Sample records for citrus compost-based growing

  1. Citrus compost and its water extract for cultivation of melon plants in greenhouse nurseries. Evaluation of nutriactive and biocontrol effects.

    PubMed

    Bernal-Vicente, A; Ros, M; Tittarelli, F; Intrigliolo, F; Pascual, J A

    2008-12-01

    Two different types of citrus composts, and their water extracts, were tested with regard to their utilisations as partial substitutes for peat in growing media for melon seedlings in greenhouse nurseries. Both compost showed higher plant growth than peat. Compost composed by citrus waste and green residue (C2) showed greater plant growth than compost obtained from the same organic matrices mentioned above further the addition of sludge obtained from citrus industry (C1). Compost C2 showed a greater auxinic effect than C1 and it was the only one that showed cytokinic effect. Both composts also demonstrated a biocontrol effect against Fusarium oxysporum for melon plants: the effects were also higher in C2 than in C1. Higher number of isolated fungi was active against F. oxysporum in compost C2, than compost C1. No different bacterial biocontrol efficacy was observed between both composts. The water extracts of both composts gave lower plant yields than their solid matrices, their relative effects being similar to those of the solid composts (C2 extract gave higher plant yields than the extract from C1). The biocontrol effects of compost water extracts followed the same trend.

  2. Microbial, chemical and physical aspects of citrus waste composting.

    PubMed

    van Heerden, I; Cronjé, C; Swart, S H; Kotzé, J M

    2002-01-01

    Citrus waste supplemented with calcium hydroxide and with a C/N ratio of 24:1, pH of 6.3 and moisture content of 60% was composted by piling under shelter. With regular turning over of the pile and replenishment of moisture, the thermic phase lasted for 65-70 days and composting was completed after 3 months. Compost thus prepared had an air-filled porosity of 14%, water-holding capacity of 590 ml l(-1), bulk density of 1.05 g cm(-3) and conductivity of 480 mS m(-1). Phosphorus content (in mg l(-1)) was 15, potassium 1,170, calcium 362, magnesium 121, sodium 32, chloride 143, boron 0.31, and water-soluble nitrogen and organic matter 126 and 4788, respectively. Total carbon amounted to 8.85% and total nitrogen to 1.26% of the dry weight, giving a C/N ratio of 7. Mature compost showed some, but acceptable, levels of phytotoxicity. Raw citrus waste was predominantly colonised by mesophilic yeasts. Thermophilous microorganisms present during the thermic phase mainly comprised the bacterial species Bacillus licheniformis, B. macerans and B. stearothermophilus and, to a lesser extent, fungi such as Absidia corymbifera, Aspergillus fumigatus, Emericella nidulans, Penicillium diversum, Paecilomyces variotii, Rhizomucor pusillus, Talaromyces thermophilus and Thermomyces lanuginosus. Bacteria prevalent in the final product included B. licheniformis, B. macerans, Proteus vulgaris, Pseudomonas aeruginosa, P. fluorescens, P. luteola and Serratia marcescens, whereas fungi isolated most frequently comprised Aspergillus puniceus, A. ustus, E. nidulans. Paecilomyces lilacinus, T lanuginosus, yeasts and a basidiomycetous species, probably Coprinus lagopus.

  3. Trichoderma harzianum T-78 supplementation of compost stimulates the antioxidant defence system in melon plants.

    PubMed

    Bernal-Vicente, Agustina; Pascual, José A; Tittarelli, Fabio; Hernández, José A; Diaz-Vivancos, Pedro

    2015-08-30

    Compost is emerging as an alternative plant growing medium in efforts to achieve more sustainable agriculture. The addition of specific microorganisms such as Trichoderma harzianum to plant growth substrates increases yields and reduces plant diseases, but the mechanisms of such biostimulants and the biocontrol effects are not yet fully understood. In this work we investigated how the addition of citrus and vineyard composts, either alone or in combination with T. harzianum T-78, affects the antioxidant defence system in melon plants under nursery conditions. Compost application and/or Trichoderma inoculation modulated the antioxidant defence system in melon plants. The combination of citrus compost and Trichoderma showed a biostimulant effect that correlated with an increase in ascorbate recycling enzymes (monodehydroascorbate reductase, dehydroascorbate reductase) and peroxidase. Moreover, the inoculation of both composts with Trichoderma increased the activity of antioxidant enzymes, especially those involved in ascorbate recycling. Based on the long-established relationship between ascorbic acid and plant defence responses as well as plant growth and development, it can be suggested that ascorbate recycling activities play a major role in the protection provided by Trichoderma and its biostimulant effect and that these outcomes are linked to increases in antioxidant enzymes. We can conclude that the combination of citrus compost and T. harzianum T-78 constitutes a viable, environmentally friendly strategy for improving melon plant production. © 2014 Society of Chemical Industry.

