Science.gov

Sample records for circumstellar habitable zones

  1. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    SciTech Connect

    Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.

  2. The habitable zone and extreme planetary orbits.

    PubMed

    Kane, Stephen R; Gelino, Dawn M

    2012-10-01

    The habitable zone for a given star describes the range of circumstellar distances from the star within which a planet could have liquid water on its surface, which depends upon the stellar properties. Here we describe the development of the habitable zone concept, its application to our own solar system, and its subsequent application to exoplanetary systems. We further apply this to planets in extreme eccentric orbits and show how they may still retain life-bearing properties depending upon the percentage of the total orbit which is spent within the habitable zone. Key Words: Extrasolar planets-Habitable zone-Astrobiology.

  3. The habitable zone and extreme planetary orbits.

    PubMed

    Kane, Stephen R; Gelino, Dawn M

    2012-10-01

    The habitable zone for a given star describes the range of circumstellar distances from the star within which a planet could have liquid water on its surface, which depends upon the stellar properties. Here we describe the development of the habitable zone concept, its application to our own solar system, and its subsequent application to exoplanetary systems. We further apply this to planets in extreme eccentric orbits and show how they may still retain life-bearing properties depending upon the percentage of the total orbit which is spent within the habitable zone. Key Words: Extrasolar planets-Habitable zone-Astrobiology. PMID:23035897

  4. Trojans in habitable zones.

    PubMed

    Schwarz, Richard; Pilat-Lohinger, Elke; Dvorak, Rudolf; Erdi, Balint; Sándor, Zsolt

    2005-10-01

    With the aid of numerical experiments we examined the dynamical stability of fictitious terrestrial planets in 1:1 mean motion resonance with Jovian-like planets of extrasolar planetary systems. In our stability study of the so-called "Trojan" planets in the habitable zone, we used the restricted three-body problem with different mass ratios of the primary bodies. The application of the three-body problem showed that even massive Trojan planets can be stable in the 1:1 mean motion resonance. From the 117 extrasolar planetary systems only 11 systems were found with one giant planet in the habitable zone. Out of this sample set we chose four planetary systems--HD17051, HD27442, HD28185, and HD108874--for further investigation. To study the orbital behavior of the stable zone in the different systems, we used direct numerical computations (Lie Integration Method) that allowed us to determine the escape times and the maximum eccentricity of the fictitious "Trojan planets." PMID:16225431

  5. Comparable Habitable Zones of Stars

    NASA Video Gallery

    The habitable zone is the distance from a star where one can have liquid water on the surface of a planet. If a planet is too close to its parent star, it will be too hot and water would have evapo...

  6. Concepts of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Kaltenegger, L.

    2012-04-01

    The HZ around a single star has been calculated by several authors. Two concepts are commonly used throughout the literature for cloud free (see Kasting et al.1993, Underwood et al.2003) and cloudy atmospheres (Selsis et al.2007) which have been derived from the same model originally proposed by Kasting et al.(1993). The main differences among studies of the HZ are the imposed climatic constraints such as a CO2/H2O/N2 atmosphere with varying CO2/H2O/N2 concentrations (e.g., Earth's), or model atmospheres with high H2 concentrations (Gaidos&Pierrehumbert 2010) or limited water supply (Abe et al.2011). We discuss the implication of these constraints on the Habitable Zone and its resulting limits as well as detectable spectral features in a planet's rocky atmosphere that could be used to test our concept of the Habitable Zone.

  7. Habitable zone lifetimes of exoplanets around main sequence stars.

    PubMed

    Rushby, Andrew J; Claire, Mark W; Osborn, Hugh; Watson, Andrew J

    2013-09-01

    The potential habitability of newly discovered exoplanets is initially assessed by determining whether their orbits fall within the circumstellar habitable zone of their star. However, the habitable zone (HZ) is not static in time or space, and its boundaries migrate outward at a rate proportional to the increase in luminosity of a star undergoing stellar evolution, possibly including or excluding planets over the course of the star's main sequence lifetime. We describe the time that a planet spends within the HZ as its "habitable zone lifetime." The HZ lifetime of a planet has strong astrobiological implications and is especially important when considering the evolution of complex life, which is likely to require a longer residence time within the HZ. Here, we present results from a simple model built to investigate the evolution of the "classic" HZ over time, while also providing estimates for the evolution of stellar luminosity over time in order to develop a "hybrid" HZ model. These models return estimates for the HZ lifetimes of Earth and 7 confirmed HZ exoplanets and 27 unconfirmed Kepler candidates. The HZ lifetime for Earth ranges between 6.29 and 7.79×10⁹ years (Gyr). The 7 exoplanets fall in a range between ∼1 and 54.72 Gyr, while the 27 Kepler candidate planets' HZ lifetimes range between 0.43 and 18.8 Gyr. Our results show that exoplanet HD 85512b is no longer within the HZ, assuming it has an Earth analog atmosphere. The HZ lifetime should be considered in future models of planetary habitability as setting an upper limit on the lifetime of any potential exoplanetary biosphere, and also for identifying planets of high astrobiological potential for continued observational or modeling campaigns.

  8. Habitable zone lifetimes of exoplanets around main sequence stars.

    PubMed

    Rushby, Andrew J; Claire, Mark W; Osborn, Hugh; Watson, Andrew J

    2013-09-01

    The potential habitability of newly discovered exoplanets is initially assessed by determining whether their orbits fall within the circumstellar habitable zone of their star. However, the habitable zone (HZ) is not static in time or space, and its boundaries migrate outward at a rate proportional to the increase in luminosity of a star undergoing stellar evolution, possibly including or excluding planets over the course of the star's main sequence lifetime. We describe the time that a planet spends within the HZ as its "habitable zone lifetime." The HZ lifetime of a planet has strong astrobiological implications and is especially important when considering the evolution of complex life, which is likely to require a longer residence time within the HZ. Here, we present results from a simple model built to investigate the evolution of the "classic" HZ over time, while also providing estimates for the evolution of stellar luminosity over time in order to develop a "hybrid" HZ model. These models return estimates for the HZ lifetimes of Earth and 7 confirmed HZ exoplanets and 27 unconfirmed Kepler candidates. The HZ lifetime for Earth ranges between 6.29 and 7.79×10⁹ years (Gyr). The 7 exoplanets fall in a range between ∼1 and 54.72 Gyr, while the 27 Kepler candidate planets' HZ lifetimes range between 0.43 and 18.8 Gyr. Our results show that exoplanet HD 85512b is no longer within the HZ, assuming it has an Earth analog atmosphere. The HZ lifetime should be considered in future models of planetary habitability as setting an upper limit on the lifetime of any potential exoplanetary biosphere, and also for identifying planets of high astrobiological potential for continued observational or modeling campaigns. PMID:24047111

  9. Habitable Zone Limits for Dry Planets

    NASA Astrophysics Data System (ADS)

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H.; Zahnle, Kevin J.

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO2, rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m2 (170% that of modern Earth), compared to 330 W/m2 (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.

  10. Habitable zone limits for dry planets.

    PubMed

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago. PMID:21707386

  11. Habitable zone limits for dry planets.

    PubMed

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.

  12. A Population-based Habitable Zone Perspective

    NASA Astrophysics Data System (ADS)

    Zsom, Andras

    2015-11-01

    What can we tell about exoplanet habitability if currently only the stellar properties, planet radius, and the incoming stellar flux are known? A planet is in the habitable zone (HZ) if it harbors liquid water on its surface. The HZ is traditionally conceived as a sharp region around stars because it is calculated for one planet with specific properties. Such an approach is limiting because the planet’s atmospheric and geophysical properties, which influence the presence of liquid water on the surface, are currently unknown but expected to be diverse. A statistical HZ description is outlined that does not favor one planet type. Instead, the stellar and planet properties are treated as random variables, and a continuous range of planet scenarios is considered. Various probability density functions are assigned to each random variable, and a combination of Monte Carlo sampling and climate modeling is used to generate synthetic exoplanet populations with known surface climates. Then, the properties of the subpopulation bearing liquid water is analyzed. Given our current observational knowledge, the HZ takes the form of a weakly constrained but smooth probability function. The HZ has an inner edge, but a clear outer edge is not seen. Currently only optimistic upper limits can be derived for the potentially observable HZ occurrence rate. Finally, we illustrate through an example how future data on exoplanet atmospheres will help to narrow down the probability that an exoplanet harbors liquid water, and we identify the greatest observational challenge in the way of finding a habitable exoplanet.

  13. Radiative habitable zones in martian polar environments.

    PubMed

    Córdoba-Jabonero, Carmen; Zorzano, María-Paz; Selsis, Franck; Patel, Manish R; Cockell, Charles S

    2005-06-01

    The biologically damaging solar ultraviolet (UV) radiation (quantified by the DNA-weighted dose) reaches the martian surface in extremely high levels. Searching for potentially habitable UV-protected environments on Mars, we considered the polar ice caps that consist of a seasonally varying CO2 ice cover and a permanent H2O ice layer. It was found that, though the CO2 ice is insufficient by itself to screen the UV radiation, at approximately 1 m depth within the perennial H2O ice the DNA-weighted dose is reduced to terrestrial levels. This depth depends strongly on the optical properties of the H2O ice layers (for instance snow-like layers). The Earth-like DNA-weighted dose and Photosynthetically Active Radiation (PAR) requirements were used to define the upper and lower limits of the northern and southern polar Radiative Habitable Zone (RHZ) for which a temporal and spatial mapping was performed. Based on these studies we conclude that photosynthetic life might be possible within the ice layers of the polar regions. The thickness varies along each martian polar spring and summer between approximately 1.5 and 2.4 m for H2O ice-like layers, and a few centimeters for snow-like covers. These martian Earth-like radiative habitable environments may be primary targets for future martian astrobiological missions. Special attention should be paid to planetary protection, since the polar RHZ may also be subject to terrestrial contamination by probes.

  14. Habitable zones around main sequence stars.

    PubMed

    Kasting, J F; Whitmire, D P; Reynolds, R T

    1993-01-01

    A one-dimensional climate model is used to estimate the width of the habitable zone (HZ) around our Sun and around other main sequence stars. Our basic premise is that we are dealing with Earth-like planets with CO2/H2O/N2 atmospheres and that habitability requires the presence of liquid water on the planet's surface. The inner edge of the HZ is determined in our model by loss of water via photolysis and hydrogen escape. The outer edge of the HZ is determined by the formation of CO2 clouds, which cool a planet's surface by increasing its albedo and by lowering the convective lapse rate. Conservative estimates for these distances in our own Solar System are 0.95 and 1.37 AU, respectively; the actual width of the present HZ could be much greater. Between these two limits, climate stability is ensured by a feedback mechanism in which atmospheric CO2 concentrations vary inversely with planetary surface temperature. The width of the HZ is slightly greater for planets that are larger than Earth and for planets which have higher N2 partial pressures. The HZ evolves outward in time because the Sun increases in luminosity as it ages. A conservative estimate for the width of the 4.6-Gyr continuously habitable zone (CHZ) is 0.95 to 1.15 AU. Stars later than F0 have main sequence lifetimes exceeding 2 Gyr and, so, are also potential candidates for harboring habitable planets. The HZ around an F star is larger and occurs farther out than for our Sun; the HZ around K and M stars is smaller and occurs farther in. Nevertheless, the widths of all of these HZs are approximately the same if distance is expressed on a logarithmic scale. A log distance scale is probably the appropriate scale for this problem because the planets in our own Solar System are spaced logarithmically and because the distance at which another star would be expected to form planets should be related to the star's mass. The width of the CHZ around other stars depends on the time that a planet is required to

  15. A population-based Habitable Zone perspective

    NASA Astrophysics Data System (ADS)

    Zsom, Andras

    2015-08-01

    What can we tell about exoplanet habitability if currently only the stellar properties, planet radius, and the incoming stellar flux are known? The Habitable Zone (HZ) is the region around stars where planets can harbor liquid water on their surfaces. The HZ is traditionally conceived as a sharp region around the star because it is calculated for one planet with specific properties e.g., Earth-like or desert planets , or rocky planets with H2 atmospheres. Such planet-specific approach is limiting because the planets’ atmospheric and geophysical properties, which influence the surface climate and the presence of liquid water, are currently unknown but expected to be diverse.A statistical HZ description is outlined which does not select one specific planet type. Instead the atmospheric and surface properties of exoplanets are treated as random variables and a continuous range of planet scenarios are considered. Various probability density functions are assigned to each observationally unconstrained random variable, and a combination of Monte Carlo sampling and climate modeling is used to generate synthetic exoplanet populations with known surface climates. Then, the properties of the liquid water bearing subpopulation is analyzed.Given our current observational knowledge of small exoplanets, the HZ takes the form of a weakly-constrained but smooth probability function. The model shows that the HZ has an inner edge: it is unlikely that planets receiving two-three times more stellar radiation than Earth can harbor liquid water. But a clear outer edge is not seen: a planet that receives a fraction of Earth's stellar radiation (1-10%) can be habitable, if the greenhouse effect of the atmosphere is strong enough. The main benefit of the population-based approach is that it will be refined over time as new data on exoplanets and their atmospheres become available.

  16. HYDROGEN GREENHOUSE PLANETS BEYOND THE HABITABLE ZONE

    SciTech Connect

    Pierrehumbert, Raymond; Gaidos, Eric E-mail: gaidos@hawaii.edu

    2011-06-10

    We show that collision-induced absorption allows molecular hydrogen to act as an incondensible greenhouse gas and that bars or tens of bars of primordial H{sub 2}-He mixtures can maintain surface temperatures above the freezing point of water well beyond the 'classical' habitable zone defined for CO{sub 2} greenhouse atmospheres. Using a one-dimensional radiative-convective model, we find that 40 bars of pure H{sub 2} on a three Earth-mass planet can maintain a surface temperature of 280 K out to 1.5 AU from an early-type M dwarf star and 10 AU from a G-type star. Neglecting the effects of clouds and of gaseous absorbers besides H{sub 2}, the flux at the surface would be sufficient for photosynthesis by cyanobacteria (in the G star case) or anoxygenic phototrophs (in the M star case). We argue that primordial atmospheres of one to several hundred bars of H{sub 2}-He are possible and use a model of hydrogen escape to show that such atmospheres are likely to persist further than 1.5 AU from M stars, and 2 AU from G stars, assuming these planets have protecting magnetic fields. We predict that the microlensing planet OGLE-05-390Lb could have retained an H{sub 2}-He atmosphere and be habitable at {approx}2.6 AU from its host M star.

  17. Habitable zone dependence on stellar parameter uncertainties

    SciTech Connect

    Kane, Stephen R.

    2014-02-20

    An important property of exoplanetary systems is the extent of the Habitable Zone (HZ), defined as that region where water can exist in a liquid state on the surface of a planet with sufficient atmospheric pressure. Both ground- and space-based observations have revealed a plethora of confirmed exoplanets and exoplanetary candidates, most notably from the Kepler mission using the transit detection technique. Many of these detected planets lie within the predicted HZ of their host star. However, as is the case with the derived properties of the planets themselves, the HZ boundaries depend on how well we understand the host star. Here we quantify the uncertainties of HZ boundaries on the parameter uncertainties of the host star. We examine the distribution of stellar parameter uncertainties from confirmed exoplanet hosts and Kepler candidate hosts and translate these into HZ boundary uncertainties. We apply this to several known systems with an HZ planet to determine the uncertainty in their HZ status.

  18. Tectonics and the photosynthetic habitable zone (Invited)

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    2009-12-01

    The traditional habitable zone lies between an inner stellar radius where the surface of the planet becomes too hot for liquid water carbon-based life and on outer radius, where the surface freezes. It is effectively the zone where photosynthesis is feasible. The concept extends to putative life on objects with liquid methane at the surface, like Titan. As a practical matter, photosynthesis leaves detectable biosignatures in the geological record; black shale on the Earth indicates that sulfide and probably FeO based photosynthesis existed by 3.8 Ga. The hard crustal rocks and the mantle sequester numerous photosynthetic biosignatures. Photosynthesis can produce detectable free oxygen with ozone in the atmosphere of extrasolar planets. In contrast, there is no outer limit for subsurface life in large silicate objects. Pre-photosynthetic niches are dependable but meager and not very detectable at great antiquity or great distance, with global productivity less than 1e-3 of the photosynthetic ones. Photosynthetic organisms have bountiful energy that modifies their surface environment and even tectonics. For example, metamorphic rocks formed at the expense of thick black shale are highly radioactive and hence self-fluxing. Active tectonics with volcanism and metamorphism prevents volatiles from being sequestered in the subsurface as on Mars. A heat-pipe object, like a larger Io, differs from the Earth in that the volatiles return to the deep interior distributed within massive volcanic deposits rather than concentrated in the shallow oceanic crust. One the Earth, the return of water to the surface by arc volcanoes controls its mantle abundance at the transition between behaving as a trace element and behaving as a major element that affects melting. The ocean accumulates the water that the mantle and crust do not take. The Earth has the “right” amount of water that erosion/deposition and tectonics both tend to maintain near sea level surfaces. The mantle contains

  19. NASA's Kepler Discovers Its Smallest 'Habitable Zone' Planets to Date

    NASA Video Gallery

    NASA's Kepler mission has discovered two new planetary systems that include three super-Earth-size planets in the "habitable zone," the range of distance from a star where the surface temperature o...

  20. Europa, tidally heated oceans, and habitable zones around giant planets

    NASA Technical Reports Server (NTRS)

    Reynolds, Ray T.; Mckay, Christopher P.; Kasting, James F.

    1987-01-01

    Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. Europa could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such a case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of eons and in which life could perhaps evolve. A zone around a giant planet is defined in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In this solar system, this radiatively-heated habitable zone contains the earth.

  1. Habitable Zone Boundaries: Implications for our Solar System and Beyond

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.; Kopparapu, R.; Harman, C.; Batalha, N. E.; Haqq-Misra, J. D.

    2015-12-01

    The successful completion of NASA's Kepler Mission has led to renewed interest in the definition and boundaries of the circumstellar habitable zone (HZ), where liquid water can be stable on a planet's surface. Goldblatt et al. [1] showed that the runaway greenhouse effect, which defines the inner edge of the HZ, depends critically on absorption coefficients of H2O obtained from the new HITEMP database. Kopparapu et al. [2,3] followed up on this observation by recalculating HZ boundaries using HITEMP coefficients. This caused the inner edge to move out to 0.99 AU in their (fully saturated, cloud-free) 1-D climate model. Leconte et al. [4] then used a 3-D climate model to show that the inner edge moves back in to 0.95 AU when relative humidity and clouds are taken into account. In their model, however, the upper stratosphere remained cold and dry, making it difficult to explain how Venus lost its water. But Leconte et al. only looked at surface temperatures up to ~330 K. At somewhat higher surface temperatures (350 K), our own 1-D model predicts that the stratosphere should indeed become wet [5]. Towards the outer edge of the HZ, it now appears that planets should undergo limit cycles involving global glaciation, CO2 buildup from volcanism, and CO2 drawdown from weathering [6,7]. If supplemented with volcanic H2 [8], such cycles could explain how early Mars could have been cold much of the time and yet have experienced enough warm periods to carve the observed fluvial features. Results from a new model of this process will be discussed. Refs: 1. Goldblatt, C., Robinson, T. D., Zahnle, K. J., & Crisp, D. 2013, Nature Geoscience, 6, 661 2. Kopparapu, R. K., et al. 2013, Astrophysical Journal, 765 3. ---. 2013, Astrophysical Journal, 770 4. Leconte, J., Forget, F., Charnay, B., Wordsworth, R., & Pottier, A. 2013, Nature, 504, 268 5. Kasting, J. F., Chen, H., & Kopparapu, R. K. in prep., Ap J Lett 6. Kadoya, S., & Tajika, E. 2014, Astrophysical Journal, 790 7. Menou, K

  2. The First Atmospheric Characterization of a Habitable-Zone Exoplanet

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin; Bean, Jacob; Charbonneau, David; Desert, Jean-Michel; Fortney, Jonathan; Irwin, Jonathan; Kreidberg, Laura; Line, Michael; Montet, Ben; Morley, Caroline

    2015-10-01

    Exoplanet surveys have recently revealed nearby planets orbiting within stellar habitable zones. This highly-anticipated breakthrough brings us one step closer in our quest to identify cosmic biosignatures, the indicators of extrasolar life. To achieve our goal, we must first study the atmospheres of these temperate worlds to measure their compositions and determine the prevalence of obscuring clouds. Using observations from the K2 mission, Co-I Montet recently announced the discovery of a 2.2 Earth-radii planet within the habitable zone of its relatively bright, nearby M dwarf parent star, K2-18. This temperate world is currently the best habitable-zone target for atmospheric characterization. Congruent with currently planned HST observations, we propose a Spitzer program to measure the transmission spectrum of the first habitable-zone exoplanet. Both telescopes are essential to revealing K2-18b's chemical composition. In a cloud-free, hydrogen-dominated atmosphere, the precision achieved by these measurements will be sufficient to detect methane, ammonia, and water vapor, which are the dominant C, N, and O bearing species at these temperatures. In turn, elemental abundance constraints from a primordial atmosphere can tell us about the composition of a protoplanetary disk in which Earth-like planets could have formed. Conversely, if the atmosphere contains thick clouds then the multi-wavelength observations from K2, HST, and Spitzer will constrain the clouds' properties. Because temperature plays a key role in the formation of clouds, their detection within the atmosphere of this habitable-zone exoplanet would be an important signpost that serves as a guide to future investigations of smaller, rocky exoplanets. As K2 continues discovering more habitable-zone planets, it is imperative that we perform spectral reconnaissance with Spitzer to determine their physical characteristics and begin understanding the prevalence of potentially-obscuring clouds prior to the

  3. STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS

    SciTech Connect

    Yang Jun; Abbot, Dorian S.; Cowan, Nicolas B.

    2013-07-10

    The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies. This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phenomenon a stabilizing climate feedback. Substellar clouds also effectively block outgoing radiation from the surface, reducing or even completely reversing the thermal emission contrast between dayside and nightside. The presence of substellar water clouds and the resulting clement surface conditions will therefore be detectable with the James Webb Space Telescope.

  4. Geophysical Limitations on the Habitable Zone: Volcanism and Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Rivoldini, Attilio; Van Hoolst, Tim

    2016-04-01

    Planets are typically classified as potentially life-bearing planets (i.e. habitable planets) if they are rocky planets and if a liquid (e.g. water) could exist at the surface. The latter depends on several factors, like for example the amount of available solar energy, greenhouse effects in the atmosphere and an efficient CO2-cycle. However, the definition of the habitable zone should be updated to include possible geophysical constraints, that could potentially influence the CO2-cycle. Planets like Mars without plate tectonics and no or only limited volcanic events can only be considered to be habitable at the inner boundary of the habitable zone, since the greenhouse effect needed to ensure liquid surface water farther away from the sun is strongly reduced. We investigate if the planet mass as well as the interior structure can set constraints on the occurrence of plate tectonics and outgassing, and therefore affect the habitable zone, using both parameterized evolution models [1] and mantle convection simulations [1,2]. We find that plate tectonics, if it occurs, always leads to sufficient volcanic outgassing and therefore greenhouse effect needed for the outer boundary of the habitable zone (several tens of bar CO2), see also [3]. One-plate planets, however, may suffer strong volcanic limitations. The existence of a dense-enough CO2 atmosphere allowing for the carbon-silicate cycle and release of carbon at the outer boundary of the habitable zone may be strongly limited for planets: 1) without plate tectonics, 2) with a large planet mass, and/or 3) a high iron content. Acknowledgements This work has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office through the Planet Topers alliance, and results within the collaboration of the COST Action TD 1308. References Noack, L., Rivoldini, A., and Van Hoolst, T.: CHIC - Coupling Habitability, Interior and Crust, INFOCOMP 2015, ISSN 2308-3484, ISBN 978

  5. What Can the Habitable Zone Gallery Do For You?

    NASA Astrophysics Data System (ADS)

    Gelino, Dawn M.; Kane, Stephen

    2015-12-01

    The Habitable Zone Gallery (www.hzgallery.org) came online in August 2011 as a service to the exoplanet community that provides Habitable Zone (HZ) information for each of the exoplanetary systems with known planetary orbital parameters. The service includes a sortable table, a plot with the period and eccentricity of each of the planets with respect to their time spent in the HZ, a gallery of known systems which plot the orbits and the location of the HZ with respect to those orbits, and orbital movies. Recently, we have added new features including: implementation of both conservative and optimistic HZs, more user-friendly table and movies, movies for circumbinary planets, and a count of planets whose orbits lie entirely within the system's HZ. Here we discuss various educational and scientific applications of the site such as target selection, exploring planets with eccentric or circumbinary orbits, and investigating habitability.

  6. CANDIDATE PLANETS IN THE HABITABLE ZONES OF KEPLER STARS

    SciTech Connect

    Gaidos, Eric

    2013-06-20

    A key goal of the Kepler mission is the discovery of Earth-size transiting planets in ''habitable zones'' where stellar irradiance maintains a temperate climate on an Earth-like planet. Robust estimates of planet radius and irradiance require accurate stellar parameters, but most Kepler systems are faint, making spectroscopy difficult and prioritization of targets desirable. The parameters of 2035 host stars were estimated by Bayesian analysis and the probabilities p{sub HZ} that 2738 candidate or confirmed planets orbit in the habitable zone were calculated. Dartmouth Stellar Evolution Program models were compared to photometry from the Kepler Input Catalog, priors for stellar mass, age, metallicity and distance, and planet transit duration. The analysis yielded probability density functions for calculating confidence intervals of planet radius and stellar irradiance, as well as p{sub HZ}. Sixty-two planets have p{sub HZ} > 0.5 and a most probable stellar irradiance within habitable zone limits. Fourteen of these have radii less than twice the Earth; the objects most resembling Earth in terms of radius and irradiance are KOIs 2626.01 and 3010.01, which orbit late K/M-type dwarf stars. The fraction of Kepler dwarf stars with Earth-size planets in the habitable zone ({eta}{sub Circled-Plus }) is 0.46, with a 95% confidence interval of 0.31-0.64. Parallaxes from the Gaia mission will reduce uncertainties by more than a factor of five and permit definitive assignments of transiting planets to the habitable zones of Kepler stars.

  7. THE HABITABLE ZONES OF PRE-MAIN-SEQUENCE STARS

    SciTech Connect

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2014-12-20

    We calculate the pre-main-sequence habitable zone (HZ) for stars of spectral classes F-M. The spatial distribution of liquid water and its change during the pre-main-sequence phase of protoplanetary systems is important for understanding how planets become habitable. Such worlds are interesting targets for future missions because the coolest stars could provide habitable conditions for up to 2.5 billion years post-accretion. Moreover, for a given star type, planetary systems are more easily resolved because of higher pre-main-sequence stellar luminosities, resulting in larger planet-star separation for cool stars than is the case for the traditional main-sequence (MS) HZ. We use one-dimensional radiative-convective climate and stellar evolutionary models to calculate pre-main-sequence HZ distances for F1-M8 stellar types. We also show that accreting planets that are later located in the traditional MS HZ orbiting stars cooler than a K5 (including the full range of M stars) receive stellar fluxes that exceed the runaway greenhouse threshold, and thus may lose substantial amounts of water initially delivered to them. We predict that M-star planets need to initially accrete more water than Earth did, or, alternatively, have additional water delivered later during the long pre-MS phase to remain habitable. Our findings are also consistent with recent claims that Venus lost its water during accretion.

  8. THESIS: terrestrial and habitable zone infrared spectroscopy spacecraft

    NASA Astrophysics Data System (ADS)

    Vasisht, G.; Swain, M. R.; Akeson, R. L.; Burrows, A.; Deming, D.; Grillmair, C. J.; Greene, T. P.

    2008-07-01

    THESIS is a concept for a medium class mission designed for spectroscopic characterization of extrasolar planets between 2-14 microns. The concept leverages off the recent first-steps made by Spitzer and Hubble in characterizing the atmospheres of alien gas giants. Under favourable circumstances, THESIS is capable of identifying biogenic molecules in habitable-zone planets, thereby determining conditions on worlds where life might exist. By systematically characterizing many worlds, from rocky planets to gas-giants, THESIS would deliver transformational science of profound interest to astronomers and the general public.

  9. THESIS: the terrestrial habitable-zone exoplanet spectroscopy infrared spacecraft

    NASA Astrophysics Data System (ADS)

    Swain, Mark R.; Vasisht, Gautam; Henning, Thomas; Tinetti, Giovanna; Beaulieu, Jean-Phillippe

    2010-07-01

    THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a medium/Probe class exoplanet mission. Building on the recent Spitzer successes in exoplanet characterization, THESIS would extend these types of measurements to super-Earth-like planets. A strength of the THESIS concept is simplicity, low technical risk, and modest cost. The mission concept has the potential to dramatically advance our understanding of conditions on extrasolar worlds and could serve as a stepping stone to more ambitious future missions. We envision this mission as a joint US-European effort with science objectives that resonate with both the traditional astronomy and planetary science communities.

  10. Stellar Activity Mimics a Habitable-zone Planet around Kapteyn's Star

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Roy, Arpita; Mahadevan, Suvrath

    2015-06-01

    Kapteyn’s star is an old M subdwarf believed to be a member of the Galactic halo population of stars. A recent study has claimed the existence of two super-Earth planets around the star based on radial velocity (RV) observations. The innermost of these candidate planets—Kapteyn b (P = 48 days)—resides within the circumstellar habitable zone (HZ). Given recent progress in understanding the impact of stellar activity in detecting planetary signals, we have analyzed the observed HARPS data for signatures of stellar activity. We find that while Kapteyn’s star is photometrically very stable, a suite of spectral activity indices reveal a large-amplitude rotation signal, and we determine the stellar rotation period to be 143 days. The spectral activity tracers are strongly correlated with the purported RV signal of “planet b,” and the 48-day period is an integer fraction (1/3) of the stellar rotation period. We conclude that Kapteyn b is not a planet in the HZ, but an artifact of stellar activity.

  11. Toward the minimum inner edge distance of the habitable zone

    SciTech Connect

    Zsom, Andras; Seager, Sara; De Wit, Julien; Stamenković, Vlada

    2013-12-01

    We explore the minimum distance from a host star where an exoplanet could potentially be habitable in order not to discard close-in rocky exoplanets for follow-up observations. We find that the inner edge of the Habitable Zone for hot desert worlds can be as close as 0.38 AU around a solar-like star, if the greenhouse effect is reduced (∼1% relative humidity) and the surface albedo is increased. We consider a wide range of atmospheric and planetary parameters such as the mixing ratios of greenhouse gases (water vapor and CO{sub 2}), surface albedo, pressure, and gravity. Intermediate surface pressure (∼1-10 bars) is necessary to limit water loss and to simultaneously sustain an active water cycle. We additionally find that the water loss timescale is influenced by the atmospheric CO{sub 2} level, because it indirectly influences the stratospheric water mixing ratio. If the CO{sub 2} mixing ratio of dry planets at the inner edge is smaller than 10{sup –4}, the water loss timescale is ∼1 billion years, which is considered here too short for life to evolve. We also show that the expected transmission spectra of hot desert worlds are similar to an Earth-like planet. Therefore, an instrument designed to identify biosignature gases in an Earth-like atmosphere can also identify similarly abundant gases in the atmospheres of dry planets. Our inner edge limit is closer to the host star than previous estimates. As a consequence, the occurrence rate of potentially habitable planets is larger than previously thought.

  12. Accounting planetary habitability using non standard conditions. Impact on the definition of Habitable Zone

    NASA Astrophysics Data System (ADS)

    Simoncini, E.; Delgado-Bonal, A.; Martin-Torres, F. J.

    2012-12-01

    Although during the 1960s, atmospheric disequilibrium has been proposed as a sign of habitability of Earth and, in general, of a planet [1, 2], no calculation has been done until now. In order to provide a first evaluation of Earth's atmospheric disequilibrium, we have developed a new formulation to account for the thermodynamic conditions of a wide range of planetary atmospheres, from terrestrial planets to icy satellites, to hot exoplanets. Using this new formulation, we estimate the departure of different planetary atmospheres from their equilibrium conditions, computing the dissipation of free energy due to all chemical processes [3]. In particular, we focus on the effect of our proposed changes on O2/CO2 chemistry (comparing Io satellite atmosphere and Earth Mesosphere), N2 (Venus, Earth and Titan) and H2O stability on terrestrial planets and exoplanets. Our results have an impact in the definition of Habitable Zone by considering appropriate physical-chemical conditions of planetary atmospheres. References [1] J. E. Lovelock, A physical basis for life detection experiments. Nature, 207, 568-570 (1965). [2] J. E. Lovelock, Thermodynamics and the recognition of alien biospheres. Proc. R. Soc. Lond., B. 189, 167 - 181 (1975). [3] Simoncini E., Delgado-Bonal A., Martin-Torres F.J., Accounting thermodynamic conditions in chemical models of planetary atmospheres. Submitted to Astrophysical Journal.

  13. Habitable Zones of Post-Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2016-05-01

    Once a star leaves the main sequence and becomes a red giant, its Habitable Zone (HZ) moves outward, promoting detectable habitable conditions at larger orbital distances. We use a one-dimensional radiative-convective climate and stellar evolutionary models to calculate post-MS HZ distances for a grid of stars from 3700 to 10,000 K (˜M1 to A5 stellar types) for different stellar metallicities. The post-MS HZ limits are comparable to the distances of known directly imaged planets. We model the stellar as well as planetary atmospheric mass loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases for super-Moons to super-Earths. A planet can stay between 200 million years up to 9 Gyr in the post-MS HZ for our hottest and coldest grid stars, respectively, assuming solar metallicity. These numbers increase for increased stellar metallicity. Total atmospheric erosion only occurs for planets in close-in orbits. The post-MS HZ orbital distances are within detection capabilities of direct imaging techniques.

  14. ON THE HABITABLE ZONES OF CIRCUMBINARY PLANETARY SYSTEMS

    SciTech Connect

    Kane, Stephen R.; Hinkel, Natalie R.

    2013-01-01

    The effect of the stellar flux on exoplanetary systems is becoming an increasingly important property as more planets are discovered in the habitable zone (HZ). The Kepler mission has recently uncovered circumbinary planets with relatively complex HZs due to the combined flux from the binary host stars. Here, we derive HZ boundaries for circumbinary systems and show their dependence on the stellar masses, separation, and time while accounting for binary orbital motion and the orbit of the planet. We include stability regimes for planetary orbits in binary systems with respect to the HZ. These methods are applied to several of the known circumbinary planetary systems such as Kepler-16, 34, 35, and 47. We also quantitatively show the circumstances under which single-star approximations break down for HZ calculations.

  15. ABIOTIC OXYGEN-DOMINATED ATMOSPHERES ON TERRESTRIAL HABITABLE ZONE PLANETS

    SciTech Connect

    Wordsworth, Robin; Pierrehumbert, Raymond

    2014-04-20

    Detection of life on other planets requires identification of biosignatures, i.e., observable planetary properties that robustly indicate the presence of a biosphere. One of the most widely accepted biosignatures for an Earth-like planet is an atmosphere where oxygen is a major constituent. Here we show that lifeless habitable zone terrestrial planets around any star type may develop oxygen-dominated atmospheres as a result of water photolysis, because the cold trap mechanism that protects H{sub 2}O on Earth is ineffective when the atmospheric inventory of non-condensing gases (e.g., N{sub 2}, Ar) is low. Hence the spectral features of O{sub 2} and O{sub 3} alone cannot be regarded as robust signs of extraterrestrial life.

  16. The Catalog of Earth-Like Exoplanet Survey Targets (CELESTA): A Database of Habitable Zones Around Nearby Stars

    NASA Astrophysics Data System (ADS)

    Chandler, Colin Orion; McDonald, Iain; Kane, Stephen R.

    2016-03-01

    Locating planets in circumstellar habitable zones (HZs) is a priority for many exoplanet surveys. Space-based and ground-based surveys alike require robust toolsets to aid in target selection and mission planning. We present the Catalog of Earth-Like Exoplanet Survey Targets (CELESTA), a database of HZs around 37,000 nearby stars. We calculated stellar parameters, including effective temperatures, masses, and radii, and we quantified the orbital distances and periods corresponding to the circumstellar HZs. We gauged the accuracy of our predictions by contrasting CELESTA’s computed parameters to observational data. We ascertain a potential return on investment by computing the number of HZs probed for a given survey duration. A versatile framework for extending the functionality of CELESTA into the future enables ongoing comparisons to new observations, and recalculations when updates to HZ models, stellar temperatures, or parallax data become available. We expect to upgrade and expand CELESTA using data from the Gaia mission as the data become available.

  17. A Catalog of Kepler Habitable Zone Exoplanet Candidates

    NASA Astrophysics Data System (ADS)

    Kane, Stephen R.; Hill, Michelle L.; Kasting, James F.; Kopparapu, Ravi Kumar; Quintana, Elisa V.; Barclay, Thomas; Batalha, Natalie M.; Borucki, William J.; Ciardi, David R.; Haghighipour, Nader; Hinkel, Natalie R.; Kaltenegger, Lisa; Selsis, Franck; Torres, Guillermo

    2016-10-01

    The NASA Kepler mission ha s discovered thousands of new planetary candidates, many of which have been confirmed through follow-up observations. A primary goal of the mission is to determine the occurrence rate of terrestrial-size planets within the Habitable Zone (HZ) of their host stars. Here we provide a list of HZ exoplanet candidates from the Kepler Q1–Q17 Data Release 24 data-vetting process. This work was undertaken as part of the Kepler HZ Working Group. We use a variety of criteria regarding HZ boundaries and planetary sizes to produce complete lists of HZ candidates, including a catalog of 104 candidates within the optimistic HZ and 20 candidates with radii less than two Earth radii within the conservative HZ. We cross-match our HZ candidates with the stellar properties and confirmed planet properties from Data Release 25 to provide robust stellar parameters and candidate dispositions. We also include false-positive probabilities recently calculated by Morton et al. for each of the candidates within our catalogs to aid in their validation. Finally, we performed dynamical analysis simulations for multi-planet systems that contain candidates with radii less than two Earth radii as a step toward validation of those systems.

  18. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES

    SciTech Connect

    Kopparapu, Ravi Kumar; Ramirez, Ramses; Kasting, James F.; Eymet, Vincent; Robinson, Tyler D.; Domagal-Goldman, Shawn; Meadows, Victoria; Mahadevan, Suvrath; Terrien, Ryan C.; Deshpande, Rohit

    2013-03-10

    Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO{sub 2} atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67 AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H{sub 2}O and CO{sub 2} absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T{sub eff} {approx}< 5000 K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host star's spectral type. We suggest that

  19. Habitable Zones Around Stars and the Search for Extraterrestrial Life

    NASA Astrophysics Data System (ADS)

    Kasting, James

    1998-12-01

    The recent discovery of extrasolar giant planets has led to new interest in the possibility that life might exist on Earth-like planets around other stars. Although the existence of such planets has not yet been demonstrated, there are good reasons to believe that they are relatively commonplace. Planetary formation is thought to be a natural companion to star formation, at least in the case of single stars. The habitable zone (HZ) - the region where liquid water can exist on a planet's surface - is also thought to be relatively wide. Calculations by Kasting et al. (Icarus 101, 108, 1993) placed a lower limit of 0.4 AU for the width of the current HZ around the Sun. This estimate presumed that the outer edge of the HZ was set by the formation of CO2 clouds. Recent calculations by Forget and Pierrehumbert (Science 278, 1273, 1997) suggest that this assumption is too conservative because CO2 clouds should tend to warm a planet's surface. Hence, the HZ is probably wider than previously thought, and the probability of finding a planet within it in a given planetary system is therefore quite high, perhaps approaching unity. These ideas about the existence of habitable planets are, for the moment, just speculation. Within the next 20 years, however, it may be able to test them by observing extrasolar planets with NASA's proposed Terrestrial Planet Finder (TPF) mission. In theory, TPF will not only find Earth-sized planets, but it will also perform thermal-IR spectroscopy on their atmospheres. A strong 9.6micron ozone band would, in most cases, be a good indicator for life (because O3 is produced photochemically from O2, and O2 is produced mainly by photosynthesis). Some possible exceptions to this criterion will be discussed. An early-Earth type planet would not be expected to have O2 and O3, but it might have high concentrations of biologically-produced CH4. CH4 has a strong absorption feature near 7.7 microns that should be observable by TPF. The possibility of using

  20. Limit Cycles Can Reduce the Width of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Haqq-Misra, Jacob; Kopparapu, Ravi Kumar; Batalha, Natasha E.; Harman, Chester E.; Kasting, James F.

    2016-08-01

    The liquid water habitable zone (HZ) describes the orbital distance at which a terrestrial planet can maintain above-freezing conditions through regulation by the carbonate-silicate cycle. Recent calculations have suggested that planets in the outer regions of the HZ cannot maintain stable, warm climates, but rather should oscillate between long, globally glaciated states and shorter periods of climatic warmth. Such conditions, similar to “Snowball Earth” episodes experienced on Earth, would be inimical to the development of complex land life, including intelligent life. Here, we build on previous studies with an updated energy balance climate model to calculate this “limit cycle” region of the HZ where such cycling would occur. We argue that an abiotic Earth would have a greater CO2 partial pressure than today because plants and other biota help to enhance the storage of CO2 in soil. When we tune our abiotic model accordingly, we find that limit cycles can occur but that previous calculations have overestimated their importance. For G stars like the Sun, limit cycles occur only for planets with CO2 outgassing rates less than that on modern Earth. For K- and M-star planets, limit cycles should not occur; however, M-star planets may be inhospitable to life for other reasons. Planets orbiting late G-type and early K-type stars retain the greatest potential for maintaining warm, stable conditions. Our results suggest that host star type, planetary volcanic activity, and seafloor weathering are all important factors in determining whether planets will be prone to limit cycling.

  1. TERRESTRIAL, HABITABLE-ZONE EXOPLANET FREQUENCY FROM KEPLER

    SciTech Connect

    Traub, Wesley A.

    2012-01-20

    Data from Kepler's first 136 days of operation are analyzed to determine the distribution of exoplanets with respect to radius, period, and host-star spectral type. The analysis is extrapolated to estimate the percentage of terrestrial, habitable-zone (HZ) exoplanets. The Kepler census is assumed to be complete for bright stars (magnitude <14.0) having transiting planets >0.5 Earth radius and periods <42 days. It is also assumed that the size distribution of planets is independent of orbital period and that there are no hidden biases in the data. Six significant statistical results are found: there is a paucity of small planet detections around faint target stars, probably an instrumental effect; the frequency of mid-size planet detections is independent of whether the host star is bright or faint; there are significantly fewer planets detected with periods <3 days, compared to longer periods, almost certainly an astrophysical effect; the frequency of all planets in the population with periods <42 days is 29%, broken down as terrestrials 9%, ice giants 18%, and gas giants 3%; the population has a planet frequency with respect to period which follows a power-law relation dN/dP {approx} P{sup {beta}-1}, with {beta} {approx_equal} 0.71 {+-} 0.08; and an extrapolation to longer periods gives the frequency of terrestrial planets in the HZs of FGK stars as {eta}{sub Circled-Plus} {approx_equal} (34 {+-} 14)%. Thus about one-third of FGK stars are predicted to have at least one terrestrial, HZ planet.

  2. Evolution of galaxy habitability

    NASA Astrophysics Data System (ADS)

    Gobat, R.; Hong, S. E.

    2016-08-01

    We combine a semi-analytic model of galaxy evolution with constraints on circumstellar habitable zones and the distribution of terrestrial planets in order to probe the suitability of galaxies of different mass and type to host habitable planets, and how it evolves with time. We find that the fraction of stars with terrestrial planets in their habitable zone (known as habitability) depends only weakly on galaxy mass, with a maximum around 4 × 1010M⊙. We estimate that 0.7% of all stars in Milky Way-type galaxies to host a terrestrial planet within their habitable zone, consistent with the value derived from Kepler observations. On the other hand, the habitability of passive galaxies is slightly but systematically higher, unless we assume an unrealistically high sensitivity of planets to supernovae. We find that the overall habitability of galaxies has not changed significantly in the last ~8 Gyr, with most of the habitable planets in local disk galaxies having formed ~1.5 Gyr before our own solar system. Finally, we expect that ~1.4 ×109 planets similar to present-day Earth have existed so far in our galaxy.

  3. Astronomers Find First Earth-like Planet in Habitable Zone

    NASA Astrophysics Data System (ADS)

    2007-04-01

    Astronomers have discovered the most Earth-like planet outside our Solar System to date, an exoplanet with a radius only 50% larger than the Earth and capable of having liquid water. Using the ESO 3.6-m telescope, a team of Swiss, French and Portuguese scientists discovered a super-Earth about 5 times the mass of the Earth that orbits a red dwarf, already known to harbour a Neptune-mass planet. The astronomers have also strong evidence for the presence of a third planet with a mass about 8 Earth masses. ESO PR Photo 22a/07 ESO PR Photo 22a/07 The Planetary System Around Gliese 581 This exoplanet - as astronomers call planets around a star other than the Sun - is the smallest ever found up to now [1] and it completes a full orbit in 13 days. It is 14 times closer to its star than the Earth is from the Sun. However, given that its host star, the red dwarf Gliese 581 [2], is smaller and colder than the Sun - and thus less luminous - the planet nevertheless lies in the habitable zone, the region around a star where water could be liquid! The planet's name is Gliese 581 c. "We have estimated that the mean temperature of this super-Earth lies between 0 and 40 degrees Celsius, and water would thus be liquid," explains Stéphane Udry, from the Geneva Observatory (Switzerland) and lead-author of the paper reporting the result. "Moreover, its radius should be only 1.5 times the Earth's radius, and models predict that the planet should be either rocky - like our Earth - or fully covered with oceans," he adds. ESO PR Photo 22c/07 ESO PR Photo 22c/07 The star Gliese 581 "Liquid water is critical to life as we know it," avows Xavier Delfosse, a member of the team from Grenoble University (France). "Because of its temperature and relative proximity, this planet will most probably be a very important target of the future space missions dedicated to the search for extra-terrestrial life. On the treasure map of the Universe, one would be tempted to mark this planet with an X." The

  4. A METHOD FOR COUPLING DYNAMICAL AND COLLISIONAL EVOLUTION OF DUST IN CIRCUMSTELLAR DISKS: THE EFFECT OF A DEAD ZONE

    SciTech Connect

    Charnoz, Sebastien; Taillifet, Esther

    2012-07-10

    Dust is a major component of protoplanetary and debris disks as it is the main observable signature of planetary formation. However, since dust dynamics are size-dependent (because of gas drag or radiation pressure) any attempt to understand the full dynamical evolution of circumstellar dusty disks that neglect the coupling of collisional evolution with dynamical evolution is thwarted because of the feedback between these two processes. Here, a new hybrid Lagrangian/Eulerian code is presented that overcomes some of these difficulties. The particles representing 'dust clouds' are tracked individually in a Lagrangian way. This system is then mapped on an Eulerian spatial grid, inside the cells of which the local collisional evolutions are computed. Finally, the system is remapped back in a collection of discrete Lagrangian particles, keeping their number constant. An application example of dust growth in a turbulent protoplanetary disk at 1 AU is presented. First, the growth of dust is considered in the absence of a dead zone and the vertical distribution of dust is self-consistently computed. It is found that the mass is rapidly dominated by particles about a fraction of a millimeter in size. Then the same case with an embedded dead zone is investigated and it is found that coagulation is much more efficient and produces, in a short timescale, 1-10 cm dust pebbles that dominate the mass. These pebbles may then be accumulated into embryo-sized objects inside large-scale turbulent structures as shown recently.

  5. Habitable Evaporated Cores: Converting Mini-Neptunes into Super- Earths in the Habitable Zone of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Luger, R.; Barnes, R.; Lopez, E.; Fortney, J.; Jackson, B.; Meadows, V.

    2014-03-01

    The low masses and luminosities of M dwarfs make them ideal targets for thedetection of terrestrial planets in the habitable zone (HZ). However, studies suggest that planets formed only from material in the HZs of these stars are likely to be small and dry (e.g., Raymond et al. 2007). As a result, many of the planets that will be detected in the HZ by upcoming missions are probably the result of migration from beyond the snow line, and may have formed with large H/He envelopes (so-called mini-Neptunes). Here we show that photoevaporation and Roche lobe overflow of these planets can lead to the complete loss of their gaseous envelopes, transforming them into potentially habitable worlds, which we call “habitable evaporated cores”. We couple the planet structure models of Lopez et al. (2012) with a simple Roche lobe overflow scheme and the X-ray/extreme ultraviolet (XUV)-induced mass loss model of Erkaev et al. (2007). We also couple the orbital effects of anisotropic mass loss with tidal evolution and show that this coupling can lead to orbital changes that significantly enhance the mass loss rate.Habitable evaporated cores are most likely to form from small mini-Neptunes (≲4 M⊕) with large (≲50%) initial hydrogen fractions orbiting M4 stars and later. Given the steep decrease in stellar XUV flux with time (Ribas et al. 2005), mass loss is negligible after ~1 Gyr, at which point a habitable evaporated core is capable of degassing and maintaining a secondary atmosphere. This process may be the dominant formation mechanism for habitable planets around M dwarfs, and may be discovered by missions such as TESS and PLATO.

  6. Accreting Planets in the Habitable Zones of M-Stars Are Too Hot to Retain Liquid Water

    NASA Astrophysics Data System (ADS)

    Ramirez, R. M.; Kopparapu, R. K.; Kasting, J. F.

    2014-12-01

    Previous studies1,2 have shown that young accreting planets in the habitable zones (HZ) of pre-main sequence M-stars face major dynamical hurdles in both the retention and acquisition of volatiles. High collision rates with other bodies, short planetary formation timescales, and inefficient radial mixing are among the major problems encountered. However, another equally-important concern is the high temperatures predicted within the circumstellar disk, greatly hindering volatile delivery. We use a 1-D radiative-convective climate model to demonstrate that the fluxes received by accreting planets orbiting late K-M stars exceed the runaway greenhouse threshold. Given that M-stars are disproportionately brighter in their pre main-sequence lifetimes as compared to Sun-like stars (i.e. G-class insolation), planets orbiting M-stars are especially susceptible to the runaway, with intensity and duration increasing for cooler M-stars. Thus, accreting planetesimals in the HZs of M-stars could be too hot to maintain liquid water on their surfaces. In contrast, accreting planets located at Earth's distance (or farther) from a pre-main sequence solar analogue (i.e. G2 spectral class) receive stellar fluxes well below that of the runaway point. Our results suggest that future missions and surveys can improve their prospects of finding alien life by targeting HZ planets orbiting Sun-like stars. Moreover, our findings support recent claims that Venus may have lost its water during accretion3. REFERENCES1. Lissauer, Jack J. "Planets formed in habitable zones of M dwarf stars probably are deficient in volatiles." The Astrophysical Journal Letters 660.2 (2007): L149. 2. Raymond, Sean N., John Scalo, and Victoria S. Meadows. "A decreased probability of habitable planet formation around low-mass stars." The Astrophysical Journal 669.1 (2007): 606. 3. Hamano, Keiko, Yutaka Abe, and Hidenori Genda. "Emergence of two types of terrestrial planet on solidification of magma ocean." Nature

  7. INDICATION OF INSENSITIVITY OF PLANETARY WEATHERING BEHAVIOR AND HABITABLE ZONE TO SURFACE LAND FRACTION

    SciTech Connect

    Abbot, Dorian S.; Ciesla, Fred J.; Cowan, Nicolas B.

    2012-09-10

    It is likely that unambiguous habitable zone terrestrial planets of unknown water content will soon be discovered. Water content helps determine surface land fraction, which influences planetary weathering behavior. This is important because the silicate-weathering feedback determines the width of the habitable zone in space and time. Here a low-order model of weathering and climate, useful for gaining qualitative understanding, is developed to examine climate evolution for planets of various land-ocean fractions. It is pointed out that, if seafloor weathering does not depend directly on surface temperature, there can be no weathering-climate feedback on a waterworld. This would dramatically narrow the habitable zone of a waterworld. Results from our model indicate that weathering behavior does not depend strongly on land fraction for partially ocean-covered planets. This is powerful because it suggests that previous habitable zone theory is robust to changes in land fraction, as long as there is some land. Finally, a mechanism is proposed for a waterworld to prevent complete water loss during a moist greenhouse through rapid weathering of exposed continents. This process is named a 'waterworld self-arrest', and it implies that waterworlds can go through a moist greenhouse stage and end up as planets like Earth with partial ocean coverage. This work stresses the importance of surface and geologic effects, in addition to the usual incident stellar flux, for habitability.

  8. Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs.

    PubMed

    Luger, R; Barnes, R; Lopez, E; Fortney, J; Jackson, B; Meadows, V

    2015-01-01

    We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution, and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with ∼1 M⊕ solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars. PMID:25590532

  9. Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs.

    PubMed

    Luger, R; Barnes, R; Lopez, E; Fortney, J; Jackson, B; Meadows, V

    2015-01-01

    We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution, and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with ∼1 M⊕ solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars.

  10. THERMAL ESCAPE FROM SUPER EARTH ATMOSPHERES IN THE HABITABLE ZONES OF M STARS

    SciTech Connect

    Tian Feng

    2009-09-20

    A fundamental question for exoplanet habitability is the long-term stability of the planet's atmosphere. We numerically solve a one-dimensional multi-component hydrodynamic thermosphere/ionosphere model to examine the thermal and chemical responses of the primary CO{sub 2} atmospheres of heavy super Earths (6-10 Earth masses) in the habitable zones of typical low-mass M stars to the enhanced soft X-ray and ultraviolet (XUV) fluxes associated with the prolonged high-activity levels of M stars. The results show that such atmospheres are stable against thermal escape, even for M stars XUV enhancements as large as 1000 compared to the present Earth. It is possible that the CO{sub 2}-dominant atmospheres of super Earths in the habitable zones of M stars could potentially contain modest amount of free oxygen as a result of more efficient atmosphere escape of carbon than oxygen instead of photosynthesis.

  11. Early-Type Stars: Most Favorable Targets for Astrometrically Detectable Planets in the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Ford, Eric B.; Fischer, Debra A.

    2003-07-01

    Early-type stars appear to be a difficult place to look for planets astrometrically. First, they are relatively heavy, and for fixed planetary mass the astrometric signal falls inversely as the stellar mass. Second, they are relatively rare (and so tend to be more distant), and for fixed orbital separation the astrometric signal falls inversely as the distance. Nevertheless, because early-type stars are relatively more luminous, their habitable zones are at larger semimajor axis. Since astrometric signal scales directly as orbital size, this gives early-type stars a strong advantage, which more than compensates for the other two factors. Using the Hipparcos Catalog, we show that F and A stars constitute the majority of viable targets for astrometric searches for planets with semimajor axes currently in the habitable zone. Thus, astrometric surveys are complementary to transit searches, which are primarily sensitive to habitable planets around late-type stars.

  12. The Effect of Carbon Dioxide (CO 2) Ice Cloud Condensation on the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Lincowski, Andrew; Meadows, Victoria; Robinson, Tyler D.; Crisp, David

    2016-10-01

    The currently accepted outer limit of the habitable zone (OHZ) is defined by the "maximum greenhouse" limit, where Rayleigh scattering from additional CO2 gas overwhelms greenhouse warming. However, this long-standing definition neglects the radiative effects of CO2 clouds (Kopparapu, 2013); this omission was justified based on studies using the two-stream approximation, which found CO2 clouds to be highly likely to produce a net warming. However, recent comparisons of the radiative effect of CO2 clouds using both a two-stream and multi-stream radiative transfer model (Kitzmann et al, 2013; Kitzmann, 2016) found that the warming effect was reduced when the more sophisticated multi-stream models were used. In many cases CO2 clouds caused a cooling effect, meaning that their impact on climate could not be neglected when calculating the outer edge of the habitable zone. To better understand the impact of CO2 ice clouds on the OHZ, we have integrated CO2 cloud condensation into a versatile 1-D climate model for terrestrial planets (Robinson et al, 2012) that uses the validated multi-stream SMART radiative transfer code (Meadows & Crisp, 1996; Crisp, 1997) with a simple microphysical model. We present preliminary results on the habitable zone with self-consistent CO2 clouds for a range of atmospheric masses, compositions and host star spectra, and the subsequent effect on surface temperature. In particular, we evaluate the habitable zone for TRAPPIST-1d (Gillon et al, 2016) with a variety of atmospheric compositions and masses. We present reflectance and transit spectra of these cold terrestrial planets. We identify any consequences for the OHZ in general and TRAPPIST-1d in particular. This more comprehensive treatment of the OHZ could impact our understanding of the distribution of habitable planets in the universe, and provide better constraints for statistical target selection techniques, such as the habitability index (Barnes et al, 2015), for missions like JWST

  13. TERRESTRIAL PLANET FORMATION AROUND THE CIRCUMBINARY HABITABLE ZONE: INWARD MIGRATION IN THE PLANETESIMAL SWARM

    SciTech Connect

    Gong Yanxiang; Zhou Jilin; Xie Jiwei E-mail: zhoujl@nju.edu.cn

    2013-01-20

    According to the core accretion theory, circumbinary embryos can form only beyond a critical semimajor axis (CSMA). However, due to the relatively high density of solid materials in the inner disk, a significant amount of small planetesimals must exist in the inner zone when embryos form outside this CSMA. Thus, embryo migration induced by the planetesimal swarm is possible after gas disk depletion. Through numerical simulations, we found that (1) the scattering-driven inward migration of embryos is robust and planets can form in the habitable zone if we adopt a mass distribution of an MMSN-like disk; (2) the total mass of the planetesimals in the inner region and continuous embryo-embryo scattering are two key factors that cause significant embryo migrations; and (3) the scattering-driven migration of embryos is a natural water-delivery mechanism. We propose that planet detections should focus on the close binary with its habitable zone near CSMA.

  14. Habitable zones around low mass stars and the search for extraterrestrial life.

    PubMed

    Kasting, J F

    1997-06-01

    Habitable planets are likely to exist around stars not too different from the Sun if current theories about terrestrial climate evolution are correct. Some of these planets may have evolved life, and some of the inhabited planets may have evolved O2-rich atmospheres. Such atmospheres could be detected spectroscopically on planets around nearby stars using a space-based interferometer to search for the 9.6 micron band of O3. Planets with O2-rich atmospheres that lie within the habitable zone around their parent star are, in all probability, inhabited.

  15. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars

    NASA Astrophysics Data System (ADS)

    Leconte, Jérémy; Wu, Hanbo; Menou, Kristen; Murray, Norman

    2015-02-01

    Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets’ rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere.

  16. TRANSIT SURVEYS FOR EARTHS IN THE HABITABLE ZONES OF WHITE DWARFS

    SciTech Connect

    Agol, Eric

    2011-04-20

    To date the search for habitable Earth-like planets has primarily focused on nuclear burning stars. I propose that this search should be expanded to cool white dwarf stars that have expended their nuclear fuel. I define the continuously habitable zone of white dwarfs and show that it extends from {approx}0.005 to 0.02 AU for white dwarfs with masses from 0.4 to 0.9 M{sub sun}, temperatures less than {approx}10{sup 4} K, and habitable durations of at least 3 Gyr. As they are similar in size to Earth, white dwarfs may be deeply eclipsed by terrestrial planets that orbit edge-on, which can easily be detected with ground-based telescopes. If planets can migrate inward or reform near white dwarfs, I show that a global robotic telescope network could carry out a transit survey of nearby white dwarfs placing interesting constraints on the presence of habitable Earths. If planets were detected, I show that the survey would favor detection of planets similar to Earth: similar size, temperature, and rotation period, and host star temperatures similar to the Sun. The Large Synoptic Survey Telescope could place even tighter constraints on the frequency of habitable Earths around white dwarfs. The confirmation and characterization of these planets might be carried out with large ground and space telescopes.

  17. The 1 AU region around M-dwarfs as a habitable zone for exotic life

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.

    2009-12-01

    A stringent test for the hypothesis that life is a general outcome of suitable physical and chemical processes is to search for life in planetary environments very different from that on Earth. Saturn’s moon Titan is one such target where hydrocarbon seas might host an exotic type of life. Further, Titan represents a planetary environment potentially abundant throughout the cosmos, because its effective temperature corresponds to that experienced by a body orbiting ~1 AU from a late M-dwarf, and suitable for direct spectroscopic study. Unlike the classical liquid-water habitable zone at ~0.1 AU from an M-dwarf, where tidal locking and effects of flares render habitability doubtful, the 1 AU zone is much less severe. A search for rocky/icy exoplanets with methane-rich atmospheres at appropriate distances from M-dwarfs--the cosmos' most abundant main sequence type-- would put exploration of Titan in a cosmic context.

  18. ASTROPHYSICAL PARAMETERS AND HABITABLE ZONE OF THE EXOPLANET HOSTING STAR GJ 581

    SciTech Connect

    Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David R.; Boyajian, Tabetha S.; McAlister, Harold A.; Henry, Todd J.; Jao, Wei-Chun; Riedel, Adric R.; Van Belle, Gerard T.; Lopez-Morales, Mercedes; Subasavage, John P.; Schaefer, Gail; Ten Brummelaar, Theo A.; Sturmann, Laszlo; Sturmann, Judit; Mazingue, Jude; Turner, Nils H.; Farrington, Chris; Goldfinger, P. J.; Ridgway, Stephen

    2011-03-10

    GJ 581 is an M dwarf host of a multiplanet system. We use long-baseline interferometric measurements from the CHARA Array, coupled with trigonometric parallax information, to directly determine its physical radius to be 0.299 {+-} 0.010 R{sub sun}. Literature photometry data are used to perform spectral energy distribution fitting in order to determine GJ 581's effective surface temperature T{sub EFF} = 3498 {+-} 56 K and its luminosity L = 0.01205 {+-} 0.00024 L{sub sun}. From these measurements, we recompute the location and extent of the system's habitable zone and conclude that two of the planets orbiting GJ 581, planets d and g, spend all or part of their orbit within or just on the edge of the habitable zone.

  19. Evolution of the habitable zone of low-mass stars. Detailed stellar models and analytical relationships for different masses and chemical compositions

    NASA Astrophysics Data System (ADS)

    Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2014-07-01

    Context. The habitability of an exoplanet is assessed by determining the times at which its orbit lies in the circumstellar habitable zone (HZ). This zone evolves with time following the stellar luminosity variation, which means that the time spent in the HZ depends on the evolution of the host star. Aims: We study the temporal evolution of the HZ of low-mass stars - only due to stellar evolution - and evaluate the related uncertainties. These uncertainties are then compared with those due to the adoption of different climate models. Methods: We computed stellar evolutionary tracks from the pre-main sequence phase to the helium flash at the red-giant branch tip for stars with masses in the range [0.70-1.10] M⊙, metallicity Z in the range [0.005-0.04], and various initial helium contents. By adopting a reference scenario for the HZ computations, we evaluated several characteristics of the HZ, such as the distance from the host star at which the habitability is longest, the duration of this habitability, the width of the zone for which the habitability lasts one half of the maximum, and the boundaries of the continuously habitable zone (CHZ) for which the habitability lasts at least 4 Gyr. We developed analytical models, accurate to the percent level or lower, which allowed to obtain these characteristics in dependence on the mass and the chemical composition of the host star. Results: The metallicity of the host star plays a relevant role in determining the HZ. The importance of the initial helium content is evaluated here for the first time; it accounts for a variation of the CHZ boundaries as large as 30% and 10% in the inner and outer border. The computed analytical models allow the first systematic study of the variability of the CHZ boundaries that is caused by the uncertainty in the estimated values of mass and metallicity of the host star. An uncertainty range of about 30% in the inner boundary and 15% in the outer one were found. We also verified that

  20. Circumstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.; Mamon, G. A.

    1991-01-01

    Recent theoretical studies of circumstellar chemistry are discussed for both red-giant and protostellar winds. The generalized photochemical model is able to account for the recently discovered silicon-bearing molecules in the prototypical, C-rich, AGB star IRC + 10216. The surprising occurrence of CO in protostellar winds that are largely atomic is interpreted to be the result of the high density and the rapid decrease of the temperature with distance that is expected for such winds.

  1. THE HABITABLE ZONE OF EARTH-LIKE PLANETS WITH DIFFERENT LEVELS OF ATMOSPHERIC PRESSURE

    SciTech Connect

    Vladilo, Giovanni; Murante, Giuseppe; Silva, Laura; Provenzale, Antonello; Ferri, Gaia; Ragazzini, Gregorio

    2013-04-10

    As a contribution to the study of the habitability of extrasolar planets, we implemented a one-dimensional energy balance model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planet's surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p = 1/3 to 3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the efficiency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar-type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.

  2. MOA-2011-BLG-293LB: First microlensing planet possibly in the habitable zone

    SciTech Connect

    Batista, V.; Gould, A.; Yee, J. C.; Gaudi, B. S.; Beaulieu, J.-P.; Bennett, D. P.; Fukui, A.; Sumi, T.; Udalski, A. E-mail: gould@astronomy.ohio-state.edu E-mail: beaulieu@iap.fr E-mail: afukui@oao.nao.ac.jp E-mail: udalski@astrouw.edu.pl

    2014-01-01

    We used Keck adaptive optics observations to identify the first planet discovered by microlensing to lie in or near the habitable zone, i.e., at projected separation r = 1.1 ± 0.1 AU from its M{sub L} = 0.86 ± 0.06 M {sub ☉} host, being the highest microlensing mass definitely identified. The planet has a mass m{sub p} = 4.8 ± 0.3 M {sub Jup}, and could in principle have habitable moons. This is also the first planet to be identified as being in the Galactic bulge with good confidence: D{sub L} = 7.72 ± 0.44 kpc. The planet/host masses and distance were previously not known, but only estimated using Bayesian priors based on a Galactic model. These estimates had suggested that the planet might be a super-Jupiter orbiting an M dwarf, a very rare class of planets. We obtained high-resolution JHK images using Keck adaptive optics to detect the lens and so test this hypothesis. We clearly detect light from a G dwarf at the position of the event, and exclude all interpretations other than that this is the lens with high confidence (95%), using a new astrometric technique. The calibrated magnitude of the planet host star is H{sub L} = 19.16 ± 0.13. We infer the following probabilities for the three possible orbital configurations of the gas giant planet: 53% to be in the habitable zone, 35% to be near the habitable zone, and 12% to be beyond the snow line, depending on the atmospherical conditions and the uncertainties on the semimajor axis.

