a very compact reactor building containing all safety-related systems and components. Plant safety is essentially guaranteed by inherent features. The reactor containment is tightly fitted around the reactor pressure vessel in such a way that, in the event of any postulated coolant leak, the core cannot become uncovered, even temporarily. Shutdown is assured by gravity drop of the control rods mounted above the core. Decay heat is removed from the core by means of natural circulation via dedicated intermediate circuits of external aircoolers.« less

  15. Microfluidic devices to enrich and isolate circulating tumor cells

    PubMed Central

    Myung, J. H.; Hong, S.

    2015-01-01

    Given the potential clinical impact of circulating tumor cells (CTCs) in blood as a clinical biomarker for diagnosis and prognosis of various cancers, a myriad of detection methods for CTCs have been recently introduced. Among those, a series of microfluidic devices are particularly promising as these uniquely offer micro-scale analytical systems that are highlighted by low consumption of samples and reagents, high flexibility to accommodate other cutting-edge technologies, precise and well-defined flow behaviors, and automation capability, presenting significant advantages over the conventional larger scale systems. In this review, we highlight the advantages of microfluidic devices and their translational potential into CTC detection methods, categorized by miniaturization of bench-top analytical instruments, integration capability with nanotechnologies, and in situ or sequential analysis of captured CTCs. This review provides a comprehensive overview of recent advances in the CTC detection achieved through application of microfluidic devices and their challenges that these promising technologies must overcome to be clinically impactful. PMID:26549749

  16. Exploring which patients without return of spontaneous circulation following ventricular fibrillation out-of-hospital cardiac arrest should be transported to hospital?

    PubMed

    Stub, Dion; Nehme, Ziad; Bernard, Stephen; Lijovic, Marijana; Kaye, David M; Smith, Karen

    2014-03-01

    Currently many emergency medical services (EMS) that provide advanced cardiac life support (ACLS) at scene do not routinely transport out-of-hospital cardiac arrest (OHCA) patients without sustained return of spontaneous circulation (ROSC). This is due to logistical difficulties and historical poor outcomes. However, new technology for mechanical chest compression has made transport to hospital safer and extracorporeal membrane oxygenation during cardiopulmonary resuscitation (ECPR) enabling further intervention, may result in ROSC. We aimed to explore the characteristics and outcomes of patients with OHCA who were transported to hospital with ongoing CPR in the absence of ROSC, who might benefit from this new technology. The Victorian Ambulance Cardiac Arrest Registry (VACAR) was searched for adult OHCA with an initial shockable rhythm between 2003 and 2012. There were 5593 OHCA meeting inclusion criteria. Analysis was performed on 3095 (55%) of patients who did not achieve sustained ROSC in the field. Of these only 589 (20%) had ongoing CPR to hospital. There was a significant decline in rates of transport over the study period. Predictors of transport with ongoing CPR included younger patients, decreased time to first shock and intermittent ROSC prior to transport. Survival to hospital discharge occurred in 52 (9%) of patients who had ongoing CPR to hospital. In an EMS that provides ACLS at scene, patients without ROSC in the field who receive CPR to hospital have poor outcomes. Developing a system which provides safe transport with ongoing CPR to a hospital that provides ECPR, should be considered. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Reproducibility of precipitation distributions over extratropical continental regions in the CMIP5

    NASA Astrophysics Data System (ADS)

    Hirota, Nagio; Takayabu, Yukari

    2013-04-01

    Reproducibility of precipitation distributions over extratropical continental regions in the CMIP5 Nagio Hirota1,2 and Yukari N. Takayabu2 (1) National Institute of Polar Research (NIPR) (2) Atmosphere and Ocean Research Institute (AORI), the University of Tokyo Reproducibility of precipitation distributions over extratropical continental regions by CMIP5 climate models in their historical runs are evaluated, in comparison with GPCP(V2.2), CMAP(V0911), daily gridded gauge data APHRODITE. Surface temperature, cloud radiative forcing, and atmospheric circulations are also compared with observations of CRU-UEA, CERES, and ERA-interim/ERA40/JRA reanalysis data. It is shown that many CMIP5 models underestimate and overestimate summer precipitation over West and East Eurasia, respectively. These precipitation biases correspond to moisture transport associated with a cyclonic circulation bias over the whole continent of Eurasia. Meanwhile, many models underestimate cloud over the Eurasian continent, and associated shortwave cloud radiative forcing result in a significant warm bias. Evaporation feedback amplify the warm bias over West Eurasia. These processes consistently explain the precipitation biases over the Erasian continent in summer. We also examined reproducibility of winter precipitation, but robust results are not obtained yet due to the large uncertainty in observation associated with the adjustment of snow measurement in windy condition. Better observational data sets are necessary for further model validation. Acknowledgment: This study is supported by the PMM RA of JAXA, Green Network of Excellence (GRENE) Program by the Ministry of Education, Culture, Sports, Science and Technology, Japan, and Environment Research and Technology Development Fund (A-1201) of the Ministry of the Environment, Japan.

  18. Digital PCR analysis of circulating nucleic acids.

    PubMed

    Hudecova, Irena

    2015-10-01

    Detection of plasma circulating nucleic acids (CNAs) requires the use of extremely sensitive and precise methods. The commonly used quantitative real-time polymerase chain reaction (PCR) poses certain technical limitations in relation to the precise measurement of CNAs whereas the costs of massively parallel sequencing are still relatively high. Digital PCR (dPCR) now represents an affordable and powerful single molecule counting strategy to detect minute amounts of genetic material with performance surpassing many quantitative methods. Microfluidic (chip) and emulsion (droplet)-based technologies have already been integrated into platforms offering hundreds to millions of nanoliter- or even picoliter-scale reaction partitions. The compelling observations reported in the field of cancer research, prenatal testing, transplantation medicine and virology support translation of this technology into routine use. Extremely sensitive plasma detection of rare mutations originating from tumor or placental cells among a large background of homologous sequences facilitates unraveling of the early stages of cancer or the detection of fetal mutations. Digital measurement of quantitative changes in plasma CNAs associated with cancer or graft rejection provides valuable information on the monitoring of disease burden or the recipient's immune response and subsequent therapy treatment. Furthermore, careful quantitative assessment of the viral load offers great value for effective monitoring of antiviral therapy for immunosuppressed or transplant patients. The present review describes the inherent features of dPCR that make it exceptionally robust in precise and sensitive quantification of CNAs. Moreover, I provide an insight into the types of potential clinical applications that have been developed by researchers to date. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  19. Active CryoCubeSat

    NASA Technical Reports Server (NTRS)

    Swenson, Charles

    2016-01-01

    The Active CryoCubeSat project will demonstrate an advanced thermal control system for a 6-Unit (6U) CubeSat platform. A miniature, active thermal control system, in which a fluid is circulated in a closed loop from thermal loads to radiators, will be developed. A miniature cryogenic cooler will be integrated with this system to form a two-stage thermal control system. Key components will be miniaturized by using advanced additive manufacturing techniques resulting in a thermal testbed for proving out these technologies. Previous CubeSat missions have not tackled the problem of active thermal control systems nor have any past or current CubeSat missions included cryogenic instrumentation. This Active CryoCubeSat development effort will provide completely new capacities for CubeSats and constitutes a major advancement over the state-of-the-art in CubeSat thermal control.

  20. Study of Circulation in the Tillamook Bay and the Surrounding Wetland Applying Triple-Nested Models Downscaling from Global Ocean to Estuary

    EPA Science Inventory

    To study the circulation and water quality in the Tillamook Bay, Oregon, a high-resolution estuarine model that covers the shallow bay and the surrounding wetland has been developed. The estuarine circulation at Tillamook Bay is mainly driven by the tides and the river flows and ...

  1. Bio-stimuli-responsive multi-scale hyaluronic acid nanoparticles for deepened tumor penetration and enhanced therapy.

    PubMed

    Huo, Mengmeng; Li, Wenyan; Chaudhuri, Arka Sen; Fan, Yuchao; Han, Xiu; Yang, Chen; Wu, Zhenghong; Qi, Xiaole

    2017-09-01

    In this study, we developed bio-stimuli-responsive multi-scale hyaluronic acid (HA) nanoparticles encapsulated with polyamidoamine (PAMAM) dendrimers as the subunits. These HA/PAMAM nanoparticles of large scale (197.10±3.00nm) were stable during systematic circulation then enriched at the tumor sites; however, they were prone to be degraded by the high expressed hyaluronidase (HAase) to release inner PAMAM dendrimers and regained a small scale (5.77±0.25nm) with positive charge. After employing tumor spheroids penetration assay on A549 3D tumor spheroids for 8h, the fluorescein isothiocyanate (FITC) labeled multi-scale HA/PAMAM-FITC nanoparticles could penetrate deeply into these tumor spheroids with the degradation of HAase. Moreover, small animal imaging technology in male nude mice bearing H22 tumor showed HA/PAMAM-FITC nanoparticles possess higher prolonged systematic circulation compared with both PAMAM-FITC nanoparticles and free FITC. In addition, after intravenous administration in mice bearing H22 tumors, methotrexate (MTX) loaded multi-scale HA/PAMAM-MTX nanoparticles exhibited a 2.68-fold greater antitumor activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation

    NASA Astrophysics Data System (ADS)

    Sutton, Patrick T.; Ginn, Timothy R.

    2014-12-01

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5 h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, Darius D.; Kraus, Adam R.; Bucknor, Matthew D.

    A 1/2 scale test facility has been constructed at Argonne National Laboratory to study the heat removal performance and natural circulation flow patterns in a Reactor Cavity Cooling System (RCCS). Our test facility, the Natural convection Shutdown heat removal Test Facility (NSTF), supports the broader goal of developing an inherently safe and fully passive ex-vessel decay heat removal for advanced reactor designs. The project, initiated in 2010 to support the Advanced Reactor Technologies (ART), Small Modular Reactor (SMR), and Next Generation Nuclear Plant (NGNP) programs, has been conducting experimental operations since early 2014. The following paper provides a summary ofmore » some primary design features of the 26-m tall test facility along with a description of the data acquisition suite that guides our experimental practices. Specifics of the distributed fiber optic temperature measurements will be discussed, which introduces an unparalleled level of data density that has never before been implemented in a large scale natural circulation test facility. Results from our test series will then be presented, which provide insight into the thermal hydraulic behavior at steady-state and transient conditions for varying heat flux levels and exhaust chimney configuration states. (C) 2016 Elsevier B.V. All rights reserved.« less

  4. Comparing Characteristics of Highly Circulated Titles for Demand-Driven Collection Development.

    ERIC Educational Resources Information Center

    Britten, William A; Webster, Judith D.

    1992-01-01

    Describes methodology for analyzing MARC (machine-readable cataloging) records of highly circulating titles to document common characteristics for collection development purposes. Application of the methodology in a university library is discussed, and data are presented on commonality of subject heading, author, language, and imprint date for…

  5. PARTICLE FLOW, MIXING, AND CHEMICAL REACTION IN CIRCULATING FLUIDIZED BED ABSORBERS

    EPA Science Inventory

    A mixing model has been developed to simulate the particle residence time distribution (RTD) in a circulating fluidized bed absorber (CFBA). Also, a gas/solid reaction model for sulfur dioxide (SO2) removal by lime has been developed. For the reaction model that considers RTD dis...

  6. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of parking spaces per development; and (3) To encourage the use of public transportation by linking... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Vehicular circulation and storage systems. 910.18 Section 910.18 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT...

  7. Genome Structural Diversity among 31 Bordetella pertussis Isolates from Two Recent U.S. Whooping Cough Statewide Epidemics.

    PubMed

    Bowden, Katherine E; Weigand, Michael R; Peng, Yanhui; Cassiday, Pamela K; Sammons, Scott; Knipe, Kristen; Rowe, Lori A; Loparev, Vladimir; Sheth, Mili; Weening, Keeley; Tondella, M Lucia; Williams, Margaret M

    2016-01-01

    During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how current circulating strains are causing large epidemics. Through the use of combined next-generation sequencing technologies, this study compared de novo, single-contig genome assemblies from 31 out of 33 Bordetella pertussis isolates collected during two separate pertussis statewide epidemics and 2 resequenced vaccine strains. Final genome architecture assemblies were verified with whole-genome optical mapping. Sixteen distinct genome rearrangement profiles were observed in epidemic isolate genomes, all of which were distinct from the genome structures of the two resequenced vaccine strains. These rearrangements appear to be mediated by repetitive sequence elements, such as high-copy-number mobile genetic elements and rRNA operons. Additionally, novel and previously identified single nucleotide polymorphisms were detected in 10 virulence-related genes in the epidemic isolates. Whole-genome variation analysis identified state-specific variants, and coding regions bearing nonsynonymous mutations were classified into functional annotated orthologous groups. Comprehensive studies on whole genomes are needed to understand the resurgence of pertussis and develop novel tools to better characterize the molecular epidemiology of evolving B. pertussis populations. IMPORTANCE Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B. pertussis strains circulating during epidemics exhibit diversity visible on a genome structural level, previously undetectable by traditional sequence analysis using short-read technologies. For the first time, we combine short- and long-read sequencing platforms with restriction optical mapping for single-contig, de novo assembly of 31 isolates to investigate two geographically and temporally independent U.S. pertussis epidemics. These complete genomes reshape our understanding of B. pertussis evolution and strengthen molecular epidemiology toward one day understanding the resurgence of pertussis.

  8. Bibliographic Utilities and the Use of Microcomputers in Libraries: Current and Projected Practices.

    ERIC Educational Resources Information Center

    McAninch, Glen

    1986-01-01

    Bibliographic utilities are marketing specially designed hardware and software that permit libraries to patch together automated cataloging, acquisitions, serials control, reference, online public catalogs, circulation, interlibrary loan, and administrative functions. The increasing complexity of the technology is making it more difficult to…

  9. Medical Complications of the Critically Ill Newborn: A Review for Early Intervention Professionals.

    ERIC Educational Resources Information Center

    McNab, Theresa C.; Blackman, James A.

    1998-01-01

    Provides early-intervention professionals with a basic familiarity and understanding of some of the newest technologies employed in the neonatal intensive care units for neonates with respiratory distress syndrome, persistent fetal circulation, retinopathy of prematurity, intraventricular hemorrhage, and periventricular leukomalacia. Early…

  10. A two-tier atmospheric circulation classification scheme for the European-North Atlantic region

    NASA Astrophysics Data System (ADS)

    Guentchev, Galina S.; Winkler, Julie A.

    A two-tier classification of large-scale atmospheric circulation was developed for the European-North-Atlantic domain. The classification was constructed using a combination of principal components and k-means cluster analysis applied to reanalysis fields of mean sea-level pressure for 1951-2004. Separate classifications were developed for the winter, spring, summer, and fall seasons. For each season, the two classification tiers were identified independently, such that the definition of one tier does not depend on the other tier having already been defined. The first tier of the classification is comprised of supertype patterns. These broad-scale circulation classes are useful for generalized analyses such as investigations of the temporal trends in circulation frequency and persistence. The second, more detailed tier consists of circulation types and is useful for numerous applied research questions regarding the relationships between large-scale circulation and local and regional climate. Three to five supertypes and up to 19 circulation types were identified for each season. An intuitive nomenclature scheme based on the physical entities (i.e., anomaly centers) which dominate the specific patterns was used to label each of the supertypes and types. Two example applications illustrate the potential usefulness of a two-tier classification. In the first application, the temporal variability of the supertypes was evaluated. In general, the frequency and persistence of supertypes dominated by anticyclonic circulation increased during the study period, whereas the supertypes dominated by cyclonic features decreased in frequency and persistence. The usefulness of the derived circulation types was exemplified by an analysis of the circulation associated with heat waves and cold spells reported at several cities in Bulgaria. These extreme temperature events were found to occur with a small number of circulation types, a finding that can be helpful in understanding past variability and projecting future changes in the occurrence of extreme weather and climate events.

  11. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials.more » Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  12. Distributed Observer Network

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA s advanced visual simulations are essential for analyses associated with life cycle planning, design, training, testing, operations, and evaluation. Kennedy Space Center, in particular, uses simulations for ground services and space exploration planning in an effort to reduce risk and costs while improving safety and performance. However, it has been difficult to circulate and share the results of simulation tools among the field centers, and distance and travel expenses have made timely collaboration even harder. In response, NASA joined with Valador Inc. to develop the Distributed Observer Network (DON), a collaborative environment that leverages game technology to bring 3-D simulations to conventional desktop and laptop computers. DON enables teams of engineers working on design and operations to view and collaborate on 3-D representations of data generated by authoritative tools. DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3-D visual environment. Multiple widely dispersed users, working individually or in groups, can view and analyze simulation results on desktop and laptop computers in real time.

  13. Permeation enhancer strategies in transdermal drug delivery.

    PubMed

    Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.

  14. The Modern Primitives: Applying New Technological Approaches to Explore the Biology of the Earliest Red Blood Cells

    PubMed Central

    Fraser, Stuart T.

    2013-01-01

    One of the most critical stages in mammalian embryogenesis is the independent production of the embryo's own circulating, functional red blood cells. Correspondingly, erythrocytes are the first cell type to become functionally mature during embryogenesis. Failure to achieve this invariably leads to in utero lethality. The recent application of technologies such as transcriptome analysis, flow cytometry, mutant embryo analysis, and transgenic fluorescent gene expression reporter systems has shed new light on the distinct erythroid lineages that arise early in development. Here, I will describe the similarities and differences between the distinct erythroid populations that must form for the embryo to survive. While much of the focus of this review will be the poorly understood primitive erythroid lineage, a discussion of other erythroid and hematopoietic lineages, as well as the cell types making up the different niches that give rise to these lineages, is essential for presenting an appropriate developmental context of these cells. PMID:24222861

  15. Ocean Observatories Initiative (OOI): Status of Design, Capabilities, and Implementation

    NASA Astrophysics Data System (ADS)

    Brasseur, L. H.; Banahan, S.; Cowles, T.

    2009-05-01

    The National Science Foundation's (NSF) Ocean Observatories Initiative (OOI) will implement the construction and operation of an interactive, integrated ocean observing network. This research- driven, multi-scale network will provide the broad ocean science community with access to advanced technology to enable studies of fundamental ocean processes. The OOI will afford observations at coastal, regional, and global scales on timeframes of milliseconds to decades in support of investigations into climate variability, ocean ecosystems, biogeochemical processes, coastal ocean dynamics, circulation and mixing dynamics, fluid-rock interactions, and the sub-seafloor biosphere. The elements of the OOI include arrays of fixed and re-locatable moorings, autonomous underwater vehicles, and cabled seafloor nodes. All assets combined, the OOI network will provide data from over 45 distinct types of sensors, comprising over 800 total sensors distributed in the Pacific and Atlantic oceans. These core sensors for the OOI were determined through a formal process of science requirements development. This core sensor array will be integrated through a system-wide cyberinfrastructure allowing for remote control of instruments, adaptive sampling, and near-real time access to data. Implementation of the network will stimulate new avenues of research and the development of new infrastructure, instrumentation, and sensor technologies. The OOI is funded by the NSF and managed by the Consortium for Ocean Leadership which focuses on the science, technology, education, and outreach for an emerging network of ocean observing systems.

  16. Drug-loaded erythrocytes: on the road toward marketing approval

    PubMed Central

    Bourgeaux, Vanessa; Lanao, José M; Bax, Bridget E; Godfrin, Yann

    2016-01-01

    Erythrocyte drug encapsulation is one of the most promising therapeutic alternative approaches for the administration of toxic or rapidly cleared drugs. Drug-loaded erythrocytes can operate through one of the three main mechanisms of action: extension of circulation half-life (bioreactor), slow drug release, or specific organ targeting. Although the clinical development of erythrocyte carriers is confronted with regulatory and development process challenges, industrial development is expanding. The manufacture of this type of product can be either centralized or bedside based, and different procedures are employed for the encapsulation of therapeutic agents. The major challenges for successful industrialization include production scalability, process validation, and quality control of the released therapeutic agents. Advantages and drawbacks of the different manufacturing processes as well as success key points of clinical development are discussed. Several entrapment technologies based on osmotic methods have been industrialized. Companies have already achieved many of the critical clinical stages, thus providing the opportunity in the future to cover a wide range of diseases for which effective therapies are not currently available. PMID:26929599

  17. Drug-loaded erythrocytes: on the road toward marketing approval.

    PubMed

    Bourgeaux, Vanessa; Lanao, José M; Bax, Bridget E; Godfrin, Yann

    2016-01-01

    Erythrocyte drug encapsulation is one of the most promising therapeutic alternative approaches for the administration of toxic or rapidly cleared drugs. Drug-loaded erythrocytes can operate through one of the three main mechanisms of action: extension of circulation half-life (bioreactor), slow drug release, or specific organ targeting. Although the clinical development of erythrocyte carriers is confronted with regulatory and development process challenges, industrial development is expanding. The manufacture of this type of product can be either centralized or bedside based, and different procedures are employed for the encapsulation of therapeutic agents. The major challenges for successful industrialization include production scalability, process validation, and quality control of the released therapeutic agents. Advantages and drawbacks of the different manufacturing processes as well as success key points of clinical development are discussed. Several entrapment technologies based on osmotic methods have been industrialized. Companies have already achieved many of the critical clinical stages, thus providing the opportunity in the future to cover a wide range of diseases for which effective therapies are not currently available.

  18. Geothermal materials development

    NASA Astrophysics Data System (ADS)

    Kukacka, L. E.

    1991-12-01

    Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY-91, utility company sponsored 'full cost' recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY-91, the DOE/GD-sponsored R&D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO2-resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

  19. Influenza Vaccine Research funded by the European Commission FP7-Health-2013-Innovation-1 project.

    PubMed

    Liu, Heng; Frijlink, Henderik W; Huckriede, Anke; van Doorn, Eva; Schmidt, Ed; Leroy, Odile; Rimmelzwaan, Guus; McCullough, Keneth; Whelan, Mike; Hak, Eelko

    2016-11-21

    Due to influenza viruses continuously displaying antigenic variation, current seasonal influenza vaccines must be updated annually to include the latest predicted strains. Despite all the efforts put into vaccine strain selection, vaccine production, testing, and administration, the protective efficacy of seasonal influenza vaccines is greatly reduced when predicted vaccine strains antigenically mismatch with the actual circulating strains. Moreover, preparing for a pandemic outbreak is a challenge, because it is unpredictable which strain will cause the next pandemic. The European Commission has funded five consortia on influenza vaccine development under the Seventh Framework Programme for Research and Technological Development (FP7) in 2013. The call of the EU aimed at developing broadly protective influenza vaccines. Here we review the scientific strategies used by the different consortia with respect to antigen selection, vaccine delivery system, and formulation. The issues related to the development of novel influenza vaccines are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Advanced technology development for remote triage applications in bleeding combat casualties.

    PubMed

    Ryan, Kathy L; Rickards, Caroline A; Hinojosa-Laborde, Carmen; Gerhardt, Robert T; Cain, Jeffrey; Convertino, Victor A

    2011-01-01

    Combat developers within the Army have envisioned development of a "wear-and-forget" physiological status monitor (PSM) that will enhance far forward capabilities for assessment of Warrior readiness for battle, as well as for remote triage, diagnosis and decision-making once Soldiers are injured. This paper will review recent work testing remote triage system prototypes in both the laboratory and during field exercises. Current PSM prototypes measure the electrocardiogram and respiration, but we have shown that information derived from these measurements alone will not be suited for specific, accurate triage of combat injuries. Because of this, we have suggested that development of a capability to provide a metric of circulating blood volume status is required for remote triage. Recently, volume status has been successfully modeled using low-level physiological signals obtained from wearable devices as input to machine-learning algorithms; these algorithms are already able to discriminate between a state of physical activity (common in combat) and that of central hypovolemia, and thus show promise for use in wearable remote triage devices.

  1. Liquid Biopsy in Lung Cancer: A Perspective From Members of the Pulmonary Pathology Society.

    PubMed

    Sholl, Lynette M; Aisner, Dara L; Allen, Timothy Craig; Beasley, Mary Beth; Cagle, Philip T; Capelozzi, Vera L; Dacic, Sanja; Hariri, Lida P; Kerr, Keith M; Lantuejoul, Sylvie; Mino-Kenudson, Mari; Raparia, Kirtee; Rekhtman, Natasha; Roy-Chowdhuri, Sinchita; Thunnissen, Eric; Tsao, Ming; Vivero, Marina; Yatabe, Yasushi

    2016-08-01

    Liquid biopsy has received extensive media coverage and has been called the holy grail of cancer detection. Attempts at circulating tumor cell and genetic material capture have been progressing for several years, and recent financially and technically feasible improvements of cell capture devices, plasma isolation techniques, and highly sensitive polymerase chain reaction- and sequencing-based methods have advanced the possibility of liquid biopsy of solid tumors. Although practical use of circulating RNA-based testing has been hindered by the need to fractionate blood to enrich for RNAs, the detection of circulating tumor cells has profited from advances in cell capture technology. In fact, the US Food and Drug Administration has approved one circulating tumor cell selection platform, the CellSearch System. Although the use of liquid biopsy in a patient population with a genomically defined solid tumor may potentially be clinically useful, it currently does not supersede conventional pretreatment tissue diagnosis of lung cancer. Liquid biopsy has not been validated for lung cancer diagnosis, and its lower sensitivity could lead to significant diagnostic delay if liquid biopsy were to be used in lieu of tissue biopsy. Ultimately, notwithstanding the enthusiasm encompassing liquid biopsy, its clinical utility remains unproven.