  4. Posidonia oceanica (L.) based compost as substrate for potted basil production.

    PubMed

    Mininni, Carlo; Grassi, Francesco; Traversa, Andreina; Cocozza, Claudio; Parente, Angelo; Miano, Teodoro; Santamaria, Pietro

    2015-08-15

    Peat is the main component of growing media but is also a non-renewable resource; therefore European policy strongly encourages the use of peat alternatives such as compost. Posidonia is a Mediterranean seagrass that produces very conspicuous onshore deposits that can be composted. In this study, a commercial green compost and a Posidonia residue-based compost were tested in order to assess their potential use as substitutes or complements to peat. All macro and micro-element concentrations of the substrates were positively and significantly related to the percentage of composts in the growing media. Plant grown on peat showed higher content of P, Ca, K, Na, Cu, Mn, Zn and Fe, and a slightly higher biomass production in comparison to compost-based growing media. In contrast, plants grown on compost-based substrates showed lower uptake of Cd and Cr than peat. The results indicate that both composts can be used as a complement to the peat for substrate preparation, especially at a rate of 30%. The Posidonia-based compost showed better productive results in comparison to the green one. Basil grown on the two compost-based media showed reduced absorption level of potentially toxic metals in comparison to peat. © 2014 Society of Chemical Industry.

  5. Degradation of isoproturon and bentazone in peat- and compost-based biomixtures.

    PubMed

    Coppola, Laura; Pilar Castillo, Maria Del; Vischetti, Costantino

    2011-01-01

    The composition and properties of a biomixture used in a biobed are decisive for pesticide sorption and degradation. This study was performed to investigate the capability of compost-based substrates in mixtures with citrus peel and vine branch straw and peat-based substrates in mixtures with soil and vine branch straw at different levels in order to degrade isoproturon and bentazone. Dissipation and mineralisation rates of both pesticides were determined, and metabolic activity was followed as respiration. Compost-based substrates showed faster pesticide dissipation in the presence of lignocellulosic materials, as in garden compost and vine branch straw. The increasing content of vine branch straw in peat-based substrates does not seem to affect dissipation of the parent compounds. Low mineralisation rate was observed in all treatments. Higher pesticide degradation was observed in the lignocellulosic substrates, probably because of the development of lignin-degrading microorganisms which have shown to be robust and are able to degrade recalcitrant pesticides. Copyright © 2010 Society of Chemical Industry. Copyright © 2010 Society of Chemical Industry.

  6. Compost-based growing media: influence on growth and nutrient use of bedding plants.

    PubMed

    Grigatti, Marco; Giorgioni, Maria Eva; Ciavatta, Claudio

    2007-12-01

    The agronomic performance and the mineral composition and trace element content in Begonia semperflorens "Bellavista F1", Mimulus "Magic x hybridus", Salvia splendens "maestro", and Tagete patula xerecta "Zenith Lemon Yellow", were tested by growing the plants on substrates of white peat and 25-50-75-100% green waste and sewage sludge (80%+20%v/v) compost (CP). A commercial peat medium of black and white peat (2:1v/v) was used as control. At flowering, the agronomic parameters were compared by ANOVA and plant nutritional status was compared by vector analysis. Substrate-species interactions (P<0.001) were evident for all measured parameters. In the 25% CP medium all the species showed an increase or preservation of the studied agronomic parameters. Begonia grown in 25% CP, showed the highest dry weight (DW) and number of flowers. Other treatments were comparable to the control. Mimulus and Salvia showed the highest DW in the 25-50% CP. Mimulus, after a DW increase up to 50% CP, showed the steepest reduction as the CP increased further. Tagete showed no differences in DW up to 50% CP, or in flower number up to 25% CP, compared to the control. The additional increases of CP in the medium showed a DW decrease similar to that of Salvia. Vector analysis showed the use of compost mainly induced a decrease of P concentration in tissues, except for Begonia which remained unchanged. Plant tissues showed a general P reduction due to a dilution effect in the low compost mixtures (25-50%) and a deficiency in the higher CP mixtures. In contrast, an increase of Mg in the aboveground tissues of all species was detectable as compost usage increased, with the exception of Salvia which suffered a Mg deficiency. Vector analysis also highlighted a Ni and partial Fe deficiency in Tagete and Salvia.

  7. Evolution of process control parameters during extended co-composting of green waste and solid fraction of cattle slurry to obtain growing media.

    PubMed

    Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Marfà, Oriol

    2015-03-01

    This study aimed to monitor process parameters when two by-products (green waste - GW, and the solid fraction of cattle slurry - SFCS) were composted to obtain growing media. Using compost in growing medium mixtures involves prolonged composting processes that can last at least half a year. It is therefore crucial to study the parameters that affect compost stability as measured in the field in order to shorten the composting process at composting facilities. Two mixtures were prepared: GW25 (25% GW and 75% SFCS, v/v) and GW75 (75% GW and 25% SFCS, v/v). The different raw mixtures resulted in the production of two different growing media, and the evolution of process management parameters was different. A new parameter has been proposed to deal with attaining the thermophilic temperature range and maintaining it during composting, not only it would be useful to optimize composting processes, but also to assess the hygienization degree. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Method of making compost and spawned compost, mushroom spawn and generating methane gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoller, B.B.