  3. Astrobiological Effects of Stellar Radiation in Circumstellar Environments

    NASA Astrophysics Data System (ADS)

    Cuntz, Manfred; Gurdemir, Levent; Guinan, Edward F.; Kurucz, Robert L.

    2006-10-01

    The centerpiece of all life on Earth is carbon-based biochemistry. Previous scientific research has suggested that biochemistry based on carbon may also play a decisive role in extraterrestrial life forms, i.e., alien life outside of Earth, if existent. In the following, we explore if carbon-based macromolecules (such as DNA) in the environments of stars other than the Sun are able to survive the effects of energetic stellar radiation, such as UV-C in the wavelength band between 200 and 290 nm. We focus on main-sequence stars akin to the Sun, but of hotter (F-type stars) and cooler (K- and M-type stars) surface temperature. Emphasis is placed on investigating the radiative environment in stellar habitable zones (HZs). Stellar habitable zones have an important relevance in astrobiology because they constitute circumstellar regions in which a planet of suitable size can have surface temperatures for water to exist in liquid form.

  4. Atmospheres and Oceans of Rocky Planets In and Beyond the Habitable Zones of M dwarfs

    NASA Astrophysics Data System (ADS)

    Tian, Feng

    2015-12-01

    he evolution of M dwarfs during their pre-main-sequence phase causes rocky planets in and beyond the habitable zones these stars to be in the runaway and moist greenhouse states. This scenario has been studied by three groups of researchers recently (Ramirez and Kaltenegger 2014, Tian and Ida 2015, Luger and Barnes 2015), and their consensus is that massive amount of water could have been lost during this time -- early evolution of M dwarfs could have changed the water contents of rocky planets around them, which could strongly influence the habitability of rocky planets around low mass stars. It has been proposed that dense oxygen dominant atmospheres (up to 2000 bars, Luger and Barnes 2015) because of rapid water loss. Is this true? If so, what's the condition for such atmospheres to exist and can they be maintained? On the other hand, what's the likelihood for sub-Neptunes to shrink into habitable planets under such environment? In general how is the habitability of planets around M dwarfs different from those around Sun-type stars? These are the questions we will attempt to address in this work.

  5. 3D Model Uncertainty in Estimating the Inner Edge of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.; Yang, J.; Wolf, E. T.; Leconte, J.; Merlis, T. M.; Koll, D. D. B.; Goldblatt, C.; Ding, F.; Forget, F.; Toon, B.

    2015-12-01

    Accurate estimates of the width of the habitable zone are critical for determining which exoplanets are potentially habitable and estimating the frequency of Earth-like planets in the galaxy. Recently, the inner edge of the habitable zone has been calculated using 3D atmospheric general circulation models (GCMs) that include the effects of subsaturation and clouds, but different models obtain different results. We study potential sources of differences in five GCMs through a series of comparisons of radiative transfer, clouds, and dynamical cores for a rapidly rotating planet around the Sun and a synchronously rotating planet around an M star. We find that: (1) Cloud parameterization leads to the largest differences among the models; (2) Differences in water vapor longwave radiative transfer are moderate as long as the surface temperature is lower than 360 K; (3) Differences in shortwave absorption influences atmospheric humidity of synchronously rotating planet through a positive feedback; (4) Differences in atmospheric dynamical core have a very small effect on the surface temperature; and (5) Rayleigh scattering leads to very small differences among models. These comparisons suggest that future model development should focus on clouds and water vapor radiative transfer.

  6. Habitable zones exposed: astrosphere collapse frequency as a function of stellar mass.

    PubMed

    Smith, David S; Scalo, John M

    2009-09-01

    Stellar astrospheres--the plasma cocoons carved out of the interstellar medium by stellar winds--are one of several buffers that partially screen planetary atmospheres and surfaces from high-energy radiation. Screening by astrospheres is continually influenced by the passage of stars through the fluctuating density field of the interstellar medium (ISM). The most extreme events occur inside dense interstellar clouds, where the increased pressure may compress an astrosphere to a size smaller than the liquid-water habitable-zone distance. Habitable planets then enjoy no astrospheric buffering from exposure to the full flux of galactic cosmic rays and interstellar dust and gas, a situation we call "descreening" or "astrospheric collapse." Under such conditions the ionization fraction in the atmosphere and contribution to radiation damage of putative coding organisms at the surface would increase significantly, and a series of papers have suggested a variety of global responses to descreening. These possibilities motivate a more careful calculation of the frequency of descreening events. Using a ram-pressure balance model, we compute the size of the astrosphere in the apex direction as a function of parent-star mass and velocity and ambient interstellar density, emphasizing the importance of gravitational focusing of the interstellar flow. The interstellar densities required to descreen planets in the habitable zone of solar- and subsolar-mass stars are found to be about 600(M/M[middle dot in circle])(-2) cm(-3) for the Sun's velocity relative to the local ISM. Such clouds are rare and small, indicating that descreening encounters are rare. We use statistics from two independent catalogues of dense interstellar clouds to derive a dependence of descreening frequency on the parent-star mass that decreases strongly with decreasing stellar mass, due to the weaker gravitational focusing and smaller habitable-zone distances for lower-mass stars. We estimate an uncertain

  7. THERMAL EVOLUTION AND LIFETIME OF INTRINSIC MAGNETIC FIELDS OF SUPER-EARTHS IN HABITABLE ZONES

    SciTech Connect

    Tachinami, C.; Ida, S.; Senshu, H.

    2011-01-10

    We have numerically studied the thermal evolution of different-mass terrestrial planets in habitable zones, focusing on the duration of dynamo activity to generate their intrinsic magnetic fields, which may be one of the key factors in habitability of the planets. In particular, we are concerned with super-Earths, observations of which are rapidly developing. We calculated the evolution of temperature distributions in the planetary interior using Vinet equations of state, the Arrhenius-type formula for mantle viscosity, and the astrophysical mixing-length theory for convective heat transfer modified for mantle convection. After calibrating the model with terrestrial planets in the solar system, we apply it for 0.1-10 M{sub +} rocky planets with a surface temperature of 300 K (in habitable zones) and Earth-like compositions. With the criterion of heat flux at the core-mantle boundary (CMB), the lifetime of the magnetic fields is evaluated from the calculated thermal evolution. We found that the lifetime slowly increases with planetary mass (M{sub p} ), independent of the initial temperature gap at the CMB ({Delta}T{sub CMB}), but beyond the critical value M{sub c,p} ({approx}O(1) M{sub +}) it abruptly declines from the mantle viscosity enhancement due to the pressure effect. We derived M{sub c,p} as a function of {Delta}T{sub CMB} and a rheological parameter (activation volume, V*). Thus, the magnetic field lifetime of super-Earths with M{sub p} >M{sub p,c} sensitively depends on {Delta}T{sub CMB}, which reflects planetary accretion, and V*, which has uncertainty at very high pressure. More advanced high-pressure experiments and first-principle simulation, as well as planetary accretion simulation, are needed to discuss the habitability of super-Earths.

  8. The Instellation Habitable Zone: Liquid Water Stability on a Single Axis

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, S. D.; Virtual Planetary Laboratory

    2011-12-01

    The habitable zone is the region around a star for which liquid water might be stable at the surface of a planet. This is roughly defined as orbital distances greater than those for which runaway greenhouses are triggered or water loss via H escape becomes rapid, yet less than those for which snowball Earth conditions are unavoidable. Both of these limits are inherently tied to surface temperature of the planet. Exoplanet observers have often defined habitable zones based on estimates of the equilibrium temperature for a planet, using that as a proxy for surface. However, the calculation of equilibrium temperature requires knowledge of the planet's albedo, which is usually not known. Furthermore, translating a planet's equilibrium temperature into a surface temperature requires estimations of greenhouse and anti-greenhouse effects that are also unknown. Venus presents both of these problems: it has a much-higher albedo than the value commonly assumed for Earth-like exoplanets, and yet its surface temperature is hundreds of degrees higher than its equilibrium temperature. Without knowledge of the albedo of a planet or the magnitude of the greenhouse effect, equilibrium temperature is an unknown quantity that provides unreliable estimates of the surface temperature of a planet. For these reasons, atmospheric modelers have incorporated the effects of albedo and of greenhouse effects into definitions of the habitable zone. Historically, these definitions have been based on the luminosity of the host star and the semi-major axis of the planet's orbit. This has served the community well, as planets are treated and analyzed on a case-by-base basis. However, the presence of two criteria for habitability (semi-major axis and stellar luminosity) presents an impediment to plotting planets in 2-dimensional diagrams that also include geophysical parameters such as planetary radius, mass, or density. While such plots were not previously warranted for ~Earth-sized planets because

  9. A New Paradigm for Habitability in Planetary Systems: the Extremophilic Zone

    NASA Astrophysics Data System (ADS)

    Janot-Pacheco, E., Bernardes, L., Lage, C. A. S.

    2014-03-01

    More than a thousand exoplanets have been discovered so far. Planetary surface temperature may strongly depends on its albedo and geodynamic conditions. We have fed exoplanets from the Encyclopedia database with a comprehensive model of Earth's atmosphere and plate tectonics. As CO2 is the main agent responsible for the greenhouse effect, its partial pressure has been taken as a free parameter to estimate the surface temperature of some known planets. We also investigated the possible presence of "exomoons" belonging to giant planets in the Habitable Zone capable of harbour dynamic stability, to retain an atmosphere and to keep geodynamic activity for long time spans. Biological data on earthly micro-organisms classified as "extremophiles" indicate that such kind of microbial species could dwell on the surface of many exoplanets and exomoons. We thus propose an extension of the mainly astronomically defined "Habitable Zone" concept into the more astrobiologically one, the "Extremophililic Zone", that takes into account other parameters allowing survival of more robust life forms. This contribution comes from an ongoing project developed by a French-Brazilian colaboration in Astrophysics and Biophysics to search for living fingerprints in astrobiologically promising exoplanets.

  10. AN ANALYTIC METHOD TO DETERMINE HABITABLE ZONES FOR S-TYPE PLANETARY ORBITS IN BINARY STAR SYSTEMS

    SciTech Connect

    Eggl, Siegfried; Pilat-Lohinger, Elke; Gyergyovits, Markus; Funk, Barbara; Georgakarakos, Nikolaos E-mail: elke.pilat-lohinger@univie.ac.at

    2012-06-10

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical habitable zone have arisen. Do the radiative and gravitational perturbations of the second star influence the extent of the habitable zone significantly, or is it sufficient to consider the host star only? In this article, we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time-independent analytical estimates and compare them to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of habitable zones toward the secondary in close binary systems.

  11. Exomoon Habitability Constrained by Illumination and Tidal Heating

    PubMed Central

    2013-01-01

    Abstract The detection of moons orbiting extrasolar planets (“exomoons”) has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary “habitable edge.” We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. If either planet hosted a satellite at a distance greater than 10 planetary radii, then this could indicate the presence of a habitable moon. Key Words: Astrobiology—Extrasolar planets—Habitability—Habitable zone—Tides. Astrobiology 13, 18–46. PMID:23305357

  12. Analytical Investigation of the Decrease in the Size of the Habitable Zone Due to a Limited CO2 Outgassing Rate

    NASA Astrophysics Data System (ADS)

    Abbot, Dorian S.

    2016-08-01

    The habitable zone concept is important because it focuses the scientific search for extraterrestrial life and aids the planning of future telescopes. Recent work has shown that planets near the outer edge of the habitable zone might not actually be able to stay warm and habitable if CO2 outgassing rates are not large enough to maintain high CO2 partial pressures against removal by silicate weathering. In this paper, I use simple equations for the climate and CO2 budget of a planet in the habitable zone that can capture the qualitative behavior of the system. With these equations I derive an analytical formula for an effective outer edge of the habitable zone, including limitations imposed by the CO2 outgassing rate. I then show that climate cycles between a snowball state and a warm climate are only possible beyond this limit if the weathering rate in the snowball climate is smaller than the CO2 outgassing rate (otherwise stable snowball states result). I derive an analytical solution for the climate cycles including a formula for their period in this limit. This work allows us to explore the qualitative effects of weathering processes on the effective outer edge of the habitable zone, which is important because weathering parameterizations are uncertain.

  13. Exploring the Inner Edge of the Habitable Zone with Fully Coupled Oceans

    NASA Technical Reports Server (NTRS)

    Way, M.J; Del Genio, A.D.; Kelley, M.; Aleinov, I.; Clune, T.

    2015-01-01

    The role of rotation in planetary atmospheres plays an important role in regulating atmospheric and oceanic heat flow, cloud formation and precipitation. Using the Goddard Institute for Space Studies (GISS) three dimension General Circulation Model (3D-GCM) we demonstrate how varying rotation rate and increasing the incident solar flux on a planet are related to each other and may allow the inner edge of the habitable zone to be much closer than many previous habitable zone studies have indicated. This is shown in particular for fully coupled ocean runs -- some of the first that have been utilized in this context. Results with a 100m mixed layer depth and our fully coupled ocean runs are compared with those of Yang et al. 2014, which demonstrates consistency across models. However, there are clear differences for rotations rates of 1-16x present earth day lengths between the mixed layer and fully couple ocean models, which points to the necessity of using fully coupled oceans whenever possible. The latter was recently demonstrated quite clearly by Hu & Yang 2014 in their aquaworld study with a fully coupled ocean when compared with similar mixed layer ocean studies and by Cullum et al. 2014. Atmospheric constituent amounts were also varied alongside adjustments to cloud parameterizations (results not shown here). While the latter have an effect on what a planet's global mean temperature is once the oceans reach equilibrium they do not qualitatively change the overall relationship between the globally averaged surface temperature and incident solar flux for rotation rates ranging from 1 to 256 times the present Earth day length. At the same time this study demonstrates that given the lack of knowledge about the atmospheric constituents and clouds on exoplanets there is still a large uncertainty as to where a planet will sit in a given star's habitable zone.

  14. The Properties of Exomoons Around the Habitable Zone Planet, Kepler 22b

    NASA Astrophysics Data System (ADS)

    Fuse, Christopher R.; Bokorney, Jake

    2015-01-01

    As part of a larger study to understand the formation, evolution, and stability of satellites around exoplanets, we have examined the Kepler 22 system. A single planet of mass 2 × 1026 kg, Kepler 22b orbits within the habitable zone (Kopparapu et al. 2013) at 0.85 AU. While Kepler 22b may be habitable, there also exists the possibility that any satellites of the planet may also be life sustaining.A series of N-body simulations were performed to examine the most probable configuration of moons orbiting Kepler 22b. Initially, a moonlet disk of 100 bodies (mdisk = 4.29 × 1022 kg) was randomly placed around Kepler 22b. The moonlet disk spanned 10 - 80% of Kepler 22b's Hill sphere (Kasting et al. 1993). Simulations were run for 500 kyrs, with the star, planet, and moonlets allowed to gravitationally evolve.The Kepler 22b system was able to retain three to four moons in 96% of the simulations. . The remaining simulations produced systems of two moons on highly eccentric orbits. It is unlikely that the two-moon configuration would remain stable for a significant amount of time. We present the properties of the stable satellites. We have run an additional set of simulations examining the rotational effects satellites will have on Kepler 22b, given the high likelihood that the planet possesses a system of moons. We were specifically investigating if the presence of moons reduces the precession of Kepler 22b, increasing the planet's habitability.

  15. Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.

    PubMed

    Morrison, Ian S; Gowanlock, Michael G

    2015-08-01

    Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own.

  16. Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.

    PubMed

    Morrison, Ian S; Gowanlock, Michael G

    2015-08-01

    Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own. PMID:26274865

  17. 55 CANCRI: STELLAR ASTROPHYSICAL PARAMETERS, A PLANET IN THE HABITABLE ZONE, AND IMPLICATIONS FOR THE RADIUS OF A TRANSITING SUPER-EARTH

    SciTech Connect

    Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David R.; Tabetha, S. Boyajian; McAlister, Harold A.; White, Russel; Ten Brummelaar, Theo A.; Schaefer, Gail; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Farrington, Chris; Goldfinger, P. J.; Van Belle, Gerard T.; Raymond, Sean N.; Lopez-Morales, Mercedes; Ridgway, Stephen T.

    2011-10-10

    The bright star 55 Cancri is known to host five planets, including a transiting super-Earth. The study presented here yields directly determined values for 55 Cnc's stellar astrophysical parameters based on improved interferometry: R = 0.943 {+-} 0.010 R{sub sun}, T{sub EFF} = 5196 {+-} 24 K. We use isochrone fitting to determine 55 Cnc's age to be 10.2 {+-} 2.5 Gyr, implying a stellar mass of 0.905 {+-} 0.015 M{sub sun}. Our analysis of the location and extent of the system's habitable zone (HZ; 0.67-1.32 AU) shows that planet f, with period {approx}260 days and Msin i = 0.155 M{sub Jupiter}, spends the majority of the duration of its elliptical orbit in the circumstellar HZ. Though planet f is too massive to harbor liquid water on any planetary surface, we elaborate on the potential of alternative low-mass objects in planet f's vicinity: a large moon and a low-mass planet on a dynamically stable orbit within the HZ. Finally, our direct value for 55 Cancri's stellar radius allows for a model-independent calculation of the physical diameter of the transiting super-Earth 55 Cnc e ({approx}2.05 {+-} 0.15 R{sub +}), which, depending on the planetary mass assumed, implies a bulk density of 0.76 {rho}{sub +} or 1.07 {rho}{sub +}.

  18. Gj 832c: A super-Earth in the habitable zone

    SciTech Connect

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.; Marshall, J. P.; Bailey, J.; Salter, G. S.; Wright, D.; Tuomi, Mikko; Jones, H. R. A.; Butler, R. P.; Arriagada, P.; Anglada-Escudé, Guillem; Carter, B. D.; O'Toole, S. J.; Crane, J. D.; Schectman, S. A.; Thompson, I.; Minniti, D.; Jenkins, J. S.; Diaz, M.

    2014-08-20

    We report the detection of GJ 832c, a super-Earth orbiting near the inner edge of the habitable zone of GJ 832, an M dwarf previously known to host a Jupiter analog in a nearly circular 9.4 yr orbit. The combination of precise radial-velocity measurements from three telescopes reveals the presence of a planet with a period of 35.68 ± 0.03 days and minimum mass (m sin i) of 5.4 ± 1.0 Earth masses. GJ 832c moves on a low-eccentricity orbit (e = 0.18 ± 0.13) toward the inner edge of the habitable zone. However, given the large mass of the planet, it seems likely that it would possess a massive atmosphere, which may well render the planet inhospitable. Indeed, it is perhaps more likely that GJ 832c is a 'super-Venus', featuring significant greenhouse forcing. With an outer giant planet and an interior, potentially rocky planet, the GJ 832 planetary system can be thought of as a miniature version of our own solar system.

  19. GJ 832c: A Super-Earth in the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Tuomi, Mikko; Butler, R. P.; Jones, H. R. A.; Anglada-Escudé, Guillem; Horner, Jonathan; Tinney, C. G.; Marshall, J. P.; Carter, B. D.; Bailey, J.; Salter, G. S.; O'Toole, S. J.; Wright, D.; Crane, J. D.; Schectman, S. A.; Arriagada, P.; Thompson, I.; Minniti, D.; Jenkins, J. S.; Diaz, M.

    2014-08-01

    We report the detection of GJ 832c, a super-Earth orbiting near the inner edge of the habitable zone of GJ 832, an M dwarf previously known to host a Jupiter analog in a nearly circular 9.4 yr orbit. The combination of precise radial-velocity measurements from three telescopes reveals the presence of a planet with a period of 35.68 ± 0.03 days and minimum mass (m sin i) of 5.4 ± 1.0 Earth masses. GJ 832c moves on a low-eccentricity orbit (e = 0.18 ± 0.13) toward the inner edge of the habitable zone. However, given the large mass of the planet, it seems likely that it would possess a massive atmosphere, which may well render the planet inhospitable. Indeed, it is perhaps more likely that GJ 832c is a "super-Venus," featuring significant greenhouse forcing. With an outer giant planet and an interior, potentially rocky planet, the GJ 832 planetary system can be thought of as a miniature version of our own solar system. This paper includes data gathered with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile.

  20. Exomoon habitability constrained by illumination and tidal heating.

    PubMed

    Heller, René; Barnes, Rory

    2013-01-01

    The detection of moons orbiting extrasolar planets ("exomoons") has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary "habitable edge." We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. If either planet hosted a satellite at a distance greater than 10 planetary radii, then this could indicate the presence of a habitable moon.

  1. Exomoon habitability constrained by illumination and tidal heating.

    PubMed

    Heller, René; Barnes, Rory

    2013-01-01

    The detection of moons orbiting extrasolar planets ("exomoons") has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary "habitable edge." We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. If either planet hosted a satellite at a distance greater than 10 planetary radii, then this could indicate the presence of a habitable moon. PMID:23305357

  2. Extending Galactic Habitable Zone Modelling to Include the Emergence of Intelligent Life

    NASA Astrophysics Data System (ADS)

    Morrison, I. S.; Gowanlock, M. G.

    2014-03-01

    Previous studies of the Galactic Habitable Zone (GHZ) have been concerned with identifying those regions of the Galaxy that may favour the emergence of "complex life" - typically defined to be land-based life. A planet is deemed "habitable" if it meets a set of assumed criteria for supporting the emergence of such complex life. The notion of the GHZ, and the premise that sufficient chemical evolution is required for planet formation, was quantified by Gonzalez et al. (2001). This work was later broadened to include dangers to the formation and habitability of terrestrial planets by Lineweaver et al. (2004) and then studied using a Monte Carlo simulation on the resolution of individual stars in the previous work of Gowanlock et al. (2011). The model developed in the latter work considers the stellar number density distribution and formation history of the Galaxy, planet formation mechanisms and the hazards to planetary biospheres as a result of supernova sterilization events that take place in the vicinity of the planets. Based on timescales taken from the origin and evolution of complex life on Earth, the model suggests large numbers of potentially habitable planets exist in our Galaxy, with the greatest concentration likely being towards the inner Galaxy. In this work we extend the assessment of habitability to consider the potential for life to further evolve on habitable planets to the point of intelligence - which we term the propensity for the emergence of intelligent life. We assume the propensity is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the "resetting" effect of nearby supernovae. The model of Gowanlock et al. (2011) is used to produce a representative population of habitable planets by matching major observable properties of the Milky Way. Account is taken of the birth and death dates of each habitable planet and the timing of supernova events in each planet's vicinity. The times between

  3. GLIESE 581D IS THE FIRST DISCOVERED TERRESTRIAL-MASS EXOPLANET IN THE HABITABLE ZONE

    SciTech Connect

    Wordsworth, Robin D.; Forget, Francois; Millour, Ehouarn; Charnay, Benjamin; Madeleine, Jean-Baptiste; Selsis, Franck

    2011-06-01

    It has been suggested that the recently discovered exoplanet GJ581d might be able to support liquid water due to its relatively low mass and orbital distance. However, GJ581d receives 35% less stellar energy than Mars and is probably locked in tidal resonance, with extremely low insolation at the poles and possibly a permanent night side. Under such conditions, it is unknown whether any habitable climate on the planet would be able to withstand global glaciation and/or atmospheric collapse. Here we present three-dimensional climate simulations which demonstrate that GJ581d will have a stable atmosphere and surface liquid water for a wide range of plausible cases, making it the first confirmed super-Earth (exoplanet of 2-10 Earth masses) in the habitable zone. We find that atmospheres with over 10 bar CO{sub 2} and varying amounts of background gas (e.g., N{sub 2}) yield global mean temperatures above 0{sup 0}C for both land and ocean-covered surfaces. Based on the emitted IR radiation calculated by the model, we propose observational tests that will allow these cases to be distinguished from other possible scenarios in the future.

  4. The Properties of Exomoons Around the Habitable Zone Planets, Kepler 22b and HD160691b

    NASA Astrophysics Data System (ADS)

    Bokorney, Jake; Fuse, Christopher R.

    2016-01-01

    As part of a larger study to understand the formation, evolution, and stability of exoplanet satellites, we have examined the Kepler 22 and HD160691 systems. Habitable zone planets (Kopparapu et al. 2013) are found in each system, with Kepler 22b at 0.85 AU and HD160691b at 1.5 AU. While these planets may be habitable, systems of satellites also hold the potential of supporting life. A series of N-body simulations were performed to examine the most stable configuration of moons orbiting each planet. A moonlet disk was designed to span 10 - 80% of the planet's Hill sphere (Ksting et al. 1993). The 100 bodies (mdisk/mplanet = 2 × 10-4) within the disk were randomly placed around each planet. Simulations were run for 500 kyrs, with the star, planets, and moonlets allowed to gravitationally evolve. The Kepler 22b system was able to retain three to four moons in 96% of the simulations, while the HD160691b systems had a stable pair of moons in 73% of the simulations. The remaining simulations produced systems with moons on highly eccentric orbits.

  5. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    SciTech Connect

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  6. The galactic habitable zone and the age distribution of complex life in the Milky Way.

    PubMed

    Lineweaver, Charles H; Fenner, Yeshe; Gibson, Brad K

    2004-01-01

    We modeled the evolution of the Milky Way Galaxy to trace the distribution in space and time of four prerequisites for complex life: the presence of a host star, enough heavy elements to form terrestrial planets, sufficient time for biological evolution, and an environment free of life-extinguishing supernovae. We identified the Galactic habitable zone (GHZ) as an annular region between 7 and 9 kiloparsecs from the Galactic center that widens with time and is composed of stars that formed between 8 and 4 billion years ago. This GHZ yields an age distribution for the complex life that may inhabit our Galaxy. We found that 75% of the stars in the GHZ are older than the Sun.

  7. An Earth-sized planet in the habitable zone of a cool star.

    PubMed

    Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-04-18

    The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.

  8. Searching for Terrestrial Planets in the Habitable Zone of M dwarfs

    NASA Astrophysics Data System (ADS)

    Kürster, M.; Endl, M.

    2004-12-01

    We present results from our search program for terrestrial planets around M dwarfs with the VLT+UVES. We demonstrate the achieved RV precision of ≈ 2.5 ms-1. Different variability and noise components are disentangled for Barnard's star by means of Pooled Variance Analysis. Stellar activity effects and implications for convection properties are discussed. New data complement our previously published ones showing an excellent match with the predicted RV secular acceleration of Barnard's star. Mass upper limits to planetary companions in circular orbits are shown for Barnard's star as well as for Proxima Centauri. For both stars we can exclude planets with m sin i > 3 Mearth at the inner edge of their respective habitable zone up to > 5 Mearth at the outer edge.

  9. An Earth-sized planet in the habitable zone of a cool star.

    PubMed

    Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-04-18

    The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form. PMID:24744370

  10. Finding Earth-size planets in the habitable zone: the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Borucki, William; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Caldwell, Douglas; Christensen-Dalsgaard, Jørgen; Cochran, William; Dunham, Edward; Gautier, Thomas N.; Geary, John; Gilliland, Ronald; Jenkins, Jon; Kondo, Yoji; Latham, David; Lissauer, Jack J.; Monet, David

    2008-05-01

    The Kepler Mission is a space-based mission whose primary goal is to detect Earth-size and smaller planets in the habitable zone of solar-like stars. The mission will monitor more than 100,000 stars for transits with a differential photometric precision of 20 ppm at V=12 for a 6.5 hour transit. It will also provide asteroseismic results on several thousand dwarf stars. It is specifically designed to continuously observe a single field of view of greater than 100 square degrees for 3.5 or more years. This overview describes the mission design, its goals and capabilities, the measured performance for those photometer components that have now been tested, the Kepler Input Catalog, an overview of the analysis pipeline, the plans for the Follow-up Observing Program to validate the detections and characterize the parent stars, and finally, the plans for the Guest Observer and Astrophysical Data Program.

  11. Radiative Convective Transfer Calculations for Effective Stellar Fluxes of Habitable and Life Supporting Zones

    NASA Astrophysics Data System (ADS)

    Ludwig, Wolfgang; Eggl, Siegfried; Neubauer, David; Leitner, Johannes; Firneis, Maria; Hitzenberger, Regina

    2014-05-01

    Recent fields of interest in exoplanetary research include studies of potentially habitable planets orbiting stars outside of our Solar System. Habitable Zones (HZs) are currently defined by calculating the inner and the outer limits of the mean distance between exoplanets and their central stars based on effective solar fluxes that allow for maintaining liquid water on the planet's surface. Kasting et al. (1993), Selsis et al. (2007), and recently Kopparapu et al. (2013) provided stellar flux limits for such scenarios. We compute effective solar fluxes for Earth-like planets using Earth-like and other atmospheric scenarios including atmospheres with high level and low level clouds. Furthermore we provide habitability limits for solvents other than water, i.e. limits for the so called Life Supporting Zone, introduced by Leitner et al. (2010). The Life Supporting Zone (LSZ) encompasses many habitable zones based on a variety of liquid solvents. Solvents like ammonia and sulfuric acid have been identified for instance by Leitner et al (2012) as possibly life supporting. Assuming planets on circular orbits, the extent of the individual HZ is then calculated via the following equation, d(i,o) = [L/Lsun*1/S(i,o)]**0.5 au, where L is the star's luminosity, and d(i,o) and S(i,o) are the distances to the central star for the inner and the outer edge and effective insolation for inner and the outer edge of the HZ, respectively. After generating S(i,o) values for a selection of solvents, we provide the means to determine LSZ boundaries for main sequence stars. Effective flux calculations are done using a one dimensional radiative convective model (Neubauer et al. 2011) based on a modified version of the open source radiative transfer software Streamer (Key and Schweiger, 1998). Modifications include convective adjustments, additional gases for absorption and the use of an offline cloud model, which allow us to observe the influence of clouds on effective stellar fluxes

  12. Space telescope design to directly image the habitable zone of Alpha Centauri

    NASA Astrophysics Data System (ADS)

    Bendek, Eduardo A.; Belikov, Ruslan; Lozi, Julien; Thomas, Sandrine; Males, Jared; Weston, Sasha; McElwain, Michael

    2015-09-01

    The scientific interest in directly imaging and identifying Earth-like planets within the Habitable Zone (HZ) around nearby stars is driving the design of specialized direct imaging missions such as ACESAT, EXO-C, EXO-S and AFTA-C. The inner edge of Alpha Cen A and B Habitable Zone is found at exceptionally large angular separations of 0.7" and 0.4" respectively. This enables direct imaging of the system with a 0.3m class telescope. Contrast ratios on the order of 1010 are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets may allow establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, and stable space telescope that can achieve high-contrast but has limited resolution. This paper describes an innovative instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induced Amplitude Apodization coronagraph embedded in the telescope. This architecture maximizes stability and throughput. A Multi-Star Wave Front algorithm is implemented to drive a deformable mirror controlling simultaneously diffracted light from the on-axis and binary companion star. The instrument has a Focal Plane Occulter to reject starlight into a highprecision pointing control camera. Finally we utilize a Orbital Differential Imaging (ODI) post-processing method that takes advantage of a highly stable environment (Earth-trailing orbit) and a continuous sequence of images spanning 2 years, to reduce the final noise floor in post processing to ~2e-11 levels, enabling high confidence and at least 90% completeness detections of Earth-like planets.

  13. Can there be additional rocky planets in the Habitable Zone of tight binary stars with a known gas giant?

    NASA Astrophysics Data System (ADS)

    Funk, B.; Pilat-Lohinger, E.; Eggl, S.

    2015-04-01

    Locating planets in Habitable Zones (HZs) around other stars is a growing field in contemporary astronomy. Since a large percentage of all G-M stars in the solar neighbourhood are expected to be part of binary or multiple stellar systems, investigations of whether habitable planets are likely to be discovered in such environments are of prime interest to the scientific community. As current exoplanet statistics predicts that the chances are higher to find new worlds in systems that are already known to have planets, we examine four known extrasolar planetary systems in tight binaries in order to determine their capacity to host additional habitable terrestrial planets. Those systems are Gliese 86, γ Cephei, HD 41004 and HD 196885. In the case of γ Cephei, our results suggest that only the M dwarf companion could host additional potentially habitable worlds. Neither could we identify stable, potentially habitable regions around HD 196885 A. HD 196885 B can be considered a slightly more promising target in the search for Earth-twins. Gliese 86 A turned out to be a very good candidate, assuming that the system's history has not been excessively violent. For HD 41004, we have identified admissible stable orbits for habitable planets, but those strongly depend on the parameters of the system. A more detailed investigation shows that for some initial conditions stable planetary motion is possible in the HZ of HD 41004 A. In spite of the massive companion HD 41004 Bb, we found that HD 41004 B, too, could host additional habitable worlds.

  14. WISE DETECTIONS OF DUST IN THE HABITABLE ZONES OF PLANET-BEARING STARS

    SciTech Connect

    Morales, Farisa Y.; Bryden, G.; Werner, M. W.; Padgett, D. L.; Furlan, E.

    2012-09-20

    We use data from the Wide-field Infrared Survey Explorer (WISE) all-sky release to explore the incidence of warm dust in the habitable zones around exoplanet-host stars. Dust emission at 12 and/or 22 {mu}m (T{sub dust} {approx} 300 and/or {approx}150 K) traces events in the terrestrial planet zones; its existence implies replenishment by evaporation of comets or collisions of asteroids, possibly stirred by larger planets. Of the 591 planetary systems (728 extrasolar planets) in the Exoplanet Encyclopaedia as of 2012 January 31, 350 are robustly detected by WISE at {>=}5{sigma} level. We perform detailed photosphere subtraction using tools developed for Spitzer data and visually inspect all the WISE images to confirm bona fide point sources. We find nine planet-bearing stars show dust excess emission at 12 and/or 22 {mu}m at {>=}3{sigma} level around young, main-sequence, or evolved giant stars. Overall, our results yield an excess incidence of {approx}2.6% for stars of all evolutionary stages, but {approx}1% for planetary debris disks around main-sequence stars. Besides recovering previously known warm systems, we identify one new excess candidate around the young star UScoCTIO 108.

  15. WISE Detections of Dust in the Habitable Zones of Planet-Bearing Stars

    NASA Technical Reports Server (NTRS)

    Morales, Farisa Y.; Padgett, Deborah L.; Bryden, Geoffrey; Werner, M. W.; Furlan, E.

    2012-01-01

    We use data from the Wide-field Infrared Survey Explorer (WISE) all-sky release to explore the incidence of warm dust in the habitable zones around exoplanet-host stars. Dust emission at 12 and/or 22 microns (T(sub dust) approx.300 and/or approx.150 K) traces events in the terrestrial planet zones; its existence implies replenishment by evaporation of comets or collisions of asteroids, possibly stirred by larger planets. Of the 591 planetary systems (728 extrasolar planets) in the Exoplanet Encyclopedia as of 2012 January 31, 350 are robustly detected by WISE at > or = 5(sigma) level. We perform detailed photosphere subtraction using tools developed for Spitzer data and visually inspect all the WISE images to confirm bona fide point sources. We find nine planet-bearing stars show dust excess emission at 12 and/or 22 microns at > or = 3(sigma) level around young, main-sequence, or evolved giant stars. Overall, our results yield an excess incidence of approx.2.6% for stars of all evolutionary stages, but approx.1% for planetary debris disks around main-sequence stars. Besides recovering previously known warm systems, we identify one new excess candidate around the young star UScoCTIO 108.

  16. Exploring the Inner Edge of the Habitable Zone with Fully Coupled Oceans

    NASA Astrophysics Data System (ADS)

    Way, M.; Del Genio, A. D.; Kiang, N. Y.; Kelley, M.; Aleinov, I. D.; Clune, T.; Puma, M. J.

    2015-12-01

    Rotation in planetary atmospheres plays an important role inregulating atmospheric and oceanic heat flow, cloud formation and precipitation.Using the Goddard Institute for Space Studies (GISS) three dimensional GeneralCirculation Model (3D-GCM) we demonstrate how varying rotation rate andincreasing the incident solar flux on a planet are related to each other and mayallow the inner edge of the habitable zone to be much closer than many previoushabitable zone studies have indicated. This is shown in particular for fullycoupled ocean runs over a large range of insolation and rotation rates.Results with a 100m mixed layer depth and our fully coupled ocean runs arecompared with those of Yang et al. 2014, which demonstrates consistencyacross models. However, there are clear differences for rotations rates of 1-16xpresent earth day lengths between the mixed layer and fully coupled ocean models,which points to the necessity of using fully coupled oceans whenever possible.The latter was recently demonstrated quite clearly by Hu & Yang 2014 in theiraquaplanet study with a fully coupled ocean when compared with similar mixedlayer ocean studies and by Cullum et al. 2014. Atmospheric constituent amounts were also varied alongside adjustments to cloudparameterizations. While the latter have an effect on what a planet's global meantemperature is once the oceans reach equilibrium they donot qualitatively change the overall relationship between the globally averagedsurface temperature and incident solar flux for rotation rates ranging from 1to 256 times the present Earth day length. At the same time this studydemonstrates that given the lack of knowledge about the atmospheric constituentsand clouds on exoplanets there is still a large uncertainty as to where a planetwill sit in a given star's habitable zone. We also explore options for understanding the possibility for regional habitabilityvia an aridity index and a separate moisture index. The former is related to the

  17. Constraining the Radiation and Plasma Environment of the Kepler Circumbinary Habitable-zone Planets

    NASA Astrophysics Data System (ADS)

    Zuluaga, Jorge I.; Mason, Paul A.; Cuartas-Restrepo, Pablo A.

    2016-02-01

    The discovery of many planets using the Kepler telescope includes 10 planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation properties as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries, is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47, making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparameterized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.

  18. Toward Detection of Terrestrial Planets in the Habitable Zone of Our Closest Neighbor: Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Kuerster, M.

    2009-01-01

    In recent years the precision of radial velocity (RV) measurements for the indirect detection of planetary companions to nearby stars has improved to a level that allowed the first discoveries of extrasolar planets in the Neptune and Super-Earth mass range. Detections of extremely low mass planets, possibly even down to 1 Earth mass or below, in short-period orbits can lie in the mid-term future of RV planet searches. Discoveries of such Earth-like planets via ground-based RV programs will help to determine the parameter eta_Earth, the frequency of potentially habitable planets around other stars. We monitored Proxima Centauri (M5V) as part of our M dwarf program in search of low-mass planetary companions. In the absence of a significant detection we want to use these data to demonstrate the general capability of the RV method to find terrestrial planets. For late M dwarfs the classic liquid surface water habitable zone (HZ) is located very close to the star, precisely where the RV method is most sensitive. We determine upper limits to the masses of companions in circular orbits via numerical simulations. As a result of our companion limit calculations we find that we successfully recover all test signals with RV amplitudes corresponding to planets with m sin i > 2-3 M_Earth residing inside the HZ of Proxima Cen with a statistical significance of >99%. Over the same period range we can recover 50% of the test planets with masses of m sin i > 1.5-2.5 M_Earth. We also discuss the effects of stellar activity on our RV measurements.

  19. Photoevaporation of Earth and Super-Earth Atmospheres in the Habitable Zones of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhanjoy

    2015-08-01

    Kepler data show that multiple terrestrial-sized planets (i.e., Earths / super-Earths), packed in very close to the central star, are the norm in exoplanetary systems around low-mass stars. Around M dwarfs, a significant fraction of these planets reside within the Habitable Zone (HZ). This has kindled intense excitement about the possibility of finding habitable planets around these cool red stars. However, M dwarfs also remain extremely magnetically active for much longer than solar-type stars: e.g., an M3 dwarf evinces saturated levels of coronal and chromospheric activity over Gyr timescales, compared to ~100 Myr for solar-mass stars. Thus, basal levels of coronal/chromospheric X-ray/EUV emission from M dwarfs, integrated over their saturated activity lifetimes, may severely photoevaporate the atmospheres of terrestrial planets in M dwarf HZs; this would only be exacerbated by flares (which are correspondingly more intense in active M dwarfs). Here we present detailed hydrodynamic calculations of such photoevaporation for planets spanning a range of Earth/super-Earth sizes, residing in the HZ of M dwarfs of various spectral sub-types, over Gyr evolutionary timescales. Our calculations include the effects of: (1) simultaneous X-ray and EUV heating, using state-of-the-art stellar XUV SED models; (2) the change in the stellar XUV SED over evolutionary timescales; (3) realistic radiative losses (which can both dominate and vary in time); (4) thermal evolution of the planetary core; and (5) a range of initial planetary entropies (i.e.,`hot' or `cold' start) and core compositions. The analysis yields the location and extent of the HZ as a function of planetary mass, core composition, initial conditions and M sub-type. We will focus on H/He dominated (i.e., solar abundance) atmospheres; however, we will also discuss qualtitative trends for CO2 / H2O dominated atmospheres, which we are beginning to explore by coupling a detailed photochemical code with our hydrodynamic

  20. Dynamical Accretion of Primordial Atmospheres around Planets with Masses between 0.1 and 5 M ⊕ in the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Stökl, Alexander; Dorfi, Ernst A.; Johnstone, Colin P.; Lammer, Helmut

    2016-07-01

    In the early, disk-embedded phase of evolution of terrestrial planets, a protoplanetary core can accumulate gas from the circumstellar disk into a planetary envelope. In order to relate the accumulation and structure of this primordial atmosphere to the thermal evolution of the planetary core, we calculated atmosphere models characterized by the surface temperature of the core. We considered cores with masses between 0.1 and 5 M ⊕ situated in the habitable zone around a solar-like star. The time-dependent simulations in 1D-spherical symmetry include the hydrodynamics equations, gray radiative transport, and convective energy transport. Using an implicit time integration scheme, we can use large time steps and and thus efficiently cover evolutionary timescales. Our results show that planetary atmospheres, when considered with reference to a fixed core temperature, are not necessarily stable, and multiple solutions may exist for one core temperature. As the structure and properties of nebula-embedded planetary atmospheres are an inherently time-dependent problem, we calculated estimates for the amount of primordial atmosphere by simulating the accretion process of disk gas onto planetary cores and the subsequent evolution of the embedded atmospheres. The temperature of the planetary core is thereby determined from the computation of the internal energy budget of the core. For cores more massive than about one Earth mass, we obtain that a comparatively short duration of the disk-embedded phase (˜105 years) is sufficient for the accumulation of significant amounts of hydrogen atmosphere that are unlikely to be removed by later atmospheric escape processes.

  1. Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks

    NASA Astrophysics Data System (ADS)

    Lyra, W.; Johansen, A.; Zsom, A.; Klahr, H.; Piskunov, N.

    2009-04-01

    Context: As accretion in protoplanetary disks is enabled by turbulent viscosity, the border between active and inactive (dead) zones constitutes a location where there is an abrupt change in the accretion flow. The gas accumulation that ensues triggers the Rossby wave instability, which in turn saturates into anticyclonic vortices. It has been suggested that the trapping of solids within them leads to a burst of planet formation on very short timescales. Aims: We study in the formation and evolution of the vortices in greater detail, focusing on the implications for the dynamics of embedded solid particles and planet formation. Methods: We performed two-dimensional global simulations of the dynamics of gas and solids in a non-magnetized thin protoplanetary disk with the Pencil code. We used multiple particle species of radius 1, 10, 30, and 100 cm. We computed the particles' gravitational interaction by a particle-mesh method, translating the particles' number density into surface density and computing the corresponding self-gravitational potential via fast Fourier transforms. The dead zone is modeled as a region of low viscosity. Adiabatic and locally isothermal equations of state are used. Results: The Rossby wave instability is triggered under a variety of conditions, thus making vortex formation a robust process. Inside the vortices, fast accumulation of solids occurs and the particles collapse into objects of planetary mass on timescales as short as five orbits. Because the drag force is size-dependent, aerodynamical sorting ensues within the vortical motion, and the first bound structures formed are composed primarily of similarly-sized particles. In addition to erosion due to ram pressure, we identify gas tides from the massive vortices as a disrupting agent of formed protoplanetary embryos. We find evidence that the backreaction of the drag force from the particles onto the gas modifies the evolution of the Rossby wave instability, with vortices being

  2. Using Kepler Candidates to Examine the Properties of Habitable Zone Exoplanets

    NASA Astrophysics Data System (ADS)

    Adams, Arthur D.; Kane, Stephen R.

    2016-07-01

    An analysis of the currently known exoplanets in the habitable zones (HZs) of their host stars is of interest both in the wake of the NASA Kepler mission and with prospects for expanding the known planet population through future ground- and space-based projects. In this paper, we compare the empirical distributions of the properties of stellar systems with transiting planets to those with transiting HZ planets. This comparison includes two categories: confirmed/validated transiting planet systems, and Kepler planet and candidate planet systems. These two categories allow us to present quantitative analyses on both a conservative data set of known planets and a more optimistic and numerous sample of Kepler candidates. Both are subject to similar instrumental and detection biases, and are vetted against false positive detections. We examine whether the HZ distributions vary from the overall distributions in the Kepler sample with respect to planetary radius as well as stellar mass, effective temperature, and metallicity. We find that while the evidence is strongest in suggesting a difference between the size distributions of planets in the HZ and the overall size distribution, none of the statistical results provide strong empirical evidence for HZ planets or HZ planet-hosting stars being significantly different from the full Kepler sample with respect to these properties.

  3. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. I. S-TYPE BINARIES

    SciTech Connect

    Kaltenegger, Lisa; Haghighipour, Nader

    2013-11-10

    We have developed a comprehensive methodology for calculating the boundaries of the habitable zone (HZ) of planet-hosting S-type binary star systems. Our approach is general and takes into account the contribution of both stars to the location and extent of the binary HZ with different stellar spectral types. We have studied how the binary eccentricity and stellar energy distribution affect the extent of the HZ. Results indicate that in binaries where the combination of mass-ratio and orbital eccentricity allows planet formation around a star of the system to proceed successfully, the effect of a less luminous secondary on the location of the primary's HZ is generally negligible. However, when the secondary is more luminous, it can influence the extent of the HZ. We present the details of the derivations of our methodology and discuss its application to the binary HZ around the primary and secondary main-sequence stars of an FF, MM, and FM binary, as well as two known planet-hosting binaries α Cen AB and HD 196886.

  4. Calculating the habitable zones of multiple star systems with a new interactive Web site

    SciTech Connect

    Müller, Tobias W. A.; Haghighipour, Nader

    2014-02-10

    We have developed a comprehensive methodology and an interactive Web site for calculating the habitable zone (HZ) of multiple star systems. Using the concept of spectral weight factor, as introduced in our previous studies of the calculations of HZ in and around binary star systems, we calculate the contribution of each star (based on its spectral energy distribution) to the total flux received at the top of the atmosphere of an Earth-like planet, and use the models of the HZ of the Sun to determine the boundaries of the HZ in multiple star systems. Our interactive Web site for carrying out these calculations is publicly available at http://astro.twam.info/hz. We discuss the details of our methodology and present its application to some of the multiple star systems detected by the Kepler space telescope. We also present the instructions for using our interactive Web site, and demonstrate its capabilities by calculating the HZ for two interesting analytical solutions of the three-body problem.

  5. A Space Mission Concept to Directly Image the Habitable Zone of Alpha Centauri

    NASA Astrophysics Data System (ADS)

    Bendek, E.; Belikov, R.; Males, J.; Thomas, S.; Lozi, J.

    2015-12-01

    The inner edge of Alpha Cen A&B Habitable Zone is found at exceptionally large angular separations of 0.7" and 0.4" respectively. This enables direct imaging of the system with a 30cm class telescope. Contrast ratios in the order of 1010 are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets, will allow establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, and stable space telescope, that can achieve high-contrast but has limited resolution. This paper describes an innovative instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induce Amplitude Apodization coronagraph embedded in the telescope. This architecture maximizes stability and throughput. The Multi-Star Wave Front algorithm is implemented to drive a deformable mirror controlling simultaneously diffracted light from the on-axis and binary companion star. The instrument has a Focal Plane Occulter to reject starlight into a Low Order Wavefront Sensor that delivers high-precision pointing control. Finally we utilize the ODI post-processing method that takes advantage of a highly stable environment (Earth-trailing orbit) and a continuous sequence of images spanning 2 years, to reduce the final noise floor in post processing to ~2e-11 levels, enabling high confidence and at least 90% completeness detections of Earth-like planets.

  6. Formaldehyde in the far outer galaxy: constraining the outer boundary of the galactic habitable zone.

    PubMed

    Blair, Samantha K; Magnani, Loris; Brand, Jan; Wouterloot, Jan G A

    2008-02-01

    We present results from an initial survey of the 2(12)-1(11) transition of formaldehyde (H2CO) at 140.8 GHz in giant molecular clouds in the far outer Galaxy (RG >or= 16 kpc). Formaldehyde is a key prebiotic molecule that likely plays an important role in the development of amino acids. Determining the outermost extent of the H2CO distribution can constrain the outer limit of the Galactic Habitable Zone, the region where conditions for the formation of life are thought to be most favorable. We surveyed 69 molecular clouds in the outer Galaxy, ranging from 12 to 23.5 kpc in galactocentric radius. Formaldehyde emission at 140.8 GHz was detected in 65% of the clouds. The H2CO spectral line was detected in 26 of the clouds with RG > 16 kpc (detection rate of 59%), including 6 clouds with RG > 20 kpc (detection rate of 55%). Formaldehyde is readily found in the far outer Galaxy-even beyond the edge of the old stellar disk. Determining the relatively widespread distribution of H2CO in the far outer Galaxy is a first step in establishing how favorable an environment this vast region of the Galaxy may be toward the formation of life.

  7. RESEARCH PAPER: The dynamical architecture and habitable zones of the quintuplet planetary system 55 Cancri

    NASA Astrophysics Data System (ADS)

    Ji, Jiang-Hui; Kinoshita, Hiroshi; Liu, Lin; Li, Guang-Yu

    2009-06-01

    We perform numerical simulations to study the secular orbital evolution and dynamical structure of the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers. In the simulations, we show that this system can be stable for at least 108 yr. In addition, we extensively investigate the planetary configuration of four outer companions with one terrestrial planet in the wide region of 0.790 AU <= a <= 5.900 AU to examine the existence of potential asteroid structure and Habitable Zones (HZs). We show that there are unstable regions for orbits about 4:1, 3:1 and 5:2 mean motion resonances (MMRs) of the outermost planet in the system, and several stable orbits can remain at 3:2 and 1:1 MMRs, which resembles the asteroid belt in the solar system. From a dynamical viewpoint, proper HZ candidates for the existence of more potential terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU with relatively low eccentricities.

  8. Which Type of Planets do We Expect to Observe in the Habitable Zone?

    NASA Astrophysics Data System (ADS)

    Adibekyan, Vardan; Figueira, Pedro; Santos, Nuno C.

    2016-11-01

    We used a sample of super-Earth-like planets detected by the Doppler spectroscopy and transit techniques to explore the dependence of orbital parameters of the planets on the metallicity of their host stars. We confirm the previous results (although still based on small samples of planets) that super-Earths orbiting around metal-rich stars are not observed to be as distant from their host stars as we observe their metal-poor counterparts to be. The orbits of these super-Earths with metal-rich hosts usually do not reach into the Habitable Zone (HZ), keeping them very hot and inhabitable. We found that most of the known planets in the HZ are orbiting their GK-type hosts which are metal-poor. The metal-poor nature of planets in the HZ suggests a high Mg abundance relative to Si and high Si abundance relative to Fe. These results lead us to speculate that HZ planets might be more frequent in the ancient Galaxy and had compositions different from that of our Earth.

  9. Transit and radial velocity survey efficiency comparison for a habitable zone Earth

    SciTech Connect

    Burke, Christopher J.

    2014-09-01

    Transit and radial velocity searches are two techniques for identifying nearby extrasolar planets to Earth that transit bright stars. Identifying a robust sample of these exoplanets around bright stars for detailed atmospheric characterization is a major observational undertaking. In this study we describe a framework that answers the question of whether a transit or radial velocity survey is more efficient at finding transiting exoplanets given the same amount of observing time. Within the framework we show that a transit survey's window function can be approximated using the hypergeometric probability distribution. We estimate the observing time required for a transit survey to find a transiting Earth-sized exoplanet in the habitable zone (HZ) with an emphasis on late-type stars. We also estimate the radial velocity precision necessary to detect the equivalent HZ Earth-mass exoplanet that also transits when using an equal amount of observing time as the transit survey. We find that a radial velocity survey with σ{sub rv} ∼ 0.6 m s{sup –1} precision has comparable efficiency in terms of observing time to a transit survey with the requisite photometric precision σ{sub phot} ∼ 300 ppm to find a transiting Earth-sized exoplanet in the HZ of late M dwarfs. For super-Earths, a σ{sub rv} ∼ 2.0 m s{sup –1} precision radial velocity survey has comparable efficiency to a transit survey with σ{sub phot} ∼ 2300 ppm.

  10. Which Type of Planets do We Expect to Observe in the Habitable Zone?

    NASA Astrophysics Data System (ADS)

    Adibekyan, Vardan; Figueira, Pedro; Santos, Nuno C.

    2016-06-01

    We used a sample of super-Earth-like planets detected by the Doppler spectroscopy and transit techniques to explore the dependence of orbital parameters of the planets on the metallicity of their host stars. We confirm the previous results (although still based on small samples of planets) that super-Earths orbiting around metal-rich stars are not observed to be as distant from their host stars as we observe their metal-poor counterparts to be. The orbits of these super-Earths with metal-rich hosts usually do not reach into the Habitable Zone (HZ), keeping them very hot and inhabitable. We found that most of the known planets in the HZ are orbiting their GK-type hosts which are metal-poor. The metal-poor nature of planets in the HZ suggests a high Mg abundance relative to Si and high Si abundance relative to Fe. These results lead us to speculate that HZ planets might be more frequent in the ancient Galaxy and had compositions different from that of our Earth.

  11. Habitable Zone Planets: PLATO, and the search for Earth 2.0

    NASA Astrophysics Data System (ADS)

    Brown, D. J. A.

    2015-10-01

    The PLATO mission, part of ESA's Cosmic Vision program, will launch in 2024 and will revolutionize the field of transiting exoplanets. By observing a large sample of bright stars, PLATO will discover thousands of terrestrial planets, including hundreds in the habitable zones of their host stars. The brightness of PLATO targets allows full characterization of both the planets and their host stars, including asteroseismic analysis to precisely determine masses, radii, and ages. Moreover, PLATO host stars will be bright enough to allow atmospheric spectroscopy. Confirmation and characterization of PLATO planets will require a coordinated, ground-based follow-up program to both eliminate false-positives, and derive planetary masses. I will present an introduction to PLATO, discussing the scientific motivation behind the mission, its aims and goals, and the significant contribution that PLATO will make to the search for a second Earth. I will also talk about the requirements and formulation of the follow-up program, showing that the demands are not as onerous as might be feared.

  12. Exoplanet dynamics. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars.

    PubMed

    Leconte, Jérémy; Wu, Hanbo; Menou, Kristen; Murray, Norman

    2015-02-01

    Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets' rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere. PMID:25592420

  13. Exoplanet dynamics. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars.

    PubMed

    Leconte, Jérémy; Wu, Hanbo; Menou, Kristen; Murray, Norman

    2015-02-01

    Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets' rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere.

  14. Delayed Gratification Habitable Zones: When Deep Outer Solar System Regions Become Balmy During Post-Main Sequence Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Stern, S. Alan

    2003-06-01

    Like all low- and moderate-mass stars, the Sun will burn as a red giant during its later evolution, generating of solar luminosities for some tens of millions of years. During this post-main sequence phase, the habitable (i.e., liquid water) thermal zone of our Solar System will lie in the region where Triton, Pluto-Charon, and Kuiper Belt objects orbit. Compared with the 1 AU habitable zone where Earth resides, this "delayed gratification habitable zone" (DGHZ) will enjoy a far less biologically hazardous environment - with lower harmful radiation levels from the Sun, and a far less destructive collisional environment. Objects like Triton, Pluto-Charon, and Kuiper Belt objects, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Kuiper Belt, with >105 objects >=50 km in radius and more than three times the combined surface area of the four terrestrial planets, provides numerous sites for possible evolution once the Sun's DGHZ reaches it. The Sun's DGHZ might be thought to only be of academic interest owing to its great separation from us in time. However, ~109 Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our Solar System (and as inferred in numerous main sequence stellar disk systems), then DGHZs may form a niche type of habitable zone that is likely to be numerically common in the Galaxy.

  15. Delayed gratification habitable zones: when deep outer solar system regions become balmy during post-main sequence stellar evolution.

    PubMed

    Stern, S Alan

    2003-01-01

    Like all low- and moderate-mass stars, the Sun will burn as a red giant during its later evolution, generating of solar luminosities for some tens of millions of years. During this post-main sequence phase, the habitable (i.e., liquid water) thermal zone of our Solar System will lie in the region where Triton, Pluto-Charon, and Kuiper Belt objects orbit. Compared with the 1 AU habitable zone where Earth resides, this "delayed gratification habitable zone" (DGHZ) will enjoy a far less biologically hazardous environment - with lower harmful radiation levels from the Sun, and a far less destructive collisional environment. Objects like Triton, Pluto-Charon, and Kuiper Belt objects, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Kuiper Belt, with >10(5) objects > or =50 km in radius and more than three times the combined surface area of the four terrestrial planets, provides numerous sites for possible evolution once the Sun's DGHZ reaches it. The Sun's DGHZ might be thought to only be of academic interest owing to its great separation from us in time. However, approximately 10(9) Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our Solar System (and as inferred in numerous main sequence stellar disk systems), then DGHZs may form a niche type of habitable zone that is likely to be numerically common in the Galaxy.

  16. Delayed gratification habitable zones: when deep outer solar system regions become balmy during post-main sequence stellar evolution.

    PubMed

    Stern, S Alan

    2003-01-01

    Like all low- and moderate-mass stars, the Sun will burn as a red giant during its later evolution, generating of solar luminosities for some tens of millions of years. During this post-main sequence phase, the habitable (i.e., liquid water) thermal zone of our Solar System will lie in the region where Triton, Pluto-Charon, and Kuiper Belt objects orbit. Compared with the 1 AU habitable zone where Earth resides, this "delayed gratification habitable zone" (DGHZ) will enjoy a far less biologically hazardous environment - with lower harmful radiation levels from the Sun, and a far less destructive collisional environment. Objects like Triton, Pluto-Charon, and Kuiper Belt objects, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Kuiper Belt, with >10(5) objects > or =50 km in radius and more than three times the combined surface area of the four terrestrial planets, provides numerous sites for possible evolution once the Sun's DGHZ reaches it. The Sun's DGHZ might be thought to only be of academic interest owing to its great separation from us in time. However, approximately 10(9) Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our Solar System (and as inferred in numerous main sequence stellar disk systems), then DGHZs may form a niche type of habitable zone that is likely to be numerically common in the Galaxy. PMID:14577880

  17. Detection of a Proto-planetary Clump in the Habitable Zone of GM Cephei

    NASA Astrophysics Data System (ADS)

    Chen, W. P.; Hu, S. C.-L.

    2014-04-01

    GM Cephei is an active T Tauri star in the young open cluster Trumpler 37, showing abrupt UX Orionis type of photometric variability. Its light curves exhibit frequent, sporadic brightening events, each of <0.5 mag and lasting for days, which must have been originated from unsteady circumstellar accretion. In addition, the star undergoes a brightness drop up to ~1 mag lasting for about a month, during which the star became bluer when fainter. Moreover, the brightness drops seem to have a recurrence timescale of about 300 days. It is proposed that the brightness drop arises from obscuration of the central star by an orbiting dust concentration, exemplifying disk inhomogeneity in transition between grain coagulation and planetesimal formation in a young circumstellar disk. GM Cep was found to show a few percent polarization in the optical wavelengths, and an enhanced level of polarization during the occultation phase.

  18. Exoplanet detection. Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581.

    PubMed

    Robertson, Paul; Mahadevan, Suvrath; Endl, Michael; Roy, Arpita

    2014-07-25

    The M dwarf star Gliese 581 is believed to host four planets, including one (GJ 581d) near the habitable zone that could possibly support liquid water on its surface if it is a rocky planet. The detection of another habitable-zone planet--GJ 581g--is disputed, as its significance depends on the eccentricity assumed for d. Analyzing stellar activity using the Hα line, we measure a stellar rotation period of 130 ± 2 days and a correlation for Hα modulation with radial velocity. Correcting for activity greatly diminishes the signal of GJ 581d (to 1.5 standard deviations) while significantly boosting the signals of the other known super-Earth planets. GJ 581d does not exist, but is an artifact of stellar activity which, when incompletely corrected, causes the false detection of planet g.

  19. Exoplanet detection. Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581.

    PubMed

    Robertson, Paul; Mahadevan, Suvrath; Endl, Michael; Roy, Arpita

    2014-07-25

    The M dwarf star Gliese 581 is believed to host four planets, including one (GJ 581d) near the habitable zone that could possibly support liquid water on its surface if it is a rocky planet. The detection of another habitable-zone planet--GJ 581g--is disputed, as its significance depends on the eccentricity assumed for d. Analyzing stellar activity using the Hα line, we measure a stellar rotation period of 130 ± 2 days and a correlation for Hα modulation with radial velocity. Correcting for activity greatly diminishes the signal of GJ 581d (to 1.5 standard deviations) while significantly boosting the signals of the other known super-Earth planets. GJ 581d does not exist, but is an artifact of stellar activity which, when incompletely corrected, causes the false detection of planet g. PMID:24993348

  20. THE HUNT FOR EXOMOONS WITH KEPLER (HEK). III. THE FIRST SEARCH FOR AN EXOMOON AROUND A HABITABLE-ZONE PLANET

    SciTech Connect

    Kipping, D. M.; Forgan, D.; Hartman, J.; Bakos, G. Á.; Nesvorný, D.; Schmitt, A.; Buchhave, L.

    2013-11-10

    Kepler-22b is the first transiting planet to have been detected in the habitable zone of its host star. At 2.4 R{sub ⊕}, Kepler-22b is too large to be considered an Earth analog, but should the planet host a moon large enough to maintain an atmosphere, then the Kepler-22 system may yet possess a telluric world. Aside from being within the habitable zone, the target is attractive due to the availability of previously measured precise radial velocities and low intrinsic photometric noise, which has also enabled asteroseismology studies of the star. For these reasons, Kepler-22b was selected as a target-of-opportunity by the 'Hunt for Exomoons with Kepler' (HEK) project. In this work, we conduct a photodynamical search for an exomoon around Kepler-22b leveraging the transits, radial velocities, and asteroseismology plus several new tools developed by the HEK project to improve exomoon searches. We find no evidence for an exomoon around the planet and exclude moons of mass M{sub S} > 0.5 M{sub ⊕} to 95% confidence. By signal injection and blind retrieval, we demonstrate that an Earth-like moon is easily detected for this planet even when the time-correlated noise of the data set is taken into account. We provide updated parameters for the planet Kepler-22b, including a revised mass of M{sub P} < 53 M{sub ⊕} to 95% confidence and an eccentricity of 0.13{sub -0.13}{sup +0.36} by exploiting Single-body Asterodensity Profiling. Finally, we show that Kepler-22b has a >95% probability of being within the empirical habitable zone but a <5% probability of being within the conservative habitable zone.

  1. A SUPER-EARTH-SIZED PLANET ORBITING IN OR NEAR THE HABITABLE ZONE AROUND A SUN-LIKE STAR

    SciTech Connect

    Barclay, Thomas; Burke, Christopher J.; Howell, Steve B.; Rowe, Jason F.; Huber, Daniel; Jenkins, Jon M.; Quintana, Elisa V.; Still, Martin; Twicken, Joseph D.; Bryson, Stephen T.; Borucki, William J.; Caldwell, Douglas A.; Clarke, Bruce D.; Christiansen, Jessie L; Coughlin, Jeffrey L.; Ciardi, David; Fischer, Debra A.; and others

    2013-05-10

    We present the discovery of a super-Earth-sized planet in or near the habitable zone of a Sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the 3-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.3%. The inner planet, Kepler-69b, has a radius of 2.24{sup +0.44}{sub -0.29} R{sub Circled-Plus} and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-sized object with a radius of 1.7{sup +0.34}{sub -0.23} R{sub Circled-Plus} and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 {+-} 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near the habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth analog.

  2. Kepler Mission: A Mission to Find Earth-size Planets in the Habitable Zone

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. When combined with ground-based spectrometric observations of these stars, the positions of the planets relative to the habitable zone can be found. The spectra of the stars are also used to determine the relationships between the characteristics of terrestrial planets and the characteristics of the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler-velocity discoveries, over a thousand giant planets will also be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of Earth-size planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ are very rare and that life might also be quite rare.

  3. Observations of Interstellar Formamide: Availability of a Prebiotic Precursor in the Galactic Habitable Zone

    PubMed Central

    Adande, Gilles R.; Woolf, Neville J.