  2. Fluid phase biopsy for detection and characterization of circulating endothelial cells in myocardial infarction

    NASA Astrophysics Data System (ADS)

    Bethel, Kelly; Luttgen, Madelyn S.; Damani, Samir; Kolatkar, Anand; Lamy, Rachelle; Sabouri-Ghomi, Mohsen; Topol, Sarah; Topol, Eric J.; Kuhn, Peter

    2014-02-01

    Elevated levels of circulating endothelial cells (CECs) occur in response to various pathological conditions including myocardial infarction (MI). Here, we adapted a fluid phase biopsy technology platform that successfully detects circulating tumor cells in the blood of cancer patients (HD-CTC assay), to create a high-definition circulating endothelial cell (HD-CEC) assay for the detection and characterization of CECs. Peripheral blood samples were collected from 79 MI patients, 25 healthy controls and six patients undergoing vascular surgery (VS). CECs were defined by positive staining for DAPI, CD146 and von Willebrand Factor and negative staining for CD45. In addition, CECs exhibited distinct morphological features that enable differentiation from surrounding white blood cells. CECs were found both as individual cells and as aggregates. CEC numbers were higher in MI patients compared with healthy controls. VS patients had lower CEC counts when compared with MI patients but were not different from healthy controls. Both HD-CEC and CellSearch® assays could discriminate MI patients from healthy controls with comparable accuracy but the HD-CEC assay exhibited higher specificity while maintaining high sensitivity. Our HD-CEC assay may be used as a robust diagnostic biomarker in MI patients.

  3. Controlling thermal properties of dense gas fluidized beds for concentrated solar power by internal and external solids circulation

    NASA Astrophysics Data System (ADS)

    Ammendola, Paola; Bareschino, Piero; Chirone, Riccardo; Salatino, Piero; Solimene, Roberto

    2017-06-01

    Fluidization technology displays a long record of success stories, mostly related to applications to thermal and thermochemical processes, which are fostering extension to novel and relatively unexplored fields. Application of fluidized beds to collection and thermal storage of solar radiation in Concentrated Solar Power (CSP) is one of the most promising, a field which poses challenging issues and great opportunities to fluidization scientists and technologists. The potential of this growing field calls for reconsideration of some of the typical design and operation guidelines and criteria, with the goal of exploiting the inherently good thermal performances of gas-fluidized beds at their best. "Creative" and non-conventional design and operation of fluidized beds, like those based on internal and external solids circulation, may be beneficial to the enhancement of thermal diffusivity and surface-to-bed heat transfer, improving the potential for application in the very demanding context of CSP with thermal energy storage. This paper investigated: i) a fluidized bed configuration with an uneven distribution of the fluidizing gas to promote vortices in the scale of bed height (internal solids circulation); ii) a dual fluidized bed configuration characterized by an external solids circulation achieved by the operation of a riser and a bubbling fluidized bed. CFD simulations showed the hydrodynamics conditions under which the internal solids circulation was established. The hydrodynamic characterization of the external solids circulation was achieved by an experimental study carried out with different cold models. The dual fluidized bed system was optimized in terms of operating conditions and geometrical features of the connections between two fluidized beds.

  4. Detection of FAM172A expressed in circulating tumor cells is a feasible method to predict high-risk subgroups of colorectal cancer.

    PubMed

    Cui, Chun-Hui; Chen, Ri-Hong; Zhai, Duan-Yang; Xie, Lang; Qi, Jia; Yu, Jin-Long

    2017-06-01

    Previous studies used to enumerate circulating tumor cells to predict prognosis and therapeutic effect of colorectal cancer. However, increasing studies have shown that only circulating tumor cells enumeration was not enough to reflect the heterogeneous condition of tumor. In this study, we classified different metastatic-potential circulating tumor cells from colorectal cancer patients and measured FAM172A expression in circulating tumor cells to improve accuracy of clinical diagnosis and treatment of colorectal cancer. Blood samples were collected from 45 primary colorectal cancer patients. Circulating tumor cells were enriched by blood filtration using isolation by size of epithelial tumor cells, and in situ hybridization with RNA method was used to identify and discriminate subgroups of circulating tumor cells. Afterwards, FAM172A expression in individual circulating tumor cells was measured. Three circulating tumor cell subgroups (epithelial/biophenotypic/mesenchymal circulating tumor cells) were identified using epithelial-mesenchymal transition markers. In our research, mesenchymal circulating tumor cells significantly increased along with tumor progression, development of distant metastasis, and vascular invasion. Furthermore, FAM172A expression rate in mesenchymal circulating tumor cells was significantly higher than that in epithelial circulating tumor cells, which suggested that FAM172A may correlate with malignant degree of tumor. This hypothesis was further verified by FAM172A expression in mesenchymal circulating tumor cells, which was strictly related to tumor aggressiveness factors. Mesenchymal circulating tumor cells and FAM172A detection may predict highrisk stage II colorectal cancer. Our research proved that circulating tumor cells were feasible surrogate samples to detect gene expression and could serve as a predictive biomarker for tumor evaluation.

  5. The Clinical Utilization of Circulating Cell Free DNA (CCFDNA) in Blood of Cancer Patients

    PubMed Central

    Elshimali, Yahya I.; Khaddour, Husseina; Sarkissyan, Marianna; Wu, Yanyuan; Vadgama, Jaydutt V.

    2013-01-01

    Qualitative and quantitative testing of circulating cell free DNA (CCFDNA) can be applied for the management of malignant and benign neoplasms. Detecting circulating DNA in cancer patients may help develop a DNA profile for early stage diagnosis in malignancies. The technical issues of obtaining, using, and analyzing CCFDNA from blood will be discussed. PMID:24065096

  6. Mechanization in a New Medical School Library II. Serials and Circulation

    PubMed Central

    Payne, Ladye Margarete; Small, Louise; Divett, Robert T.

    1966-01-01

    The serials and circulation phases of the data-processing system in use at the University of New Mexico Library of the Medical Sciences are described. The development of the programs is also reported. The serials program uses simple punched card equipment. The circulation program uses the IBM 357 Data Collection System and punched card data-processing equipment. Images PMID:5921473

  7. A Soft Total Artificial Heart-First Concept Evaluation on a Hybrid Mock Circulation.

    PubMed

    Cohrs, Nicholas H; Petrou, Anastasios; Loepfe, Michael; Yliruka, Maria; Schumacher, Christoph M; Kohll, A Xavier; Starck, Christoph T; Schmid Daners, Marianne; Meboldt, Mirko; Falk, Volkmar; Stark, Wendelin J

    2017-10-01

    The technology of 3D-printing has allowed the production of entirely soft pumps with complex chamber geometries. We used this technique to develop a completely soft pneumatically driven total artificial heart from silicone elastomers and evaluated its performance on a hybrid mock circulation. The goal of this study is to present an innovative concept of a soft total artificial heart (sTAH). Using the form of a human heart, we designed a sTAH, which consists of only two ventricles and produced it using a 3D-printing, lost-wax casting technique. The diastolic properties of the sTAH were defined and the performance of the sTAH was evaluated on a hybrid mock circulation under various physiological conditions. The sTAH achieved a blood flow of 2.2 L/min against a systemic vascular resistance of 1.11 mm Hg s/mL (afterload), when operated at 80 bpm. At the same time, the mean pulmonary venous pressure (preload) was fixed at 10 mm Hg. Furthermore, an aortic pulse pressure of 35 mm Hg was measured, with a mean aortic pressure of 48 mm Hg. The sTAH generated physiologically shaped signals of blood flow and pressures by mimicking the movement of a real heart. The preliminary results of this study show a promising potential of the soft pumps in heart replacements. Further work, focused on increasing blood flow and in turn aortic pressure is required. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Fetal in vivo continuous cardiovascular function during chronic hypoxia

    PubMed Central

    Allison, B. J.; Brain, K. L.; Niu, Y.; Kane, A. D.; Herrera, E. A.; Thakor, A. S.; Botting, K. J.; Cross, C. M.; Itani, N.; Skeffington, K. L.; Beck, C.

    2016-01-01

    Key points The in vivo fetal cardiovascular defence to chronic hypoxia has remained by and large an enigma because no technology has been available to induce significant and prolonged fetal hypoxia whilst recording longitudinal changes in fetal regional blood flow as the hypoxic pregnancy is developing.We introduce a new technique able to maintain chronically instrumented maternal and fetal sheep preparations under isobaric chronic hypoxia for most of gestation, beyond levels that can be achieved by high altitude and of relevance in magnitude to the human intrauterine growth‐restricted fetus.This technology permits wireless recording in free‐moving animals of longitudinal maternal and fetal cardiovascular function, including beat‐to‐beat alterations in pressure and blood flow signals in regional circulations.The relevance and utility of the technique is presented by testing the hypotheses that the fetal circulatory brain sparing response persists during chronic fetal hypoxia and that an increase in reactive oxygen species in the fetal circulation is an involved mechanism. Abstract Although the fetal cardiovascular defence to acute hypoxia and the physiology underlying it have been established for decades, how the fetal cardiovascular system responds to chronic hypoxia has been comparatively understudied. We designed and created isobaric hypoxic chambers able to maintain pregnant sheep for prolonged periods of gestation under controlled significant (10% O2) hypoxia, yielding fetal mean PaO2 levels (11.5 ± 0.6 mmHg) similar to those measured in human fetuses of hypoxic pregnancy. We also created a wireless data acquisition system able to record fetal blood flow signals in addition to fetal blood pressure and heart rate from free moving ewes as the hypoxic pregnancy is developing. We determined in vivo longitudinal changes in fetal cardiovascular function including parallel measurement of fetal carotid and femoral blood flow and oxygen and glucose delivery during the last third of gestation. The ratio of oxygen (from 2.7 ± 0.2 to 3.8 ± 0.8; P < 0.05) and of glucose (from 2.3 ± 0.1 to 3.3 ± 0.6; P < 0.05) delivery to the fetal carotid, relative to the fetal femoral circulation, increased during and shortly after the period of chronic hypoxia. In contrast, oxygen and glucose delivery remained unchanged from baseline in normoxic fetuses. Fetal plasma urate concentration increased significantly during chronic hypoxia but not during normoxia (Δ: 4.8 ± 1.6 vs. 0.5 ± 1.4 μmol l−1, P<0.05). The data support the hypotheses tested and show persisting redistribution of substrate delivery away from peripheral and towards essential circulations in the chronically hypoxic fetus, associated with increases in xanthine oxidase‐derived reactive oxygen species. PMID:26926316

  9. Circulating Concentrations of Advanced Glycation end Products, its Association With the Development of Diabetes Mellitus.

    PubMed

    Jiménez, Itzel Uribe; Díaz-Díaz, Eulises; Castro, Jorge Salmerón; Ramos, Julia Pérez; León, Mario Cárdenas; Alvarado Ríos, José Antonio; Auriostigue Bautista, Juan Carlos; Correa-Rotter, Ricardo; Aguilar Salinas, Carlos Alberto; Larrea, Fernando

    2017-05-01

    Diabetes Mellitus (DM) is characterized by the production and accumulation of advanced glycation end products (AGEs), which are one of the key mechanisms in the development of its chronic complications. To assess the serum AGEs concentration by a radioimmunoassay (RIA) developed in our laboratory, to establish reference values in healthy population and to evaluate the diagnostic potential of measuring longitudinal changes in circulating AGEs concentrations to predict the development of DM. Clinical and metabolic parameters were obtained from a cohort of 781 Mexican people, initially and then seven years later. AGEs were quantified by a specific RIA. Associations of the changes in circulating levels of AGEs with the appearance of impaired fasting glucose (IFG), and the development of DM were evaluated. Diabetic subjects had higher circulating levels of AGEs than normoglycemic subjects or individuals with IFG in both samples studied (471 vs. 246 and 342 μU/mL, p <0.001; and 912 vs. 428 and 519 μU/mL, p <0.001; respectively). A multinomial logistic regression analysis showed that subjects who had AGEs concentration ≥400 μU/mL in the baseline sample had a relative risk ratio of 1.98 to develop IFG seven years later (p = 0.003). While the subjects who had AGEs concentration ≥450 μU/mL in the baseline sample had a relative risk ratio of 10.7 to develop DM seven years later (p <0.001). Circulating AGEs concentration is a good early marker to predict risk of developing DM. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  10. Detection of Prostate Cancer Progression by Serum DNA Integrity

    DTIC Science & Technology

    2010-04-01

    qRT) Alu and direct qRT LINE1 is being optimized. We will also continue to develop circulating DNA methylated GSTP1 assay to complement the DNA...developed the LINE1 assay, assembled the manuscript on uLINE1, and performed preliminary analysis of circulating DNA GSTP1 methylation. The goal is to

  11. Bronchial circulation in the marsupial opossum, Didelphis marsupialis.

    PubMed

    Bernard, S L; Luchtel, D L; Glenny, R W; Lakshminarayan, S

    1996-08-01

    This study characterizes the existence of a bronchial circulation in a marsupial, an animal which does not undergo placental development and does not have a ductus arteriosus. Direct perfusion of the lung by the pulmonary vasculature during the fetal development of opossums may occur, potentially eliminating the need for a bronchial circulation. We used radio- and fluorescent-labeled microspheres in conjunction with postmortem intravascular casting to determine if opossums have a systemic (bronchial) blood supply to the lung (n = 9). Gross postmortem examination of the intravascular casts showed a well-developed common bronchial artery. The histological distribution pattern of fluorescent microspheres was primarily to the airways. A few fluorescent microspheres were observed in the alveolar capillaries, indicating that a precapillary bronchial-to-pulmonary anastomosis exists in the opossum. Using the reference flow technique, total bronchial blood flow to the left lung averaged 0.95 +/- 0.58 SE ml/min. The presence of a bronchial circulation in the opossum suggests that it is more than a vestigial structure from embryonic development, potentially supporting its functional importance for carrying nutrients to the airway.

  12. The Impact of Automation on Libraries. Final Report.

    ERIC Educational Resources Information Center

    Cline, Hugh F.; Sinnott, Loraine T.

    This project examined a series of alternative policies for the management and funding of university libraries as they adopt and adapt to various information science technologies to accomplish the functions of acquisitions, cataloging, circulation, and reference services. Comparative case studies were completed at the University of Chicago,…

  13. Microform Publishing: Salvation for Short-Run Periodicals?

    ERIC Educational Resources Information Center

    Bovee, Warren G.

    Micropublishing, a new technology, has provided small-circulation periodicals, which have little advertising revenues, with an alternative to escalating costs of traditional paper publication. The process of micropublishing which is most serviceable for short-run periodicals involves the use of microfiche--a small piece of film which can contain…

  14. Government-Microsoft Partnerships: Supranational Formulation in Private and Public Policy

    ERIC Educational Resources Information Center

    Cardoso, Clementina Marques

    2008-01-01

    This article argues that the framework for the governance of technological knowledge and skills that is formulated for national consumption emerges from a supranational terrain of politics outside the jurisdiction of national and European parliamentary activity and scrutiny. Traditionally understood as a space where ideas circulate and initiatives…

  15. Application of classical thermodynamic principles to the study of oceanic overturning circulation

    NASA Astrophysics Data System (ADS)

    Gade, Herman G.; Gustafsson, Karin E.

    2004-08-01

    Stationary deep-reaching overturning circulation in the ocean is studied by means of classical thermodynamic methods employing closed cycles in pV-space (p, pressure; V, volume). From observed (or computed) density fields, the pV-method may be used to infer the power required for driving a circulation with a given mass flux, or, if the available power is known, the resulting mass flux of the circulation may be assessed. Here, the circulation is assumed to be driven by diapycnal mixing caused by internal disturbances of meteorological and tidal origin and from transfer of geothermal heat through the ocean bottom. The analysis is developed on the basis that potential energy produced by any of these mechanisms is available for driving a circulation of the water masses above its level of generation. The method also takes into account secondary generated potential energy resulting from turbulence developed by the ensuing circulation.Models for different types of circulation are developed and applied to four types of hemispheric circulation with deep-water formation, convection and sinking in an idealized North Atlantic. Our calculations show that the energy input must exceed 15 J kg-1 for a cycle to the bottom to exist. An energy supply of 2 TW would in that case support a constant vertical mass flux of 3.2 G kg s-1 (3.1 Sv). Computed mass fluxes reaching the surface in the subtropics, corresponding to the same energy input, range between 2.3 5.2 G kg s-1, depending on the type of convection/sinking involved. Much higher flux values ensue with ascending water masses reaching the surface at higher geographical latitudes.The study reveals also that compressibility of sea water does not enhance the circulation. An incompressible system, operating within the same mass flux and temperature range, would require about 25% less energy supply, provided that the circulation comprises the same water masses. It is furthermore shown that the meridional distribution of surface salinity, with higher values in the tropics and lower values in regions of deep-water formation, actually enhances the circulation in comparison with one of a more uniform surface salinity. With a homohaline North Atlantic, operating within the same temperature range as presently observed, an increase of 66% of power supply would be required in order that the mass flux of the overturning circulation should remain the same.

  16. Modeling of circulating fluised beds for post-combustion carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.; Shadle, L.; Miller, D.

    2011-01-01

    A compartment based model for a circulating fluidized bed reactor has been developed based on experimental observations of riser hydrodynamics. The model uses a cluster based approach to describe the two-phase behavior of circulating fluidized beds. Fundamental mass balance equations have been derived to describe the movement of both gas and solids though the system. Additional work is being performed to develop the correlations required to describe the hydrodynamics of the system. Initial testing of the model with experimental data shows promising results and highlights the importance of including end effects within the model.

  17. Predicting the Necessity for Extracorporeal Circulation During Lung Transplantation: A Feasibility Study.

    PubMed

    Hinske, Ludwig Christian; Hoechter, Dominik Johannes; Schröeer, Eva; Kneidinger, Nikolaus; Schramm, René; Preissler, Gerhard; Tomasi, Roland; Sisic, Alma; Frey, Lorenz; von Dossow, Vera; Scheiermann, Patrick

    2017-06-01

    The factors leading to the implementation of unplanned extracorporeal circulation during lung transplantation are poorly defined. Consequently, the authors aimed to identify patients at risk for unplanned extracorporeal circulation during lung transplantation. Retrospective data analysis. Single-center university hospital. A development data set of 170 consecutive patients and an independent validation cohort of 52 patients undergoing lung transplantation. The authors investigated a cohort of 170 consecutive patients undergoing single or sequential bilateral lung transplantation without a priori indication for extracorporeal circulation and evaluated the predictive capability of distinct preoperative and intraoperative variables by using automated model building techniques at three clinically relevant time points (preoperatively, after endotracheal intubation, and after establishing single-lung ventilation). Preoperative mean pulmonary arterial pressure was the strongest predictor for unplanned extracorporeal circulation. A logistic regression model based on preoperative mean pulmonary arterial pressure and lung allocation score achieved an area under the receiver operating characteristic curve of 0.85. Consequently, the authors developed a novel 3-point scoring system based on preoperative mean pulmonary arterial pressure and lung allocation score, which identified patients at risk for unplanned extracorporeal circulation and validated this score in an independent cohort of 52 patients undergoing lung transplantation. The authors showed that patients at risk for unplanned extracorporeal circulation during lung transplantation could be identified by their novel 3-point score. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Applications of tribology to determine attrition by wear of particulate solids in CFB systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayham, Samuel C.; Breault, Ronald; Monazam, Esmail

    In recent years, much attention has been focused on the development of novel technologies for carbon capture and chemicals production that utilize a circulating fluidized bed (CFB) configuration; examples include chemical looping combustion and circulation of temperature swing adsorbents in a CFB configuration for CO 2 capture. A major uncertainty in determining the economic feasibility of these technologies is the required solids makeup rate, which, among other factors, is due to impact and wear attrition at various locations, including standpipes, cyclones, and the gas jets in fluid beds. While correlations have been developed that estimate the attrition rates at thesemore » areas, these correlations are dependent on constants that are uncertain without extensive experiment in the corresponding unit operation. Thus, it is difficult to determine the attrition rate a priori without performing extensive experiments on the materials or scaling up entirely. In this work, the authors outline a methodology for predictive attrition based on fundamental material properties from fields of tribology—specifically, the study of wear—to the knowledge of forces and sliding distances determined from hydrodynamic models to develop basic attrition models for novel CFB systems. The equations are derived for the standpipe and cyclone, which are common components found in CFBs, and the cyclone equation is compared to experimental data of attrition in the literature. The cyclone equation derived in this work results in an abrasion rate based on (1) material properties such as particle density and hardness, (2) inlet velocity, and (3) cyclone geometry. According to this equation, increasing the diameter of the cyclone and the solids inlet velocity tends to increase the rate of abrasion of the catalyst, while decreasing the hardness increases the abrasion rate. The functionality of the increasing attrition rate with velocity increase implies that increasing the efficiency of the cyclone may also increase the attrition rate via abrasion. With modifications to the severity coefficient term to include the solids loading, the cyclone equation derived in this work fits data from Reppenhagen and Werther with a coefficient of determination (R2) of 92%.« less

  19. Applications of tribology to determine attrition by wear of particulate solids in CFB systems

    DOE PAGES

    Bayham, Samuel C.; Breault, Ronald; Monazam, Esmail

    2016-11-03

    In recent years, much attention has been focused on the development of novel technologies for carbon capture and chemicals production that utilize a circulating fluidized bed (CFB) configuration; examples include chemical looping combustion and circulation of temperature swing adsorbents in a CFB configuration for CO 2 capture. A major uncertainty in determining the economic feasibility of these technologies is the required solids makeup rate, which, among other factors, is due to impact and wear attrition at various locations, including standpipes, cyclones, and the gas jets in fluid beds. While correlations have been developed that estimate the attrition rates at thesemore » areas, these correlations are dependent on constants that are uncertain without extensive experiment in the corresponding unit operation. Thus, it is difficult to determine the attrition rate a priori without performing extensive experiments on the materials or scaling up entirely. In this work, the authors outline a methodology for predictive attrition based on fundamental material properties from fields of tribology—specifically, the study of wear—to the knowledge of forces and sliding distances determined from hydrodynamic models to develop basic attrition models for novel CFB systems. The equations are derived for the standpipe and cyclone, which are common components found in CFBs, and the cyclone equation is compared to experimental data of attrition in the literature. The cyclone equation derived in this work results in an abrasion rate based on (1) material properties such as particle density and hardness, (2) inlet velocity, and (3) cyclone geometry. According to this equation, increasing the diameter of the cyclone and the solids inlet velocity tends to increase the rate of abrasion of the catalyst, while decreasing the hardness increases the abrasion rate. The functionality of the increasing attrition rate with velocity increase implies that increasing the efficiency of the cyclone may also increase the attrition rate via abrasion. With modifications to the severity coefficient term to include the solids loading, the cyclone equation derived in this work fits data from Reppenhagen and Werther with a coefficient of determination (R2) of 92%.« less

  20. Universal influenza vaccines: Shifting to better vaccines.

    PubMed

    Berlanda Scorza, Francesco; Tsvetnitsky, Vadim; Donnelly, John J

    2016-06-03

    Influenza virus causes acute upper and lower respiratory infections and is the most likely, among known pathogens, to cause a large epidemic in humans. Influenza virus mutates rapidly, enabling it to evade natural and vaccine-induced immunity. Furthermore, influenza viruses can cross from animals to humans, generating novel, potentially pandemic strains. Currently available influenza vaccines induce a strain specific response and may be ineffective against new influenza viruses. The difficulty in predicting circulating strains has frequently resulted in mismatch between the annual vaccine and circulating viruses. Low-resource countries remain mostly unprotected against seasonal influenza and are particularly vulnerable to future pandemics, in part, because investments in vaccine manufacturing and stockpiling are concentrated in high-resource countries. Antibodies that target conserved sites in the hemagglutinin stalk have been isolated from humans and shown to confer protection in animal models, suggesting that broadly protective immunity may be possible. Several innovative influenza vaccine candidates are currently in preclinical or early clinical development. New technologies include adjuvants, synthetic peptides, virus-like particles (VLPs), DNA vectors, messenger RNA, viral vectors, and attenuated or inactivated influenza viruses. Other approaches target the conserved exposed epitope of the surface exposed membrane matrix protein M2e. Well-conserved influenza proteins, such as nucleoprotein and matrix protein, are mainly targeted for developing strong cross-protective T cell responses. With multiple vaccine candidates moving along the testing and development pipeline, the field is steadily moving toward a product that is more potent, durable, and broadly protective than previously licensed vaccines. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  1. Congenital Anomaly of Single Dominant Right Coronary Artery with Hypoplastic Left Coronary Artery.