    1981-04-28

    Newly designed ribbon-type mixers provide an improved method for making composts, aerating composts, growing mushroom spawn, generating methane gas, and filling conveyors in the mushroom-growing industry. The mixers may be the double-ribbon type for purely mixing operations or the single-ribbon type for moving the material from one place to another. Both types can operate under pressure. In preparing compost for mushroom growing, operators can first use the airtight mixers for a preliminary anaerobic fermentation to produce methane, then by changing the atmosphere to an oxidizing one, complete the compost preparation under the necessary aerobic conditions.

  9. Comparison of NOx Removal Efficiencies in Compost Based Biofilters Using Four Different Compost Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacey, Jeffrey Alan; Lee, Brady Douglas; Apel, William Arnold

    2001-06-01

    In 1998, 3.6 trillion kilowatt-hours of electricity were generated in the United States. Over half of this was from coal-fired power plants, resulting in more than 8.3 million tons of nitrogen oxide (NOx) compounds being released into the environment. Over 95% of the NOx compounds produced during coal combustion are in the form of nitric oxide (NO). NOx emission regulations are becoming increasingly stringent, leading to the need for new, cost effective NOx treatment technologies. Biofiltration is such a technology. NO removal efficiencies were compared in compost based biofilters using four different composts. In previous experiments, removal efficiencies were typicallymore » highest at the beginning of the experiment, and decreased as the experiments proceeded. This work tested different types of compost in an effort to find a compost that could maintain NO removal efficiencies comparable to those seen early in the previous experiments. One of the composts was wood based with manure, two were wood based with high nitrogen content sludge, and one was dairy compost. The wood based with manure and one of the wood based with sludge composts were taken directly from an active compost pile while the other two composts were received in retail packaging which had been out of active piles for an indeterminate amount of time. A high temperature (55-60°C) off-gas stream was treated in biofilters operated under denitrifying conditions. Biofilters were operated at an empty bed residence time of 13 seconds with target inlet NO concentrations of 500 ppmv. Lactate was the carbon and energy source. Compost was sampled at 10-day intervals to determine aerobic and anaerobic microbial densities. Compost was mixed at a 1:1 ratio with lava rock and calcite was added at 100g/kg of compost. In each compost tested, the highest removal efficiencies occurred within the first 10 days of the experiment. The wood based with manure peaked at day 3 (77.14%), the dairy compost at day 1 (80

  10. Comparison of five agro-industrial waste-based composts as growing media for lettuce: Effect on yield, phenolic compounds and vitamin C.

    PubMed

    Santos, Francielly T; Goufo, Piebiep; Santos, Cátia; Botelho, Donzilia; Fonseca, João; Queirós, Aurea; Costa, Mônica S S M; Trindade, Henrique

    2016-10-15

    Overall phenolic content in plants is on average higher in organic farming, including when renewable resources such as composts are used as soil amendments. In most cases, however, the composting process needs to be optimized to reach the desired outcome. Using composts obtained from chestnut, red and white grapes, olive and broccoli wastes, the relative antioxidative abilities of lettuces cultivated in greenhouse were examined. Results clearly coupled high phenolic levels with high yield in lettuce grown on the chestnut-based compost. A huge accumulation of phenolics was observed with the white grape-based compost, but this coincided with low yield. Three compounds were identified as discriminating factors between treated samples, namely quercetin 3-O-glucoside, luteolin 7-O-glucoside, and cyanidin 3-O-(6″-malonyl)-β-d-glucoside; these are also some of the compounds receiving health claims on lettuce consumption. On a negative note, all composts led to decreased vitamin C levels. Collectively, the data suggest that compost amendments can help add value to lettuce by increasing its antioxidant activity as compared to other organic resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Composting: Fast 2.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    Composting is a way of using organic wastes from yards and kitchens to help plants grow. This book discusses how composting happens in nature, the classification of composting methods, and their characteristics. Examples of containers for aerobic/anaerobic decomposition are introduced along with sample activities. The process of aerobic/anaerobic…

  12. Nitrification during extended co-composting of extreme mixtures of green waste and solid fraction of cattle slurry to obtain growing media.