    2013-01-01

    Abstract We conducted a study on interstellar formamide, NH2CHO, toward star-forming regions of dense molecular clouds, using the telescopes of the Arizona Radio Observatory (ARO). The Kitt Peak 12 m antenna and the Submillimeter Telescope (SMT) were used to measure multiple rotational transitions of this molecule between 100 and 250 GHz. Four new sources of formamide were found [W51M, M17 SW, G34.3, and DR21(OH)], and complementary data were obtained toward Orion-KL, W3(OH), and NGC 7538. From these observations, column densities for formamide were determined to be in the range of 1.1×1012 to 9.1×1013 cm−2, with rotational temperatures of 70–177 K. The molecule is thus present in warm gas, with abundances relative to H2 of 1×10−11 to 1×10−10. It appears to be a common constituent of star-forming regions that foster planetary systems within the galactic habitable zone, with abundances comparable to that found in comet Hale-Bopp. Formamide's presence in comets and molecular clouds suggests that the compound could have been brought to Earth by exogenous delivery, perhaps with an infall flux as high as ∼0.1 mol/km2/yr or 0.18 mmol/m2 in a single impact. Formamide has recently been proposed as a single-carbon, prebiotic source of nucleobases and nucleic acids. This study suggests that a sufficient amount of NH2CHO could have been available for such chemistry. Key Words: Formamide—Astrobiology—Radioastronomy—ISM—Comets—Meteorites. Astrobiology 13, 439–453. PMID:23654214

  4. Observations of interstellar formamide: availability of a prebiotic precursor in the galactic habitable zone.

    PubMed

    Adande, Gilles R; Woolf, Neville J; Ziurys, Lucy M

    2013-05-01

    We conducted a study on interstellar formamide, NH2CHO, toward star-forming regions of dense molecular clouds, using the telescopes of the Arizona Radio Observatory (ARO). The Kitt Peak 12 m antenna and the Submillimeter Telescope (SMT) were used to measure multiple rotational transitions of this molecule between 100 and 250 GHz. Four new sources of formamide were found [W51M, M17 SW, G34.3, and DR21(OH)], and complementary data were obtained toward Orion-KL, W3(OH), and NGC 7538. From these observations, column densities for formamide were determined to be in the range of 1.1×10(12) to 9.1×10(13) cm(-2), with rotational temperatures of 70-177 K. The molecule is thus present in warm gas, with abundances relative to H2 of 1×10(-11) to 1×10(-10). It appears to be a common constituent of star-forming regions that foster planetary systems within the galactic habitable zone, with abundances comparable to that found in comet Hale-Bopp. Formamide's presence in comets and molecular clouds suggests that the compound could have been brought to Earth by exogenous delivery, perhaps with an infall flux as high as ~0.1 mol/km(2)/yr or 0.18 mmol/m(2) in a single impact. Formamide has recently been proposed as a single-carbon, prebiotic source of nucleobases and nucleic acids. This study suggests that a sufficient amount of NH2CHO could have been available for such chemistry.

  5. A simple evolutional model of Habitable Zone around host stars with various mass and low metallicity

    NASA Astrophysics Data System (ADS)

    Oishi, Midori; Kamaya, Hideyuki

    2016-02-01

    Habitable Zone (HZ) is defined as a life existence area, where water at the surface of the terrestrial planet is in liquid phase. This is caused by the balance of flux from the host star and effective radiative cooling with greenhouse effect of the planet. However, the flux varies according to evolutional phase of the host star. So, a simple but newest HZ model considering stellar mass range from 0.08 to 4.00 M⊙ has been proposed. It studies both at zero-age main sequence (ZAMS) and terminal-age main sequence (TMS) phases to examine persistence of HZ. By the way, it discusses the case of the metallicity like the Sun. Actually, it is interesting to study a HZ model considering host stars with low metallicity. So, we examine the effect of metallicity, following the precedent simple model. In our analysis, metallicity affects little for HZ orbital range at ZAMS, while it affects clearly in case of TMS. Since the inner and outer HZ boundaries at TMS are shifted outward especially in the mass range from 1.5 to 2.0 M⊙, we find persistent HZ is allowed above about 1.8 M⊙. The age of the universe is 13.8 Gyr, which is comparable to main sequence life time of about 0.8 M⊙ for the low metallicity case. Then, the effect of metallicity to estimate HZ of low metallicity host stars is important for the mass range from 0.8 to 1.8 M⊙.

  6. Asteroid flux towards circumprimary habitable zones in binary star systems. II. Dynamics

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Pilat-Lohinger, E.; Bazsó, Á.

    2016-06-01

    Context. Secular and mean motion resonances (MMR) are effective perturbations for shaping planetary systems. In binary star systems, they play a key role during the early and late phases of planetary formation, as well as for the dynamical stability of a planetary system. Aims: In this study, we aim to correlate the presence of orbital resonances with the rate of icy asteroids crossing the habitable zone (HZ) from a circumprimary disk of planetesimals in various binary star systems. Methods: We modelled a belt of small bodies in the inner and outer regions, interior and exterior to the orbit of a gas giant planet, respectively. The planetesimals are equally placed around a primary G-type star and move under the gravitational influence of the two stars and the gas giant. We numerically integrated the system for 50 Myr, considering various parameters for the secondary star. Its stellar type varies from a M- to F-type; its semimajor axis is either 50 au or 100 au, and its eccentricity is either 0.1 or 0.3. For comparison, we also varied the gas giant's orbital and physical parameters. Results: Our simulations highlight that a disk of planetesimals will suffer from perturbations owing to a perturbed gas giant, mean motion, and secular resonances. We show that a secular resonance - with location and width varying according to the secondary star's characteristics - can exist in the icy asteroid belt region and overlap with MMRs, which have an impact on the dynamical lifetime of the disk. In addition, we point out that, in any case, the 2:1 MMR, the 5:3 MMR, and the secular resonance are powerful perturbations for the flux of icy asteroids towards the HZ and the transport of water therein.

  7. Observations of interstellar formamide: availability of a prebiotic precursor in the galactic habitable zone.

    PubMed

    Adande, Gilles R; Woolf, Neville J; Ziurys, Lucy M

    2013-05-01

    We conducted a study on interstellar formamide, NH2CHO, toward star-forming regions of dense molecular clouds, using the telescopes of the Arizona Radio Observatory (ARO). The Kitt Peak 12 m antenna and the Submillimeter Telescope (SMT) were used to measure multiple rotational transitions of this molecule between 100 and 250 GHz. Four new sources of formamide were found [W51M, M17 SW, G34.3, and DR21(OH)], and complementary data were obtained toward Orion-KL, W3(OH), and NGC 7538. From these observations, column densities for formamide were determined to be in the range of 1.1×10(12) to 9.1×10(13) cm(-2), with rotational temperatures of 70-177 K. The molecule is thus present in warm gas, with abundances relative to H2 of 1×10(-11) to 1×10(-10). It appears to be a common constituent of star-forming regions that foster planetary systems within the galactic habitable zone, with abundances comparable to that found in comet Hale-Bopp. Formamide's presence in comets and molecular clouds suggests that the compound could have been brought to Earth by exogenous delivery, perhaps with an infall flux as high as ~0.1 mol/km(2)/yr or 0.18 mmol/m(2) in a single impact. Formamide has recently been proposed as a single-carbon, prebiotic source of nucleobases and nucleic acids. This study suggests that a sufficient amount of NH2CHO could have been available for such chemistry. PMID:23654214

  8. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS

    SciTech Connect

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F.; SchottelKotte, James; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-06-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M {sub ⊕} and 5 M {sub ⊕}. Assuming H{sub 2}O-(inner HZ) and CO{sub 2}-(outer HZ) dominated atmospheres, and scaling the background N{sub 2} atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H{sub 2}O column depth. For larger planets, the H{sub 2}O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  9. Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass

    NASA Technical Reports Server (NTRS)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  10. Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones.

    PubMed

    Griessmeier, J-M; Stadelmann, A; Motschmann, U; Belisheva, N K; Lammer, H; Biernat, H K

    2005-10-01

    Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays.

  11. VALIDATION OF 12 SMALL KEPLER TRANSITING PLANETS IN THE HABITABLE ZONE

    SciTech Connect

    Torres, Guillermo; Kipping, David M.; Fressin, Francois; Newton, Elisabeth R.; Caldwell, Douglas A.; Twicken, Joseph D.; Batalha, Natalie M.; Bryson, Stephen T.; Henze, Christopher E.; Howell, Steve B.; Jenkins, Jon M.; Barclay, Thomas; Borucki, William J.; Ciardi, David R.; Muirhead, Philip S.; Crepp, Justin R.; Everett, Mark E.; and others

    2015-02-20

    We present an investigation of 12 candidate transiting planets from Kepler with orbital periods ranging from 34 to 207 days, selected from initial indications that they are small and potentially in the habitable zone (HZ) of their parent stars. Few of these objects are known. The expected Doppler signals are too small to confirm them by demonstrating that their masses are in the planetary regime. Here we verify their planetary nature by validating them statistically using the BLENDER technique, which simulates large numbers of false positives and compares the resulting light curves with the Kepler photometry. This analysis was supplemented with new follow-up observations (high-resolution optical and near-infrared spectroscopy, adaptive optics imaging, and speckle interferometry), as well as an analysis of the flux centroids. For 11 of them (KOI-0571.05, 1422.04, 1422.05, 2529.02, 3255.01, 3284.01, 4005.01, 4087.01, 4622.01, 4742.01, and 4745.01) we show that the likelihood they are true planets is far greater than that of a false positive, to a confidence level of 99.73% (3σ) or higher. For KOI-4427.01 the confidence level is about 99.2% (2.6σ). With our accurate characterization of the GKM host stars, the derived planetary radii range from 1.1 to 2.7 R {sub ⊕}. All 12 objects are confirmed to be in the HZ, and nine are small enough to be rocky. Excluding three of them that have been previously validated by others, our study doubles the number of known rocky planets in the HZ. KOI-3284.01 (Kepler-438b) and KOI-4742.01 (Kepler-442b) are the planets most similar to the Earth discovered to date when considering their size and incident flux jointly.

  12. WATER-PLANETS IN THE HABITABLE ZONE: ATMOSPHERIC CHEMISTRY, OBSERVABLE FEATURES, AND THE CASE OF KEPLER-62e AND -62f

    SciTech Connect

    Kaltenegger, L.; Sasselov, D.; Rugheimer, S.

    2013-10-01

    Planets composed of large quantities of water that reside in the habitable zone are expected to have distinct geophysics and geochemistry of their surfaces and atmospheres. We explore these properties motivated by two key questions: whether such planets could provide habitable conditions and whether they exhibit discernable spectral features that distinguish a water-planet from a rocky Earth-like planet. We show that the recently discovered planets Kepler-62e and -62f are the first viable candidates for habitable zone water-planets. We use these planets as test cases for discussing those differences in detail. We generate atmospheric spectral models and find that potentially habitable water-planets show a distinctive spectral fingerprint in transit depending on their position in the habitable zone.

  13. Water delivery to the Habitable zone and impact probabilities in the early phases of planetary systems in binary star systems

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Pilat-Lohinger, E.; Eggl, S.; Dvorak, R.

    2014-11-01

    By now, observations of exoplanets have found more than 50 binary star systems hosting 71 planets. We expect these numbers to increase as more than 70Â % of the main sequence stars in the solar neighbourhood are members of binary or multiple systems. The planetary motion in binary star systems depends strongly on both the parameters of the stellar system (stellar separation and eccentricity) and the architecture of the planetary system (number of planets and their orbital behaviour). In case a terrestrial planet moves in the so-called habitable zone (HZ) of its host star, the habitability of such a planet depends on many parameters. A crucial factor is certainly the amount of water. Water is the main ingredient defining an habitable planet. Therefore, the main question we would like to answer in our study is if a dry or almost dry planet can be fed with water by a bombardement of wet small bodies in such binary systems. First simulations of planetary formation in such systems show the stochastic behaviour of the water to mass ratio of planetary embryos (Haghighipour and Raymond 2007). After the embryo formation, a remnent disc of small bodies can be found around the main star. It mainly contains asteroids and comets whose initial water distribution depends on their position relative to the snow-line. After the gas dissipation, the disc is free to move under gravitation. They can interact with embryos located in the habitable zone and thus alter their initial water content. In our study, we consider different binary star configurations of G, K and M for the secondary star (the primary is a G-type), with various ranges of semi-major axis (from 25 AU to 100 AU) and eccentricity (from 0.1 to 0.5), and analyse the dynamics of small bodies moving under the gravitational perturbation of the binary star system, a Jupiter-like planet and an Earth-like planet, where the latter is randomly placed in the habitable zone. We mainly focus on water-rich asteroids with semi

  14. The Mt John University Observatory search for Earth-mass planets in the habitable zone of α Centauri

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Bergmann, Christoph; Hearnshaw, John; Barnes, Stuart I.; Wittenmyer, Robert A.; Ramm, David; Kilmartin, Pam; Gunn, Fraser; Brogt, Erik

    2015-04-01

    The `holy grail' in planet hunting is the detection of an Earth-analogue: a planet with similar mass as the Earth and an orbit inside the habitable zone. If we can find such an Earth-analogue around one of the stars in the immediate solar neighbourhood, we could potentially even study it in such great detail to address the question of its potential habitability. Several groups have focused their planet detection efforts on the nearest stars. Our team is currently performing an intensive observing campaign on the α Centauri system using the High Efficiency and Resolution Canterbury University Large Échelle Spectrograph (Hercules) at the 1 m McLellan telescope at Mt John University Observatory in New Zealand. The goal of our project is to obtain such a large number of radial velocity (RV) measurements with sufficiently high temporal sampling to become sensitive to signals of Earth-mass planets in the habitable zones of the two stars in this binary system. Over the past few years, we have collected more than 45 000 spectra for both stars combined. These data are currently processed by an advanced version of our RV reduction pipeline, which eliminates the effect of spectral cross-contamination. Here we present simulations of the expected detection sensitivity to low-mass planets in the habitable zone by the Hercules programme for various noise levels. We also discuss our expected sensitivity to the purported Earth-mass planet in a 3.24-day orbit announced by Dumusque et al. (2012).

  15. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs.

    PubMed

    Luger, R; Barnes, R

    2015-02-01

    We show that terrestrial planets in the habitable zones of M dwarfs older than ∼1 Gyr could have been in runaway greenhouses for several hundred million years following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bar of abiotically produced O2, resulting in potential false positives for life. The amount of O2 that builds up also scales with the planet mass; we find that O2 builds up at a constant rate that is controlled by diffusion: ∼5 bar/Myr on Earth-mass planets and up to ∼25 bar/Myr on super-Earths. As a result, some recently discovered super-Earths in the habitable zone such as GJ 667Cc could have built up as many as 2000 bar of O2 due to the loss of up to 10 Earth oceans of water. The fate of a given planet strongly depends on the extreme ultraviolet flux, the duration of the runaway regime, the initial water content, and the rate at which oxygen is absorbed by the surface. In general, we find that the initial phase of high luminosity may compromise the habitability of many terrestrial planets orbiting low-mass stars. PMID:25629240

  16. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs.

    PubMed

    Luger, R; Barnes, R

    2015-02-01

    We show that terrestrial planets in the habitable zones of M dwarfs older than ∼1 Gyr could have been in runaway greenhouses for several hundred million years following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bar of abiotically produced O2, resulting in potential false positives for life. The amount of O2 that builds up also scales with the planet mass; we find that O2 builds up at a constant rate that is controlled by diffusion: ∼5 bar/Myr on Earth-mass planets and up to ∼25 bar/Myr on super-Earths. As a result, some recently discovered super-Earths in the habitable zone such as GJ 667Cc could have built up as many as 2000 bar of O2 due to the loss of up to 10 Earth oceans of water. The fate of a given planet strongly depends on the extreme ultraviolet flux, the duration of the runaway regime, the initial water content, and the rate at which oxygen is absorbed by the surface. In general, we find that the initial phase of high luminosity may compromise the habitability of many terrestrial planets orbiting low-mass stars.

  17. Toward detection of terrestrial planets in the habitable zone of our closest neighbor: proxima Centauri

    NASA Astrophysics Data System (ADS)

    Endl, M.; Kürster, M.

    2008-09-01

    Context: The precision of radial velocity (RV) measurements to detect indirectly planetary companions of nearby stars has improved to enable the discovery of extrasolar planets in the Neptune and Super-Earth mass range. Detections of extremely low mass planets, even as small as 1 Earth mass or below, in short-period orbits now appears conceivable in ongoing RV planet searches. Discoveries of these Earth-like planets by means of ground-based RV programs will help to determine the parameter η⊕, the frequency of potentially habitable planets around other stars. Aims: In search of low-mass planetary companions we monitored Proxima Centauri (M5V) as part of our M dwarf program. In the absence of a significant detection, we use these data to demonstrate the general capability of the RV method in finding terrestrial planets. For late M dwarfs the classic liquid surface water habitable zone (HZ) is located close to the star, in which circumstances the RV method is most effective. We want to demonstrate that late M dwarfs are ideal targets for the search of terrestrial planets with the RV technique. Methods: Using the iodine cell technique we obtained differential RV measurements of Proxima Cen over a time span of 7 years with the UVES spectrograph at the ESO VLT. We determine upper limits to the masses of companions in circular orbits by means of numerical simulations. Results: The RV data of Proxima Cen have a total rms scatter of 3.1~m s-1 and a period search does not reveal any significant signals. In contrast to our earlier results for Barnard's star, the RV results for the active M dwarf Proxima Cen are only weakly correlated with Hα line index measurements. As a result of our companion limit calculations, we find that we successfully recover all test signals with RV amplitudes corresponding to planets with m sin i ≥ 2-3 M_⊕ residing inside the HZ of Proxima Cen with a statistical significance of >99%. Over the same period range, we can recover 50% of the test

  18. DIAGNOSING CIRCUMSTELLAR DEBRIS DISKS

    SciTech Connect

    Hahn, Joseph M.

    2010-08-20

    A numerical model of a circumstellar debris disk is developed and applied to observations of the circumstellar dust orbiting {beta} Pictoris. The model accounts for the rates at which dust is produced by collisions among unseen planetesimals, and the rate at which dust grains are destroyed due to collisions. The model also accounts for the effects of radiation pressure, which is the dominant perturbation on the disk's smaller but abundant dust grains. Solving the resulting system of rate equations then provides the dust abundances versus grain size and dust abundances over time. Those solutions also provide the dust grains' collisional lifetime versus grain size, and the debris disk's optical depth and surface brightness versus distance from the star. Comparison to observations then yields estimates of the unseen planetesimal disk's radius, and the rate at which the disk sheds mass due to planetesimal grinding. The model can also be used to measure or else constrain the dust grain's physical and optical properties, such as the dust grains' strength, their light-scattering asymmetry parameter, and the grains' efficiency of light scattering Q{sub s}. The model is then applied to optical observations of the edge-on dust disk orbiting {beta} Pictoris, and good agreement is achieved when the unseen planetesimal disk is broad, with 75 {approx}< r {approx}< 150 AU. If it is assumed that the dust grains are bright like Saturn's icy rings (Q{sub s} = 0.7), then the cross section of dust in the disk is A{sub d} {approx_equal} 2 x 10{sup 20} km{sup 2} and its mass is M{sub d} {approx_equal} 11 lunar masses. In this case, the planetesimal disk's dust-production rate is quite heavy, M-dot {sub d{approx}}9 M {sub +} Myr{sup -1}, implying that there is or was a substantial amount of planetesimal mass there, at least 110 Earth masses. If the dust grains are darker than assumed, then the planetesimal disk's mass-loss rate and its total mass are heavier. In fact, the apparent dearth

  19. EFFECT OF METALLICITY ON THE EVOLUTION OF THE HABITABLE ZONE FROM THE PRE-MAIN SEQUENCE TO THE ASYMPTOTIC GIANT BRANCH AND THE SEARCH FOR LIFE

    SciTech Connect

    Danchi, William C.; Lopez, Bruno E-mail: bruno.lopez@oca.eu

    2013-05-20

    During the course of stellar evolution, the location and width of the habitable zone changes as the luminosity and radius of the star evolves. The duration of habitability for a planet located at a given distance from a star is greatly affected by the characteristics of the host star. A quantification of these effects can be used observationally in the search for life around nearby stars. The longer the duration of habitability, the more likely it is that life has evolved. The preparation of observational techniques aimed at detecting life would benefit from the scientific requirements deduced from the evolution of the habitable zone. We present a study of the evolution of the habitable zone around stars of 1.0, 1.5, and 2.0 M{sub Sun} for metallicities ranging from Z = 0.0001 to Z = 0.070. We also consider the evolution of the habitable zone from the pre-main sequence until the asymptotic giant branch is reached. We find that metallicity strongly affects the duration of the habitable zone for a planet as well as the distance from the host star where the duration is maximized. For a 1.0 M{sub Sun} star with near solar metallicity, Z = 0.017, the duration of the habitable zone is >10 Gyr at distances 1.2-2.0 AU from the star, whereas the duration is >20 Gyr for high-metallicity stars (Z = 0.070) at distances of 0.7-1.8 AU, and {approx}4 Gyr at distances of 1.8-3.3 AU for low-metallicity stars (Z = 0.0001). Corresponding results have been obtained for stars of 1.5 and 2.0 solar masses.

  20. Extreme Water Loss and Abiotic O2 Buildup on Planets Throughout the Habitable Zones of M Dwarfs

    PubMed Central

    Barnes, R.

    2015-01-01

    Abstract We show that terrestrial planets in the habitable zones of M dwarfs older than ∼1 Gyr could have been in runaway greenhouses for several hundred million years following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bar of abiotically produced O2, resulting in potential false positives for life. The amount of O2 that builds up also scales with the planet mass; we find that O2 builds up at a constant rate that is controlled by diffusion: ∼5 bar/Myr on Earth-mass planets and up to ∼25 bar/Myr on super-Earths. As a result, some recently discovered super-Earths in the habitable zone such as GJ 667Cc could have built up as many as 2000 bar of O2 due to the loss of up to 10 Earth oceans of water. The fate of a given planet strongly depends on the extreme ultraviolet flux, the duration of the runaway regime, the initial water content, and the rate at which oxygen is absorbed by the surface. In general, we find that the initial phase of high luminosity may compromise the habitability of many terrestrial planets orbiting low-mass stars. Key Words: Astrobiology—Biosignatures—Extrasolar terrestrial planets—Habitability—Planetary atmospheres. Astrobiology 15, 119–143. PMID:25629240

  1. Reflected Light from Giant Planets in Habitable Zones: Tapping into the Power of the Cross-Correlation Function

    NASA Astrophysics Data System (ADS)

    Martins, J. H. C.; Santos, N. C.; Figueira, P.; Melo, C.

    2016-03-01

    The direct detection of reflected light from exoplanets is an excellent probe for the characterization of their atmospheres. The greatest challenge for this task is the low planet-to-star flux ratio, which even in the most favourable case is of the order of 10-4 in the optical. This ratio decreases even more for planets in their host's habitable zone, typically lower than 10-7. To reach the signal-to-noise level required for such detections, we propose to unleash the power of the Cross Correlation Function in combination with the collecting power of next generation observing facilities. The technique we propose has already yielded positive results by detecting the reflected spectral signature of 51 Pegasi b (see Martins et al. 2015). In this work, we attempted to infer the number of hours required for the detection of several planets in their host's habitable zone using the aforementioned technique from theoretical EELT observations. Our results show that for 5 of the selected planets it should be possible to directly recover their reflected spectral signature.

  2. Reflected Light from Giant Planets in Habitable Zones: Tapping into the Power of the Cross-Correlation Function

    NASA Astrophysics Data System (ADS)

    Martins, J. H. C.; Santos, N. C.; Figueira, P.; Melo, C.

    2016-11-01

    The direct detection of reflected light from exoplanets is an excellent probe for the characterization of their atmospheres. The greatest challenge for this task is the low planet-to-star flux ratio, which even in the most favourable case is of the order of 10-4 in the optical. This ratio decreases even more for planets in their host's habitable zone, typically lower than 10-7. To reach the signal-to-noise level required for such detections, we propose to unleash the power of the Cross Correlation Function in combination with the collecting power of next generation observing facilities. The technique we propose has already yielded positive results by detecting the reflected spectral signature of 51 Pegasi b (see Martins et al. 2015). In this work, we attempted to infer the number of hours required for the detection of several planets in their host's habitable zone using the aforementioned technique from theoretical EELT observations. Our results show that for 5 of the selected planets it should be possible to directly recover their reflected spectral signature.

  3. Earths In Other Solar Systems: The Formation of Habitable Zone Earth-Like Planets With Biocritical Ingredients

    NASA Astrophysics Data System (ADS)

    Apai, Daniel

    2015-07-01

    The past decade has opened our eyes on the unexpected and dramatic diversity of the physical properites of exoplanetary systems. The different planetaty architectures and physical planet properties argue for formation pathways that are in many ways different from the Solar System's formation. The physical differences also forshadow possible major compositional and dynamical differences between our own planetary system and those in which we will search for biosignatures. In this talk I will briefly introduce evidence for the different planetary architectures and formation histories between sun-like stars and low-mass stars, some of which are host stars of relatively easily accessible habitable zone earth-sized planets. I will argue that the assumption that habitable zone earth-sized planets are identical around stars of different masses is probably incorrect. I will intorduce a major NASA-funded 5 yr-long project, Earths in Other Solar Systems, that coordinates the interdisciplinary reearch of furteen teams addressing the compositional diversity and range of volatiles and organics budgets of earth-sized planets around different host stars. I will describe the goals and first results from our team and place this project in the endeavor to identify the most promising nearby stars for future atmospheric biosignature surveys.

  4. `Grandeur in this view of life': N-body simulation models of the Galactic habitable zone

    NASA Astrophysics Data System (ADS)

    Vukotić, B.; Steinhauser, D.; Martinez-Aviles, G.; Ćirković, M. M.; Micic, M.; Schindler, S.

    2016-07-01

    We present an isolated Milky-Way-like simulation in the GADGET2 N-body smoothed particle hydrodynamics (SPH) code. The Galactic disc star formation rate (SFR) surface densities and a stellar mass indicative of the Solar neighbourhood are used as thresholds to model the distribution of stellar mass in life-friendly environments. SFR and stellar component density are calculated by averaging the GADGET2 particle properties on a 2D grid mapped on the Galactic plane. The peak values for possibly habitable stellar mass surface density move from 10 to 15 kpc cylindrical galactocentric distance in a 10-Gyr simulated time span. At 10 Gyr, the simulation results imply the following. Stellar particles that have spent almost all of their lifetime in habitable-friendly conditions typically reside at ˜16 kpc from the Galactic Centre and are ˜3 Gyr old. Stellar particles that have spent ≥90 per cent of their 4-5 Gyr long lifetime in habitable-friendly conditions are also predominantly found in the outskirts of the Galactic disc. Fewer than 1 per cent of these particles can be found at a typical Solar system galactocentric distance of 8-10 kpc. Our results imply that the evolution of an isolated spiral galaxy is likely to result in galactic civilizations emerging at the outskirts of the galactic disc around stellar hosts younger than the Sun.

  5. The Inhabitance Paradox: how habitability and inhabitancy are inseparable

    NASA Astrophysics Data System (ADS)

    Goldblatt, C.

    2015-12-01

    The dominant paradigm in assigning "habitability" to terrestrial planets is to define a circumstellar habitable zone: the locus of orbital radii in which the planet is neither too hot nor too cold for life as we know it. One dimensional climate models have put theoretically impressive boundaries on this: a runaway greenhouse or water loss at the inner edge (Venus), and low-latitude glaciation followed by formation of CO2 clouds at the outer edge. A cottage industry now exists to "refine" the definition of these boundaries each year to the third decimal place of an AU. Using exactly that kind of model, I'll show that the different climate states can overlap very substantially and that "snowball Earth", temperate climate and a post-runaway climate can all be stable under the same solar flux. Furthermore, the radial extent of the temperature climate band is very narrow for pure water atmospheres. The width of the habitable zone is determined by the atmospheric inventories of di-nitrogen and carbon dioxide. Yet Earth teaches us that these abundances are very heavily influenced (perhaps even controlled) by biology. This is paradoxical: the habitable zone seeks to define the region a planet should be capable of harbouring life; yet whether the planet is inhabited will determine whether the climate may be habitable at any given distance from the star. This matters, because future life detection missions may use habitable zone boundaries in mission design. A historical view of solar system exploration helps frame the problem; robotic exploration of the outer solar system revealed the un-imagined nature of the Jovian and Saturnian moons, whilst showing that the Venusian jungle died long ago. Prediction will fall to data but the unexpected may emerge. To soften that fall we should revise the paradigm of habitability to acknowledge that habitability depends on inhabitance; for life as we know it is a planetary scale--and planet dominating--phenomenon.

  6. Secular resonances in circumstellar systems in binary stars

    NASA Astrophysics Data System (ADS)

    Bazso, A.; Pilat-Lohinger, E.; Eggl, S.; Funk, B.; Bancelin, D.

    2016-02-01

    Planet formation around single stars is already a complicated matter, but extrasolar planets are also present in binary and multiple star systems. We investigate circumstellar planets in binary star systems with stellar separations below 100 astronomical units. For a selection of 11 systems with at least one detected giant planet we determine the location and extension of the habitable zone (HZ), subject to the incident stellar flux from both stars. We work out the stability of additional hypothetical terrestrial planets in or close to the HZ in these systems. To study the secular dynamics we apply a semi-analytical method. This method employs a first-order perturbation theory to determine the secular frequencies of objects moving under the gravitational influence of two much more massive perturbers. The other part uses a single numerical integration of the equations of motion and a frequency analysis of the obtained time-series to determine the apsidal precession frequencies of the massive bodies. By combining these two parts we are able to find the location of the most important secular resonances and the regions of chaotic motion. We demonstrate that terrestrial planets interior to the giant planet’s orbit may suffer from a linear secular resonance that could prevent the existence of habitable planets. Contrary to this, close-in giant planets are less of a problem, but one has to take into account the general relativistic precession of the pericenter that can also lead to resonances.

  7. STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE

    SciTech Connect

    Yang, Jun; Abbot, Dorian S.; Boué, Gwenaël; Fabrycky, Daniel C.

    2014-05-20

    Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining the mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotation rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.

  8. Climatic Habitability

    NASA Astrophysics Data System (ADS)

    Spiegel, David S.; Menou, K.; Scharf, C. A.

    2008-05-01

    It is likely that, in the next several years, the Corot and Kepler satellites will find many terrestrial planets around other stars. In order to judge what fraction of these planets are likely to be hospitable to life, it is important to reassess the notion of the habitable zone. Classical considerations of habitability, in the context of extrasolar planets, have often regarded it as a binary property (either a planet is or is not habitable). But according to the standard liquid water definition, the Earth itself is only partially habitable. I will describe a way to use energy balance climate models to assess the spatial and temporal habitability of terrestrial planets that are not too different from the Earth. Initial investigations of model planets' temperature distributions indicate that climate varies with observable features of planets (e.g., how far they are from their star) and unobservable features (e.g., how fast they are spinning, how much surface water they have, what their obliquity is). The habitability of model pseudo-Earths with different rotation rates or land-ocean fractions, for instance, generally differs significantly from that of the Earth itself.

  9. Occurrence and food habits of the round goby in the profundal zone of southwestern Lake Ontario

    USGS Publications Warehouse

    Walsh, M.G.; Dittman, D.E.; O'Gorman, R.

    2007-01-01

    Little is known about the ecology of round goby (Neogobius melanostomus), an invasive benthic fish, in the profundal zone of the Great Lakes. In April 2002–2005 we caught increasing numbers of round gobies with a bottom trawl in the 45–150 m depth range of southwestern Lake Ontario. In 2005, we examined gut contents of 30 round gobies from each of three depths, 55, 95, and 130 m, and qualitatively compared gut contents with density of benthic invertebrates determined by Ponar grabs. Round goby guts contained mostly Dreissena spp. and opposum shrimp, Mysis relicta (Mysis); the frequency of occurrence of dreissenids in guts decreased with depth, whereas the frequency of occurrence of Mysis in guts increased with depth. Abundance of these invertebrates in the environment followed the same pattern, although dreissenids of optimum edible size (3–12 mm) were still abundant (1,373/m2) at 130 m, where round gobies primarily consumed Mysis, suggesting that round gobies may switch from dreissenids to more profitable prey when it is available. Other food items were ostracods and fish, with ostracods generally eaten by smaller round gobies and fish eaten by larger round gobies. Occurrence and increasing abundance of round gobies in the profundal zone and predation on Mysis by round goby could have far-reaching consequences for the Lake Ontario fish community.

  10. Differences in Water Vapor Radiative Transfer among 1D Models Can Significantly Affect the Inner Edge of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Wang, Yuwei; Koll, Daniel D. B.; Ding, Feng; Forget, François; Abbot, Dorian S.

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4_Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μm) and in the region between 0.2 and 1.5 μm. Differences in outgoing longwave radiation increase with surface temperature and reach 10-20 W m-2 differences in shortwave reach up to 60 W m-2, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m-2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  11. Differences in Water Vapor Radiative Transfer among 1D Models Can Significantly Affect the Inner Edge of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Wang, Yuwei; Koll, Daniel D. B.; Ding, Feng; Forget, François; Abbot, Dorian S.

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4_Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μm) and in the region between 0.2 and 1.5 μm. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m‑2 differences in shortwave reach up to 60 W m‑2, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m‑2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  12. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    SciTech Connect

    Quintana, Elisa V.; Lissauer, Jack J.

    2014-05-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M {sub ⊕} to 1 M {sub J}) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  13. Atmospheric expansion in runaway greenhouse atmospheres: the inner edge of the habitable zone depends on planet mass

    NASA Astrophysics Data System (ADS)

    Goldblatt, C.; Zahnle, K. J.

    2014-12-01

    As a wet planet becomes hot, evaporation of the ocean provides a thick steam atmosphere. As the atmosphere thickens, the level at which optical depth is unity (whence radiative emission and absorption dominantly occur) rises into the atmosphere, first for thermal wavelengths and later for solar wavelengths. Consequently, two radiation limits emerge. First, an asymptotic limit on the thermal radiation, as the level at which thermal emission occurs tends towards a fixed temperature, decoupled from surface temperature. Next, a limit the albedo of the planet, as all incoming sunlight is either reflected or absorbed in the atmosphere and almost none reaches the surface. A runaway greenhouse occurs when the product of co-albedo and area-averaged incoming sunlight exceeds the thermal radiation limit. Earth today is perilously close to this [1].Returning to the first sentence, we generate a thick atmosphere: the height of optical depth of unity becomes a non-trivial fraction of the planetary radius. Hence the area of the absorbing and emitting surfaces increase. Thermal emission wins slightly, as this occurs higher, increasing thermal emission in all cases. The underlying tendency is for a larger thermal limit for heavier planets due to pressure effects, making these appear more resistant to a runaway. However, atmospheric expansion affects light planets more, making these seem much more resilient. The least resilient planet would be between Mars-size and Venus-size (Figure 1). It would be foolish to regard small planets as habitable. As the atmospheres become large, so does the problem of atmospheric escape. Theoretical considerations show hydrodynamic escape to happen disastrously for a Europa-size planet. The observation is that Mars is too feeble to hold on to any hefty atmosphere, even far from the Sun as it is, is probably relevant too. The take home points for habitable zone nerds are: (1) planet size matters (2) for small planets, atmospheric escape from a "moist

  14. Composite circumstellar dust grains

    NASA Astrophysics Data System (ADS)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  15. The Habitable-zone Planet Finder (HPF): Achieving high precision radial velocities and mitigating stellar activity noise

    NASA Astrophysics Data System (ADS)

    Mahadevan, Suvrath; Ramsey, Lawrence W.; Terrien, Ryan; Robertson, Paul; Marchwinski, Robert C.; Hearty, Fred; Levi, Eric; Kári Stefánsson, Gudmundur; Bender, Chad F.; Halverson, Samuel; Roy, Arpita; Nelson, Matt; Schwab, Christian

    2015-01-01

    HPF is a stabilized, fiber-fed, near infrared (NIR) spectrograph currently being built at Penn State for the 10m Hobby-Eberly Telescope (HET). HPF will be capable of discovering low mass planets in the Habitable Zones of mid-late M dwarfs via radial velocity (RV). We discuss the development of critical sub-systems like our high-stability temperature control system, vacuum cryostat, and implementation of new wavelength calibration techniques. The design of the HET enables queue-scheduled operation, but its variable pupil requires attention to both near- and far-field fiber scrambling, which we accomplish with double scramblers and octagonal fibers.HPF will provide partial bandwith coverage of the information-rich z, Y and J NIR bands at a spectral resolving power of R˜50,000. While stellar activity induced RV noise is lower in the NIR than at visible wavelengths, we have carefully included NIR activity indicators in our spectral bandpass to help discriminate stellar activity from real planet signals, as has been recently demonstrated for Gliese 581 and Gliese 667C systems.

  16. Delayed Gratification Habitable Zones (DG-HZs): When Deep Outer Solar System Regions Become Balmy During Post-Main Sequence Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Stern, S. A.

    2002-09-01

    Late in the Sun's evolution it, like all low and moderate mass stars, it will burn as a red giant, generating 1000s of solar luminosities for a few tens of millions of years. A dozen years ago this stage of stellar evolution was predicted to create observable sublimation signatures in systems where Kuiper Belts (KBs) are extant (Stern et al. 1990, Nature, 345, 305); recently, the SWAS spacecraft detected such systems (Melnick et al. 2001, 412, 160). During the red giant phase, the habitable zone of our solar system will lie in the region where Triton, Pluto-Charon, and KBOs orbit. Compared to the 1 AU habitable zone where Earth resided early in the solar system's history, this "delayed gratification habitable zone (DG-HZ)" will enjoy a far less biologically hazardous environment-- with far lower harmful UV radiation levels from the Sun, and a far quieter collisional environment. Objects like Triton, Pluto-Charon, and KBOs, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Sun's DG-HZ may only be of academic interest owing to its great separation from us in time. However, several 108 approximately solar-type Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our solar system (and as inferred in numerous main sequence stellar disk systems), then DG-HZs form a kind of niche habitable zone that is likely to be numerically common in the galaxy. I will show the calculated temporal evolution of DG-HZs around various stellar types using modern stellar evolution luminosity tracks, and then discuss various aspects of DG-HZs, including the effects of stellar pulsations and mass loss winds. This work was supported by NASA's Origins of Solar Systems Program.

  17. The structure of circumstellar shells

    NASA Technical Reports Server (NTRS)

    Fix, John D.

    1993-01-01

    This document provides a report on research activities carried out with the support of NASA grant NAG 5-1174, the Structure of Circumstellar Shells, funded under the Astrophysics Data Program. The research carried out with the support of this grant is a study of the properties of circumstellar dust shells for which spectra are available through IRAS low resolution spectrometry (LRS). This research consisted of the development and application of models of axisymmetric circumstellar shells and a preliminary survey of the applicability of neural nets for analysis of the IRAS LRS spectra of circumstellar dust shells.

  18. A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, Guillem; Tuomi, Mikko; Gerlach, Enrico; Barnes, Rory; Heller, René; Jenkins, James S.; Wende, Sebastian; Vogt, Steven S.; Butler, R. Paul; Reiners, Ansgar; Jones, Hugh R. A.

    2013-08-01

    centered on the only island of stability left in the six-planet solution. Habitability assessments accounting for the stellar flux, as well as tidal dissipation effects, indicate that three (maybe four) planets are potentially habitable. Doppler and space-based transit surveys indicate that 1) dynamically packed systems of super-Earths are relatively abundant and 2) M-dwarfs have more small planets than earlier-type stars. These two trends together suggest that GJ 667C is one of the first members of an emerging population of M-stars with multiple low-mass planets in their habitable zones. Based on data obtained from the ESO Science Archive Facility under request number ANGLADA36104. Such data had been previously obtained with the HARPS instrument on the ESO 3.6 m telescope under the programs 183.C-0437, 072.C-0488 and 088.C-0662, and with the UVES spectrograph at the Very Large Telescopes under the program 087.D-0069. This study also contains observations obtained at the W.M. Keck Observatory - which is operated jointly by the University of California and the California Institute of Technology - and observations obtained with the Magellan Telescopes, operated by the Carnegie Institution, Harvard University, University of Michigan, University of Arizona, and the Massachusetts Institute of Technology.Time-series (Table C.2) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A126Appendices except Table C.2 are available in electronic form at http://www.aanda.org

  19. Looking Through the Ice: Searching for Past and Present Habitable Zones in the Martian North Polar Region Using MOLA DEMs

    NASA Astrophysics Data System (ADS)

    Payne, M. C.; Farmer, J. D.

    2002-12-01

    Hydrothermal systems have been acknowledged as important gateways to accessing a potential subsurface biology (extant or extinct) on Mars. Groundwater circulation, sustained for up to one billion years by large plutonic bodies (as modeled by previous authors), might well be capable of tapping into a deep subsurface biosphere and subsequently carrying members of microbial communities to the surface. Hence, future robotic missions with near surface drilling capabilities may be able to unearth cryopreserved biosignatures, or perhaps extant organisms, in the midst of the hydrothermal system itself. Digital Elevation Models (DEMs) constructed from Mars Orbiter Laser Altimeter (MOLA) data have proved to be a valuable tool in the search for potential habitable zones for extant and extinct life, and the detection of possible hydrothermal systems on Mars. When formatted for use in a Geographical Information Systems (GIS) software package such as ESRI's ArcView, MOLA data can be used to compose DEMs. Those DEMs can, in turn, be used to create contour maps, to allow profiling through features of interest, and to generate hillshaded views, which provide an image-like perspective of a selected area. Furthermore, DEMs eliminate many problems associated with photographic images such as over-/underexposure, poor focus, and albedo values too high or low for optimal observations. During this study, DEMs were used in the analysis of several regions north of 70° N latitude, in the Martian north polar cap and polar cap margin. The regions were selected during a Viking image survey that concentrated on the location of surface expressions of potential magma-ice interactions, and hence past or present hydrothermal activity. Specific features sought included individual volcanoes and volcanic fields, as well as pseudocrater fields, subglacial volcanic constructs (such as tuyas and tindar ridges), fluvial channels and outwash plains (indicative of j”kulhlaup flooding events), possible

  20. How do changes in the Diurnal Cycle affect Bi-stability and Climate Sensitivity in the Habitable Zone?

    NASA Astrophysics Data System (ADS)

    Boschi, R.; Valerio, L.

    2013-09-01

    fundamental properties of planets in the habitable zone from relatively simple observables.

  1. A REVISED ESTIMATE OF THE OCCURRENCE RATE OF TERRESTRIAL PLANETS IN THE HABITABLE ZONES AROUND KEPLER M-DWARFS

    SciTech Connect

    Kopparapu, Ravi Kumar

    2013-04-10

    Because of their large numbers, low-mass stars may be the most abundant planet hosts in our Galaxy. Furthermore, terrestrial planets in the habitable zones (HZs) around M-dwarfs can potentially be characterized in the near future and hence may be the first such planets to be studied. Recently, Dressing and Charbonneau used Kepler data and calculated the frequency of terrestrial planets in the HZ of cool stars to be 0.15{sup +0.13}{sub -0.06} per star for Earth-size planets (0.5-1.4 R{sub Circled-Plus }). However, this estimate was derived using the Kasting et al. HZ limits, which were not valid for stars with effective temperatures lower than 3700 K. Here we update their result using new HZ limits from Kopparapu et al. for stars with effective temperatures between 2600 K and 7200 K, which includes the cool M stars in the Kepler target list. The new HZ boundaries increase the number of planet candidates in the HZ. Assuming Earth-size planets as 0.5-1.4 R{sub Circled-Plus }, when we reanalyze their results, we obtain a terrestrial planet frequency of 0.48{sup +0.12}{sub -0.24} and 0.53{sup +0.08}{sub -0.17} planets per M-dwarf star for conservative and optimistic limits of the HZ boundaries, respectively. Assuming Earth-size planets as 0.5-2 R{sub Circled-Plus }, the frequency increases to 0.51{sup +0.10}{sub -0.20} per star for the conservative estimate and to 0.61{sup +0.07}{sub -0.15} per star for the optimistic estimate. Within uncertainties, our optimistic estimates are in agreement with a similar optimistic estimate from the radial velocity survey of M-dwarfs (0.41{sup +0.54}{sub -0.13}). So, the potential for finding Earth-like planets around M stars may be higher than previously reported.

  2. PLANET HUNTERS. V. A CONFIRMED JUPITER-SIZE PLANET IN THE HABITABLE ZONE AND 42 PLANET CANDIDATES FROM THE KEPLER ARCHIVE DATA

    SciTech Connect

    Wang, Ji; Fischer, Debra A.; Boyajian, Tabetha S.; Schmitt, Joseph R.; Giguere, Matthew J.; Brewer, John M.; Barclay, Thomas; Schwamb, Megan E.; Lintott, Chris; Simpson, Robert; Jek, Kian J.; Hoekstra, Abe J.; Jacobs, Thomas Lee; LaCourse, Daryll; Schwengeler, Hans Martin; Smith, Arfon M.; Parrish, Michael; Lynn, Stuart; Schawinski, Kevin; and others

    2013-10-10

    We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R{sub PL} = 10.12 ± 0.56 R{sub ⊕}) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false-positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least 3 transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20 are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between those of Neptune and Jupiter. These detections nearly double the number of gas-giant planet candidates orbiting at habitable-zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events.

  3. Planet Hunters. V. A Confirmed Jupiter-size Planet in the Habitable Zone and 42 Planet Candidates from the Kepler Archive Data

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Fischer, Debra A.; Barclay, Thomas; Boyajian, Tabetha S.; Crepp, Justin R.; Schwamb, Megan E.; Lintott, Chris; Jek, Kian J.; Smith, Arfon M.; Parrish, Michael; Schawinski, Kevin; Schmitt, Joseph R.; Giguere, Matthew J.; Brewer, John M.; Lynn, Stuart; Simpson, Robert; Hoekstra, Abe J.; Jacobs, Thomas Lee; LaCourse, Daryll; Schwengeler, Hans Martin; Chopin, Mike; Herszkowicz, Rafal

    2013-10-01

    We report the latest Planet Hunter results, including PH2 b, a Jupiter-size (R PL = 10.12 ± 0.56 R ⊕) planet orbiting in the habitable zone of a solar-type star. PH2 b was elevated from candidate status when a series of false-positive tests yielded a 99.9% confidence level that transit events detected around the star KIC 12735740 had a planetary origin. Planet Hunter volunteers have also discovered 42 new planet candidates in the Kepler public archive data, of which 33 have at least 3 transits recorded. Most of these transit candidates have orbital periods longer than 100 days and 20 are potentially located in the habitable zones of their host stars. Nine candidates were detected with only two transit events and the prospective periods are longer than 400 days. The photometric models suggest that these objects have radii that range between those of Neptune and Jupiter. These detections nearly double the number of gas-giant planet candidates orbiting at habitable-zone distances. We conducted spectroscopic observations for nine of the brighter targets to improve the stellar parameters and we obtained adaptive optics imaging for four of the stars to search for blended background or foreground stars that could confuse our photometric modeling. We present an iterative analysis method to derive the stellar and planet properties and uncertainties by combining the available spectroscopic parameters, stellar evolution models, and transiting light curve parameters, weighted by the measurement errors. Planet Hunters is a citizen science project that crowd sources the assessment of NASA Kepler light curves. The discovery of these 43 planet candidates demonstrates the success of citizen scientists at identifying planet candidates, even in longer period orbits with only two or three transit events. .

  4. Formation, Habitability, and Detection of Extrasolar Moons

    PubMed Central

    Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Émeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I.

    2014-01-01

    Abstract The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1–0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology. Key Words: Astrobiology—Extrasolar planets—Habitability—Planetary science—Tides. Astrobiology 14, 798–835. PMID:25147963

  5. Formation, habitability, and detection of extrasolar moons.

    PubMed

    Heller, René; Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Emeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I

    2014-09-01

    The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology.

  6. Formation, habitability, and detection of extrasolar moons.

    PubMed

    Heller, René; Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Emeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I

    2014-09-01

    The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology. PMID:25147963

  7. CONFIRMATION OF CIRCUMSTELLAR PHOSPHINE

    SciTech Connect

    Agúndez, M.; Cernicharo, J.; Encrenaz, P.; Teyssier, D.

    2014-08-01

    Phosphine (PH{sub 3}) was tentatively identified a few years ago in the carbon star envelopes IRC +10216 and CRL 2688 from observations of an emission line at 266.9 GHz attributable to the J = 1-0 rotational transition. We report the detection of the J = 2-1 rotational transition of PH{sub 3} in IRC +10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH{sub 3}. Radiative transfer calculations indicate that infrared pumping in excited vibrational states plays an important role in the excitation of PH{sub 3} in the envelope of IRC +10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R {sub *} from the star, with an abundance of 10{sup –8} relative to H{sub 2}. The detection of PH{sub 3} challenges chemical models, none of which offer a satisfactory formation scenario. Although PH{sub 3} holds just 2% of the total available phosphorus in IRC +10216, it is, together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggesting that it could also be an important phosphorus species in other astronomical environments. This is the first unambiguous detection of PH{sub 3} outside the solar system, and is a further step toward a better understanding of the chemistry of phosphorus in space.

  8. THE LICK-CARNEGIE EXOPLANET SURVEY: A 3.1 M{sub +} PLANET IN THE HABITABLE ZONE OF THE NEARBY M3V STAR GLIESE 581

    SciTech Connect

    Vogt, Steven S.; Rivera, E. J.; Haghighipour, N.; Henry, Gregory W.; Williamson, Michael H.

    2010-11-01

    We present 11 years of HIRES precision radial velocities (RVs) of the nearby M3V star Gliese 581, combining our data set of 122 precision RVs with an existing published 4.3-year set of 119 HARPS precision RVs. The velocity set now indicates six companions in Keplerian motion around this star. Differential photometry indicates a likely stellar rotation period of {approx}94 days and reveals no significant periodic variability at any of the Keplerian periods, supporting planetary orbital motion as the cause of all the RV variations. The combined data set strongly confirms the 5.37-day, 12.9-day, 3.15-day, and 67-day planets previously announced by Bonfils et al., Udry et al., and Mayor et al.. The observations also indicate a fifth planet in the system, GJ 581f, a minimum-mass 7.0 M{sub +} planet orbiting in a 0.758 AU orbit of period 433 days, and a sixth planet, GJ 581g, a minimum-mass 3.1 M{sub +} planet orbiting at 0.146 AU with a period of 36.6 days. The estimated equilibrium temperature of GJ 581g is 228 K, placing it squarely in the middle of the habitable zone of the star and offering a very compelling case for a potentially habitable planet around a very nearby star. That a system harboring a potentially habitable planet has been found this nearby, and this soon in the relatively early history of precision RV surveys, indicates that {eta}{sub +}, the fraction of stars with potentially habitable planets, is likely to be substantial. This detection, coupled with statistics of the incompleteness of present-day precision RV surveys for volume-limited samples of stars in the immediate solar neighborhood, suggests that {eta}{sub +} could well be on the order of a few tens of percent. If the local stellar neighborhood is a representative sample of the galaxy as a whole, our Milky Way could be teeming with potentially habitable planets.

  9. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones.

    PubMed

    Khodachenko, Maxim L; Ribas, Ignasi; Lammer, Helmut; Griessmeier, Jean-Mathias; Leitner, Martin; Selsis, Franck; Eiroa, Carlos; Hanslmeier, Arnold; Biernat, Helfried K; Farrugia, Charles J; Rucker, Helmut O

    2007-02-01

    Low mass M- and K-type stars are much more numerous in the solar neighborhood than solar-like G-type stars. Therefore, some of them may appear as interesting candidates for the target star lists of terrestrial exoplanet (i.e., planets with mass, radius, and internal parameters identical to Earth) search programs like Darwin (ESA) or the Terrestrial Planet Finder Coronagraph/Inferometer (NASA). The higher level of stellar activity of low mass M stars, as compared to solar-like G stars, as well as the closer orbital distances of their habitable zones (HZs), means that terrestrial-type exoplanets within HZs of these stars are more influenced by stellar activity than one would expect for a planet in an HZ of a solar-like star. Here we examine the influences of stellar coronal mass ejection (CME) activity on planetary environments and the role CMEs may play in the definition of habitability criterion for the terrestrial type exoplanets near M stars. We pay attention to the fact that exoplanets within HZs that are in close proximity to low mass M stars may become tidally locked, which, in turn, can result in relatively weak intrinsic planetary magnetic moments. Taking into account existing observational data and models that involve the Sun and related hypothetical parameters of extrasolar CMEs (density, velocity, size, and occurrence rate), we show that Earth-like exoplanets within close-in HZs should experience a continuous CME exposure over long periods of time. This fact, together with small magnetic moments of tidally locked exoplanets, may result in little or no magnetospheric protection of planetary atmospheres from a dense flow of CME plasma. Magnetospheric standoff distances of weakly magnetized Earth-like exoplanets at orbital distances

  10. The effects of circumstellar gas on terrestrial planet formation: Theory and observation

    NASA Astrophysics Data System (ADS)

    Mandell, Avram M.

    the remaining planets would be located in the Habitable Zone, suggesting that planetary systems with close-in giant planets are viable targets for searches for Earth-like habitable planets around other stars. I then present more realistic dynamical simulations of the effects of a migrating giant planet on a disk of protoplanetary material embedded in a gaseous disk, and the subsequent post-scattering evolution of the planetary system. I numerically investigate the dynamics of several types of post-migration planetary systems over 200 million years: a model with a single migrating giant planet, a model with one migrating and one nonmigrating giant planet, and a model excluding the effects of the gas disk. Material that is shepherded in front of the migrating giant planet by moving mean motion resonances accretes into "hot Earths", but survival of these bodies is strongly dependent on dynamical damping. Furthermore, a significant amount of material scattered outward by the giant planet survives in highly excited orbits; the orbits of these scattered bodies are then damped by gas drag and dynamical friction over the remaining accretion time. In all simulations Earth-mass planets accrete on approximately 100 Myr timescales, often with orbits in the Habitable Zone. These planets range in mass and water content, with both quantities increasing with the presence of a gas disk and decreasing with the presence of an outer giant planet. I use scaling arguments and previous results to derive a simple recipe that constrains which giant planet systems are able to form and harbor Earth-like planets in the Habitable Zone, demonstrating that roughly one third of the known planetary systems are potentially habitable. Finally, I present results from a search for new molecular tracers of warm gas in circumstellar disks using the NIRSPEC instrument on the Keck II telescope. I have detected emission from multiple ro-vibrational transitions in the v = 1--0 band of hydroxyl (OH) located in

  11. Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone.

    PubMed

    Joshi, Manoj M; Haberle, Robert M

    2012-01-01

    M stars comprise 80% of main sequence stars, so their planetary systems provide the best chance for finding habitable planets, that is, those with surface liquid water. We have modeled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M stars), using spectrally resolved data of Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 μm, combined with M stars emitting a significant fraction of their radiation at these same longer wavelengths, means that the albedos of ice and snow on planets orbiting M stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of cryospheric albedo is considered, which in turn implies that the outer edge of the habitable zone around M stars may be 10-30% farther away from the parent star than previously thought.

  12. Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone.

    PubMed

    Borucki, William J; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J; Marcy, Geoffrey W; Fabrycky, Daniel; Désert, Jean-Michel; Bryson, Stephen T; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A; Burke, Chris; Caldwell, Douglas A; Carter, Josh; Charbonneau, David; Crepp, Justin R; Christensen-Dalsgaard, Jørgen; Christiansen, Jessie L; Ciardi, David; Cochran, William D; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K; Endl, Michael; Everett, Mark E; Ford, Eric B; Fortney, Jonathan; Gautier, Thomas N; Geary, John C; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W; Howell, Steve B; Huber, Daniel; Jenkins, Jon M; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W; Lee, Brian L; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A; Prsa, Andrej; Quintana, Elisa V; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Welsh, William F; Winn, Joshua N

    2013-05-01

    We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.

  13. The Copernicus observations - Interstellar or circumstellar material. [UV spectra of early stars

    NASA Technical Reports Server (NTRS)

    Steigman, G.; Strittmatter, P. A.; Williams, R. E.

    1975-01-01

    It is suggested that the sharp absorption lines observed in the ultraviolet spectra of early-type stars by the Copernicus satellite may be entirely accounted for by the circumstellar material in the H II regions and associated transition zones around the observed stars. If this interpretation is correct, the Copernicus results yield little information on the state of any interstellar (as opposed to circumstellar) gas and, in particular, shed little light on the degree of element depletion in interstellar space.

  14. [Some adaptations of Monodonta turbinata (born, 1780) (Gastropoda, Prosobranchia, Trochidae) to feeding and habitation in the littoral zone].

    PubMed

    Aliakrinskaia, I O

    2010-01-01

    The basic morphological, ethological, and physiological-biochemical adaptations of Monodonta turbinata to survival in the littoral zone were investigated in this work. Quantitative estimation of myoglobin content in radular tissues of mollusks inhabiting the Mediterranean Sea Basin has been carried out.

  15. A Joint Approach to the Study of S-Type and P-Type Habitable Zones in Binary Systems: New Results in the View of 3-D Planetary Climate Models

    NASA Astrophysics Data System (ADS)

    Cuntz, Manfred

    2015-01-01

    In two previous papers, given by Cuntz (2014a,b) [ApJ 780, A14 (19 pages); arXiv:1409.3796], a comprehensive approach has been provided for the study of S-type and P-type habitable zones in stellar binary systems, P-type orbits occur when the planet orbits both binary components, whereas in case of S-type orbits, the planet orbits only one of the binary components with the second component considered a perturbator. The selected approach considers a variety of aspects, including (1) the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes; (2) the treatment of conservative (CHZ), general (GHZ) and extended zones of habitability (EHZ) [see Paper I for definitions] for the systems as previously defined for the Solar System; (3) the provision of a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are devised for which kind of system S-type and P-type habitability is realized; and (4) the applications of the theoretical approach to systems with the stars in different kinds of orbits, including elliptical orbits (the most expected case). Particularly, an algebraic formalism for the assessment of both S-type and P-type habitability is given based on a higher-order polynomial expression. Thus, an a prior specification for the presence or absence of S-type or P-type radiative habitable zones is - from a mathematical point of view - neither necessary nor possible, as those are determined by the adopted formalism. Previously, numerous applications of the method have been given encompassing theoretical star-panet systems and and observations. Most recently, this method has been upgraded to include recent studies of 3-D planetary climate models. Originally, this type of work affects the extent and position of habitable zones around single stars; however, it has also profound consequence for the habitable

  16. EXOPLANET CHARACTERIZATION BY PROXY: A TRANSITING 2.15 R{sub Circled-Plus} PLANET NEAR THE HABITABLE ZONE OF THE LATE K DWARF KEPLER-61

    SciTech Connect

    Ballard, Sarah; Charbonneau, David; Fressin, Francois; Torres, Guillermo; Irwin, Jonathan; Newton, Elisabeth; Desert, Jean-Michel; Crepp, Justin R.; Shporer, Avi; Mann, Andrew W.; Ciardi, David R.; Horch, Elliott P.; Everett, Mark E.

    2013-08-20

    We present the validation and characterization of Kepler-61b: a 2.15 R{sub Circled-Plus} planet orbiting near the inner edge of the habitable zone of a low-mass star. Our characterization of the host star Kepler-61 is based upon a comparison with a set of spectroscopically similar stars with directly measured radii and temperatures. We apply a stellar prior drawn from the weighted mean of these properties, in tandem with the Kepler photometry, to infer a planetary radius for Kepler-61b of 2.15 {+-} 0.13 R{sub Circled-Plus} and an equilibrium temperature of 273 {+-} 13 K (given its period of 59.87756 {+-} 0.00020 days and assuming a planetary albedo of 0.3). The technique of leveraging the physical properties of nearby ''proxy'' stars allows for an independent check on stellar characterization via the traditional measurements with stellar spectra and evolutionary models. In this case, such a check had implications for the putative habitability of Kepler-61b: the planet is 10% warmer and larger than inferred from K-band spectral characterization. From the Kepler photometry, we estimate a stellar rotation period of 36 days, which implies a stellar age of >1 Gyr. We summarize the evidence for the planetary nature of the Kepler-61 transit signal, which we conclude is 30,000 times more likely to be due to a planet than a blend scenario. Finally, we discuss possible compositions for Kepler-61b with a comparison to theoretical models as well as to known exoplanets with similar radii and dynamically measured masses.

  17. Habit formation

    PubMed Central

    Smith, Kyle S.; Graybiel, Ann M.

    2016-01-01

    Habits, both good ones and bad ones, are pervasive in animal behavior. Important frameworks have been developed to understand habits through psychological and neurobiological studies. This work has given us a rich understanding of brain networks that promote habits, and has also helped us to understand what constitutes a habitual behavior as opposed to a behavior that is more flexible and prospective. Mounting evidence from studies using neural recording methods suggests that habit formation is not a simple process. We review this evidence and take the position that habits could be sculpted from multiple dissociable changes in neural activity. These changes occur across multiple brain regions and even within single brain regions. This strategy of classifying components of a habit based on different brain signals provides a potentially useful new way to conceive of disorders that involve overly fixed behaviors as arising from different potential dysfunctions within the brain's habit network. PMID:27069378

  18. Habit formation.

    PubMed

    Smith, Kyle S; Graybiel, Ann M

    2016-03-01

    Habits, both good ones and bad ones, are pervasive in animal behavior. Important frameworks have been developed to understand habits through psychological and neurobiological studies. This work has given us a rich understanding of brain networks that promote habits, and has also helped us to understand what constitutes a habitual behavior as opposed to a behavior that is more flexible and prospective. Mounting evidence from studies using neural recording methods suggests that habit formation is not a simple process. We review this evidence and take the position that habits could be sculpted from multiple dissociable changes in neural activity. These changes occur across multiple brain regions and even within single brain regions. This strategy of classifying components of a habit based on different brain signals provides a potentially useful new way to conceive of disorders that involve overly fixed behaviors as arising from different potential dysfunctions within the brain's habit network.

  19. Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone.

    PubMed

    Borucki, William J; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J; Marcy, Geoffrey W; Fabrycky, Daniel; Désert, Jean-Michel; Bryson, Stephen T; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A; Burke, Chris; Caldwell, Douglas A; Carter, Josh; Charbonneau, David; Crepp, Justin R; Christensen-Dalsgaard, Jørgen; Christiansen, Jessie L; Ciardi, David; Cochran, William D; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K; Endl, Michael; Everett, Mark E; Ford, Eric B; Fortney, Jonathan; Gautier, Thomas N; Geary, John C; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W; Howell, Steve B; Huber, Daniel; Jenkins, Jon M; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W; Lee, Brian L; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A; Prsa, Andrej; Quintana, Elisa V; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Welsh, William F; Winn, Joshua N

    2013-05-01

    We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk. PMID:23599262

  20. THE LICK-CARNEGIE EXOPLANET SURVEY: A SATURN-MASS PLANET IN THE HABITABLE ZONE OF THE NEARBY M4V STAR HIP 57050

    SciTech Connect

    Haghighipour, Nader; Vogt, Steven S.; Rivera, Eugenio J.; Laughlin, Greg; Meschiari, Stefano; Henry, Gregory W.

    2010-05-20

    Precision radial velocities (RV) from Keck/HIRES reveal a Saturn-mass planet orbiting the nearby M4V star HIP 57050. The planet has a minimum mass of Msin i {approx} 0.3 M{sub J}, an orbital period of 41.4 days, and an orbital eccentricity of 0.31. V-band photometry reveals a clear stellar rotation signature of the host star with a period of 98 days, well separated from the period of the RV variations and reinforcing a Keplerian origin for the observed velocity variations. The orbital period of this planet corresponds to an orbit in the habitable zone of HIP 57050, with an expected planetary temperature of {approx}230 K. The star has a metallicity of [Fe/H] = 0.32 {+-} 0.06 dex, of order twice solar and among the highest metallicity stars in the immediate solar neighborhood. This newly discovered planet provides further support that the well-known planet-metallicity correlation for F, G, and K stars also extends down into the M-dwarf regime. The a priori geometric probability for transits of this planet is only about 1%. However, the expected eclipse depth is {approx}7%, considerably larger than that yet observed for any transiting planet. Though long on the odds, such a transit is worth pursuing as it would allow for high quality studies of the atmosphere via transmission spectroscopy with Hubble Space Telescope. At the expected planetary effective temperature, the atmosphere may contain water clouds.

  1. Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO{sub 2} degassing

    SciTech Connect

    Kadoya, S.; Tajika, E. E-mail: tajika@astrobio.k.u-tokyo.ac.jp

    2014-08-01

    Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO{sub 2} degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO{sub 2} degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowball climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO{sub 2} degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.

  2. Age aspects of habitability

    NASA Astrophysics Data System (ADS)

    Safonova, M.; Murthy, J.; Shchekinov, Yu. A.

    2016-04-01

    A `habitable zone' of a star is defined as a range of orbits within which a rocky planet can support liquid water on its surface. The most intriguing question driving the search for habitable planets is whether they host life. But is the age of the planet important for its habitability? If we define habitability as the ability of a planet to beget life, then probably it is not. After all, life on Earth has developed within only ~800 Myr after its formation - the carbon isotope change detected in the oldest rocks indicates the existence of already active life at least 3.8 Gyr ago. If, however, we define habitability as our ability to detect life on the surface of exoplanets, then age becomes a crucial parameter. Only after life had evolved sufficiently complex to change its environment on a planetary scale, can we detect it remotely through its imprint on the atmosphere - the so-called biosignatures, out of which the photosynthetic oxygen is the most prominent indicator of developed (complex) life as we know it. Thus, photosynthesis is a powerful biogenic engine that is known to have changed our planet's global atmospheric properties. The importance of planetary age for the detectability of life as we know it follows from the fact that this primary process, photosynthesis, is endothermic with an activation energy higher than temperatures in habitable zones, and is sensitive to the particular thermal conditions of the planet. Therefore, the onset of photosynthesis on planets in habitable zones may take much longer time than the planetary age. The knowledge of the age of a planet is necessary for developing a strategy to search for exoplanets carrying complex (developed) life - many confirmed potentially habitable planets are too young (orbiting Population I stars) and may not have had enough time to develop and/or sustain detectable life. In the last decade, many planets orbiting old (9-13 Gyr) metal-poor Population II stars have been discovered. Such planets had had

  3. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones.

    PubMed

    Lammer, Helmut; Lichtenegger, Herbert I M; Kulikov, Yuri N; Griessmeier, Jean-Mathias; Terada, N; Erkaev, Nikolai V; Biernat, Helfried K; Khodachenko, Maxim L; Ribas, Ignasi; Penz, Thomas; Selsis, Franck

    2007-02-01

    Atmospheric erosion of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wave-lengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 microm band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O ion pick up at orbital distances

  4. Exoplanets, extremophiles and habitability

    NASA Astrophysics Data System (ADS)

    Janot Pacheco, E.; Bernardes, L.