    PubMed

    Chuang, Cheng-Yen; Chen, Yen-Chou; Cheng, Ho-Shun; Hsieh, Ming-Hsiung

    2015-11-01

    With the popularization of new imaging technology, more people are deciding to undergo non-invasive studies such as multidetector computerized tomography (MDCT) before receiving coronary angiography. For this reason, coronary anomalies of coronary artery are being encountered more frequently. We here report a 68-year-old male presenting with typical angina. The MDCT images suggested chronic total occlusion of the left anterior descending (LAD) artery with collateral circulation from the right coronary artery (RCA). The patient's coronary angiography showed a congenital coronary anomaly with a single dominant RCA supplying the entire coronary circulation of the heart with both LAD and left circumflex artery hypoplasia. Angiography; Anomaly; Computerized tomography; Coronary artery.

  2. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    NASA Astrophysics Data System (ADS)

    Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-06-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis.

  3. Inkjet-Print Micromagnet Array on Glass Slides for Immunomagnetic Enrichment of Circulating Tumor Cells

    PubMed Central

    Chen, Peng; Huang, Yu-Yen; Bhave, Gauri; Hoshino, Kazunori; Zhang, Xiaojing

    2015-01-01

    We report an inkjet-printed microscale magnetic structure that can be integrated on regular glass slides for the immunomagnetic screening of rare Circulating Tumor Cells (CTCs). CTCs detach from the primary tumor site, circulate with the bloodstream, and initiate the cancer metastasis process. Therefore, a liquid biopsy in the form of capturing and analyzing CTCs may provide key information for cancer prognosis and diagnosis. Inkjet printing technology provides a non-contact, layer-by-layer and mask-less approach to deposit defined magnetic patterns on an arbitrary substrate. Such thin film patterns, when placed in an external magnetic field, significantly enhance the attractive force in the near-field close to the CTCs to facilitate the separation. We demonstrated the efficacy of the inkjet-print micromagnet array integrated immunomagnetic assay in separating COLO205 (human colorectal cancer cell line) from whole blood samples. The micromagnets increased the capture efficiency by 26% compared with using plain glass slide as the substrate. PMID:26289942

  4. Rotor Wake Development During the First Revolution

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.

    2003-01-01

    The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.

  5. High performance millimeter-wave microstrip circulators and isolators

    NASA Technical Reports Server (NTRS)

    Shih, Ming; Pan, J. J.

    1990-01-01

    Millimeter wave systems, phased array antennas, and high performance components all require wideband circulators (and isolators) to perform diplexing and switching, to improve isolation and Voltage Standing Wave Ratio (VSWR), and to construct IMPATT diode reflection amplifiers. Presently, most of the millimeter-wave circulators and isolators are available in the configurations of waveguide or stripline, both of which suffer from the shortcomings of bulky size/weight, narrow bandwidth, and poor compatibility with monolithic millimeter-wave integrated circuits (MMIC). MMW microstrip circulators/isolators can eliminate or improve these shortcomings. Stub-tuned microstrip circulator configuration were developed utilizing the electromagnetic fields perturbation technique, the adhesion problems of microstrip metallization on new ferrite substrate were overcome, the fabrication, assembly, packaging techniques were improved, and then successfully designed, fabricated a Ka band circulator which has isolation and return loss of greater than 16dB, insertion loss less than 0.7dB. To assess the steady and reliable performance of the circulator, a temperature cycling test was done over the range of -20 to +50 C for 3 continuous cycles and found no significant impact or variation of circulator performance.

  6. Downhole vacuum cleans up tough fishing, milling jobs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaLande, P.; Flanders, B.

    1996-02-01

    A unique tool developed to effect reverse circulation downhole is being used successfully in problem milling and fishing operations where conventional techniques fail to recover junk in the hole. Jointly developed by several major operators in conjunction with Baker Oil Tools, the patented Reverse Circulating Tool (RCT) acts as a downhole vacuum cleaner, catching and retaining debris circulated from the wellbore while allowing fishing, milling and washover operations to continue uninterrupted. As described in several case histories overviewed, the unique vacuuming action efficiently cleans up junk and debris in even the most difficult fishing and milling applications. Downhole operations proceedmore » normally, but without threat of damage from milled debris. Developers hold both mechanical and method patents on the RCT.« less

  7. Microgravity

    NASA Image and Video Library

    2001-01-24

    An artist's concept of the Primary Atomic Clock Reference System (PARCS) plarned to fly on the International Space Station (ISS). PARCS will make even more accurate atomic time available to everyone, from physicists testing Einstein's Theory of Relativity, to hikers using the Global Positioning System to find their way. In ground-based atomic clocks, lasers are used to cool and nearly stop atoms of cesium whose vibrations are used as the time base. The microgravity of space will allow the atoms to be suspended in the clock rather than circulated in an atomic fountain, as required on Earth. PARCS is being developed by the Jet Propulsion Laboratory with principal investigators at the National Institutes of Standards and Technology and the University of Colorado, Boulder. See also No. 0103191

  8. Three-dimensional reconstruction and display of the heart, lungs and circulation by multiplanar X-ray scanning videodensitometry

    NASA Technical Reports Server (NTRS)

    Robb, R. A.; Ritman, E. L.; Wood, E. H.

    1975-01-01

    A device was developed which makes possible the dynamic reconstruction of the heart and lungs within the intact thorax of a living dog or human and which can record approximately 30 multiplanar X-ray images of the thorax practically instantaneously, and at frequent enough intervals of time and with sufficient density and spatial resolution to capture and resolve the most rapid changes in cardiac structural detail throughout each cardiac cycle. It can be installed in a clinical diagnostic setting as well as in a research environment and its construction and application for determination and display in real-time modes of cross sections of the functioning thorax and its contents of living animals and man is technologically feasible.

  9. Note: Sub-Kelvin refrigeration with dry-coolers on a rotating system.

    PubMed

    Oguri, S; Ishitsuka, H; Choi, J; Kawai, M; Tajima, O

    2014-08-01

    We developed a cryogenic system on a rotating table that achieves sub-Kelvin conditions. The cryogenic system consists of a helium sorption cooler and a pulse tube cooler in a cryostat mounted on a rotating table. Two rotary-joint connectors for electricity and helium gas circulation enable the coolers to be operated and maintained with ease. We performed cool-down tests under a condition of continuous rotation at 20 rpm. We obtained a temperature of 0.23 K with a holding time of more than 24 h, thus complying with catalog specifications. We monitored the system's performance for four weeks; two weeks with and without rotation. A few-percent difference in conditions was observed between these two states. Most applications can tolerate such a slight difference. The technology developed is useful for various scientific applications requiring sub-Kelvin conditions on rotating platforms.

  10. Cleaning Robot for Solar Panels in Solar Power Station

    NASA Astrophysics Data System (ADS)

    Hang, Lu-Bin; Shen, Cheng-Wei; Bian, Huai-Qiang; Wang, Yan

    2016-05-01

    The dust particles on solar panel surface have been a serious problem for the photovoltaic industry, a new monorail-tracked robot used for automatic cleaning of solar panel is presented in this paper. To meet the requirement of comprehensive and stable cleaning of PV array, the monorail-tracked pattern of robot is introduced based on the monorail structure technique. The running and striding mechanism are designed for mobility of robot on the solar panels. According to the carrying capacity and water circulation mechanism, a type of self-cleaning device with filtering system is developed. Combined with the computer software and communications technology, the control system is built in this robot, which can realize the functions of autonomous operation, positioning and monitoring. The application of this developed cleaning robot can actualize the Industrialization of automatic cleaning for PV components and have wide market prospect.

  11. Universal influenza vaccines, a dream to be realized soon.

    PubMed

    Zhang, Han; Wang, Li; Compans, Richard W; Wang, Bao-Zhong

    2014-04-29

    Due to frequent viral antigenic change, current influenza vaccines need to be re-formulated annually to match the circulating strains for battling seasonal influenza epidemics. These vaccines are also ineffective in preventing occasional outbreaks of new influenza pandemic viruses. All these challenges call for the development of universal influenza vaccines capable of conferring broad cross-protection against multiple subtypes of influenza A viruses. Facilitated by the advancement in modern molecular biology, delicate antigen design becomes one of the most effective factors for fulfilling such goals. Conserved epitopes residing in virus surface proteins including influenza matrix protein 2 and the stalk domain of the hemagglutinin draw general interest for improved antigen design. The present review summarizes the recent progress in such endeavors and also covers the encouraging progress in integrated antigen/adjuvant delivery and controlled release technology that facilitate the development of an affordable universal influenza vaccine.

  12. Universal Influenza Vaccines, a Dream to Be Realized Soon

    PubMed Central

    Zhang, Han; Wang, Li; Compans, Richard W.; Wang, Bao-Zhong

    2014-01-01

    Due to frequent viral antigenic change, current influenza vaccines need to be re-formulated annually to match the circulating strains for battling seasonal influenza epidemics. These vaccines are also ineffective in preventing occasional outbreaks of new influenza pandemic viruses. All these challenges call for the development of universal influenza vaccines capable of conferring broad cross-protection against multiple subtypes of influenza A viruses. Facilitated by the advancement in modern molecular biology, delicate antigen design becomes one of the most effective factors for fulfilling such goals. Conserved epitopes residing in virus surface proteins including influenza matrix protein 2 and the stalk domain of the hemagglutinin draw general interest for improved antigen design. The present review summarizes the recent progress in such endeavors and also covers the encouraging progress in integrated antigen/adjuvant delivery and controlled release technology that facilitate the development of an affordable universal influenza vaccine. PMID:24784572

  13. In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells

    NASA Astrophysics Data System (ADS)

    He, Yun; Wang, Lidai; Shi, Junhui; Yao, Junjie; Li, Lei; Zhang, Ruiying; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2016-12-01

    Metastasis causes as many as 90% of cancer-related deaths, especially for the deadliest skin cancer, melanoma. Since hematogenous dissemination of circulating tumor cells is the major route of metastasis, detection and destruction of circulating tumor cells are vital for impeding metastasis and improving patient prognosis. Exploiting the exquisite intrinsic optical absorption contrast of circulating melanoma cells, we developed dual-wavelength photoacoustic flow cytography coupled with a nanosecond-pulsed melanoma-specific laser therapy mechanism. We have successfully achieved in vivo label-free imaging of rare single circulating melanoma cells in both arteries and veins of mice. Further, the photoacoustic signal from a circulating melanoma cell immediately hardware-triggers a lethal pinpoint laser irradiation to kill it on the spot in a thermally confined manner without causing collateral damage. A pseudo-therapy study including both in vivo and in vitro experiments demonstrated the performance and the potential clinical value of our method, which can facilitate early treatment of metastasis by clearing circulating tumor cells from vasculature.

  14. Planning for Downtown Circulation Systems. Volume 3. Appendices.

    DOT National Transportation Integrated Search

    1983-10-01

    This volume contains worksheets for estimating circulator patronage, costs, revenues and travel impacts, detailed discussions of estimation and application procedures for the demand models developed, and a case study of the models' application using ...

  15. A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation

    NASA Astrophysics Data System (ADS)

    Gohardani, Amir S.

    2013-02-01

    Distributed propulsion is one of the revolutionary candidates for future aircraft propulsion. In this journal article, the potential role of distributed propulsion technology in future aviation is investigated. Following a historical journey that revisits distributed propulsion technology in unmanned air vehicles and military aircraft, features of this specific technology are highlighted in synergy with an electric aircraft concept and a first-of-a-kind comparison to commercial aircraft employing distributed propulsion arrangements. In light of propulsion-airframe integration and complementary technologies such as boundary layer ingestion, thrust vectoring and circulation control, transpired opportunities and challenges are addressed in addition to a number of identified research directions proposed for future aircraft. The motivation behind enhanced means of communication between engineers, researchers and scientists has stimulated a novel proposed definition for the distributed propulsion technology in aviation and is presented herein.

  16. A numerical investigation of surface-induced mesocyclogenesis near the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Cione, Joseph J.; Raman, Sethu

    1995-10-01

    A series of numerical experiments designed to simulate the initial development stages of low-level coastal mesocyclogenesis near the Gulf Stream was recently conducted. Under initially quiescent conditions, surface cyclogenesis in the control simulation occurs along a Gulf Stream meander in a region where the gradients in sea surface temperature (SST) are maximized. A low-level mesovortex on the order of 140km forms approximately 12 h into the simulation and continues to intensify through 42h. During the 24 48 h time period, a mesoscale frontal feature develops in direct response to strong diabatic forcing associated with sustained surface latent and sensible heating near the Gulf Stream frontal zone south of the main circulation center. Due to the non-linear advection of the frontal feature during this time period, the previously quasi-stationary circulation center drifts eastward (and away) from the thermal forcing associated with the large SST gradients found to the west. This eastward frontal propagation acts to decrease the magnitude of the low level horizontal air temperature gradient near the center of circulation throughout the 24 42 h development period. During the 42 48-h period, the relatively quick moving frontal feature acts to severely shear the nearly stationary center of circulation in the east west direction. As a result, the mesoscale system begins to fill during the final 6 h of integration. In addition to the control simulation, additional sensitivity experiments were conducted. These experiments were specifically designed to: (1) investigate how the magnitude of the Gulf Stream SST gradients affect the timing and degree of cyclonic development; (2) address the impact surface moisture fluxes and moist convection each have on the simulated low level mesocyclogenesis; (3) isolate the role surface sensible heating plays in the overall development of the simulated mesocyclone. Results from the SST gradient experiment indicate that a moderate enhancement of the SST distribution significantly affects the timing of the initial cyclogenesis and the maximum intensity of the simulated frontal circulation. For the "no turbulent heat flux" experiment, it appears that the elimination of surface sensible heating does not radically alter the overall structure of the simulated mesocyclone. However, the rate of development during the early stage of cyclogenesis, the absolute peak intensity of the system as well as the vertical depth of the simulated mesoscale frontal feature were all noticeably reduced when compared with the control simulation. The initial development of a closed low level circulation was delayed by nearly 18 h in the absence surface latent heat fluxes. Once formed, the system intensified throughout the 48-h period of integration, but unlike the control experiment, a mesoscale frontal feature south of the main circulation center was not simulated. Results from the "no surface moisture flux/no moist convection" simulation illustrate that moist convective processes play a dominant role in the overall development of the mesoscale cyclone. For this particular case, a weak and extremely shallow circulation was simulated after 24h. This circulation quickly eroded however, and was virtually non-existent for integration times greater than 39h.

  17. Performance evaluation approach for the supercritical helium cold circulators of ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaghela, H.; Sarkar, B.; Bhattacharya, R.

    2014-01-29

    The ITER project design foresees Supercritical Helium (SHe) forced flow cooling for the main cryogenic components, namely, the superconducting (SC) magnets and cryopumps (CP). Therefore, cold circulators have been selected to provide the required SHe mass flow rate to cope with specific operating conditions and technical requirements. Considering the availability impacts of such machines, it has been decided to perform evaluation tests of the cold circulators at operating conditions prior to the series production in order to minimize the project technical risks. A proposal has been conceptualized, evaluated and simulated to perform representative tests of the full scale SHe coldmore » circulators. The objectives of the performance tests include the validation of normal operating condition, transient and off-design operating modes as well as the efficiency measurement. A suitable process and instrumentation diagram of the test valve box (TVB) has been developed to implement the tests at the required thermodynamic conditions. The conceptual engineering design of the TVB has been developed along with the required thermal analysis for the normal operating conditions to support the performance evaluation of the SHe cold circulator.« less

  18. Biogeochemical Proxies in Scleractinian Corals used to Reconstruct Ocean Circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guilderson, T.P.; Kashgarian, M.; Schrag, D.P.

    We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variablesmore » several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon ({sup 14}C) in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as these, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment onetime surveys such as GEOSECS and WOCE. These data not only provide fundamental information about the shallow circulation of the Pacific, but can be used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate change.« less

  19. Biogeochemical Proxies in Scleractinian Corals used to Reconstruct Ocean Circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guilderson, T P; Kashgarian, M; Schrag, D P

    2001-02-23

    We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variablesmore » several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon ({sup 14}C) in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as these, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment onetime surveys such as GEOSECS and WOCE. These data not only provide fundamental information about the shallow circulation of the Pacific, but can be used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate change.« less

  20. Investigation of Injector Slot Geometry on Curved-Diffuser Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Silva, Odlanier

    2004-01-01

    The Compressor Branch vision is to be recognized as world-class leaders in research for fluid mechanics of compressors. Its mission is to conduct research and develop technology to advance the state of the art of compressors and transfer new technology to U.S. industries. Maintain partnerships with U.S. industries, universities, and other government organizations. Maintain a balance between customers focused and long range research. Flow control comprises enabling technologies to meet compression system performance requirements driven by emissions and fuel reduction goals (e.g., in UEET), missions (e.g., access-to-space), aerodynamically aggressive vehicle configurations (e.g., UAV and future blended wing body configurations with highly distorted inlets), and cost goals (e.g., in VAATE). The compression system requirements include increased efficiency, power-to-weight, and adaptability (i.e., robustness in terms of wide operability, distortion tolerance, and engine system health and reliability). The compressor flow control task comprises efforts to develop, demonstrate, and transfer adaptive flow control technology to industry to increase aerodynamic loading at current blade row loss levels, to enable adaptive1 y wide operability, and to develop plant models for adaptive compression systems. In this context, flow control is the controlled modification of a flow field by a deliberate means beyond the natural (uncontrolled) shaping of the solid surfaces that define the principal flow path. The objective of the compressor flow control task is to develop and apply techniques that control circulation, aerodynamic blockage, and entropy production in order to enhance the performance and operability of compression systems for advanced aero-propulsion applications. This summer I would be working with a curved-diffuser because it simulates what happens with flow in the stator blades in the compressor. With this experiment I will be doing some data analysis and parametric study of the injector slot geometries to get the best aerodynamic performance of it. This includes some data reduction, redesign and fast prototyping of the injector nozzle.

  1. Inner-core Vacillation Cycles during the Intensification of Hurricane Katrina

    DTIC Science & Technology

    2011-04-01

    symmetric overturning circulation draws air from outer radii above the boundary layer while conserving absolute angular momentum. This symmetric...azimuthal momentum by the mean overturning circulation . The resulting increase in the vertical shear of the azimuthal-mean tangential wind that develops in... meridional circulation in a circular vortex. Astrophysica Norvegica 5: 19–60. Elsberry R, Frank W, Holland G, Jarrel J, Southern R. 1987. A Global

  2. Observational study of treatment space in individual neonatal cot spaces.

    PubMed

    Hignett, Sue; Lu, Jun; Fray, Mike

    2010-01-01

    Technology developments in neonatal intensive care units have increased the spatial requirements for clinical activities. Because the effectiveness of healthcare delivery is determined in part by the design of the physical environment and the spatial organization of work, it is appropriate to apply an evidence-based approach to architectural design. This study aimed to provide empirical evidence of the spatial requirements for an individual cot or incubator space. Observational data from 2 simulation exercises were combined with an expert review to produce a final recommendation. A validated 5-step protocol was used to collect data. Step 1 defined the clinical specialty and space. In step 2, data were collected with 28 staff members and 15 neonates to produce a simulation scenario representing the frequent and safety-critical activities. In step 3, 21 staff members participated in functional space experiments to determine the average spatial requirements. Step 4 incorporated additional data (eg, storage and circulation) to produce a spatial recommendation. Finally, the recommendation was reviewed in step 5 by a national expert clinical panel to consider alternative layouts and technology. The average space requirement for an individual neonatal intensive care unit cot (incubator) space was 13.5 m2 (or 145.3 ft2). The circulation and storage space requirements added in step 4 increased this to 18.46 m2 (or 198.7 ft2). The expert panel reviewed the recommendation and agreed that the average individual cot space (13.5 m2/[or 145.3 ft2]) would accommodate variance in working practices. Care needs to be taken when extrapolating this recommendation to multiple cot areas to maintain the minimum spatial requirement.

  3. Numerical Simulation Applications in the Design of EGS Collab Experiment 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Henry; White, Mark D.; Fu, Pengcheng

    The United States Department of Energy, Geothermal Technologies Office (GTO) is funding a collaborative investigation of enhanced geothermal systems (EGS) processes at the meso-scale. This study, referred to as the EGS Collab project, is a unique opportunity for scientists and engineers to investigate the creation of fracture networks and circulation of fluids across those networks under in-situ stress conditions. The EGS Collab project is envisioned to comprise three experiments and the site for the first experiment is on the 4850 Level (4,850 feet below ground surface) in phyllite of the Precambrian Poorman formation, at the Sanford Underground Research Facility, locatedmore » at the former Homestake Gold Mine, in Lead, South Dakota. Principal objectives of the project are to develop a number of intermediate-scale field sites and to conduct well-controlled in situ experiments focused on rock fracture behavior and permeability enhancement. Data generated during these experiments will be compared against predictions of a suite of computer codes specifically designed to solve problems involving coupled thermal, hydrological, geomechanical, and geochemical processes. Comparisons between experimental and numerical simulation results will provide code developers with direction for improvements and verification of process models, build confidence in the suite of available numerical tools, and ultimately identify critical future development needs for the geothermal modeling community. Moreover, conducting thorough comparisons of models, modelling approaches, measurement approaches and measured data, via the EGS Collab project, will serve to identify techniques that are most likely to succeed at the Frontier Observatory for Research in Geothermal Energy (FORGE), the GTO's flagship EGS research effort. As noted, outcomes from the EGS Collab project experiments will serve as benchmarks for computer code verification, but numerical simulation additionally plays an essential role in designing these meso-scale experiments. This paper describes specific numerical simulations supporting the design of Experiment 1, a field test involving hydraulic stimulation of two fractures from notched sections of the injection borehole and fluid circulation between sub-horizontal injection and production boreholes in each fracture individually and collectively, including the circulation of chilled water. Whereas the mine drift allows for accurate and close placement of monitoring instrumentation to the developed fractures, active ventilation in the drift cooled the rock mass within the experimental volume. Numerical simulations were executed to predict seismic events and magnitudes during stimulation, initial fracture orientations for smooth horizontal wellbores, pressure requirements for fracture initiation from notched wellbores, fracture propagation during stimulation between the injection and production boreholes, tracer travel times between the injection and production boreholes, produced fluid temperatures with chilled water injections, pressure limits on fluid circulation to avoid fracture growth, temperature environment surrounding the 4850 Level drift, and fracture propagation within a stress field altered by drift excavation, ventilation cooling, and dewatering.« less

  4. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    NASA Astrophysics Data System (ADS)

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S.; Baguer, G. M. Gistau

    2014-01-01

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.

  5. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gondrand, C.; Durand, F.; Delcayre, F.

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves weremore » used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.« less

  6. A Thermodynamically General Theory for Convective Circulations and Vortices

    NASA Astrophysics Data System (ADS)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  7. Moving Frontiers of Empire: Production, Travel and Transformation through Technologies of Display

    ERIC Educational Resources Information Center

    Macnab, Natasha; Grosvenor, Ian; Myers, Kevin

    2013-01-01

    Over the past two decades there has been a growing interest in the exploration of "transnational history". This work has focused in general on understanding the "movement, ebb and circulation" of ideas across borders and in particular on the introduction, transmission, reception and appropriation of ideas through the process of…

  8. A Prognostic Gene Expression Profile That Predicts Circulating Tumor Cell Presence in Breast Cancer Patients

    PubMed Central

    Molloy, Timothy J.; Roepman, Paul; Naume, Bjørn; van't Veer, Laura J.