    PubMed

    Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Martínez-Farré, F Xavier; López, Marga; Soliva, Montserrat; Marfà, Oriol

    2016-12-01

    Next generation of waste management systems should apply product-oriented bioconversion processes that produce composts or biofertilisers of desired quality that can be sold in high priced markets such as horticulture. Natural acidification linked to nitrification can be promoted during composting. If nitrification is enhanced, suitable compost in terms of pH can be obtained for use in horticultural substrates. Green waste compost (GW) represents a potential suitable product for use in growing medium mixtures. However its low N provides very limited slow-release nitrogen fertilization for suitable plant growth; and GW should be composted with a complementary N-rich raw material such as the solid fraction of cattle slurry (SFCS). Therefore, it is important to determine how very different or extreme proportions of the two materials in the mixture can limit or otherwise affect the nitrification process. The objectives of this work were two-fold: (a) To assess the changes in chemical and physicochemical parameters during the prolonged composting of extreme mixtures of green waste (GW) and separated cattle slurry (SFCS) and the feasibility of using the composts as growing media. (b) To check for nitrification during composting in two different extreme mixtures of GW and SFCS and to describe the conditions under which this process can be maintained and its consequences. The physical and physicochemical properties of both composts obtained indicated that they were appropriate for use as ingredients in horticultural substrates. The nitrification process occurred in both mixtures in the medium-late thermophilic stage of the composting process. In particular, its feasibility has been demonstrated in the mixtures with a low N content. Nitrification led to the inversion of each mixture's initial pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Food waste composting: its use as a peat replacement.

    PubMed

    Farrell, M; Jones, D L

    2010-01-01

    We successfully co-composted catering waste with green waste and shredded paper to yield two high-nitrogen composts for use in horticulture. Sunflowers (Helianthus annuus L.) were grown in various mixtures of the compost and a commercially available peat-based compost to assess the efficacy of catering waste-based composts for peat replacement. Height, head diameter, seed mass and above-ground biomass were measured, with all mixtures giving a significant increase in yield or size over the commercially available peat-free control compost. We conclude that differences in physical structure governed sunflower growth over substrate chemistry, and none of the compost mixtures were nutrient deficient. We recommend that catering waste co-compost can be substituted to at least 75% within Sphagnum-based traditional growing media, providing a viable replacement for a large proportion of peat used as a growth medium in the horticulture industry. Our catering waste compost yielded similar seed head, seed mass and above-ground biomass values to 100% peat-based compost in all food waste compost blends tested in this study. 2010 Elsevier Ltd. All rights reserved.

  14. A Climatic Classification for Citrus Winter Survival in China.

    NASA Astrophysics Data System (ADS)

    Shou, Bo Huang

    1991-05-01

    The citrus tree is susceptible to frost damage. Winter injury to citrus from freezing weather is the major meteorological problem in the northern pail of citrus growing regions in China. Based on meteorological data collected at 120 stations in southern China and on the extent of citrus freezing injury, five climatic regions for citrus winter survival in China were developed. They were: 1) no citrus tree injury. 2) light injury to mandarins (citrus reticulate) or moderate injury to oranges (citrus sinensis), 3) moderate injury to mandarins or heavy injury to oranges, 4) heavy injury to mandarins, and 5) impossible citrus tree growth. This citrus climatic classification was an attempt to provide guidelines for regulation of citrus production, to effectively utilize land and climatic resources, to chose suitable citrus varieties, and to develop methods to prevent injury by freezing.

  15. The Cultivation of Arabidopsis for Experimental Research Using Commercially Available Peat-Based and Peat-Free Growing Media

    PubMed Central

    Drake, Tiffany; Keating, Mia; Summers, Rebecca; Yochikawa, Aline; Pitman, Tom

    2016-01-01

    Experimental research involving Arabidopsis thaliana often involves the quantification of phenotypic traits during cultivation on compost or other growing media. Many commercially-available growing media contain peat, but peat extraction is not sustainable due to its very slow rate of formation. Moreover, peat extraction reduces peatland biodiversity and releases stored carbon and methane into the atmosphere. Here, we compared the experimental performance of Arabidopsis on peat-based and several types of commercially-available peat-free growing media (variously formed from coir, composted bark, wood-fibre, and domestic compost), to provide guidance for reducing peat use in plant sciences research with Arabidopsis. Arabidopsis biomass accumulation and seed yield were reduced by cultivation on several types of peat-free growing media. Arabidopsis performed extremely poorly on coir alone, presumably because this medium was completely nitrate-free. Some peat-free growing media were more susceptible to fungal contamination. We found that autoclaving of control (peat-based) growing media had no effect upon any physiological parameters that we examined, compared with non-autoclaved control growing media, under our experimental conditions. Overall, we conclude that Arabidopsis performs best when cultivated on peat-based growing media because seed yield was almost always reduced when peat-free media were used. This may be because standard laboratory protocols and growth conditions for Arabidopsis are optimized for peat-based media. However, during the vegetative growth phase several phenotypic traits were comparable between plants cultivated on peat-based and some peat-free media, suggesting that under certain circumstances peat-free media can be suitable for phenotypic analysis of Arabidopsis. PMID:27088495

  16. Exploring the potential of biobeds for the depuration of pesticide-contaminated wastewaters from the citrus production chain: laboratory, column and field studies.