    2012-09-01

    Estimates of the average surface temperature and CO2 partial atmospheric pressure of already discovered exoplanets supposed to be in their Habitable Zone of their stars were surveyed from the Exoplanet Encyclopedia database. Moreover, since planetary surface temperature strongly depends on its albedo and geodynamic conditions, we have been feeding exoplanetary data into a comprehensive model of Earth's atmosphere to get better estimations. We also investigated the possible presence of "exomoons" belonging to giant planets capable of harbour dynamic stability and to retain atmospheric layers and keep geodynamic activity for long time spans. Collected information on biological data of micro-organisms classified as "extremophiles" indicate that such kind of microbial species could dwell in many of them. We thus propose an extension of the more astronomically defined "Habitable Zone" concept into the more astrobiologically "Extremophile Zone", taking into account other refined parameters allowing survival of more robust life forms.

  5. Where to Look for Habitability

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    One of the main goals of exoplanet surveys like the Kepler mission is to find potentially habitable planets orbiting other stars. Finding planets in a stars habitable zone, however, is easier when we know in advance where to look! A recent study has provided us with a starting point.Defining the ZoneA habitable zone is defined as the range of distances from a star where liquid water could exist on an orbiting planet, given a dense enough planetary atmosphere. The habitable zone can be calculated from the stars parameters, and the inner and outer edges of a habitable zone are set considering hypothetical planetary atmospheres of different composition.Knowing the parameters of the habitable zones around nearby stars is important for current and future exoplanet surveys, as this information allows them to identify stars with habitable zones that can be probed, given the surveys sensitivity. To provide this target selection tool, a team of scientists led by Colin Chandler (San Francisco State University) has created a catalog of the habitable zones of roughly 37,000 nearby, main-sequence stars.Distribution of habitable-zone widths found in CELESTA, for conservative and optimistic measurements. [Chandler et al. 2016]Selecting for Sun-Like StarsThe Catalog of Earth-Like Exoplanet Survey Targets, or CELESTA, was built starting with the Revised Hipparcos Catalog, a high-precision catalog of photometry and parallax measurements (which provides the stars distance) for 117,955 bright, nearby stars. Chandler and collaborators combined these measurements with stellar models to determine parameters such as effective temperature, radius, and mass of the stars.The authors exclude giant stars and cool dwarfs, choosing to focus on main-sequence stars within the temperature range 26007200K, more similar to the Sun. They test their derived stellar parameters by comparing to observational data from the Exoplanet Data Explorer (EDE), where available, and confirm that their

  6. Habitable Trinity

    NASA Astrophysics Data System (ADS)

    Dohm, J. M.; Maruyama, S.

    2013-12-01

    We propose a new concept of a habitable environment in the search for life beyond Earth that goes beyond the follow-the-water paradigm, newly named Habitable Trinity. Habitable Trinity is the coexistence of an atmosphere (consisting largely of C and N), an ocean (H and O), and a landmass (supplier of nutrients). It is the minimum requirement for the beginning of life to satisfy (1) formation of membrane, (2) metabolism, and (3) self-replication as we know it. A habitable planet, which has largely been defined as having an adequate climate, a sufficient atmosphere, and the presence of liquid water on its surface, is insufficient to meet the requirements to bear life. Also, material circulation driven by the Sun must be maintained with Habitable Trinity to continue the supply of elements necessary to sustain organic radical reactions that is the basis of life. The Sun is the major engine that links the three components primarily through hydrological cycling, including weathering, erosion, and transport of nutrient-enriched landmass materials to the ocean via far-reaching river systems. Habitable Trinity can be applied to other planets and moons to discuss the presence of extraterrestrial life. Mars is considered to be the best target to test the hypothesis of whether life exists elsewhere in our solar system, as it records an ancient Habitable Trinity (i.e., lakes and oceans which interacted with a landmass (cratered southern highlands) and an atmosphere). Other terrestrial planets, as well as satellites of the gaseous giants such as Europa and Titan, have little chance to harbor life as we know it because they lack Habitable Trinity. Going beyond 'the-follow-the-water-approach', the Habitable-Trinity concept provides an index in the quest for life-containing planetary bodies beyond our solar system as the reconnaissance systems become increasingly autonomous and at higher resolution, affording greater perspective during this golden age of international and

  7. A PLANETARY SYSTEM AROUND THE NEARBY M DWARF GJ 667C WITH AT LEAST ONE SUPER-EARTH IN ITS HABITABLE ZONE

    SciTech Connect

    Anglada-Escude, Guillem; Butler, R. Paul; Arriagada, Pamela; Minniti, Dante; Vogt, Steven S.; Rivera, Eugenio J.; Haghighipour, Nader; Carter, Brad D.; Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.; O'Toole, Simon J.; Jones, Hugh R. A.; Jenkins, James S.

    2012-05-20

    We re-analyze 4 years of HARPS spectra of the nearby M1.5 dwarf GJ 667C available through the European Southern Observatory public archive. The new radial velocity (RV) measurements were obtained using a new data analysis technique that derives the Doppler measurement and other instrumental effects using a least-squares approach. Combining these new 143 measurements with 41 additional RVs from the Magellan/Planet Finder Spectrograph and Keck/High Resolution Echelle Spectrometer spectrometers reveals three additional signals beyond the previously reported 7.2 day candidate, with periods of 28 days, 75 days, and a secular trend consistent with the presence of a gas giant (period {approx}10 years). The 28 day signal implies a planet candidate with a minimum mass of 4.5 M{sub Circled-Plus} orbiting well within the canonical definition of the star's liquid water habitable zone (HZ), that is, the region around the star at which an Earth-like planet could sustain liquid water on its surface. Still, the ultimate water supporting capability of this candidate depends on properties that are unknown such as its albedo, atmospheric composition, and interior dynamics. The 75 day signal is less certain, being significantly affected by aliasing interactions among a potential 91 day signal, and the likely rotation period of the star at 105 days detected in two activity indices. GJ 667C is the common proper motion companion to the GJ 667AB binary, which is metal-poor compared to the Sun. The presence of a super-Earth in the HZ of a metal-poor M dwarf in a triple star system supports the evidence that such worlds should be ubiquitous in the Galaxy.

  8. The SOPHIE search for northern extrasolar planets. XI. Three new companions and an orbit update: Giant planets in the habitable zone

    NASA Astrophysics Data System (ADS)

    Díaz, R. F.; Rey, J.; Demangeon, O.; Hébrard, G.; Boisse, I.; Arnold, L.; Astudillo-Defru, N.; Beuzit, J.-L.; Bonfils, X.; Borgniet, S.; Bouchy, F.; Bourrier, V.; Courcol, B.; Deleuil, M.; Delfosse, X.; Ehrenreich, D.; Forveille, T.; Lagrange, A.-M.; Mayor, M.; Moutou, C.; Pepe, F.; Queloz, D.; Santerne, A.; Santos, N. C.; Sahlmann, J.; Ségransan, D.; Udry, S.; Wilson, P. A.

    2016-07-01

    We report the discovery of three new substellar companions to solar-type stars, HD 191806, HD 214823, and HD 221585, based on radial velocity measurements obtained at the Haute-Provence Observatory. Data from the SOPHIE spectrograph are combined with observations acquired with its predecessor, ELODIE, to detect and characterise the orbital parameters of three new gaseous giant and brown dwarf candidates. Additionally, we combine SOPHIE data with velocities obtained at the Lick Observatory to improve the parameters of an already known giant planet companion, HD 16175 b. Thanks to the use of different instruments, the data sets of all four targets span more than ten years. Zero-point offsets between instruments are dealt with using Bayesian priors to incorporate the information we possess on the SOPHIE/ELODIE offset based on previous studies. The reported companions have orbital periods between three and five years and minimum masses between 1.6 MJup and 19 MJup. Additionally, we find that the star HD 191806 is experiencing a secular acceleration of over 11 m s-1 per year, potentially due to an additional stellar or substellar companion. A search for the astrometric signature of these companions was carried out using Hipparcos data. No orbit was detected, but a significant upper limit to the companion mass can be set for HD 221585, whose companion must be substellar. With the exception of HD 191806 b, the companions are located within the habitable zone of their host star. Therefore, satellites orbiting these objects could be a propitious place for life to develop. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France by the SOPHIE Consortium (programme 07A.PNP.CONS to 15A.PNP.CONS).

  9. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars

    PubMed Central

    Kasting, James F.; Kopparapu, Ravikumar; Ramirez, Ramses M.; Harman, Chester E.

    2014-01-01

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet’s atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, “Dune” planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, Seff, the recently recalculated HZ boundaries are: recent Venus—1.78; runaway greenhouse—1.04; moist greenhouse—1.01; maximum greenhouse—0.35; and early Mars—0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4–0.5. PMID:24277805

  10. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars.

    PubMed

    Kasting, James F; Kopparapu, Ravikumar; Ramirez, Ramses M; Harman, Chester E

    2014-09-01

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, "Dune" planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, S(eff), the recently recalculated HZ boundaries are: recent Venus--1.78; runaway greenhouse--1.04; moist greenhouse--1.01; maximum greenhouse--0.35; and early Mars--0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4-0.5. PMID:24277805

  11. Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR

    SciTech Connect

    Borucki, William J.; Koch, David G.; Bryson, Stephen T.; Howell, Steve B.; Lissauer, Jack J.; Batalha, Natalie; Rowe, Jason; Caldwell, Douglas A.; DeVore, Edna; Jenkins, Jon M.; Fressin, Francois; Torres, Guillermo; Geary, John C.; Latham, David W.; Christensen-Dalsgaard, Jorgen; Cochran, William D.; Gautier, Thomas N.; Gilliland, Ronald; Gould, Alan; Marcy, Geoffrey W.; and others

    2012-02-01

    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 {+-} 0.060 M{sub Sun} and 0.979 {+-} 0.020 R{sub Sun }. The depth of 492 {+-} 10 ppm for the three observed transits yields a radius of 2.38 {+-} 0.13 Re for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities (RVs) obtained with the High Resolution Echelle Spectrometer on Keck I over a one-year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{sigma} upper limit of 124 M{sub Circled-Plus }, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262 K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the habitable zone of any star other than the Sun.

  12. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars.

    PubMed

    Kasting, James F; Kopparapu, Ravikumar; Ramirez, Ramses M; Harman, Chester E

    2014-09-01

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, "Dune" planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, S(eff), the recently recalculated HZ boundaries are: recent Venus--1.78; runaway greenhouse--1.04; moist greenhouse--1.01; maximum greenhouse--0.35; and early Mars--0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4-0.5.

  13. Circumstellar Dust in Symbiotic Novae

    NASA Astrophysics Data System (ADS)

    Jurkic, T.; Kotnik-Karuza, D.

    2015-12-01

    We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the near-IR photometry, ISO spectra and mid-IR interferometry. The dust properties were determined using the DUSTY code. A compact circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel shows the presence of an equatorially enhanced dust density during minimum obscuration. Obscuration events are explained by an increase in optical depth caused by the newly condensed dust. The mass loss rates are significantly higher than in intermediate-period single Miras but in agreement with longer-period O-rich AGB stars.

  14. Exoplanet Habitability: Effects of Planetesimal Carbon Chemistry

    NASA Astrophysics Data System (ADS)

    Johnson, Torrence; Mousis, Olivier; Lunine, Jonathan; Madhusudhan, Nikku

    2014-05-01

    We explore the effects of reported differences in C/O values for exoplanet host stars on the composition of planetesimals formed beyond the snow line in these systems. Since the value of C/O in a planet forming nebula has a strong effect on amount of oxygen available for water ice in an oxidizing nebula, exoplanet systems for host stars with C/O greater than the solar value may have planetesimals with very little or no water ice. We have estimated the composition of volatile and refractory material in extrasolar planetesimals using a set of stars with a wide range of measured C/O abundances (Johnson et al. ApJ. 757(2), 192, 2012). The volatile ice content of planetesimals in these systems varies significantly with C/O, controlled primarily by the availability of O for H2O ice condensation. Systems with C/O less than the solar value (C/O = 0.55) should have very water ice rich planetesimals, while water ice mass fraction decreases rapidly with increasing C/O until only ices of CO and CO2 are left in significant proportions. If a significant fraction of C is in the form of refractory CHON particles, C and O are removed from the gas phase and the condensates for super-solar C/O values will be water-poor mixtures of silicates and metal, carbon, and carbon-bearing volatile ices, depending on temperature. For very carbon-rich systems, oxidizing conditions cannot be sustained beyond about C/O=1, due to the oxygen sequestered in solid silicates, oxides and CHON, for refractory C fractions within the Pollack et al. range of 0.4 - 0.7 (ApJ. 421, 615, 1994). These results have implications for assessing the habitability of exoplanets since they constrain the amount of water available beyond the snow line for dynamical delivery to inner planets, depending on the host star's C/O in the circumstellar nebula. Thus one the key chemical ingredients for habitability may be in short supply in carbon-rich, oxygen-poor systems even if planets exist in the 'habitable zone'. TVJ

  15. Tides and Habitability

    NASA Astrophysics Data System (ADS)

    Barnes, R.

    2014-04-01

    The relatively low luminosities of M dwarfs, white dwarfs, and brown dwarfs result in habitable zones that are close enough in for strong tidal processes between the planet and its host to occur. As is well known, tidal despinning can result in slow or synchronous rotation for close-in planets, but recent investigations have revealed that tides impact habitability in other ways. Tides can drive planetary obliquity to 0, eliminating seasons and creating strong cold traps at the poles. Tides can force a migration of the semi-major axis, possibly removing planets from the habitable zone. Tidal despinning and orbital evolution produces internal heating that can alter both the interior and the atmosphere. For modest eccentricities, tidal heating can be comparable to the modern Earth's (non-tidal) energy sources, changing the thermal profile in the planet and possibly quenching dynamo generation. For larger eccentricities tidal heating can be orders of magnitude larger, suggesting some super-Earths are actually "super-Ios." In extreme cases tidal heating could trigger a runaway greenhouse for hundreds of millions of years, threatening permanent sterilization. Tides damp eccentricity, which lowers the heating rate, but companion planets can perturb orbits and maintain non-zero eccentricities. In some cases, tidal heating sustained by companions could power geochemical cycles that permit habitability for trillions of years.

  16. The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements

    NASA Astrophysics Data System (ADS)

    Mennesson, Bertrand; Gaudi, Scott; Seager, Sara; Cahoy, Kerri; Domagal-Goldman, Shawn; Feinberg, Lee; Guyon, Olivier; Kasdin, Jeremy; Marois, Christian; Mawet, Dimitri; Tamura, Motohide; Mouillet, David; Prusti, Timo; Quirrenbach, Andreas; Robinson, Tyler; Rogers, Leslie; Scowen, Paul; Somerville, Rachel; Stapelfeldt, Karl; Stern, Daniel; Still, Martin; Turnbull, Margaret; Booth, Jeffrey; Kiessling, Alina; Kuan, Gary; Warfield, Keith

    2016-07-01

    HabEx is one of four candidate flagship missions being studied in detail by NASA, to be submitted for consideration to the 2020 Decadal Survey in Astronomy and Astrophysics for possible launch in the 2030s. It will be optimized for direct imaging and spectroscopy of potentially habitable exoplanets, and will also enable a wide range of general astrophysics science. HabEx aims to fully characterize planetary systems around nearby solar-type stars for the first time, including rocky planets, possible water worlds, gas giants, ice giants, and faint circumstellar debris disks. In particular, it will explore our nearest neighbors and search for signs of habitability and biosignatures in the atmospheres of rocky planets in the habitable zones of their parent stars. Such high spatial resolution, high contrast observations require a large (roughly greater than 3.5m), stable, and diffraction-limited optical space telescope. Such a telescope also opens up unique capabilities for studying the formation and evolution of stars and galaxies. We present some preliminary science objectives identified for HabEx by our Science and Technology Definition Team (STDT), together with a first look at the key challenges and design trades ahead.

  17. Circumstellar dust in symbiotic novae

    NASA Astrophysics Data System (ADS)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2015-08-01

    Physical properties of the circumstellar dust and associated physical mechanisms play an important role in understanding evolution of symbiotic binaries. We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the long-term near-IR photometry, infrared ISO spectra and mid-IR interferometry. Pulsation properties and long-term variabilities were found from the near-IR light curves. The dust properties were determined using the DUSTY code which solves the radiative transfer. No changes in pulsational parameters were found, but a long-term variations with periods of 20-25 years have been detected which cannot be attributed to orbital motion.Circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel showed the presence of an optically thin CS dust envelope and an optically thick dust region outside the line of sight, which was further supported by the detailed modelling using the 2D LELUYA code. Obscuration events in RR Tel were explained by an increase in optical depth caused by the newly condensed dust leading to the formation of a compact dust shell. HM Sge showed permanent obscuration and a presence of a compact dust shell with a variable optical depth. Scattering of the near-IR colours can be understood by a change in sublimation temperature caused by the Mira variability. Presence of large dust grains (up to 4 µm) suggests an increased grain growth in conditions of increased mass loss. The mass loss rates of up to 17·10-6 MSun/yr were significantly higher than in intermediate-period single Miras and in agreement with longer-period O-rich AGB stars.Despite the nova outburst, HM Sge remained enshrouded in dust with no significant dust destruction. The existence of unperturbed dust shell suggests a small influence of the hot component and strong dust shielding from the UV flux. By the use

  18. EXoplanetary Circumstellar Environments and Disk Explorer technology demonstration: Experimental results in air and vacuum

    NASA Astrophysics Data System (ADS)

    Lozi, J.; Belikov, R.; Bendek, E.; Davis, P. K.; Duncan, A.; Greene, T. P.; Guyon, O.; Hix, T.; Irwin, W.; Kendrick, R.; Lynch, D.; Mihara, R.; PIuzhnik, E.; Schneider, G.; Smith, E.; Thomas, S.; Witteborn, F. C.

    2014-03-01

    Coronagraph technology is advancing and promises to enable space telescopes capable of directly detecting and spatially resolving low surface brightness circumstellar debris disks as well as imaging giant planets as close as in the habitable zones of their host stars. One proposed mission capable of doing this is called EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), which in 2011 was selected by NASA's Explorer program for technology development A (Category Ill). EXCEDE is a 0.7 m space telescope concept designed to achieve raw contrasts of 1e-6 at an inner working angle of 1.2 l/D and 1e-7 at 2 l/D and beyond. In addition to doing fundamental science on debris disks, EXCEDE will also serve as a technological and scientific precursor for an exo-Earth imaging mission. EXCEDE uses a Starlight Suppression System (SSS) based on the PIAA coronagraph, enabling aggressive performance. In this presentation, we report on our continuing progress of developing the SSS for EXCEDE, and in particular the achievement of the first major milestone in our technology development program (1e-6 median raw contrast between a 1.2 l/D inner working angle and 2 l/D, simultaneously with 1e-7 median raw contrast between 2 l/D and 4 l/D, in monochromatic light and in a controlled and repeatable fashion). In addition, we will describe the upgrades to our system, such as (a) the Low Order Wavefront Sensor (LOWFS) which enabled achieving deep contrasts at aggressive inner working angles; (b) efficient model-based wavefront control algorithms; (c) a reconfiguration of our DM to be upstream of the coronagraph and the addition of the "inverse PIAA" system that enables better outer working angles. Finally, we report on preliminary demonstrations in a vacuum chamber. Even though this technology development is primarily targeted towards EXCEDE, it is also germane to any exoplanet direct imaging spacebased telescopes because of the many challenges common to different coronagraph

  19. The Circumstellar Environments of Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Chen, Christine

    The WFIRST-AFTA mission currently includes the provision for a high contrast imaging instrument with a primary goal of discovering new, low mass exoplanets and characterizing their atmospheres. To date, eight exoplanetary systems have been discovered via direct imaging using the current generation of ground-based high-contrast facilities. Five of those systems, including the iconic beta Pictoris and HR 8799 systems, possess infrared excesses, indicative of the presence of circumstellar dust. Detailed studies of dust and gas morphology in the beta Pictoris disk provided the impetus for searching for, and eventually imaging the planet. These studies further suggest that additional planets orbit the star, but are below current detection thresholds. Such systems will be prime targets for WFIRST-AFTA, which will obtain visual spectroscopy of several spectral features from molecules in the exoplanet atmospheres including CH4, H2O, and CO2. We propose to: (1) model the dust in exoplanetary systems with well characterized planets and infrared excesses to better constrain the dust geometry and particle properties; (2) generate synthetic WFIRST-AFTA images of these disks with embedded known and putative planets using point-spread-functions generated by JPL, and run our simulations though a WFIRST-AFTA pipeline; and (3) evaluate the sensitivity of WFIRST-AFTA to known and putative planets that have a range of masses and distances from their host stars. The proposed simulations will also assist the community in understanding how WFIRST-AFTA will contribute to our knowledge of debris disks and the role that minor bodies play in the delivery of water into the terrestrial planet zone. The proposed project is complementary to the efforts currently being carried out by the Science Definition Team (SDT), which focus on simulating planets embedded in tenuous disks, analogous to the Zodiacal dust system in our Solar System, the Earth s resonant dust ring, and the HR 4796 dust ring

  20. Mapping the Region in the Nearest Star System to Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quarles, B.

    2015-01-01

    Circumstellar planets within the alpha Centauri AB star system have been suggested through formation models and recent observations, and ACESat (Belikov et al. AAS Meeting #225, #311.01, 2015) is a proposed space mission designed to directly image Earth-sized planets in the habitable zones of both of these stars. The alpha Centauri system is billions of years old, so planets are only expected to be found in regions where their orbits are long-lived. We evaluate the extent of the regions within the alpha Centauri AB star system where small planets are able to orbit for billion-year timescales and we map the positions in the sky plane where planets on stable orbits about either stellar component may appear. We confirm the qualitative results of Wiegert & Holman (Astron. J. 113, 1445, 1997) regarding the approximate size of the regions of stable orbits, which are larger for retrograde orbits relative to the binary than for prograde orbits. Additionally, we find that mean motion resonances with the binary orbit leave an imprint on the limits of orbital stability, and the effects of the Lidov-Kozai mechanism are also readily apparent. Overall, orbits in the habitable zones near the plane of the binary are stable, whereas high-inclination orbits are short-lived.

  1. Circumstellar Interaction in SN 1993J

    NASA Astrophysics Data System (ADS)

    Fransson, Claes; Lundqvist, Peter; Chevalier, Roger A.

    1996-04-01

    The radio and X-ray observations of SN 1993J during the first year can be consistently explained as a result of interaction of the expanding ejecta with a circumstellar medium. The density of the circumstellar gas can be deduced from the free-free absorption of the radio emission and from the X-ray luminosity. During the first 2 weeks, both sets of observations indicate a mass loss-rate of ~4 x 10^-5^ M_sun_ yr^-1^ for a wind velocity of 10 km s^-1^. The subsequent radio and X-ray observations indicate a density gradient is proportional to r^-s^, with 1.5 <~ s <~ 1.7, as opposed to the r^-2^ gradient expected for a steady, spherically symmetric wind. This may be caused either by a variation of the mass-loss rate from the progenitor System or by a non-spherically symmetric geometry. To explain the properties of the X-ray emission, a steep density gradient in the ejecta is needed. During the first months, most of the observed X-ray emission originates from the circumstellar shock, which is adiabatic, while the reverse shock is radiative. To avoid excessive Comptonization in the X-ray range collisionless heating must be ineffective. The soft X-rays observed at 220 days probably originate from the reverse shock. The ionization and temperature structures of the circumstellar gas are calculated; we find that the temperature is in excess of 10^5^ K and the medium is nearly completely ionized by the shock radiation after the formation of the shocks. Preacceleration of the circumstellar gas by the radiation from the outbreak can explain the observed high velocity for the circumstellar N V and Hα lines. The high luminosity of the lines indicates that the circumstellar medium close to the supernova progenitor had a complex structure.

  2. Planetary Habitability

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1997-01-01

    This grant was entitled 'Planetary Habitability' and the work performed under it related to elucidating the conditions that lead to habitable, i.e. Earth-like, planets. Below are listed publications for the past two and a half years that came out of this work. The main thrusts of the research involved: (1) showing under what conditions atmospheric O2 and O3 can be considered as evidence for life on a planet's surface; (2) determining whether CH4 may have played a role in warming early Mars; (3) studying the effect of varying UV levels on Earth-like planets around different types of stars to see whether this would pose a threat to habitability; and (4) studying the effect of chaotic obliquity variations on planetary climates and determining whether planets that experienced such variations might still be habitable. Several of these topics involve ongoing research that has been carried out under a new grant number, but which continues to be funded by NASA's Exobiology program.

  3. Atmospheric escape, redox evolution, and planetary habitability

    NASA Astrophysics Data System (ADS)

    Catling, D. C.; Zahnle, K. J.

    2011-12-01

    Through the greenhouse effect, the presence and composition of an atmosphere is critical for defining a (conventional) circumstellar habitable zone in terms of planetary surface temperatures suitable for liquid water. Lack of knowledge of planetary atmospheres is likely to frustrate attempts to say with any certainty whether detected terrestrial-sized exoplanets may or may not be habitable. Perhaps an underappreciated role in such considerations is the evolutionary effect of atmospheric escape for determining atmospheric composition or whether an atmosphere exists in the first place. Whether atmospheres exist at all on planets is demonstrably connected to the effect of integrated atmospheric escape. When we observe our own Solar System and transiting exoplanets, the existence of an atmosphere is clearly delineated by a relative vulnerability to thermal escape and impact erosion. The prevalence of thermal escape as a key evolutionary determinant for the presence of planetary atmosphere is shown by a relationship between the relative solar (or stellar) heating and the escape velocity. Those bodies with too much stellar heating and too smaller escape velocity end up devoid of atmospheres. Impact erosion is evident in the relationship between impact velocity and escape velocity. Escape due to impacts is particularly important for understanding the large differences in the atmospheres of giant planet moons, such as Ganymede versus Titan. It is also significant for Mars-sized planets. The oxidation state of atmospheres is important for some theories of the origin of life (where an early reducing atmosphere is helpful for organic synthesis) and the evolution of advanced life (where free molecular oxygen is the best source of high energy metabolism). Surfaces on some relatively small planets and moons are observed to have evolved to an oxidized state, which theory and observation can explain through atmospheric escape. There are several examples in the Solar System where a

  4. Fullerenes and fulleranes in circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Kwok, Sun; Sadjadi, SeyedAbdolreza

    2016-07-01

    Three decades of search have recently led to convincing discoveries of cosmic fullerenes. The presence of C60 and C+ 60 in both circumstellar and interstellar environments suggests that these molecules and their derivatives can be efficiently formed in circumstellar envelopes and survive in harsh conditions. Detailed analysis of the infrared bands from fullerenes and their connections with the local properties can provide valuable information on the physical conditions and chemical processes that occurred in the late stages of stellar evolution. The identification of C+ 60 as the carrier of four diffuse interstellar bands (DIBs) suggests that fullerene- related compounds are abundant in interstellar space and are essential for resolving the DIB mystery. Experiments have revealed a high hydrogenation rate when C60 is exposed to atomic hydrogen, motivating the attempt to search for cosmic fulleranes. In this paper, we present a short review of current knowledge of cosmic fullerenes and fulleranes and briefly discuss the implications on circumstellar chemistry.

  5. Dynamics and Habitability in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Eggl, Siegfried; Georgakarakos, Nikolaos; Pilat-Lohinger, Elke

    2014-07-01

    Determining planetary habitability is a complex matter, as the interplay between a planet's physical and atmospheric properties with stellar insolation has to be studied in a self consistent manner. Standardized atmospheric models for Earth-like planets exist and are commonly accepted as a reference for estimates of Habitable Zones. In order to define Habitable Zone boundaries, circular orbital configurations around main sequence stars are generally assumed. In gravitationally interacting multibody systems, such as double stars, however, planetary orbits are forcibly becoming non circular with time. Especially in binary star systems even relatively small changes in a planet's orbit can have a large impact on habitability. Hence, we argue that a minimum model for calculating Habitable Zones in binary star systems has to include dynamical interactions.

  6. Martian Habitability

    NASA Astrophysics Data System (ADS)

    Gómez, F.

    2012-09-01

    Due to the reported Mars surface environmental conditions (Klein, 1978) (oxidative stress, high UV radiation levels, etc.) the possibility for life development in the surface of the red planet is very small. The identification of water-ice on the subsurface on Mars by the Thermal Emission Spectrometer onboard of the Mars Odyssey (Kieffer and Titus, 2001) and from the High Energy Neutron Detector (Litvak, et al., 2006) has important astrobiological connotations, because in addition to be a potential source for water, these locations are shielding habitats against the harsh conditions existing on the planet, like UV radiation (Gomez, et al., 2007; Gomez, et al., 2012). Martian habitability potential could change in particular located micro-niches. Salt deliquescence and hard environmental parameters modification could be relevant for life under protected niches. An example could be endolithic niches inside salt deposits used by phototrophs for taking advantage of sheltering particular light wavelengths. Similar acidic salts deposits are located in Río Tinto extreme environment with shelter life forms which are difficult to localize by eye. Techniques for its localization and study during space missions are needed to develop. Extreme environments are good scenarios where to test and train those techniques and where hypothetical Astrobiological space missions could be simulated for increasing possibilities of micro niches identification. Here we will report some experiments of bacteria exposition to Martian surface conditions in Mars Simulation chamber. Bacteria were shelter and exposed included in simulated salty endolithic micro niches. High percentage of bacteria resistance and adaptation to harsh extreme those conditions was reported (Gómez, F. et al., 2010). These results were used to develop and implement a Habitability Index to study Martian habitability during the next MSL mission to Mars landed on August 2012 on the surface of the red planet.

  7. Exoplanet habitability.

    PubMed

    Seager, Sara

    2013-05-01

    The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet's surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world.

  8. Exoplanet habitability.

    PubMed

    Seager, Sara

    2013-05-01

    The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet's surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world. PMID:23641111

  9. Isothermal Circumstellar Dust Shell Model for Teaching

    ERIC Educational Resources Information Center

    Robinson, G.; Towers, I. N.; Jovanoski, Z.

    2009-01-01

    We introduce a model of radiative transfer in circumstellar dust shells. By assuming that the shell is both isothermal and its thickness is small compared to its radius, the model is simple enough for students to grasp and yet still provides a quantitative description of the relevant physical features. The isothermal model can be used in a…

  10. Comparative Habitability of Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole

    2015-12-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass-radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions.

  11. COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS

    SciTech Connect

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole

    2015-12-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass–radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions.

  12. Tides and the evolution of planetary habitability.

    PubMed

    Barnes, Rory; Raymond, Sean N; Jackson, Brian; Greenberg, Richard

    2008-06-01

    Tides raised on a planet by the gravity of its host star can reduce the planet's orbital semi-major axis and eccentricity. This effect is only relevant for planets orbiting very close to their host stars. The habitable zones of low-mass stars are also close in, and tides can alter the orbits of planets in these locations. We calculate the tidal evolution of hypothetical terrestrial planets around low-mass stars and show that tides can evolve planets past the inner edge of the habitable zone, sometimes in less than 1 billion years. This migration requires large eccentricities (>0.5) and low-mass stars ( less or similar to 0.35 M(circle)). Such migration may have important implications for the evolution of the atmosphere, internal heating, and the Gaia hypothesis. Similarly, a planet that is detected interior to the habitable zone could have been habitable in the past. We consider the past habitability of the recently discovered, approximately 5 M(circle) planet, Gliese 581 c. We find that it could have been habitable for reasonable choices of orbital and physical properties as recently as 2 Gyr ago. However, when constraints derived from the additional companions are included, most parameter choices that indicate past habitability require the two inner planets of the system to have crossed their mutual 3:1 mean motion resonance. As this crossing would likely have resulted in resonance capture, which is not observed, we conclude that Gl 581 c was probably never habitable.

  13. ABUNDANT CIRCUMSTELLAR SILICA DUST AND SiO GAS CREATED BY A GIANT HYPERVELOCITY COLLISION IN THE {approx}12 MYR HD172555 SYSTEM

    SciTech Connect

    Lisse, C. M.; Chen, C. H.; Wyatt, M. C.; Morlok, A.; Song, I.; Bryden, G.; Sheehan, P. E-mail: cchen@stsci.edu E-mail: A.Morlok@open.ac.uk E-mail: Geoffrey.Bryden@jpl.nasa.gov

    2009-08-20

    The fine dust detected by infrared (IR) emission around the nearby {beta} Pic analog star HD172555 is very peculiar. The dust mineralogy is composed primarily of highly refractory, nonequilibrium materials, with approximately three quarters of the Si atoms in silica (SiO{sub 2}) species. Tektite and obsidian lab thermal emission spectra (nonequilibrium glassy silicas found in impact and magmatic systems) are required to fit the data. The best-fit model size distribution for the observed fine dust is dn/da = a {sup -3.95{+-}}{sup 0.10}. While IR photometry of the system has stayed stable since the 1983 IRAS mission, this steep a size distribution, with abundant micron-sized particles, argues for a fresh source of material within the last 0.1 Myr. The location of the dust with respect to the star is at 5.8 {+-} 0.6 AU (equivalent to 1.9 {+-} 0.2 AU from the Sun), within the terrestrial planet formation region but at the outer edge of any possible terrestrial habitability zone. The mass of fine dust is 4 x 10{sup 19}-2 x 10{sup 20} kg, equivalent to a 150-200 km radius asteroid. Significant emission features centered at 4 and 8 {mu}m due to fluorescing SiO gas are also found. Roughly 10{sup 22} kg of SiO gas, formed by vaporizing silicate rock, is also present in the system, and a separate population of very large, cool grains, massing 10{sup 21}-10{sup 22} kg and equivalent to the largest sized asteroid currently found in the solar system's main asteroid belt, dominates the solid circumstellar material by mass. The makeup of the observed dust and gas, and the noted lack of a dense circumstellar gas disk, strong stellar X-ray activity, and an extended disk of {beta} meteoroids argues that the source of the observed circumstellar materials is a giant hypervelocity (>10 km s{sup -1}) impact between large rocky planetesimals, similar to the ones which formed the Moon and which stripped the surface crustal material off of Mercury's surface.

  14. Technology Demonstration Milestone #1 for the EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE) I. Laboratory/Experimental Results

    NASA Astrophysics Data System (ADS)

    Belikov, Ruslan; Bendek, E.; Davis, P.; Duncan, A.; Greene, T. P.; Guyon, O.; Hix, T.; Irwin, W.; Kendrick, R.; Lozi, J.; Lynch, D.; Mihara, R.; Pluzhnik, E.; Schneider, G.; Smith, E.; Thomas, S.; Witteborn, F. C.

    2014-01-01

    Coronagraph technology is advancing and promises to enable space telescopes capable of directly detecting and spatially resolving low surface brightness circumstellar debris disks as well as imaging giant planets as close as in the habitable zones of their host stars. One proposed mission capable of doing this is called EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), which in 2011 was selected by NASA's Explorer program for technology development (Category III). EXCEDE is a 0.7m space telescope concept designed to achieve raw contrasts of 1e6 at an inner working angle of 1.2 l/D and 1e7 at 2 l/D and beyond. In addition to doing fundamental science on debris disks, EXCEDE will also serve as a technological and scientific precursor for an exo-Earth imaging mission. EXCEDE uses a Starlight Suppression System (SSS) based on the PIAA coronagraph, enabling aggressive performance. In this presentation, we report on our continuing progress of developing the SSS for EXCEDE, and in particular the achievement of the first major milestone in our technology development program (1e6 median raw contrast between a 1.2 l/D inner working angle and 2 l/D, simultaneously with 1e7 median raw contrast between 2 l/D and 4 l/D, in monochromatic light and in a controlled and repeatable fashion - see companion paper by Schneider et al. for science drivers). In addition, we will describe the upgrades to our system, such as (a) the Low Order Wavefront Sensor (LOWFS) which enabled achieving deep contrasts at aggressive inner working angles; (b) efficient model-based wavefront control algorithms; (c) a reconfiguration of our DM to be upstream of the coronagraph and the addition of the “inverse PIAA” system that enables better outer working angles. Finally, we report on preliminary demonstrations in a vacuum chamber. Even though this technology development is primarily targeted towards EXCEDE, it is also germane to any exoplanet direct imaging space-based telescopes

  15. Host Star Evolution for Planet Habitability

    NASA Astrophysics Data System (ADS)

    Gallet, Florian; Charbonnel, Corinne; Amard, Louis

    2016-04-01

    With about 2000 exoplanets discovered within a large range of different configurations of distance from the star, size, mass, and atmospheric conditions, the concept of habitability cannot rely only on the stellar effective temperature anymore. In addition to the natural evolution of habitability with the intrinsic stellar parameters, tidal, magnetic, and atmospheric interactions are believed to have strong impact on the relative position of the planets inside the so-called habitable zone. Moreover, the notion of habitability itself strongly depends on the definition we give to the term "habitable". The aim of this contribution is to provide a global and up-to-date overview of the work done during the last few years about the description and the modelling of the habitability, and to present the physical processes currently includes in this description.

  16. Host Star Evolution for Planet Habitability

    NASA Astrophysics Data System (ADS)

    Gallet, Florian; Charbonnel, Corinne; Amard, Louis

    2016-11-01

    With about 2000 exoplanets discovered within a large range of different configurations of distance from the star, size, mass, and atmospheric conditions, the concept of habitability cannot rely only on the stellar effective temperature anymore. In addition to the natural evolution of habitability with the intrinsic stellar parameters, tidal, magnetic, and atmospheric interactions are believed to have strong impact on the relative position of the planets inside the so-called habitable zone. Moreover, the notion of habitability itself strongly depends on the definition we give to the term "habitable". The aim of this contribution is to provide a global and up-to-date overview of the work done during the last few years about the description and the modelling of the habitability, and to present the physical processes currently includes in this description.

  17. Circumstellar bubble created by two massive stars

    NASA Astrophysics Data System (ADS)

    Meliani, Z.; van Marle, A. J.; Marcowith, A.

    2013-11-01

    The massive stars are formed in clusters then numerical models of wind-blown bubble should evolve bubble created by several stars. Aims. We develop a two-dimensional (2D) model of the circumstellar bubble created by two massive stars, a 40 M_{odot} star and a 25 M_{odot} star, and follow its evolution with MPI-AMRVAC hydrodynamics code until the end of the stellar evolution and he supernova explosion of each star. The stars are separated by approximately 16 pc and surrounded by a cold medium with a density of 20 particles per cm3. The simulations showed that the evolution of a wind-blown bubble created by two stars deviates from that of the bubbles around single stars. In particular, once one of the stars has exploded, the bubble is too large for the wind of the remaining star to maintain and the outer shell starts to disintegrate. The lack of thermal pressure inside the bubble also changes the behavior of circumstellar features close to the remaining star. The supernovae are contained inside the bubble, which reflects part of the energy back into the circumstellar medium.

  18. Clarifying Massive Protostellar Evolution and Circumstellar Processing

    NASA Astrophysics Data System (ADS)

    Indebetouw, Remy; Brogan, Crystal; Hoare, Melvin; Lumsden, Stuart; Robitaille, Thomas; Sewilo, Marta; Urquhart, James; Viti, Serena; Whitney, Barbara

    2008-03-01

    Massive stars dominate the evolution of galaxies and even as protostars, their feedback can affect their own formation and that of their host clusters. We propose a systematic study of massive protostars through the stages of their early evolution, to derive a clearer evolutionary sequence and a better link between the state of the central source and physical conditions in circumstellar material. This experiment will improve over existing work by careful source selection to systematically span evolutionary parameter space, resulting in a more uniform and comprehensive sample. Sophisticated radiative transfer, ionization, and chemical modeling will be used to extract the full riches of each IRS spectrum and find trends in how massive stars form and process their natal material: We will be able to determine the temperature, density, and chemical state (heating history) of circumstellar dust and ice in the accretion disk and envelope, and at later evolutionary stages the ionizing and soft (PAH-exciting) ultraviolet radiation emitted by the protostars and how that radiation is quenched and shadowed by circumstellar material. This investigation is the key to realizing the full potential of previous infrared imaging surveys like MSX and Spitzer's GLIMPSE and MIPSGAL to study massive star formation. These surveys have provided a basis for us to select a large relatively unbiased sample spanning evolutionary state. In return, revealing the spectroscopic signature of massive YSOs will greatly clarify the modeling and interpretation of the thousands of other protostars in these imaging survey data.

  19. SiS2 in circumstellar shells

    NASA Astrophysics Data System (ADS)

    Goebel, J. H.

    1993-10-01

    Solid state SiS2 is proposed as the material responsible for the recently discovered 21 micrometer emission feature that is observed in the carbon-rich circumstellar shells of certain protoplanetary nebulae. Sulfurized SiC, or SiS2 mantles on grains of either SiC or a:C-H are discussed as possible forms for which no spectroscopic laboratory observations yet exist. The identification with a relatively minor species and required special abundance ratios are consistent with the low incidence rate that the 21 micrometer feature presents in the population of carbon rich objects. It is also consistent with the lack of a good correlation between the 21 micrometer feature and the other solid-state spectroscopic features that have been observed in protoplanetaries that would be expected if the feature arose from molecules composed of H, C, N, and O. SiS2 condensate is consistent with the circumstellar shell temperature range, TCS approximately equal to or less than 150 K, at which the feature appears, and the available mass of SiS2, MSiS2 approx. = 5 x 10-6 solar mass, that is possible in the circumstellar shell.

  20. Effects of Exoplanet Planetesimal Carbon Chemistry on Habitability

    NASA Astrophysics Data System (ADS)

    Johnson, T. V.; Mousis, O.; Lunine, J. I.; Madhusudhan, N.

    2013-12-01

    We explore the effects of reported differences in C/O values for exoplanet host stars on the composition of planetesimals formed beyond the snow line in these systems. Since the value of C/O in a planet forming nebula has a strong effect on amount of oxygen available for water ice in an oxidizing nebula, exoplanet systems for host stars with C/O greater than the solar value may have planetesimals with very little or no water ice. We have estimated the composition of volatile and refractory material in extrasolar planetesimals using a set of stars with a wide range of measured C/O abundances (Johnson et al. ApJ. 757(2), 192, 2012). The volatile ice content of planetesimals in these systems varies significantly with C/O, controlled primarily by the availability of O for H2O ice condensation. Systems with C/O less than the solar value (C/O = 0.55) should have very water ice rich planetesimals, while water ice mass fraction decreases rapidly with increasing C/O until only ices of CO and CO2 are left in significant proportions. If a significant fraction of C is in the form of refractory CHON particles, C and O are removed from the gas phase and the condensates for super-solar C/O values will be water-poor mixtures of silicates and metal, carbon, and carbon-bearing volatile ices, depending on temperature. For very carbon-rich systems, oxidizing conditions cannot be sustained beyond about C/O=1, due to the oxygen sequestered in solid silicates, oxides and CHON, for refractory C fractions within the Pollack et al. range of 0.4 - 0.7 (ApJ. 421, 615, 1994). These results have implications for assessing the habitability of exoplanets since they constrain the amount of water available beyond the snow line for dynamical delivery to inner planets, depending on the host star's C/O in the circumstellar nebula. Thus one the key chemical ingredients for habitability may be in short supply in carbon-rich, oxygen-poor systems even if planets exist in the ';habitable zone'. TVJ

  1. Survival of habitable planets in unstable planetary systems

    NASA Astrophysics Data System (ADS)

    Carrera, Daniel; Davies, Melvyn B.; Johansen, Anders

    2016-09-01

    Many observed giant planets lie on eccentric orbits. Such orbits could be the result of strong scatterings with other giant planets. The same dynamical instability that produces these scatterings may also cause habitable planets in interior orbits to become ejected, destroyed, or be transported out of the habitable zone. We say that a habitable planet has resilient habitability if it is able to avoid ejections and collisions and its orbit remains inside the habitable zone. Here we model the orbital evolution of rocky planets in planetary systems where giant planets become dynamically unstable. We measure the resilience of habitable planets as a function of the observed, present-day masses and orbits of the giant planets. We find that the survival rate of habitable planets depends strongly on the giant planet architecture. Equal-mass planetary systems are far more destructive than systems with giant planets of unequal masses. We also establish a link with observation; we find that giant planets with present-day eccentricities higher than 0.4 almost never have a habitable interior planet. For a giant planet with an present-day eccentricity of 0.2 and semimajor axis of 5 AU orbiting a Sun-like star, 50% of the orbits in the habitable zone are resilient to the instability. As semimajor axis increases and eccentricity decreases, a higher fraction of habitable planets survive and remain habitable. However, if the habitable planet has rocky siblings, there is a significant risk of rocky planet collisions that would sterilize the planet.

  2. HABEBEE: habitability of eyeball-exo-Earths.

    PubMed

    Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira

    2013-03-01

    Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.

  3. HABEBEE: habitability of eyeball-exo-Earths.

    PubMed

    Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira

    2013-03-01

    Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms. PMID:23510083

  4. Flares and habitability

    NASA Astrophysics Data System (ADS)

    Abrevaya, Ximena C.; Cortón, Eduardo; Mauas, Pablo J. D.

    2012-07-01

    At present, dwarf M stars are being considered as potential hosts for habitable planets. However, an important fraction of these stars are flare stars, which among other kind of radiation, emit large amounts of UV radiation during flares, and it is unknown how this events can affect life, since biological systems are particularly vulnerable to UV. In this work we evaluate a well known dMe star, EV Lacertae (GJ 873) as a potential host for the emergence and evolution of life, focusing on the effects of the UV emission associated with flare activity. Since UV-C is particularly harmful for living organisms, we studied the effect of UV-C radiation on halophile archaea cultures. The halophile archaea or haloarchaea are extremophile microorganisms, which inhabit in hypersaline environments and which show several mechanisms to cope with UV radiation since they are naturally exposed to intense solar UV radiation on Earth. To select the irradiance to be tested, we considered a moderate flare on this star. We obtained the mean value for the UV-C irradiance integrating the IUE spectrum in the impulsive phase, and considering a hypothetical planet in the center of the liquid water habitability zone. To select the irradiation times we took the most frequent duration of flares on this star which is from 9 to 27 minutes. Our results show that even after considerable UV damage, the haloarchaeal cells survive at the tested doses, showing that this kind of life could survive in a relatively hostile UV environment.

  5. The Possibility of Multiple Habitable Worlds Orbiting Binary Stars

    NASA Astrophysics Data System (ADS)

    Mason, P. A.

    2014-03-01

    Are there planetary systems for which there is life on multiple worlds? Where are these fruitful planetary systems and how do we detect them? In order to address these questions; conditions which enable life and those that prevent or destroy it must be considered. Many constraints are specific to planetary systems, independent of the number of worlds in habitable zones. For instance, life on rocky planets or moons likely requires the right abundance of volatiles and radiogenic elements for prolonged geologic activity. Catastrophic sterilization events such as nearby supernovae and gamma-ray bursts affect entire planetary systems not just specific worlds. Giant planets may either enhance or disrupt the development of complex life within a given system. It might be rare for planetary systems to possess qualities that promote life and lucky enough to avoid cataclysm. However, multiple habitable planets may provide enhanced chances for advanced life to develop. The best predictor of life on one habitable zone planet might be the presence of life on its neighbor as panspermia may occur in planetary systems with several habitable worlds. Circumbinary habitability may go hand in hand with habitability of multiple worlds. The circumstances in which the Binary Habitability Mechanism (BHM) operates are reviewed. In some cases, the early synchronization of the primary's rotation with the binary period results in a reduction of XUV flux and stellar winds. Main sequence binaries with periods in the 10-50 days provide excellent habitable environments, within which multiple worlds may thrive. Planets and moons in these habitable zones need less magnetic protection than their single star counterparts. Exomoons orbiting a Neptune-like planet, within a BHM protected habitable zone, are expected to be habitable over a wide range of semimajor axes due to a larger planetary Hill radius. A result confirmed by numerical orbital calculations. Binaries containing a solar type star with a

  6. Kinematic Dynamo In Turbulent Circumstellar Disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T.

    1993-01-01

    Many circumstellar disks associated with objects ranging from protoplanetary nebulae, to accretion disks around compact stars allow for the generation of magnetic fields by an (alpha)omega dynamo. We have applied kinematic dynamo formalism to geometrically thin accretion disks. We calculate, in the framework of an adiabatic approximation, the normal mode solutions for dynamos operating in disks around compact stars. We then describe the criteria for a viable dynamo in protoplanetary nebulae, and discuss the particular features that make accretion disk dynamos different from planetary, stellar, and galactic dynamos.

  7. Response of Atmospheric Biomarkers to NOx-Induced Photochemistry Generated by Stellar Cosmic Rays for Earth-like Planets in the Habitable Zone of M Dwarf Stars

    PubMed Central

    Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A. Beate C.; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-01-01

    Abstract Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N2), which leads to production of nitrogen oxides (NOx) in the planetary atmosphere, hence affecting biomarkers such as ozone (O3). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NOx production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O3 formation proceeds via the reaction O+O2+M→O3+M. At high NOx abundances, the O atoms arise mainly from NO2 photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O2). For the flaring case, O3 is mainly destroyed via direct titration, NO+O3→NO2+O2, and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O3, Rayleigh scattering by the main atmospheric gases (O2, N2, and CO2) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O3 survived all the stellar-activity scenarios considered except for the strong case, whereas the biomarker

  8. Response of atmospheric biomarkers to NO(x)-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars.

    PubMed

    Grenfell, John Lee; Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A Beate C; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-12-01

    Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N(2)), which leads to production of nitrogen oxides (NO(x)) in the planetary atmosphere, hence affecting biomarkers such as ozone (O(3)). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NO(x) production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O(3) formation proceeds via the reaction O+O(2)+M→O(3)+M. At high NO(x) abundances, the O atoms arise mainly from NO(2) photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O(2)). For the flaring case, O(3) is mainly destroyed via direct titration, NO+O(3)→NO(2)+O(2), and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O(3), Rayleigh scattering by the main atmospheric gases (O(2), N(2), and CO(2)) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O(3) survived all the stellar-activity scenarios considered except for the strong

  9. The HARPS search for southern extra-solar planets. XXXIV. A planetary system around the nearby M dwarf GJ 163, with a super-Earth possibly in the habitable zone

    NASA Astrophysics Data System (ADS)

    Bonfils, X.; Lo Curto, G.; Correia, A. C. M.; Laskar, J.; Udry, S.; Delfosse, X.; Forveille, T.; Astudillo-Defru, N.; Benz, W.; Bouchy, F.; Gillon, M.; Hébrard, G.; Lovis, C.; Mayor, M.; Moutou, C.; Naef, D.; Neves, V.; Pepe, F.; Perrier, C.; Queloz, D.; Santos, N. C.; Ségransan, D.

    2013-08-01

    The meter-per-second precision achieved by today's velocimeters enables us to search for 1-10 M⊕ planets in the habitable zone of cool stars. This paper reports on the detection of three planets orbiting GJ 163 (HIP 19394), a M3 dwarf monitored by our ESO/HARPS search for planets. We made use of the HARPS spectrograph to collect 150 radial velocities of GJ 163 over a period of eight years. We searched the radial-velocity time series for coherent signals and found five distinct periodic variabilities. We investigated the stellar activity and called into question the planetary interpretation for two signals. Before more data can be acquired we concluded that at least three planets are orbiting GJ 163. They have orbital periods of Pb = 8.632 ± 0.002, Pc = 25.63 ± 0.03, and Pd = 604 ± 8 days and minimum masses msini = 10.6 ± 0.6, 6.8 ± 0.9, and 29 ± 3 M⊕, respectively. We hold our interpretations for the two additional signals with periods P(e) = 19.4 and P(f) = 108 days. The inner pair presents an orbital period ratio of 2.97, but a dynamical analysis of the system shows that it lays outside the 3:1 mean motion resonance. The planet GJ 163c, in particular, is a super-Earth with an equilibrium temperature of Teq = (302 ± 10)(1 - A)1/4 K and may lie in the so-called habitable zone for albedo values (A = 0.34 - 0.89) moderately higher than that of Earth (A⊕ = 0.2-0.3). Based on observations made with the HARPS instrument on the ESO 3.6 m telescope under the program IDs 072.C-0488, 082.C-0718, and 183.C-0437 at Cerro La Silla (Chile).Table 6 is available in electronic form at http://www.aanda.orgRadial-velocity time series (Table 6) are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A110

  10. Energy Balance Models of planetary climate as a tool for investigating the habitability of terrestrial planets and its evolution

    NASA Astrophysics Data System (ADS)

    Ferri, G.; Murante, G.; Provenzale, A.; Silva, L.; Vladilo, G.

    2012-04-01

    examples of application of our EBMs to studies of habitability of terrestrial planets. In the first part we focus on the primitive Earth, taking into account the effects of the higher speed of Earth rotation and reduced solar luminosity at the epoch of life formation. In the second part we provide examples of habitability studies of planetary systems discovered in surveys of exoplanets. These examples allow us to critically discuss the concept of circumstellar habitable zone.

  11. A 'dry' condensation origin for circumstellar carbonates.

    PubMed

    Toppani, Alice; Robert, François; Libourel, Guy; de Donato, Philippe; Barres, Odile; d'Hendecourt, Louis; Ghanbaja, Jaafar

    2005-10-20

    The signature of carbonate minerals has long been suspected in the mid-infrared spectra of various astrophysical environments such as protostars. Abiogenic carbonates are considered as indicators of aqueous mineral alteration in the presence of CO2-rich liquid water. The recent claimed detection of calcite associated with amorphous silicates in two planetary nebulae and protostars devoid of planetary bodies questions the relevance of this indicator; but in the absence of an alternative mode of formation under circumstellar conditions, this detection remains controversial. The main dust component observed in circumstellar envelopes is amorphous silicates, which are thought to have formed by non-equilibrium condensation. Here we report experiments demonstrating that carbonates can be formed with amorphous silicates during the non-equilibrium condensation of a silicate gas in a H2O-CO2-rich vapour. We propose that the observed astrophysical carbonates have condensed in H2O(g)-CO2(g)-rich, high-temperature and high-density regions such as evolved stellar winds, or those induced by grain sputtering upon shocks in protostellar outflows. PMID:16237436

  12. Circumstellar Material in Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    van den Ancker, Mario

    1999-09-01

    In my dissertation I present the results of optical, infrared and submm studies of the circumstellar environment of young stellar objects, mostly of intermediate mass. Both the circumstellar dust and gas are studied, using results from the Hipparcos mission, the Infrared Space Observatory (ISO) and several ground-based telescopes. The basic stellar properties of a sample of Herbig Ae/Be stars (HAeBes) were derived using the astrometric data from the Hipparcos mission. The basic conclusion from this study is that most HAeBes in our sample must be pre-main sequence stars. An evolutionary scenario for the dissipation of dust around Herbig Ae/Be stars is outlined, based on the new stellar parameters derived from the Hipparcos astrometry. Using the photometry obtained by Hipparcos, I also study the circumstellar dust through its effect on the light of the central star as it moves in and out of our line of sight. I show that such an effect can only be seen towards Herbig Ae/Be systems with a central star of spectral type A0 or later, which is explained as being due to the evolutionary effect that Herbig Be stars are not optically visible while still contracting towards the zero-age main sequence. I also looked in more detail at the thermal emission from dust in the disks of two Herbig Ae systems, AB Aur and HD 163296, using ISO spectroscopy and new VLA data. In both these systems, significant grain growth has already occurred. However, the degree in which this has happened, as well as the degree in which the dust has crystallized, differs greatly between these two systems of identical mass and age. Clearly other parameters than just stellar mass and age influence the dissipation speed and degree of processing of the dust in a circumstellar disk. Another way to study circumstellar dust is through submillimeter photometry. I have followed this approach to study the dust in the star forming region associated with the Herbig stars R and T CrA, using 450 and 850 micron maps

  13. From Circumstellar Envelopes to the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Ueta, T.

    2011-09-01

    IRAS and ISO observations have indicated that the extended dust shells of AGB stars could be explained by a simple model of a constant past mass outflow piling up at the interface with the interstellar medium (ISM). Recent Spitzer observations have shown that even outflows from AGB stars can induce shocks at the ISM-AGB wind interface, while a recent AKARI survey of the circumstellar envelopes of evolved stars have revealed far-IR structures resembling to the interface regions between the ISM and AGB winds in many objects. There have been observations made in other wavelengths (especially in the UV with GALEX) that corroborate these findings in the far-IR. New Herschel observations are expected to provide detailed views of these interface regions. Therefore, the extended dust shells of AGB stars should not only allow us to prove the mass-loss history of the parent AGB stars but also permit us to glimpse how the ejecta eventually merge with the ISM. In this review, I will summarize recent research developments made by observations with Spitzer, AKARI, and Herschel at the interface region between the circumstellar envelopes of AGB stars and the ISM.

  14. Models for circumstellar nebulae around red and blue supergiants

    NASA Astrophysics Data System (ADS)

    Chita, S. M.

    2011-10-01

    In this thesis, we model the circumstellar medium of stars with initial masses of 8, 12, 18 and 20 solar masses, over their entire life from the main sequence until their supernova explosion. During the post-main-sequence stages, stars can evolve through several blue and red supergiant stages depending on their initial mass, composition and rotation rate. The models considered in the second Chapter have long-lasting RSG stages starting after the MS. In this phase, they develop shells of RSG wind material at the location where the free streaming RSG wind is stalled by the thermal pressure of the hot MS bubble, close to the central star. The RSG shells develop violent Rayleigh-Taylor instabilities. Once these start to grow non-linear, the RSG shell becomes highly structured as clumps form, and shell material mixes with material in the hot bubble. Later, the stars evolve to the BSG stage, during which the RSG shells are completely destroyed. These models return to the RSG stage, and build new RSG shells, which are more massive than those formed earlier. RSG shells are essential for our understanding of bipolar emission nebulae around BSGs. In the third Chapter are shown the results of the wind-wind interaction model of single star with 12 solar masses. On a time scale of a few 10000 yr, a BSG hour-glas shaped nebula expands into the sphere defined by the RSG shell. The faster polar parts of the hour glass hit the inner edge of the RSG shell first. The collision creates a pair of hot and dense polar caps. As time passes, the collision zone moves to lower latitudes of the RSG shell and becomes more confined in latitude. At the same time, the interaction of the BSG wind with the equatorial disk defines a second, ring shaped collision zone in the equatorial plane. These structures are reminiscent of the observed nebulae around the blue supergiant Sher 25. In the Chapter 3 we present calculations that predict the properties of the circumstellar medium for rapidly rotating

  15. The Habitable-zone Planet Finder: A status update on the development of a stabilized fiber-fed near-infrared spectrograph for the for the Hobby-Eberly telescope

    NASA Astrophysics Data System (ADS)

    Mahadevan, Suvrath; Ramsey, Lawrence W.; Terrien, Ryan; Halverson, Samuel; Roy, Arpita; Hearty, Fred; Levi, Eric; Stefansson, Gudmundur K.; Robertson, Paul; Bender, Chad; Schwab, Chris; Nelson, Matt

    2014-07-01

    The Habitable-Zone Planet Finder is a stabilized, fiber-fed, NIR spectrograph being built for the 10m Hobby- Eberly telescope (HET) that will be capable of discovering low mass planets around M dwarfs. The optical design of the HPF is a white pupil spectrograph layout in a vacuum cryostat cooled to 180 K. The spectrograph uses gold-coated mirrors, a mosaic echelle grating, and a single Teledyne Hawaii-2RG (H2RG) NIR detector with a 1.7-micron cutoff covering parts of the information rich z, Y and J NIR bands at a spectral resolution of R˜50,000. The unique design of the HET requires attention to both near and far-field fiber scrambling, which we accomplish with double scramblers and octagonal fibers. In this paper we discuss and summarize the main requirements and challenges of precision RV measurements in the NIR with HPF and how we are overcoming these issues with technology, hardware and algorithm developments to achieve high RV precision and address stellar activity.

  16. Changing your sleep habits

    MedlinePlus

    Insomnia - sleep habits; Sleep disorder - sleep habits; Problems falling asleep; Sleep hygiene ... Philadelphia, PA: Elsevier; 2017:chap 86. Vaughn BV. Disorders of sleep. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  17. HL Tauri and its circumstellar disk

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1983-01-01

    New far infrared observations of HL Tau which support the identification of an edge-on disk surrounding the star are presented. A bolometric luminosity for the star of 7.2 solar luminosities and a ratio of infrared to optical luminosity of 630 are indicated. A circumstellar A(V) of about 7.0 mag is produced, consistent with the silicate optical depth to the star. Data on HL Tau's effective temperature and radius and its position on the HR diagram suggest that the star has recently completed its accretion phase and is only 100,000 yr old. The column masses of ice and silicates are combined with the disk dimensions to build a simple model of the disk for comparison with the primitive solar nebula. Estimates of the far-infrared emitting mass provide independent probes of the mass in larger grains around HL Tau.

  18. A sensitive line search in circumstellar envelopes

    NASA Astrophysics Data System (ADS)

    Nguyen-Q-Rieu; Deguchi, S.; Izumiura, H.; Kaifu, N.; Ohishi, M.; Suzuki, H.; Ukita, N.

    A molecular line search in the range between 85 and 89 GHz has been performed in the circumstellar envelopes of 11 evolved stars. Emissions of 29SiO J=2-1,28SiO J=2-1, HCN J=1-0, H13CN J=1-0, HC5 N J=33-32, HCO+ J=1-0 transitions and other transitions of C2 H, C4 H, and C3 N have been observed in 11 stars. We have detected the ground state 29SiO J=2-1 maser in several stars. We have also detected HCN emission in VY CMa. A narrow H13CN spike feature near the central velocity has been found in the spectrum of CRL 2688.

  19. Circumstellar and interstellar synthesis of organic molecules.

    PubMed

    Tielens, A G; Charnley, S B

    1997-06-01

    We review the formation and evolution of complex circumstellar and interstellar molecules. A number of promising chemical routes are discussed which may lead to the formation of polycyclic aromatic hydrocarbon molecules, fullerenes, and unsaturated hydrocarbon chains in the outflows from stars. Some of the problems with these chemical schemes are pointed out as well. We also review the role of grains in the formation of complex molecules in interstellar molecular clouds. This starts with the formation of simple molecules in an ice grain mantle. UV photolysis and/or thermal polymerization can convert some of these simple molecules into more complex polymeric structures. Some of these species may be released to the gas phase, particularly in the warm regions around newly formed stars. Methanol and formaldehyde seem to play an important role in this drive towards molecular complexity and their chemistry is traced in some detail.

  20. Spectroscopic Survey of Circumstellar Disks in Orion

    NASA Astrophysics Data System (ADS)

    Contreras, Maria; Hernandez, Jesus; Olguin, Lorenzo; Briceno, Cesar

    2013-07-01

    As a second stage of a project focused on characterizing candidate stars bearing a circumstellar disk in Orion, we present a spectroscopic follow-up of a set of about 170 bright stars. The present set of stars was selected by their optical (UBVRI) and infrared behavior in different color-color and color-magnitude diagrams. Observations were carried out at the Observatorio Astronomico Nacional located at the Sierra San Pedro Martir in B.C., Mexico and at the Observatorio Guillermo Haro in Cananea, Sonora, Mexico. Low-resolution spectra were obtained for all candidates in the sample. Using the SPTCLASS code, we have obtained spectral types and equivalent widths of the Li I 6707 and Halpha lines for each one of the stars. This project is a cornerstone of a large scale survey aimed to obtain stellar parameters in a homogeneous way using spectroscopic data. This work was partially supported by UNAM-PAPIIT grant IN-109311.

  1. Secular Planetary Perturbations in Circumstellar Debris Disks

    NASA Astrophysics Data System (ADS)

    Hahn, Joseph M.; Capobianco, C.

    2006-12-01

    Circumstellar debris disks are likely the by-product of collisions among unseen planetesimals. Planetesimals are also the seeds of planets, so it is reasonable to expect that some debris disks might also harbor planets. In fact several such disks, like those orbiting beta Pictoris, Fomalhaut, etc., do appear to be perturbed by unseen planets orbiting within. The signatures of planetary perturbations include: central gaps, warps, and radial offsets in the disk's surface brightness. By modeling the disturbances observed in a circumstellar dust disk, one can then measure or constrain the masses and orbits of the planets that may be lurking within. Of particular interest here are the warps and radial offsets seen in such disks, since these features can be due to secular planetary perturbations (Mouillet et al 1997, Wyatt et al 1999). Secular perturbations are the slowly varying gravitational perturbations that can excite orbital eccentricities and inclinations in a disk, and can also drive a slow orbital precession. Note that a dust grain's motion is completely analytic when suffering secular perturbations (Murray & Dermott 1999), which allows us to rapidly generate a synthetic image of a simulated disk as would be seen in scattered starlight or via thermal emission. And because this model is quite fast, our model can rapidly scan a rather large parameter space in order to determine the planetary configuration that may be responsible for the disk's perturbed appearance. We have applied this dust-disk model to Hubble observations of the β Pictoris dust-disk (from Heap et al 2000), and will report on the planets that may be responsible for the warp seen in this edge-on disk. We will also apply the model to optical and IR observations of debris disks at Fomalhaut, AU Microscopii, and others, with additional results to be reported at conference time.

  2. Habitable planets around the star Gliese 581?

    NASA Astrophysics Data System (ADS)

    Selsis, F.; Kasting, J. F.; Levrard, B.; Paillet, J.; Ribas, I.; Delfosse, X.