    2012-01-01

    The detection of circulating tumor cells (CTCs) in the peripheral blood and microarray gene expression profiling of the primary tumor are two promising new technologies able to provide valuable prognostic data for patients with breast cancer. Meta-analyses of several established prognostic breast cancer gene expression profiles in large patient cohorts have demonstrated that despite sharing few genes, their delineation of patients into “good prognosis” or “poor prognosis” are frequently very highly correlated, and combining prognostic profiles does not increase prognostic power. In the current study, we aimed to develop a novel profile which provided independent prognostic data by building a signature predictive of CTC status rather than outcome. Microarray gene expression data from an initial training cohort of 72 breast cancer patients for which CTC status had been determined in a previous study using a multimarker QPCR-based assay was used to develop a CTC-predictive profile. The generated profile was validated in two independent datasets of 49 and 123 patients and confirmed to be both predictive of CTC status, and independently prognostic. Importantly, the “CTC profile” also provided prognostic information independent of the well-established and powerful ‘70-gene’ prognostic breast cancer signature. This profile therefore has the potential to not only add prognostic information to currently-available microarray tests but in some circumstances even replace blood-based prognostic CTC tests at time of diagnosis for those patients already undergoing testing by multigene assays. PMID:22384245

  9. Core Dynamics Analysis for Reactivity Insertion and Loss of Coolant Flow Tests Using the High Temperature Engineering Test Reactor

    NASA Astrophysics Data System (ADS)

    Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki

    Safety demonstration tests using the High Temperature Engineering Test Reactor (HTTR) are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-temperature Gas-cooled Reactors (HTGRs). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named-ACCORD-, was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We have modified this code to use a model with four parallel channels and twenty temperature coefficients. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results. Moreover, the effect of the model is formulated quantitatively with our proposed equation. Finally, the pre-analytical result of the loss of coolant flow test by tripping all gas circulators is also discussed.

  10. A 40 GHz fully integrated circuit with a vector network analyzer and a coplanar-line-based detection area for circulating tumor cell analysis using 65 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Nakanishi, Taiki; Matsunaga, Maya; Kobayashi, Atsuki; Nakazato, Kazuo; Niitsu, Kiichi

    2018-03-01

    A 40-GHz fully integrated CMOS-based circuit for circulating tumor cells (CTC) analysis, consisting of an on-chip vector network analyzer (VNA) and a highly sensitive coplanar-line-based detection area is presented in this paper. In this work, we introduce a fully integrated architecture that eliminates unwanted parasitic effects. The proposed analyzer was designed using 65 nm CMOS technology, and SPICE and MWS simulations were used to validate its operation. The simulation confirmed that the proposed circuit can measure S-parameter shifts resulting from the addition of various types of tumor cells to the detection area, the data of which are provided in a previous study: the |S 21| values for HepG2, A549, and HEC-1-A cells are -0.683, -0.580, and -0.623 dB, respectively. Additionally, the measurement demonstrated an S-parameters reduction of -25.7% when a silicone resin was put on the circuit. Hence, the proposed system is expected to contribute to cancer diagnosis.

  11. Reduction of Nitrogen Oxides Emissions from a Coal-Fired Boiler Unit

    NASA Astrophysics Data System (ADS)

    Zhuikov, Andrey V.; Feoktistov, Dmitry V.; Koshurnikova, Natalya N.; Zlenko, Lyudmila V.

    2016-02-01

    During combustion of fossil fuels a large amount of harmful substances are discharged into the atmospheres of cities by industrial heating boiler houses. The most harmful substances among them are nitrogen oxides. The paper presents one of the most effective technological solutions for suppressing nitrogen oxides; it is arrangement of circulation process with additional mounting of the nozzle directed into the bottom of the ash hopper. When brown high-moisture coals are burnt in the medium power boilers, generally fuel nitrogen oxides are produced. It is possible to reduce their production by two ways: lowering the temperature in the core of the torch or decreasing the excess-air factor in the boiler furnace. Proposed solution includes the arrangement of burning process with additional nozzle installed in the lower part of the ash hopper. Air supply from these nozzles creates vortex involving large unburned fuel particles in multiple circulations. Thereby time of their staying in the combustion zone is prolonging. The findings describe the results of the proposed solution; and recommendations for the use of this technological method are given for other boilers.

  12. Cell Separations in Microgravity and Development of a Space Bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.

    1985-01-01

    A bioreactor optimized for operations in space is now being developed. The current research is focused on determining the optimum cell-bead ratios, medium content and proper maintenance conditions required to keep living cell specimens alive and healthy for the entire flight. The bioreactor development project has recently added a microprocessor/computer to the JSC prototype for control and data analysis. Appropriate new technology is being combined with the current bioreactor designs and tested to determine what specific features must be included in the fabrication of a bioreactor designed to operate for STS demonstration tests. Considerations include: (1) circulation and resupply of culture media; (2) sensors required to monitor temperature, cell growth, mass transport, and oxygen consumption; and (3) inflight control of shear stress on cells, gas transfer in microgravity, diffusion, and intracellular transport. These data and results from the JSC prototype bioreactor test will be used for the design and construction of a small space bioreactor for the Orbiter middeck.

  13. Influence of cadmium on physiological parameters and efficiency of chickens-broilers

    NASA Astrophysics Data System (ADS)

    Lisunova, L. I.; Tokarev, V. S.; Lisunova, A. V.

    2003-05-01

    In modern conditions a basis of activity of the person becomes the principle of ecological rationality including development and practical use of systems, technologies and the ways providing reception of ecologically safe production of animal industries. Heavy metals concern to number of the most dangerous objects of an environment The sizes of their distribution and intensity of migration in an environment have got dangerous character for normal functioning and health of people. In this connection there is a real necessity of development of strategy of regulation of a level of heavy metals for system about “ground - an atmosphere - water - a plant - an animal - the person”, basing on the interconnected and mutually conditioned processes of their circulation. Cadmium concerns to group of heavy metals. Its increased contents in an organism of the person reduces ability to resist to illnesses. It has mutagen and cancerogenic properties, negatively influences on a heredity. It also promotes development of diseases of kidneys, and also a gastritis and an anemia.

  14. Normal growth and development in the absence of hepatic insulin-like growth factor I

    PubMed Central

    Yakar, Shoshana; Liu, Jun-Li; Stannard, Bethel; Butler, Andrew; Accili, Domenici; Sauer, Brian; LeRoith, Derek

    1999-01-01

    The somatomedin hypothesis proposed that insulin-like growth factor I (IGF-I) was a hepatically derived circulating mediator of growth hormone and is a crucial factor for postnatal growth and development. To reassess this hypothesis, we have used the Cre/loxP recombination system to delete the igf1 gene exclusively in the liver. igf1 gene deletion in the liver abrogated expression of igf1 mRNA and caused a dramatic reduction in circulating IGF-I levels. However, growth as determined by body weight, body length, and femoral length did not differ from wild-type littermates. Although our model proves that hepatic IGF-I is indeed the major contributor to circulating IGF-I levels in mice it challenges the concept that circulating IGF-I is crucial for normal postnatal growth. Rather, our model provides direct evidence for the importance of the autocrine/paracrine role of IGF-I. PMID:10377413

  15. Specifications for a Computerized Library Circulation Management Data and On-Line Catalog System.

    ERIC Educational Resources Information Center

    Schwarz, Philip J.

    This manual is intended primarily for libraries that wish to purchase a turnkey automated circulation system and online catalog, but lack the staff, time, and expertise to develop a set of specifications, or the money to hire consultants. Specifications are provided to assist in the selection from several options: (1) development of an in-house…

  16. Real-time photoacoustic flow cytography and photothermolysis of single circulating melanoma cells in vivo

    NASA Astrophysics Data System (ADS)

    He, Yun; Wang, Lidai; Shi, Junhui; Yao, Junjie; Li, Lei; Zhang, Ruiying; Huang, Chih-Hsien; Zou, Jun; Wang, Lihong V.

    2017-03-01

    Metastasis is responsible for as many as 90% of cancer-related deaths, and the deadliest skin cancer, melanoma, has a high propensity for metastasis. Since hematogenous spread of circulating tumor cells (CTCs) is cancer's main route of metastasis, detecting and destroying CTCs can impede metastasis and improve patients' prognoses. Extensive studies employing exogenous agents to detect tumor-specific biomarkers and guide therapeutics to CTCs have achieved promising results, but biosafety remains a critical concern. Taking another approach, physical detection and destruction of CTCs is a safer way to evaluate and reduce metastasis risks. Melanoma cells strongly express melanosomes, providing a striking absorption contrast with the blood background in the red to near-infrared spectrum. Exploiting this intrinsic optical absorption contrast of circulating melanoma cells, we coupled dual-wavelength photoacoustic flow cytography with a nanosecond-pulsed laser killing mechanism that specifically targets melanoma CTCs. We have successfully achieved in vivo label-free imaging of rare single CTCs and CTC clusters in mice. Further, the photoacoustic signal from a CTC immediately hardware-triggers a lethal pinpoint laser irradiation that lyses it on the spot in a thermally confined manner. Our technology can facilitate early inhibition of metastasis by clearing circulating tumor cells from vasculature.

  17. In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues

    PubMed Central

    Biris, Alexandru S.; Galanzha, Ekaterina I.; Li, Zhongrui; Mahmood, Meena; Xu, Yang; Zharov, Vladimir P.

    2016-01-01

    Nanoparticles are intensively being explored as contrast agents for medical diagnostics and therapies using various optical methods. We present the first demonstration of the use of time-resolved Raman spectroscopy for in vivo real-time detection of circulating carbon nanotubes (CNTs) or cancer cells labeled with CNTs in the lymph, blood, and tissues of live animals with fast spectral acquisition times of down to few milliseconds. After intravenously administering CNTs in the tail vein of the rat, this technique provides the ability to detect the circulation of CNTs in the blood microvessels of the intact rat ear. The capability of Raman spectroscopy is also demonstrated to monitor, identify, and image the CNTs during their transportation by lymphatics in the rat ear and mesentery. The strong and specific Raman scattering properties of CNTs make it possible to detect in vitro and in vivo single cancer cells (HeLa) tagged with CNTs. In vivo Raman flow cytometry opens a new avenue for multiparameter analysis of circulating nanoparticles with strong Raman scattering properties and their pharmokinetics in blood and lymph systems. Moreover, this technology has the potential for molecular detection and identification of circulating tumor cells, and infections labeled with CNTs. PMID:19405719

  18. In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues

    NASA Astrophysics Data System (ADS)

    Biris, Alexandru S.; Galanzha, Ekaterina I.; Li, Zhongrui; Mahmood, Meena; Xu, Yang; Zharov, Vladimir P.

    2009-03-01

    Nanoparticles are intensively being explored as contrast agents for medical diagnostics and therapies using various optical methods. We present the first demonstration of the use of time-resolved Raman spectroscopy for in vivo real-time detection of circulating carbon nanotubes (CNTs) or cancer cells labeled with CNTs in the lymph, blood, and tissues of live animals with fast spectral acquisition times of down to few milliseconds. After intravenously administering CNTs in the tail vein of the rat, this technique provides the ability to detect the circulation of CNTs in the blood microvessels of the intact rat ear. The capability of Raman spectroscopy is also demonstrated to monitor, identify, and image the CNTs during their transportation by lymphatics in the rat ear and mesentery. The strong and specific Raman scattering properties of CNTs make it possible to detect in vitro and in vivo single cancer cells (HeLa) tagged with CNTs. In vivo Raman flow cytometry opens a new avenue for multiparameter analysis of circulating nanoparticles with strong Raman scattering properties and their pharmokinetics in blood and lymph systems. Moreover, this technology has the potential for molecular detection and identification of circulating tumor cells, and infections labeled with CNTs.

  19. Novel method to detect microRNAs using chip-based QuantStudio 3D digital PCR.

    PubMed

    Conte, Davide; Verri, Carla; Borzi, Cristina; Suatoni, Paola; Pastorino, Ugo; Sozzi, Gabriella; Fortunato, Orazio

    2015-10-23

    Research efforts for the management of cancer, in particular for lung cancer, are directed to identify new strategies for its early detection. MicroRNAs (miRNAs) are a new promising class of circulating biomarkers for cancer detection, but lack of consensus on data normalization methods has affected the diagnostic potential of circulating miRNAs. There is a growing interest in techniques that allow an absolute quantification of miRNAs which could be useful for early diagnosis. Recently, digital PCR, mainly based on droplets generation, emerged as an affordable technology for precise and absolute quantification of nucleic acids. In this work, we described a new interesting approach for profiling circulating miRNAs in plasma samples using a chip-based platform, the QuantStudio 3D digital PCR. The proposed method was validated using synthethic oligonucleotide at serial dilutions in plasma samples of lung cancer patients and in lung tissues and cell lines. Given its reproducibility and reliability, our approach could be potentially applied for the identification and quantification of miRNAs in other biological samples such as circulating exosomes or protein complexes. As chip-digital PCR becomes more established, it would be a robust tool for quantitative assessment of miRNA copy number for diagnosis of lung cancer and other diseases.

  20. The Polar Ocean in a Warming Planet: Understanding for managing a unique resource of the Humankind

    NASA Astrophysics Data System (ADS)

    Azzolini, R.; Campus, P.; Weber, J.

    2012-04-01

    There is no doubt that changes in the Polar Regions are of great significance at the global level, such as having far-reaching effects on atmospheric and ocean circulation. Changes in ocean currents, temperature conditions, ice cover and reduction of permafrost regions are having impacts on marine and terrestrial ecosystems in the Arctic Regions of Europe and Northern Hemisphere. Human activity is putting pressure on the environment in these regions; maritime transport between Europe and Asia through the northern sea route and accessibility conditions to hidden Arctic resources as well as new technologies of exploitation will have a significant impact on the marine environment, on the living resources and on the regional social organization and needs. There are still unresolved issues related to national claims on continental shelf and sea areas that involve international law; in these respects science can provide crucial elements for supporting political agreements. Such scenarios will present new opportunities for economic activities, but also risks which will result in new demands for marine management, monitoring systems, emergency response systems, search and rescue services as well as closer international cooperation. It will also require the development of an international regime based on the improvement of the present regulations on exploration, accessibility, exploitation and liability. Dialogue and international agreements based on scientific evidences and foresight are key elements for finding solutions. On the opposite hemisphere, the ocean surrounding Antarctica plays a primary role in all global climatic processes, through the annual sea ice evolution, the circum-Antarctic circulation driving the exchange of heat between low and high latitudes and the atmospheric circulation, through the density bottom currents that affect the global Thermohaline circulation (THC), and the biogeochemical cycles that have peculiar characteristics in the icy Antarctic waters. Besides this, the marine living resources and the reservoirs of energy and bio-chemical resources (e.g. gas hydrates, bio-prospecting) have a growing strategic importance in the global economy. The Antarctic Ocean, due to its isolation and extreme climatic conditions, has always been an area of international cooperation and technological challenges in support of scientific progress. In this scenario, the rapid environmental changes and the need of humankind for new and alternative reservoirs of food and energy to be exploited play a crucial role in understanding and managing the Polar oceans. The newly emerging opportunities and associated emerging threats for Arctic people increase the number of policy areas in which EU involvement is relevant and necessary. In order to gain insight into the this complex scenario and into the needs in terms of research programmes and infrastructures, policy and education to manage it, the European Polar Board launched an initiative in Polar marine science. The ESF/EPB marine initiative is intended to focus on various aspect of the Polar marine environment and to indicate a strategy focused on innovative scientific and technological topics, capable of combining together different research capacities as well as political, economic and strategic objectives, toward goals of economic and social interest. Therefore, it is based on a wide and multidisciplinary participation.

  1. A numerical study on the evolution of the wind-driven circulation in the Yellow Sea in winter

    NASA Astrophysics Data System (ADS)

    Tak, Y. J.; Cho, Y. K.

    2016-02-01

    The Yellow Sea is a semi-enclosed marginal sea and its circulation in winter is affected by the winter monsoon. In previous studies, it was found that the circulation of the Yellow Sea in winter consists of downwind and upwind currents. Downwind currents consisting of the Korean Coast Current (KCC) and the Chinese Coast Current (CCC) flow along the boundary of the Yellow Sea, whereas an upwind current consisting of the Yellow Sea Warm Current (YSWC) flows along the central trough of the Yellow Sea. Although some characteristics of such currents and the driving forces of the circulation have been studied by many scientists, the evolution of these currents has received little attention. So, the wind-driven circulation in the Yellow Sea was simulated to explain the changing pattern of these currents in winter and their evolutions were explored by the time-lagged correlation for winter season. According to the lagged correlation, downwind currents occurred in surface layer without a time lag. These downwind currents were more sensitive in the Chinese coast than that in the Korean coast. There is one day time-lag between the wind and the upwind flow developing in the Yellow Sea trough. The YSWC was shifted to the west of the trough after two days and then the KCC strengthened at the same time. It implied the westward shift of the YSWC and the clockwise circulation is developed, two days after the wind blows. The clockwise circulation was one of the reasons that the KCC was stronger than the CCC although the CCC was more sensitive to the wind than the KCC. The clockwise circulation also made the YSWC stronger in the inner YS than it at the entrance of the YS.

  2. Effects of parasagittal meningiomas on intracranial venous circulation assessed by the virtual reality technology.

    PubMed

    Wang, Shousen; Ying, Jianbin; Wei, Liangfeng; Li, Shiqing; Jing, Junjie

    2015-01-01

    This study is to investigate the compensatory intracranial venous pathways in parasagittal meningiomas (PSM) patients by virtual reality technology. A total of 48 PSM patients (tumor group) and 20 patients with trigeminal neuralgia and hemifacial spasm but without intracranial venous diseases (control group) were enrolled. All patients underwent 3D CE-MRV examination. The 3D reconstructed images by virtual reality technology were used for assessment of diameter and number of intracranial veins, tumor location, venous sinus invasion degree and collateral circulation formation. Diameter of bridging veins in posterior 1/3 superior sagittal sinus (SSS) in tumor group was significantly smaller than that of the control group (P < 0.05). For tumors located in mid 1/3 SSS, diameter of bridging veins and vein of Labbé (VL) in posterior 1/3 SSS decreased significantly (P < 0.05). For tumors located in posterior 1/3 SSS, bridging vein number and transverse sinus (TS) diameter significantly decreased while superficial Sylvian vein (SSV) diameter increased significantly (P < 0.05). Compared with tumor in posterior 1/3 SSS subgroup, number of bridging veins in the tumor in mid 1/3 SSS subgroup increased significantly (P < 0.05). Compared with control group, only the bridging vein number in anterior 1/3 SSS segment in invasion Type 3-4 tumor subgroup decreased significantly (P < 0.05). Diameter of TS and bridging veins in posterior 1/3 SSS segment in sinus invasion Type 5-6 tumor subgroup decreased significantly (P < 0.05). Compared with control group, only the diameter of VL and TS of collateral circulation Grade 1 tumor subgroup decreased significantly (P < 0.05) while in Grade 3 tumor subgroup, TS diameter decreased and SSV diameter increased significantly (P < 0.05). The intracranial blood flow is mainly drained through SSV drainage after SSS occlusion by PSM.

  3. Effects of parasagittal meningiomas on intracranial venous circulation assessed by the virtual reality technology

    PubMed Central

    Wang, Shousen; Ying, Jianbin; Wei, Liangfeng; Li, Shiqing; Jing, Junjie

    2015-01-01

    Objective: This study is to investigate the compensatory intracranial venous pathways in parasagittal meningiomas (PSM) patients by virtual reality technology. Methods: A total of 48 PSM patients (tumor group) and 20 patients with trigeminal neuralgia and hemifacial spasm but without intracranial venous diseases (control group) were enrolled. All patients underwent 3D CE-MRV examination. The 3D reconstructed images by virtual reality technology were used for assessment of diameter and number of intracranial veins, tumor location, venous sinus invasion degree and collateral circulation formation. Results: Diameter of bridging veins in posterior 1/3 superior sagittal sinus (SSS) in tumor group was significantly smaller than that of the control group (P < 0.05). For tumors located in mid 1/3 SSS, diameter of bridging veins and vein of Labbé (VL) in posterior 1/3 SSS decreased significantly (P < 0.05). For tumors located in posterior 1/3 SSS, bridging vein number and transverse sinus (TS) diameter significantly decreased while superficial Sylvian vein (SSV) diameter increased significantly (P < 0.05). Compared with tumor in posterior 1/3 SSS subgroup, number of bridging veins in the tumor in mid 1/3 SSS subgroup increased significantly (P < 0.05). Compared with control group, only the bridging vein number in anterior 1/3 SSS segment in invasion Type 3-4 tumor subgroup decreased significantly (P < 0.05). Diameter of TS and bridging veins in posterior 1/3 SSS segment in sinus invasion Type 5-6 tumor subgroup decreased significantly (P < 0.05). Compared with control group, only the diameter of VL and TS of collateral circulation Grade 1 tumor subgroup decreased significantly (P < 0.05) while in Grade 3 tumor subgroup, TS diameter decreased and SSV diameter increased significantly (P < 0.05). Conclusions: The intracranial blood flow is mainly drained through SSV drainage after SSS occlusion by PSM. PMID:26550184

  4. Association of circulating ANGPTL 3, 4, and 8 levels with medical status in a population undergoing routine medical checkups: A cross-sectional study.

    PubMed

    Morinaga, Jun; Zhao, Jiabin; Endo, Motoyoshi; Kadomatsu, Tsuyoshi; Miyata, Keishi; Sugizaki, Taichi; Okadome, Yusuke; Tian, Zhe; Horiguchi, Haruki; Miyashita, Kazuya; Maruyama, Nobuhiro; Mukoyama, Masashi; Oike, Yuichi

    2018-01-01

    Angiopoietin-like proteins (ANGPTLs) 3, 4, and 8 reportedly contribute to progression of metabolic disease, a risk factor for cardiovascular disease (CVD). The purpose of this study was to investigate whether circulating ANGPTL levels are associated with CVD risk after adjustment for potential confounding factors. We conducted a single center, cross-sectional study of 988 Japanese subjects undergoing routine health checks. Serum ANGPTL3, 4, and 8 levels were measured using an enzyme-linked immunosorbent assay. Using multiple regression analysis we evaluated potential association of circulating ANGPTL3, 4, and 8 levels with general medical status including age, sex, smoking, drinking, obesity, hypertension, impaired glycometabolism, dyslipidemia, hyperuricemia, hepatic impairment, chronic kidney disease, anemia, cardiac abnormality, and inflammation. Circulating ANGPTL3 levels were relatively high in health-related categories of hepatic impairment and inflammation. Circulating ANGPTL4 levels were also significantly high in impaired glycometabolism or hepatic impairment but decreased in inflammation. Finally, increased ANGPTL8 levels were observed in obesity, impaired glycometabolism and dyslipidemia. Particularly, increased levels of circulating ANGPTL8 were positively correlated with circulating triglycerides and LDL-cholesterol levels and inversely correlated with circulating HDL-cholesterol levels. Circulating ANGPTL3, 4, and 8 levels reflect some risk factors for CVD development.

  5. Ka-band SAR interferometry studies for the SWOT mission

    NASA Astrophysics Data System (ADS)

    Fernandez, D. E.; Fu, L.; Rodriguez, E.; Hodges, R.; Brown, S.

    2008-12-01

    The primary objective of the NRC Decadal Survey recommended SWOT (Surface Water and Ocean Topography) Mission is to measure the water elevation of the global oceans, as well as terrestrial water bodies (such as rivers, lakes, reservoirs, and wetlands), to answer key scientific questions on the kinetic energy of ocean circulation, the spatial and temporal variability of the world's surface freshwater storage and discharge, and to provide societal benefits on predicting climate change, coastal zone management, flood prediction, and water resources management. The SWOT mission plans to carry the following suite of microwave instruments: a Ka-band interferometer, a dual-frequency nadir altimeter, and a multi-frequency water-vapor radiometer dedicated to measuring wet tropospheric path delay to correct the radar measurements. We are currently funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) to reduce the risk of the main technological drivers of SWOT, by addressing the following technologies: the Ka-band radar interferometric antenna design, the on-board interferometric SAR processor, and the internally calibrated high-frequency radiometer. The goal is to significantly enhance the readiness level of the new technologies required for SWOT, while laying the foundations for the next-generation missions to map water elevation for studying Earth. The first two technologies address the challenges of the Ka-band SAR interferometry, while the high- frequency radiometer addresses the requirement for small-scale wet tropospheric corrections for coastal zone applications. In this paper, we present the scientific rational, need and objectives behind these technology items currently under development.

  6. Dynamical Evaluation of Ocean Models Using the Gulf Stream as an Example

    DTIC Science & Technology

    2012-02-10

    Hellerman and Rosenstein (1983) wind stress climatology and the northward upper ocean flow (14 Sv) of the Atlantic meridional overturning circulation ...30 35 55N 65N Fig. 21.14 Atlantic meridional overturning circulation (AMOC) streamfunction from the same four simulations as Fig. 21.11. An AMOC...typically develops a northern or southern bias. A shallow bias in the southward abyssal flow of the Atlan- tic Meridional Overturning Circulation (AMOC

  7. Themes on circulation in the third world.

    PubMed

    Chapman, M; Prothero, R M

    1983-01-01

    "This article focuses upon circulation, or reciprocal flows of people, with specific reference to Third World societies." Aspects considered include attempts to standardize terminology and to formulate typologies of population movement; the development of explanatory models of circulation and modernization, social networks, family welfare, and capitalism; and "the transfer of methods and concepts to societies and populations different from those from which they initially evolved and in which they were first tested." excerpt

  8. Event-driven management algorithm of an Engineering documents circulation system

    NASA Astrophysics Data System (ADS)

    Kuzenkov, V.; Zebzeev, A.; Gromakov, E.