    PubMed

    Omirou, M; Dalias, P; Costa, C; Papastefanou, C; Dados, A; Ehaliotis, C; Karpouzas, D G

    2012-07-01

    The high wastewater volumes produced during citrus production at pre- and post-harvest level presents serious pesticide point-source pollution for groundwater bodies. Biobeds are used for preventing such point-source pollution occurring at farm level. We explored the potential of biobeds for the depuration of wastewaters produced through the citrus production chain following a lab-to-field experimentation. The dissipation of pesticides used pre- or post-harvest was studied in compost-based biomixtures, soil, and a straw-soil mixture. A biomixture of composted grape seeds and skins (GSS-1) showed the highest dissipation capacity. In subsequent column studies, GSS-1 restricted pesticides leaching even at the highest water load (462 Lm(-3)). Ortho-phenylphenol was the most mobile compound. Studies in an on-farm biobed filled with GSS-1 showed that pesticides were fully retained and partially or fully dissipated. Overall biobeds could be a valuable solution for the depuration of wastewaters produced at pre- and post-harvest level by citrus fruit industries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. qRT-PCR quantification of the biological control agent Trichoderma harzianum in peat and compost-based growing media.

    PubMed

    Beaulieu, Robert; López-Mondéjar, Rubén; Tittarelli, Fabio; Ros, Margarita; Pascual, José Antonio

    2011-02-01

    To ensure proper use of Trichoderma harzianum in agriculture, accurate data must be obtained in population monitoring. The effectiveness of qRT-PCR to quantify T. harzianum in different growing media was compared to the commonly used techniques of colony counting and qPCR. Results showed that plate counting and qPCR offered similar T. harzianum quantification patterns of an initial rapid increase in fungal population that decreased over time. However, data from qRT-PCR showed a population curve of active T. harzianum with a delayed onset of initial growth which then increased throughout the experiment. Results demonstrated that T. harzianum can successfully grow in these media and that qRT-PCR can offer a more distinct representation of active T. harzianum populations. Additionally, compost amended with T. harzianum exhibited a lower Fusarium oxysporum infection rate (67%) and lower percentage of fresh weight loss (11%) in comparison to amended peat (90% infection rate, 23% fresh weight loss). Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Decline in extractable antibiotics in manure-based composts during composting.

    PubMed

    Kim, K-R; Owens, G; Ok, Y S; Park, W-K; Lee, D B; Kwon, S-I

    2012-01-01

    A wide variety of antibiotics have been detected in natural water samples and this is of potential concern because of the adverse environmental effects of such antibiotic residues. One of the main sources of antibiotics effluence to the surrounding environment is livestock manures which often contain elevated concentrations of veterinary antibiotics (VAs) which survive digestion in the animal stomach following application in animal husbandry practices. In Korea, livestock manures are normally used for compost production indicating that there is potential for antibiotic release to the environment through compost application to agricultural lands. Therefore, reduction of the amount of VAs in composts is crucial. The purpose of this study was to understand the influence of the composting process and the components of the compost on the levels of three common classes of antibiotics (tetracyclines, sulfonamides, and macrolides). Composted materials at different stages of composting were collected from compost manufacturing plants and the variation in antibiotic concentrations was determined. Three different antibiotics, chlortetracycline (CTC), sulfamethazine (SMZ), and tylosin (TYL) at three different concentrations (2, 10, and 20mgkg(-1)) were also applied to a mixture of pig manure and sawdust and the mixtures incubated using a laboratory scale composting apparatus to monitor the changes in antibiotic concentrations during composting together with the physicochemical properties of the composts. During composting, in both field and lab-scale investigations, the concentrations of all three different antibiotics declined below the relevant Korean guideline values (0.8mgkg(-1) for tetracyclines, 0.2mgkg(-1) for sulfonamides and 1.0mgkg(-1) for macrolides). The decline of tetracycline and sulfonamide concentrations was highly dependent on the presence of sawdust while there was no influence of sawdust on TYL decline. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Microbial enhancement of compost extracts based on cattle rumen content compost - characterisation of a system.

    PubMed

    Shrestha, Karuna; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Midmore, David J

    2011-09-01

    Microbially enhanced compost extracts ('compost tea') are being used in commercial agriculture as a source of nutrients and for their perceived benefit to soil microbiology, including plant disease suppression. Rumen content material is a waste of cattle abattoirs, which can be value-added by conversion to compost and 'compost tea'. A system for compost extraction and microbial enhancement was characterised. Molasses amendment increased bacterial count 10-fold, while amendment based on molasses and 'fish and kelp hydrolysate' increased fungal count 10-fold. Compost extract incubated at 1:10 (w/v) dilution showed the highest microbial load, activity and humic/fulvic acid content compared to other dilutions. Aeration increased the extraction efficiency of soluble metabolites, and microbial growth rate, as did extraction of compost without the use of a constraining bag. A protocol of 1:10 dilution and aerated incubation with kelp and molasses amendments is recommended to optimise microbial load and fungal-to-bacterial ratio for this inoculum source. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Efficacy of three citrus oil formulations against solenopsis invicta buren (Hymenoptera: Formicidae), the red imported fire ant1,2

    Treesearch

    James T. Vogt; Thormas G. Shelton; Michael E. Merchant; Scott A. Russell; Marla J. Tanley; Arthur G. Appel

    2002-01-01

    Experiments were conducted in Alabama, Oklahoma, and Texas to assess efficacy of raw citrus peel extract (orange oil) and a commercial citrus oil formulation for control of Solenopsis invicta Buren, the red imported fire ant. A recipe containing orange oil (equal parts orange oil, cattlemen's molasses, and compost tea at 47 mL L1 water),...