    2007-12-01

    Context: Thanks to remarkable progress, radial velocity surveys are now able to detect terrestrial planets at habitable distance from low-mass stars. Recently, two planets with minimum masses below 10 M⊕ have been reported in a triple system around the M-type star Gliese 581. These planets are found at orbital distances comparable to the location of the boundaries of the habitable zone of their star. Aims: In this study, we assess the habitability of planets Gl 581c and Gl 581d (assuming that their actual masses are close to their minimum masses) by estimating the locations of the habitable-zone boundaries of the star and discussing the uncertainties affecting their determination. An additional purpose of this paper is to provide simplified formulae for estimating the edges of the habitable zone. These may be used to evaluate the astrobiological potential of terrestrial exoplanets that will hopefully be discovered in the near future. Methods: Using results from radiative-convective atmospheric models and constraints from the evolution of Venus and Mars, we derive theoretical and empirical habitable distances for stars of F, G, K, and M spectral types. Results: Planets Gl 581c and Gl 581d are near to, but outside, what can be considered as the conservative habitable zone. Planet “c” receives 30% more energy from its star than Venus from the Sun, with an increased radiative forcing caused by the spectral energy distribution of Gl 581. This planet is thus unlikely to host liquid water, although its habitability cannot be positively ruled out by theoretical models due to uncertainties affecting cloud properties and cloud cover. Highly reflective clouds covering at least 75% of the day side of the planet could indeed prevent the water reservoir from being entirely vaporized. Irradiation conditions of planet “d” are comparable to those of early Mars, which is known to have hosted surface liquid water. Thanks to the greenhouse effect of CO2-ice clouds, also

  3. The HARPS search for southern extra-solar planets . XXXII. New multi-planet systems in the HARPS volume limited sample: a super-Earth and a Neptune in the habitable zone

    NASA Astrophysics Data System (ADS)

    Lo Curto, G.; Mayor, M.; Benz, W.; Bouchy, F.; Hébrard, G.; Lovis, C.; Moutou, C.; Naef, D.; Pepe, F.; Queloz, D.; Santos, N. C.; Segransan, D.; Udry, S.

    2013-03-01

    The vast diversity of planetary systems detected to date is defying our capability of understanding their formation and evolution. Well-defined volume-limited surveys are the best tool at our disposal to tackle the problem, via the acquisition of robust statistics of the orbital elements. We are using the HARPS spectrograph to conduct our survey of ≈850 nearby solar-type stars, and in the course of the past nine years we have monitored the radial velocity of HD 103774, HD 109271, and BD-061339. In this work we present the detection of five planets orbiting these stars, with msin (i) between 0.6 and 7 Neptune masses, four of which are in two multiple systems, comprising one super-Earth and one planet within the habitable zone of a late-type dwarf. Although for strategic reasons we chose efficiency over precision in this survey, we have the capability to detect planets down to the Neptune and super-Earth mass range as well as multiple systems, provided that enough data points are made available. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope at La Silla (Chile), under the GTO program ID 072.C-0488 and the regular programs: 085.C-0019, 087.C-0831 and 089.C-0732. RV data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A59

  4. Choosing Stars to Search for Habitable Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    M-dwarf stars are excellent targets for planet searches because the signal of an orbiting planet is relatively larger (and therefore easier to detect!) around small, dim M dwarfs, compared to Sun-like stars. But are there better or worse stars to target within this category when searching for habitable, Earth-like planets?Confusing the SignalRadial velocity campaigns search for planets by looking for signatures in a stars spectra that indicate the star is wobbling due to the gravitational pull of an orbiting planet. Unfortunately, stellar activity can mimic the signal of an orbiting planet in a stars spectrum something that is particularly problematic for M dwarfs, which can remain magnetically active for billions of years. To successfully detect planets that orbit in their stars habitable zones, we have to account for this problem.In a recent study led by Elisabeth Newton (Harvard-Smithsonian Center for Astrophysics), the authors use literature measurements to examine the rotation periods for main-sequence, M-type stars. They focus on three factors that are important for detecting and characterizing habitable planets around M dwarfs:Whether the habitable-zone orbital periods coincide with the stellar rotationFalse planet detections caused by stellar activity often appear as a planet with an orbital period thats a multiple of the stellar rotation period. If a stars rotation period coincides with the range of orbital periods corresponding to its habitable zone, its therefore possible to obtain false detections of habitable planets.How long stellar activity and rapid rotation last in the starAll stars become less magnetically active and rotate more slowly as they age, but the rate of this decay depends on their mass: lower-mass stars stay magnetically active for longer and take longer to spin down.Whether detailed atmospheric characterization will be possibleIts ideal to be able to follow up on potentially habitable exoplanets, and search for biosignatures such as

  5. Dynamics and Observational Appearance of Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew Frederick

    In my thesis I present a study of the dynamics and observational characteristics of massive circumstellar disks in two dimensions (r, f ) using two complimentary hydro-dynamic codes: a `Smoothed Particle Hydrodynamic' (SPH) code and a `Piecewise Parabolic Method' (PPM) code. I also study the detection limits available to radial velocity searches for low mass companions to main sequence stars. This thesis is organized as a series of published or submitted papers, connected by introductory and concluding material. I strongly recommend that readers of this abstract obtain the published versions of each of these papers. I first outline the progress which has been made in the modeling of the structure and origins of the solar system, then in chapter 2 (The Astrophysical Journal v502, p342, with W. Benz, F. Adams and D. Arnett), I proceed with numerical simulations of circumstellar disks using both hydrodynamic codes assuming a `locally isothermal' equation of state. The disks studied range in mass from 0.05M* to 1.0 M* and in initial minimum Toomre Q value from 1.1 to 3.0. Massive disks (MD > 0.2 M*) tend to form grand design spiral structure with 1-3 arms, while low mass disks (MD <= 0.2M*) tend to form filamentary, >4 armed spiral structures. In chapter 4 (submitted to The Astrophysical Journal with W. Benz and T. Ruzmaikina), I relax the assumption the locally isothermal evolution assumption and instead include simple heating and cooling prescriptions for the system. Under these physical conditions, the spiral arm growth is suppressed in the inner 1/3 of the disks relative to the isothermal evolution and in the remainder, changes character to more diffuse spiral structures. I synthesize spectral energy distributions (SEDs) from the simulations and compare them to fiducial SEDs derived from observed systems. The size distribution of grains in the inner disk can have marked consequences on the near infrared portion of the SED. After being vaporized in a hot midplane

  6. Geophysical and atmospheric evolution of habitable planets.

    PubMed

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere. PMID:20307182

  7. Geophysical and atmospheric evolution of habitable planets.

    PubMed

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  8. Circumstellar Hydrodynamics and Spectral Radiation in ALGOLS

    NASA Astrophysics Data System (ADS)

    Terrell, Dirk Curtis

    1994-01-01

    Algols are the remnants of binary systems that have undergone large scale mass transfer. This dissertation presents the results of the coupling of a hydrodynamical model and a radiative model of the flow of gas from the inner Lagrangian point. The hydrodynamical model is a fully Lagrangian, three-dimensional scheme with a novel treatment of viscosity and an implementation of the smoothed particle hydrodynamics method to compute pressure gradients. Viscosity is implemented by allowing particles within a specified interaction length to share momentum. The hydrodynamical model includes a provision for computing the self-gravity of the disk material, although it is not used in the present application to Algols. Hydrogen line profiles and equivalent widths computed with a code by Drake and Ulrich are compared with observations of both short and long period Algols. More sophisticated radiative transfer computations are done with the escape probability code of Ko and Kallman which includes the spectral lines of thirteen elements. The locations and velocities of the gas particles, and the viscous heating from the hydro program are supplied to the radiative transfer program, which computes the equilibrium temperature of the gas and generates its emission spectrum. Intrinsic line profiles are assumed to be delta functions and are properly Doppler shifted and summed for gas particles that are not eclipsed by either star. Polarization curves are computed by combining the hydro program with the Wilson-Liou polarization program. Although the results are preliminary, they show that polarization observations show great promise for studying circumstellar matter.

  9. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika R.; Naoz, Smadar; Vican, Laura; Farr, Will M.

    2016-07-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  10. Circumstellar disks around binary stars in Taurus

    SciTech Connect

    Akeson, R. L.

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  11. The circumstellar ring of SN 1987A

    NASA Astrophysics Data System (ADS)

    Fransson, Claes; Migotto, Katia; Larsson, Josefin; Pesce, Dominic; Challis, Peter; Chevalier, Roger A.; France, Kevin; Kirshner, Robert P.; Leibundgut, Bruno; Lundqvist, Peter; McCray, Richard; Spyromilio, Jason; Taddia, Francesco; Jerkstrand, Anders; Mattila, Seppo; Smith, Nathan; Sollerman, Jesper; Wheeler, J. Craig; Crotts, Arlin; Garnavich, Peter; Heng, Kevin; Lawrence, Stephen S.; Panagia, Nino; Pun, Chun S. J.; Sonneborn, George; Sugerman, Ben

    2016-06-01

    The circumstellar ring of supernova 1987A first became visible a few months after the explosion due to photoionisation by the supernova flash. From 1995 hotspots appeared in the ring and their brightness increased nearly exponentially as a result of interaction with the supernova blast wave. Imaging and spectroscopic observations with the Hubble Space Telescope and the Very Large Telescope now show that both the shocked and the unshocked emission components from the ring have been decreasing since ~ 2009. In addition, the most recent images reveal the brightening of new spots outside the ring. These observations indicate that the hotspots are being dissolved by the shocks and that the blast wave is now expanding and interacting with dense clumps beyond the ring. Based on the currently observed decay we predict that the ring will be destroyed by ~ 2025, while the blast wave will reveal the distribution of gas as it expands outside the ring, thus tracing the mass-loss history of the supernova progenitor.

  12. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika R.; Naoz, Smadar; Vican, Laura; Farr, Will M.

    2016-07-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai-Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  13. An MCMC Circumstellar Disks Modeling Tool

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler; Perrin, Marshall D.; Mazoyer, Johan; Choquet, Elodie; Soummer, Remi; Ren, Bin; Pueyo, Laurent; Debes, John H.; Duchene, Gaspard; Pinte, Christophe; Menard, Francois

    2016-01-01

    We present an enhanced software framework for the Monte Carlo Markov Chain modeling of circumstellar disk observations, including spectral energy distributions and multi wavelength images from a variety of instruments (e.g. GPI, NICI, HST, WFIRST). The goal is to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in the derived properties. This modular code is designed to work with a collection of existing modeling tools, ranging from simple scripts to define the geometry for optically thin debris disks, to full radiative transfer modeling of complex grain structures in protoplanetary disks (using the MCFOST radiative transfer modeling code). The MCMC chain relies on direct chi squared comparison of model images/spectra to observations. We will include a discussion of how best to weight different observations in the modeling of a single disk and how to incorporate forward modeling from PCA PSF subtraction techniques. The code is open source, python, and available from github. Results for several disks at various evolutionary stages will be discussed.

  14. Habitability: A Review.

    PubMed

    Cockell, C S; Bush, T; Bryce, C; Direito, S; Fox-Powell, M; Harrison, J P; Lammer, H; Landenmark, H; Martin-Torres, J; Nicholson, N; Noack, L; O'Malley-James, J; Payler, S J; Rushby, A; Samuels, T; Schwendner, P; Wadsworth, J; Zorzano, M P

    2016-01-01

    Habitability is a widely used word in the geoscience, planetary science, and astrobiology literature, but what does it mean? In this review on habitability, we define it as the ability of an environment to support the activity of at least one known organism. We adopt a binary definition of "habitability" and a "habitable environment." An environment either can or cannot sustain a given organism. However, environments such as entire planets might be capable of supporting more or less species diversity or biomass compared with that of Earth. A clarity in understanding habitability can be obtained by defining instantaneous habitability as the conditions at any given time in a given environment required to sustain the activity of at least one known organism, and continuous planetary habitability as the capacity of a planetary body to sustain habitable conditions on some areas of its surface or within its interior over geological timescales. We also distinguish between surface liquid water worlds (such as Earth) that can sustain liquid water on their surfaces and interior liquid water worlds, such as icy moons and terrestrial-type rocky planets with liquid water only in their interiors. This distinction is important since, while the former can potentially sustain habitable conditions for oxygenic photosynthesis that leads to the rise of atmospheric oxygen and potentially complex multicellularity and intelligence over geological timescales, the latter are unlikely to. Habitable environments do not need to contain life. Although the decoupling of habitability and the presence of life may be rare on Earth, it may be important for understanding the habitability of other planetary bodies. PMID:26741054

  15. Habitability: A Review.

    PubMed

    Cockell, C S; Bush, T; Bryce, C; Direito, S; Fox-Powell, M; Harrison, J P; Lammer, H; Landenmark, H; Martin-Torres, J; Nicholson, N; Noack, L; O'Malley-James, J; Payler, S J; Rushby, A; Samuels, T; Schwendner, P; Wadsworth, J; Zorzano, M P

    2016-01-01

    Habitability is a widely used word in the geoscience, planetary science, and astrobiology literature, but what does it mean? In this review on habitability, we define it as the ability of an environment to support the activity of at least one known organism. We adopt a binary definition of "habitability" and a "habitable environment." An environment either can or cannot sustain a given organism. However, environments such as entire planets might be capable of supporting more or less species diversity or biomass compared with that of Earth. A clarity in understanding habitability can be obtained by defining instantaneous habitability as the conditions at any given time in a given environment required to sustain the activity of at least one known organism, and continuous planetary habitability as the capacity of a planetary body to sustain habitable conditions on some areas of its surface or within its interior over geological timescales. We also distinguish between surface liquid water worlds (such as Earth) that can sustain liquid water on their surfaces and interior liquid water worlds, such as icy moons and terrestrial-type rocky planets with liquid water only in their interiors. This distinction is important since, while the former can potentially sustain habitable conditions for oxygenic photosynthesis that leads to the rise of atmospheric oxygen and potentially complex multicellularity and intelligence over geological timescales, the latter are unlikely to. Habitable environments do not need to contain life. Although the decoupling of habitability and the presence of life may be rare on Earth, it may be important for understanding the habitability of other planetary bodies.

  16. Space Station Habitability Research

    NASA Technical Reports Server (NTRS)

    Clearwater, Yvonne A.

    1988-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  17. Space Station habitability research

    NASA Technical Reports Server (NTRS)

    Clearwater, Y. A.

    1986-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Cente is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  18. Dynamical habitability of planetary systems.

    PubMed

    Dvorak, Rudolf; Pilat-Lohinger, Elke; Bois, Eric; Schwarz, Richard; Funk, Barbara; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries).

  19. TIDAL LIMITS TO PLANETARY HABITABILITY

    SciTech Connect

    Barnes, Rory; Jackson, Brian; Greenberg, Richard; Raymond, Sean N.

    2009-07-20

    The habitable zones (HZs) of main-sequence stars have traditionally been defined as the range of orbits that intercept the appropriate amount of stellar flux to permit surface water on a planet. Terrestrial exoplanets discovered to orbit M stars in these zones, which are close-in due to decreased stellar luminosity, may also undergo significant tidal heating. Tidal heating may span a wide range for terrestrial exoplanets and may significantly affect conditions near the surface. For example, if heating rates on an exoplanet are near or greater than that on Io (where tides drive volcanism that resurfaces the planet at least every 1 Myr) and produce similar surface conditions, then the development of life seems unlikely. On the other hand, if the tidal heating rate is less than the minimum to initiate plate tectonics, then CO{sub 2} may not be recycled through subduction, leading to a runaway greenhouse that sterilizes the planet. These two cases represent potential boundaries to habitability and are presented along with the range of the traditional HZ for main-sequence, low-mass stars. We propose a revised HZ that incorporates both stellar insolation and tidal heating. We apply these criteria to GJ 581 d and find that it is in the traditional HZ, but its tidal heating alone may be insufficient for plate tectonics.

  20. Dynamical habitability of planetary systems.

    PubMed

    Dvorak, Rudolf; Pilat-Lohinger, Elke; Bois, Eric; Schwarz, Richard; Funk, Barbara; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries). PMID:20307181

  1. Modelling planet-forming circumstellar discs

    NASA Astrophysics Data System (ADS)

    Woitke, P.

    2012-03-01

    With the improved wavelength coverage and instrumental capabilities to observe planet-forming circumstellar discs in the X-ray regime, the UV, and the near, mid and far infrared (XMM, HST, VLT, Spitzer, Herschel, soon ALMA) there is an increasing scientific need to develop equally sophisticated models for the physical, radiative and chemical processes in these discs. The discs are composed of dust and gas spanning 10 orders of magnitude in density, and temperatures differ by a factor of about 100. There is hard irradiation that provokes various non-LTE effects, thermal and position de-coupling of icy dust and gas, and the differential rotation causes instabilities and mixing. In the last few years, new theoretical models have been developed that simulate different aspects of these complicated physical systems. I will focus mainly on models that model the chemical, radiative, and heating & cooling processes in these discs, pointing out some important coupling mechanism and feedbacks between them. In the new major European FP7-SPACE project DIANA, we will use these novel disc models to coherently analyse and interpret new multi-wavelength data sets from X-ray to cm, probing in physics and chemistry in protoplanetary dicsc at different radii and depths. The general aim of the new models is to arrive at a common understanding of dust and gas, over the full radial extent of the disc, and to make use of continuum and line observations to constrain dust and gas properties in the disc. I will discuss where the various near-IR to sub-mm emissions (CO ro-vib, high-J CO lines, sub-mm CO lines, Spitzer water, Herschel/PACS water, Herschel/HIFI water, Herschel/PACS atomic lines) originate from, and how they are influenced by disc shape, irradiation, dust properties, and the chemical and radiative details.

  2. Changing circumstances, disrupting habits.

    PubMed

    Wood, Wendy; Witt, Melissa Guerrero; Tam, Leona

    2005-06-01

    The present research investigated the mechanisms guiding habitual behavior, specifically, the stimulus cues that trigger habit performance. When usual contexts for performance change, habits cannot be cued by recurring stimuli, and performance should be disrupted. Thus, the exercising, newspaper reading, and TV watching habits of students transferring to a new university were found to survive the transfer only when aspects of the performance context did not change (e.g., participants continued to read the paper with others). In some cases, the disruption in habits also placed behavior under intentional control so that participants acted on their current intentions. Changes in circumstances also affected the favorability of intentions, but changes in intentions alone could not explain the disruption of habits. Furthermore, regardless of whether contexts changed, nonhabitual behavior was guided by intentions. PMID:15982113

  3. The chemical history of molecules in circumstellar disks. I. Ices

    NASA Astrophysics Data System (ADS)

    Visser, R.; van Dishoeck, E. F.; Doty, S. D.; Dullemond, C. P.

    2009-03-01

    Context: Many chemical changes occur during the collapse of a molecular cloud to form a low-mass star and the surrounding disk. One-dimensional models have been used so far to analyse these chemical processes, but they cannot properly describe the incorporation of material into disks. Aims: The goal of this work is to understand how material changes chemically as it is transported from the cloud to the star and the disk. Of special interest is the chemical history of the material in the disk at the end of the collapse. Methods: A two-dimensional, semi-analytical model is presented that, for the first time, follows the chemical evolution from the pre-stellar core to the protostar and circumstellar disk. The model computes infall trajectories from any point in the cloud and tracks the radial and vertical motion of material in the viscously evolving disk. It includes a full time-dependent radiative transfer treatment of the dust temperature, which controls much of the chemistry. A small parameter grid is explored to understand the effects of the sound speed and the mass and rotation of the cloud. The freeze-out and evaporation of carbon monoxide (CO) and water (H2O), as well as the potential for forming complex organic molecules in ices, are considered as important first steps towards illustrating the full chemistry. Results: Both species freeze out towards the centre before the collapse begins. Pure CO ice evaporates during the infall phase and re-adsorbs in those parts of the disk that cool below the CO desorption temperature of ~18 K. Water remains solid almost everywhere during the infall and disk formation phases and evaporates within ~10 AU of the star. Mixed CO-H2O ices are important in keeping some solid CO above 18 K and in explaining the presence of CO in comets. Material that ends up in the planet- and comet-forming zones of the disk (~5-30 AU from the star) is predicted to spend enough time in a warm zone (several 104 yr at a dust temperature of 20-40 K

  4. Photochemistry and molecular ions in carbon-rich circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.; Mamon, G. A.; Omont, A.; Lucas, R.

    1987-01-01

    An earlier theory of ionization of C-rich circumstellar envelopes based on the photochemical model is extended to include the temperature dependence of ion-molecule reactions with polar molecules, particularly HCN, and line self-shielding of CO dissociating radiation. The results are applied to the abundances of HCO(+) and HNC in C-rich circumstellar envelopes. With standard parameters for IRC + 10216, the model is found to be consistent with the new upper limit to the antenna temperature of the J = 1-0 line of HCO(+) obtained with the IRAM 30-m telescope. The photochemical model provides a natural explanation of the relatively large ratio of HCN to HNC observed for C-rich circumstellar envelopes, and good agreement is obtained for the H(C-13)N/HNC antenna temperature ratio measured for IRC + 10216.

  5. First Circumstellar Disk around a Massive Star

    NASA Astrophysics Data System (ADS)

    1998-06-01

    arrow). Earlier observations with radio telescopes of the object G339.88-1.26 , deeply embedded in an interstellar nebula, had been interpreted in terms of the possible existence of a circumstellar disk around a high-mass star. It was concluded that the star responsible for heating the surrounding gas must be very hot and also that it must be intrinsically very bright. The star, most likely of spectral type O9, would have a luminosity 10,000 times higher than that of the Sun and a mass of about 20 times that of the Sun. From the measured velocity, the likely distance of this object is about 10,000 light-years. The object is associated with several "spots" of very strong radio emission from methanol molecules (methanol masers). Interestingly, they form a chain in the sky and the measured velocities of the individual spots are indicative for orbital motion in a rotating disk around the central star. The circumstellar disk ESO PR Photo 22/98 ESO PR Photo 22b/98 [JPEG, 640k] The TIMMI 10 µm image of the inclined dust disk around a hot O9 star at the G339.88-1.26 radio source. The diameter of the disk is of the order of 5 arcsec, i.e. at the most probable distance to the object (10,000 lightyears) it is 20,000 times larger than the diameter of the Earth's orbit around the Sun. The new TIMMI observations of G339.88-1.26 showed an elliptical object with strong infrared radiation. The peak of this radiation (as seen in the sky) coincides with the peak of the radio emission. Furthermore, the apparent orientation of the disk is well aligned with that of the methanol maser "spots". There is little doubt that this object is indeed the infrared image of a circumstellar disk, viewed at an angle. As far as known, this is the first direct image of a disk around a very massive star. At a wavelength of 10 µm, however, the central star that is responsible for heating the dust disc, cannot be seen in spite of its rather high luminosity. This is because it radiates mostly in the ultra

  6. Laboratory Studies Of Circumstellar Carbonaceous Grain Formation

    NASA Astrophysics Data System (ADS)

    Contreras, Cesar; Sciamma-O'Brien, Ella; Salama, Farid

    2014-06-01

    The study of the formation processes of dust is essential to understand the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar (IS) chemistry and in the formation of organic molecules, little is known on the formation processes of carbonaceous dust. We report the progress that was recently achieved in this domain using NASA Ames’ COSmIC facility (Contreras & Salama 2013, ApJS, 208, 6). PAHs are important chemical building blocks of IS dust. They are detected in IDPs and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs are an important, ubiquitous component of the ISM. The formation of PAHs from smaller molecules has not been extensively studied. Therefore, we have performed laboratory experiments to study the dynamic processes of carbon grain formation, starting from the smallest hydrocarbon molecules into the formation of larger PAH and further into nanograins. Studies of IS dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include the atoms O, N, and S, have recently been performed in our laboratory using the COSmIC facility to provide conditions that simulate IS and circumstellar environments. The species formed in the COSmiC chamber through a pulsed discharge nozzle plasma source are detected and characterized with a cavity ringdown spectrometer coupled to a time-of-flight mass spectrometer, thus providing both spectroscopic and ion mass information in-situ. Analysis of solid soot particles was also conducted using scanning electron microscopy at the UCSC/NASA Ames’ MACS facility. The SEM analysis of the deposition of soot from methane and acetylene precursors seeded in argon plasmas provide examples on the types of nanoparticles and micrograins that are produced in these gas mixtures under our experimental conditions. From these measurements, we derive information on

  7. Shaping the pre-supernova circumstellar environment

    NASA Astrophysics Data System (ADS)

    Koenigsberger, Gloria

    2009-07-01

    Recent discoveries of very luminous supernovae associated with luminous blue variable-type objects {LBV's} raise the interesting possibility that an LBV phase may be the prelude to core collapse. Alternatively, the LBV events may be occuring in binary systems where the LBV phase is reached by one of the stars shortly before its more evolved companion becomes a supernova. The Small Magellanic Cloud binary system HD 5980 is believed to consist precisely of such two objects: a massive hydrogen-poor Wolf-Rayet star in orbit around an even more massive variable star that recently underwent an LBV-type eruption. The wind velocity and the mass-loss rate of the LBV-component have changed remarkably over the past ˜40 years, providing a glimpse of the detailed information of how a binary LBV-type star may shape the circumstellar environment into which the eventual supernova ejecta will collide. One process that is shaping the CSM around HD 5980 is the interaction between the slow wind ejected during eruption and the fast wind that was subsequently ``turned on". In order to model the evolution of this interaction region, an accurate determination of the mass-loss rate and the wind velocity of HD 5980 is required. Because the optical emission lines are contaminated by other sources, only the P Cygni profiles observable in the UV spectral region provide unambiguous values for the current wind speed and mass-loss rate. In this proposal we are requesting 2 HST orbits to observe HD 5980 with STIS in order to obtain one FUV MAMA spectrum from which we will determine the current wind velocity and mass-loss rate of the LBV-type star. These data will also allow a more detailed analysis of the atmospheric structure of the LBV-type object in its quiescent state and, combined with ground-based observations, an analysis of the emission arising in the wind-wind collision region may be performed. Although HD5980 may be unique in our Galactic vicinity, it may be typical of massive star

  8. [Diabetes and sleeping habits].

    PubMed

    Yamada, Shinsuke; Inaba, Masaaki

    2012-07-01

    Number of diabetic patients has continued to increase in the world, disturbance of sleep habits have been pointed out as one of the factor recently. Sleep habits are categorized into quantity and quality of sleep. Inappropriate sleep duration and decline in quality of sleep have caused the exacerbation and onset of diabetes. On the other hand, it is known that many patients with diabetes have already suffered from sleep disorders. Here, we will give an outline of the relationship between sleep habits and diabetes.

  9. Etiology of oral habits.

    PubMed

    Bayardo, R E; Mejia, J J; Orozco, S; Montoya, K

    1996-01-01

    The pedodontic admission histories of 1600 Mexican children were analyzed, to determine general epidemiologic factors or oral habits, as well as their relationship with identifiable biopsychosociologic factors. Fifty-six percent of the children gave evidence of an oral habit, with significant predisposition among female patients, single children, subjects in poor physical health (particularly from allergies), as well as children with histories of chronic health problems. Oral habits should be considered a major health hazard because of their high incidence. Successful treatment requires a multidisciplinary approach to the basic cause of the problem.

  10. Physical Processes in Circumstellar Disks around Young Stars

    NASA Astrophysics Data System (ADS)

    Garcia, Paulo J. V.

    2011-05-01

    Circumstellar disks are vast expanses of dust that form around new stars in the earliest stages of their birth. Predicted by astronomers as early as the eighteenth century, they weren't observed until the late twentieth century, when interstellar imaging technology enabled us to see nascent stars hundreds of light years away. Since then, circumstellar disks have become an area of intense study among astrophysicists, largely because they are thought to be the forerunners of planetary systems like our own - the possible birthplaces of planets.

  11. The origin and evolution of dust in interstellar and circumstellar environments

    NASA Technical Reports Server (NTRS)

    Whittet, Douglas C. B.; Leung, Chun M.

    1993-01-01

    This status report covers the period from the commencement of the research program on 1 Jul. 1992 through 30 Apr. 1993. Progress is reported for research in the following areas: (1) grain formation in circumstellar envelopes; (2) photochemistry in circumstellar envelopes; (3) modeling ice features in circumstellar envelopes; (4) episodic dust formation in circumstellar envelopes; (5) grain evolution in the diffuse interstellar medium; and (6) grain evolution in dense molecular clouds.

  12. Damaging oral habits.

    PubMed

    Kamdar, Rajesh J; Al-Shahrani, Ibrahim

    2015-04-01

    Oral habits, if persist beyond certain developmental age, can pose great harm to the developing teeth, occlusion, and surrounding oral tissues. In the formative years, almost all children engage in some non-nutritive sucking habits. Clinicians, by proper differential diagnosis and thorough understanding of natural growth and developmental processes, should take a decision for intervening. This article describes case series reports of thumb sucking, finger sucking, and tongue thrusting habits, which have been successfully treated by both removable and fixed orthodontic appliances. The cases shown are ranging from the age group of 9-19 years presenting combination of both mixed and permanent dentition development. All cases show satisfactory correction of habits and stable results.

  13. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.

  14. Habitability: CAMELOT 4

    NASA Technical Reports Server (NTRS)

    Alequin, W.; Barragan, A.; Carro, M.; Garcia, F.; Gonzalez, I.; Mercado, J. A.; Negron, N.; Lopez, D.; Rivera, L. A.; Rivera, M.

    1990-01-01

    During 1988 to 1989 the NASA/USRA Advanced Design Program sponsored research and design efforts aimed at developing habitability criteria and at defining a habitability concept as a useful tool in understanding and evaluating dwellings for prolonged stays in extraterrestrial space. The Circulating Auto sufficient Mars-Earth Luxurious Orbital Transport (CAMELOT) was studied as a case in which the students would try to enhance the quality of life of the inhabitants by applying architectural design methodology. The study proposed 14 habitability criteria considered necessary to fulfill the defined habitability concept, which is that state of equilibrium that results from the interaction between components of the Individual Architecture Mission Complex, which allows a person to sustain physiological homeostatis, adequate performance, and acceptable social relationships. Architecture, design development, refinements and revisions to improve the quality of life, new insights on artificial gravity, form and constitution problems, and the final design concept are covered.

  15. Healthy Sleep Habits

    MedlinePlus

    ... Benefits Side Effects Variations Tips Healthy Sleep Habits Sleep Disorders by Category Insomnias Insomnia Child Insomnia Short Sleeper Hypersomnias Narcolepsy Insufficient Sleep Syndrome Long Sleeper Sleep Breathing Disorders Sleep Apnea Snoring Central Sleep Apnea Overview & Facts ...

  16. A Review of Habit Reversal with Childhood Habit Disorders.

    ERIC Educational Resources Information Center

    Woods, Douglas W.; Miltenberger, Raymond G.

    1996-01-01

    This paper first reviews four classes of habit disorders in children: motor and vocal tics, nervous habits, stuttering, and Tourette's disorder. It then describes the habit reversal procedure and reviews the literature on its use and variations to treat each of the four classes of habit disorders. Emphasis is on simplified versions of the original…

  17. WHERE TO FIND HABITABLE ''EARTHS'' IN CIRCUMBINARY SYSTEMS

    SciTech Connect

    Liu Huigen; Zhang Hui; Zhou Jilin

    2013-04-20

    Six P-type planets have been found thus far around five binary systems, i.e., Kepler-16b, 34b, 35b, 38b, and 47b and c, which are all Neptune- or Jupiter-like planets. The stability of planets and the habitable zones are influenced by the gravitational and radiative perturbations of binary companions. In this Letter, we check the stability of an additional habitable Earth-mass planet in each system. Based on our simulations in 10 Myr, a habitable ''Earth'' is hardly stable in Kepler-16, while a stable ''Earth'' in Kepler-47 close to the boundaries of the habitable zone is possible. In contrast, Kepler-34, 35, and 38 seem to have high probabilities of being able to tolerante a stable ''Earth'' in their habitable zones. The affects of transit time variations are quite small due to the small mass of an undetected ''Earth,'' except that of Kepler-16b. With a time precision of 10{sup -3} day ({approx}88 s), an ''Earth'' in the corotational resonance with Kepler-16b can be detected in three years, while habitable ''Earths'' in the Kepler-34 and 38 systems can be detected in 10 yr. Habitable ''Earths'' in Kepler-35 and 47 are not likely to be detected in 10 yr under this precision.

  18. The habitability of eccentric planetary orbits

    NASA Astrophysics Data System (ADS)

    Pilat-Lohinger, E.; Lammer, H.; Bancelin, D.; Erkaev, N. V.; Bazso, A.; Eggl, S.

    2016-02-01

    The huge number of exo-planets discovered so far show an unexpected diversity of planetary systems where most planets indicate eccentricity motion. Since Earth is still the only habitable planet we know and the planetary motion in our Solar system is nearly circular we study possible constraints of habitability in case of eccentric planetary motion. Previous dynamical studies have shown that the architecture of the giant planets in a system might influence the motion in the habitable zone (HZ). Such orbital perturbations may change the conditions of habitability for a terrestrial planet in the HZ. In this context, it has been shown that a small change in the mutual distance of Jupiter and Saturn would lead to a secular perturbation of Earth orbit with variations in eccentricity from 0.0 to 0.7. For planetary motion in binary star systems gravitational perturbations play an important role not only for the long-term stability also the habitability can be affected. In this presentation we discuss the problems that will arise in case an Earth-type planet exits the HZ periodically and approaches a Sun-like star up to 0.3 AU where we pay special attention to the Nitrogen-loss from this planet.

  19. Circumstellar and Explosion Properties of Type Ibn Supernovae

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Maeda, Keiichi

    2016-06-01

    We investigate circumstellar and explosion properties of Type Ibn supernovae (SNe) by analyzing their bolometric light curves (LCs). Bolometric LCs of SNe Ibn generally have a large contrast between peak luminosity and late-phase luminosity, which is much larger than those of 56Ni-powered SNe. Thus, most of them are likely powered by the interaction between SN ejecta and dense circumstellar media. In addition, SNe Ibn decline much faster than SNe IIn, and this indicates that the interaction in SNe Ibn ceases earlier than in SNe IIn. Thus, we argue that SN Ibn progenitors experience high mass-loss rates in a short period just before explosion, while SN IIn progenitors have high mass-loss rates sustained for a long time. Furthermore, we show that rise time and peak luminosity of SNe Ibn and IIn are similar and thus, they have similar explosion properties and circumstellar density. The similar circumstellar density in the two kinds of SNe may indicate that mass-loss rates of SN Ibn progenitors are generally higher than those of Type IIn as the wind velocities inferred from narrow spectral components are generally higher in SNe Ibn. We also show that {}56{Ni} mass and explosion energy of SNe Ibn may be smaller than those of other stripped-envelope SNe, probably because they tend to suffer large fallback or some of them may not even be terminal stellar explosions.

  20. Chemical evolution of circumstellar matter around young stellar objects.

    PubMed

    van Dishoeck, E F; Blake, G A

    1995-01-01

    Recent observational studies of the chemical composition of circumstellar matter around both high- and low-mass young stellar objects are reviewed. The molecular abundances are found to be a strong function of evolutionary state, but not of system mass or luminosity. The data are discussed with reference to recent theoretical models.

  1. Kepler Mission: A Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Koch, David; Fonda, Mark (Technical Monitor)

    2002-01-01

    The Kepler Mission was selected by NASA as one of the next two Discovery Missions. The mission design is based on the search for Earth-size planets in the habitable zone of solar-like stars, but does not preclude the discovery of larger or smaller planets in other orbits of non-solar-like stars. An overview of the mission, the scientific goals and the anticipated results will be presented.

  2. The Detectability of Habitable Exomoons with Kepler

    NASA Astrophysics Data System (ADS)

    Campanella, Giammarco; Kipping, David; Fossey, Stephen

    Now that more than 400 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. We explore the motivations for undergoing such a search, review some of the proposed detection techniques and introduce a model for the Transit Time Variation (TTV) and Transit Duration Variation (TDV) signals which permits not only the identification of exomoons but also the derivation of some of their characteristics. The detectability of a habitable-zone exomoon around various configurations of exoplanetary systems with the Kepler Mission or photometry of approximately equal quality is investigated. We calculate both the predicted transit timing signal amplitudes and the estimated uncertainty on such measurements in order to calculate the confidence in detecting such bodies across a broad spectrum of orbital arrangements. The effects of photon noise, stellar variability and instrument noise are all accounted for in the analysis. We validate our methodology by simulating synthetic lightcurves and we find that habitable-zone exomoons down to 0.2 Earth masses may be detected and 25,000 stars could be surveyed for habitable-zone exomoons within Kepler`s field-of-view. Finally, we predict how a further characterisation of these bodies can be carried out.

  3. Planet Formation and Habitability

    NASA Astrophysics Data System (ADS)

    alibert, yann

    2016-04-01

    Extrasolar planetary systems show an extreme diversity in mass and orbital architecture, and, very likely, in habitability. Explaining this diversity is one of the key challenges for theoretical models and requires understanding the formation, composition and evolution of planetary systems from the stage of the protoplanetary disk up to the full mature planetary system. I will review in this contribution the different models of planet formation and how they can be related to planetary habitability. In a first part, I will review the main planetary system formation models, and how, from these models, the composition of planets can be predicted. In a second part, I will link the results of these early phases of planetary systems, to the potential planetary habitability. Finally, I will show how it is possible, from transit observations, to put constraints on the water content of extrasolar planets.

  4. Mars Surface Habitability Options

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Simon, Matthew; Smitherman, David; Howard, Robert; Toups, Larry; Hoffman, Stephen J.

    2015-01-01

    This paper reports on current habitability concepts for an Evolvable Mars Campaign (EMC) prepared by the NASA Human Spaceflight Architecture Team (HAT). For many years NASA has investigated alternative human Mars missions, examining different mission objectives, trajectories, vehicles, and technologies; the combinations of which have been referred to as reference missions or architectures. At the highest levels, decisions regarding the timing and objectives for a human mission to Mars continue to evolve while at the lowest levels, applicable technologies continue to advance. This results in an on-going need for assessments of alternative system designs such as the habitat, a significant element in any human Mars mission scenario, to provide meaningful design sensitivity characterizations to assist decision-makers regarding timing, objectives, and technologies. As a subset of the Evolvable Mars Campaign activities, the habitability team builds upon results from past studies and recommends options for Mars surface habitability compatible with updated technologies.

  5. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    PubMed Central

    Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T.R.; Meadows, V.S.

    2014-01-01

    Abstract We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes. Key Words: Exoplanets—Habitable zone—Energy balance models. Astrobiology 14, 277–291. PMID:24611714

  6. Making Mars habitable.

    PubMed

    McKay, C P; Toon, O B; Kasting, J F

    1991-08-01

    Mars is believed to be lifeless, but it may be possible to transform it into a planet suitable for habitation by plants, and conceivably humans. The success of such an enterprise would depend on the abundance, distribution and form of materials on the planet that could provide carbon dioxide, water and nitrogen. PMID:11538095

  7. Circumstellar shells resolved in IRAS survey data. II - Analysis

    NASA Technical Reports Server (NTRS)

    Young, K.; Phillips, T. G.; Knapp, G. R.

    1993-01-01

    IRAS survey data for 512 red giant stars and young planetary nebulae were processed using a computer program which fitted the data to an idealized model of a circumstellar shell. Seventy-six of these stars were found to have circumstellar shells resolved in the 60-micron survey data. Forty pct of the 76 stars are carbon stars. Thirteen are Mira variables. The evolution of these shells, involving the interaction of the expelled material with the ISM, is modeled, and the results suggest that the period during which Mira variables lose mass lasts for approximately 10 exp 5 yr. Carbon stars are found to shed mass for about 2 x 10 exp 5 yr. The expansion velocity of the outer shell for the largest shells will normally be lower by a factor of 3-5 than the expansion velocity obtained from CO observations.

  8. Circumstellar discs around solar mass stars in NGC 6611

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.; Jeffries, R. D.; van Loon, J. Th.; Littlefair, S. P.; Naylor, T.

    2005-03-01

    We have performed IZJHKL' observations in NGC 6611, the young cluster that ionizes the Eagle Nebula. We have discovered a rich pre-main sequence concentrated around the O-stars in the cluster. As measured by their L'-band excesses, at least 58+/-5 per cent of the pre-main sequence objects (0.45 < M < 2Msolar) have circumstellar discs. By comparing this disc frequency with frequencies determined for regions where the pre-main sequence stars are subject to less ionizing radiation, we find no evidence that the harsher environment of NGC 6611 (approximately an order of magnitude more ionizing Lyman continuum radiation than the Trapezium cluster) significantly hastens the dissipation of circumstellar discs around solar mass stars.

  9. External Shaping of Circumstellar Envelopes of Evolved Stars

    NASA Astrophysics Data System (ADS)

    Cox, N. L. J.

    2015-08-01

    The circumstellar envelopes of asymptotic giant branch (AGB) stars and red supergiants (RSGs) are complex chemical and physical environments, and the specifics of their mass-loss history are important for both stellar and galactic evolution. One key aspect in this is to understand how the circumstellar medium of these stars can be shaped and affected by both internal and external mechanisms. These influences can skew our view on the (dust) chemistry and mass-loss history of these stars, and hence their role in the chemical enrichment of galaxies. This contribution focuses on the external mechanism related to the interaction between the slow dusty stellar wind and the local ambient medium. I will discuss what recent observations and hydrodynamical simulations have revealed and how these can help us learn more about AGB stars and RSGs, as well as the interstellar medium (ISM).

  10. Detection of circumstellar material in a normal type Ia supernova.

    PubMed

    Patat, F; Chandra, P; Chevalier, R; Justham, S; Podsiadlowski, Ph; Wolf, C; Gal-Yam, A; Pasquini, L; Crawford, I A; Mazzali, P A; Pauldrach, A W A; Nomoto, K; Benetti, S; Cappellaro, E; Elias-Rosa, N; Hillebrandt, W; Leonard, D C; Pastorello, A; Renzini, A; Sabbadin, F; Simon, J D; Turatto, M

    2007-08-17

    Type Ia supernovae are important cosmological distance indicators. Each of these bright supernovae supposedly results from the thermonuclear explosion of a white dwarf star that, after accreting material from a companion star, exceeds some mass limit, but the true nature of the progenitor star system remains controversial. Here we report the spectroscopic detection of circumstellar material in a normal type Ia supernova explosion. The expansion velocities, densities, and dimensions of the circumstellar envelope indicate that this material was ejected from the progenitor system. In particular, the relatively low expansion velocities suggest that the white dwarf was accreting material from a companion star that was in the red-giant phase at the time of the explosion.

  11. Dust mineralogy in the circumstellar envelope of SVS13

    NASA Astrophysics Data System (ADS)

    Fujiyoshi, T.; Wright, C.; Moore, T.

    It is of great interest to study the mineralogy of circumstellar dust around young stars as it represents the original constituents of planetesimals, hence of the rocky planets like our own Earth. To this end, we have obtained an N-band (8-13 µm) spectrum of a pre-main-sequence star SVS13, using the facility mid-infrared imaging spectrometer COMICS on the Japanese 8.2-m Subaru Telescope atop the summit of Mauna Kea, Hawaii. We have fitted various emissivities/absorption coefficients of dust species to the spectrum to examine dust mineralogy in the circumstellar envelope of this remarkable young star. In this presentation, we outline the modelling and highlight some of our findings.

  12. Detection of circumstellar material in a normal type Ia supernova.

    PubMed

    Patat, F; Chandra, P; Chevalier, R; Justham, S; Podsiadlowski, Ph; Wolf, C; Gal-Yam, A; Pasquini, L; Crawford, I A; Mazzali, P A; Pauldrach, A W A; Nomoto, K; Benetti, S; Cappellaro, E; Elias-Rosa, N; Hillebrandt, W; Leonard, D C; Pastorello, A; Renzini, A; Sabbadin, F; Simon, J D; Turatto, M

    2007-08-17

    Type Ia supernovae are important cosmological distance indicators. Each of these bright supernovae supposedly results from the thermonuclear explosion of a white dwarf star that, after accreting material from a companion star, exceeds some mass limit, but the true nature of the progenitor star system remains controversial. Here we report the spectroscopic detection of circumstellar material in a normal type Ia supernova explosion. The expansion velocities, densities, and dimensions of the circumstellar envelope indicate that this material was ejected from the progenitor system. In particular, the relatively low expansion velocities suggest that the white dwarf was accreting material from a companion star that was in the red-giant phase at the time of the explosion. PMID:17626848

  13. CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE

    SciTech Connect

    Shen, Ken J.; Guillochon, James; Foley, Ryan J.

    2013-06-20

    Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

  14. The chemistry of molecular anions in circumstellar sources

    SciTech Connect

    Agúndez, Marcelino; Cernicharo, José; Guélin, Michel

    2015-01-22

    The detection of negatively charged molecules in the interstellar and circumstellar medium in the past four years has been one of the most impacting surprises in the area of molecular astrophysics. It has motivated the interest of astronomers, physicists, and chemists on the study of the spectroscopy, chemical kinetics, and prevalence of molecular anions in the different astronomical regions. Up to six different molecular anions have been discovered in space to date, the last one being the small ion CN{sup −}, which has been observed in the envelope of the carbon star IRC +10216 and which contrary to the other larger anions is not formed by electron attachment to CN, but through reactions of large carbon anions with nitrogen atoms. Here we briefly review the current status of our knowledge of the chemistry of molecular anions in space, with particular emphasis on the circumstellar source IRC +10216, which to date is the astronomical source harboring the largest variety of anions.

  15. Spectral Fingerprints of Habitability

    NASA Astrophysics Data System (ADS)

    Kaltenegger, L.; Selsis, F.

    2010-01-01

    The emerging field of extrasolar planet search has shown an extraordinary ability to combine research by astrophysics, chemistry, biology and geophysics into a new and exciting interdisciplinary approach to understand our place in the universe. Are there other worlds like ours? How can we characterize those planets and assess if they are habitable? After a decade rich in giant exoplanet detections, observation techniques have now reached the ability to find planets of less than 10 M_Earth (so called Super-Earths) that may potentially be habitable. The detection and characterization of Earth-like planet is approaching rapidly with dedicated space observatories already in operation (Corot) or in development phase (Kepler, James Webb Space Telescope, Extremely Large Telescope (ELT), Darwin/TPF). Space missions like CoRoT (CNES, Rouan et al. 1998) and Kepler (NASA, Borucki et al. 1997) will give us statistics on the number, size, period and orbital distance of planets, extending to terrestrial planets on the lower mass range end as a first step, while missions like Darwin/TPF are designed to characterize their atmospheres. In this chapter we discuss how we can read a planet's spectral fingerprint and characterize if it is potentially habitable. We discuss the first steps to detect a habitable planet and set biomarker detection in context in Section 1. In Section 2 we focus on biomarkers, their signatures at different wavelengths, abiotic sources and cryptic photosynthesis - using Earth as our primary example - the only habitable planet we know of so far. Section 3 concentrates on planets around different stars, and Section 4 summarizes the chapter.

  16. MAGNETIC SHIELDING OF EXOMOONS BEYOND THE CIRCUMPLANETARY HABITABLE EDGE

    SciTech Connect

    Heller, René; Zuluaga, Jorge I. E-mail: jzuluaga@fisica.udea.edu.co

    2013-10-20

    With most planets and planetary candidates detected in the stellar habitable zone (HZ) being super-Earths and gas giants rather than Earth-like planets, we naturally wonder if their moons could be habitable. The first detection of such an exomoon has now become feasible, and due to observational biases it will be at least twice as massive as Mars. However, formation models predict that moons can hardly be as massive as Earth. Hence, a giant planet's magnetosphere could be the only possibility for such a moon to be shielded from cosmic and stellar high-energy radiation. Yet, the planetary radiation belt could also have detrimental effects on exomoon habitability. Here we synthesize models for the evolution of the magnetic environment of giant planets with thresholds from the runaway greenhouse (RG) effect to assess the habitability of exomoons. For modest eccentricities, we find that satellites around Neptune-sized planets in the center of the HZ around K dwarf stars will either be in an RG state and not be habitable, or they will be in wide orbits where they will not be affected by the planetary magnetosphere. Saturn-like planets have stronger fields, and Jupiter-like planets could coat close-in habitable moons soon after formation. Moons at distances between about 5 and 20 planetary radii from a giant planet can be habitable from an illumination and tidal heating point of view, but still the planetary magnetosphere would critically influence their habitability.

  17. Observations of Circumstellar Thermochemical Equilibrium: The Case of Phosphorus

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Charnley, Steven B.

    2011-01-01

    We will present observations of phosphorus-bearing species in circumstellar envelopes, including carbon- and oxygen-rich shells 1. New models of thermochemical equilibrium chemistry have been developed to interpret, and constrained by these data. These calculations will also be presented and compared to the numerous P-bearing species already observed in evolved stars. Predictions for other viable species will be made for observations with Herschel and ALMA.

  18. Magnetic Field and Early Evolution of Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Yusuke

    2016-03-01

    The magnetic field plays a central role in the formation and evolution of circumstellar disks. The magnetic field connects the rapidly rotating central region with the outer envelope and extracts angular momentum from the central region during gravitational collapse of the cloud core. This process is known as magnetic braking. Both analytical and multidimensional simulations have shown that disk formation is strongly suppressed by magnetic braking in moderately magnetised cloud cores in the ideal magnetohydrodynamic limit. On the other hand, recent observations have provided growing evidence of a relatively large disk several tens of astronomical units in size existing in some Class 0 young stellar objects. This introduces a serious discrepancy between the theoretical study and observations. Various physical mechanisms have been proposed to solve the problem of catastrophic magnetic braking, such as misalignment between the magnetic field and the rotation axis, turbulence, and non-ideal effect. In this paper, we review the mechanism of magnetic braking, its effect on disk formation and early evolution, and the mechanisms that resolve the magnetic braking problem. In particular, we emphasise the importance of non-ideal effects. The combination of magnetic diffusion and thermal evolution during gravitational collapse provides a robust formation process for the circumstellar disk at the very early phase of protostar formation. The rotation induced by the Hall effect can supply a sufficient amount of angular momentum for typical circumstellar disks around T Tauri stars. By examining the combination of the suggested mechanisms, we conclude that the circumstellar disks commonly form in the very early phase of protostar formation.

  19. Stability of habitable exomoons of circumbinary planets

    NASA Astrophysics Data System (ADS)

    Satyal, Suman; Haghighipour, Nader; Quarles, Billy

    2015-12-01

    Among the currently known Kepler circumbinary planets, three, namely Kepler-453b, Kepler-16b, and Kepler-47c are in the binary habitable zone (HZ). Given the large sizes of these planets, it is unlikely that they would be habitable. However, similar to the giant planets in our solar system, these planets may have large moons, which orbit their host planets while in the HZ. These exomoons, if exist, present viable candidates for habitability. As a condition for habitability, the planet-moon system has to maintain its orbital stability for long time. Usually, the empirical formula by Holeman & Wiegert (1999) is used as a measure of orbital stability in circumbinary systems. However, this formula was obtained by assuming planets to be test particles and therefore does not include possible perturbation of the planet on the binary. In this work, we present results of more realistic calculations of stability of circumbinary planets where the interactions between planets and their central binaries are taken into account. We map the region of stability, which in this case will be specific to each system, and determine the range of the orbital parameters of the moons for which their orbits will be long-term stable.

  20. Habitable planets with high obliquities.

    PubMed

    Williams, D M; Kasting, J F

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.

  1. Habitable planets with high obliquities.

    PubMed

    Williams, D M; Kasting, J F

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations. PMID:11541242

  2. Chemistry and distribution of daughter species in the circumstellar envelopes of O-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Millar, Tom J.; Heays, Alan N.; Walsh, Catherine; van Dishoeck, Ewine F.; Cherchneff, Isabelle

    2016-03-01

    Context. Thanks to the advent of Herschel and ALMA, new high-quality observations of molecules present in the circumstellar envelopes of asymptotic giant branch (AGB) stars are being reported that reveal large differences from the existing chemical models. New molecular data and more comprehensive models of the chemistry in circumstellar envelopes are now available. Aims: The aims are to determine and study the important formation and destruction pathways in the envelopes of O-rich AGB stars and to provide more reliable predictions of abundances, column densities, and radial distributions for potentially detectable species with physical conditions applicable to the envelope surrounding IK Tau. Methods: We use a large gas-phase chemical model of an AGB envelope including the effects of CO and N2 self-shielding in a spherical geometry and a newly compiled list of inner-circumstellar envelope parent species derived from detailed modeling and observations. We trace the dominant chemistry in the expanding envelope and investigate the chemistry as a probe for the physics of the AGB phase by studying variations of abundances with mass-loss rates and expansion velocities. Results: We find a pattern of daughter molecules forming from the photodissociation products of parent species with contributions from ion-neutral abstraction and dissociative recombination. The chemistry in the outer zones differs from that in traditional PDRs in that photoionization of daughter species plays a significant role. With the proper treatment of self-shielding, the N → N2 and C+→ CO transitions are shifted outward by factors of 7 and 2, respectively, compared with earlier models. An upper limit on the abundance of CH4 as a parent species of (≲2.5 × 10-6 with respect to H2) is found for IK Tau, and several potentially observable molecules with relatively simple chemical links to other parent species are determined. The assumed stellar mass-loss rate, in particular, has an impact on the

  3. Adult Reading Habits and Patterns.

    ERIC Educational Resources Information Center

    Scales, Alice M.; Rhee, Ock

    2001-01-01

    Examines the reading habits and patterns of White and Asian American adults. Hypothesizes that when grouped by demographic variables, participants' responses about their reading habits and patterns would not differ. Concludes that gender, race, and education were predictors for participants' reading habits; education and race were predictors for…

  4. Effects of extreme obliquity variations on the habitability of exoplanets.

    PubMed

    Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S

    2014-04-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  5. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    NASA Technical Reports Server (NTRS)

    Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.

    2014-01-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  6. HABITABILITY OF EXOMOONS AT THE HILL OR TIDAL LOCKING RADIUS

    SciTech Connect

    Hinkel, Natalie R.; Kane, Stephen R.

    2013-09-01

    Moons orbiting extrasolar planets are the next class of object to be observed and characterized for possible habitability. Like the host-planets to their host-star, exomoons have a limiting radius at which they may be gravitationally bound, or the Hill radius. In addition, they also have a distance at which they will become tidally locked and therefore in synchronous rotation with the planet. We have examined the flux phase profile of a simulated, hypothetical moon orbiting at a distant radius around the confirmed exoplanets {mu} Ara b, HD 28185 b, BD +14 4559 b, and HD 73534 b. The irradiated flux on a moon at its furthest, stable distance from the planet achieves its largest flux gradient, which places a limit on the flux ranges expected for subsequent (observed) moons closer in orbit to the planet. We have also analyzed the effect of planetary eccentricity on the flux on the moon, examining planets that traverse the habitable zone either fully or partially during their orbit. Looking solely at the stellar contributions, we find that moons around planets that are totally within the habitable zone experience thermal equilibrium temperatures above the runaway greenhouse limit, requiring a small heat redistribution efficiency. In contrast, exomoons orbiting planets that only spend a fraction of their time within the habitable zone require a heat redistribution efficiency near 100% in order to achieve temperatures suitable for habitability. This means that a planet does not need to spend its entire orbit within the habitable zone in order for the exomoon to be habitable. Because the applied systems comprise giant planets around bright stars, we believe that the transit detection method is most likely to yield an exomoon discovery.

  7. Effects of extreme obliquity variations on the habitability of exoplanets.

    PubMed

    Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S

    2014-04-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes. PMID:24611714

  8. Trajectories of Martian Habitability

    PubMed Central

    2014-01-01

    Abstract Beginning from two plausible starting points—an uninhabited or inhabited Mars—this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-scale life extinction occurs. By identifying different trajectories of habitability, corresponding hypotheses can be described that allow for the various trajectories to be disentangled and ultimately a determination of which trajectory Mars has taken and the changing relative abundance of its constituent environments. Key Words: Mars—Habitability—Liquid water—Planetary science. Astrobiology 14, 182–203. PMID:24506485

  9. Trajectories of martian habitability.

    PubMed

    Cockell, Charles S

    2014-02-01

    Beginning from two plausible starting points-an uninhabited or inhabited Mars-this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-scale life extinction occurs. By identifying different trajectories of habitability, corresponding hypotheses can be described that allow for the various trajectories to be disentangled and ultimately a determination of which trajectory Mars has taken and the changing relative abundance of its constituent environments.

  10. Highest permanent human habitation.

    PubMed

    West, John B

    2002-01-01

    The aim of this analysis was to determine the altitude of the highest permanent human habitation in the hope that this will throw some light on what determines the highest altitude that a community can tolerate indefinitely. A number of places where people have lived at very high altitudes for long periods of time are reviewed. Individuals have lived for as long as 2 yr at an altitude of 5950 m, and there was a miner's camp at 5300 m for several years. The highest permanently inhabited town in the world at the present time appears to be La Rinconada, a mining village of over 7000 people in southern Peru at an altitude of up to 5100 m, which has been in existence for over 40 yr. The altitude of the highest permanent human habitation is determined partly by economic factors, rather than solely by human tolerance to hypoxia. PMID:12631426

  11. [Dietary habit and longevity].

    PubMed

    Shimokata, Hiroshi

    2007-03-01

    Obesity is one of the most important causes of life-style related diseases, and recently its pathophysiology is emphasized as metabolic syndrome. Preventing obesity by good dietary habit is a key to achieve healthy longevity. However, a lean body is not always good for health. There is an ideal body size for each person. This ideal body size differs according to age. Especially in the elderly, to prevent weight loss is more important for maintaining health and longevity than to be obese. Malnutrition is a critical factor of diseases and death in the elderly. Problems in nutritional status, and dietary intake, and methods of nutritional assessment in the elderly are discussed. Ideal body size for health and longevity, the relationship of body fat distribution and intra-abdominal fat accumulation health, and the effects of rapid weight change are also discussed to clarify the association of dietary habit and nutrition with longevity.

  12. Trajectories of martian habitability.

    PubMed

    Cockell, Charles S

    2014-02-01

    Beginning from two plausible starting points-an uninhabited or inhabited Mars-this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-scale life extinction occurs. By identifying different trajectories of habitability, corresponding hypotheses can be described that allow for the various trajectories to be disentangled and ultimately a determination of which trajectory Mars has taken and the changing relative abundance of its constituent environments. PMID:24506485

  13. Effective Physics Study Habits

    NASA Astrophysics Data System (ADS)

    Zettili, Nouredine

    2011-04-01

    We discuss the methods of efficient study habits and how they can be used by students to help them improve learning physics. In particular, we deal with ideas pertaining to the most effective techniques needed to help students improve their physics study skills. These ideas were developed as part of Project IMPACTSEED (IMproving Physics And Chemistry Teaching in SEcondary Education), an outreach grant funded by the Alabama Commission on Higher Education. This project is motivated by a major pressing local need: A large number of high school physics teachers teach out of field. In the presentation, focus on topics such as the skills of how to develop long term memory, how to improve concentration power, how to take class notes, how to prepare for and take exams, how to study scientific subjects such as physics. We argue that the student who conscientiously uses the methods of efficient study habits will be able to achieve higher results than the student who does not; moreover, a student equipped with the proper study skills will spend much less time to learn a subject than a student who has no good study habits. The underlying issue here is not the quantity of time allocated to the study efforts by the student, but the efficiency and quality of actions. This work is supported by the Alabama Commission on Higher Education as part of IMPACTSEED grant.

  14. Sleep habits and diabetes.

    PubMed

    Larcher, S; Benhamou, P-Y; Pépin, J-L; Borel, A-L

    2015-09-01

    Sleep duration has been constantly decreasing over the past 50 years. Short sleep duration, sleep quality and, recently, long sleep duration have all been linked to poor health outcomes, increasing the risk of developing metabolic diseases and cardiovascular events. Beyond the duration of sleep, the timing of sleep may also have consequences. Having a tendency to go early to bed (early chronotype) compared with the habit of going to bed later (late chronotype) can interfere considerably with social schedules (school, work). Eventually, a misalignment arises in sleep timing between work days and free days that has been described as 'social jet lag'. The present review looks at how different sleep habits can interfere with diabetes, excluding sleep breathing disorders, and successively looks at the effects of sleep duration, chronotype and social jet lag on the risk of developing diabetes as well as on the metabolic control of both type 1 and type 2 diabetes. Finally, this review addresses the current state of knowledge of physiological mechanisms that could be linking sleep habits and metabolic health.

  15. Modeling collisions in circumstellar debris disks

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika

    2015-10-01

    resonances near the chaotic zone. I investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. I also find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ˜1--10MJup. I apply my model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and beta Pictoris. Finally, to show how SMACK can be used to analyze a single debris disk in detail, I present a new model of the beta Pictoris disk and planet system that, for the first time, combines simulations of the colliding planetesimals and the dynamics of the dust grains, allowing me to model features and asymmetries in both submillimeter and scattered light images of the disk. I combine a 100,000 superparticle SMACK simulation with N-body integrations of the dust produced by the simulated collisions. I find that secular perturbations of the planet's measured inclination and eccentricity can explain the observed warp and planetesimal ring, while collisions between planetesimals shape the disk by eroding close-in material. The complex 3D structure of the disk due to the perturbations from the planet creates an azimuthally asymmetric spatial distribution of collisions, which could contribute to the observed azimuthal clump of CO gas seen with ALMA. My simulations of the small dust grains produced by collisions demonstrate that the "birth ring" approximation for beta Pictoris fails to account for the ˜54% of dust mass produced outside of the planetesimal ring. I also reproduce the gross morphology of high-resolution scattered light images of the disk, including the two-disk "x"-pattern seen in scattered light, which has not been replicated by previous dust dynamics models.

  16. HABITABLE CLIMATES: THE INFLUENCE OF ECCENTRICITY

    SciTech Connect

    Dressing, Courtney D.; Spiegel, David S.; Scharf, Caleb A.; Menou, Kristen; Raymond, Sean N. E-mail: dsp@astro.princeton.ed E-mail: caleb@astro.columbia.ed

    2010-10-01

    In the outer regions of the habitable zone, the risk of transitioning into a globally frozen 'snowball' state poses a threat to the habitability of planets with the capacity to host water-based life. Here, we use a one-dimensional energy balance climate model (EBM) to examine how obliquity, spin rate, orbital eccentricity, and the fraction of the surface covered by ocean might influence the onset of such a snowball state. For an exoplanet, these parameters may be strikingly different from the values observed for Earth. Since, for a constant semimajor axis, the annual mean stellar irradiation scales with (1 - e {sup 2}){sup -1/2}, one might expect the greatest habitable semimajor axis (for fixed atmospheric composition) to scale as (1 - e {sup 2}){sup -1/4}. We find that this standard simple ansatz provides a reasonable lower bound on the outer boundary of the habitable zone, but the influence of both obliquity and ocean fraction can be profound in the context of planets on eccentric orbits. For planets with eccentricity 0.5, for instance, our EBM suggests that the greatest habitable semimajor axis can vary by more than 0.8 AU (78%) depending on obliquity, with higher obliquity worlds generally more stable against snowball transitions. One might also expect that the long winter at an eccentric planet's apoastron would render it more susceptible to global freezing. Our models suggest that this is not a significant risk for Earth-like planets around Sun-like stars, as considered here, since such planets are buffered by the thermal inertia provided by oceans covering at least 10% of their surface. Since planets on eccentric orbits spend much of their year particularly far from the star, such worlds might turnout to be especially good targets for direct observations with missions such as TPF-Darwin. Nevertheless, the extreme temperature variations achieved on highly eccentric exo-Earths raise questions about the adaptability of life to marginally or transiently

  17. The Velocity Structure of SN 1987A's Outer Circumstellar Envelope

    NASA Astrophysics Data System (ADS)

    Crotts, A. P. S.; Heathcote, S. R.

    1997-12-01

    We present high-resolution optical spectroscopy, (obtained with the CTIO 4-meter/echelle spectrograph over many epochs between 1989 and 1997) of the circumstellar nebula of SN 1987A, including the outer rings (within 3 arcsec of the SN), the inner (equatorial) ring, and fainter features at larger radii never studied before spectroscopically. We report velocity displacements for portions of the outer rings, up to 26 km s(-1) with respect the SN centroid velocity, with blueshifted components in the location of the southern outer ring and the redshifted portions of the northern outer ring. The largest shifts are near the SN, as predicted by a model in which the outer rings are the crowns of an expanding, bipolar nebula with the inner ring at its waist. We also confirm that the inner ring shows a velocity full-width of about 13 km s(-1) , which, along with the geometry of the rings and our outer ring velocity measurements, allows us to estimate a characteristic timescale of about 20,000 y for each of the three rings, implying that all are coeval. This contrasts with measurements by others of compositional ratios in the inner versus outer rings indicating that they were, perhaps, ejected at different times from the progenitor's star's outer envelope. Additionally, we measure the velocity of low surface brightness features at larger radii indicating that circumstellar material even farther from the SN was ejected up to 400,000 y before the explosion. Finally, we note the presence of transient emission features within the circumstellar nebula and describe their behaviour, and consider what implications our observations may have for the coming transformation of this nebula into Supernova Remnant 1987A.

  18. Mean gas opacity for circumstellar environments and equilibrium temperature degeneracy

    NASA Astrophysics Data System (ADS)

    Malygin, M. G.; Kuiper, R.; Klahr, H.; Dullemond, C. P.; Henning, Th.