    2015-04-01

    Development methodology of an engineering documents circulation system in the design company is reviewed. Discrete event-driven automatic models using description algorithms of project management is offered. Petri net use for dynamic design of projects is offered.

  9. Genetically elevated levels of circulating triglycerides and brachial-ankle pulse wave velocity in a Chinese population.

    PubMed

    Yao, W-M; Zhang, H-F; Zhu, Z-Y; Zhou, Y-L; Liang, N-X; Xu, D-J; Zhou, F; Sheng, Y-H; Yang, R; Gong, L; Yin, Z-J; Chen, F-K; Cao, K-J; Li, X-L

    2013-04-01

    Elevated levels of circulating triglycerides and increased arterial stiffness are associated with cardiovascular disease. Numerous studies have reported an association between levels of circulating triglycerides and arterial stiffness. We used Mendelian randomization to test whether this association is causal. We investigated the association between circulating triglyceride levels, the apolipoprotein A-V (ApoA5) -1131T>C single nucleotide polymorphism and brachial-ankle pulse wave velocity (baPWV) by examining data from 4421 subjects aged 18-74 years who were recruited from the Chinese population. baPWV was significantly associated with the levels of circulating triglycerides after adjusting for age, sex, body mass index (BMI), systolic blood pressure, heart rate, waist-to-hip ratio, antihypertensive treatment and diabetes mellitus status. The -1131C allele was associated with a 5% (95% confidence interval 3-8%) increase in circulating triglycerides (adjusted for age, sex, BMI, waist-to-hip ratio, diabetes mellitus and antihypertensive treatment). Instrumental variable analysis showed that genetically elevated levels of circulating triglycerides were not associated with increased baPWV. These results do not support the hypothesis that levels of circulating triglycerides have a causal role in the development of arterial stiffness.

  10. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies

    PubMed Central

    Kangas, Antti J; Soininen, Pasi; Lawlor, Debbie A; Davey Smith, George; Ala-Korpela, Mika

    2017-01-01

    Abstract Detailed metabolic profiling in large-scale epidemiologic studies has uncovered novel biomarkers for cardiometabolic diseases and clarified the molecular associations of established risk factors. A quantitative metabolomics platform based on nuclear magnetic resonance spectroscopy has found widespread use, already profiling over 400,000 blood samples. Over 200 metabolic measures are quantified per sample; in addition to many biomarkers routinely used in epidemiology, the method simultaneously provides fine-grained lipoprotein subclass profiling and quantification of circulating fatty acids, amino acids, gluconeogenesis-related metabolites, and many other molecules from multiple metabolic pathways. Here we focus on applications of magnetic resonance metabolomics for quantifying circulating biomarkers in large-scale epidemiology. We highlight the molecular characterization of risk factors, use of Mendelian randomization, and the key issues of study design and analyses of metabolic profiling for epidemiology. We also detail how integration of metabolic profiling data with genetics can enhance drug development. We discuss why quantitative metabolic profiling is becoming widespread in epidemiology and biobanking. Although large-scale applications of metabolic profiling are still novel, it seems likely that comprehensive biomarker data will contribute to etiologic understanding of various diseases and abilities to predict disease risks, with the potential to translate into multiple clinical settings. PMID:29106475

  11. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.

    PubMed

    Sridharan, Sriram; Zhu, Junjie; Hu, Guoqing; Xuan, Xiangchun

    2011-09-01

    Insulator-based dielectrophoresis (iDEP) is an emerging technology that has been successfully used to manipulate a variety of particles in microfluidic devices. However, due to the locally amplified electric field around the in-channel insulator, Joule heating often becomes an unavoidable issue that may disturb the electroosmotic flow and affect the particle motion. This work presents the first experimental study of Joule heating effects on electroosmotic flow in a typical iDEP device, e.g., a constriction microchannel, under DC-biased AC voltages. A numerical model is also developed to simulate the observed flow pattern by solving the coupled electric, energy, and fluid equations in a simplified two-dimensional geometry. It is observed that depending on the magnitude of the DC voltage, a pair of counter-rotating fluid circulations can occur at either the downstream end alone or each end of the channel constriction. Moreover, the pair at the downstream end appears larger in size than that at the upstream end due to DC electroosmotic flow. These fluid circulations, which are reasonably simulated by the numerical model, form as a result of the action of the electric field on Joule heating-induced fluid inhomogeneities in the constriction region. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Using circulating tumor cells to inform on prostate cancer biology and clinical utility

    PubMed Central

    Li, Jing; Gregory, Simon G.; Garcia-Blanco, Mariano A.; Armstrong, Andrew J.

    2016-01-01

    Substantial advances in the molecular biology of prostate cancer have led to the approval of multiple new systemic agents to treat men with metastatic castration-resistant prostate cancer (mCRPC). These treatments encompass androgen receptor directed therapies, immunotherapies, bone targeting radiopharmaceuticals and cytotoxic chemotherapies. There is, however, great heterogeneity in the degree of patient benefit with these agents, thus fueling the need to develop predictive biomarkers that are able to rationally guide therapy. Circulating tumor cells (CTCs) have the potential to provide an assessment of tumor-specific biomarkers through a non-invasive, repeatable “liquid biopsy” of a patient’s cancer at a given point in time. CTCs have been extensively studied in men with mCRPC, where CTC enumeration using the Cellsearch® method has been validated and FDA approved to be used in conjunction with other clinical parameters as a prognostic biomarker in metastatic prostate cancer. In addition to enumeration, more sophisticated molecular profiling of CTCs is now feasible and may provide more clinical utility as it may reflect tumor evolution within an individual particularly under the pressure of systemic therapies. Here, we review technologies used to detect and characterize CTCs, and the potential biological and clinical utility of CTC molecular profiling in men with metastatic prostate cancer. PMID:26079252

  13. Optoacoustic measurements of human placenta and umbilical blood oxygenation

    NASA Astrophysics Data System (ADS)

    Nanovskaya, T. N.; Petrov, I. Y.; Petrov, Y.; Patrikeeva, S. L.; Ahmed, M. S.; Hankins, G. D. V.; Prough, D. S.; Esenaliev, R. O.

    2016-03-01

    Adequate oxygenation is essential for normal embryogenesis and fetal growth. Perturbations in the intrauterine oxidative environment during pregnancy are associated with several pathophysiological disorders such as pregnancy loss, preeclampsia, and intrauterine growth restriction. We proposed to use optoacoustic technology for monitoring placental and fetal umbilical blood oxygenation. In this work, we studied optoacoustic monitoring of oxygenation in placenta and umbilical cord blood ex vivo using technique of placenta perfusion. We used a medical grade, nearinfrared, tunable, optoacoustic system developed and built for oxygenation monitoring in blood vessels and in tissues. First, we calibrated the system for cord blood oxygenation measurements by using a CO-Oximeter (gold standard). Then we performed validation in cord blood circulating through the catheters localized on the fetal side of an isolated placental lobule. Finally, the oxygenation measurements were performed in the perfused placental tissue. To increase or decrease blood oxygenation, we used infusion of a gas mixture of 95% O2 + 5% CO2 and 95% N2 + 5% CO2, respectively. In placental tissue, up to four cycles of changes in oxygenation were performed. The optoacoustically measured oxygenation in circulating cord blood and in placental lobule closely correlated with the actual oxygenation data measured by CO-Oximeter. We plan to further test the placental and cord blood oxygenation monitoring with optoacoustics in animal and clinical studies.

  14. Vacuum system of the compact Energy Recovery Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, T., E-mail: tohru.honda@kek.jp; Tanimoto, Y.; Nogami, T.

    2016-07-27

    The compact Energy Recovery Linac (cERL), a test accelerator to establish important technologies demanded for future ERL-based light sources, was constructed in late 2013 at KEK. The accelerator was successfully commissioned in early 2014, and demonstrated beam circulation with energy recovery. In the cERL vacuum system, low-impedance vacuum components are required to circulate high-intensity, low-emittance and short-bunch electron beams. We therefore developed ultra-high-vacuum (UHV)-compatible flanges that can connect beam tubes seamlessly, and employed retractable beam monitors, namely, a movable Faraday cup and screen monitors. In most parts of the accelerator, pressures below 1×10{sup −7} Pa are required to mitigate beam-gasmore » interactions. Particularly, near the photocathode electron gun and the superconducting (SC) cavities, pressures below 1×10{sup −8} Pa are required. The beam tubes in the sections adjoining the SC cavities were coated with non-evaporable getter (NEG) materials, to reduce gas condensation on the cryo-surfaces. During the accelerator commissioning, stray magnetic fields from the permanent magnets of some cold cathode gauges (CCGs) were identified as a source of the disturbance to the beam orbit. Magnetic shielding was specially designed as a remedy for this issue.« less

  15. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation.

    PubMed

    Sutton, Patrick T; Ginn, Timothy R

    2014-12-15

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Integration of biomimicry and nanotechnology for significantly improved detection of circulating tumor cells (CTCs).

    PubMed

    Myung, Ja Hye; Park, Sin-Jung; Wang, Andrew Z; Hong, Seungpyo

    2017-12-13

    Circulating tumor cells (CTCs) have received a great deal of scientific and clinical attention as a biomarker for diagnosis and prognosis of many types of cancer. Given their potential significance in clinics, a variety of detection methods, utilizing the recent advances in nanotechnology and microfluidics, have been introduced in an effort of achieving clinically significant detection of CTCs. However, effective detection and isolation of CTCs still remain a tremendous challenge due to their extreme rarity and phenotypic heterogeneity. Among many approaches that are currently under development, this review paper focuses on a unique, promising approach that takes advantages of naturally occurring processes achievable through application of nanotechnology to realize significant improvement in sensitivity and specificity of CTC capture. We provide an overview of successful outcome of this biomimetic CTC capture system in detection of tumor cells from in vitro, in vivo, and clinical pilot studies. We also emphasize the clinical impact of CTCs as biomarkers in cancer diagnosis and predictive prognosis, which provides a cost-effective, minimally invasive method that potentially replaces or supplements existing methods such as imaging technologies and solid tissue biopsy. In addition, their potential prognostic values as treatment guidelines and that ultimately help to realize personalized therapy are discussed. Copyright © 2017. Published by Elsevier B.V.

  17. From Paper to Electron

    PubMed Central

    Anderson, Kent R.

    2000-01-01

    The Internet represents a different type of technology for publishers of scientific, technical, and medical journals. It is not a technology that sustains current markets and creates new efficiencies but is, rather, a disruptive technology that could radically alter market forces, profit expectations, and business models. This paper is a translation and amplification of the research done in this area, applied to a large-circulation new science journal, Pediatrics. The findings suggest that the journal of the future will be electronic, have a less volatile cost structure, be supported more by services than by content, be less able to rely on subscription revenues, and abandon certain elements of current value networks. It also provides a possible framework for other publishers to use to evaluate their own journals relative to this disruptive technology. PMID:10833160

  18. Development of the probability of return of spontaneous circulation in intervals without chest compressions during out-of-hospital cardiac arrest: an observational study.

    PubMed

    Gundersen, Kenneth; Kvaløy, Jan Terje; Kramer-Johansen, Jo; Steen, Petter Andreas; Eftestøl, Trygve

    2009-02-06

    One of the factors that limits survival from out-of-hospital cardiac arrest is the interruption of chest compressions. During ventricular fibrillation and tachycardia the electrocardiogram reflects the probability of return of spontaneous circulation associated with defibrillation. We have used this in the current study to quantify in detail the effects of interrupting chest compressions. From an electrocardiogram database we identified all intervals without chest compressions that followed an interval with compressions, and where the patients had ventricular fibrillation or tachycardia. By calculating the mean-slope (a predictor of the return of spontaneous circulation) of the electrocardiogram for each 2-second window, and using a linear mixed-effects statistical model, we quantified the decline of mean-slope with time. Further, a mapping from mean-slope to probability of return of spontaneous circulation was obtained from a second dataset and using this we were able to estimate the expected development of the probability of return of spontaneous circulation for cases at different levels. From 911 intervals without chest compressions, 5138 analysis windows were identified. The results show that cases with the probability of return of spontaneous circulation values 0.35, 0.1 and 0.05, 3 seconds into an interval in the mean will have probability of return of spontaneous circulation values 0.26 (0.24-0.29), 0.077 (0.070-0.085) and 0.040(0.036-0.045), respectively, 27 seconds into the interval (95% confidence intervals in parenthesis). During pre-shock pauses in chest compressions mean probability of return of spontaneous circulation decreases in a steady manner for cases at all initial levels. Regardless of initial level there is a relative decrease in the probability of return of spontaneous circulation of about 23% from 3 to 27 seconds into such a pause.

  19. A data-driven, knowledge-based approach to biomarker discovery: application to circulating microRNA markers of colorectal cancer prognosis.

    PubMed

    Vafaee, Fatemeh; Diakos, Connie; Kirschner, Michaela B; Reid, Glen; Michael, Michael Z; Horvath, Lisa G; Alinejad-Rokny, Hamid; Cheng, Zhangkai Jason; Kuncic, Zdenka; Clarke, Stephen

    2018-01-01

    Recent advances in high-throughput technologies have provided an unprecedented opportunity to identify molecular markers of disease processes. This plethora of complex-omics data has simultaneously complicated the problem of extracting meaningful molecular signatures and opened up new opportunities for more sophisticated integrative and holistic approaches. In this era, effective integration of data-driven and knowledge-based approaches for biomarker identification has been recognised as key to improving the identification of high-performance biomarkers, and necessary for translational applications. Here, we have evaluated the role of circulating microRNA as a means of predicting the prognosis of patients with colorectal cancer, which is the second leading cause of cancer-related death worldwide. We have developed a multi-objective optimisation method that effectively integrates a data-driven approach with the knowledge obtained from the microRNA-mediated regulatory network to identify robust plasma microRNA signatures which are reliable in terms of predictive power as well as functional relevance. The proposed multi-objective framework has the capacity to adjust for conflicting biomarker objectives and to incorporate heterogeneous information facilitating systems approaches to biomarker discovery. We have found a prognostic signature of colorectal cancer comprising 11 circulating microRNAs. The identified signature predicts the patients' survival outcome and targets pathways underlying colorectal cancer progression. The altered expression of the identified microRNAs was confirmed in an independent public data set of plasma samples of patients in early stage vs advanced colorectal cancer. Furthermore, the generality of the proposed method was demonstrated across three publicly available miRNA data sets associated with biomarker studies in other diseases.

  20. Design and Application of Novel Horizontal Circulating Fluidized Bed Boiler

    NASA Astrophysics Data System (ADS)

    Lit, Q. H.; Zhang, Y. G.; Meng, A. H.

    The vertical circulating fluidized bed (CFB) boiler has been found wide application in power generation and tends to be enlarged in capacity. Because CFB is one of environment friendly and high efficiency combustion technologies, the CFB boiler has also been expected to be used in the industrial area, such as textile mill, region heating, brewery, seed drying and so on. However, the necessary height of furnace is hard to be implemented for CFB with especially small capacity. Thereby, a novel horizontal circulating fluidized bed boiler has been proposed and developed. The horizontal CFB is composed of primary combustion chamber, secondary combustion chamber, burnout chamber, cyclone, loop seal, heat recovery area. The primary combustion chamber is a riser like as that in vertical CFB, and the secondary combustion chamber is a downward passage that is a natural extension of the primary riser, which can reduce the overall height of the boiler. In some extent, the burnout chamber is also the extension of primary riser. The capacity of horizontal CFB is about 4.2-24.5MWth (6-35t/h) steam output or equivalent hot water supply. The hot water boiler of 7MWth and steam boilers of 4.2MWth (6t/h) and 10.5MWth (15t/h) are all designed and working well now. The three units of hot water horizontal CFB boiler were erected in the Neimenggu Autonomous Region, Huhehaote city for region heating. The three units of steam horizontal CFB has been installed in Yunnan, Jiang Xi and Guangdong provinces, respectively. The basic principle for horizontal CFB and experiences for designing and operating are presented in this paper. Some discussions are also given to demonstrate the promising future of horizontal CFB.

  1. Optical calibration of a new two-way optical component network analyzer

    NASA Astrophysics Data System (ADS)

    Tsao, Shyh-Lin; Ko, Chih-Han; Liou, Tai-Chi

    2003-12-01

    High-speed fiber communications show promising results recently [1,2]. Using of lightwave technology for measuring S parameters with optical component becoming important. For this purpose to develop a two-way network analyzer has been reported [3]. In this paper, we report the calibration method of a new two-way lightwave component analyze for applying in fiber optical signal processing elements. The background error and circulator wavelength response are all calibrated. We have designed a new probe for two-way optical component network analyzer. The probe is composed of frequency division multiplexer(FDM), electrical circulator, optical transmitter, optical receiver, and an optical circulator. We design 2-D grating structures as frequency division. The PCB we adopted is Kinstan GD1530 160 whose relative dielectric constantɛ= 4.3, length= 120 mm, and height= 1.8 mm. Two dimensional non-metal covered array square pads are designed on FR4 Glass-Epoxy board for FDM. The FDM can be achieved by the two dimensional non-metalized covered array square pads. Finally we use a single fiber ring resonator filter as our test samples. Comparing the numerical and experimental results, test the device we made. References [1] D. D. Curtis and E. E. Ames,"Optical Test Set for Microwave Fiber-Optic Network Analysis," IEEE Transactions on Microwave Theory and Techniques. , vol. 38, NO.5, pp. 552-559, 1990. [2] J. A. C. Bingham,"Multicarrier modulation for data transmission: an idea whose time has come," IEEE Commun. Magazine., pp. 5 -14, 1990. [3] M. Nakazawa, K. Suzuki, and Y. Kimura, " 3.2-5 Gbps 100km error-free soliton transmission with erbium amplifiers and repenters," IEEE Photonics Tech Lett.,vol.2,pp.216-219,1990.

  2. Development, differentiation and manipulation of chicken germ cells.

    PubMed

    Nakamura, Yoshiaki; Kagami, Hiroshi; Tagami, Takahiro

    2013-01-01

    Germ cells are the only cell type capable of transmitting genetic information to the next generation. During development, they are set aside from all somatic cells of the embryo. In many species, germ cells form at the fringe of the embryo proper and then traverse through several developing somatic tissues on their migration to the emerging gonads. Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. Unlike other species, in avian embryos, PGCs use blood circulation for transport to the future gonadal region. This unique accessibility of avian PGCs during early development provides an opportunity to collect and transplant PGCs. The recent development of methods for production of germline chimeras by transfer of PGCs, and long-term cultivation methods of chicken PGCs without losing their germline transmission ability have provided important breakthroughs for the preservation of germplasm , for the production of transgenic birds and study the germ cell system. This review will describe the development, migration, differentiation and manipulation of germ cells, and discuss the prospects that germ cell technologies offer for agriculture, biotechnology and academic research. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  3. Utilizing Matrigel Transwell Invasion Assay to Detect and Enumerate Circulating Tumor Cells.

    PubMed

    Liu, Xingtong; Wu, Xiangwei

    2017-01-01

    Metastasis is the cause of 90% of human cancer deaths. Circulating tumor cells (CTCs) in the peripheral blood and/or lymphatic vessels are cells shed from primary tumors and considered to be precursors of metastasis. Study of CTCs allows the serial monitoring of tumor progression and may provide predictive and prognostic biomarkers in clinic. Current CTC isolation and detection technologies encounter several challenges, including: heterogeneity of CTCs, low cell viability and/or high rate of contamination post-isolation, and the inability to distinguish viable/invasive from nonviable/nonfunctional CTCs, all of which can limit in vitro and in vivo characterization of CTCs. Here, we describe a new method to detect and enumerate of CTCs based on their invasive property.

  4. Level of maternal winter supplement and feed restriction during postweaning development influence circulating concentrations of IGF-I in heifers during the peripartum and rebreeding period

    USDA-ARS?s Scientific Manuscript database

    Objective of this research was to evaluate effects of 2 levels of supplemental feed provided to cows during late gestation and 2 levels of feed provided to their daughters during postweaning development on circulating concentrations of IGF-I in the daughters before calving, after calving and before ...

  5. Circulation control propellers for general aviation, including a BASIC computer program

    NASA Technical Reports Server (NTRS)

    Taback, I.; Braslow, A. L.; Butterfield, A. J.

    1983-01-01

    The feasibility of replacing variable pitch propeller mechanisms with circulation control (Coanada effect) propellers on general aviation airplanes was examined. The study used a specially developed computer program written in BASIC which could compare the aerodynamic performance of circulation control propellers with conventional propellers. The comparison of aerodynamic performance for circulation control, fixed pitch and variable pitch propellers is based upon the requirements for a 1600 kg (3600 lb) single engine general aviation aircraft. A circulation control propeller using a supercritical airfoil was shown feasible over a representative range of design conditions. At a design condition for high speed cruise, all three types of propellers showed approximately the same performance. At low speed, the performance of the circulation control propeller exceeded the performance for a fixed pitch propeller, but did not match the performance available from a variable pitch propeller. It appears feasible to consider circulation control propellers for single engine aircraft or multiengine aircraft which have their propellers on a common axis (tractor pusher). The economics of the replacement requires a study for each specific airplane application.

  6. Calibration Experiments Conducted for Noninvasive Blood Glucose Sensing Through the Eye

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Bockle, Stefan; Suh, Kwang I.; Rovati, Luigi L.

    2004-01-01

    There are more than 16 million diabetics in the United States and more than 100 million worldwide. Diabetes can lead to severe complications over time such as blindness, renal and cardiovascular diseases, and peripheral neuropathy in the limbs. Poor blood circulation in diabetics can lead to gangrene and the subsequent amputation of extremities. In addition, this pathology is the fourth leading cause of death in the United States. The most effective way to manage diabetes is frequent blood glucose monitoring performed by the patients themselves. However, because of pain, inconvenience, and the fear of developing infections from finger-prick blood tests or implants, many patients monitor their blood glucose levels less frequently than is recommended by their physicians. Therefore, a noninvasive, painless, and convenient method to monitor blood glucose would greatly benefit diabetics. Likewise, detecting, preventing, and treating the untoward effects of prolonged space travel (e.g., a human mission to Mars) in real-time requires the development of noninvasive diagnostic technologies that are compact and powerful. As a "window to the body," the eye offers the opportunity to use light in various forms to detect ocular and systemic abnormalities long before clinical symptoms appear and to help develop preventative and therapeutic countermeasures early. The noninvasive feature of these technologies permits frequent repetition of tests, enabling an evaluation of the response to therapy.

  7. Scaleable Clean Aluminum Melting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Q.; Das, S.K.

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. Themore » objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.« less

  8. U.S. Dailies' Competition in Relation to Circulation Size: A Newspaper Data Update

    ERIC Educational Resources Information Center

    Sobel, Judith; Emery, Edwin

    1978-01-01

    Reports results of a study on the degree of competition in newspaper ownership, trends in use of press associations and other news services, changes in newspaper circulation, advertising revenue totals, and newspaper group ownership development. (GW)

  9. A moderate elevation of circulating levels of IGF-I does not alter ErbB2 induced mammary tumorigenesis

    PubMed Central

    2011-01-01

    Background Epidemiological evidence suggests that moderately elevated levels of circulating insulin-like growth factor-I (IGF-I) are associated with increased risk of breast cancer in women. How circulating IGF-I may promote breast cancer incidence is unknown, however, increased IGF-I signaling is linked to trastuzumab resistance in ErbB2 positive breast cancer. Few models have directly examined the effect of moderately high levels of circulating IGF-I on breast cancer initiation and progression. The purpose of this study was to assess the ability of circulating IGF-I to independently initiate mammary tumorigenesis and/or accelerate the progression of ErbB2 mediated mammary tumor growth. Methods We crossed heterozygous TTR-IGF-I mice with heterozygous MMTV-ErbB2 mice to generate 4 different genotypes: TTR-IGF-I/MMTV-ErbB2 (bigenic), TTR-IGF-I only, MMTV-ErbB2 only, and wild type (wt). Virgin females were palpated twice a week and harvested when tumors reached 1000 mm3. For study of normal development, blood and tissue were harvested at 4, 6 and 9 weeks of age in TTR-IGF-I and wt mice. Results TTR-IGF-I and TTR-IGF-I/ErbB2 bigenic mice showed a moderate 35% increase in circulating total IGF-I compared to ErbB2 and wt control mice. Elevation of circulating IGF-I had no effect upon pubertal mammary gland development. The transgenic increase in IGF-I alone wasn't sufficient to initiate mammary tumorigenesis. Elevated circulating IGF-I had no effect upon ErbB2-induced mammary tumorigenesis or metastasis, with median time to tumor formation being 30 wks and 33 wks in TTR-IGF-I/ErbB2 bigenic and ErbB2 mice respectively (p = 0.65). Levels of IGF-I in lysates from ErbB2/TTR-IGF-I tumors compared to ErbB2 was elevated in a similar manner to the circulating IGF-I, however, there was no effect on the rate of tumor growth (p = 0.23). There were no morphological differences in tumor type (solid adenocarcinomas) between bigenic and ErbB2 mammary glands. Conclusion Using the first transgenic animal model to elevate circulating levels of IGF-I to those comparable to women at increased risk of breast cancer, we showed that moderately high levels of systemic IGF-I have no effect on pubertal mammary gland development, initiating mammary tumorigenesis or promoting ErbB2 driven mammary carcinogenesis. Our work suggests that ErbB2-induced mammary tumorigenesis is independent of the normal variation in circulating levels of IGF-I. PMID:21867536

  10. Numerical Modeling of a Shallow Borehole Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Catolico, N.; Ge, S.; Lu, N.; McCartney, J. S.