  1. Horsfall-Barratt recalibration and replicated severity estimates of citrus canker

    USDA-ARS?s Scientific Manuscript database

    Citrus canker is a serious disease of citrus in tropical and subtropical citrus growing regions. Accurate and precise assessment of citrus canker and other plant pathogens is needed to obtain good quality data. Citrus canker assessment data were used to ascertain some of the mechanics of the Horsfal...

  2. Effect of long-term different fertilization on bacterial community structures and diversity in citrus orchard soil of volcanic ash.

    PubMed

    Joa, Jae Ho; Weon, Hang Yeon; Hyun, Hae Nam; Jeun, Young Chull; Koh, Sang Wook

    2014-12-01

    This study was conducted to assess bacterial species richness, diversity and community distribution according to different fertilization regimes for 16 years in citrus orchard soil of volcanic ash. Soil samples were collected and analyzed from Compost (cattle manure, 2,000 kg/10a), 1/2 NPK+compost (14-20-14+2,000 kg/10a), NPK+compost (28-40-28+2,000 kg/10a), NPK (28-40-28 kg/10a), 3 NPK (84-120-84 kg/10a), and Control (no fertilization) plot which have been managed in the same manners with compost and different amount of chemical fertilization. The range of pyrosequencing reads and OTUs were 4,687-7,330 and 1,790-3,695, respectively. Species richness estimates such as Ace, Chao1, and Shannon index were higher in 1/2 NPK+compost than other treatments, which were 15,202, 9,112, 7.7, respectively. Dominant bacterial groups at level of phylum were Proteobacteria, Acidobacteria, and Actinobacteria. Those were occupied at 70.9% in 1/2 NPK+compost. Dominant bacterial groups at level of genus were Pseudolabrys, Bradyrhizobium, and Acidobacteria. Those were distributed at 14.4% of a total of bacteria in Compost. Soil pH displayed significantly closely related to bacterial species richness estimates such as Ace, Chao1 (p<0.05) and Shannon index (p<0.01). However, it showed the negative correlation with exchangeable aluminum contents (p<0.05). In conclusion, diversity of bacterial community in citrus orchard soil was affected by fertilization management, soil pH changes and characteristics of volcanic ash.

  3. The potential of near infrared reflectance spectroscopy (NIRS) for the estimation of agroindustrial compost quality.

    PubMed

    Galvez-Sola, L; Moral, R; Perez-Murcia, M D; Perez-Espinosa, A; Bustamante, M A; Martinez-Sabater, E; Paredes, C

    2010-02-15

    Composting is an environmentally friendly alternative for the recycling of organic wastes and its use is increasing in recent years. An exhaustive monitoring of the composting process and of the final compost characteristics is necessary to certify that the values of compost characteristics are within the limits established by the legislation in order to obtain a safe and marketable product. The analysis of these parameters on each composting batch in the commercial composting plant is time-consuming and expensive. So, their estimation in the composting facilities based on the use of near infrared reflectance spectroscopy (NIRS) could be an interesting approach in order to monitor compost quality. In this study, more than 300 samples from 20 different composting procedures were used to calibrate and validate the NIRS estimation of compost properties (pH, electrical conductivity (EC), total organic matter (TOM), total organic carbon (TOC), total nitrogen (TN) and C/N ratio, macronutrient contents (N, P, K) and potentially pollutant element concentrations (Fe, Cu, Mn and Zn)). The composts used were elaborated using different organic wastes from agroindustrial activities (GS: grape stalk; EGM: exhausted grape marc; GM: grape marc; V: vinasse; CJW: citrus juice waste; Alpeorujo: olive-oil waste; AS: almond skin; EP: exhausted peat; TSW: tomato soup waste; SMS: spent mushroom substrate) co-composted with manures (CM: cattle manure; PM: poultry manure) or urban wastes (SS: sewage sludge) The estimation results showed that the NIRS technique needs to be fitted to each element and property, using specific spectrum transformations, in order to achieve an acceptable accuracy in the prediction. However, excellent prediction results were obtained for TOM and TOC, successful calibrations for pH, EC, Fe and Mn, and moderately successful estimations for TN, C/N ratio, P, K, Cu and Zn.

  4. Three-year study of fast-growing trees in degraded soils amended with composts: Effects on soil fertility and productivity.