    2014-08-01

    Context. In a molecular cloud dust opacity typically dominates over gas opacity, yet in the vicinities of forming stars dust is depleted, and gas is the sole provider of opacity. In the optically thin circumstellar environments the radiation temperature cannot be assumed to be equal to the gas temperature, hence the two-temperature Planck means are necessary to calculate the radiative equilibrium. Aims: By using the two-temperature mean opacity one does obtain the proper equilibrium gas temperature in a circumstellar environment, which is in a chemical equilibrium. A careful consideration of a radiative transfer problem reveals that the equilibrium temperature solution can be degenerate in an optically thin gaseous environment. Methods: We compute mean gas opacities based on the publicly available code DFSYNTHE by Kurucz and Castelli. We performed the calculations assuming local thermodynamic equilibrium and an ideal gas equation of state. The values were derived by direct integration of the high-resolution opacity spectrum. Results: We produced two sets of gas opacity tables: Rosseland means and two-temperature Planck means. For three metallicities [Me/H] = 0.0, ± 0.3 we covered the parameter range 3.48 ≤ log Trad [K] ≤ 4.48 in radiation temperature, 2.8 ≤ log Tgas [K] ≤ 6.0 in gas temperature, and -10 ≤ log P [dyn cm-2] ≤ 6 in gas pressure. We show that in the optically thin circumstellar environment for a given stellar radiation field and local gas density there are several equilibrium gas temperatures possible. Conclusions: We conclude that, in general, equilibrium gas temperature cannot be determined without treating the temperature evolution. The opacity tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A91 as well as via http://www.mpia.de/~malygin

  19. Cepheids at high angular resolution: circumstellar envelope and pulsation

    NASA Astrophysics Data System (ADS)

    Gallenne, Alexandre

    2011-12-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out a statistical study of the speckle noise and inspect a possible asymmetry. Secondly, I analysed VISIR data to study the spectral energy distribution of a sample of Cepheids. These diffraction-limited images enabled me to carry out an accurate photometry in the N band and to detect an IR excess linked to the presence of a circumstellar component. On the other hand, applying a Fourier analysis I showed that some components are resolved. I then explored the K' band with the recombination instrument FLUOR for some bright Cepheids. Thanks to new set of data of Y Oph, I improved the study of its circumstellar envelope, using a ring-like model for the CSE. For two other Cepheids, U Vul and S Sge, I applied the interferometric Baade-Wesselink method in order to estimate their distance.

  20. Beyond the principle of plentitude: a review of terrestrial planet habitability.

    PubMed

    Gaidos, E; Deschenes, B; Dundon, L; Fagan, K; Menviel-Hessler, L; Moskovitz, N; Workman, M

    2005-04-01

    We review recent work that directly or indirectly addresses the habitability of terrestrial (rocky) planets like the Earth. Habitability has been traditionally defined in terms of an orbital semimajor axis within a range known as the habitable zone, but it is also well known that the habitability of Earth is due to many other astrophysical, geological, and geochemical factors. We focus this review on (1) recent refinements to habitable zone calculations; (2) the formation and orbital stability of terrestrial planets; (3) the tempo and mode of geologic activity (e.g., plate tectonics) on terrestrial planets; (4) the delivery of water to terrestrial planets in the habitable zone; and (5) the acquisition and loss of terrestrial planet carbon and nitrogen, elements that constitute important atmospheric gases responsible for habitable conditions on Earth's surface as well as being the building blocks of the biosphere itself. Finally, we consider recent work on evidence for the earliest habitable environments and the appearance of life itself on our planet. Such evidence provides us with an important, if nominal, calibration point for our search for other habitable worlds.

  1. POST-CAPTURE EVOLUTION OF POTENTIALLY HABITABLE EXOMOONS

    SciTech Connect

    Porter, Simon B.; Grundy, William M.

    2011-07-20

    The satellites of extrasolar planets (exomoons) have been recently proposed as astrobiological targets. Since giant planets in the habitable zone are thought to have migrated there, it is possible that they may have captured a former terrestrial planet or planetesimal. We therefore attempt to model the dynamical evolution of a terrestrial planet captured into orbit around a giant planet in the habitable zone of a star. We find that approximately half of loose elliptical orbits result in stable circular orbits over timescales of less than a few million years. We also find that those orbits are mostly at low inclination, but have no prograde/retrograde preference. In addition, we calculate the transit timing and duration variations for the resulting systems, and find that potentially habitable Earth-mass exomoons should be detectable.

  2. Delivery of Volatiles to Habitable Planets in Extrasolar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Chambers, John E.; Kress, Monika E.; Bell, K. Robbins; Cash, Michele; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The Earth can support life because: (1) its orbit lies in the Sun's habitable zone', and (2) it contains enough volatile material (e.g. water and organics) for life to flourish. However, it seems likely that the Earth was drier when it formed because it accreted in a part of the Sun's protoplanetary nebula that was too hot for volatiles to condense. If this is correct, water and organics must have been delivered to the habitable zone, after dissipation of the solar nebula, from a 'wet zone' in the asteroid belt or the outer solar system, where the nebula was cool enough for volatiles to condense. Material from the wet zone would have been delivered to the Earth by Jupiter and Saturn. Gravitational perturbations from these giant planets made much of the wet zone unstable, scattering volatile-rich planetesimals and protoplanets across the Solar System. Some of these objects ultimately collided with the inner Planets which themselves lie in a stable part of the Solar System. Giant planets are now being discovered orbiting other sunlike stars. To date, these planets have orbits and masses very different from Jupiter and Saturn, such that few if any of these systems is likely to have terrestrial planets in the star's habitable zone. However, new discoveries are anticipated due to improved detector sensitivity and the increase in the timespan of observations. Here we present numerical experiments examining the range of giant-planet characteristics that: (1) allow stable terrestrial Planets to exist in a star's habitable zone, and (2) make a large part of the star's wet zone weakly unstable, thus delivering volatiles to the terrestrial planets over an extended period of time after the dissipation of the solar nebula.

  3. Evidence for dust grain growth in young circumstellar disks.

    PubMed

    Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J

    2001-06-01

    Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.

  4. Studies of Interstellar and Circumstellar Magnetic Field with Aligned Atoms

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Yan, H.

    2004-12-01

    Population of levels of the hyperfine and fine split ground state of an atom is affected by radiative transitions induced by anisotropic radiation flux. Such aligned atoms precess in the external magnetic field and this affects properties of polarized radiation arising from both scattering and absorption by atoms. As the result the degree of light polarization depends on the direction of the magnetic field. This provides a new tool for studies of astrophysical magnetic fields using optical and UV polarimetry. We provide calculations for several atoms and ions that can be used to study magnetic fields in interplanetary medium, interstellar medius, circumstellar regions and quasars.

  5. Detection of circumstellar gas associated with GG Tauri

    NASA Technical Reports Server (NTRS)

    Skrutskie, M. F.; Snell, R. L.; Strom, K. M.; Strom, S. E.; Edwards, S.; Fukui, Y.; Mizuno, A.; Hayashi, M.; Ohashi, N.

    1993-01-01

    Double-peaked (C-12)O (1-0) emission centered on the young T Tauri star GG Tau possesses a line profile which may be modeled on the assumption that CO emission arises in an extended circumstellar disk. While bounds on the observed gas mass can be estimated on this basis, it is suggested that a large amount of mass could lie within a small and optically thick region, escaping detection due to beam-dilution effects. In addition, CO may no longer accurately trace the gas mass due to its dissociation, or freezing into grains, or due to the locking-up of carbon into more complex molecules.

  6. Photochemistry and molecular ions in oxygen-rich circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Mamon, G. A.; Glassgold, A. E.; Omont, A.

    1987-01-01

    A theory for the ionization of the circumstellar envelopes around O-rich red giants is developed from the photochemical model. The main source of ionization is photoionization of H2O, OH, and C by the interstellar UV radiation field, supplemented by cosmic-ray ionization of hydrogen. Significant amounts of H3O(+) and HCO(+) are produced, with peak abundances of about 10 to the -7th at intermediate distances from the star. Although H3O(+) may be difficult to detect with current instrumentation, HCO(+) is probably detectable in nearby O-rich envelopes with large millimeter-wave telescopes.

  7. Computer codes for evaluation of control room habitability (HABIT)

    SciTech Connect

    Stage, S.A.

    1996-06-01

    This report describes the Computer Codes for Evaluation of Control Room Habitability (HABIT). HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. Given information about the design of a nuclear power plant, a scenario for the release of toxic chemicals or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel. HABIT is an integrated package of several programs that previously needed to be run separately and required considerable user intervention. This report discusses the theoretical basis and physical assumptions made by each of the modules in HABIT and gives detailed information about the data entry windows. Sample runs are given for each of the modules. A brief section of programming notes is included. A set of computer disks will accompany this report if the report is ordered from the Energy Science and Technology Software Center. The disks contain the files needed to run HABIT on a personal computer running DOS. Source codes for the various HABIT routines are on the disks. Also included are input and output files for three demonstration runs.

  8. An energetic stellar outburst accompanied by circumstellar light echoes.

    PubMed

    Bond, Howard E; Henden, Arne; Levay, Zoltan G; Panagia, Nino; Sparks, William B; Starrfield, Sumner; Wagner, R Mark; Corradi, R L M; Munari, U

    2003-03-27

    Some classes of stars, including novae and supernovae, undergo explosive outbursts that eject stellar material into space. In 2002, the previously unknown variable star V838 Monocerotis brightened suddenly by a factor of approximately 10(4). Unlike a supernova or nova, it did not explosively eject its outer layers; rather, it simply expanded to become a cool supergiant with a moderate-velocity stellar wind. Superluminal light echoes were discovered as light from the outburst propagated into the surrounding, pre-existing circumstellar dust. Here we report high-resolution imaging and polarimetry of those light echoes, which allow us to set direct geometric distance limits to the object. At a distance of >6 kpc, V838 Mon at its maximum brightness was temporarily the brightest star in the Milky Way. The presence of the circumstellar dust implies that previous eruptions have occurred, and spectra show it to be a binary system. When combined with the high luminosity and unusual outburst behaviour, these characteristics indicate that V838 Mon represents a hitherto unknown type of stellar outburst, for which we have no completely satisfactory physical explanation. PMID:12660776

  9. Far-Infrared Water Line Emissions from Circumstellar Outflows

    NASA Technical Reports Server (NTRS)

    Chen, Wesley; Neufeld, David A.

    1995-01-01

    We have modeled the far-infrared water line emission expected from circumstellar outflows from oxygen-rich late-type stars, as a function of the mass-loss rate and the terminal outflow velocity. For each mass-loss rate and terminal outflow velocity considered, we computed self-consistently the gas density, temperature, outflow velocity, and water abundance as a function of distance from the star. We then used an escape probability method to solve for the equilibrium level populations of 80 rotational states of water and thereby obtained predictions for the luminosity of a large number of far-infrared rotational transitions of water. In common with previous models, our model predicts that water will be copiously produced in the warm circumstellar gas and that water rotational emission will dominate the radiative cooling. However, our use of a realistic radiative cooling function for water leads to a lower gas temperature than that predicted in previous models. Our predictions for the far-infrared water line luminosities are consequently significantly smaller than those obtained in previous studies. Observations to be carried out by the Infrared Space Observatory will provide a crucial test of the models presented here.

  10. A Radiative Instability in Post-shock-cooling Circumstellar Gas

    NASA Astrophysics Data System (ADS)

    Schirrmacher, V.; Woitke, P.; Sedlmayr, E.

    Investigations on non-LTE radiative heating and cooling processes behind shock waves in circumstellar environments have revealed the existence of a radiative/thermal instability in the post-shock cooling gas. The results have been obtained in the framework of spherical symmetric, hydrodynamical model calculations for dust-enshrouded circumstellar envelopes (CSEs) of Asymptotic Giant Branch (AGB) stars, which combine a time-dependent treatment of dust formation with grey radiative transfer and tabulated non-LTE state functions. The instability occurs in a situation, where thin and hot atomic gas behind a shock wave cools down to the molecular domain where it remains in pressure equilibrium with its environment. Radiative cooling in this case causes a temperature decrease and a density increase which both favour molecule formation. The molecules, in return, accelerate the radiative cooling. Thereby, a self-amplifying feedback loop is established, which in the model leads to the amplification of small density fluctuations in the post-shock cooling region to large density inhomogeneities of more than one order of magnitude. This radiative/thermal instability is not restricted to one spatial dimension (as in the model) and is possibly capable to generate a strongly non-homogeneous density distribution around pulsating stars, which can, for example lead to dust cloud formation. In this presentation, we discuss the parameter range for this instability as well as the underlying thermodynamical concept of the model calculations.

  11. Attenuation of supersoft X-ray sources by circumstellar material

    NASA Astrophysics Data System (ADS)

    Nielsen, M. T. B.; Gilfanov, M.

    2015-11-01

    Recent studies have suggested the possibility of significantly obscuring supersoft X-ray sources in relatively modest amounts of local matter lost from the binaries themselves. If correct, then this would have explained the paucity of observed supersoft X-ray sources and would have significance for the search for single-degenerate Type Ia supernova progenitors. We point out that earlier studies of circumbinary obscuration ignored photoionizations of the gas by the emission from the supersoft X-ray source. We revisit the problem using a full, self-consistent calculation of the ionization state of the circumbinary material photoionized by the radiation of the central source. Our results show that the circumstellar mass-loss rates required for obscuration of supersoft X-ray sources is about an order of magnitude larger than those reported in earlier studies, for comparable model parameters. While this does not entirely rule out the possibility of circumstellar material obscuring supersoft X-ray sources, it makes it unlikely that this effect alone can account for the majority of the missing supersoft X-ray sources. We discuss the observational appearance of hypothetical obscured nuclear-burning white dwarfs and show that they have signatures making them distinct from photoionized nebulae around supersoft X-ray sources imbedded in the low-density interstellar medium.

  12. Probing Pre-Supernova Mass Loss With Circumstellar Dust Shells

    NASA Astrophysics Data System (ADS)

    Fox, Ori; Filippenko, Alex; Skrutskie, Mike; van Dyk, Schuyler; Kelly, Pat

    2013-10-01

    Late-time (>100 day) mid-infrared (mid-IR) observations of supernovae (SNe) offer a valuable probe of the progenitor mass-loss. Already, this technique has been exemplified with the Type IIn subclass, which often have large, dusty, pre-existing shells formed in pre-SN eruptions. While other SN subclasses are generally thought of having relatively low density circumstellar environments, a growing number of objects in other subclasses now show evidence for significant pre-SN mass loss and similar mid-IR characteristics. Long after the SN radioactive tail disappears, warm dust can stay bright at mid-IR wavelengths due to alternative heating mechanisms, such as shocks. The success of Spitzer archival studies has already been highlighted by the work of several members of this team. Here we propose a SNAPSHOT survey of a well-studied and high-profile SN sample, extending over a range of subclasses, and including both recent and historical events with evidence of a dense CSM and/or dust. This program will (a) discover new SNe with warm dust and (b) monitor the evolution of warm dust in previously detected SNe. Expanding upon our previous mid-IR work on SNe IIn, these observations will probe the similarities in and differences between the subclasses' circumstellar environments, pre-SN mass-loss, and ultimately, the progenitors themselves.

  13. Probing Pre-Supernova Mass Loss With Circumstellar Dust Shells

    NASA Astrophysics Data System (ADS)

    Fox, Ori; Filippenko, Alex; Skrutskie, Mike; van Dyk, Schuyler; Kelly, Pat

    2014-12-01

    Late-time (>100 day) mid-infrared (mid-IR) observations of supernovae (SNe) offer a valuable probe of the progenitor system's mass-loss. Already, this technique has been demonstrated with the Type IIn subclass, which often have large, dusty, pre-existing shells formed in pre-SN eruptions. While other SN subclasses are thought of having relatively low density circumstellar environments, a growing number of objects in other subclasses now show evidence for significant pre-SN mass loss and similar mid-IR characteristics. Long after the SN radioactive tail fades, warm dust can stay bright at mid-IR wavelengths due to alternative heating mechanisms, such as shocks. Here we propose a SNAPSHOT survey of a well-studied and high-profile SN sample, extending over a range of subclasses, including both recent and historical events with evidence of a dense CSM and/or dust. This program will (a) discover new SNe with warm dust and (b) monitor the evolution of warm dust in previously detected SNe. Harnessing the success of our previous Spitzer programs, these observations will expand upon that work by probing the similarities in and differences between the subclasses' circumstellar environments, pre-SN mass-loss, and ultimately, the progenitors themselves.

  14. An energetic stellar outburst accompanied by circumstellar light echoes.

    PubMed

    Bond, Howard E; Henden, Arne; Levay, Zoltan G; Panagia, Nino; Sparks, William B; Starrfield, Sumner; Wagner, R Mark; Corradi, R L M; Munari, U

    2003-03-27

    Some classes of stars, including novae and supernovae, undergo explosive outbursts that eject stellar material into space. In 2002, the previously unknown variable star V838 Monocerotis brightened suddenly by a factor of approximately 10(4). Unlike a supernova or nova, it did not explosively eject its outer layers; rather, it simply expanded to become a cool supergiant with a moderate-velocity stellar wind. Superluminal light echoes were discovered as light from the outburst propagated into the surrounding, pre-existing circumstellar dust. Here we report high-resolution imaging and polarimetry of those light echoes, which allow us to set direct geometric distance limits to the object. At a distance of >6 kpc, V838 Mon at its maximum brightness was temporarily the brightest star in the Milky Way. The presence of the circumstellar dust implies that previous eruptions have occurred, and spectra show it to be a binary system. When combined with the high luminosity and unusual outburst behaviour, these characteristics indicate that V838 Mon represents a hitherto unknown type of stellar outburst, for which we have no completely satisfactory physical explanation.

  15. Are young supernova remnants interacting with circumstellar gas

    SciTech Connect

    Chevalier, R.A.

    1982-08-15

    The young remnants of galactic Type I supernovae (SN 1006, SN 1572, and SN 1604) appear to be interacting with moderately dense gas (n/sub O/> or =0.1 cm/sup -3/). If the gas in the ambient interstellar medium, the observations suggest that gas of this density is fairly pervasive. If the gas is circumstellar, there are important implications for the progenitors of Type I supernovae. A plausible density distribution for circumstellar gas is rhoinfinityr/sup -2/. The expansion of a supernova into such a medium is examined and is compared with expansion into a uniform medium. The two cases can be distinguished on the basis of their density profiles and their rates of expansion. Currently available data factor the hypothesis of expansion in a uniform medium for all three Type I remnants; the evidence is the strongest for SN 1572 and the weakest for SN 1604. Further X-ray and radio observations of the galactic remnants and of extragalactic Type I supernovae should serve to test this hypothesis.

  16. Archival legacy investigations of circumstellar environments: overview and first results

    NASA Astrophysics Data System (ADS)

    Choquet, Élodie; Pueyo, Laurent; Hagan, J. Brendan; Gofas-Salas, Elena; Rajan, Abhijith; Chen, Christine; Perrin, Marshall D.; Debes, John; Golimowski, David; Hines, Dean C.; N'Diaye, Mamadou; Schneider, Glenn; Mawet, Dimitri; Marois, Christian; Soummer, Rémi

    2014-08-01

    We are currently conducting a comprehensive and consistent re-processing of archival HST-NICMOS coronagraphic surveys using advanced PSF subtraction methods, entitled the Archival Legacy Investigations of Circumstellar Environments program (ALICE, HST/AR 12652). This virtual campaign of about 400 targets has already produced numerous new detections of previously unidentified point sources and circumstellar structures. We present five newly spatially resolved debris disks revealed in scattered light by our analysis of the archival data. These images provide new views of material around young solar-type stars at ages corresponding to the period of terrestrial planet formation in our solar system. We have also detected several new candidate substellar companions, for which there are ongoing followup campaigns (HST/WFC3 and VLT/SINFONI in ADI mode). Since the methods developed as part of ALICE are directly applicable to future missions (JWST, AFTA coronagraph) we emphasize the importance of devising optimal PSF subtraction methods for upcoming coronagraphic imaging missions. We describe efforts in defining direct imaging high-level science products (HLSP) standards that can be applicable to other coronagraphic campaigns, including ground-based (e.g., Gemini Planet Imager), and future space instruments (e.g., JWST). ALICE will deliver a first release of HLSPs to the community through the MAST archive at STScI in 2014.

  17. Planetary habitability: lessons learned from terrestrial analogues

    NASA Astrophysics Data System (ADS)

    Preston, Louisa J.; Dartnell, Lewis R.

    2014-01-01

    Terrestrial analogue studies underpin almost all planetary missions and their use is essential in the exploration of our Solar system and in assessing the habitability of other worlds. Their value relies on the similarity of the analogue to its target, either in terms of their mineralogical or geochemical context, or current physical or chemical environmental conditions. Such analogue sites offer critical ground-truthing for astrobiological studies on the habitability of different environmental parameter sets, the biological mechanisms for survival in extreme environments and the preservation potential and detectability of biosignatures. The 33 analogue sites discussed in this review have been selected on the basis of their congruence to particular extraterrestrial locations. Terrestrial field sites that have been used most often in the literature, as well as some lesser known ones which require greater study, are incorporated to inform on the astrobiological potential of Venus, Mars, Europa, Enceladus and Titan. For example, the possibility of an aerial habitable zone on Venus has been hypothesized based on studies of life at high-altitudes in the terrestrial atmosphere. We also demonstrate why many different terrestrial analogue sites are required to satisfactorily assess the habitability of the changing environmental conditions throughout Martian history, and recommend particular sites for different epochs or potential niches. Finally, habitable zones within the aqueous environments of the icy moons of Europa and Enceladus and potentially in the hydrocarbon lakes of Titan are discussed and suitable analogue sites proposed. It is clear from this review that a number of terrestrial analogue sites can be applied to multiple planetary bodies, thereby increasing their value for astrobiological exploration. For each analogue site considered here, we summarize the pertinent physiochemical environmental features they offer and critically assess the fidelity with which

  18. C/O: Effects on Habitability of Stellar Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Johnson, Torrence V.; Sevin Peckmezci, Gül; Mousis, Olivier; Lunine, Jonathan I.; Madhusudhan, Nikku

    2015-11-01

    We assess how differences in the composition of exoplanet host stars might affect the availability of water in their systems, particularly the role of carbon and oxygen abundances. Water, one of the key chemical ingredients for habitability, may be in short supply in carbon-rich, oxygen-poor systems even if planets exist in the ‘habitable zone’. For the solar system, C/O = 0.55 is particularly important in determining the refractory (silicate and metal) to volatile ice ratio expected in material condensed beyond the snow line (Gaidos E. J. Icarus 145, 637, 2000; Wong M. H. et al. in Oxygen in the Solar System, G.J. MacPherson, Ed., 2008). Our analysis of published compositions for a set of exoplanet host stars (Johnson T. V. et al. ApJ. 757(2), 192, 2012) showed that the amount of condensed water ice in those systems might range from as much as 50% by mass for sub-solar C/O = 0.35 to less than a few percent for super-solar C/O = 0.7. A recent analysis using similar techniques (Pekmezci G. S., Dottorato di Ricerca in Astronomia, Università Degli Studi di Roma “Tor Vergata”, 2014) of a much larger stellar composition data set for 974 FGK stars (Petigura E. and Marcy G. Journal of Astrophysics 735, 2011), allows us to assess the possible range of water ice abundance in the circumstellar accretion disks of these ‘solar-type’ stars (of which 72 were known to have one or more planets as of 2011). Stellar C/O in a subset (457 stars) of this stellar database with reported C, O, Ni, and Fe abundances ranges from 0.3 to 1.4. The resulting computed water ice fractions and refractory (silicate + metal) fractions range from ~0 to 0.6 and 0.3 to 0.9 respectively. These results have implications for assessing the habitability of exoplanets since they constrain the amount of water available beyond the snow line for dynamical delivery to inner planets, depending on the host stars’ C/O in the circumstellar nebula. TVJ acknowledges government support at JPL

  19. A circumstellar molecular gas structure associated with the massive young star Cepheus A-HW 2

    NASA Technical Reports Server (NTRS)

    Torrelles, Jose M.; Rodriguez, Luis F.; Canto, Jorge; Ho, Paul T. P.

    1993-01-01

    We report the detection via VLA-D observations of ammonia of a circumstellar high-density molecular gas structure toward the massive young star related to the object Cepheus A-HW 2, a firm candidate for the powering source of the high-velocity molecular outflow in the region. We suggest that the circumstellar molecular gas structure could be related to the circumstellar disk previously suggested from infrared, H2O, and OH maser observations. We consider as a plausible scenario that the double radio continuum source of HW 2 could represent the ionized inner part of the circumstellar disk, in the same way as proposed to explain the double radio source in L1551. The observed motions in the circumstellar molecular gas can be produced by bound motions (e.g., infall or rotation) around a central mass of about 10-20 solar masses (B0.5 V star or earlier).

  20. Which Galaxies Are the Most Habitable?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    Habitable zones are a hot topic in exoplanet studies: where, around a given star, could a planet exist that supports life? But if you scale this up, you get a much less common question: which type of galaxy is most likely to host complex life in the universe? A team of researchers from the UK believes it has the answer.Criteria for HabitabilityLed by Pratika Dayal of the University of Durham, the authors of this study set out to estimate the habitability of a large population of galaxies. The first step in this process is to determine what elements contribute to a galaxys habitability. The authors note three primary factors:Total number of starsMore stars means more planets!Metallicity of the starsPlanets are more likely to form in stellar vicinities with higher metallicities, since planet formation requires elements heavier than iron.Likelihood of Type II supernovae nearbyPlanets that are located out of range of supernovae have a higher probability of being habitable, since a major dose of cosmic radiation is likely to cause mass extinctions or delay evolution of complex life. Galaxies supernova rates can be estimated from their star formation rates (the two are connected via the initial mass function).Hospitable Cosmic GiantsLower panel: the number of Earth-like habitable planets (given by the color bar, which shows the log ratio relative to the Milky Way) increases in galaxies with larger stellar mass and lower star formation rates. Upper panel: the larger stellar-mass galaxies tend to be elliptical (blue line) rather than spiral (red line). Click for larger view. [Dayal et al. 2015]Interestingly, these three conditions have previously been shown to be linked via something termed the fundamental metallicity relation, which relates the total stellar masses, metallicities, and star formation rates of galaxies. By using this relation, the authors were able to create predictions for the number of habitable planets in more than 100,000 galaxies in the local universe

  1. Language Habits of the Japanese.

    ERIC Educational Resources Information Center

    Kinosita, Koreo

    1988-01-01

    Contrasts Japanese language habits with Western language habits, asserting that Japanese need to speak more concisely, express themselves clearly and frankly, and eliminate superfluous polite language and preliminaries in order to be successful in the efficiency-oriented civilization that is a product of Western culture. (RAE)

  2. How Common are Habitable Planets?

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    The Earth is teeming with life, which, occupies a diverse array of environments; other bodies in our Solar System offer fewer, if any, niches which are habitable by life as we know it. Nonetheless, astronomical studies suggest that a large number of habitable planets-are likely to be present within our Galaxy.

  3. Factors Effecting on Study Habits

    ERIC Educational Resources Information Center

    Khan, Zebun Nisa

    2016-01-01

    The present study was undertaken with the objectives to find out the impact of Socio-economic Status as well as sex differences on study habits of class VII students (100) of Government Colleges of Amroha District. The effects of two independent variables on study habits of the aforementioned students were assessed by using two Psychological tests…

  4. HABITABLE PLANETS ECLIPSING BROWN DWARFS: STRATEGIES FOR DETECTION AND CHARACTERIZATION

    SciTech Connect

    Belu, Adrian R.; Selsis, Franck; Raymond, Sean N.; Bolmont, Emeline; Palle, Enric; Street, Rachel; Sahu, D. K.; Anupama, G. C.; Von Braun, Kaspar; Figueira, Pedro; Ribas, Ignasi

    2013-05-10

    Given the very close proximity of their habitable zones, brown dwarfs (BDs) represent high-value targets in the search for nearby transiting habitable planets that may be suitable for follow-up occultation spectroscopy. In this paper, we develop search strategies to find habitable planets transiting BDs depending on their maximum habitable orbital period (P{sub HZ{sub out}}). Habitable planets with P{sub HZ{sub out}} shorter than the useful duration of a night (e.g., 8-10 hr) can be screened with 100% completeness from a single location and in a single night (near-IR). More luminous BDs require continuous monitoring for longer duration, e.g., from space or from a longitude-distributed network (one test scheduling achieved three telescopes, 13.5 contiguous hours). Using a simulated survey of the 21 closest known BDs (within 7 pc) we find that the probability of detecting at least one transiting habitable planet is between 4.5{sup +5.6}{sub -1.4}% and 56{sup +31}{sub -13}%, depending on our assumptions. We calculate that BDs within 5-10 pc are characterizable for potential biosignatures with a 6.5 m space telescope using {approx}1% of a five-year mission's lifetime spread over a contiguous segment only one-fifth to one-tenth of this duration.

  5. The Mineralogy of Circumstellar Silicates Preserved in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2010-01-01

    Interplanetary dust particles (IDPs) contain a record of the building blocks of the solar system including presolar grains, molecular cloud material, and materials formed in the early solar nebula. Cometary IDPs have remained relatively unaltered since their accretion because of the lack of parent body thermal and aqueous alteration. We are using coordinated transmission electron microscope (TEM) and ion microprobe studies to establish the origins of the various components within cometary IDPs. Of particular interest is the nature and abundance of presolar silicates in these particles because astronomical observations suggest that crystalline and amorphous silicates are the dominant grain types produced in young main sequence stars and evolved O-rich stars. Five circumstellar grains have been identified including three amorphous silicate grains and two polycrystalline aggregates. All of these grains are between 0.2 and 0.5 micrometers in size. The isotopic compositions of all five presolar silicate grains fall within the range of presolar oxides and silicates, having large (17)O-enrichments and normal (18)O/(16)O ratios (Group 1 grains from AGB and RG stars). The amorphous silicates are chemically heterogeneous and contain nanophase FeNi metal and FeS grains in a Mg-silicate matrix. Two of the amorphous silicate grains are aggregates with subgrains showing variable Mg/Si ratios in chemical maps. The polycrystalline grains show annealed textures (equilibrium grains boundaries, uniform Mg/Fe ratios), and consist of 50-100 nm enstatite and pyrrhotite grains with lesser forsterite. One of the polycrystalline aggregates contains a subgrain of diopside. The polycrystalline aggregates form by subsolidus annealing of amorphous precursors. The bulk compositions of the five grains span a wide range in Mg/Si ratios from 0.4 to 1.2 (avg. 0.86). The average Fe/Si (0.40) and S/Si (0.21) ratios show a much narrower range of values and are approximately 50% of their solar

  6. Searching for the Circumstellar Ejecta Around Cool Hypergiants

    NASA Astrophysics Data System (ADS)

    Schuster, M. T.; Humphreys, R. M.; Marengo, M.; Gehrz, R. D.; Woodward, C. E.; Polomski, E.

    2005-05-01

    We present HST and Spitzer images of several of the most luminous cool stars in the Galaxy. These highly unstable, very massive stars lie on or near the empirical upper luminosity boundary in the H-R diagram, and are characterized by high mass loss phenomena, sometimes violent, which may be responsible for the upper boundary. These observations are designed to search for circumstellar structures close to the star as well as more distant nebulosity. We discuss the presence, or lack of, ejecta around these hypergiants, and the evolutionary implications. Our high-resolution WFPC2 images show compact nebulosity around the cool M-type hypergiants NML Cyg, VX Sgr and S Per. The powerful OH/IR source NML Cyg exhibits a small, peculiar bean-shaped asymmetric nebula that closely matches the distribution of the surrounding H2O vapor masers. NML Cyg's concave outer envelope is likely shaped by photo-dissociation from the powerful, nearby association Cyg OB2 inside the Cygnus X superbubble. VX Sgr and S Per, also OH/IR sources, have marginally resolved envelopes. S Per's circumstellar nebula appears elongated in a NE/SW orientation similar to that for its surrounding OH and H2O masers, while VX Sgr is obscured by a spheroidal envelope. We find no evidence in our WFPC2 images for circumstellar nebulosity around the intermediate-type hypergiants ρ Cas, HR 8752, HR 5171a nor the normal M-type supergiant μ Cep. We conclude that very likely, there has been no high mass loss event prior to 500-1000 yrs ago for these four stars. Our IRAC images (ρ Cas, HR 8752, and R 150) also show no evidence for extended structure. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work is in part provided by NASA through contracts 1256406 and 1215746 issued by JPL/Caltech to the University of Minnesota.

  7. The Three-dimensional Circumstellar Environment of SN 1987A

    NASA Astrophysics Data System (ADS)

    Sugerman, Ben E. K.; Crotts, Arlin P. S.; Kunkel, William E.; Heathcote, Stephen R.; Lawrence, Stephen S.

    2005-07-01

    Surrounding SN 1987A is a three-ring nebula attributed to interacting stellar winds, yet no model has successfully reproduced this system. Fortunately, the progenitor's mass-loss history can be reconstructed using light echoes, in which scattered light from the supernova traces the three-dimensional morphology of its circumstellar dust. In this paper, we construct and analyze the most complete map to date of the progenitor's circumstellar environment, using ground- and space-based imaging from the past 16 years. PSF-matched difference-imaging analyses of data from 1988 through 1997 reveal material between 1 and 28 lt-yr from the SN. Previously known structures, such as an inner hourglass, Napoleon's Hat, and a contact discontinuity, are probed in greater spatial detail than before. Previously unknown features are also discovered, such as a southern counterpart to Napoleon's Hat. Careful analyses of these echoes allows the reconstruction of the probable circumstellar environment, revealing a richly structured bipolar nebula. An outer, double-lobed ``Peanut,'' which is believed to be the contact discontinuity between red supergiant and main-sequence winds, is a prolate shell extending 28 lt-yr along the poles and 11 lt-yr near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this Peanut, which is pinched to a radius of 6 lt-yr. Interior to this is a cylindrical hourglass, 1 lt-yr in radius and 4 lt-yr long, which connects to the Peanut by a thick equatorial disk. The nebulae are inclined 41° south and 8° east of the line of sight, slightly elliptical in cross section, and marginally offset west of the SN. From the hourglass to the large, bipolar lobes, echo fluxes suggest that the gas density drops from 1-3 to >~0.03 cm-3, while the maximum dust-grain size increases from ~0.2 to 2 μm, and the silicate:carbonaceous dust ratio decreases. The nebulae have a total mass of ~1.7 Msolar. The geometry of the three rings is

  8. Magnetic constraints on the habitability of exoearths and exomoons

    NASA Astrophysics Data System (ADS)

    Zuluaga, J. I.

    2013-05-01

    Surface habitability of planetary environments is essentially constrained by two basic and related conditions: 1) the existence of a thick enough atmosphere and 2) proper levels of insolation or other sources of energy able to guarantee the right temperatures required for the existence of surface liquid water. It is customary to assume that the first condition (an atmosphere) is always fulfilled and to focus on the physical factors limiting the second one (insolation or energy sources). Now it is widely accepted that magnetic fields play a central role into determining if a planet is able to preserve a dense enough atmosphere or the right content of volatiles required for habitability. Hence the fulfillment of the first condition could strongly depend on the existence of a relatively strong intrinsic or extrinsic magnetic field. In the Solar System Venus and Mars provide examples of planets that, though located inside the Radiative Habitable Zone (RHZ), lack a protective magnetic field and have lost their inventory of water or most of their early atmospheric content by a combination of thermal and non-thermal atmospheric losses. We present here a review of the role that magnetic fields would have at constraining the habitability of planetary environments, both in the case of Earth-like planets and super-Earths (exoearths) and for the case of exomoons around giant planets in the RHZ of their host stars. In the first case we found that magnetic properties constraining habitability strongly dependent on planetary mass and composition. We present preliminary results of the case of already discovered potentially habitable exoearths and Kepler candidates. In the case of potentially habitable exomoons we found that magnetic protection together with conditions of tidal heating and illumination, constraints the possible range of exomoons planetocentric orbits. Also in this case we present results concerning the magnetic constraints to habitability of hypotetical exomoons of

  9. Circumstellar debris and pollution at white dwarf stars

    NASA Astrophysics Data System (ADS)

    Farihi, J.

    2016-04-01

    Circumstellar disks of planetary debris are now known or suspected to closely orbit hundreds of white dwarf stars. To date, both data and theory support disks that are entirely contained within the preceding giant stellar radii, and hence must have been produced during the white dwarf phase. This picture is strengthened by the signature of material falling onto the pristine stellar surfaces; disks are always detected together with atmospheric heavy elements. The physical link between this debris and the white dwarf host abundances enables unique insight into the bulk chemistry of extrasolar planetary systems via their remnants. This review summarizes the body of evidence supporting dynamically active planetary systems at a large fraction of all white dwarfs, the remnants of first generation, main-sequence planetary systems, and hence provide insight into initial conditions as well as long-term dynamics and evolution.

  10. PAH formation in carbon-rich circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Frenklach, Michael

    1989-01-01

    While there is growing observational evidence that some fraction of interstellar carbon is in polycyclic aromatic hydrocarbons (PAH's), the mechanisms by which these molecules might be formed have not been extensively studied. A detailed investigation of PAH production in the outflowing molecular envelopes of carbon-rich red giant star is presented. The gasphase kinetics of a chemical reaction mechanism developed to study soot production in hydrocarbon flames is modified to apply in circumstellar environments. It was found that astrophysically significant quantities of PAH's can be formed in carbon star envelopes provided the gas is sufficiently dense and resides for a long time in the temperature range of 900 to 1100 k. The precise yield of PAH's is very sensitive to astronomical parameters of the envelope (e.g., mass loss rate, outflow velocity, and acetylene abundance) and certain poorly determined chemical reaction rates.

  11. Flash Heating of Circumstellar Clouds by Gamma-Ray Bursts.

    PubMed

    Dermer; Böttcher

    2000-05-10

    The blast-wave model for gamma-ray bursts (GRBs) has been called into question by observations of spectra from GRBs that are harder than can be produced through optically thin synchrotron emission. If GRBs originate from the collapse of massive stars, then circumstellar clouds near burst sources will be illuminated by intense gamma radiation, and the electrons in these clouds will be rapidly scattered to energies as large as several hundred keV. Low-energy photons that subsequently pass through the hot plasma will be scattered to higher energies, hardening the intrinsic spectrum. This effect resolves the "line-of-death" objection to the synchrotron shock model. Illuminated clouds near GRBs will form relativistic plasmas containing large numbers of electron-positron pairs that can be detected within approximately 1-2 days of the explosion before expanding and dissipating. Localized regions of pair annihilation radiation in the Galaxy would reveal past GRB explosions.

  12. Circumstellar envelope manifestations in the optical spectra of evolved stars

    NASA Astrophysics Data System (ADS)

    Klochkova, V. G.

    2014-07-01

    We analyze the peculiarities of the optical spectra of luminous stars with circumstellar gas and dust envelopes: the time variability of the absorption-emission profiles of the H α line, the presence of stationary emission and absorption molecular bands, multicomponent absorption-emission profiles of the Na I D doublet lines. We show that the peculiarities of the line profiles (the presence of an emission component in the Na I D doublet lines, the specific type of the molecular features, the asymmetry and splitting of the profiles of strong absorption features with low excitation potential of the low level) can be associated with the kinematic and chemical properties of the envelope and its morphological type.

  13. Molecular anion chemistry in interstellar and circumstellar environments

    NASA Astrophysics Data System (ADS)

    Cordiner, M. A.; Millar, T. J.; Herbst, E.; Chuimin, R. Ni; Walsh, C.

    2007-12-01

    The recent detection of C4H-, C6H- and C8H- in TMC-1 and IRC+10216 led us to investigate the synthesis of hydrocarbon anions in a variety of interstellar and circumstellar environments. We find that the anion/neutral abundance ratio can be quite large, on the order of at least a few percent, once the neutral has more than five carbon atoms. Detailed modeling shows that the column densities of C6H- observed in IRC+10216 and TMC-1 can be reproduced. Our calculations also predict that hydrocarbon anions CnH- (for n = 4, 6, 8) are viable candidates for detection in photon-dominated regions such as the Horsehead Nebula and the Orion Bar.

  14. Hydrocarbon Anions in Interstellar Clouds and Circumstellar Envelopes

    NASA Astrophysics Data System (ADS)

    Millar, T. J.; Walsh, C.; Cordiner, M. A.; Ní Chuimín, R.; Herbst, Eric

    2007-06-01

    The recent detection of the hydrocarbon anion C6H- in the interstellar medium has led us to investigate the synthesis of hydrocarbon anions in a variety of interstellar and circumstellar environments. We find that the anion/neutral abundance ratio can be quite large, on the order of at least a few percent, once the neutral has more than five carbon atoms. Detailed modeling shows that the column densities of C6H- observed in IRC +10 216 and TMC-1 can be reproduced. Our calculations also predict that other hydrocarbon anions, such as C4H- and C8H-, are viable candidates for detection in IRC +10 216, TMC-1, and photon-dominated regions such as the Horsehead Nebula.

  15. Archival Legacy Investigation of Circumstellar Environments (ALICE). Survey results

    NASA Astrophysics Data System (ADS)

    Soummer, Remi; Choquet, Elodie; Pueyo, Laurent; Brendan Hagan, J.; Gofas-Salas, Elena; Rajan, Abhijith; Chen, Christine; Perrin, Marshall D.; Debes, John H.; Golimowski, David A.; Hines, Dean C.; N'Diaye, Mamadou; Schneider, Glenn; Mawet, Dimitri; Marois, Christian

    2016-01-01

    We report on the status of the ALICE project (Archival Legacy Investigation of Circumstellar Environments. HST/AR-12652), which consists in a consistent reanalysis of the entire HST-NICMOS coronagraphic archive with advanced post-processing techniques. Over the last two years, we have developed a sophisticated pipeline able to handle the data of the 400 stars of the archive. We present the results of the overall reduction campaign and discuss the first statistical analysis of the candidate detections. As we will deliver high-level science products to the STScI MAST archive, we are defining a new standard format for high-contrast science products, which will be compatible with every new high-contrast imaging instrument and used by the JWST coronagraphs. We present here an update and overview of the specifications of this standard.

  16. The Circumstellar Disk of HD 141569 Imaged with NICMOS.

    PubMed

    Weinberger; Becklin; Schneider; Smith; Lowrance; Silverstone; Zuckerman; Terrile

    1999-11-01

    Coronagraphic imaging with the Near-Infrared Camera and Multiobject Spectrometer on the Hubble Space Telescope reveals a large, approximately 400 AU (4&arcsec;) radius, circumstellar disk around the Herbig Ae/Be star HD 141569. A reflected light image at 1.1 µm shows the disk oriented at a position angle of 356&j0;+/-5&j0; and inclined to our line of sight by 51&j0;+/-3&j0;; the intrinsic scattering function of the dust in the disk makes the side inclined toward us, the eastern side, brighter. The disk flux density peaks 185 AU (1&farcs;85) from the star and falls off to both larger and smaller radii. A region of depleted material, or a gap, in the disk is centered 250 AU from the star. The dynamical effect of one or more planets may be necessary to explain this morphology. PMID:10511512

  17. Polarimetric Models of Circumstellar Discs Including Aggregate Dust Grains

    NASA Astrophysics Data System (ADS)

    Mohan, Mahesh

    The work conducted in this thesis examines the nature of circumstellar discs by investigating irradiance and polarization of scattered light. Two circumstellar discs are investigated. Firstly, H-band high contrast imaging data on the transitional disc of the Herbig Ae/Be star HD169142 are presented. The images were obtained through the polarimetric differential imaging (PDI) technique on the Very Large Telescope (VLT) using the adaptive optics system NACO. Our observations use longer exposure times, allowing us to examine the edges of the disc. Analysis of the observations shows distinct signs of polarization due to circumstellar material, but due to excessive saturation and adaptive optics errors further information on the disc could not be inferred. The HD169142 disc is then modelled using the 3D radiative transfer code Hyperion. Initial models were constructed using a two disc structure, however recent PDI has shown the existence of an annular gap. In addition to this the annular gap is found not to be devoid of dust. This then led to the construction of a four-component disc structure. Estimates of the mass of dust in the gap (2.10E-6 Msun) are made as well as for the planet (1.53E-5 Msun (0.016 Mjupiter)) suspected to be responsible for causing the gap. The predicted polarization was also estimated for the disc, peaking at ~14 percent. The use of realistic dust grains (ballistic aggregate particles) in Monte Carlo code is also examined. The fortran code DDSCAT is used to calculate the scattering properties for aggregates which are used to replace the spherical grain models used by the radiative transfer code Hyperion. Currently, Hyperion uses four independent elements to define the scattering matrix, therefore the use of rotational averaging and a 50/50 percent population of grains and their enantiomers were explored to reduce the number of contributing scattering elements from DDSCAT. A python script was created to extract the scattering data from the DDSCAT

  18. The circumstellar environments of intermediate mass main sequence stars

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    1993-01-01

    Analysis of archival Infrared Astronomy Satellite (IRAS) and International Ultraviolet Explorer (IUE) data resulted in identification of accreting gas toward a 2.8 Myr post-Herbig Be star in the R CrA star formation region, and identification of accreting gas toward HD 93563, previously identified as a classical Be star. Accreting gas was also detected toward two B(e) stars of previously controversial evolutionary state, resulting in identification of these systems as pre-Main Sequence Herbig Be stars viewed edge-on to their circumstellar disks. In parallel with this effort, accreting gas was detected toward the Herbig Ae star HR 5999, resulting in development of identification criteria for edge-on PMS proto-planetary disk systems. The work on individual stars is described.

  19. Warm Circumstellar Debris Disks: Dynamical Excitation by Massive External Perturbers?

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika; Naoz, Smadar; Vican, Laura; Vican, Laura; Zuckerman, Ben M.; Holmbeck, Erika

    2016-01-01

    Observations of circumstellar debris disks have revealed that a subset of this population are warm disks (~300 K). A dynamically excited disk may indicate the presence of an exoplanet orbiting within and stirring the disk. However, observations suggest another possible mechanism for heating a debris disk: an external stellar-mass perturber exciting the eccentricities and inclinations of the particles in a disk.We explore the consequences of an external perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. The perturber excites the eccentricities of the particles in the disk via the Kozai-Lidov mechanism, triggering a collisional cascade among the planetesimals. These collisions produce smaller dust grains and damp the particles' larger eccentricities.We present the results of our study and discuss the connections to observations of warm disks and the implications for planet formation.

  20. TIDALLY INDUCED BROWN DWARF AND PLANET FORMATION IN CIRCUMSTELLAR DISKS

    SciTech Connect

    Thies, Ingo; Kroupa, Pavel; Goodwin, Simon P.; Stamatellos, Dimitrios; Whitworth, Anthony P.

    2010-07-01

    Most stars are born in clusters and the resulting gravitational interactions between cluster members may significantly affect the evolution of circumstellar disks and therefore the formation of planets and brown dwarfs (BDs). Recent findings suggest that tidal perturbations of typical circumstellar disks due to close encounters may inhibit rather than trigger disk fragmentation and so would seem to rule out planet formation by external tidal stimuli. However, the disk models in these calculations were restricted to disk radii of 40 AU and disk masses below 0.1 M{sub sun}. Here, we show that even modest encounters can trigger fragmentation around 100 AU in the sorts of massive ({approx}0.5 M{sub sun}), extended ({>=}100 AU) disks that are observed around young stars. Tidal perturbation alone can do this; no disk-disk collision is required. We also show that very low mass binary systems can form through the interaction of objects in the disk. In our computations, otherwise non-fragmenting massive disks, once perturbed, fragment into several objects between about 0.01 and 0.1 M{sub sun}, i.e., over the whole BD mass range. Typically, these orbit on highly eccentric orbits or are even ejected. While probably not suitable for the formation of Jupiter- or Neptune-type planets, our scenario provides a possible formation mechanism for BDs and very massive planets which, interestingly, leads to a mass distribution consistent with the canonical substellar initial mass function. As a minor outcome, a possible explanation for the origin of misaligned extrasolar planetary systems is discussed.

  1. Beta Pic-like Circumstellar Gas Disk Around 2 And

    NASA Technical Reports Server (NTRS)

    Cheng, Patricia

    2003-01-01

    This grant was awarded to support the data analysis and publication of results from our project entitled P Pic-like Circumstellar Gas Disk Around 2 And . We proposed to obtain FUSE observations of 2 And and study the characteristics and origin of its circumstellar gas. We observed 2 Andromedae with FUSE on 3-4 July 2001 in 11 exposures with a total exposure time of 21,289 seconds through the LWRS aperture. Our data were calibrated with Version 1.8.7 of the CALFUSE pipeline processing software. We corrected the wavelength scale for the heliocentric velocity error in this version of the CALFUSE software. The relative accuracy of the calibrated wavelength scale is +/- 9 km/s . We produced a co-added spectrum in the LiF 1B and LiF 2A channels (covering the 1100 to 1180 A region) by cross-correlating the 11 individual exposures and doing an exposure-time weighted average flux. The final co-added spectra have a signal-to-noise ratio in the stellar continuum near 1150 A of about 20. To obtain an absolute wavelength calibration, we cross-correlated our observed spectra with a model spectrum to obtain the best fit for the photospheric C I lines. Because the photospheric lines are very broad, this yields an absolute accuracy for the wavelength scale of approx.+/- 15 km/s. We then rebinned 5 original pixels to yield the optimal sampling of .033 A for each new pixel, because the calibrated spectra oversample the spectral resolution for FUSE+LWRS (R = 20,000 +/- 2,000).

  2. An Investigation of Circumbinary Planet Orbital Stability and Habitability to Identify Potential Planetary Systems with Several Habitable Planets

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Zuluaga, Jorge; Cuartas, Pablo A.

    2015-08-01

    The census of planets orbiting the center of mass of binary stars is rapidly growing. The question of stability for circumbinary planets has been the focus of much recent research. We review this work and present results of new simulations, from which we find criteria for the long term stability of exoplanets orbiting binaries. We are especially concerned with the potential stability of planets in habitable zones surrounding binaries. For this purpose, we merge a long-term orbital stability study with an analysis of the rotational evolution of the stellar components. The stellar evolution and rotational study enables estimates of stellar activity, and the effects on the magnetospheres and atmospheres of planets over the course of history for a potentially habitable circumbinary planet. We find that the long-term orbital stability of circumbinary habitable zone depends sensitively on the initial orbit of the binary and on the masses of the stars. We find that stellar twins (binary mass ratio ~ 1) and binaries with circular orbits provide the most stable solutions. However, if the binary orbit evolves too rapidly, planets may be lost due to changes in resonance locations. A subset of binaries are identified possessing both stable orbital solutions for multiple planets in the habitable zone and reduced stellar aggression due to tidal torqueing of the stellar rotation.

  3. Hypothetical habitability of Venus

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid

    Hypothetical habitability of some of extrasolar planets is a fundamental question of science. Some of exoplanets possess physical conditions close to those of Venus. Therefore, the planet Venus, with its dense and hot (735 K) oxygen-free atmosphere of CO2, having a high pressure of 9.2 MPa at the surface, can be a natural laboratory for this kind of studies. The only existing data on the planet’s surface are still the results obtained by the Soviet VENERA landers in the 1970s and 1980s. The TV experiments of Venera-9 and 10 (October, 1975) and Venera-13 and 14 (March, 1982) delivered 41 panoramas of Venus surface (or their fragments). There have not been any similar missions to Venus in the subsequent 39 and 32 years. In the absence of new landing missions to Venus, the VENERA panoramas have been re-processed. The results of these missions are studied anew. A dozen of relatively large objects, from a decimeter to half a meter in size, with an unusual morphology have been found which moved very slowly or changed slightly their shape. Their emergence by chance could hardly be explained by noise. Certain unusual findings that have similar structure were found in different areas of the planet. This paper presents the last results obtained of a search for hypothetical flora and fauna of Venus.

  4. [Oral habits. Etiology and treatment].

    PubMed

    Romanou-Kouvelas, K; Kouvelas, N

    1988-01-01

    Oral habits have been described by psychologists and psychyatrists as psychodynamic phenomena. Dentists are concerned with oral habits because of the detrimental consequences they have in the oral facial system. The dentist who is in a position to confront a child with an oral habit in order to treat his dentinofacial problems is required to be aware of the psychological background of his patient as well as of the conditions under which the children do the habit in order to overcome emotional difficulties. The dentist should also search into the child's family to find out what the causes of the child's oral habit maybe. For the treatment of an oral habit the dentist should ensure both the child's and the family's cooperation and he should be aware of the advantages and disadvantages of every available method for treatment. Methods of treatment are: Use of orthodontic appliances: This method has the disadvantage that disturbs the child's psychological need for the habit, it can be interpreted as a punishment, it is visible and it causes speaking difficulties. It should be applied only in cooperation with the child. Behavioristic technique: This method aims to reinforce the child's positive behavior according to the Skinnerian principle: stimulus-response-reward. It has fast results but it is a conditioned treatment. Psychoanalytic method: It could solve the problem of the child's primary need for the oral habit in a radical manner. However it is practically impossible to be applied in Dentistry. Behavior modification according to ego psychology. With this method we attempt to analyse and understand the psychological cause of an oral habit.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Assessing Habitability: Lessons from the Phoenix Mission

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.

    2013-01-01

    The Phoenix mission's key objective was to search for a habitable zone. The Phoenix lander carried a robotic arm with digging scoop to collect soil and icy material for analysis with an instrument payload that included volatile mineral and organic analysis(3) and soil ionic chemistry analysis (4). Results from Phoenix along with theoretical modeling and other previous mission results were used to evaluate the habitability of the landing site by considering four factors that characterize the environments ability to support life as we know it: the presence of liquid water, the presence of an energy source to support metabolism, the presence of nutrients containing the fundamental building blocks of life, and the absence of environmental conditions that are toxic to or preclude life. Phoenix observational evidence for the presence of liquid water (past or present) includes clean segregated ice, chemical etching of soil grains, calcite minerals in the soil and variable concentrations of soluble salts5. The maximum surface temperature measured was 260K so unfrozen water can form only in adsorbed films or saline brines but warmer climates occur cyclically on geologically short time scales due to variations in orbital parameters. During high obliquity periods, temperatures allowing metabolism extend nearly a meter into the subsurface. Phoenix discovered 1%w/w perchlorate salt in the soil, a chemical energy source utilized by a wide range of microbes. Nutrient sources including C, H, N, O, P and S compounds are supplied by known atmospheric sources or global dust. Environmental conditions are within growth tolerance for terrestrial microbes. Summer daytime temperatures are sufficient for metabolic activity, the pH is 7.8 and is well buffered and the projected water activity of a wet soil will allow growth. In summary, martian permafrost in the north polar region is a viable location for modern life. Stoker et al. presented a formalism for comparing the habitability of

  6. Delegation: developing the habit.

    PubMed

    Duehring, G L

    2001-01-01

    Often, individuals take personal delegation skills for granted and assume the presence of expertise with the practice of delegation, which may not be the case. Those assumptions can be found at both ends of the process, with the manager and the employee. Every time a manager places an employee in a job and gives him or her a job description or a set of instructions, the manager has delegated. The manager has placed someone in a position to perform operations for which ultimately the manager is responsible. Delegation is both a process and a condition. The process is the act of assigning work to an employee; the condition of delegating a job is a thorough and mutual understanding between the supervisor and the employee of specific results and methods by which these results can be achieved. The condition goes far beyond the simple process of assigning a job. The point at which many managers fail in delegating is in neglecting to move past the process and take the required steps to establish a true condition of delegation. Failure to delegate is the leading cause of managers retarding their professional growth. In the case of a workaholic--someone who fails to learn the value of delegation--the job soon becomes too much, and the effectiveness of the department may suffer. By reducing the burden of technical duties and busy work, managers will find that it is possible to be more effective and actually spend more time managing. A number of the reasons why managers fail to delegate are complex and subconscious, such as insecurity, fear of competition and even fear of not being recognized for accomplishments achieved. Other reasons for failing to delegate are habit and shortages of staff members or time. Delegation is an investment in time. The eventual gain from such an investment, which may temporarily cause the department to fall further behind during a training period, outweighs the costs. The manager is the final authority in such duties as approval, recommendations

  7. Delegation: developing the habit.

    PubMed

    Duehring, G L

    2001-01-01

    Often, individuals take personal delegation skills for granted and assume the presence of expertise with the practice of delegation, which may not be the case. Those assumptions can be found at both ends of the process, with the manager and the employee. Every time a manager places an employee in a job and gives him or her a job description or a set of instructions, the manager has delegated. The manager has placed someone in a position to perform operations for which ultimately the manager is responsible. Delegation is both a process and a condition. The process is the act of assigning work to an employee; the condition of delegating a job is a thorough and mutual understanding between the supervisor and the employee of specific results and methods by which these results can be achieved. The condition goes far beyond the simple process of assigning a job. The point at which many managers fail in delegating is in neglecting to move past the process and take the required steps to establish a true condition of delegation. Failure to delegate is the leading cause of managers retarding their professional growth. In the case of a workaholic--someone who fails to learn the value of delegation--the job soon becomes too much, and the effectiveness of the department may suffer. By reducing the burden of technical duties and busy work, managers will find that it is possible to be more effective and actually spend more time managing. A number of the reasons why managers fail to delegate are complex and subconscious, such as insecurity, fear of competition and even fear of not being recognized for accomplishments achieved. Other reasons for failing to delegate are habit and shortages of staff members or time. Delegation is an investment in time. The eventual gain from such an investment, which may temporarily cause the department to fall further behind during a training period, outweighs the costs. The manager is the final authority in such duties as approval, recommendations

  8. Dieting Habits of Men.

    PubMed

    Vining, Virginia L; Cotugna, Nancy; Fang, Chengshun; Sue Snider, O

    2016-08-01

    There is little research involving the US male population regarding weight control and behavior that may affect weight status. Gender-specific weight-control programs for men aren't the standard. Our study objectives were to survey dieting and health habits of an adult male employee population and to determine if the population would be interested in gender-specific programming. Demographics, weight-control practices and interest in gender-specific weight-control programs were examined cross sectionally. A 50-question web-based survey was posted via email from October 2-30, 2014 to male employees at a Mid-Atlantic university. Statistical analyses included frequencies, means and percentages. Chi square and t tests were conducted. The 254 participants were ages 18-65+ years, predominantly white, college educated with annual incomes above $50,000. Sources of nutrition knowledge ranged from a high of web sites (65 %) to a low of registered dietitians (9 %). Macronutrient restrictions reported for dieting were carbohydrates 77 %, fats 40 % and protein 19 %. The >30 age group was more likely to have: decreased amount of food intake P = .001), reducing overall calories (P = .047), skipping meals (P = .006) or trying commercial programs (P = .011). There was nothing of significance for those <30. Among all respondents, interest in gender-specific programs was compared with these variables: current weight satisfaction (P = .032), education (P = .008), income (P = . 006) and BMI (P = .004). Men who were dissatisfied with their weight were most likely to be interested in a gender-specific weight control program, especially those over age 30 years. Further research should address whether offering male-specific diet programs would offer incentive and motivation for males to lose and maintain weight loss. PMID:26758439

  9. Galactic Habitable Orbits

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Mao, S.; Kawata, D.

    2014-03-01

    The fossil record shows that the Earth has experienced several mass extinctions over the past 500 million years1, and it has been suggested that there is a periodicity in extinction events on timescales of tens1 and/or hundreds of millions of years. Various hypotheses have been proposed to explain the cause of the mass extinctions, including the suggestion that the Earth's ozone layer may have been destroyed by intense radiation from a nearby supernovae2- 3, exposing the Earth's surface to damaging UV radiation. Recent observations of cores taken from the ocean floor revealed atoms of a very rare isotope of iron (60Fe) believed to have arrived on Earth around 2 million years ago as fallout from a nearby supernovae4. Astronomical evidence for that past supernovae was recently found in the debris of a young cluster of massive stars5, by tracing its past orbit, putting it at the right place at the right time to explain the mild extinction event. Here we report new high-resolution (both in space and time) N-body chemodynamical simulations (carried out with our novel code GCD+6) of the evolution of a model Milky Way Galaxy, tracing the orbit of èsun-like' stars over a 500 million year period, checking the proximity to supernovae throughout the history of the orbit and comparing the times when this occurs with past mass extinctions on Earth. We additionally explain the important effects of the spiral arm pattern, radial migration of stars and Galactic chemistry on habitability.

  10. Make peak flow a habit!

    MedlinePlus

    Asthma - make peak flow a habit; Reactive airway disease - peak flow; Bronchial asthma - peak flow ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  11. PAHs in circumstellar disks around T Tauri stars

    NASA Astrophysics Data System (ADS)

    Geers, Vincent C.; Augereau, Jean-Charles; Pontoppidan, Klaus M.; Dullemond, Cornelis P.; Visser, Ruud; van Dishoeck, Ewine F.; C2d Irs Team

    We have begun to investigate the emission from Polycyclic Aromatic Hydrocarbons seen toward circumstellar disks around young low mass pre-main-sequence (T Tauri) stars, observed as part of our Spitzer Legacy program "From Molecular Cores to Planet-Forming Disks" (Evans et al. 2003). In this poster we will present some of our first Spitzer spectra of PAH features in T Tauri stars and discuss these features in the context of the disk structure and the UV radiation field needed to excite the PAH molecules. Laboratory measurements show that PAH molecules are strongly heated/excited when they absorb a single UV photon, and that they re-radiate the energy through C-H and C-C stretch and C-H bending mode transitions, in the form of infrared photons. These give rise to characteristic PAH features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.8 microns. These emission features have now been observed toward about 60% of intermediate mass Herbig Ae/Be stars with the ISO satellite (Acke & van den Ancker 2004) and for a few of these sources, ground-based spatially resolved spectroscopy has confirmed that the emission originates from the inner ~100-150 AU region around the star (Geers et al. 2004, van Boekel et al. 2004, Habart et al. 2004), so typically on the scale of circumstellar disks. Our investigation of PAHs in disks around young stars takes two approaches. On the one hand, we address the question how the PAH abundance evolves in these disks during this period of planet formation and how their presence can have an impact on the circumstellar environment. The observed PAH emission is believed to originate from the surface layers of the disk, where the large molecules / small grains are mixed with the gas. The high opacity of PAHs to FUV radiation can significantly reduce the stellar UV field in the inner parts of the disk, while at the same time, through the photo-electric effect, PAHs can provide an important heating mechanism for the gas in the surrounding environment through

  12. PAHs in circumstellar disks around T Tauri stars

    NASA Astrophysics Data System (ADS)

    Geers, Vincent C.; Augereau, Jean-Charles; Pontoppidan, Klaus M.; Dullemond, Cornelis P.; Visser, Ruud; van Dishoeck, Ewine F.; C2d Irs Team

    We have begun to investigate the emission from Polycyclic Aromatic Hydrocarbons seen toward circumstellar disks around young low mass pre-main-sequence (T Tauri) stars, observed as part of our Spitzer Legacy program "From Molecular Cores to Planet-Forming Disks" (Evans et al. 2003). In this poster we will present some of our first Spitzer spectra of PAH features in T Tauri stars and discuss these features in the context of the disk structure and the UV radiation field needed to excite the PAH molecules. Laboratory measurements show that PAH molecules are strongly heated/excited when they absorb a single UV photon, and that they re-radiate the energy through C-H and C-C stretch and C-H bending mode transitions, in the form of infrared photons. These give rise to characteristic PAH features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.8 microns. These emission features have now been observed toward about 60% of intermediate mass Herbig Ae/Be stars with the ISO satellite (Acke & van den Ancker 2004) and for a few of these sources, ground-based spatially resolved spectroscopy has confirmed that the emission originates from the inner ~100-150 AU region around the star (Geers et al. 2004, van Boekel et al. 2004, Habart et al. 2004), so typically on the scale of circumstellar disks. Our investigation of PAHs in disks around young stars takes two approaches. On the one hand, we address the question how the PAH abundance evolves in these disks during this period of planet formation and how their presence can have an impact on the circumstellar environment. The observed PAH emission is believed to originate from the surface layers of the disk, where the large molecules / small grains are mixed with the gas. The high opacity of PAHs to FUV radiation can significantly reduce the stellar UV field in the inner parts of the disk, while at the same time, through the photo-electric effect, PAHs can provide an important heating mechanism for the gas in the surrounding environment through

  13. [Habitability and life support systems].

    PubMed

    Nefedov, Iu G; Adamovich, B A

    1988-01-01

    This paper discusses various aspects of space vehicle habitability and life support systems. It describes variations in the chemical and microbial composition of an enclosed atmosphere during prolonged real and simulated flights. The paper gives a detailed description of life support systems and environmental investigations onboard the Mir station. It also outlines the development of space vehicle habitability and life support systems as related to future flights.

  14. Rotational Synchronization May Enhance Habitability for Circumbinary Planets: Kepler Binary Case Studies

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Zuluaga, Jorge I.; Clark, Joni M.; Cuartas-Restrepo, Pablo A.

    2013-09-01

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.

  15. ROTATIONAL SYNCHRONIZATION MAY ENHANCE HABITABILITY FOR CIRCUMBINARY PLANETS: KEPLER BINARY CASE STUDIES

    SciTech Connect

    Mason, Paul A.; Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A.; Clark, Joni M.

    2013-09-10

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.

  16. Rotating Stars Can Help Planets Become Habitable

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    What characteristics must a terrestrial planet exhibit to have the potential to host life? Orbiting within the habitable zone of its host star is certainly a good start, but theres another important aspect: the planet has to have the right atmosphere. A recent study has determined how host stars can help their planets to lose initial, enormous gaseous envelopes and become more Earth-like.Collecting An EnvelopeWhen a terrestrial planet forms inside a gaseous protoplanetary disk, it can accumulate a significant envelope of hydrogen gas causing the planet to bear more similarity to a mini-Neptune than to Earth. Before the planet can become habitable, it must shed this enormous, primordial hydrogen envelope, so that an appropriate secondary atmosphere can form.So what determines whether a planet can get rid of its protoatmosphere? The dominant process for shedding a hydrogen atmosphere is thermal mass loss: as the planets upper atmosphere is heated by X-ray and extreme-ultraviolet (XUV) radiation from the host star, the envelope evaporates.A Critical DependenceIn a recent study led by Colin Johnstone (University of Vienna), a team of scientists has developed models of this evaporation process for hydrogen planetary atmospheres. In particular, Johnstone and collaborators examine how the host stars initial rotation rate which strongly impacts the stars level of XUV activity affects the degree to which the planets hydrogen atmosphere is evaporated, and the rate at which the evaporation occurs.The authors findings can be illustrated with the example of an Earth-mass planet located in the habitable zone of a solar-mass star. In this case, the authors find four interesting regimes (shown in the plot to the right):Evolution of the hydrogen protoatmosphere of an Earth-mass planet in the habitable zone of a solar-mass star. The four lettered cases describe different initial atmospheric masses. The three curves for each case describe the stellar rotation rate: slow (red

  17. Study of variable extinction of hot stars with circumstellar dust shells

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Various projects on the topic of hot stars with circumstellar dust are reported. The surface temperature, wind speed, and interstellar reddening were determined for the variable WC7 star HD 193793. Circumstellar carbon monoxide molecules were detected around a hot star. The dust envelope of the star W90 in the young cluster NGC2264 is discussed, and the spectra of low-redshift and X-ray emitting quasars are mentioned.