    2014-12-01

    Borehole thermal energy storage (BTES) combined with solar thermal energy harvesting is an economic technological system to garner and store energy as well as an environmentally-sustainable alternative for the heating of buildings. The first community-scale BTES system in North America was installed in 2007 in the Drake Landing Solar Community (DLSC), about 35 miles south of Calgary, Canada. The BTES system involves direct circulation of water heated from solar thermal panels in the summer into a storage tank, after which it is circulate within an array of 144 closed-loop geothermal heat exchangers having a depth of 35 m and a spacing of 2.5 m. In the winter the circulation direction is reversed to supply heat to houses. Data collection over a six year period indicates that this system can supply more than 90% of the winter heating energy needs for 52 houses in the community. One major challenge facing the BTES system technology is the relatively low annual efficiency, i.e., the ratio of energy input and output is in the range of 15% to 40% for the system in Drake Landing. To better understand the working principles of BTES and to improve BTES performance for future applications at larger scales, a three-dimensional transient coupled fluid and heat transfer model is established using TOUGH2. The time-dependent injection temperatures and circulation rate measured over the six years of monitoring are used as model input. The simulations are calibrated using soil temperature data measured at different locations over time. The time-dependent temperature distributions within the borehole region agree well with the measured temperatures for soil with an intrinsic permeability of 10e-19 m2, an apparent thermal conductivity of 2.03 W/m°C, and a volumetric heat capacity of 2.31 MJ/m-3°C. The calibrated model serves as the basis for a sensitivity analysis of soil and operational parameters on BTES system efficiency preformed with TOUGH2. Preliminary results suggest 1) BTES efficiency increases with increased in-pipe circulation rates; 2) BTES efficiency increases with decreasing soil thermal conductivity due to lateral heat loss from the system; and 3) BTES efficiency increases only slightly with decreasing soil permeability.

  11. Design assessment of a 150 kWt CFBC Test Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batu, A.; Selcuk, N.; Kulah, G.

    2010-04-15

    For clean and efficient energy generation from coal, the most suitable technology known to date is 'Fluidized Bed Combustion' technology. Applications of circulating fluidized bed (CFB) combustion technology have been steadily increasing in both capacity and number over the past decade. Designs of these units have been based on the combustion tests carried out in pilot scale facilities to determine the combustion and desulfurization characteristics of coal and limestone reserves in CFB conditions. Similarly, utilization of Turkish lignites in CFB boilers necessitates adaptation of CFB combustion technology to these resources. However, the design of these test units are not basedmore » on firing coals with high ash, volatile matter and sulfur contents like Turkish lignites. For this purpose, a 150 kWt CFB combustor test unit is designed and constructed in Chemical Engineering Department of Middle East Technical University, based on the extensive experience acquired at the existing 0.3 MWt Bubbling Atmospheric Fluidized Bed Combustor (AFBC) Test Rig. Following the commissioning tests, a combustion test is carried out for investigation of combustion characteristics of Can lignite in CFB conditions and for assessment of the design of test unit. Comparison of the design outputs with experimental results reveals that most of the predictions and assumptions have acceptable agreement with the operating conditions. In conclusion, the performance of 150 kWt CFBC Test Unit is found to be satisfactory to be utilized for the long term research studies on combustion and desulfurization characteristics of indigenous lignite reserves in circulating fluidized bed combustors. (author)« less

  12. Reconceptualizing St®E(A)M(S) Education for Teacher Education

    ERIC Educational Resources Information Center

    Krug, Don; Shaw, Ashley

    2016-01-01

    This article examines science, technology, engineering, and math (STEM) education as represented in North American educational contexts. In this article we will argue that the dominant view of STEM education as currently circulated and practiced in the United States and Canada is not much more than an acronym of discrete disciplinary areas. We…

  13. Information Technology and the Evolution of the Library

    DTIC Science & Technology

    2009-03-01

    Resource Commons/ Repository/ Federated Search ILS (GLADIS/Pathfinder - Millenium)/ Catalog/ Circulation/ Acquisitions/ Digital Object Content...content management services to help centralize and distribute digi- tal content from across the institution, software to allow for seamless federated ... search - ing across multiple databases, and imaging software to allow for daily reimaging of ter- minals to reduce security concerns that otherwise

  14. The Evaluation Turn in the Higher Education System: Lessons from Italy

    ERIC Educational Resources Information Center

    Lumino, Rosaria; Gambardella, Dora; Grimaldi, Emiliano

    2017-01-01

    This article explores how new public management policy ideas and technologies circulating in the globalised education space have been re-contextualised in the re-design of the Italian Higher Education System. In doing so, it uses the governmentality studies as a sensitising framework to problematise what we term here as the "calculative and…

  15. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States-A comparison

    USGS Publications Warehouse

    Parrish, Judith T.; Peterson, F.

    1988-01-01

    Wind directions for Middle Pennsylvanian through Jurassic time are predicted from global circulation models for the western United States. These predictions are compared with paleowind directions interpreted from eolian sandstones of Middle Pennsylvanian through Jurassic age. Predicted regional wind directions correspond with at least three-quarters of the paleowind data from the sandstones; the rest of the data may indicate problems with correlation, local effects of paleogeography on winds, and lack of resolution of the circulation models. The data and predictions suggest the following paleoclimatic developments through the time interval studied: predominance of winter subtropical high-pressure circulation in the Late Pennsylvanian; predominance of summer subtropical high-pressure circulation in the Permian; predominance of summer monsoonal circulation in the Triassic and earliest Jurassic; and, during the remainder of the Jurassic, influence of both summer subtropical and summer monsoonal circulation, with the boundary between the two systems over the western United States. This sequence of climatic changes is largely owing to paleogeographic changes, which influenced the buildup and breakdown of the monsoonal circulation, and possibly owing partly to a decrease in the global temperature gradient, which might have lessened the influence of the subtropical high-pressure circulation. The atypical humidity of Triassic time probably resulted from the monsoonal circulation created by the geography of Pangaea. This circulation is predicted to have been at a maximum in the Triassic and was likely to have been powerful enough to draw moisture along the equator from the ocean to the west. ?? 1988.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schonewill, Philip P.; Berglin, Eric J.; Boeringa, Gregory K.

    At the request of the U.S. Department of Energy Office of River Protection, Pacific Northwest National Laboratory (PNNL) conducted a scoping study to investigate supplemental technologies for supplying vertical fluid motion and enhanced mixing in Waste Treatment and Immobilization Plant (WTP) vessels designed for high solids processing. The study assumed that the pulse jet mixers adequately mix and shear the bottom portion of a vessel. Given that, the primary function of a supplemental technology should be to provide mixing and shearing in the upper region of a vessel. The objective of the study was to recommend a mixing technology andmore » configuration that could be implemented in the 8-ft test vessel located at Mid-Columbia Engineering (MCE). Several mixing technologies, primarily airlift circulator (ALC) systems, were evaluated in the study. This technical report contains a review of ALC technologies, a description of the PNNL testing and accompanying results, and recommended features of an ALC system for further study.« less

  17. Technologies of the Self and Ethnographic Praxis.

    PubMed

    Brodwin, Paul

    2017-01-01

    The authors contributing to this special issue draw on Foucault's notion of technologies of the self: the means by which people operate on their own bodies and souls in pursuit of self-transformation, always according to particular regimes of value. Foucault's notion remains attractive to anthropology: the technologies are ethnographically visible, and they illustrate how power affects the intimate realms of social life. The authors in this issue take up three problems: (1) the process by which people craft new subjectivities, (2) the genealogy of the new technologies of the self now circulating in East Asia, and (3) the forms of governance and political rationality that they justify. The articles as a whole testify to the fruitful encounter between ethnographic praxis and Foucault's philosophical project. They also show how transnational movement and hybrid cultural forms inflect the strategies of governance associated with modern technologies of the self, especially those allied with biomedicine.

  18. ERTS imagery applied to Alaskan coastal problems. [surface water circulation

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burbank, D. C.; Burns, J. J.

    1974-01-01

    Along the Alaska coast, surface water circulation is relatively easy to study with ERTS imagery. Highly turbid river water, sea ice, and fluvial ice have proven to be excellent tracers of the surface waters. Sea truth studies in the Gulf of Alaska, Cook Inlet, Bristol Bay, and the Bering Strait area have established the reliability of these tracers. ERTS imagery in the MSS 4 and 5 bands is particularly useful for observing lower concentrations of suspended sediment, while MSS 6 data is best for the most concentrated plumes. Ice features are most clearly seen on MSS 7 imagery; fracture patterns and the movement of specific floes can be used to map circulation in the winter when runoff is restricted, if appropriate allowance is made for wind influence. Current patterns interpreted from satellite data are only two-dimensional, but since most biological activity and pollution are concentrated near the surface, the information developed can be of direct utility. Details of Alaska inshore circulation of importance to coastal engineering, navigation, pollution studies, and fisheries development have been clarified with satellite data. ERTS has made possible the analysis of circulation in many parts of the Alaskan coast.

  19. Next generation of spaceborne rain radars: science rationales and technology status

    NASA Astrophysics Data System (ADS)

    Im, Eastwood; Durden, Stephen L.; Kakar, Ramesh K.; Kummerow, Christian D.; Smith, Eric A.

    2003-04-01

    Global rainfall is the primary distributor of latent heat through atmospheric circulation. This important atmospheric parameter can only be measured reliably from space. The on-going Tropical Rainfall Measuring Mission (TRMM) is the first space based mission dedicated to advance our understanding of tropical precipitation patterns and their implications on global climate and its change. The Precipitation Radar (PR) aboard the satellite is the first radar ever flown in space and has provided exciting, new data on the 3-D rain structures for a variety of scientific applications. The continuous success of TRMM has led to new development of the next generation of spaceborne satellites and sensors for global rainfall and hydrological parameter measurements. From science and cost efficiency prospective, these new sensing instruments are expected to provide enhanced capabilities and reduced consumption on the spacecraft resources. At NASA, the Earth Science Enterprise has strengthened its investment on instrument technologies to help achieving these two main goals and to obtain the best science values from the new earth science instruments. It is with this spirit that a notional instrument concept, using a dual-frequency rain radar with a deployable 5-meter electronically-scanned membrane antenna and real-time digital signal processing, is developed. This new system, the Second Generation Precipitation Radar (PR-2), has the potential of offering greatly enhanced performance accuracy while using only a fraction of the mass of the current TRMM PR. During the last two years, several of the technology items associated with this notional instrument have also been prototyped. In this paper, the science rationales, the instrument design concept, and the technology status for the PR-2 notional system will be presented.

  20. Liquid biopsy for brain tumors

    PubMed Central

    Shankar, Ganesh M.; Balaj, Leonora; Stott, Shannon L.; Nahed, Brian; Carter, Bob S.

    2018-01-01

    Introduction Minimally invasive methods will augment the clinical approach for establishing the diagnosis or monitoring treatment response of central nervous system tumors. Liquid biopsy by blood or cerebrospinal fluid sampling holds promise in this regard. Areas covered In this literature review, the authors highlight recent studies describing the analysis of circulating tumor cells, cell free nucleic acids, and extracellular vesicles as strategies to accomplish liquid biopsy in glioblastoma and metastatic tumors. The authors then discuss the continued efforts to improve signal detection, standardize the liquid biopsy handling and preparation, develop platforms for clinical application, and establish a role for liquid biopsies in personalized medicine. Expert commentary As the technologies used to analyze these biomarkers continue to evolve, we propose that there is a future potential to precisely diagnose and monitor treatment response with liquid biopsies. PMID:28875730

  1. Liquid biopsy for brain tumors.

    PubMed

    Shankar, Ganesh M; Balaj, Leonora; Stott, Shannon L; Nahed, Brian; Carter, Bob S

    2017-10-01

    Minimally invasive methods will augment the clinical approach for establishing the diagnosis or monitoring treatment response of central nervous system tumors. Liquid biopsy by blood or cerebrospinal fluid sampling holds promise in this regard. Areas covered: In this literature review, the authors highlight recent studies describing the analysis of circulating tumor cells, cell free nucleic acids, and extracellular vesicles as strategies to accomplish liquid biopsy in glioblastoma and metastatic tumors. The authors then discuss the continued efforts to improve signal detection, standardize the liquid biopsy handling and preparation, develop platforms for clinical application, and establish a role for liquid biopsies in personalized medicine. Expert commentary: As the technologies used to analyze these biomarkers continue to evolve, we propose that there is a future potential to precisely diagnose and monitor treatment response with liquid biopsies.

  2. Engaging Human Rights in the Response to the Evolving Zika Virus Epidemic.

    PubMed

    Rasanathan, Jennifer J K; MacCarthy, Sarah; Diniz, Debora; Torreele, Els; Gruskin, Sofia

    2017-04-01

    In late 2015, an increase in the number of infants born with microcephaly in poor communities in northeast Brazil prompted investigation of antenatal Zika infection as the cause. Zika now circulates in 69 countries, and has affected pregnancies of women in 29 countries. Public health officials, policymakers, and international organizations are considering interventions to address health consequences of the Zika epidemic. To date, public health responses have focused on mosquito vector eradication, sexual and reproductive health services, knowledge and technology including diagnostic test and vaccine development, and health system preparedness. We summarize responses to date and apply human rights and related principles including nondiscrimination, participation, the legal and policy context, and accountability to identify shortcomings and to offer suggestions for more equitable, effective, and sustainable Zika responses.

  3. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feller, J. R.; Salerno, L. J.; Kashani, A.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network ofmore » narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.« less

  4. SMART Tubing Presents an Increased Risk of Disconnection During Extracorporeal Circulation

    PubMed Central

    Newling, Ross; Morris, Richard

    2005-01-01

    Abstract: A number of products exhibiting biocompatible features have been developed for use in extracorporeal blood circuits during cardiopulmonary bypass procedures. While attention has been focused on biocompatibility features of the blood-circuit interface, a number of issues applicable in clinical use of these circuits have arisen. Surface Modifying Additive Technology (SMART; Cobe Cardiovascular, Arvarda, CO) is one such technology. In this product, the structure of normal polyvinylchloride (PVC) tubing is altered through the blending of two copolymers to give a more biocompatible blood to plastic interface. In this study, we examined the in vitro mechanical ability of random samples (n = 10) of SMART and standard PVC tubing to withstand axial tension when the tubing was placed over a single barb of a connector. The tension required to remove the SMART tubing from the connector (83.3 ± 7.3 [SD] N), was significantly less than standard PVC tubing (115.6 ± 15.9 N; p < .0001, unpaired t test). The SMART tubing exhibited a 28% reduction in tubing to connector adhesion, which may have a significant effect on extracorporeal circuit disconnection and overall patient safety. PMID:16524161

  5. Mitigation Policy Scenario of Space Debris Threat Related with National Security

    NASA Astrophysics Data System (ADS)

    Herdiansyah, Herdis; Frimawaty, Evy; Munir, Ahmad

    2016-02-01

    The development of air space recently entered a new phase, when the space issues correlated with the future of a country. In past time, the space authorization was related with advancing technology by many space mission and various satellite launchings, or it could be said that who ruled technology will rule the space. Therefore, the numerous satellites in the space could be a threat for the countries which are mainly located in the path of the satellite, especially in the equatorial region including Indonesia. This study aims to create a policy scenario in mitigating the threat of space debris. The results showed that although space debris was not threatened national security for now, but the potential and its impact on the future potentially harmful. The threats of orbit circulation for some experts considered as a threat for national security, because its danger potential which caused by space debris could significantly damage the affected areas. However, until now Indonesia has no comprehensive mitigation strategy for space matters although it has been ratified by the United Nations Convention.

  6. Pharmacogenetics and pharmacogenomics as tools in cancer therapy.

    PubMed

    Rodríguez-Vicente, Ana E; Lumbreras, Eva; Hernández, Jesus M; Martín, Miguel; Calles, Antonio; Otín, Carlos López; Algarra, Salvador Martín; Páez, David; Taron, Miquel

    2016-03-01

    Pharmacogenetics and pharmacogenomics (PGx) are rapidly growing fields that aim to elucidate the genetic basis for the interindividual differences in drug response. PGx approaches have been applied to many anticancer drugs in an effort to identify relevant inherited or acquired genetic variations that may predict patient response to chemotherapy and targeted therapies. In this article, we discuss the advances in the field of cancer pharmacogenetics and pharmacogenomics, driven by the recent technological advances and new revolutionary massive sequencing technologies and their application to elucidate the genetic bases for interindividual drug response and the development of biomarkers able to personalize drug treatments. Specifically, we present recent progress in breast cancer molecular classifiers, cell-free circulating DNA as a prognostic and predictive biomarker in cancer, patient-derived tumor xenograft models, chronic lymphocytic leukemia genomic landscape, and current pharmacogenetic advances in colorectal cancer. This review is based on the lectures presented by the speakers of the symposium "Pharmacogenetics and Pharmacogenomics as Tools in Cancer Therapy" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society (SEFF), held in Madrid (Spain) on April 21, 2015.

  7. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics.

    PubMed

    Zhou, Yinjian; Zhang, Chunling; Liang, Wei

    2014-11-10

    RNA interference (RNAi) was intensively studied in the past decades due to its potential in therapy of diseases. The target specificity and universal treatment spectrum endowed siRNA advantages over traditional small molecules and protein drugs. However, barriers exist in the blood circulation system and the diseased tissues blocked the actualization of RNAi effect, which raised function versatility requirements to siRNA therapeutic agents. Appropriate functionalization of siRNAs is necessary to break through these barriers and target diseased tissues in local or systemic targeted application. In this review, we summarized that barriers exist in the delivery process and popular functionalized technologies for siRNA such as chemical modification and physical encapsulation. Preclinical targeted siRNA delivery and the current status of siRNA based RNAi therapeutic agents in clinical trial were reviewed and finally the future of siRNA delivery was proposed. The valuable experience from the siRNA agent delivery study and the RNAi therapeutic agents in clinical trial paved ways for practical RNAi therapeutics to emerge early. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effect of Liposome Characteristics and Dose on the Pharmacokinetics of Liposomes Coated with Poly(amino acid)s

    PubMed Central

    Romberg, Birgit; Oussoren, Christien; Snel, Cor J.; Hennink, Wim E.

    2007-01-01

    Long-circulating liposomes, such as PEG-liposomes, are frequently studied for drug delivery and diagnostic purposes. In our group, poly(amino acid) (PAA)-based coatings for long-circulating liposomes have been developed. These coatings provide liposomes with similar circulation times as compared to PEG-liposomes, but have the advantage of being enzymatically degradable. For PEG-liposomes it has been reported that circulation times are relatively independent of their physicochemical characteristics. In this study, the influence of factors such as PAA grafting density, cholesterol inclusion, surface charge, particle size, and lipid dose on the circulation kinetics of PAA-liposomes was evaluated after intravenous administration in rats. Prolonged circulation kinetics of PAA-liposomes can be maintained upon variation of liposome characteristics and the lipid dose given. However, the use of relatively high amounts of strongly charge-inducing lipids and a too large mean size is to be avoided. In conclusion, PAA-liposomes represent a versatile drug carrier system for a wide variety of applications. PMID:17674159

  9. Effects of peripheral dynamic movements on the lower-limb circulation assessed by thermography: three one-group studies

    NASA Astrophysics Data System (ADS)

    Kaerki, Anne; Laehdeniemi, Matti

    2002-03-01

    Peripheral dynamic movements are used as part of postoperative protocols and for preventing vascular complications during bed rest. The effects of peripheral movements have not been studied. The purposes of these studies were to explain the effects of peripheral dynamic movements on lower limb circulation. The aim was also to explain how other factors like sex, age, BMI, medication, smoking, sports activity etc. affect the circulation. Healthy young subjects (N=19), healthy elderly subjects (N=19) and diabetic subjects (N=21) participated in the studies between 1997 and 1999. The study design was the same in each study. Infrared technology and image processing belong to our focus fields of applied research and IR is widely used in our real time industrial applications including also ongoing research of new possibilities. This paper presents the results of our newest application of IR thermography, where it was used to measure the skin temperature over the soleus muscle during and after dynamic ankle movements. The results showed that the skin temperature increased further during the recovery period after movements, and temperature was highest after 3- 5 minutes. Diabetic male subjects were the only subgroup that had immediate decrease during recovery period. The studies showed that smoking had a negative effect on circulation. BMI had also negative correlation (-0,356), showing that subjects with higher BMI had less increase. The results proved that peripheral movements were effective for increasing circulation in the soleus muscle and the effect was still seen after 15 minutes.

  10. A novel two-stage evaluation system based on a Group-G1 approach to identify appropriate emergency treatment technology schemes in sudden water source pollution accidents.

    PubMed

    Qu, Jianhua; Meng, Xianlin; Hu, Qi; You, Hong

    2016-02-01

    Sudden water source pollution resulting from hazardous materials has gradually become a major threat to the safety of the urban water supply. Over the past years, various treatment techniques have been proposed for the removal of the pollutants to minimize the threat of such pollutions. Given the diversity of techniques available, the current challenge is how to scientifically select the most desirable alternative for different threat degrees. Therefore, a novel two-stage evaluation system was developed based on a circulation-correction improved Group-G1 method to determine the optimal emergency treatment technology scheme, considering the areas of contaminant elimination in both drinking water sources and water treatment plants. In stage 1, the threat degree caused by the pollution was predicted using a threat evaluation index system and was subdivided into four levels. Then, a technique evaluation index system containing four sets of criteria weights was constructed in stage 2 to obtain the optimum treatment schemes corresponding to the different threat levels. The applicability of the established evaluation system was tested by a practical cadmium-contaminated accident that occurred in 2012. The results show this system capable of facilitating scientific analysis in the evaluation and selection of emergency treatment technologies for drinking water source security.

  11. Having Java in the Library Doesn't Necessarily Require a Coffee Cart: Using an Object-Oriented Programming Language to Streamline Circulation Services for a Distance Education University

    ERIC Educational Resources Information Center

    Godbee, Sara; de Jong, Mark

    2007-01-01

    The University of Maryland University College (UMUC) serves a dispersed patron base, and its library has developed, over time, a circulation system for distributing physical research materials to its patrons throughout the United States. This article discusses the development of this system and its associated interface/database management system…

  12. Prediction of circulation control performance characteristics for Super STOL and STOL applications

    NASA Astrophysics Data System (ADS)

    Naqvi, Messam Abbas

    The rapid air travel growth during the last three decades, has resulted in runway congestion at major airports. The current airports infrastructure will not be able to support the rapid growth trends expected in the next decade. Changes or upgrades in infrastructure alone would not be able to satisfy the growth requirements, and new airplane concepts such as the NASA proposed Super Short Takeoff and Landing and Extremely Short Takeoff & Landing (ESTOL) are being vigorously pursued. Aircraft noise pollution during Takeoff & Landing is another serious concern and efforts are aimed to reduce the airframe noise produced by Conventional High Lift Devices during Takeoff & Landing. Circulation control technology has the prospect of being a good alternative to resolve both the aforesaid issues. Circulation control airfoils are not only capable of producing very high values of lift (Cl values in excess of 8.0) at zero degree angle of attack, but also eliminate the noise generated by the conventional high lift devices and their associated weight penalty as well as their complex operation and storage. This will ensure not only satisfying the small takeoff and landing distances, but minimal acoustic signature in accordance with FAA requirements. The Circulation Control relies on the tendency of an emanating wall jet to independently control the circulation and lift on an airfoil. Unlike, conventional airfoil where rear stagnation point is located at the sharp trailing edge, circulation control airfoils possess a round trailing edge, therefore the rear stagnation point is free to move. The location of rear stagnation point is controlled by the blown jet momentum. This provides a secondary control in the form of jet momentum with which the lift generated can be controlled rather the only available control of incidence (angle of attack) in case of conventional airfoils. The use of Circulation control despite its promising potential has been limited only to research applications due to the lack of a simple prediction capability. This research effort was focused on the creation of a rapid prediction capability of Circulation Control Aerodynamic Characteristics which could help designers with rapid performance estimates for design space exploration. A morphological matrix was created with the available set of options which could be chosen to create this prediction capability starting with purely analytical physics based modeling to high fidelity CFD codes. Based on the available constraints, and desired accuracy meta-models have been created around the two dimensional circulation control performance results computed using Navier Stokes Equations (Computational Fluid Dynamics). DSS2, a two dimensional RANS code written by Professor Lakshmi Sankar was utilized for circulation control airfoil characteristics. The CFD code was first applied to the NCCR 1510-7607N airfoil to validate the model with available experimental results. It was then applied to compute the results of a fractional factorial design of experiments array. Metamodels were formulated using the neural networks to the results obtained from the Design of Experiments. Additional validation runs were performed to validate the model predictions. Metamodels are not only capable of rapid performance prediction, but also help generate the relation trends of response matrices with control variables and capture the complex interactions between control variables. Quantitative as well as qualitative assessments of results were performed by computation of aerodynamic forces & moments and flow field visualizations. Wing characteristics in three dimensions were obtained by integration over the whole wing using Prandtl's Wing Theory. The baseline Super STOL configuration [3] was then analyzed with the application of circulation control technology. The desired values of lift and drag to achieve the target values of Takeoff & Landing performance were compared with the optimal configurations obtained by the model. The same optimal configurations were then subjected to Super STOL cruise conditions to perform a trade off analysis between Takeoff and Cruise Performance. Supercritical airfoils modified for circulation control were also thoroughly analyzed for Takeoff and Cruise performance and may constitute a viable option for Super STOL & STOL Designs. The prediction capability produced by this research effort can be integrated with the current conceptual aircraft modeling & simulation framework. The prediction tool is applicable within the selected ranges of each variable, but methodology and formulation scheme adopted can be applied to any other design space exploration.