    PubMed

    Madejón, Paula; Alaejos, Joaquin; García-Álbala, José; Fernández, Manuel; Madejón, Engracia

    2016-03-15

    Currently, worries about the effects of intensive plantations on long-term nutrient supply and a loss of productivity have risen. In this study two composts were added to degraded soils where this type of intensive crops were growing, to avoid the soil fertility decrease and try to increase biomass production. For the experiment, two degraded soils in terms of low organic carbon content and low pH were selected in South-West Spain: La Rábida (RA) and Villablanca (VI) sites. Both study sites were divided into 24 plots. In RA, half of the plots were planted with Populus x canadensis "I-214"; the other half was planted with Eucalyptus globulus. At the VI site, half of the plots were planted with Paulownia fortunei, and the other plots were planted with Eucalyptus globulus. For each tree and site, three treatments were established (two organic composts and a control without compost), with four replications per treatment. The organic amendments were "alperujo" compost, AC, a solid by-product from the extraction of olive oil, and BC, biosolid compost. During the three years of experimentation, samples of soils and plants were analyzed for studying chemical and biochemical properties of soil, plant growth and plant nutritional status and biomass production. The composts increased total organic carbon, water-soluble carbon, nutrients and pH of soil only in the most acidic soil. Soil biochemical quality was calculated with the geometric mean of the enzymatic activities (Dehydrogenase, β-glucosidase, Phosphatase and Urease activities) determined in soils. The results showed a beneficial improvement in comparison with soils without compost. However, the best results were found in the growth and biomass production of the studied trees, especially in Eucalyptus. Nutritional levels of leaves of the trees were, in general, in the normal established range for each species, although no clear effect of the composts was observed. The results of this study justify the addition of

  5. 'Psyllid purple’: evidence of behavior-based utilization by the Asian citrus psyllid of a combination of short and long wavelengths

    USDA-ARS?s Scientific Manuscript database

    The Asian citrus psyllid, Diaphorina citri, is the vector of huanglongbing, the most serious disease affecting citrus globally. In Florida alone, D. citri has resulted in billions of dollars of damage and has spread to all the citrus growing regions of North America. The visual behavior of D. citri ...

  6. Compost maturity and nitrogen availability by co-composting of paddy husk and chicken manure amended with clinoptilolite zeolite.

    PubMed

    Latifah, Omar; Ahmed, Osumanu Haruna; Susilawati, Kassim; Majid, Nik Muhamad

    2015-04-01

    The availability of paddy husk from rice processing plants remains high owing to increase in the worldwide rice consumption. Increasing demand for chicken products leads to poultry wastes production. Co-composting of the aforementioned wastes could solve the indiscriminate disposal of these wastes. Thus, co-composting of paddy husk and chicken slurry with clinoptilolite zeolite and urea as additive was carried out. Clinoptilolite zeolite was used to enhance ammonium and nitrate retention in the compost. Temperature of the compost was monitored three times daily for 55 days. Cation exchange capacity, organic matter, ash, humic acids, pH, total C, N, C/N ratio; total P, exchangeable Ca, Mg, K, NH4+, NO3-, and heavy metals contents were determined using standard procedures. pH, total N, humic acids, ash, NH4+, NO3-, P, Ca, Mg, and K contents increased but the salinity, heavy metals contents, and microbial population were low after the co-composting process. Zea mays L. (test crop) seed germination rate in distilled water and the compost were not significantly different. Growth of Spinach oleracea (test crop) on a peat-based growing medium and the compost was also not significantly different. These findings were possible because the clinoptilolite zeolite used in co-composting reduced accumulation of heavy metals that may have damage effects on the test crops. Mature compost with good agronomic properties can be produced by co-composting chicken slurry and paddy husk using clinoptilolite zeolite and urea as additives. © The Author(s) 2015.

  7. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    PubMed Central

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; Gómez, Ignacio; Navarro-Pedreño, Jose

    2016-01-01

    Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS) models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation—RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring. PMID:27854280

  8. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring.

    PubMed

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; Gómez, Ignacio; Navarro-Pedreño, Jose

    2016-11-15

    Conventional wastewater treatment generates large amounts of organic matter-rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS) models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation-RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  9. Mechanical Damage Detection of Indonesia Local Citrus Based on Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Siregar, T. H.; Ahmad, U.; Sutrisno; Maddu, A.

    2018-05-01

    Citrus experienced physical damage in peel will produce essential oils that contain polymethoxylated flavone. Polymethoxylated flavone is fluorescence substance; thus can be detected by fluorescence imaging. This study aims to study the fluorescence spectra characteristic and to determine the damage region in citrus peel based on fluorescence image. Pulung citrus from Batu district, East Java, as a famous citrus production area in Indonesia, was used in the experiment. It was observed that the image processing could detect the mechanical damage region. Fluorescence imaging can be used to classify the citrus into two categories, sound and defect citruses.