  18. Transition-Metal Oxides in Warm Circumstellar Environments

    NASA Astrophysics Data System (ADS)

    Schmidt, Mirosław R.; Kaminski, Tomasz; Tylenda, Romuald

    2013-06-01

    We report on detections and simulations of electronic bands of transition-metal oxides, i.e. ScO, TiO, VO, CrO, YO, and of AlO, in spectra of two red novae V838 Mon and V4332 Sgr. These objects experienced a stellar merger event in 2002 and 1994, respectively, and have very rich circumstellar environments abundant in dust and molecules. We analyzed optical spectra of V838 Mon which show a presence of outflowing material. In this object, electronic systems of oxides are observed in absorption against a photospheric spectrum which resembles that of a late-type supergiant. We present simulations of the absorption bands which allowed us to derive the excitation temperatures of 300-500 K and constrain column densities, which turned out to be very high. Among many interesting features discovered, we identified forbidden transitions of TiO in the b^1Π-X^3Δ and c^{1}Φ-X^{3}Δ systems, which are seen owing to the high column densities and the relatively low temperatures. In the case of the older red nova V4332 Sgr, the main object is surrounded by a circumstellar disc which is seen almost edge-on and obscures the central star. The molecular spectra are seen in emission in this object, what is very unusual in astrophysical sources observed at optical wavelengths. We show that these emission bands arise owing to the special geometry of the star-disk system and that radiative pumping is responsible for excitation of the molecules. From the shapes of the rotational contours, we derive temperatures of about 120 K in this object. Remarkably, the spectra of V4332 Sgr contain features of CrO, which is the first identified signature of this molecule in an astrophysical object. In addition to the excitation and radiative-transfer analysis of the molecular spectra, we discuss chemical pathways that could lead to the observed variety of metal oxides seen in these enigmatic sources. T. Kaminski, M. Schmidt, R. Tylenda, M. Konacki, and M. Gromadzki ApJSuppl., {182} (33), 2009. T

  19. [Young men's contraceptive habits].

    PubMed

    Kaiser, A H; Nielsen, B B; Hansen, K; Johansen, J B; Nielsen, M B

    1992-10-01

    A total of 379 men from the greater Copenhagen area were invited to fill out a questionnaire about sexual habits and use of contraception in connection with conscription for military duty. A total of 334 (88%) answered the questionnaire. In the autumn of 1988, a total of 27 men answered the test questionnaire, while in the spring of 1989, when the real study was conducted, 307 men answered it. The median age of 334 participants was 18 years (range of 17-29 years). 33% of the group stated that they had used condoms during first intercourse, while 47% had not. 1 person reported to be exclusively attracted sexually to men, 5 persons were attracted both to men and women, but 97% were exclusively attracted to women. 82% had had intercourse or other sexual experience with women. 1.8% had had intercourse or other sexual experience with men. 8% had no sexual experience, and 8% did not answer the question. Oral contraceptives were used by 60% and the condom by 56%. 10% had used coitus interruptus at one time or another; 15% had used no contraception; 5% used the IUD; and 5% used the diaphragm. Some gave several answers. 1% used spermicidal lotion. 60% thought that it was the responsibility of both men and women to be concerned about contraception, 12% opined that it was exclusively men's duty, and 2% that it was exclusively women's, while 26% did not answer. 68% wanted to use the condom in the future for protection, 24% did not know, but 8% did not want to use it more extensively. 64% did not think that the fear of AIDS would affect their sexual life, but 36% thought it would. Several of the subjects indicated that they would be more careful about choosing a partner, and every 10th suggested that they would use the condom with a new partner. One person (0.3%) was a drug addict, 89% had never injected drugs, but about 11% did not answer about drugs. 97% and 95%, respectively, indicated that the condom provided good protection against pregnancy and venereal diseases.

  20. Habitable moons around extrasolar giant planets

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.; Wade, R. A.

    1997-01-01

    Possible planetary objects have now been discovered orbiting nine different main-sequence stars. These companion objects (some of which might actually be brown dwarfs) all have a mass at least half that of Jupiter, and are therefore unlikely to be hospitable to Earth-like life: jovian planets and brown dwarfs support neither a solid nor a liquid surface near which organisms might dwell. Here we argue that rocky moons orbiting these companions could be habitable if the planet-moon system orbits the parent star within the so-called 'habitable zone', where life-supporting liquid water could be present. The companions to the stars 16 Cygni B and 47 Ursae Majoris might satisfy this criterion. Such a moon would, however, need to be large enough (>0.12 Earth masses) to retain a substantial and long-lived atmosphere, and would also need to possess a strong magnetic field in order to prevent its atmosphere from being sputtered away by the constant bombardment of energetic ions from the planet's magnetosphere.

  1. Habitable moons around extrasolar giant planets.

    PubMed

    Williams, D M; Kasting, J F; Wade, R A

    1997-01-16

    Possible planetary objects have now been discovered orbiting nine different main-sequence stars. These companion objects (some of which might actually be brown dwarfs) all have a mass at least half that of Jupiter, and are therefore unlikely to be hospitable to Earth-like life: jovian planets and brown dwarfs support neither a solid nor a liquid surface near which organisms might dwell. Here we argue that rocky moons orbiting these companions could be habitable if the planet-moon system orbits the parent star within the so-called 'habitable zone', where life-supporting liquid water could be present. The companions to the stars 16 Cygni B and 47 Ursae Majoris might satisfy this criterion. Such a moon would, however, need to be large enough (>0.12 Earth masses) to retain a substantial and long-lived atmosphere, and would also need to possess a strong magnetic field in order to prevent its atmosphere from being sputtered away by the constant bombardment of energetic ions from the planet's magnetosphere.

  2. Habitable moons around extrasolar giant planets.

    PubMed

    Williams, D M; Kasting, J F; Wade, R A

    1997-01-16

    Possible planetary objects have now been discovered orbiting nine different main-sequence stars. These companion objects (some of which might actually be brown dwarfs) all have a mass at least half that of Jupiter, and are therefore unlikely to be hospitable to Earth-like life: jovian planets and brown dwarfs support neither a solid nor a liquid surface near which organisms might dwell. Here we argue that rocky moons orbiting these companions could be habitable if the planet-moon system orbits the parent star within the so-called 'habitable zone', where life-supporting liquid water could be present. The companions to the stars 16 Cygni B and 47 Ursae Majoris might satisfy this criterion. Such a moon would, however, need to be large enough (>0.12 Earth masses) to retain a substantial and long-lived atmosphere, and would also need to possess a strong magnetic field in order to prevent its atmosphere from being sputtered away by the constant bombardment of energetic ions from the planet's magnetosphere. PMID:9000072

  3. High Resolution Spectroscopy of Vega-like Stars: Abundances and Circumstellar Gas

    NASA Technical Reports Server (NTRS)

    Dunkin, S. K.; Barlow, M. J.; Ryan, Sean G.

    1996-01-01

    Vega-like stars are main-sequence stars exhibiting excess infrared emission. In an effort to improve the information available on this class of star, 13 stars have been analyzed which have been classed as Vega-like, or have an infra-red excess attributable to dust in their circumstellar environment. In a separate paper stellar properties such as effective temperature and log g have been derived and in this poster we highlight the results of the photospheric abundance analysis also carried out during this work. King recently drew attention to the possible link between Vega-like stars and the photospheric metal-depleted class of A-stars, the Lambda Bootis stars. Since Vega-like stars are thought to have disks of dust, it might be expected that accretion of depleted gas onto the surface of these stars may cause this same phenomenon. In the 6 stars studied for depletions, none showed the extreme underabundance patterns observed in Lambda Bootis stars. However, depletions of silicon and magnesium were found in two of the sample, suggesting that these elements are in silicate dust grains in the circumstellar environment of these stars. Absorption lines attributed to circumstellar gas have been positively identified in three stars in our sample. Individual cases show evidence either of high-velocity outflowing gas, variability in the circumstellar lines observed, or evidence of circumstellar gas in excited lines of Fe II. No previous identification of circumstellar material has been made for two of the stars in question.

  4. A Habitability Test of the Exoplanetary System K2-3

    NASA Astrophysics Data System (ADS)

    Diaz-Perez, Ryan; Kipping, David M.; Johnson, John A.

    2016-01-01

    The question of habitability is one of the most interesting questions in exoplanetary science. By studying the orbital properties of a planet, like it's eccentricity and habitable zone inner edge distance we can answer this question. Here we answer the habitability question for the planets in the exoplanetary system K2-3 discovered by the Kepler 2 spacecraft. The system is compose of three planets with radii 1.61-2.17 Rearth, and with orbital periods of 10-45 days. The most outer planet in this system known as K2-3d is particularly interesting due to its proximity towards the habitable zone. The eccentricities of the planets in K2-3 were calculated using a method known as stellar density profiling, and from these eccentricities the range of the semi-major axis were determined. The planet K2-3d was calculated to have a semi-major axis of 0.18 AU, which puts it outside the habitable zone where inner edge of the habitable zone is 0.27 AU from its host star. This project was supported by the The Harvard Banneker Institute.

  5. Habitability of Earth-like Planet Disturbed by a Third Body

    NASA Astrophysics Data System (ADS)

    de Cássia Domingos, Rita; Almeida Prado, A. B.; Winter, O.

    2013-05-01

    Abstract (2,250 Maximum Characters): In this work, we investigate the habitability of “Earth-like” exoplanets disturbed by a giant planet. The assumptions used here are the same ones of the restricted elliptic three-body problem, which means that there is a central main body, a disturbing body in an elliptical orbit and a third body with a negligible mass both around this main body. First, we consider a habitable zone of 0.9 to 1.37 AU. Then, we numerically simulate the whole system taking into account a distribution of massless particles. This study is made considering a range of different values for semi-major axis, eccentricity and inclination of the disturbing body. In particular, the so-called critical angle of the third-body disturbing, which is a value for the inclination such that any near-circular orbit with inclination below this remains near circular, is discussed for Earth-like planets into habitable zone. The results obtained show that orbits of a habitable Earth-like planet is still possible if the disturbing body has low inclination and/or eccentricity. This means that the planet would be located within the habitable zone. However, high eccentricity and/or inclination for disturbing body imply that Earth-like planet orbit changes to a highly eccentric orbit with pericenter and/or apocenter distances outside the habitable zone on short time-scales.

  6. On the inclination and habitability of the HD 10180 system

    SciTech Connect

    Kane, Stephen R.; Gelino, Dawn M.

    2014-09-10

    There are numerous multi-planet systems that have now been detected via a variety of techniques. These systems exhibit a range of both planetary properties and orbital configurations. For those systems without detected planetary transits, a significant unknown factor is the orbital inclination. This produces an uncertainty in the mass of the planets and their related properties, such as atmospheric scale height. Here we investigate the HD 10180 system, which was discovered using the radial velocity technique. We provide a new orbital solution for the system which allows for eccentric orbits for all planets. We show how the inclination of the system affects the mass/radius properties of the planets and how the detection of phase signatures may resolve the inclination ambiguity. We finally evaluate the Habitable Zone properties of the system and show that the g planet spends 100% of an eccentric orbit within the Habitable Zone.

  7. Contribution of oral habits to dental disorders.

    PubMed

    Ehrlich, J; Hochman, N; Yaffe, A

    1992-04-01

    Oral habits or parafunction may contribute to dental, periodontal, or neuromuscular damage. Such habits, of which the patient is often unaware, may cause considerable damage. Habits may be occlusal or non-occlusal, and may affect the dentition and/or the oral soft tissues. Drawing a patient's attention to the damage caused by some habits of which he or she is unaware often leads to cessation, whereas with certain conscious habits, such as nail or finger biting, success is much more limited.

  8. ON THE EXCITATION AND FORMATION OF CIRCUMSTELLAR FULLERENES

    SciTech Connect

    Bernard-Salas, J.; Jones, A. P.; Groenewegen, M. A. T.

    2012-09-20

    We compare and analyze the Spitzer mid-infrared spectrum of three fullerene-rich planetary nebulae in the Milky Way and the Magellanic Clouds: Tc1, SMP SMC 16, and SMP LMC 56. The three planetary nebulae share many spectroscopic similarities. The strongest circumstellar emission bands correspond to the infrared active vibrational modes of the fullerene species C{sub 60} and little or no emission is present from polycyclic aromatic hydrocarbons. The strengths of the fullerene bands in the three planetary nebulae are very similar, while the ratios of the [Ne III]15.5 {mu}m/[Ne II]12.8 {mu}m fine structure lines, an indicator of the strength of the radiation field, are markedly different. This raises questions about their excitation mechanism and we compare the fullerene emission to fluorescent and thermal models. In addition, the spectra show other interesting and common features, most notably in the 6-9 {mu}m region, where a broad plateau with substructure dominates the emission. These features have previously been associated with mixtures of aromatic/aliphatic hydrocarbon solids. We hypothesize on the origin of this band, which is likely related to the fullerene formation mechanism, and compare it with modeled hydrogenated amorphous carbon that present emission in this region.

  9. Probing NH3 Formation in Oxygen-rich Circumstellar Envelopes

    NASA Astrophysics Data System (ADS)

    Wong, K. T.; Menten, K. M.; Kamiński, T.; Wyrowski, F.

    2015-08-01

    The chemistry of ammonia (NH3) in the circumstellar envelopes (CSEs) of AGB stars and red supergiants is poorly understood. Thermodynamic equilibrium (TE) chemistry predicts an abundance of ≲10-8, orders of magnitudes below values reported from observations (˜10-7-10-6). To date, there is no consistent model explaining the origin of such high abundances. To better understand the physical conditions necessary for the formation of NH3, we analysed the NH3 rotational and inversion lines observed in the spectrum of IK Tauri. The strength of the rotational lines clearly confirms the high abundances as compared to the TE predictions. From 1D radiative transfer modelling including infrared pumping via vibrational bands, we infer a total NH3 abundance of 7.5× 10-7, along with an ortho-to-para ratio (OPR) of ≤ 1.5 : 1, slightly above the statistical equilibrium value of 1. We discuss these preliminary results and the possible origin of NH3 in oxygen-rich CSEs.

  10. High angular resolution millimeter observations of circumstellar disks

    NASA Astrophysics Data System (ADS)

    Testi, Leonard; Leurini, Silvia

    2008-06-01

    In this lecture, we review the properties of protoplanetary disks as derived from high angular resolution observations at millimeter wavelengths. We discuss how the combination of several different high angular resolution techniques allow us to probe different regions of the disk around young stellar objects and to derive the properties of the dust when combined with sophisticated disk models. The picture that emerges is that the dust in circumstellar disks surrounding pre-main sequence stars is in many cases significantly evolved compared to the dust in molecular clouds and the interstellar medium. It is however still difficult to derive a consistent picture and timeline for dust evolution in disks as the observations are still limited to small samples of objects. We also review the evidence for and properties of disks around high-mass young stellar objects and the implications on their formation mechanisms. The study of massive YSOs is complicated by their short lifetimes and larger average distances. In most cases high angular resolution data at millimeter wavelengths are the only method to probe the structure of disks in these objects. We provide a summary of the characteristics of available high angular resolution millimeter and submillimeter observatories. We also describe the characteristics of the ALMA observatory being constructed in the Chilean Andes. ALMA is going to be the world leading observatory at millimeter wavelengths in the coming decades, the project is now in its main construction phase with early science activities envisaged for 2010 and full science operations for 2012.

  11. On circumstellar disks: Spitzer identifies two possible evolutionary paths

    NASA Astrophysics Data System (ADS)

    Teixeira, Paula S.; Lada, Charles J.; Marengo, Massimo; Lada, Elizabeth

    Multi-wavelength surveys have vastly improved our understanding of many astrophysical objects, in particular, circumstellar disks. We present our results for the disk population of the young cluster NGC 2264. Our study was based on data obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer on board the Spitzer Space Telescope combined with previously published optical data. We divide the disk population into 3 classes based on their spectral energy distribution shapes: optically thick disks, homologously depleted anemic disks, and radially depleted transition disks. We find that there are two distinct evolutionary paths for disks: a homologous one, where the disk emission decreases uniformly in NIR and mid-infrared wavelengths (anemic disks) and throughout which most sources pass, and a radially differential one where the emission from the inner region of the disk decreases more rapidly than from the outer region (transition disks). Whether a disk evolves in a homologously or radially depleted fashion is still unknown and may depend on the nature of planet formation in the disk.

  12. The circumstellar environment of pre-SN Ia systems

    NASA Astrophysics Data System (ADS)

    Harvey, E.; Redman, M. P.; Boumis, P.; Kopsacheili, M.; Akras, S., Sabin, L.; Jurkic, T.

    2016-06-01

    Here we explore the possible preexisting circumstellar debris of supernova type Ia systems. Classical, symbiotic and recurrent novae all accrete onto roughly solar mass white dwarfs from main sequence or Mira type companions and result in thermonuclear runaways and expulsion of the accreted material at high velocity. The expelled material forms a fast moving shell that eventually slows to planetary nebula expansion velocities within several hundred years. All such systems are recurrent and thousands of shells (each of about 0.001 Mo) snow plough into the environment. As these systems involve common envelope binaries the material is distributed in a non-spherical shell. These systems could be progenitors of some SN Ia and thus explode into environments with large amounts of accumulated gas and dust distributed in thin non-spherical shells. Such shells should be observable around 100 years after a SN Ia event in a radio flash as the SN Ia debris meets that of the ejected material of the systems previous incarnation.

  13. Observation of Circumstellar Gas in the Neighborhood of RZ Psc

    NASA Astrophysics Data System (ADS)

    Potravnov, I. S.; Grinin, V. P.; Ilyin, I. V.

    2013-12-01

    The first evidence is found of the existence of circumstellar gas in the nearest surroundings of the UX Ori star RZ Psc. Spectra obtained at the Terskol Observatory, Special Astrophysical Observatory (SAO), and the Nordic Optical Telescope (NOT) reveal a strong variability in the sodium doublet lines that is indicative of a sporadic outflow of matter. Weak variability was also observed in the core of the Hα line. One nontrivial feature of this discovery is that RZ Psc is of spectral class K0 IV. This means that the star has no intrinsic energy resources for creating the observed outflow of matter. There are no emission lines in the star's spectrum which might indicate that matter is falling into the star so that the observed outflow could be related to an accretion process. We suggest, nevertheless, that the ejection of gas is related to residual (slow) accretion and is driven by a propeller mechanism. The latter is possible if the star has a sufficiently high (on the order of 103 G) magnetic field.

  14. A WISE survey of circumstellar disks in Taurus

    SciTech Connect

    Esplin, T. L.; Luhman, K. L.; Mamajek, E. E.

    2014-04-01

    We have compiled photometry at 3.4, 4.6, 12, and 22 μm from the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) for all known members of the Taurus complex of dark clouds. Using these data and photometry from the Spitzer Space Telescope, we have identified members with infrared excess emission from circumstellar disks and have estimated the evolutionary stages of the detected disks, which include 31 new full disks and 16 new candidate transitional, evolved, evolved transitional, and debris disks. We have also used the WISE All-Sky Source Catalog to search for new disk-bearing members of Taurus based on their red infrared colors. Through optical and near-infrared spectroscopy, we have confirmed 26 new members with spectral types of M1-M7. The census of disk-bearing stars in Taurus should now be largely complete for spectral types earlier than ∼M8 (M ≳ 0.03 M {sub ☉}).

  15. Grain growth and dust trapping in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Pinilla, Paola

    2015-08-01

    Circumstellar disks around young stars are known to be the birthplace of planets. Planet formation starts with the coagulation of micron-sized particles to larger dust aggregates. This process, which covers more than forty orders of magnitude in mass, has different physical challenges. One of the oldest mysteries is how planetesimals are formed, in spite of fragmentation collisions and rapid inward drift. Radial drift theory is in disagreement with the observations of millimetre grains in the cold regions of protoplanetary disks. Nevertheless, a disk model that includes dust coagulation, fragmentation, and the presence of long-lived pressure bumps, which moderate the rapid inward migration of particles, leads to a better agreement between observations and theory. Disks with a dust depleted inner cavity, known as transition disks, are excellent candidates to investigate the dust evolution under the existence of a pressure bump. Millimetre observations of transition disks reveal crescent- and ring-shaped emissions that lend credence to the notion than planetesimals may form in localised hotspots or pressure traps. Recent ALMA observations have showed astonishing dust structures in transition disks, which together with data of CO and its isotopologues, have been giving major support for particle trapping induced by embedded planets, which can solve the old paradigm of radial drift.

  16. ALIGNMENT OF PROTOSTARS AND CIRCUMSTELLAR DISKS DURING THE EMBEDDED PHASE

    SciTech Connect

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C. E-mail: kbatygin@gps.caltech.edu

    2014-12-20

    Star formation proceeds via the collapse of a molecular cloud core over multiple dynamical timescales. Turbulence within cores results in a spatially non-uniform angular momentum of the cloud, causing a stochastic variation in the orientation of the disk forming from the collapsing material. In the absence of star-disk angular momentum coupling, such disk-tilting would provide a natural mechanism for the production of primordial spin-orbit misalignments in the resulting planetary systems. However, owing to high accretion rates in the embedded phase of star formation, the inner edge of the circumstellar disk extends down to the stellar surface, resulting in efficient gravitational and accretional angular momentum transfer between the star and the disk. Here, we demonstrate that the resulting gravitational coupling is sufficient to suppress any significant star-disk misalignment, with accretion playing a secondary role. The joint tilting of the star-disk system leads to a stochastic wandering of star-aligned bipolar outflows. Such wandering widens the effective opening angle of stellar outflows, allowing for more efficient clearing of the remainder of the protostar's gaseous envelope. Accordingly, the processes described in this work provide an additional mechanism responsible for sculpting the stellar initial mass function.

  17. Rapid disappearance of a warm, dusty circumstellar disk.

    PubMed

    Melis, Carl; Zuckerman, B; Rhee, Joseph H; Song, Inseok; Murphy, Simon J; Bessell, Michael S

    2012-07-04

    Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution typically is ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amount of cooler dust. Such a phase of rapid ejecta evolution has not been previously predicted or observed, and no currently available physical model satisfactorily explains the observations.

  18. Rapid disappearance of a warm, dusty circumstellar disk.

    PubMed

    Melis, Carl; Zuckerman, B; Rhee, Joseph H; Song, Inseok; Murphy, Simon J; Bessell, Michael S

    2012-07-01

    Stars form with gaseous and dusty circumstellar envelopes, which rapidly settle into disks that eventually give rise to planetary systems. Understanding the process by which these disks evolve is paramount in developing an accurate theory of planet formation that can account for the variety of planetary systems discovered so far. The formation of Earth-like planets through collisional accumulation of rocky objects within a disk has mainly been explored in theoretical and computational work in which post-collision ejecta evolution typically is ignored, although recent work has considered the fate of such material. Here we report observations of a young, Sun-like star (TYC 8241 2652 1) where infrared flux from post-collisional ejecta has decreased drastically, by a factor of about 30, over a period of less than two years. The star seems to have gone from hosting substantial quantities of dusty ejecta, in a region analogous to where the rocky planets orbit in the Solar System, to retaining at most a meagre amount of cooler dust. Such a phase of rapid ejecta evolution has not been previously predicted or observed, and no currently available physical model satisfactorily explains the observations. PMID:22763553

  19. Polarization of circumstellar bow shocks due to electron scattering

    NASA Astrophysics Data System (ADS)

    Shrestha, Manisha; Hoffman, J. L.; Neilson, H.; Ignace, R.

    2014-01-01

    Circumstellar material (CSM) provides a link between interacting supernovae and their massive progenitor stars. This CSM arises from stellar winds, outflows, or eruptions from a massive star before it explodes and can be detected around stars or supernovae with polarimetric observations. We use a Monte Carlo based radiative transfer code (SLIP) to investigate the polarization created by different models for the CSM surrounding a central source such as supernovae or massive stars. We vary parameters such as the shape, optical depth, temperature, and brightness of the CSM and compare the simulated flux and polarization behavior with observational data. We present results from new simulations that assume a bow shock shape for the CSM. Bow shocks are commonly observed around massive stars; this shape forms when a star moving more quickly than the speed of sound in the local interstellar medium emits a stellar wind that drives a shock wave into the ISM. Since a bow shock projects an aspherical shape onto the sky, light from the central source that scatters in the shock region becomes polarized. We present electron-scattering polarization maps for this geometry and discuss the behavior of observed polarization with viewing angle in the unresolved case.

  20. The circumstellar envelope of S 106 - IRS 4

    NASA Astrophysics Data System (ADS)

    Felli, M.; Simon, M.; Fischer, J.; Hamann, F.

    1985-04-01

    The authors present new observations that help set the parameters of the ionized circumstellar envelope of S 106-IRS 4. The part of the envelope that is optically thick at 1.35 cm wavelength is smaller than 0arcsec.15 diameter which corresponds to 90 AU at 600 pc distance. The profiles of the Brackett-α and -γ lines are somewhat different with half power widths of 121±10 and 181±15 km s-1, respectively. The He I (21P-21S) line is detected at the S 106 nebula but not at IRS 4. The He I line emission of the nebula indicates that the central star of IRS 4 must have an effective temperature of about 35,000K. Comparison of the wind model scenario presented by Felli et al. (1984) with the present data and the Paschen line and Paschen edge data of McGregor et al. (1984) shows that the model encounters difficulties when observables that require details of the velocity field and of the innermost regions of the flow are considered.

  1. The Circumstellar Environments of Born-Again Giants

    NASA Astrophysics Data System (ADS)

    Helton, L. Andrew; Evans, Aneurin; Gehrz, Robert D.; Woodward, Charles; Eyres, Stewart

    2015-08-01

    When a solar-mass star reaches the end of its main sequence life, has shed a planetary nebula or become a proto-planetary nebula, and is heading towards the white dwarf phase of its evolution, the star may reignite residual surface helium and be "reborn". It retraces its path on the HR diagram and once again becomes a giant: it undergoes a Very Late Thermal Pulse (VLTP) and becomes a "Born-Again Giant" (BAG). This alternate scenario for the demise of low mass stars may occur in as many as 20% of cases. During this phase the star may become a prolific dust producer such that the star is completely obscured and the only means of monitoring its evolution is by observing the ejected dust.Over the past 10-20 years we have used ground-based, spaceborne and airborne infrared (IR) facilities to monitor the spectral energy distributions of the dust shells of stars that have recently undergone VLTPs. Covering a time period from ~1996 to the present, and with recent SOFIA observations that extend the spectral coverage from 1 - 38 microns, we have been able to determine mass-loss rates from the stars, and the physical state, nature and extent of their circumstellar dust shells.Our observations throw light on a phase of the evolution of low mass stars that is very rare, poorly observed, and little understood. Understanding these phenomena can potentially give us a glimpse of the ultimate fate of the Sun.

  2. Mapping α Centauri AB for Possible Habitable Planets

    NASA Astrophysics Data System (ADS)

    Quarles, Billy L.; Lissauer, Jack J.

    2016-06-01

    The alpha Centauri AB star system, our closest stellar neighbors, has been studied for many decades and ACESat (Belikov et al. AAS Meeting #225, #311.01, 2015) is a proposed space mission designed to directly image Earth-sized planets in the habitable zones of both of these stars. The alpha Centauri system is older than our Sun, so any resident planets are expected to occupy long-lived orbits. We evaluate the extent of these trajectories where planets are able to orbit for billion-year timescales. The distribution of long-lived orbits is mapped to the sky plane to indicate regions where planets may appear relative to each stellar component. Our results confirm qualitatively those of Wiegert & Holman (Astron. J. 113, 1445, 1997) regarding the approximate size of the regions of stable orbits, which are larger for retrograde orbits relative to the binary than for prograde orbits. Moreover, we find that orbits beyond each star’s habitable zone are affected by a dynamical imprint from the binary orbit due to mean motion resonances and the Lidov-Kozai Mechanism. Stable planets can exist near the plane of the binary orbit within each stellar habitable zone, whereas highly inclined orbits are typically short-lived. These results are of special interest as they can guide the search process of our stellar neighbors in future missions.

  3. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-01

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  4. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-01

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets. PMID:16960000

  5. An Optical Study of the Circumstellar Environment Around the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Fesen, Robert A.; Shull, J. Michael; Hurford, Alan P.

    1997-01-01

    Long-slit spectra of two peripheral regions around the Crab Nebula show no H(alpha) emission down to a flux level of 1.5 x 10(exp -7)erg/sq cm s sr (0.63 Rayleigh), corresponding to an emission measure limit of 4.2 cm(sup - 6) pc (3(sigma)) assuming A(sub V)= 1.6(sup m) and T(sub e)=7000 K. This is below the flux levels reported by Murdin & Clark (Nature, 294, 543 (198 1)) for an H(alpha) halo around the Crab. Narrow H(beta) emission as described by Murdin (MNRAS, 269, 89 (1994)) is detected but appears to be Galactic emission unassociated with the remnant. A review of prior searches indicates no convincing observational evidence to support either a high- or low-velocity envelope around the remnant. Spectral scans confirm a well-organized, N-S expansion asymmetry of the filaments with a approx. 500 km/s central velocity constriction as described by MacAlpine et al. (ApJ, 342, 364 (1989)) and Lawrence et (it. (AJ, 109, 2635 (1995)] but questioned by Hester et al. (ApJ, 448, 240 (1995)). The velocity pinching appears to coincide with an cast-west chain of bright [O III] and helium-rich filaments. This expansion asymmetry might be the result of ejecta interaction with a disk of circumstellar matter, but such a model may be inconsistent with H and He filament abundances in the velocity constriction zone. A re-analysis of the remnant's total mass suggests that the filaments contain 4.6 +/- 1.8 M(solar) in ionized and neutral cas, about twice that of earlier estimates. For a 10M(solar) progenitor, this suggests that approx.equals 4M(solar) remains to be detected in an extended halo or wind.

  6. [Health effects of living habits].

    PubMed

    Vuori, Ilkka

    2015-01-01

    Single healthy living habits such as non-smoking and regular physical activity decrease the risk of common non-communicable diseases, unsuccessful aging and premature death to a small to moderate degree. Their cumulative effects are, however, large. Only a small minority of people adhere well to all healthy living habits or even the healthiest ones. Consequently, the population attributable fractions of major public health problems due to unhealthy lifestyles are large. Substantial improvement of public health calls for policies and programs to influence the root causes of the lifestyles in the multiple environments and systems where they are developed, maintained, and changed.

  7. Discovery of a Circumstellar Disk in the Lagoon Nebula

    NASA Astrophysics Data System (ADS)

    1997-04-01

    Circumstellar disks of gas and dust play a crucial role in the formation of stars and planets. Until now, high-resolution images of such disks around young stars within the Orion Nebula obtained with the Hubble Space Telescope (HST) constituted the most direct proof of their existence. Now, another circumstellar disk has been detected around a star in the Lagoon Nebula - also known as Messier 8 (M8) , a giant complex of interstellar gas and dust with many young stars in the southern constellation of Sagittarius and four times more distant than the Orion Nebula. The observations were carried out by an international team of scientists led by Bringfried Stecklum (Thüringer Landessternwarte, Tautenburg, Germany) [1] who used telescopes located at the ESO La Silla observatory and also observations from the HST archive. These new results are paving the road towards exciting research programmes on star formation which will become possible with the ESO Very Large Telescope. The harsh environment of circumstellar disks The existence of circumstellar disks has been inferred from indirect measurements of young stellar objects, such as the spectral energy distribution, the analysis of the profiles of individual spectral lines and measurements of the polarisation of the emitted light [2]. Impressive images of such disks in the Orion Nebula, known as proplyds (PROto-PLanetarY DiskS), have been obtained by the HST during the recent years. They have confirmed the interpretation of previous ground-based emission-line observations and mapping by radio telescopes. Moreover, they demonstrated that those disks which are located close to hot and massive stars are subject to heating caused by the intense radiation from these stars. Subsequently, the disks evaporate releasing neutral gas which streams off. During this process, shock fronts (regions with increased density) with tails of ionised gas result at a certain distance between the disk and the hot star. These objects appear on

  8. A Collisional Algorithm for Modeling Circumstellar Debris Disks

    NASA Technical Reports Server (NTRS)

    Nesvold, Erika; Kuchner, Marc

    2011-01-01

    Many planetary systems harbor circumstellar disks of dust and planetesimals thought to be debris left over from planet formation. These debris disks exhibit a range of morphological features which can arise from the gravitational perturbations of planets. Accurate models of these features, accounting for the interactions of the particles in a disk with each other and with whatever planets they contain, can act as signposts for planets in debris disks that otherwise could not be detected. Such models can also constrain the planet's mass and orbital parameters. Current models for many disks consider the gravitational and radiative effects of the star and planets on the disk, but neglect the morphological consequences of collisional interactions between the planetesimals. Many observed disk features are not satisfactorily explained by the current generation of models. I am developing a new kind of debris disk model that considers both the gravitational shaping of the disk by planets and the inelastic collisions between particles. I will use a hybrid N-body integrator to numerically solve the equations of motion for the particles and planets in the disk. To include the collisional effects, I begin with an algorithm that tests for collisions at each step of the orbit integration and readjusts the velocities of colliding particles. I am adapting this algorithm to the problem at hand by allowing each particle to represent a "swarm" of planetesimals with a range of masses. When the algorithm detects an encounter between swarms, two or three swarms are produced to approximate the range of possible trajectories of the daughter planetesimals. Here I present preliminary results from my collisional algorithm.

  9. Thermal desorption of circumstellar and cometary ice analogs

    NASA Astrophysics Data System (ADS)

    Martín-Doménech, R.; Muñoz Caro, G. M.; Bueno, J.; Goesmann, F.

    2014-04-01

    Context. Thermal annealing of interstellar ices takes place in several stages of star formation. Knowledge of this process comes from a combination of astronomical observations and laboratory simulations under astrophysically relevant conditions. Aims: For the first time we present the results of temperature programmed desorption (TPD) experiments with pre-cometary ice analogs composed of up to five molecular components: H2O, CO, CO2, CH3OH, and NH3. Methods: The experiments were performed with an ultra-high vacuum chamber. A gas line with a novel design allows the controlled preparation of mixtures with up to five molecular components. Volatiles desorbing to the gas phase were monitored using a quadrupole mass spectrometer, while changes in the ice structure and composition were studied by means of infrared spectroscopy. Results: The TPD curves of water ice containing CO, CO2, CH3OH, and NH3 present desorption peaks at temperatures near those observed in pure ice experiments, volcano desorption peaks after water ice crystallization, and co-desorption peaks with water. Desorption peaks of CH3OH and NH3 at temperatures similar to the pure ices takes place when their abundance relative to water is above ~3% in the ice matrix. We found that CO, CO2, and NH3 also present co-desorption peaks with CH3OH, which cannot be reproduced in experiments with binary water-rich ice mixtures. These are extensively used in the study of thermal desorption of interstellar ices. Conclusions: These results reproduce the heating of circumstellar ices in hot cores and can be also applied to the late thermal evolution of comets. In particular, TPD curves represent a benchmark for the analysis of the measurements that mass spectrometers on board the ESA-Rosetta cometary mission will perform on the coma of comet 67P/Churyumov-Gerasimenko, which will be active before the arrival of Rosetta according to our predictions.

  10. ALMA Observations of HD 141569’s Circumstellar Disk

    NASA Astrophysics Data System (ADS)

    White, J. A.; Boley, A. C.; Hughes, A. M.; Flaherty, K. M.; Ford, E.; Wilner, D.; Corder, S.; Payne, M.

    2016-09-01

    We present ALMA band 7 (345 GHz) continuum and 12CO(J = 3-2) observations of the circumstellar disk surrounding HD 141569. At an age of about 5 Myr, the disk has a complex morphology that may be best interpreted as a nascent debris system with gas. Our 870 μm ALMA continuum observations resolve a dust disk out to approximately 56 au from the star (assuming a distance of 116 pc) with 0.″38 resolution and 0.07 mJy beam-1 sensitivity. We measure a continuum flux density for this inner material of 3.8 ± 0.4 mJy (including calibration uncertainties). The 12CO(3-2) gas is resolved kinematically and spatially from about 30 to 210 au. The integrated 12CO(3-2) line flux density is 15.7 ± 1.6 Jy km s-1. We estimate the mass of the millimeter debris and 12CO(3-2) gas to be ≳0.04 M ⊕ and ˜2 × 10-3 M ⊕, respectively. If the millimeter grains are part of a collisional cascade, then we infer that the inner disk (<50 au) has ˜160 M ⊕ contained within objects less than 50 km in radius, depending on the planetesimal size distribution and density assumptions. Markov Chain Monte Carlo modeling of the system reveals a disk morphology with an inclination of 53.°4 centered around an M = 2.39 M ⊙ host star (Msin(i) = 1.92 M ⊙). We discuss whether the gas in HD 141569's disk may be second generation. If it is, the system can be used to study the clearing stages of planet formation.

  11. Circumstellar medium around rotating massive stars at solar metallicity

    NASA Astrophysics Data System (ADS)

    Georgy, Cyril; Walder, Rolf; Folini, Doris; Bykov, Andrei; Marcowith, Alexandre; Favre, Jean M.

    2013-11-01

    Aims: Observations show nebulae around some massive stars but not around others. If observed, their chemical composition is far from homogeneous. Our goal is to put these observational features into the context of the evolution of massive stars and their circumstellar medium (CSM) and, more generally, to quantify the role of massive stars for the chemical and dynamical evolution of the ISM. Methods: Using the A-MAZE code, we perform 2d-axisymmetric hydrodynamical simulations of the evolution of the CSM, shaped by stellar winds, for a whole grid of massive stellar models from 15 to 120 M⊙ and following the stellar evolution from the zero-age main-sequence to the time of supernova explosion. In addition to the usual quantities, we also follow five chemical species: H, He, C, N, and O. Results: We show how various quantities evolve as a function of time: size of the bubble, position of the wind termination shock, chemical composition of the bubble, etc. The chemical composition of the bubble changes considerably compared to the initial composition, particularly during the red-supergiant (RSG) and Wolf-Rayet (WR) phases. In some extreme cases, the inner region of the bubble can be completely depleted in hydrogen and nitrogen, and is mainly composed of carbon, helium, and oxygen. We argue why the bubble typically expands at a lower rate than predicted by self-similarity theory. In particular, the size of the bubble is very sensitive to the density of the ISM, decreasing by a factor of ~2.5 for each additional dex in ISM density. The bubble size also decreases with the metallicity of the central star, because low-metallicity stars have weaker winds. Our models qualitatively fit the observations of WR ejecta nebulae.

  12. Environmental control system for Habitable-zone Planet Finder (HPF)

    NASA Astrophysics Data System (ADS)

    Hearty, Fred; Levi, Eric; Nelson, Matt; Mahadevan, Suvrath; Burton, Adam; Ramsey, Lawrence; Bender, Chad; Terrien, Ryan; Halverson, Samuel; Robertson, Paul; Roy, Arpita; Blank, Basil; Blanchard, Ken; Stefansson, Gudmundur

    2014-07-01

    HPF is an ultra-stable, precision radial velocity near infrared spectrograph with a unique environmental control scheme. The spectrograph will operate at a mid-range temperature of 180K, approximately half way between room temperature and liquid nitrogen temperature; it will be stable to sub -milli-Kelvin(mK) levels over a calibration cycle and a few mK over months to years. HPF's sensor is a 1.7 micron H2RG device by Teledyne. The environmental control boundary is a 9 m2 thermal enclosure that completely surrounds the optical train and produces a near blackbody cavity for all components. A large, pressure - stabilized liquid nitrogen tank provides the heat sink for the system via thermal straps while a multichannel resistive heater control system provides the stabilizing heat source. High efficiency multi-layer insulation blanketing provides the outermost boundary of the thermal enclosure to largely isolate the environmental system from ambient conditions. The cryostat, a stainless steel shell derived from the APOGEE design, surrounds the thermal enclosure and provides a stable, high quality vacuum environment. The full instrument will be housed in a passive 'meat -locker' enclosure to add a degree of additional thermal stability and as well as protect the instrument. Effectiveness of this approach is being empirically demonstrated via long duration scale model testing. The full scale cryostat and environmental control system are being constructed for a 2016 delivery of the instrument to the Hobby-Eberly Telescope. This report describes the configuration of the hardware and the scale-model test results as well as projections for performance of the full system.

  13. Habitability of planets on eccentric orbits: limits of the mean flux approximation??

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Libert, Anne-Sophie; Leconte, Jeremy; Selsis, Franck

    2015-07-01

    A few of the planets found in the insolation habitable zone (as defined by Kasting et al. 1993) are on eccentric orbits, such as HD 136118 b (eccentricity of ˜0.3, Wittenmyer et al. 2009). This raises the question of the potential habitability of planets that only spend a fraction of their orbit in the habitable zone. Usually for a planet of semi-major axis a and eccentricity e, the averaged flux over one orbit received by the planet is considered. This averaged flux corresponds to the flux received by a planet on a circular orbit of radius r = a(1-eˆ2)ˆ1/4. If this orbital distance is within the habitable zone, the planet is considered "habitable". However, for a hot star, for which the habitable zone is far from the star, the climate can be degraded when the planet is temporarily outside the habitable zone. The influence of the orbital eccentricity of a planet on its climate has already been studied for Earth-like conditions (same star, same rotation period), with Global Climate Models (GCM) such as in Williams & Pollard 2002 and Linsenmeier et al. 2014. Spiegel 2010 and Dressing et al. 2010 have also studied the effect of eccentricity for more diverse conditions with energy-balanced models. We performed a set of simulations using the Global Climate Model LMDz (Wordsworth et al. 2011, Forget et al. 2013, Leconte et al. 2013). We computed the climate of aqua planets receiving a mean flux equal to Earth's, around stars of luminosity ranging from 1 Lsun to 10-4 Lsun and of orbital eccentricity from 0 to 0.9. We show the limits of the mean flux approximation, depending on the previous parameters and also the thermal inertia of oceans.

  14. 7 Habits of Developmental Coaches

    ERIC Educational Resources Information Center

    Darden, Gibson; Shimon, Jane

    2004-01-01

    In this article, the authors describe how coaches can apply principles of athlete growth and development to the learning and performance of motor skills. They present 7 habits that lead to well-rounded athletes who experience increased enjoyment, self-motivation, skill improvement, and ultimately more success on the playing field. (Contains 1…

  15. Practicing Good Habits, Grade 2.

    ERIC Educational Resources Information Center

    Nguyen Van Quan; And Others

    This illustrated primer, designed for second grade students in Vietnam, consists of stories depicting rural family life in Vietnam. The book is divided into the following six chapters: (1) Practicing Good Habits (health, play, helpfulness); (2) Duties at Home (grandparents, father and mother, servants, the extended family; (3) Duties in School…

  16. Encouraging the Lifetime Reading Habit.

    ERIC Educational Resources Information Center

    Sanacore, Joseph

    Educators must accept the challenge of encouraging the lifetime reading habit in school. Students who are surrounded with books, newspapers, magazines, and other materials will be tempted to browse and to read from these sources. When selecting materials for the classroom, educators should work closely with the library media specialist who is…

  17. [Health habits of health professionals].

    PubMed

    Aristizábal Castaño, I; San Martín Rodríguez, L

    1998-05-01

    The conduct of medical professionals is an important educational point of reference for the many people who see and know them. Nurses and other medical workers are often role models in which their daily health habits may be imitated by their patients, family of friends. With this in mind a study, based on a previously published work in the United States (Health Practices of Nursing Students), was performed to determine, first, if the daily habits of nurses are indeed healthy and adequate to communicate a salubrious lifestyle; second, to see if this group considers themselves capable and responsible for changing those unsanitary habits that they do have. Results of the surveys of 125 subject nurses from the University of Navarra indicate that there is a great amount of consciousness regarding the danger of most unsanitary habits and the need to avoid them, although many of them remain firmly entrenched in their daily lives. The percentage of nurses who felt capable or responsible for changing unhealthy practices was low (67.5%).

  18. Metacognition, Study Habits and Attitudes

    ERIC Educational Resources Information Center

    Ozsoy, Gokhan; Memis, Aysel; Temur, Turan

    2009-01-01

    This study is conducted to investigate the relationship between fifth grade students' metacognition levels, and their study habits and attitudes. Participants of the study consist of 221 students, 125 female and 96 male, enrolling to six public primary schools in Turkey. The results revealed that there is a medium positive relationship between…

  19. THE QUEST FOR CRADLES OF LIFE: USING THE FUNDAMENTAL METALLICITY RELATION TO HUNT FOR THE MOST HABITABLE TYPE OF GALAXY

    SciTech Connect

    Dayal, Pratika; Cockell, Charles; Rice, Ken; Mazumdar, Anupam

    2015-09-01

    The field of astrobiology has made huge strides in understanding the habitable zones around stars (stellar habitable zones) where life can begin, sustain its existence and evolve into complex forms. A few studies have extended this idea by modeling galactic-scale habitable zones (galactic habitable zones) for our Milky Way (MW) and specific elliptical galaxies. However, estimating the habitability for galaxies spanning a wide range of physical properties has so far remained an outstanding issue. Here, we present a “cosmobiological” framework that allows us to sift through the entire galaxy population in the local universe and answer the question, “Which type of galaxy is most likely to host complex life in the cosmos?” Interestingly, the three key astrophysical criteria governing habitability (total mass in stars, total metal mass and ongoing star formation rate) are found to be intricately linked through the “fundamental metallicity relation” as shown by Sloan Digital Sky Survey observations of more than a hundred thousand galaxies in the local universe. Using this relation we show that metal-rich, shapeless giant elliptical galaxies at least twice as massive as the MW (with a tenth of its star formation rate) can potentially host ten thousand times as many habitable (Earth-like) planets, making them the most probable “cradles of life” in the universe.

  20. The Influence of Eccentricity Cycles on Exoplanet Habitability

    NASA Astrophysics Data System (ADS)

    Baskin, N. J. K.; Fabrycky, D. C.; Abbot, D. S.

    2015-12-01

    In our search for habitable exoplanets, it is important to understand how planetary habitability is influenced by orbital configurations that differ from those of the terrestrial planets in our Solar system. In particular, observational surveys have revealed the prevalence of planetary systems around binary stars. Within these systems, the gravitational influence of a companion star can induce libration in the eccentricity of the planet's orbit (referred to as Kozai Cycles) on timescales as short as thousands of years. The resulting fluctuations in stellar flux at the top of the atmosphere can potentially induce dramatic variations in surface temperatures, with direct implications for the planet's habitability prospects. We investigate this research problem using two steps. First, we utilize the MERCURY N-body integrator in order to calculate the eccentricity of a hypothetical Earth-analogue under the gravitational influence of a stellar companion. Second, we run a coupled Global Climate Model (GCM) at various stages of a cycle provided by the MERCURY runs in order to examine if the increase in insolation renders the planet uninhabitable. This work will allow us to better understand how Kozai cycles influence the boundaries of a planet's habitable zone.

  1. Effects of Exoplanet Planetesimal Carbon Chemistry on Habitability

    NASA Astrophysics Data System (ADS)

    Johnson, Torrence V.; Mousis, O.; Lunine, J. I.; Madhusudhan, N.

    2013-10-01

    We explore the effects of reported differences in C/O values for exoplanet host stars on the composition of planetesimals formed beyond the snow line in these systems. Since the value of C/O in a planet forming nebula has a strong effect on amount of oxygen available for water ice in an oxidizing nebula, exoplanet systems for host stars with C/O greater than the solar value may have planetesimals with very little or no water ice. We have estimated the composition of volatile and refractory material in extrasolar planetesimals using a set of stars with a wide range of measured C/O abundances (Johnson et al. ApJ. 757(2), 192, 2012). The volatile ice content of planetesimals in these systems varies significantly with C/O, controlled primarily by the availability of O for H2 O ice condensation. Systems with C/O less than the solar value (C/O = 0.55) should have very water ice rich planetesimals, while water ice mass fraction decreases rapidly with increasing C/O until only ices of CO and CO2 are left in significant proportions. If a significant fraction of C is in the form of refractory CHON particles, C and O are removed from the gas phase and the condensates for super-solar C/O values will be water-poor mixtures of silicates and metal, carbon, and carbon-bearing volatile ices, depending on temperature. For very carbon-rich systems, oxidizing conditions cannot be sustained beyond about C/O=1, due to the oxygen sequestered in solid silicates, oxides and CHON, for refractory C fractions within the Pollack et al. range of 0.4 - 0.7 (ApJ. 421, 615, 1994). These results have implications for assessing the habitability of exoplanets since they constrain the amount of water available beyond the snow line for dynamical delivery to inner planets, depending on the host star’s C/O in the circumstellar nebula. Thus one the key chemical ingredients for habitability may be in short supply in carbon-rich, oxygen-poor systems even if planets exist in the ‘habitable zone’. TVJ

  2. Circumstellar matter and the nature of the SN1987A progenitor star

    NASA Technical Reports Server (NTRS)

    Chevalier, R. A.; Fransson, C.

    1987-01-01

    It is argued that radio observations of the supernova 1987A can be interpreted in terms of its interaction with circumstellar matter. The early turn-on of the radio emission implies a relatively low density circumstellar medium. The optical properties of the supernova imply that the progenitor star had a smaller radius than that of a typical type II supernova progenitor. The mass loss properties are consistent with this hypothesis. The thermal X-ray luminosity of the supernova is predicted and noted to be below the current upper limit. A bright infrared dust echo is not expected, although a weak echo from an earlier mass loss phase is possible. Weak ultraviolet emission lines from cicumstellar gas may be visible. Although the circumstellar density is low, it is possible that the progenitor star did lose a substantial fraction of its mass prior to the supernova explosion.

  3. Habitability of enceladus: planetary conditions for life.

    PubMed

    Parkinson, Christopher D; Liang, Mao-Chang; Yung, Yuk L; Kirschivnk, Joseph L

    2008-08-01

    The prolific activity and presence of a plume on Saturn's tiny moon Enceladus offers us a unique opportunity to sample the interior composition of an icy satellite, and to look for interesting chemistry and possible signs of life. Based on studies of the potential habitability of Jupiter's moon Europa, icy satellite oceans can be habitable if they are chemically mixed with the overlying ice shell on Myr time scales. We hypothesize that Enceladus' plume, tectonic processes, and possible liquid water ocean may create a complete and sustainable geochemical cycle that may allow it to support life. We discuss evidence for surface/ocean material exchange on Enceladus based on the amounts of silicate dust material present in the Enceladus' plume particles. Microphysical cloud modeling of Enceladus' plume shows that the particles originate from a region of Enceladus' near surface where the temperature exceeds 190 K. This could be consistent with a shear-heating origin of Enceladus' tiger stripes, which would indicate extremely high temperatures ( approximately 250-273 K) in the subsurface shear fault zone, leading to the generation of subsurface liquid water, chemical equilibration between surface and subsurface ices, and crustal recycling on a time scale of 1 to 5 Myr. Alternatively, if the tiger stripes form in a mid-ocean-ridge-type mechanism, a half-spreading rate of 1 m/year is consistent with the observed regional heat flux of 250 mW m(-2) and recycling of south polar terrain crust on a 1 to 5 Myr time scale as well.

  4. TYPE Ia SUPERNOVAE STRONGLY INTERACTING WITH THEIR CIRCUMSTELLAR MEDIUM

    SciTech Connect

    Silverman, Jeffrey M.; Nugent, Peter E.; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi; Sullivan, Mark; Howell, D. Andrew; Graham, Melissa L.; Filippenko, Alexei V.; Bloom, Joshua S.; Cenko, S. Bradley; Clubb, Kelsey I.; Cao, Yi; Horesh, Assaf; Kulkarni, Shrinivas R.; Chornock, Ryan; Foley, Ryan J.; Coil, Alison L.; Griffith, Christopher V.; Kasliwal, Mansi M.; and others

    2013-07-01

    Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe Ia) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia shows evidence of strong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; we refer to them as SNe Ia-CSM. In the first systematic search for such systems, we have identified 16 SNe Ia-CSM, and here we present new spectra of 13 of them. Six SNe Ia-CSM have been well studied previously, three were previously known but are analyzed in depth for the first time here, and seven are new discoveries from the Palomar Transient Factory. The spectra of all SNe Ia-CSM are dominated by H{alpha} emission (with widths of {approx}2000 km s{sup -1}) and exhibit large H{alpha}/H{beta} intensity ratios (perhaps due to collisional excitation of hydrogen via the SN ejecta overtaking slower-moving CSM shells); moreover, they have an almost complete lack of He I emission. They also show possible evidence of dust formation through a decrease in the red wing of H{alpha} 75-100 days past maximum brightness, and nearly all SNe Ia-CSM exhibit strong Na I D absorption from the host galaxy. The absolute magnitudes (uncorrected for host-galaxy extinction) of SNe Ia-CSM are found to be -21.3 mag {<=} M{sub R} {<=} -19 mag, and they also seem to show ultraviolet emission at early times and strong infrared emission at late times (but no detected radio or X-ray emission). Finally, the host galaxies of SNe Ia-CSM are all late-type spirals similar to the Milky Way, or dwarf irregulars like the Large Magellanic Cloud, which implies that these objects come from a relatively young stellar population. This work represents the most detailed analysis of the SN Ia-CSM class to date.

  5. The Stability of Habitable Planetary Environments

    NASA Astrophysics Data System (ADS)

    Williams, Darren Mark

    1998-12-01

    The recent discoveries of extrasolar planets have generated widespread anticipation of detecting a life-supporting environment, such as an Earth-like planet or moon, around a nearby solar-type star. Future observations will enable life on such worlds to be detected remotely through the spectral identification of CH4 and O3 in their atmospheres. This thesis addresses the climatic and dynamic factors affecting whether an Earth-like biosphere might exist around another star and, hence, the likelihood that extraterrestrial life will be discovered in the foreseeable future. To remain habitable for billions of years, a planetary body must be large enough to form and retain an atmosphere. Earth's Moon (~0.01M⊕) does not satisfy this basic criterion. Objects with atmospheres must orbit their stars within the habitable zone (HZ) for liquid water to exist on their surfaces. Otherwise habitable worlds can have their climates destabilized by the slow brightening of their-stars as the age, or by chaotic variability of their orbits and obliquities over time. Earth's 23.5o-obliquity is presently stable, but the spin-stability of extrasolar Earths will depend on the masses and proximity of satellites and neighboring planets. Climates of planets with high obliquities are investigated using an energy-balance climate model. At high obliquity, Earth's climatic zonation is reversed so that the lower latitudes are permanently frozen and the poles are subjected to extraordinary swings in seasonal temperature. Planets within the outer HZs around their stars are less affected by obliquity because they develop dense-CO2 atmospheres as a result of the carbonate-silicate geochemical cycle. Efficient heat transport within such atmospheres reduce latitudinal temperature gradients and limit the amplitudes of seasonal temperature extremes. Geologic evidence for low-latitude glaciation during the Precambrian era suggests that the obliquity of early-Earth may have been much higher than it is

  6. University Students' Media Habits: A Lithuanian Study.

    ERIC Educational Resources Information Center

    Kamalipour, Yahya R.; And Others

    A study replicated a 1994 study, "College Students' Media Habits: A National Study." In the present study, Lithuanian university students' media habits relative to American students' media habits were gauged. A total of 1500 survey questionnaires were distributed to 7 of the 16 Lithuanian universities. Background biographical questions were asked,…

  7. 25 CFR 700.67 - Habitation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false Habitation. 700.67 Section 700.67 Indians THE OFFICE OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES General Policies and Instructions Definitions § 700.67 Habitation. The term habitation means the dwelling(s) of each...

  8. 25 CFR 700.67 - Habitation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false Habitation. 700.67 Section 700.67 Indians THE OFFICE OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES General Policies and Instructions Definitions § 700.67 Habitation. The term habitation means the dwelling(s) of each...

  9. 25 CFR 700.67 - Habitation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false Habitation. 700.67 Section 700.67 Indians THE OFFICE OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES General Policies and Instructions Definitions § 700.67 Habitation. The term habitation means the dwelling(s) of each...

  10. 25 CFR 700.67 - Habitation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Habitation. 700.67 Section 700.67 Indians THE OFFICE OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES General Policies and Instructions Definitions § 700.67 Habitation. The term habitation means the dwelling(s) of each...

  11. Habitability potential of satellites around Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena; Raulin, Francois; Encrenaz, Therese; Grasset, Olivier; Solomonidou, Anezina

    2016-07-01

    In looking for habitable conditions in the outer solar system recent research focuses on the natural satellites rather than the planets themselves. Indeed, the habitable zone as traditionally defined may be larger than originally conceived. The outer solar system satellites provide a conceptual basis within which new theories for understanding habitability can be constructed. Measurements from the ground but also by the Voyager, Galileo and the Cassini spacecrafts revealed the potential of these satellites in this context, and our understanding of habitability in the solar system and beyond can be greatly enhanced by investigating several of these bodies together [1]. Their environments seem to satisfy many of the "classical" criteria for habitability (liquid water, energy sources to sustain metabolism and chemical compounds that can be used as nutrients over a period of time long enough to allow the development of life). Indeed, several of the moons show promising conditions for habitability and the development and/or maintenance of life. The strong gravitational pull caused by the giant planets may produce enough energy to sufficiently heat the cores of orbiting icy moons. Europa and Ganymede may be hiding, under their icy crust, putative undersurface liquid water oceans [2] which, in the case of Europa [3], may be in direct contact with a silicate mantle floor and kept warm by tidally generated heat [4]. Titan and Enceladus, Saturn's satellites, were found by the Cassini-Huygens mission to possess active organic chemistries with seasonal variations, unique geological features and possibly internal liquid water oceans. Titan's rigid crust and the probable existence of a subsurface ocean create an analogy with terrestrial-type plate tectonics, at least surficial [5], while Enceladus' plumes find an analogue in geysers. As revealed by Cassini the liquid hydrocarbon lakes [6] distributed mainly at polar latitudes on Titan are ideal isolated environments to look for

  12. Walking habits in elderly widows.

    PubMed

    Grimby, Agneta; Johansson, Asa K; Sundh, Valter; Grimby, Gunnar

    2008-01-01

    Walking habits were studied in 3 groups of elderly widows. The average walking time per week was calculated from interviews or questionnaires. There was in a small studied group a tendency for walking time to be lower at 3 and 12 months after loss than at 4 or 5 years. An increased odds ratio was demonstrated in larger groups of widows for walking less than 120 minutes per week in those who "did not feel healthy," or who had "musculoskeletal health problems," or "cardiovascular health problems." Widows from a population-based study also showed increased odds ratio for not walking as long with "lack of friends" and "not being active in associations." This was not found in married women from the population study. Our results indicate that newly bereaved women may reduce their physical activity, and that the change in exercise habits may be associated with reduced perception of being healthy and a decreased social network.

  13. Was Venus the first Habitable World of our Solar System?

    NASA Astrophysics Data System (ADS)

    Way, Michael; Del Genio, Anthony; Kiang, Nancy; Sohl, Linda; Grinspoon, David; Aleinov, Igor; Kelley, Maxwell; Clune, Thomas

    2016-10-01

    Recent simulations have been completed with the Goddard Institute for Space Studies 3-D General Circulation Model of paleo Venus for a range of early solar system ages from 3Gya to 0.7Gya when the sun was less luminous than today. We use this and Magellan topography to provide Venus an ocean of average depth 310m and an atmosphere similar to present day Earth. A combination of a less luminous Sun and a slow rotation rate reveal that Venus could have had conditions on its surface amenable to surface liquid water in its early history. It is possible that fewer assumptions have to be made to make Venus an early habitable world of our solar system than have to be made for Mars or Earth, even though Venus is a much tougher world on which to confirm this hypothesis. These results could have implications in the search for planets within the habitable zones of stars.

  14. Habitability of extrasolar planets and tidal spin evolution.

    PubMed

    Heller, René; Barnes, Rory; Leconte, Jérémy

    2011-12-01

    Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded. PMID:22139513

  15. Climate stability of habitable Earth-like planets

    NASA Astrophysics Data System (ADS)

    Menou, Kristen

    2015-11-01

    The carbon-silicate cycle regulates the atmospheric CO2 content of terrestrial planets on geological timescales through a balance between the rates of CO2 volcanic outgassing and planetary intake from rock weathering. It is thought to act as an efficient climatic thermostat on Earth and, by extension, on other habitable planets. If, however, the weathering rate increases with the atmospheric CO2 content, as expected on planets lacking land vascular plants, the carbon-silicate cycle feedback can become severely limited. Here we show that Earth-like planets receiving less sunlight than current Earth may no longer possess a stable warm climate but instead repeatedly cycle between unstable glaciated and deglaciated climatic states. This has implications for the search for life on exoplanets in the habitable zone of nearby stars.

  16. Habitability of extrasolar planets and tidal spin evolution.

    PubMed

    Heller, René; Barnes, Rory; Leconte, Jérémy

    2011-12-01

    Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded.

  17. Dynamical Stability and Habitability of Extra-Solar Planets

    NASA Astrophysics Data System (ADS)

    Pilat-Lohinger, Elke

    2012-04-01

    Observations of about 60 binary star systems hosting exoplanets indicate the necessity of stability studies of planetary motion in such multi-stellar systems. For wide binary systems with separations between hundreds and thousands of AU, the results from single-star systems may be applicable but, in tight double stars systems, we have to take the stellar interactions into account which influences the planetary motion significantly. This review discusses the different types of planetary motion in double stars and the stability of the planets for different binary configurations. An application to the most famous tight binary system (γ Cephei) is also shown. Finally, we analyze the habitability from the dynamical point of view in such systems, where we discuss the motion of terrestrial-like planets in the so-called habitable zone.

  18. Habitability potential of icy moons

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Solomonidou, A.; Bampasidis, G.; Hirtzig, M.; Sohl, F.; Hussmann, H.; Kyriakopoulos, K.; Seymour, K.; Bratsolis, E.; Moussas, X.

    2012-09-01

    The satellites of Jupiter and Saturn have been revealed as extremely astrobiologically interesting bodies presenting promising conditions for habitability and the development and/or maintenance of life. Titan and Enceladus, Saturn's satellites, were found by the Cassini-Huygens mission to possess active organic chemistries with seasonal variations, unique geological features and possibly internal liquid water oceans, among other. Additionally, Jupiter's Europa and Ganymede show indications of harboring liquid water oceans under their icy crusts, which may be in direct contact with a silicate mantle floor and kept warm through time by tidally generated heat. All of these environments satisfy many of the "classical" criteria for habitability (liquid water, energy sources to sustain metabolism and "nutrients" over a period of time long enough to allow the development of life). In order to study the habitability of icy moons around giant planets, we look at the atmosphere-surface-interior connections with their similarities with the Earth as a starting point [1]. The discovery of the water jets on Enceladus, the possibility for cryovolcanic processes on Titan and the hypothetically active mantle of Europa suggest that icy moons around giant planets may well contain subsurface oceans.

  19. Widen the belt of habitability!

    PubMed

    Möhlmann, D

    2012-06-01

    Among the key-parameters to characterize habitability are presence or availability of liquid water, an appropriate temperature range, and the time scale of reference. These criteria for habitability are discussed and described from the point of view of water- and ice-physics, and it is shown that liquid water may exist in the sub-surfaces of planetary bodies like Mars, and possibly of inner asteroids and internally heated ice-moons. Water can remain fluid there also at temperatures far below the "canonical" 0 °C. This behaviour is made possible as a consequence of the freezing point depression due to salty solutes in water or "brines", as they can be expected to exist in nature more frequently than pure liquid water. On the other hand, low temperatures cause a slowing down of chemical processes, as can be described by Arrhenius's relation. The resulting smaller reaction rates probably will have the consequence to complicate the detection of low-temperature life processes, if they exist. Furthermore, the adaptation potential of life is to be mentioned in this context as a yet partially unknown process. Resulting recommendations are given to improve the use of criteria to characterize habitable conditions. PMID:22638839

  20. Widen the Belt of Habitability!

    NASA Astrophysics Data System (ADS)

    Möhlmann, D.

    2012-06-01

    Among the key-parameters to characterize habitability are presence or availability of liquid water, an appropriate temperature range, and the time scale of reference. These criteria for habitability are discussed and described from the point of view of water- and ice-physics, and it is shown that liquid water may exist in the sub-surfaces of planetary bodies like Mars, and possibly of inner asteroids and internally heated ice-moons. Water can remain fluid there also at temperatures far below the "canonical" 0 °C. This behaviour is made possible as a consequence of the freezing point depression due to salty solutes in water or "brines", as they can be expected to exist in nature more frequently than pure liquid water. On the other hand, low temperatures cause a slowing down of chemical processes, as can be described by Arrhenius's relation. The resulting smaller reaction rates probably will have the consequence to complicate the detection of low-temperature life processes, if they exist. Furthermore, the adaptation potential of life is to be mentioned in this context as a yet partially unknown process. Resulting recommendations are given to improve the use of criteria to characterize habitable conditions.

  1. Widen the belt of habitability!

    PubMed

    Möhlmann, D

    2012-06-01

    Among the key-parameters to characterize habitability are presence or availability of liquid water, an appropriate temperature range, and the time scale of reference. These criteria for habitability are discussed and described from the point of view of water- and ice-physics, and it is shown that liquid water may exist in the sub-surfaces of planetary bodies like Mars, and possibly of inner asteroids and internally heated ice-moons. Water can remain fluid there also at temperatures far below the "canonical" 0 °C. This behaviour is made possible as a consequence of the freezing point depression due to salty solutes in water or "brines", as they can be expected to exist in nature more frequently than pure liquid water. On the other hand, low temperatures cause a slowing down of chemical processes, as can be described by Arrhenius's relation. The resulting smaller reaction rates probably will have the consequence to complicate the detection of low-temperature life processes, if they exist. Furthermore, the adaptation potential of life is to be mentioned in this context as a yet partially unknown process. Resulting recommendations are given to improve the use of criteria to characterize habitable conditions.