  13. An interdisciplinary approach for groundwater management in area contaminated by fluoride in East African Rift System

    NASA Astrophysics Data System (ADS)

    Da Pelo, Stefania; Melis, M. Teresa; Dessì, Francesco; Pistis, Marco; Funedda, Antonio; Oggiano, Giacomo; Carletti, Alberto; Soler Gil, Albert; Barbieri, Manuela; Pittalis, Daniele; Ghiglieri, Giorgio

    2017-04-01

    Groundwater is the main source of fresh water supply for most of the rural communities in Africa (approximately 75% of Africans has confidence in groundwater as their major source of drinking water). Many African countries has affected by high fluoride concentration in groundwater (up to 90 mg/L), generating the contamination of waters, soils and food, in particular in the eastern part of the continent. It seems that fluoride concentration is linked to geology of the Rift Valley: geogenic occurrence of fluoride is often connected to supergenic enrichment due to the weathering of alkaline volcanic rocks, fumaric gases and presence of thermal waters. The H2020 project FLOWERED (de-FLuoridation technologies for imprOving quality of WatEr and agRo-animal products along the East African Rift Valley in the context of aDaptation to climate change) wish to address environmental and health (human and animal) issues associated to the fluoride contamination in the African Rift Valley, in particular in three case study area located in Ethiopia, Tanzania and Kenya. FLOWERED aims to develop an integrated, sustainable and participative water and agriculture management at a cross-boundary catchment scale through a strong interdisciplinary research approach. It implies knowledge of geology, hydrogeology, mineralogy, geochemistry, agronomy, crop and animal sciences, engineering, technological sciences, data management and software design, economics and communication. The proposed approach is based on a detailed knowledge of the hydrogeological setting, with the identification and mapping of the specific geological conditions of water contamination and its relation with the different land uses. The East African Rift System (EARS) groundwater circulation and storage, today already poorly understood, is characterized by a complex arrangement of aquifers. It depends on the type of porosity and permeability created during and after the rock formation, and is strongly conditioned by the tectonic and volcanic processes. Data regarding geological and hydrogeological settings and the assessment of the vulnerability of groundwater bodies will constitute the necessary information for the implementation of a sustainable water management and for the proposal of sustainable and suitable strategies for water sanitation and agricultural system. Taking into account the vulnerability of the aquifers and groundwater circulation, innovative agricultural practices will be assessed too, aiming to mitigate the impacts of fluoride contamination of water and soil on productivity of selected food and forage crops and dairy cattle health and production. Innovative defluoridation technologies for the sanitation of drinking water, which mainly operate at rural area scale, will be tested and implemented, aiming at providing a sustainable and safe water supply. Furthermore, the development of an innovative and shared Geo-data system for the knowledge management will support the implementation of an integrated, sustainable and participative water and agriculture management system. Moreover, supported by the Small and Medium-sized Enterprises (SMEs), a developed market analysis for the proposed defluoridation technologies accounting also for the social and environmental factors will be included in the project.

  14. Physiologically Based Pharmacokinetic Model for Long-Circulating Inorganic Nanoparticles.

    PubMed

    Liang, Xiaowen; Wang, Haolu; Grice, Jeffrey E; Li, Li; Liu, Xin; Xu, Zhi Ping; Roberts, Michael S

    2016-02-10

    A physiologically based pharmacokinetic model was developed for accurately characterizing and predicting the in vivo fate of long-circulating inorganic nanoparticles (NPs). This model is built based on direct visualization of NP disposition details at the organ and cellular level. It was validated with multiple data sets, indicating robust inter-route and interspecies predictive capability. We suggest that the biodistribution of long-circulating inorganic NPs is determined by the uptake and release of NPs by phagocytic cells in target organs.

  15. Labour circulation and the urban labour process.

    PubMed

    Standing, G

    1986-01-01

    The author investigates aspects of labor circulation, which he defines as "temporary movement between geographical areas for work or in search of work....[He attempts to determine] what roles have been played by labour circulation in the development of urban-industrial labour forces in the transition to industrial capitalism." Factors considered include the exploitation and oppression of labor migrants; the industrial-urban labor reserve; urban socioeconomic stratification and discrimination by age, sex, or race; the division of labor; and policy options. excerpt

  16. Progress toward a circulation atlas for application to coastal water siting problems

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Gordon, H. H.

    1978-01-01

    Circulation data needed to resolve coastal siting problems are assembled from historical hydrographic and remote sensing studies in the form of a Circulation Atlas. Empirical data are used instead of numerical model simulations to achieve fine resolution and include fronts and convergence zones. Eulerian and Langrangian data are collected, transformed, and combined into trajectory maps and current vector maps as a function of tidal phase and wind vector. Initial Atlas development is centered on the Elizabeth River, Hampton Roads, Virgina.

  17. A Nonlinear Multigrid Solver for an Atmospheric General Circulation Model Based on Semi-Implicit Semi-Lagrangian Advection of Potential Vorticity

    NASA Technical Reports Server (NTRS)

    McCormick, S.; Ruge, John W.

    1998-01-01

    This work represents a part of a project to develop an atmospheric general circulation model based on the semi-Lagrangian advection of potential vorticity (PC) with divergence as the companion prognostic variable.

  18. A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS

    EPA Science Inventory

    A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...

  19. The Ligurian Cluster for Marine Technologies (DLTM): matching local research and industrial needs on oceanographic data.

    NASA Astrophysics Data System (ADS)

    Stroobant, M.; Locritani, M.; Marini, D.; Sabbadini, L.; Carmisciano, C.; Manzella, G.; Magaldi, M.; Aliani, S.

    2012-04-01

    DLTM is the Ligurian Region (north Italy) cluster of Centre of Excellence (CoE) in waterborne technologies, that involves about 120 enterprises - of which, more than 100 SMEs -, the University of Genoa, all the main National Research Centres dealing with maritime and marine technologies established in Liguria (CNR, INGV, ENEA-UTMAR), the NATO Undersea Research Centre (NURC) and the Experimental Centre of the Italian Navy (CSSN), the Bank, the Port Authority and the Chamber of Commerce of the city of La Spezia. Following its mission, DLTM has recently established three Collaborative Research Laboratories focused on: 1. Computational Fluid dynamics (CFD_Lab) 2. High Performance Computing (HPC_Lab) 3. Monitoring and Analysis of Marine Ecosystems (MARE_Lab). The main role of them is to improve the relationships among the research centres and the enterprises, encouraging a systematic networking approach and sharing of knowledge, data, services, tools and human resources. Two of the key objectives of Lab_MARE are the establishment of: - an integrated system of observation and sea forecasting; - a Regional Marine Instrument Centre (RMIC) for oceanographic and metereological instruments (assembled using 'shared' tools and facilities). Besides, an important and innovative research project has been recently submitted to the Italian Ministry for Education, University and Research (MIUR). This project, in agreement with the European Directives (COM2009 (544)), is aimed to develop a Management Information System (MIS) for oceanographic and meteorological data in the Mediterranean Sea. The availability of adequate HPC inside DLTM is, of course, an important asset for achieving useful results; for example, the Regional Ocean Modeling System (ROMS) model is currently running on a high-resolution mesh on the cluster to simulate and reproduce the circulation within the Ligurian Sea. ROMS outputs will have broad and multidisciplinary impacts because ocean circulation affects the dispersion of different substances like oil spills and other pollutants but also sediments, nutrients and larvae. This could be an important tool for the environmental preservation, prevention and remediation, by placing the bases for the integrated management of the ocean.

  20. Investigating Downscaling Methods and Evaluating Climate Models for Use in Estimating Regional Water Resources in Mountainous Regions under Changing Climatic Conditions

    NASA Technical Reports Server (NTRS)

    Frei, Allan; Nolin, Anne W.; Serreze, Mark C.; Armstrong, Richard L.; McGinnis, David L.; Robinson, David A.

    2004-01-01

    The purpose of this three-year study is to develop and evaluate techniques to estimate the range of potential hydrological impacts of climate change in mountainous areas. Three main objectives are set out in the proposal. (1) To develop and evaluate transfer functions to link tropospheric circulation to regional snowfall. (2) To evaluate a suite of General Circulation Models (GCMs) for use in estimating synoptic scale circulation and the resultant regional snowfall. And (3) to estimate the range of potential hydrological impacts of changing climate in the two case study areas: the Upper Colorado River basin, and the Catskill Mountains of southeastern New York State. Both regions provide water to large populations.

  1. Advanced Model for Extreme Lift and Improved Aeroacoustics (AMELIA)

    NASA Technical Reports Server (NTRS)

    Lichtwardt, Jonathan; Paciano, Eric; Jameson, Tina; Fong, Robert; Marshall, David

    2012-01-01

    With the very recent advent of NASA's Environmentally Responsible Aviation Project (ERA), which is dedicated to designing aircraft that will reduce the impact of aviation on the environment, there is a need for research and development of methodologies to minimize fuel burn, emissions, and reduce community noise produced by regional airliners. ERA tackles airframe technology, propulsion technology, and vehicle systems integration to meet performance objectives in the time frame for the aircraft to be at a Technology Readiness Level (TRL) of 4-6 by the year of 2020 (deemed N+2). The proceeding project that investigated similar goals to ERA was NASA's Subsonic Fixed Wing (SFW). SFW focused on conducting research to improve prediction methods and technologies that will produce lower noise, lower emissions, and higher performing subsonic aircraft for the Next Generation Air Transportation System. The work provided in this investigation was a NASA Research Announcement (NRA) contract #NNL07AA55C funded by Subsonic Fixed Wing. The project started in 2007 with a specific goal of conducting a large-scale wind tunnel test along with the development of new and improved predictive codes for the advanced powered-lift concepts. Many of the predictive codes were incorporated to refine the wind tunnel model outer mold line design. The large scale wind tunnel test goal was to investigate powered lift technologies and provide an experimental database to validate current and future modeling techniques. Powered-lift concepts investigated were Circulation Control (CC) wing in conjunction with over-the-wing mounted engines to entrain the exhaust to further increase the lift generated by CC technologies alone. The NRA was a five-year effort; during the first year the objective was to select and refine CESTOL concepts and then to complete a preliminary design of a large-scale wind tunnel model for the large scale test. During the second, third, and fourth years the large-scale wind tunnel model design would be completed, manufactured, and calibrated. During the fifth year the large scale wind tunnel test was conducted. This technical memo will describe all phases of the Advanced Model for Extreme Lift and Improved Aeroacoustics (AMELIA) project and provide a brief summary of the background and modeling efforts involved in the NRA. The conceptual designs considered for this project and the decision process for the selected configuration adapted for a wind tunnel model will be briefly discussed. The internal configuration of AMELIA, and the internal measurements chosen in order to satisfy the requirements of obtaining a database of experimental data to be used for future computational model validations. The external experimental techniques that were employed during the test, along with the large-scale wind tunnel test facility are covered in great detail. Experimental measurements in the database include forces and moments, and surface pressure distributions, local skin friction measurements, boundary and shear layer velocity profiles, far-field acoustic data and noise signatures from turbofan propulsion simulators. Results and discussion of the circulation control performance, over-the-wing mounted engines, and the combined performance are also discussed in great detail.

  2. 40 CFR 1502.19 - Circulation of the environmental impact statement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Circulation of the environmental impact statement. 1502.19 Section 1502.19 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY... environmental impact involved and any appropriate Federal, State or local agency authorized to develop and...

  3. 40 CFR 1502.19 - Circulation of the environmental impact statement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Circulation of the environmental impact statement. 1502.19 Section 1502.19 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY... environmental impact involved and any appropriate Federal, State or local agency authorized to develop and...

  4. Increased numbers of circulating ECs are associated with systemic GVHD.

    PubMed

    Yan, Z; Zeng, L; Jia, L; Xu, S; Ding, S

    2011-10-01

    Circulating endothelial cells (ECs) are known to reflect endothelial injury, and endothelial injury is associated with graft-versus-host disease (GVHD). We hypothesised that circulating ECs might be associated with systemic acute graft-versus-host disease (aGVHD). BALB/c (H-2k(d) ) mice were treated with total body irradiation and then infused with C57B/6-derived T-cell-depleted bone marrow (TCD-BM) cells or TCD-BM cells and splenocytes. Cyclosporine was used to prevent aGVHD. Circulating ECs and allogeneic lymphocytes were analysed by flow cytometry at multiple time points. The morphology and ultrastructure of the endothelium were examined by light microscopy or transmission electron microscopy. The results indicated that the number of circulating ECs peaked at day 5 after lethal irradiation in all mice; allogenic transplanted mice (TCD-BM cells and splenocytes) developed typical aGVHD beginning at day 7, exhibiting both histological and clinical symptoms of disease. Circulating ECs peaked a second time at day 9 with aGVHD progression. However, following the administration of CSA, an absence of or a reduction in the amount of subsequent endothelial injury was observed. Circulating ECs might be associated with systemic aGVHD. © 2011 Blackwell Publishing Ltd.

  5. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin

    2015-03-01

    Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.

  6. Tomographic sensing and localization of fluorescently labeled circulating cells in mice in vivo

    NASA Astrophysics Data System (ADS)

    Zettergren, Eric; Swamy, Tushar; Runnels, Judith; Lin, Charles P.; Niedre, Mark

    2012-07-01

    Sensing and enumeration of specific types of circulating cells in small animals is an important problem in many areas of biomedical research. Microscopy-based fluorescence in vivo flow cytometry methods have been developed previously, but these are typically limited to sampling of very small blood volumes, so that very rare circulating cells may escape detection. Recently, we described the development of a ‘diffuse fluorescence flow cytometer’ (DFFC) that allows sampling of much larger blood vessels and therefore circulating blood volumes in the hindlimb, forelimb or tail of a mouse. In this work, we extend this concept by developing and validating a method to tomographically localize circulating fluorescently labeled cells in the cross section of a tissue simulating optical flow phantom and mouse limb. This was achieved using two modulated light sources and an array of six fiber-coupled detectors that allowed rapid, high-sensitivity acquisition of full tomographic data sets at 10 Hz. These were reconstructed into two-dimensional cross-sectional images using Monte Carlo models of light propagation and the randomized algebraic reconstruction technique. We were able to obtain continuous images of moving cells in the sample cross section with 0.5 mm accuracy or better. We first demonstrated this concept in limb-mimicking optical flow photons with up to four flow channels, and then in the tails of mice with fluorescently labeled multiple myeloma cells. This approach increases the overall diagnostic utility of our DFFC instrument.

  7. Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Hewitson, Bruce

    1990-01-01

    Model simulations of global climate change are seen as an essential component of any program aimed at understanding human impact on the global environment. A major weakness of current general circulation models (GCMs), however, is their inability to predict reliably the regional consequences of a global scale change, and it is these regional scale predictions that are necessary for studies of human/environmental response. This research is directed toward the development of a methodology for the validation of the synoptic scale climatology of GCMs. This is developed with regard to the Goddard Institute for Space Studies (GISS) GCM Model 2, with the specific objective of using the synoptic circulation form a doubles CO2 simulation to estimate regional climate change over North America, south of Hudson Bay. This progress report is specifically concerned with validating the synoptic climatology of the GISS GCM, and developing the transfer function to derive grid-point temperatures from the synoptic circulation. Principal Components Analysis is used to characterize the primary modes of the spatial and temporal variability in the observed and simulated climate, and the model validation is based on correlations between component loadings, and power spectral analysis of the component scores. The results show that the high resolution GISS model does an excellent job of simulating the synoptic circulation over the U.S., and that grid-point temperatures can be predicted with reasonable accuracy from the circulation patterns.

  8. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    DTIC Science & Technology

    2014-10-01

    AD_________________ Award Number: W81XWH-13-1-0325 TITLE: Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using ...Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING ORGANIZATION ...Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER W81XWH-13-1-0325 Carcinoma Using Genetically Engineered Mouse Models and 5b

  9. Arachidonic acid metabolites and endothelial dysfunction of portal hypertension.

    PubMed

    Sacerdoti, David; Pesce, Paola; Di Pascoli, Marco; Brocco, Silvia; Cecchetto, Lara; Bolognesi, Massimo

    2015-07-01

    Increased resistance to portal flow and increased portal inflow due to mesenteric vasodilatation represent the main factors causing portal hypertension in cirrhosis. Endothelial cell dysfunction, defined as an imbalance between the synthesis, release, and effect of endothelial mediators of vascular tone, inflammation, thrombosis, and angiogenesis, plays a major role in the increase of resistance in portal circulation, in the decrease in the mesenteric one, in the development of collateral circulation. Reduced response to vasodilators in liver sinusoids and increased response in the mesenteric arterioles, and, viceversa, increased response to vasoconstrictors in the portal-sinusoidal circulation and decreased response in the mesenteric arterioles are also relevant to the pathophysiology of portal hypertension. Arachidonic acid (AA) metabolites through the three pathways, cyclooxygenase (COX), lipoxygenase, and cytochrome P450 monooxygenase and epoxygenase, are involved in endothelial dysfunction of portal hypertension. Increased thromboxane-A2 production by liver sinusoidal endothelial cells (LSECs) via increased COX-1 activity/expression, increased leukotriens, increased epoxyeicosatrienoic acids (EETs) (dilators of the peripheral arterial circulation, but vasoconstrictors of the portal-sinusoidal circulation), represent a major component in the increased portal resistance, in the decreased portal response to vasodilators and in the hyper-response to vasoconstrictors. Increased prostacyclin (PGI2) via COX-1 and COX-2 overexpression, and increased EETs/heme-oxygenase-1/K channels/gap junctions (endothelial derived hyperpolarizing factor system) play a major role in mesenteric vasodilatation, hyporeactivity to vasoconstrictors, and hyper-response to vasodilators. EETs, mediators of liver regeneration after hepatectomy and of angiogenesis, may play a role in the development of regenerative nodules and collateral circulation, through stimulation of vascular endothelial growth factor (VEGF) inside the liver and in the portal circulation. Pharmacological manipulation of AA metabolites may be beneficial for cirrhotic portal hypertension. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Dust Emissions, Transport, and Deposition Simulated with the NASA Finite-Volume General Circulation Model

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; daSilva, Arlindo; Ginoux, Paul; Chin, Mian; Lin, S.-J.

    2003-01-01

    Mineral dust aerosols have radiative impacts on Earth's atmosphere, have been implicated in local and regional air quality issues, and have been identified as vectors for transporting disease pathogens and bringing mineral nutrients to terrestrial and oceanic ecosystems. We present for the first time dust simulations using online transport and meteorological analysis in the NASA Finite-Volume General Circulation Model (FVGCM). Our dust formulation follows the formulation in the offline Georgia Institute of Technology-Goddard Global Ozone Chemistry Aerosol Radiation and Transport Model (GOCART) using a topographical source for dust emissions. We compare results of the FVGCM simulations with GOCART, as well as with in situ and remotely sensed observations. Additionally, we estimate budgets of dust emission and transport into various regions.

  11. [Tissue oxygen saturation in the critically ill patient].

    PubMed

    Gruartmoner, G; Mesquida, J; Baigorri, F

    2014-05-01

    Hemodynamic resuscitation seeks to correct global macrocirculatory parameters of pressure and flow. However, current evidence has shown that despite the normalization of these global parameters, microcirculatory and regional perfusion alterations can persist, and these alterations have been independently associated with a poorer patient prognosis. This in turn has lead to growing interest in new technologies for exploring regional circulation and microcirculation. Near infra-red spectroscopy allows us to monitor tissue oxygen saturation, and has been proposed as a noninvasive, continuous and easy-to-obtain measure of regional circulation. The present review aims to summarize the existing evidence on near infra-red spectroscopy and its potential clinical role in the resuscitation of critically ill patients in shock. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  12. [Hot topics of circulating tumor DNA testing in breast cancer].

    PubMed

    Liu, Y H; Zhou, B; Xu, L; Xin, L

    2017-02-01

    The progress of gene detection technologies represented by next generation sequencing (NGS) and digital PCR laid a foundation for studies of circulating tumor DNA (ctDNA) in breast cancer. In 2014, the NGS workgroup organized by the College of American Pathologists (CAP) published the College of American Pathologists ' Laboratory Standards for Next - Generation Sequencing Clinical Tests, which provides a blueprint for the standardization of gene testing. In 2015, the Guidelines for Diagnostic Next - generation Sequencing published by the European Society of Human Genetics claimed that NGS is unacceptable in clinical practice before studies guided by guidelines are approved. Although existing studies show the benefits of ctDNA testing in disease monitoring and prognosis analyzing, we have a ways to go to normalize the procedure and build strict detection criteria.

  13. Crucial considerations for pipelines to validate circulating biomarkers for breast cancer.

    PubMed

    Ewaisha, Radwa; Gawryletz, Chelsea D; Anderson, Karen S

    2016-01-01

    Despite decades of progress in breast imaging, breast cancer remains the second most common cause of cancer mortality in women. The rapidly proliferative breast cancers that are associated with high relapse rates and mortality frequently present in younger women, in unscreened individuals, or in the intervals between screening mammography. Biomarkers exist for monitoring metastatic disease, such as CEA, CA27.29 and CA15-3, but there are no circulating biomarkers clinically available for early detection, prognosis, or monitoring for clinical relapse. There has been significant progress in the discovery of potential circulating biomarkers, including proteins, autoantibodies, nucleic acids, exosomes, and circulating tumor cells, but the vast majority of these biomarkers have not progressed beyond initial research discovery, and none have yet been approved for clinical use in early stage disease. Here, the authors review the crucial considerations of developing pipelines for the rapid evaluation of circulating biomarkers for breast cancer.

  14. Production of systemically circulating Hedgehog by the intestine couples nutrition to growth and development.

    PubMed

    Rodenfels, Jonathan; Lavrynenko, Oksana; Ayciriex, Sophie; Sampaio, Julio L; Carvalho, Maria; Shevchenko, Andrej; Eaton, Suzanne

    2014-12-01

    In Drosophila larvae, growth and developmental timing are regulated by nutrition in a tightly coordinated fashion. The networks that couple these processes are far from understood. Here, we show that the intestine responds to nutrient availability by regulating production of a circulating lipoprotein-associated form of the signaling protein Hedgehog (Hh). Levels of circulating Hh tune the rates of growth and developmental timing in a coordinated fashion. Circulating Hh signals to the fat body to control larval growth. It regulates developmental timing by controlling ecdysteroid production in the prothoracic gland. Circulating Hh is especially important during starvation, when it is also required for mobilization of fat body triacylglycerol (TAG) stores. Thus, we demonstrate that Hh, previously known only for its local morphogenetic functions, also acts as a lipoprotein-associated endocrine hormone, coordinating the response of multiple tissues to nutrient availability. © 2014 Rodenfels et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemann, R.H.; /SLAC

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  16. From Farm to Farmville: Circulation, Adoption, and Use of ICT between Urban and Rural China

    ERIC Educational Resources Information Center

    Oreglia, Elisa

    2013-01-01

    In the mid-2000s, China began a set of policies to "informatize" the countryside, i.e. to bring Information and Communication Technologies (ICT) to rural residents in order to improve their economic conditions. These policies posit the countryside as a world of "less," compared to urban areas, and they are framed in terms of…

  17. Groundwater Circulating Well Assessment and Guidance

    DTIC Science & Technology

    1998-04-03

    47 3 . 1 Decis ion Tree and Process Description...two GCW systems p laced c lose enough to affect each other significantly (Herding et al. , 1 994). This type of wel l spaci ng may be requ ired to...3.1 Decision Tree and Process Description The process for screening the GCW technology is a logical sequence of steps during which site­ specific

  18. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Solar Fundamentals, Inc.'s hot water system employs space-derived heat pipe technology. It is used by a meat packing plant to heat water for cleaning processing machinery. Unit is complete system with water heater, hot water storage, electrical controls and auxiliary components. Other than fans and a circulating pump, there are no moving parts. System's unique design eliminates problems of balancing, leaking, corroding, and freezing.

  19. Circulation-Enhancing Device Improves CPR

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Advanced Circulatory Systems, Inc. and NASA's Kennedy Space Center collaborated for five years on impedance threshold device technology. The resulting technology is encapsulated in a device called the ResQPOD Circulatory Enhancer, which improves the standard of care provided to patients with a variety of clinical conditions due to low blood flow. ResQPOD generates negative intrathoracic pressure during respiration to increase blood flow to the body's vital organs. It is unique in that it non-invasively enhances the body's biophysical performance without depending on pharmaceutical or other outside agents. ResQPOD uses the relationship of the heart, brain, lungs and chest cavity in a manner similar to a bellows to increase venous blood return to the heart. Multiple studies have shown a significant improvement in cardiac output and blood flow to the brain with the use of the impedance threshold device, as well as the device's ability to prevent shock secondary to blood loss. ResQPOD has been added to the set of medical equipment that is available for returning astronaut crews, and commercial applications have fallen into two categories: Non-spontaneously breathing patients who can benefit from enhanced circulation, and spontaneously breathing patients who suffer from transient hypotension or low blood pressure.

  20. eTumorType, An Algorithm of Discriminating Cancer Types for Circulating Tumor Cells or Cell-free DNAs in Blood.

    PubMed

    Zou, Jinfeng; Wang, Edwin

    2017-04-01

    With the technology development on detecting circulating tumor cells (CTCs) and cell-free DNAs (cfDNAs) in blood, serum, and plasma, non-invasive diagnosis of cancer becomes promising. A few studies reported good correlations between signals from tumor tissues and CTCs or cfDNAs, making it possible to detect cancers using CTCs and cfDNAs. However, the detection cannot tell which cancer types the person has. To meet these challenges, we developed an algorithm, eTumorType, to identify cancer types based on copy number variations (CNVs) of the cancer founding clone. eTumorType integrates cancer hallmark concepts and a few computational techniques such as stochastic gradient boosting, voting, centroid, and leading patterns. eTumorType has been trained and validated on a large dataset including 18 common cancer types and 5327 tumor samples. eTumorType produced high accuracies (0.86-0.96) and high recall rates (0.79-0.92) for predicting colon, brain, prostate, and kidney cancers. In addition, relatively high accuracies (0.78-0.92) and recall rates (0.58-0.95) have also been achieved for predicting ovarian, breast luminal, lung, endometrial, stomach, head and neck, leukemia, and skin cancers. These results suggest that eTumorType could be used for non-invasive diagnosis to determine cancer types based on CNVs of CTCs and cfDNAs. Copyright © 2017 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved.

  1. Detection and Characterization of Circulating Tumor Cells

    NASA Astrophysics Data System (ADS)

    Bruce, Richard

    2009-03-01

    Circulating tumor cells (CTCs) occur in blood below the concentration of 1 cell in a hundred thousand white blood cells and can provide prognostic and diagnostic information about the underlying disease. While numeration of CTCs has provided useful information on progression-free and overall survival, it does not provide guidance of treatment choice. Since CTCs are presumed contain features of the metastatic tissue, characterization of cancer markers on these cells could help selection of treatment. At such low concentrations, reliable location and identification of these cells represents a significant technical challenge. Automated digital microscopy (ADM) provides high levels of sensitivity, but the analysis time is prohibitively long for a clinical assay. Enrichment methods have been developed to reduce sample size but can result in cell loss. A major barrier in reliable enrichment stems from the biological heterogeneity of CTCs, exhibited in a wide range of genetic, biochemical, immunological and biological characteristics. We have developed an approach that uses fiber-optic array scanning technology (FAST) to detect CTCs. Here, laser-printing optics are used to excite 300,000 cells/sec, and fluorescence from immuno-labels is collected in an array of optical fibers that forms a wide collection aperture. The FAST cytometer can locate CTCs at a rate that is 500 times faster than an ADM with comparable sensitivity and improved specificity. With this high scan rate, no enrichment of CTCs is required. The target can be a cytoplasm protein with a very high expression level, which reduces sensitivity to CTC heterogeneity. We use this method to measure expression levels of multiple markers on CTCs to help predict effective cancer treatment.

  2. Effect of long-term dietary sphingomyelin supplementation on atherosclerosis in mice

    PubMed Central

    Chung, Rosanna W. S.; Wang, Zeneng; Bursill, Christina A.; Wu, Ben J.; Barter, Philip J.

    2017-01-01

    Sphingomyelin (SM) levels in the circulation correlate positively with atherosclerosis burden. SM is a ubiquitous component of human diets, but it is unclear if dietary SM increases circulating SM levels. Dietary choline increases atherosclerosis by raising circulating trimethylamine N-oxide (TMAO) levels in mice and humans. As SM has a choline head group, we ask in this study if dietary SM accelerates atherosclerotic lesion development by increasing circulating SM and TMAO levels. Three studies were performed: (Study 1) C57BL/6 mice were maintained on a high fat diet with or without SM supplementation for 4 weeks prior to quantification of serum TMAO and SM levels; (Study 2) atherosclerosis was studied in apoE-/- mice after 16 weeks of a high fat diet without or with SM supplementation and (Study 3) apoE-/- mice were maintained on a chow diet for 19 weeks without or with SM supplementation and antibiotic treatment prior to quantification of atherosclerotic lesions and serum TMAO and SM levels. SM consumption did not increase circulating SM levels or atherosclerosis in high fat-fed apoE-/- mice. Serum TMAO levels in C57BL/6 mice were low and had no effect atherosclerosis lesion development. Dietary SM supplementation significantly reduced atherosclerotic lesion area in the aortic arch of chow-fed apoE-/- mice. This study establishes that dietary SM does not affect circulating SM levels or increase atherosclerosis in high fat-fed apoE-/- mice, but it is anti-atherogenic in chow-fed apoE-/- mice. PMID:29240800

  3. Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Avijit; Robinson, Allan R.; Haley, Patrick J.; Leslie, Wayne G.; Lozano, Carlos J.; Bisagni, James J.; Yu, Zhitao

    2003-03-01

    The multiscale synoptic circulation system in the Gulf of Maine and Georges Bank (GOMGB) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or 'features', are identified from previous observational studies. These features include the buoyancy-driven Maine Coastal Current, the Georges Bank anticyclonic frontal circulation system, the basin-scale cyclonic gyres (Jordan, Georges and Wilkinson), the deep inflow through the Northeast Channel (NEC), the shallow outflow via the Great South Channel (GSC), and the shelf-slope front (SSF). Their synoptic water-mass ( T- S) structures are characterized and parameterized in a generalized formulation to develop temperature-salinity feature models. A synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in the coastal-to-deep region of the GOMGB system is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and then objectively analyzed with appropriate background climatology in the coastal region. Furthermore, these fields are melded with adjacent deep-ocean regional circulation (Gulf Stream Meander and Ring region) along and across the SSF. These initialization fields are then used for dynamical simulations via the primitive equation model. Simulation results are analyzed to calibrate the multiparameter feature-oriented modeling system. Experimental short-term synoptic simulations are presented for multiple resolutions in different regions with and without atmospheric forcing. The presented 'generic and portable' methodology demonstrates the potential of applying similar FORMS in many other regions of the Global Coastal Ocean.

  4. Targeted Technology Transfer to US Independents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energymore » Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the period was approximately 32,000, 70% of whom were repeat attendees. Participant feedback established that 40% of them said they had applied a technology they learned of through PTTC. Central/Eastern Gulf Univ. of Alabama, LSU Center for Energy Studies 77 Eastern West Virginia University, Illinois Geological Survey, W. Michigan Univ. 99 Midcontinent University of Kansas, University of Tulsa, Okla. Geological Survey (past) 123 Rocky Mountains Colorado School of Mines 147 Texas/SE New Mexico Bureau of Economic Geology, U. of Texas at Austin 85 West Coast Conservation Committee of California O&G Producers, Univ. So. Cal. (past) 54 At the national level HQ went from an office in Houston to a virtual office in the Tulsa, Okla. area with AAPG providing any physical assets required. There are no employees, rather several full time and several part time contractors. Since inception, PTTC has produced quarterly and mailed the 16-page Network News newsletter. It highlights new advances in technology and has a circulation of 19,000. It also produces the Tech Connections Column in The American Oil & Gas Reporter, with a circulation of 13,000. On an approximate three-week frequency, the electronic Email Tech Alert goes out to 9,000 readers. The national staff also maintains a central website with information of national interest and individual sections for each of the six regions. The national organization also provides legal and accounting services, coordinates the RLO activities, exhibits at at least major national and other meetings, supports the volunteer Board as it provides strategic direction, and is working to restore the Producer Advisory Groups to bolster the regional presence. Qualitative Value: Three qualitative factors confirm PTTC's value to the domestic O&G producing industry. First, AAPG was willing to step in and rescue PTTC, believing it was of significant interest to its domestic membership and of potential value internationally. Second, through a period of turmoil and now with participant fees dramatically increased, industry participants 'keep coming back' to workshop activities. Third, technology developers seek out PTTC for exposure for their developing technologies, and many industry organizations/groups seek out PTTC for promotion of their meetings or events. A quantitative impact analysis performed in 2005 also attributed measurable reserves from PTTC's work.« less

  5. EFFECT OF ACUTE STRESS ON PLASMA CONCENTRATIONS OF SEX AND STRESS HORMONES IN JUVENILE ALLIGATORS LIVING IN CONTROL AND CONTAMINATED LAKES

    EPA Science Inventory

    Environmental contaminants can act as stressors, inducing elevated circulating concentrations of stress hormones such as corticosterone and cortisol. Development in contaminated eggs has been reported to modify circulating sex steroid hormone concentrations in alligators (Alligat...

  6. Dual Beam Doppler Optical Coherence Angiography

    NASA Astrophysics Data System (ADS)

    Yasuno, Yoshiaki; Makita, Shuichi; Jaillon, Franck

    The ocular vasculature and circulation play a crucial role in the development of several eye diseases including glaucoma [1], diabetic retinopathy [2], and exudative macular diseases [3]. Modalities that are capable of investigating the ocular vasculature and circulation are important for both understanding the mechanisms of the diseases and diagnosing these diseases.

  7. The effect of global-scale divergent circulation on the atmospheric water vapor transport and maintenance

    NASA Technical Reports Server (NTRS)

    Chen, Tsing-Chang

    1988-01-01

    The detection, distribution, and dynamics of atmospheric water on Earth was examined. How the high levels of water vapor and precipitation that occur over the tropics during the monsoon season result from the development of a strong divergent atmospheric circulation is discussed.

  8. Automated Bilingual Circulation System Using PC Local Area Networks.

    ERIC Educational Resources Information Center

    Iskanderani, A. I.; Anwar, M. A.

    1992-01-01

    Describes a personal computer and LAN-based automated circulation system capable of handling both Arabic and Latin characters that was developed for use at King Abdullaziz University (Jeddah, Saudi Arabia). Outlines system requirements, system structure, hardware needs, and individual functional modules of the system. Numerous examples and flow…

  9. The effects of conventional extracorporeal circulation versus miniaturized extracorporeal circulation on microcirculation during cardiopulmonary bypass-assisted coronary artery bypass graft surgery.

    PubMed

    Yuruk, Koray; Bezemer, Rick; Euser, Mariska; Milstein, Dan M J; de Geus, Hilde H R; Scholten, Evert W; de Mol, Bas A J M; Ince, Can

    2012-09-01

    OBJECTIVES To reduce the complications associated with cardiopulmonary bypass (CPB) during cardiac surgery, many modifications have been made to conventional extracorporeal circulation systems. This trend has led to the development of miniaturized extracorporeal circulation systems. Cardiac surgery using conventional extracorporeal circulation systems has been associated with significantly reduced microcirculatory perfusion, but it remains unknown whether this could be prevented by an mECC system. Here, we aimed to test the hypothesis that microcirculatory perfusion decreases with the use of a conventional extracorporeal circulation system and would be preserved with the use of an miniaturized extracorporeal circulation system. METHODS Microcirculatory density and perfusion were assessed using sublingual side stream dark-field imaging in patients undergoing on-pump coronary artery bypass graft (CABG) surgery before, during and after the use of either a conventional extracorporeal circulation system (n = 10) or a miniaturized extracorporeal circulation system (n = 10). In addition, plasma neutrophil gelatinase-associated lipocalin and creatinine levels and creatinine clearance were assessed up to 5 days post-surgery to monitor renal function. RESULTS At the end of the CPB, one patient in the miniaturized extracorporeal circulation-treated group and five patients in the conventional extracorporeal circulation-treated group received one bag of packed red blood cells (300 ml). During the CPB, the haematocrit and haemoglobin levels were slightly higher in the miniaturized extracorporeal circulation-treated patients compared with the conventional extracorporeal circulation-treated patients (27.7 ± 3.3 vs 24.7 ± 2.0%; P = 0.03; and 6.42 ± 0.75 vs 5.41 ± 0.64 mmol/l; P < 0.01). The density of perfused vessels with a diameter <25 µm (i.e. perfused vessel density) decreased slightly in the conventional extracorporeal circulation-treated group from 16.4 ± 3.8 to 12.8 ± 3.3 mm/mm(2) (P < 0.01) and remained stable in the miniaturized extracorporeal circulation-treated group (16.3 ± 2.7 and 15.2 ± 2.9 mm/mm(2) before and during the pump, respectively). Plasma neutrophil gelatinase-associated lipocalin levels were increased following the use of extracorporeal circulation in both groups, and no differences were observed between the groups. Plasma creatinine levels and creatinine clearance were not affected by CABG surgery or CPB. CONCLUSIONS The results from this relatively small study suggest that the use of the miniaturized extracorporeal circulation system is associated with a statistically significant (but clinically insignificant) reduction in haemodilution and microcirculatory hypoperfusion compared with the use of the conventional extracorporeal circulation system.

  10. Luteal cell steroidogenesis in relation to delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Meenakumari, Karukayil J; Banerjee, Arnab; Krishna, Amitabh

    2009-01-01

    The primary aim of this study was to determine the possible cause of slow or delayed embryonic development in Cynopterus sphinx by investigating morphological and steroidogenic changes in the corpus luteum (CL) and circulating hormone concentrations during two pregnancies of a year. This species showed delayed post-implantational embryonic development during gastrulation of the first pregnancy. Morphological features of the CL showed normal luteinization during both pregnancies. The CL did not change significantly in luteal cell size during the delay period of the first pregnancy as compared with the second pregnancy. The circulating progesterone and 17beta-estradiol concentrations were significantly lower during the period of delayed embryonic development as compared with the same stage of embryonic development during the second pregnancy. We also showed a marked decline in the activity of 3beta-hydroxysteroid dehydrogenase, P450 side chain cleavage enzyme, and steroidogenic acute regulatory peptide in the CL during the delay period. This may cause low circulating progesterone and estradiol synthesis and consequently delay embryonic development. What causes the decrease in steroidogenic factors in the CL during the period of delayed development in C. sphinx is under investigation.

  11. A brief history of the discovery of the circulation of blood in the human body.

    PubMed

    Azizi, Mohammad-Hossein; Nayernouri, Touraj; Azizi, Farzaneh

    2008-05-01

    The present article describes briefly the development of the theories regarding the circulation of blood in humans, from the time of Galen (second century C.E.) to the work of William Harvey (17th century C.E.).We shall summarize the views of Galen together with those of two prominent Iranian physicians of the Middle Ages (Razi and Ahwazi known in the West as Rhazes and Haly Abbas respectively) as well as that of Ibn-Nafis from Damascus (the discoverer of the pulmonary circulation) and the Spanish physician and cleric Michael Servetus and finally the definitive work of William Harvey, the English physician who described the mechanism of both the systemic and pulmonary circulation of blood in the human body.

  12. Impact of variations of gravitational acceleration on the general circulation of the planetary atmosphere

    NASA Astrophysics Data System (ADS)

    Kilic, Cevahir; Raible, Christoph C.; Stocker, Thomas F.; Kirk, Edilbert

    2017-01-01

    Fundamental to the redistribution of energy in a planetary atmosphere is the general circulation and its meridional structure. We use a general circulation model of the atmosphere in an aquaplanet configuration with prescribed sea surface temperature and investigate the influence of the gravitational acceleration g on the structure of the circulation. For g =g0 = 9.81 ms-2 , three meridional cells exist in each hemisphere. Up to about g /g0 = 1.4 all cells increase in strength. Further increasing this ratio results in a weakening of the thermally indirect cell, such that a two- and finally a one-cell structure of the meridional circulation develops in each hemisphere. This transition is explained by the primary driver of the thermally direct Hadley cell: the diabatic heating at the equator which is proportional to g. The analysis of the energetics of the atmospheric circulation based on the Lorenz energy cycle supports this finding. For Earth-like gravitational accelerations transient eddies are primarily responsible for the meridional heat flux. For large gravitational accelerations, the direct zonal mean conversion of energy dominates the meridional heat flux.

  13. Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood.

    PubMed

    Li, Jiahe; Sharkey, Charles C; Huang, Dantong; King, Michael R

    During metastasis, circulating tumor cells migrate away from a primary tumor via the blood circulation to form secondary tumors in distant organs. Mounting evidence from clinical observations indicates that the number of circulating tumor cells (CTCs) in the blood correlates with the progression of solid tumors before and during chemotherapy. Beyond the well-established role of CTCs as a fluid biopsy, however, the field of targeting CTCs for the prevention or reduction of metastases has just emerged. Conventional cancer therapeutics have a relatively short circulation time in the blood which may render the killing of CTCs inefficient due to reduced exposure of CTCs to drugs. Nevertheless, over the past few decades, the development of nanoparticles and nanoformulations to improve the half-life and release profile of drugs in circulation has rejuvenated certain traditional medicines in the emerging field of CTC neutralization. This review focuses on how the principles of nanomedicine may be applied to target CTCs. Moreover, inspired by the interactions between CTCs and host cells in the blood circulation, novel biomimetic approaches for targeted drug delivery are presented.

  14. Knowledge and Awareness of Teledentistry among Dental Professionals - A Cross Sectional Study.

    PubMed

    Boringi, Mamatha; Waghray, Shefali; Lavanya, Reddy; Babu, Dara Balaji Gandhi; Badam, Raj Kumar; Harsha, Niharika; Garlapati, Komali; Chavva, Sunanda

    2015-08-01

    The use of technology in the form of smart phones and other electronic media in day to day life has become an integral part of life today. Technology today is seeing a paradigm shift towards better inter-professional communications which can help doctors, patients and the masses as a whole. Putting these technological advancements to good use evolves as a major milestone in medicine/ dentistry in the form of telemedicine/teledentistry. The present study was aimed at knowing the knowledge and awareness of teledentistry among dental professionals of a dental college in India. The study was conducted in a dental college in India and was circulated among dental professionals. A questionnaire was prepared to assess the knowledge and awareness of teledentistry and was circulated among dental professionals in a dental college. The data thus collected was statistically analysed and results obtained. The data collected was statistically analysed using SPSS software. A total of 406 persons responded to the questionnaire. In the present study it was found that the knowledge and awareness about teledentistry was very low among post graduates (7.23%) and interns (9.38%) when compared to I & II BDS while most of them agreed that teledentistry is a practice of dentistry through various media options with limited application in dentistry without a legal issue. In the present study, it was apparent that most of the respondents were lacking adequate knowledge and awareness on teledentistry. Hence, there is an immense need to create awareness among dental professionals on teledentistry as the future lies in technological advancement. Tele dentistry can mark the beginning of a new era in dentistry. This can be achieved by conducting CDE programs and awareness campaigns/programs which helps in various levels.

  15. "Dying to be women": explorations and implications of narrative parameters of female youth sexuality in Zimbabwe.

    PubMed

    Muwonwa, Ngonidzashe

    2017-09-01

    This article considers how socio-cultural ideologies and practices can act as social technologies that help produce specific sexual practices and identities in young women. It identifies young women's libidinal economics as one contributing factor responsible for prescriptive gender roles in Southern Africa, and in this context, Zimbabwe. Understanding the contexts and structures of socio-sexual ideologies circulating among young women as part of their formal and informal sexual education might help address the root cause and understand the core conditions that exacerbate young women's sexual vulnerability Therefore youth-related programming may need to develop ways of assisting young people to develop intellectual, social and psychological skills in order for them to take full advantage of their youth. In revising prerequisites of womanhood and adulthood, there is need for a critical pedagogy which incorporates "deviance" as a concept which empowers young women to question and challenge rather than reinstate and reinforce normative pressures and essentialist perspectives of entering adulthood and "doing gender".

  16. Development of a Prototype Water Pump for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Hartman, David; Hodgson, Edward; Dionne, Steven; Gervais, Edward, III; Trevino, Luis

    2009-01-01

    NASA's next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew's liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  17. Development of a Prototype Water Pump for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Hartman, David; Hodgson, Edward; Gervais, Edward, III; Trevino, Luis

    2008-01-01

    NASA s next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew s liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  18. Fiber photo-catheters for laser treatment of atrial fibrillation

    PubMed Central

    Peshko, Igor; Rubtsov, Vladimir; Vesselov, Leonid; Sigal, Gennady; Laks, Hillel

    2009-01-01

    A fiber photo-catheter has been developed for surgical treatment of atrial fibrillation with laser radiation. Atrial fibrillation (AF) is a heart rhythm abnormality that involves irregular and rapid heartbeats. Recent studies demonstrate the superiority of treating AF disease with optical radiation of the near infrared region. To produce long continuous transmural lesions, solid-state lasers and laser diodes, along with end-emitting fiber catheters, have been used experimentally. The absence of side-emitting flexible catheters with the ability to produce long continuous lesions limits the further development of this technology. In this research, a prototype of an optical catheter, consisting of a flexible 10-cm fiber diffuser has been used to make continuous photocoagulation lesions for effective maze procedure treatments. The system also includes: a flexible optical reflector; a series of openings for rapid self-attachment to the tissue; and an optional closed-loop irrigating chamber with circulating saline to cool the optical diffuser and irrigate the tissue. PMID:19587838

  19. Longitudinal Evaluation of Fatty Acid Metabolism in Normal and Spontaneously Hypertensive Rat Hearts with Dynamic MicroSPECT Imaging

    DOE PAGES

    Reutter, Bryan W.; Huesman, Ronald H.; Brennan, Kathleen M.; ...

    2011-01-01

    The goal of this project is to develop radionuclide molecular imaging technologies using a clinical pinhole SPECT/CT scanner to quantify changes in cardiac metabolism using the spontaneously hypertensive rat (SHR) as a model of hypertensive-related pathophysiology. This paper quantitatively compares fatty acid metabolism in hearts of SHR and Wistar-Kyoto normal rats as a function of age and thereby tracks physiological changes associated with the onset and progression of heart failure in the SHR model. The fatty acid analog, 123 I-labeled BMIPP, was used in longitudinal metabolic pinhole SPECT imaging studies performed every seven months for 21 months. The uniqueness ofmore » this project is the development of techniques for estimating the blood input function from projection data acquired by a slowly rotating camera that is imaging fast circulation and the quantification of the kinetics of 123 I-BMIPP by fitting compartmental models to the blood and tissue time-activity curves.« less

  20. Use of saline water in energy development. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Israelsen, C.E.; Adams, V.D.; Batty, J.C.

    1980-06-01

    Information was assembled relative to future energy-related projects in the upper basin, and estimates were made of their anticipated water needs. Using computer models, various options were tested for using saline water for coal-fired power plant cooling. Both cooling towers and brine evaporation ponds were included. Information is presented of several proven water treatment technologies, and comparisons are made of their cost effectiveness when placed in various combinations in the power plant makeup and blowdown water systems. A relative value scale was developed which compares graphically the relative values of waters of different salinities based on three different water treatmentmore » options and predetermined upper limits of cooling tower circulating salinities. Coal from several different mines was slurried in waters of different salinities. Samples were analyzed in the laboratory to determine which constituents had been leached from or absorbed by the coal, and what possible deleterious effects this might have on the burning properties of the coal, or on the water for culinary use or irrigation.« less

Top