  2. A model of habitability within the Milky Way galaxy.

    PubMed

    Gowanlock, M G; Patton, D R; McConnell, S M

    2011-11-01

    We present a model of the galactic habitable zone (GHZ), described in terms of the spatial and temporal dimensions of the Galaxy that may favor the development of complex life. The Milky Way galaxy was modeled using a computational approach by populating stars and their planetary systems on an individual basis by employing Monte Carlo methods. We began with well-established properties of the disk of the Milky Way, such as the stellar number density distribution, the initial mass function, the star formation history, and the metallicity gradient as a function of radial position and time. We varied some of these properties and created four models to test the sensitivity of our assumptions. To assess habitability on the galactic scale, we modeled supernova rates, planet formation, and the time required for complex life to evolve. Our study has improved on other literature on the GHZ by populating stars on an individual basis and modeling Type II supernova (SNII) and Type Ia supernova (SNIa) sterilizations by selecting their progenitors from within this preexisting stellar population. Furthermore, we considered habitability on tidally locked and non-tidally locked planets separately and studied habitability as a function of height above and below the galactic midplane. In the model that most accurately reproduces the properties of the Galaxy, the results indicate that an individual SNIa is ∼5.6× more lethal than an individual SNII on average. In addition, we predict that ∼1.2% of all stars host a planet that may have been capable of supporting complex life at some point in the history of the Galaxy. Of those stars with a habitable planet, ∼75% of planets are predicted to be in a tidally locked configuration with their host star. The majority of these planets that may support complex life are found toward the inner Galaxy, distributed within, and significantly above and below, the galactic midplane. PMID:22059554

  3. Habitability: From solar system planets to Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Lammer, H.

    2007-08-01

    For understanding the principles that generated Earth's long-time habitable environment compared with other terrestrial Solar System planets like Venus and Mars and terrestrial exoplanets inside the habitable zones of late-type stars, one has to understand the evolutionary influence of the solar/stellar radiation and particle environment to the atmosphere and surface. Because the spectral type of the star plays a major role in the photochemistry and evolution of planetary atmospheres and their water inventories must be understood within the context of the evolving stellar energy and particle fluxes. An only stable and dense enough atmosphere, which allows water to be liquid over geological time periods and protects the planetary surface from hostile radiation, will allow the evolution of surface life and Earth-like biospheres. Such long-time habitable environments are ideal cases of course, but life may have also originated in other habitats in the young Solar System. Such habitats could have been the environments of early Venus and Mars, subsurface (during formation maybe surface) oceans of icy satellites like in Europa, Titan, Encleadus, in hydrocarbon lakes of Titan, etc. Therefore, studies related to habitability and comparative planetology in the Solar System are essential for precursor studies dedicated to the investigation of habitability of terrestrial exoplanets.With comparative planetology one means the investigation on how different planetary systems and their individual planets - and particularly Earth-like ones - are formed, how they evolve in their radiation and particle interaction with their host stars under different circumstances, how often they give rise to conditions that could in principle be benevolent enough for the origin of life to occur, and even whether life as we know it could have arisen on any world in Earth's neighborhood. The presentation will point out the synergy of these studies and latest theoretical models currently applied for

  4. A model of habitability within the Milky Way galaxy.

    PubMed

    Gowanlock, M G; Patton, D R; McConnell, S M

    2011-11-01

    We present a model of the galactic habitable zone (GHZ), described in terms of the spatial and temporal dimensions of the Galaxy that may favor the development of complex life. The Milky Way galaxy was modeled using a computational approach by populating stars and their planetary systems on an individual basis by employing Monte Carlo methods. We began with well-established properties of the disk of the Milky Way, such as the stellar number density distribution, the initial mass function, the star formation history, and the metallicity gradient as a function of radial position and time. We varied some of these properties and created four models to test the sensitivity of our assumptions. To assess habitability on the galactic scale, we modeled supernova rates, planet formation, and the time required for complex life to evolve. Our study has improved on other literature on the GHZ by populating stars on an individual basis and modeling Type II supernova (SNII) and Type Ia supernova (SNIa) sterilizations by selecting their progenitors from within this preexisting stellar population. Furthermore, we considered habitability on tidally locked and non-tidally locked planets separately and studied habitability as a function of height above and below the galactic midplane. In the model that most accurately reproduces the properties of the Galaxy, the results indicate that an individual SNIa is ∼5.6× more lethal than an individual SNII on average. In addition, we predict that ∼1.2% of all stars host a planet that may have been capable of supporting complex life at some point in the history of the Galaxy. Of those stars with a habitable planet, ∼75% of planets are predicted to be in a tidally locked configuration with their host star. The majority of these planets that may support complex life are found toward the inner Galaxy, distributed within, and significantly above and below, the galactic midplane.

  5. Shocks throughout the circumstellar envelope of yellow hypergiant IRC+10420

    NASA Astrophysics Data System (ADS)

    Wong, Ka-Tat; Lim, Jeremy; Dinh-V-Trung

    2013-06-01

    . For comparison, the typical SiO abundance around AGB stars is 10^-6 at radii of a few hundreds AU, and decreases steeply beyond. We attribute the enhanced SiO abundance in the shell relative to regions within and beyond to shocks between two mass-ejection episodes. As for the lower but still enhanced SiO abundance further out, we appeal to observations with the Hubble Space Telescope that show a multitude of knots distributed throughout (out to a projected distance of at least 10000 AU) and moving at relatively high velocities (~100 km/s) through the circumstellar envelope (expanding at a bulk velocity of ~40 km/s of IRC+10420. We speculate that shocks created by the motion of these knots relative to the gaseous envelope releases SiO, and that the enhanced density of these knots and/or gas compressed by the shocks excites SiO to produce the strong emission observed.

  6. Habitability

    NASA Video Gallery

    Students analyze physical processes that occur on Earth and Mars and compare differences on how particular similar physical features occur. Students will use planetary comparisons in understanding ...

  7. Exploring the circumstellar environment of the young eruptive star V2492 Cygni

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Ábrahám, P.; Acosta-Pulido, J. A.; Arévalo Morales, M. J.; Balog, Z.; Carnerero, M. I.; Szegedi-Elek, E.; Farkas, A.; Henning, Th.; Kelemen, J.; Kovács, T.; Kun, M.; Marton, G.; Mészáros, Sz.; Moór, A.; Pál, A.; Sárneczky, K.; Szakáts, R.; Szalai, N.; Szing, A.; Tóth, I.; Turner, N. J.; Vida, K.

    2013-03-01

    Context. V2492 Cyg is a young eruptive star that went into outburst in 2010. The near-infrared color changes observed since the outburst peak suggest that the source belongs to a newly defined sub-class of young eruptive stars, where time-dependent accretion and variable line-of-sight extinction play a combined role in the flux changes. Aims: In order to learn about the origin of the light variations and to explore the circumstellar and interstellar environment of V2492 Cyg, we monitored the source at ten different wavelengths, between 0.55 μm and 2.2 μm from the ground and between 3.6 μm and 160 μm from space. Methods: We analyze the light curves and study the color-color diagrams via comparison with the standard reddening path. We examine the structure of the molecular cloud hosting V2492 Cyg by computing temperature and optical depth maps from the far-infrared data. Results: We find that the shapes of the light curves at different wavelengths are strictly self-similar and that the observed variability is related to a single physical process, most likely variable extinction. We suggest that the central source is episodically occulted by a dense dust cloud in the inner disk and, based on the invariability of the far-infrared fluxes, we propose that it is a long-lived rather than a transient structure. In some respects, V2492 Cyg can be regarded as a young, embedded analog of UX Orionis-type stars. Conclusions: The example of V2492 Cyg demonstrates that the light variations of young eruptive stars are not exclusively related to changing accretion. The variability provided information on an azimuthally asymmetric structural element in the inner disk. Such an asymmetric density distribution in the terrestrial zone may also have consequences for the initial conditions of planet formation. This work is based on observations made with the Herschel Space Observatory and with the Spitzer Space Telescope. Herschel is an ESA space observatory with science instruments

  8. Thermal metamorphism of Si2O3 - (A circumstellar dust analog)

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Donn, B.

    1984-01-01

    The thermal behavior of Si2O3, the metastable condensate from SiO vapor,has been studied experimentally. Si2O3 and its successor, amorphous quartz, have previously been shown to have infrared spectral features similar to some that appear in the spectra of grains in oxygen-rich circumstellar regions. Thermal annealing experiments show that only one Si2O3 decay process operates over the range between 750-1000 K. This process is a unimolecular disproportionation. The rate of this transformation can be expressed as k/hr = 10 to the 9th exp (-40 kcal/mole/RT). By using this rate constant, it is found that a significant fraction of freshly nucleated circumstellar grains can survive passage through a typical circumstellar shell virtually unaltered in structure. It is emphasized that this is only the first in a series of laboratory experiments intended to study the metamorphism of newly condensed circumstellar material ejected into the interstellar medium. Grains similar to these might have been incorporated into the primitive solar nebula, provided that they could also survive passage through the general interstellar medium.

  9. Organic chemistry in circumstellar envelopes: Setting the stage for prebiotic synthesis

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.

    2008-10-01

    One of the few carbon-rich environments found in interstellar space is the ejecta of asymptotic giant branch (AGB) stars. Such material, which forms a circumstellar envelope, becomes enriched in carbon due to “dredge-up” phenomena associated with nucleosynthesis. A unique organic synthesis flourishes in the gas phase in these envelopes, and radio and millimeter observations have identified a wide range of C-bearing compounds, including long acetylenic chains such as HC5N, HC7N, C4H, C6H, C8H, C6H-, C8H-, and C3O. Oxygen-rich envelopes also have a non-negligible carbon chemistry, fostering species such as HCN and HCO+. Phosphorus chemistry appears to be active as well in circumstellar shells, as evidenced by the recent detections of HCP, CCP, and PO. Radio observations also indicate that some fraction of the circumstellar molecular material survives into the planetary nebula stage, and then becomes incorporated into diffuse, and eventually, dense clouds. The complex organic molecules found in dense clouds such as Sgr B2(N) may be the products of “seed” material that can be traced back to the carbon-enriched circumstellar gas.

  10. Probing the circumstellar environment of the Herbig Be star HD 100546 with FUSE.

    NASA Astrophysics Data System (ADS)

    Deleuil, M.; Lecavelier des Etangs, A.; Bouret, J.-C.; Roberge, A.; Vidal-Madjar, A.; Feldman, P. D.; Ferlet, R.; Martin, C.

    2002-12-01

    We present an analysis of Far Ultraviolet Spectroscopic Explorer (FUSE) spectra probing the gaseous circumstellar environment of the Herbig Be star HD 100546. Numerous narrow absorption lines of circumstellar origin are observed from molecular and atomic gas, neutral and weakly ionized. At short wavelengths where the stellar flux is undetected, strong and broad emission lines due to highly ionised species such as C III and O VI are present. These lines formed in a dense and hot gas, collisionally heated, probe a region which extends over a few stellar radii above the star's surface. Comparison of two spectra recorded two years apart, reveal strong variations not limited to the atomic circumstellar lines as previously reported but which also affect the photospheric flux itself as well as the emission lines at short wavelengths. Our results highlight a complex circumstellar environment with evidences of a high temperature emission gas related to a chromospheric complex close to the stellar surface, sporadic wind and accretion phenomena which affect mainly volatile species like N I and O I(1D). Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by the Johns Hopkins University under NASA contract NAS5-32985.

  11. A Bagel-shaped Envelope To Model Circumstellar Material Around Rapidly Rotating Be-type Stars

    NASA Astrophysics Data System (ADS)

    Touhami, Yamina; Gies, D.; Coudé du Foresto, V.; Schaefer, G.

    2009-01-01

    The circumstellar material around Be stars have essentially been studied spectroscopically and interferometrically with disc-shaped models (Waters et al. 1987, Hummel 1994, Gies et al. 2007), where the physical properties are still not very well defined. Schmitz et al. 1983 and Rohrmann et al. 1997, have applied the kinetic theory of gases to steady-state isothermal gaseous masses with differential rotation, and predict bagel-shaped circumstellar envelopes. The theory of a circumstellar torus could very well explain the short and long lived photometric outbursts that have been reported by Mennickent et al.2002, Hubert et al. 1998, and other irregular behaviors such as the spectroscopic transition from a standard B-type star to a Be-type star (Pavlovski et al. 1997). The purpose of this study is to show results on how to model a low-density circumstellar torus around the Be star and to generate visibility curves that could be comparable to observational data obtained with the CHARA long baseline infrared interferometer.

  12. Maintenance of permeable habitable subsurface environments by earthquakes and tidal stresses

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.

    2012-10-01

    Life inhabits the subsurface of the Earth down to depths where temperature precludes it. Similar conditions are likely to exist within the traditional habitable zone for objects between 0.1 Earth mass (Mars) and 10 Earth masses (superearth). Long-term cooling and internal radioactivity maintain surface heat flow on the Earth. These heat sources are comparable and likely to be comparable in general within old rocky planets. Surface heat flow scales with mass divided by surface area and hence with surface gravity. The average absolute habitable subsurface thickness scales inversely with heat flow and gravity. Surface gravity varies by only 0.4 g for Mars to 3.15 g for a superearth. This range is less than the regional variation of heat flow on the Earth. Still ocean-boiling asteroid impacts (if they occur) are more likely to sterilize the thin habitable subsurface of large objects than thick habitable subsurface of small ones. Tectonics self-organizes to maintain subsurface permeability and habitability within both stable and active regions on the Earth. Small earthquakes within stable regions allow sudden mixing of water masses. Large earthquakes at plate boundaries allow surface water to descend to great habitable depths. Seismic shaking near major faults cracks shallow rock forming permeable regolith. Strong tidal strains form a similar porous regolith on small bodies such as Enceladus with weak stellar heating. This regolith may be water-saturated within rocky bodies and thus habitable.

  13. Space Physics of Close-in Exoplanets and its Implications for Planet Habitability

    NASA Astrophysics Data System (ADS)

    Cohen, Ofer

    2015-04-01

    The search for habitable exoplanets is currently focused on planets orbiting M-dwarf stars, due to the close proximity of the habitable zone to the star. However, the traditional habitability definition does not account for the physical space environment near the planets, which can be extreme at close-in orbits, and can lead to erosion of te planetary atmosphere. In order to sustain their atmosphers, M-dwarf planets need to have either an intrinsic magnetic field, or a thick atmosphere. Here we present a set of numerical magnetohydrodynamic simulations of the interaction of an Earth-like magnetized planet and a Venus-like non-magnetized planet with the stellar wind of M-dwarf star. We study space physics aspects of these interactions and their implications for planet habitability

  14. Maximum number of habitable planets at the time of Earth's origin: new hints for panspermia?

    PubMed

    von Bloh, Werner; Franck, Siegfried; Bounama, Christine; Schellnhuber, Hans-Joachim

    2003-04-01

    New discoveries have fuelled the ongoing discussion of panspermia, i.e. the transport of life from one planet to another within the solar system (interplanetary panspermia) or even between different planetary systems (interstellar panspermia). The main factor for the probability of interstellar panspermia is the average density of stellar systems containing habitable planets. The combination of recent results for the formation rate of Earth-like planets with our estimations of extrasolar habitable zones allows us to determine the number of habitable planets in the Milky Way over cosmological time scales. We find that there was a maximum number of habitable planets around the time of Earth's origin. If at all, interstellar panspermia was most probable at that time and may have kick-started life on our planet.

  15. The Solar Neighborhood XXIX: The Habitable Real Estate of Our Nearest Stellar Neighbors

    NASA Astrophysics Data System (ADS)

    Cantrell, Justin R.; Henry, Todd J.; White, Russel J.

    2013-10-01

    We use the sample of known stars and brown dwarfs within 5 pc of the Sun, supplemented with AFGK stars within 10 pc, to determine which stellar spectral types provide the most habitable real estate—defined as locations where liquid water could be present on Earth-like planets. Stellar temperatures and radii are determined by fitting model spectra to spatially resolved broadband photometric energy distributions for stars in the sample. Using these values, the locations of the habitable zones are calculated using an empirical formula for planetary surface temperature and assuming the condition of liquid water, called here the empirical habitable zone (EHZ). Systems that have dynamically disruptive companions are considered not habitable. We consider companions to be disruptive if the separation ratio of the companion to the habitable zone is less than 5:1. We use the results of these calculations to derive a simple formula for predicting the location of the EHZ for main sequence stars based on V - K color. We consider EHZ widths as more useful measures of the habitable real estate around stars than areas because multiple planets are not expected to orbit stars at identical stellar distances. This EHZ provides a qualitative guide on where to expect the largest population of planets in the habitable zones of main sequence stars. Because of their large numbers and lower frequency of short-period companions, M stars provide more EHZ real estate than other spectral types, possessing 36.5% of the habitable real estate en masse. K stars are second with 21.5%, while A, F, and G stars offer 18.5%, 6.9%, and 16.6%, respectively. Our calculations show that three M dwarfs within 10 pc harbor planets in their EHZs—GJ 581 may have two planets (d with msin i = 6.1 M ⊕ g with msin i = 3.1 M ⊕), GJ 667 C has one (c with msin i = 4.5 M ⊕), and GJ 876 has two (b with msin i = 1.89 M Jup and c with msin i = 0.56 M Jup). If Earth-like planets are as common around low-mass stars

  16. THE SOLAR NEIGHBORHOOD XXIX: THE HABITABLE REAL ESTATE OF OUR NEAREST STELLAR NEIGHBORS

    SciTech Connect

    Cantrell, Justin R.; Henry, Todd J.; White, Russel J. E-mail: thenry@chara.gsu.edu

    2013-10-01

    We use the sample of known stars and brown dwarfs within 5 pc of the Sun, supplemented with AFGK stars within 10 pc, to determine which stellar spectral types provide the most habitable real estate—defined as locations where liquid water could be present on Earth-like planets. Stellar temperatures and radii are determined by fitting model spectra to spatially resolved broadband photometric energy distributions for stars in the sample. Using these values, the locations of the habitable zones are calculated using an empirical formula for planetary surface temperature and assuming the condition of liquid water, called here the empirical habitable zone (EHZ). Systems that have dynamically disruptive companions are considered not habitable. We consider companions to be disruptive if the separation ratio of the companion to the habitable zone is less than 5:1. We use the results of these calculations to derive a simple formula for predicting the location of the EHZ for main sequence stars based on V – K color. We consider EHZ widths as more useful measures of the habitable real estate around stars than areas because multiple planets are not expected to orbit stars at identical stellar distances. This EHZ provides a qualitative guide on where to expect the largest population of planets in the habitable zones of main sequence stars. Because of their large numbers and lower frequency of short-period companions, M stars provide more EHZ real estate than other spectral types, possessing 36.5% of the habitable real estate en masse. K stars are second with 21.5%, while A, F, and G stars offer 18.5%, 6.9%, and 16.6%, respectively. Our calculations show that three M dwarfs within 10 pc harbor planets in their EHZs—GJ 581 may have two planets (d with msin i = 6.1 M {sub ⊕}; g with msin i = 3.1 M {sub ⊕}), GJ 667 C has one (c with msin i = 4.5 M {sub ⊕}), and GJ 876 has two (b with msin i = 1.89 M {sub Jup} and c with msin i = 0.56 M {sub Jup}). If Earth-like planets

  17. Formando planetas habitables en estrellas M3

    NASA Astrophysics Data System (ADS)

    Dugaro, A.; de Elía, G. C.; Brunini, A.

    2016-08-01

    Studies of stellar evolution allow us to infer that the low-mass stars are the most abundant in the galaxy. In the present investigation, we analyze the formation of planetary systems without gas giants around M3-type stars, which have a mass of 0.29 M. In particular, we are interested in studying the terrestrial-like planet formation processes and water delivery in the Habitable Zone (HZ) of those systems. To develop this investigation, we assume massive protoplanetary disks for such stars, which have 5 of the mass of the central star. Once defined the working disk, we use a semi-analytical model, which is able to determine the distribution of planetary embryos and planetesimals at the end of the gaseous phase. Then, these distributions are used as initial conditions for running -body simulations. Due to the stochastic nature of the accretion process, we carry out ten -body simulations in order to analyze the evolution of the planetary systems after the gas dissipation. Our results suggest the efficient formation of terrestrial-like planets in the HZ with a wide range of masses and water contents. The planets formed in the HZ of the system have masses between 0.07 M and 0.15 M and final water contents between 5.4 and 29 by mass. The physical properties of the terrestrial-like planets formed in the HZ of our simulations suggest that they should be able to retain a permanent and substantial atmosphere.

  18. Exocomet Circumstellar Fe I Absorption in the Beta Pictoris Gas Disk

    NASA Astrophysics Data System (ADS)

    Welsh, Barry Y.; Montgomery, Sharon

    2016-06-01

    We present an archival study of 27 circumstellar Fe i (λ3860 Å) and Ca ii (λ3933 Å) absorption spectra of the β Pictoris system recorded over the 2003-2014 timeframe. We have detected several transient absorption events at velocities red-shifted by >+20 km s-1 from the main central absorption line profiles of both Fe i and Ca ii. Such events can be attributed to the presence of kilometer-sized infalling evaporating bodies (i.e., exocomets) on their grazing approach to the central star. The majority of the transient absorption events detected in the Fe i profiles occur at velocities in the +35 to +50 km s-1 range. This is consistent with that found for Ca ii gas that has been sublimated from the “D” family of β Pictoris exocomets recently found by Kiefer et al. These spectra also reveal that the strength of the main component of the Fe i absorption line at V helio ˜ +21 km s-1 has weakened by ˜30% since 2011. Since neutrals, when ionized, are the main source of the ion-braking mechanism of Brandeker for circumstellar gas in the β Pictoris system, then this may have some measurable effect on the size and/or location of the main circumstellar gas disk. Finally we note that we have failed to detect any circumstellar Fe i absorption in our previously reported spectra of similar gas disks surrounding 28 young A-type stars. Thus, it would appear that the β Pictoris is anomalous with regards to circumstellar Fe i absorption.

  19. The circumstellar nature of the metallic features in a hot DA white dwarf

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Bruhweiler, F. C.; Andersen, J.

    1995-01-01

    A new co-added IUE echelle spectrum of the bright DA white dwarf CD -38 deg 10980, together with a newly determined radial velocity for this star, indicate that the sharp lined Si and C absorption features seen in the UV are clearly circumstellar in origin. Absorption in both excited and ground state transitions occurs at a velocity displaced by -12.1 +/- 2.0 km.s with respect to the photospheric velocity. Weak features due to the Si IV doublet are seen at a velocity intermediate between that of the circumstellar features and the photosphere. First time estimates of column densities for excited and ground states of C II, Si II, and Si III are derived. These quantities are used with electron density estimates derived from these species to determine the location and physical conditions of the circumstellar gas in the vicinity of CD -38 deg 10980. If collisional excitation alone is responsible for the excited levels of Si III observed in CD -38 deg 10980, then electron densities in the circumstellar gas must exceed 10(exp 9)/cu cm. Substantially lower electron densities are possible if the circumstellar gas is located near enough to the star so that photoexcitation is the dominant process responsible for the excited lines seen in the UV. Strong limits are placed on the photospheric abundance of Si and C in the star itself. These limits are in sharp contrast to the theoretical predictions of radiative levitation in which Si, but not C, is expected in the photosphere of a white dwarf such as CD -38 deg 10980. The interstellar line of sight to CD -38 deg 10980 is also investigated.

  20. 7 habits of highly effective.

    PubMed

    McGuinness, Teena M; McElroy, Ellen

    2010-01-01

    There is a pressing need for psychiatric nurse authors to write about their professional image as well as issues they face in clinical practice. In this article, two psychiatric nurses describe how using Covey's The 7 Habits of Highly Effective People: Powerful Lessons in Personal Change can serve as a framework for increasing writing productivity. In addition, the Myers-Briggs Type Indicator can increase awareness of and appreciation for the strengths and differences in each author's writing style. Using these tools, writing can become a process of discovery.

  1. Circumstellar discs in Galactic centre clusters: Disc-bearing B-type stars in the Quintuplet and Arches clusters

    NASA Astrophysics Data System (ADS)

    Stolte, A.; Hußmann, B.; Olczak, C.; Brandner, W.; Habibi, M.; Ghez, A. M.; Morris, M. R.; Lu, J. R.; Clarkson, W. I.; Anderson, J.

    2015-06-01

    We investigate the circumstellar disc fraction as determined from L-band excess observations of the young, massive Arches and Quintuplet clusters residing in the central molecular zone of the Milky Way. The Quintuplet cluster was searched for L-band excess sources for the first time. We find a total of 26 excess sources in the Quintuplet cluster, and 21 sources with L-band excesses in the Arches cluster, of which 13 are new detections. With the aid of proper motion membership samples, the disc fraction of the Quintuplet cluster could be derived for the first time to be 4.0 ± 0.7%. There is no evidence for a radially varying disc fraction in this cluster. In the case of the Arches cluster, a disc fraction of 9.2 ± 1.2% approximately out to the cluster's predicted tidal radius, r< 1.5 pc, is observed. This excess fraction is consistent with our previously found disc fraction in the cluster in the radial range 0.3 circumstellar discs in these UV intense environments in the context of primordial disc survival and formation scenarios of secondary discs. We consider the possibility that the L-band excess sources in the Arches and Quintuplet clusters could be the high-mass counterparts to T Tauri pre-transitional discs. As such a scenario requires a long pre-transitional disc lifetime in a UV intense environment, we suggest that mass transfer discs in binary systems are a likely formation mechanism for the B-star discs observed in these starburst clusters. Based on data obtained at the ESO VLT under programme IDs 085.D-0446, 089.D-0121 (PI: Stolte), 081.D-0572 (PI: Brandner), 087.D-0720, 089.D-0430 (PI: Olzcak), 071.C-0344 (PI: Eisenhauer), 60.A-9026 (NAOS/CONICA science verification), as well as Hubble Space Telescope observations under programmes 11671 (PI: Ghez

  2. Effects of M dwarf magnetic fields on potentially habitable planets

    NASA Astrophysics Data System (ADS)

    Vidotto, A. A.; Jardine, M.; Morin, J.; Donati, J.-F.; Lang, P.; Russell, A. J. B.

    2013-09-01

    We investigate the effect of the magnetic fields of M dwarf (dM) stars on potentially habitable Earth-like planets. These fields can reduce the size of planetary magnetospheres to such an extent that a significant fraction of the planet's atmosphere may be exposed to erosion by the stellar wind. We used a sample of 15 active dM stars, for which surface magnetic-field maps were reconstructed, to determine the magnetic pressure at the planet orbit and hence the largest size of its magnetosphere, which would only be decreased by considering the stellar wind. Our method provides a fast means to assess which planets are most affected by the stellar magnetic field, which can be used as a first study to be followed by more sophisticated models. We show that hypothetical Earth-like planets with similar terrestrial magnetisation (~1 G) orbiting at the inner (outer) edge of the habitable zone of these stars would present magnetospheres that extend at most up to 6 (11.7) planetary radii. To be able to sustain an Earth-sized magnetosphere, with the exception of only a few cases, the terrestrial planet would either (1) need to orbit significantly farther out than the traditional limits of the habitable zone; or else, (2) if it were orbiting within the habitable zone, it would require at least a magnetic field ranging from a few G to up to a few thousand G. By assuming a magnetospheric size that is more appropriate for the young-Earth (3.4 Gyr ago), the required planetary magnetic fields are one order of magnitude weaker. However, in this case, the polar-cap area of the planet, which is unprotected from transport of particles to/from interplanetary space, is twice as large. At present, we do not know how small the smallest area of the planetary surface is that could be exposed and would still not affect the potential for formation and development of life in a planet. As the star becomes older and, therefore, its rotation rate and magnetic field reduce, the interplanetary

  3. NASA contributions to the global habitability program

    NASA Technical Reports Server (NTRS)

    Mcconnell, D. G.

    1984-01-01

    As a result of developments occurring over the last two decades, the data acquisition, storage, analysis, and transmission facilities are now available for a concerted long-term interdisciplinary and international study of the global environmental system. Such a study is the essence of the 'Global Habitability' concept introduced in 1982. The aims of Global Habitability research are considered, taking into account an understanding of the vital global processes of the earth's energy balance, the global hydrological cycle, and the biogeochemical cycling of carbon, nitrogen, phosphorus, and sulfur. Details of NASA planning for Global Habitability are discussed along with international data exchange arrangements. Attention is given to the possible contributions of satellite data and associated techniques to Global Habitability, examples of specific research conducted by NASA in support of the Global Habitability and the international sharing of data and results for Global Habitability.

  4. Smoking habits and spontaneous abortion.

    PubMed

    Sandahl, B

    1989-04-01

    Smoking habits have been compared in three samples of pregnancies: (1) spontaneous abortions (n = 610); (2) induced abortions (n = 800); and (3) deliveries (n = 1337). The variables studied were, besides smoking habits, day of LMP, outcome of earlier pregnancies, maternal age, and, for the delivery sample, also diagnoses of mother and child, gestational length, sex, and birthweight. A statistical analysis of the association between smoking and the risk of having a spontaneous abortion was made. The comparisons were made with all types of intra-uterine pregnancies but spontaneous abortions, e.g., deliveries and induced abortions. The effects and consequences of that are discussed. The smoking rates according to pregnancy outcome differ among the samples. In the induced abortion sample 58% smoked compared with 50% in the spontaneous abortion sample and 44% in the delivery sample. The well-known effect of smoking on gestational length and birthweight was shown. No significant effect of smoking on the miscarriage risk was seen. The only trend was the opposite. Possible explanations for this are discussed.

  5. Human factor design of habitable space facilities

    NASA Technical Reports Server (NTRS)

    Clearwater, Yvonne A.

    1987-01-01

    Current fundamental and applied habitability research conducted as part of the U.S. space program is reviewed with emphasis on methods, findings, and applications of the results to the planning and design of the International Space Station. The discussion covers the following six concurrent directions of habitability research: operational simulation, functional interior decor research, space crew privacy requirements, interior layout and configuration analysis, human spatial habitability model, and analogous environments research.

  6. Habitable periglacial landscapes in martian mid-latitudes

    NASA Astrophysics Data System (ADS)

    Ulrich, M.; Wagner, D.; Hauber, E.; de Vera, J.-P.; Schirrmeister, L.

    2012-05-01

    Subsurface permafrost environments on Mars are considered to be zones where extant life could have survived. For the identification of possible habitats it is important to understand periglacial landscape evolution and related subsurface and environmental conditions. Many landforms that are interpreted to be related to ground ice are located in the martian mid-latitudinal belts. This paper summarizes the insights gained from studies of terrestrial analogs to permafrost landforms on Mars. The potential habitability of martian mid-latitude periglacial landscapes is exemplarily deduced for one such landscape, that of Utopia Planitia, by a review and discussion of environmental conditions influencing periglacial landscape evolution. Based on recent calculations of the astronomical forcing of climate changes, specific climate periods are identified within the last 10 Ma when thaw processes and liquid water were probably important for the development of permafrost geomorphology. No periods could be identified within the last 4 Ma which met the suggested threshold criteria for liquid water and habitable conditions. Implications of past and present environmental conditions such as temperature variations, ground-ice conditions, and liquid water activity are discussed with respect to the potential survival of highly-specialized microorganisms known from terrestrial permafrost. We conclude that possible habitable subsurface niches might have been developed in close relation to specific permafrost landform morphology on Mars. These would have probably been dominated by lithoautotrophic microorganisms (i.e. methanogenic archaea).

  7. Space station group activities habitability module study

    NASA Technical Reports Server (NTRS)

    Nixon, David

    1986-01-01

    This study explores and analyzes architectural design approaches for the interior of the Space Station Habitability Module (originally defined as Habitability Module 1 in Space Station Reference Configuration Decription, JSC-19989, August 1984). In the Research Phase, architectural program and habitability design guidelines are specified. In the Schematic Design Phase, a range of alternative concepts is described and illustrated with drawings, scale-model photographs and design analysis evaluations. Recommendations are presented on the internal architectural, configuration of the Space Station Habitability Module for such functions as the wardroom, galley, exercise facility, library and station control work station. The models show full design configurations for on-orbit performance.

  8. Search for and study of hot circumstellar dust envelopes

    NASA Astrophysics Data System (ADS)

    Shenavrin, V. I.; Taranova, O. G.; Nadzhip, A. E.

    2011-01-01

    Long-term (1984-2008) JHKLM photometry for 254 objects is presented. The observations were carried out in the standard JHKLM photometric system using an original method and a modern IR photometer designed and built at the Sternberg Astronomical Institute. Our program of studies included searches for and studies of relatively hot circumstellar dust envelopes. The most important results obtained using these observations include the following. We have detected relatively hot dust envelopes in a number of objects for the first time, including the RCB star UV Cas, RX Cas, several classical symbiotic stars, etc. A model has been calculated for the dust envelope of FG Sge, which formed around the star as a result of several successive cycles of dust condensation beginning in Autumn 1992. Several dust-condensation episodes have been traced in the envelopes of symbiotic systems (CH Cyg, V1016 Cyg, HM Sge, etc.), as well as the role of the hot component in the formation of the dust envelopes. We have established from variations of the IR emission that the cool components in the symbiotic novae V1016 Cyg and HM Sge, and possibly CH Cyg, are Miras. The binarity of V1016 Cyg and HM Sge has also been firmly established. The variability of a whole series of object has been studied, including the stellar components of close binary systems and several dozen Mira and semi-regular variables. The ellipsoidality of the components in the RX Cas system (a prototype W Ser star) and the cool component in the symbiotic systems CI Cyg and BF Cyg has been firmly established. We have obtained the first IR light curve for the eclipsing system V444 Cyg (WN5+O6), and determined the wavelength dependence of the obtained parameters of the WN5 star. Analysis of the IR light curves of several novae indicate the condensation of dust envelopes in the transition periods of Cygnus 1992, Aquila 1993, and Aquila 1995. The IR light curve of R CrB has been obtained over a long period and analyzed. IR

  9. Habitability of planets on eccentric orbits: limits of the mean flux approximation

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Libert, Anne-Sophie; Leconte, Jérémy; Selsis, Franck; Turbet, Martin; Forget, François

    2016-04-01

    A few of the planets found in the insolation habitable zone (region in which a planet with an atmosphere can sustain surface liquid water, Kasting et al. 1993) are on eccentric orbits, such as GJ 667Cc (eccentricity of < 0.3, Anglada-Escude et al. 2012) or HD 16175 b (eccentricity of 0.6, Peek et al. 2009). This raises the question of the potential habitability of planets that only spend a fraction of their orbit in the habitable zone. Usually for a planet of semi-major axis a and eccentricity e, the averaged flux over one orbit received by the planet is considered. This averaged flux corresponds to the flux received by a planet on a circular orbit of radius r = a(1 -e2)1/4. If this orbital distance is within the habitable zone, the planet is said "habitable". However, for a hot star, for which the habitable zone is far from the star, the climate can be degraded when the planet is temporarily outside the habitable zone. We investigate here the limits of validity of the mean flux approximation used to assess the potential habitability of eccentric planets. For this study, we consider ocean planets in synchronized rotation and planets with a rotation period of 24 hr. We investigate the influence of the type of host star and the eccentricity of the orbit on the climate of a planet. We do so by scaling the duration of its orbital period and its apastron and periastron distance to ensure that it receives in average the same incoming flux as Earth's. We performed sets of 3D simulations using the Global Climate Model LMDz (Wordsworth et al. 2011, Forget et al. 2013, Leconte et al. 2013). The atmosphere is composed of N2, CO2 and H2O (gas, liquid, solid) in Earth-like proportions. First, we do not take into account the spectral difference between a low luminosity star and a Sun-like star. Second, the dependence of the albedo of ice and snow on the spectra of the host star is taken into account. This influences the positive ice-albedo feedback and can lead to a different

  10. S-type and P-type habitability in stellar binary systems: A comprehensive approach. I. Method and applications

    SciTech Connect

    Cuntz, M.

    2014-01-01

    A comprehensive approach is provided for the study of both S-type and P-type habitability in stellar binary systems, which in principle can also be expanded to systems of higher order. P-type orbits occur when the planet orbits both binary components, whereas in the case of S-type orbits, the planet orbits only one of the binary components with the second component considered a perturbator. The selected approach encapsulates a variety of different aspects, which include: (1) the consideration of a joint constraint, including orbital stability and a habitable region for a putative system planet through the stellar radiative energy fluxes ({sup r}adiative habitable zone{sup ;} RHZ), needs to be met; (2) the treatment of conservative, general, and extended zones of habitability for the various systems as defined for the solar system and beyond; (3) the provision of a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are presented for the kind of system in which S-type and P-type habitability is realized; (4) applications of the attained theoretical approach to standard (theoretical) main-sequence stars. In principle, five different cases of habitability are identified, which are S-type and P-type habitability provided by the full extent of the RHZs; habitability, where the RHZs are truncated by the additional constraint of planetary orbital stability (referred to as ST- and PT-type, respectively); and cases of no habitability at all. Regarding the treatment of planetary orbital stability, we utilize the formulae of Holman and Wiegert as also used in previous studies. In this work, we focus on binary systems in circular orbits. Future applications will also consider binary systems in elliptical orbits and provide thorough comparisons to other methods and results given in the literature.

  11. Plate tectonics, habitability and life

    NASA Astrophysics Data System (ADS)

    Spohn, Tilman; Breuer, Doris

    2016-04-01

    The role of plate tectonics in defining habitability of terrestrial planets is being increasingly discussed (e.g., Elkins-Tanton, 2015). Plate tectonics is a significantly evolved concept with a large variety of aspects. In the present context, cycling of material between near surface and mantle reservoirs is most important. But increased heat transport through mixing of cold lithosphere with the deep interior and formation of continental crust may also matter. An alternative mechanism of material cycling between these reservoirs is hot-spot volcanism combined with crust delamination. Hot-spot volcanism will transport volatiles to the atmosphere while delamination will mix crust, possibly altered by sedimentation and chemical reactions, with the mantle. The mechanism works as long as the stagnant lithosphere plate has not grown thicker than the crust and as long as volcanic material is added onto the crust. Thermal evolution studies suggest that the mechanism could work for the first 1-2 Ga of planetary evolution. The efficiency of the mechanism is limited by the ratio of extrusive to intrusive volcanism, which is thought to be less than 0.25. Plate tectonics would certainly have an advantage by working even for more evolved planets. A simple, most-used concept of habitability requires the thermodynamic stability of liquid water on the surface of a planet. Cycling of CO2between the atmosphere, oceans and interior through subduction and surface volcanism is an important element of the carbonate-silicate cycle, a thermostat feedback cycle that will keep the atmosphere from entering into a runaway greenhouse. Calculations for a model Earth lacking plate tectonics but degassing CO2, N, and H2O to form a surface ocean and a secondary atmosphere (Tosi et al, 2016) suggest that liquid water can be maintained on the surface for 4.5Ga. The model planet would then qualify as habitable. It is conceivable that the CO2 buffering capability of its ocean together with silicate

  12. On the Possibility of Habitable, Trojan Planets in the Kepler Circumbinary Planetary Systems

    NASA Astrophysics Data System (ADS)

    Sudol, Jeffrey; Haghighipour, Nader

    2015-12-01

    The recent discovery of circumbinary planets with the Kepler space telescope has opened a new direction in the search for habitable planets. Three of the known Kepler circumbinary planets reside in habitable zones: Kepler 16b, Kepler 47c, and Kepler 453b. Although these planets are too large to be habitable, they present the possibility of having habitable, terrestrial-size Trojan planets and/or moons. Although no Trojan planets have yet been detected in any exoplanetary system, theoretical studies suggest Trojan planets can exist in stable orbits in circumbinary planetary systems and can be detected with current and future space telescopes. We have performed more than 1,000 numerical integrations of each of these systems in which we have included an Earth-mass object in a random orbit near one of the two Lagrangian points in the habitable zone. We present the results of these integrations and further discuss their implications for the formation and evolution of these particular systems. We also report on the detectability of Earth-mass Trojan planets via transits or transit timing variations.

  13. Obliquity Variations of a Potentially Habitable Early Venus

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Quarles, Billy L.; Lissauer, Jack J.; Chambers, John E.; Hedman, Matthew M.

    2016-06-01

    Planetary obliquity (axis tilt) and its variations can have strong effects on climate. Earth's glacial cycles, for instance, are driven in part by variations in Earth's obliquity of order ±1.5o. Direct observations of the obliquity of habitable zone rocky exoplanets is likely a long way off. Therefore we investigate the long-term obliquity variations expected for Venus as it might have existed in the early Solar System. Although Venus presently rotates slowly owing to tidal despinning, it must have had a different rotation state early in Solar System history. At the same time, Venus was the Solar System's habitable zone under a Faint Young Sun. Because of our extensive knowledge of the Solar System's constituents, we therefore use Venus' obliquity variations as a proxy for what we might find in exoplanetary systems. We find that the obliquity variation structure is simpler for early Venus than it would be for a Moonless Earth, but that large, chaotic variability can occur for high initial obliquity values. Interestingly retrograde-rotating Venuses show higher variability than do retrograde Moonless Earths.

  14. Student Work Habits: An Educational Imperative.

    ERIC Educational Resources Information Center

    Williams, Robert L.; Oh, Eun Jung

    Major problems in the American workforce are absenteeism, tardiness, disorganization, off-task behavior, and limited teamwork. Attacking such problems by promoting effective work habits in schools should be an educational priority, with teachers, counselors, and school psychologists all playing a role in the process. Student work habits that can…

  15. The Leisure Reading Habits of Urban Adolescents

    ERIC Educational Resources Information Center

    Hughes-Hassell, Sandra; Rodge, Pradnya

    2007-01-01

    Research indicates that there is a strong relationship between leisure reading and school achievement, but the leisure reading habits of urban adolescents have rarely been studied. From their investigation of the leisure reading habits of 584 urban minority middle school students, the authors identify these key findings: (1) More than two-thirds…

  16. The 5 Habits of Effective PLCs

    ERIC Educational Resources Information Center

    Easton, Lois Brown

    2015-01-01

    This article describes the knowledge and skills that professional learning community members need to create a habit out of their desire. Habits serve educators as signposts of progress toward achieving their desires. They are interim indicators of a professional learning community's success. Ultimately, of course, professional learning communities…

  17. Genetic Influences on Adolescent Eating Habits

    ERIC Educational Resources Information Center

    Beaver, Kevin M.; Flores, Tori; Boutwell, Brian B.; Gibson, Chris L.

    2012-01-01

    Behavioral genetic research shows that variation in eating habits and food consumption is due to genetic and environmental factors. The current study extends this line of research by examining the genetic contribution to adolescent eating habits. Analysis of sibling pairs drawn from the National Longitudinal Study of Adolescent Health (Add Health)…

  18. The Online Reading Habits of Malaysian Students

    ERIC Educational Resources Information Center

    Abidin, Mohammad Jafre Bin Zainol; Pourmohammadi, Majid; Varasingam, Nalini A/P; Lean, Ooi Choon

    2014-01-01

    The purpose of this study is to ascertain the differences in online reading habits between genders and investigate the relationship between socio-economic status and online reading habits. Using a questionnaire, a quantitative approach was administered to 240 Form-Four students from four secondary schools in Penang Island, Malaysia. Findings…

  19. EARLY THERMAL X-RAY EMISSION FROM LONG GAMMA-RAY BURSTS AND THEIR CIRCUMSTELLAR ENVIRONMENTS

    SciTech Connect

    Suzuki, Akihiro; Shigeyama, Toshikazu

    2013-02-10

    We performed a series of hydrodynamical calculations of an ultrarelativistic jet propagating through a massive star and the circumstellar matter (CSM) to investigate the interaction between the ejecta and the CSM. We succeed in distinguishing two qualitatively different cases in which the ejecta are shocked and adiabatically cool. To examine whether the cocoon expanding at subrelativistic speeds emits any observable signal, we calculate the expected photospheric emission from the cocoon. It is found that the emission can explain early thermal X-ray emission recently found in some long gamma-ray bursts (GRBs). The result implies that the difference of the circumstellar environment of long GRBs can be probed by observing their early thermal X-ray emission.

  20. CIRCUMSTELLAR MAGNETITE FROM THE LAP 031117 CO3.0 CHONDRITE

    SciTech Connect

    Zega, Thomas J.; Haenecour, Pierre; Floss, Christine; Stroud, Rhonda M.

    2015-07-20

    We report the first microstructural confirmation of circumstellar magnetite, identified in a petrographic thin section of the LaPaz Icefield 031117 CO3.0 chondrite. The O-isotopic composition of the grain indicates an origin in a low-mass (∼2.2 M{sub ⊙}), approximately solar metallicity red/asymptotic giant branch (RGB/AGB) star undergoing first dredge-up. The magnetite is a single crystal measuring 750 × 670 nm, is free of defects, and is stoichiometric Fe{sub 3}O{sub 4}. We hypothesize that the magnetite formed via oxidation of previously condensed Fe dust within the circumstellar envelope of its progenitor star. Using an empirically derived rate constant for this reaction, we calculate that such oxidation could have occurred over timescales ranging from approximately ∼9000–500,000 years. This timescale is within the lifetime of estimates for dust condensation within RGB/AGB stars.

  1. Tidal Timelines: Evolution of Terrestrial Exoplanet Habitability Around Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Mullins, K.; Barnes, R.

    2009-12-01

    The range of orbits for planetary habitability have traditionally been based on the stellar flux that allows liquid water to persist on a planetary surface. However, when considering terrestrial (rocky) planets close to a low mass star (≤0.35M⊙), tidal effects must be considered because of the additional energy input from tidal heating. Of further interest is the time over which habitable conditions are generated by tidal interaction. Tides cause orbital evolution, during which the heat flux varies, which may cause the planet to migrate in and out of habitable zones and possibly result in sterilization. So, the heating history of a planet should be a consideration when searching for life-supporting planets. We apply heat flux limitations on habitability (based on observations within our solar system) and tidally evolve planets across a range of initial conditions of orbits and masses. Our results provide a visualization of the time a planet has spent with a favorable amount of tidal heat for habitability and/or the amount of time until the heating is no longer conducive to habitability. As a greater number of close in terrestrial planets are found, these results can provide a method for identifying those planets with the highest potential for life.

  2. Diffraction-limited spatial resolution of circumstellar shells at 10 microns

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Townes, C. H.; Vanderwyck, A. H. B.

    1983-01-01

    A new spatial array instrument provided diffraction-limited mid-infrared intensity profiles of the type-M supergiant stars alpha Orionis and alpha Scorpii, both of which are known to exhibit excess 10 microns radiation due to the presence of circumstellar dust shells. In the case of alpha Ori, there is a marked asymmetry in the dust distribution, with peak intensity of dust emission a distance of 0.9 inches from the star.

  3. Herbig Ae/Be stars - Intermediate-mass stars surrounded by massive circumstellar accretion disks

    NASA Technical Reports Server (NTRS)

    Hillenbrand, Lynne A.; Strom, Stephen E.; Vrba, Frederick J.; Keene, Jocelyn

    1992-01-01

    The proposition that Herbig Ae/Be stars are young intermediate mass stars surrounded by optically thick accretion disks is explored. From a study of 47 such objects, a subset of 30 stars is identified whose spectral energy distributions can be interpreted convincingly in terms of pre-main sequence stars surrounded by massive optically thick circumstellar accretion disks. Constraints on the physical properties of the disks, such as size, mass, accretion rate, lifetime, and radial structure are derived from the photometric data.

  4. Correlation of circumstellar SiO maser spot distribution with the stellar light curve

    NASA Astrophysics Data System (ADS)

    Oyadomari, M.; Imai, H.; Nagayama, T.; Oyama, T.; Matsumoto, N.; Nakashima, J.; Cho, S.-H.

    2016-07-01

    We have investigated the distributions of silicon monoxide (SiO) v = 2 and v = 3 J = 1 → 0 masers around long-period variables (LPVs) in VLBI observations using the VLBI Exploration of Radio Astrometry (VERA) combined with the Nobeyama 45 m telescope. We find some examples of correlation of a maser spot distribution with the stellar light curve, which may provide a clue to elucidating the pumping mechanism of circumstellar SiO masers.

  5. Cosmological Aspects of Habitability of Exoplanets

    NASA Astrophysics Data System (ADS)

    Shchekinov, Yu. A.; Safonova, M.; Murphy, J.

    2014-10-01

    Habitable zone (HZ) defines the region around a start within which planets may support liquid water at their surfaces, which is supposed to be the necessary factor for origination and development of life on the planet. Currently we know about 30 planets inside HZ. The most interesting question is that of possibility of existence of complex life on the planets. As several space-based project aimed at searching of traces of life at exoplanets are presently being worked out, the problem of elaboration of criteria for selection out of the list of planets inside HZ those which most probably host life acquires supreme importance. It is usually implicitly assumed that planets inside HZ may host life, not taking into consideration such an important factor as the planet age. On the other hand the crucial importance of the factor meets the eye immediately. In fact, if we consider a life similar to that on the Earth, it is obvious, that planets younger than 1 Gyr can hardly bear even primitive life-forms because life needs time to originate and develop. Moreover, as a part of biochemical and metabolic processes are endothermic, and, therefore, threshold, the process of life origination may prove extremely sensitive even to tiny HZ parameter variations. Still a most of the discovered planets are known to orbit young stars (stellar population I), no older than several mullions of years. So a considerable number of planets sure HZ inhabitants may prove too young to be really inhabitable. On the other hand, 12-13 Gyr old planetary systems (population II) may happen to be more probable bearers of life. In spite of the fact that such systems are, in the average more distant from us that the population I stars, estimations of possibility of direct detection of traces of metabolism on those systems are quite optimistic, if we bear in mind planetary systems of old law-mass K-stars.

  6. High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    NASA Astrophysics Data System (ADS)

    Tanii, Ryoko; Itoh, Yoichi; Kudo, Tomoyuki; Hioki, Tomonori; Oasa, Yumiko; Gupta, Ranjan; Sen, Asoke K.; Wisniewski, John P.; Muto, Takayuki; Grady, Carol A.; Hashimoto, Jun; Fukagawa, Misato; Mayama, Satoshi; Hornbeck, Jeremy; Sitko, Michael L.; Russell, Ray W.; Werren, Chelsea; Curé, Michel; Currie, Thayne; Ohashi, Nagayoshi; Okamoto, Yoshiko; Momose, Munetake; Honda, Mitsuhiko; Inutsuka, Shu-ichi; Takeuchi, Taku; Dong, Ruobing; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Egner, Sebastian E.; Feldt, Markus; Fukue, Tsubasa; Goto, Miwa; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kusakabe, Nobuhiko; Kuzuhara, Masayuki; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-ichi; Moro-Martín, Amaya; Nishimura, Tetsuro; Pyo, Tae-Soo; Serabyn, Eugene; Suto, Hiroshi; Suzuki, Ryuji; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2012-12-01

    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.''15 (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A, which extends to 120 AU, at a spatial resolution of 0.''1 (14 AU). It is inclined by 46° ± 2°, since the west side is nearest. Although SED modeling and sub-millimeter imagery have suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25-30 AU, we detect no evidence of a gap at the limit of our inner working angle (23 AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66%) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh-scattering nor Mie-scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with radii of 30μm is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations, and have grown in the circumstellar disk of UX Tau A.

  7. High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    NASA Technical Reports Server (NTRS)

    Serabyn, G.; Grady, C. A.; Currie, T.

    2012-01-01

    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.15" (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A which extends to 120 AU, at a spatial resolution of 0.1" (14 AU). It is inclined by 46 degrees plus or minus 2 degrees as the west side is nearest. Although SED modeling and sub-millimeter imagery suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25 - 30 AU, we detect no evidence of a gap at the limit of our inner working angle (23AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66 %) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh scattering nor Mie scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with the radii of 30 micrometers is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations and have grown in the circumstellar disk of UX Tau A.

  8. Observing the Circumstellar Environment of the Eruptive FUor/EXor Protostar V1647 Ori with ALMA

    NASA Astrophysics Data System (ADS)

    Principe, David; Cieza, Lucas A.; Zhu, Zhaohuan; Tobin, John J.; Prieto, Jose Luis

    2016-01-01

    Fu Ori (FUor) and EXor objects represent a short-lived stage of protostellar evolution characterized by intense mass accretion events which cause extreme variability in the form of outbursts. While it is well demonstrated that these objects exhibit sudden outbursts (ΔV~2-6), the mechanism causing such variability is not well understood. High spatial and spectral resolution observations of the circumstellar environment of these objects are essential to distinguish between different outbursting mechanisms. We present ALMA observations of the FUor/EXor object V1647 Ori as part of an ALMA campaign, which has observed a combined eight FUor and EXor type objects. Deeply embedded in the dark cloud LDN 1630 (L1630), V1647 Ori is one of a few FUor/EXor objects to have been extensively studied at multiple wavelengths before, during and after an outburst. We present preliminary results derived from ALMA 12CO, 13CO, C18O and continuum observations of the circumstellar environment of V1647 Ori. By measuring gas/dust masses and gas kinematics of the circumstellar disk, we investigate the potential mechanisms producing variability in these eruptive protostars during an essential, yet rarely observed, stage of pre-main sequence stellar evolution.

  9. Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system?

    NASA Astrophysics Data System (ADS)

    Barstow, J. K.; Irwin, P. G. J.

    2016-09-01

    The recent discovery of three Earth-sized, potentially habitable planets around a nearby cool star, TRAPPIST-1, has provided three key targets for the upcoming James Webb Space Telescope (JWST). Depending on their atmospheric characteristics and precise orbit configurations, it is possible that any of the three planets may be in the liquid water habitable zone, meaning that they may be capable of supporting life. We find that present-day Earth levels of ozone, if present, would be detectable if JWST observes 60 transits for innermost planet 1b and 30 transits for 1c and 1d.

  10. Breaking Bad Habits | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Bad Habits Breaking Bad Habits: Why It's So Hard to Change Past ... News in Health ( http://newsinhealth.nih.gov/ ) Break Bad Habits Avoid temptations. If you always stop for ...

  11. Impact of an inhomogeneous density distribution on selected observational characteristics of circumstellar disks

    NASA Astrophysics Data System (ADS)

    Brauer, R.; Wolf, S.

    2016-01-01

    Context. Analysis of observations of circumstellar disks around young stellar objects is often based on disk models with smooth and continuous density distribution. However, spatially resolved observations with increasing angular resolution and dynamical models indicate that circumstellar disks are highly structured. Aims: We investigate the influence of different clumpy density distributions on selected physical properties and on the observable characteristics of circumstellar disks. In particular, these are the temperature distribution, the spectral energy distribution (SED), the radial brightness profile and the degree of polarization of scattered stellar radiation. Methods: Based on radiative transfer modeling we calculated the temperature structure of the disk and simulate observational quantities in the thermal re-emission and scattering regime. The clumpy density distributions are realized using a two-phase medium approach with phases for the clumps and the medium in between. We compared our results to those obtained for a smooth and continuous density distribution to quantify the influence of clumps on internal physical parameters and observable quantities of circumstellar disks. Results: Within the considered model space, the clumpiness has a significant impact on the disk temperature distribution. For instance, in the transition region from the optically thin upper disk layers to the disk interior, it causes a decrease in the mean temperature by up to 12 K (corresponding to ~15%), if compared to continuous disks. In addition, circumstellar disks with clumpy density distributions generally feature a lower spectral index in the submm/mm range of the SED than continuous disks. The strength of this decrease can be varied by changing the dust mass or grain size, but not by changing the inclination of the disk. As a consequence of the lower spectral index, the dust grain size derived from the submm/mm-slope of the SED may be overestimated, if the inhomogeneity

  12. Healthy eating habits protect against temptations.

    PubMed

    Lin, Pei-Ying; Wood, Wendy; Monterosso, John

    2016-08-01

    Can healthy food-choice habits protect people against temptations of consuming large portion sizes and unhealthy foods? In two studies, we show that the answer is yes, good habits serve this protective role, at least in contexts in which people are not deliberating and thus fall back on habitual responses. In the first study, participants trained with unhealthy habits to approach eating chocolate, but not those trained with healthy habits, succumbed to temptation and ate more chocolates when their self-control resources were depleted. Study 2 extended and clarified these findings by demonstrating the role of environmental cues in eliciting healthy habits when self-control resources are depleted. Participants who had been trained to choose carrots habitually to a pictorial stimulus (i.e., habit cue) subsequently resisted choosing M&Ms as long as the cue was present. This effect of habit cues on healthy food choices suggests the usefulness of manipulating such cues as a means of meeting self-regulatory goals such as portion control. PMID:26585633

  13. Habit versus planned behaviour: a field experiment.

    PubMed

    Verplanken, B; Aarts, H; van Knippenberg, A; Moonen, A

    1998-03-01

    A field experiment investigated the prediction and change in repeated behaviour in the domain of travel mode choices. Car use during seven days was predicted from habit strength (measured by self-reported frequency of past behaviour, as well as by a more covert measure based on personal scripts incorporating the behaviour), and antecedents of behaviour as conceptualized in the theory of planned behaviour (attitude, subjective norm, perceived behavioural control and behavioural intention). Both habit measures predicted behaviour in addition to intention and perceived control. Significant habit x intention interactions indicated that intentions were only significantly related to behaviour when habit was weak, whereas no intention-behaviour relation existed when habit was strong. During the seven-day registration of behaviour, half of the respondents were asked to think about the circumstances under which the behaviour was executed. Compared to control participants, the behaviour of experimental participants was more strongly related to their previously expressed intentions. However, the habit-behaviour relation was unaffected. The results demonstrate that, although external incentives may increase the enactment of intentions, habits set boundary conditions for the applicability of the theory of planned behaviour. PMID:9554090

  14. Sulphur molecules in the circumstellar envelopes of M-type AGB stars

    NASA Astrophysics Data System (ADS)

    Danilovich, T.; De Beck, E.; Black, J. H.; Olofsson, H.; Justtanont, K.

    2016-04-01

    Aims: The sulphur compounds SO and SO2 have not been widely studied in the circumstellar envelopes of asymptotic giant branch (AGB) stars. By presenting and modelling a large number of SO and SO2 lines in the low mass-loss rate M-type AGB star R Dor, and modelling the available lines of those molecules in a further four M-type AGB stars, we aim to determine their circumstellar abundances and distributions. Methods: We use a detailed radiative transfer analysis based on the accelerated lambda iteration method to model circumstellar SO and SO2 line emission. We use molecular data files for both SO and SO2 that are more extensive than those previously available. Results: Using 17 SO lines and 98 SO2 lines to constrain our models for R Dor, we find an SO abundance of (6.7 ± 0.9) × 10-6 and an SO2 abundance of 5 × 10-6 with both species having high abundances close to the star. We also modelled 34SO and found an abundance of (3.1 ± 0.8) × 10-7, giving an 32SO/34SO ratio of 21.6 ± 8.5. We derive similar results for the circumstellar SO and SO2 abundances and their distributions for the low mass-loss rate object W Hya. For the higher mass-loss rate stars, we find shell-like SO distributions with peak abundances that decrease and peak abundance radii that increase with increasing mass-loss rate. The positions of the peak SO abundance agree very well with the photodissociation radii of H2O. We also modelled SO2 in two higher mass-loss rate stars but our models for these were less conclusive. Conclusions: We conclude that for the low mass-loss rate stars, the circumstellar SO and SO2 abundances are much higher than predicted by chemical models of the extended stellar atmosphere. These two species may also account for all the available sulphur. For the higher mass-loss rate stars we find evidence that SO is most efficiently formed in the circumstellar envelope, most likely through the photodissociation of H2O and the subsequent reaction between S and OH. The S

  15. Diapering habits: a global perspective.

    PubMed

    Thaman, Lauren A; Eichenfield, Lawrence F

    2014-11-01

    There are tremendous variations in diapering practices, reflecting varying cultural practices and regional difference. Around the world, more than 134 million babies are born each year, a rate of 255 births per minute or 4.3 births each second. While global population growth has been steadily declining from its peak in 1963, several regions, including the Middle East and Sub-Saharan Africa, continue to maintain high birth rates. Though the essential needs of infants are largely similar, family habits and practices during early years of life vary dramatically. This article surveys data documenting variations in diaper frequency, types, and duration of use internationally, including age of toilet training. These factors may influence diaper rash and skin health of infants and young children. Much of this data was collected as part of analysis of the international commercial diaper market, evaluated and organized as part of an international initiative on Global Infant Skin Care, and presented to a panel of experts for critique and commentary in a symposium held in December, 2013. PMID:25403934

  16. Habitability from a microbial point of view

    NASA Astrophysics Data System (ADS)

    Westall, Frances; Loizeau, Damien; Foucher, Frédéric; Bost, Nicolas; Bertrand, Marylène; Vago, Jorge; Kminek, Gerhard

    2014-05-01

    We examine here the definition of habitability from the point of view of primitive, anaerobic microorganisms noting that the conditions of habitability are different for the appearance of life, for established life, and for life in dormant mode [1]. Habitability in this sense is clearly distinguished from the 'prebiotic world' that precedes the appearance of life. The differences in the conditions of habitability necessary for life to appear, for life to flourish and for dormant life entrain differences in spatial and temporal scales of habitability. For the origin of life, the ingredients carbon molecules, water, nutrients and energy need to be present on time scales applicable for the origin of life (105 to a few 106 y ?), necessitating the spatial scales of a minimum of ~100 km. Established life can take advantage of short-lived habitats (hours, days) to much longer lived ones on spatial scales of 100s μm to cm-m, whereas dormant life can survive (but not metabolise) in extreme environments for very long periods (perhaps up to millions of years) at microbial spatial scales (100s μm - mms). Thus, it is not necessary for the whole of a planet of satellite to be habitable. But the degree of continued habitability will have a strong influence on the possibility of organisms to evolve. For a planet such as Mars, for instance, microbial habitability was (perhaps still is) at different times and in different places. Habitable conditions conducive to the appearance of life, established life and possibly even dormant life could co-exist at different locations. Reference: [1] F. Westall, D. Loizeau, F. Foucher, N. Bost, M. Bertrand, J. Vago, & G. Kminek, Astrobiology 13:9, 887-897 (2013).

  17. Circumstellar dust shells around long-period variables. X. Dynamics of envelopes around standard luminous, C-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Dreyer, C.; Hegmann, M.; Sedlmayr, E.

    2011-01-01

    Context. Long-period variables (LPVs) and Miras exhibit a pronounced variability in their luminosity with a more or less well-defined period, and they suffer large mass loss in the form of stellar winds. Owing to this extensive mass loss, they are surrounded by extended circumstellar dust shells (CDSs). The dynamics of these envelopes is the result of a complex interplay via an external excitation by the pulsating central star, dust formation, and radiative transfer. Aims: Our study is aimed at an understanding of the dynamics of CDSs around carbon-rich, standard luminous LPVs and Miras. These shells often show multiperiodicity with secondary periods as high as a few 104 d superimposed on a main period that is in the range of approximately 102-103 d. Such secondary periods may be caused at least in part by the presence of dust. Methods: We consider an excitation of the CDSs either by a harmonic force, provided by the oscillation of the central star, or by a stochastic force with a continuous power spectrum. The resulting numerically computed dynamical behaviour of the shell is analysed with the help of Fourier analysis and stroboscopic maps. Results: CDSs may be described as multioscillatory systems that are driven by the pulsating stars. A set of normal modes can be identified. The obtained periods of these modes are some 103 d, which is a characteristic timescale for dust nucleation, growth, and elemental enrichment in the dust formation zone. Depending on the oscillation period and strength of the central star, the envelope reacts periodically, multi- periodically, or irregularly.

  18. A search for ultraviolet circumstellar gas absorption features in alpha Piscis Austrinus (Fomalhaut), a possible Beta Pictoris-like system

    NASA Technical Reports Server (NTRS)

    Cheng, K.-P.; Bruhweiler, Fred C.; Kondo, Yoji

    1994-01-01

    Archival high-dispersion International Ultraviolet Explorer (IUE) spectra have been used to search for circumstellar gas absorption features in alpha PsA (A3 V), a nearby (6.7 pc) proto-planetary system candidate. Recent sub-millimeter mapping observations around the region of alpha PsA indicate a spatially resolved dust disk like the one seen around Beta Pic. To determine how closely this putative disk resembles that of Beta Pic, we have searched for signatures of circumstellar gaseous absorption in all the available IUE high-dispersion data of alpha PsA. Examination of co-added IUE spectra shows weak circumstellar absorptions from excited levels in the resonance multiplet of Fe II near 2600 A. We also conclude that the sharp C I feature near 1657 A, previously identified as interstellar absorption toward alpha PsA, likely has a circumstellar origin. However, because the weakness of these absorption features, we will consider the presence of circumstellar gas as tentative and should be verified by using the Goddard High-Resolution Spectrograph aboard the Hubble Space Telescope. No corresponding circumstellar absorption is detected in higher ionization Fe III and Al III. Since the collisionally ionized nonphotospheric Al III resonance absorption seen in Beta Pic is likely formed close to the stellar surface, its absence in the UV spectra of alpha PsA could imply that, in contrast with Beta Pic, there is no active gaseous disk infall onto the central star. In the alpha PsA gaseous disk, if we assume a solar abundance for iron and all the iron is in the form of Fe II, plus a disk temperature of 5000 K, the Fe II UV1 absorption at 2611.8743 A infers a total hydrogen column density along the line of sight through the circumstellar disk of N(H) approximately equals 3.8 x 10(exp 17)/cm.

  19. Is there an Unhabitable Zone?

    NASA Astrophysics Data System (ADS)

    Leconte, Jeremy

    2015-07-01

    The universe is a vast place, and a blind search for life out there is short of impossible. Therefore, it is only natural to try and reduce the area to explore by putting in some additional assumptions based on a few educated guesses and a lot of "a priori" experience from what is life here on Earth. On our way along this appealing path, we have come up with a working definition of where life should be looked for: the so-called Traditional Habitable Zone (THZ). But as this concept ha