  10. Antioxidant and anti-ageing activities of citrus-based juice mixture.

    PubMed

    Kim, Dan-Bi; Shin, Gi-Hae; Kim, Jae-Min; Kim, Young-Hyun; Lee, Jin-Ha; Lee, Jong Seok; Song, Hye-Jin; Choe, Soo Young; Park, In-Jae; Cho, Ju-Hyun; Lee, Ok-Hawn

    2016-03-01

    The production of excessive reactive oxygen species by exposure to oxidative stress and solar radiation are primary factors in skin damage. We examined the effects of a citrus-based juice mixture and its bioactive compounds on antioxidant and anti-ageing activities in human dermal fibroblasts and hairless mice via the regulation of antioxidant enzymes and the mitogen-activated protein kinase pathway. The citrus-based juice mixture reduced H2O2-induced cell damage and intracellular reactive oxygen species production in human dermal fibroblasts. Citrus-based juice mixture pretreatment suppressed the activation of the H2O2-mediated mitogen-activated protein kinase pathway by activating the expression of activator protein 1 and matrix metalloproteinases. Moreover, it increased the expression levels of antioxidant enzymes such as glutathione reductase, catalase and manganese superoxide dismutase. In addition, oral administration of the citrus-based juice mixture decreased skin thickness and wrinkle formation and increased collagen content on an ultraviolet light B-exposed hairless mouse. These results indicate that the citrus-based juice mixture is a potentially healthy beverage for the prevention of oxidative stress-induced premature skin ageing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Assessing the Effect of Composting Cassava Peel Based Substrates on the Yield, Nutritional Quality, and Physical Characteristics of Pleurotus ostreatus (Jacq. ex Fr.) Kummer

    PubMed Central

    Kortei, N. K.; Dzogbefia, V. P.; Obodai, M.

    2014-01-01

    Cassava peel based substrate formulations as an alternative substrate were used to grow mushrooms. The effect of two compost heights, three composting periods on the mycelia growth, physical characteristics, yield, and nutritional qualities of Pleurotus ostreatus (Jacq. ex Fr.) Kummer was studied. Mean mycelia growth of 16.2 cm after a period of seven (7) weeks was the best for 1.5 m compost height. Cap diameter and stipe length differed significantly (P < 0.05) with the compost heights (0.8 m and 1.5 m). The yield on compost height of 1.5 m, composted for 5 days, differed significantly (P < 0.05) from that of 0.8 m and gave increasing yields as follows: cassava peels and manure, cassava peels only, cassava peels and corn cobs (1 : 1 ratio), and cassava peels and corn cobs (1 : 1 ratio) with chicken manure. Composting periods (3 and 7 days) gave varying yields depending on the compost height. Based on the findings an interaction of 1.5 m compost height and 5 days composting period on cassava peels and corncobs (1 : 1 ratio) with chicken manure produced the best results. The nutritional quality of the mushrooms also differed significantly (P < 0.05), indicating that cassava peels could be used as a possible substrate in cultivation of mushroom. PMID:25580299

  12. Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortunei plantation.

    PubMed

    Madejón, P; Xiong, J; Cabrera, F; Madejón, E

    2014-11-01

    The use of fast growing trees could be an alternative in trace element contaminated soils to stabilize these elements and improve soil quality. In this study we investigate the effect of Paulownia fortunei growth on trace element contaminated soils amended with two organic composts under semi-field conditions for a period of 18 months. The experiment was carried out in containers filled with tree different soils, two contaminated soils (neutral AZ and acid V) and a non contaminated soil, NC. Three treatments per soil were established: two organic amendments (alperujo compost, AC, and biosolid compost, BC) and a control without amendment addition. We study parameters related with fertility and contamination in soils and plants. Paulownia growth and amendments increased pH in acid soils whereas no effect of these factors was observed in neutral soils. The plant and the amendments also increased organic matter and consequently, soil fertility. Positive results were also found in soils that were only affected by plant growth (without amendment). A general improvement of "soil biochemical quality" was detected over time and treatments, confirming the positive effect of amendments plus paulownia. Even in contaminated soils, except for Cu and Zn, trace element concentrations in leaves were in the normal range for plants. Results of this mid-term study showed that Paulownia fortunei is a promising species for phytoremediation of trace element polluted soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effective antibiotics against 'Candidatus Liberibacter asiaticus' in HLB-affected citrus plants identified via the graft-based evaluation.

    PubMed

    Zhang, Muqing; Guo, Ying; Powell, Charles A; Doud, Melissa S; Yang, Chuanyu; Duan, Yongping

    2014-01-01

    Citrus huanglongbing (HLB), caused by three species of fastidious, phloem-limited 'Candidatus Liberibacter', is one of the most destructive diseases of citrus worldwide. To date, there is no established cure for this century-old and yet, newly emerging disease. As a potential control strategy for citrus HLB, 31 antibiotics were screened for effectiveness and phytotoxicity using the optimized graft-based screening system with 'Candidatus Liberibacter asiaticus' (Las)-infected citrus scions. Actidione and Oxytetracycline were the most phytotoxic to citrus with less than 10% of scions surviving and growing; therefore, this data was not used in additional analyses. Results of principal component (PCA) and hierarchical clustering analyses (HCA) demonstrated that 29 antibiotics were clustered into 3 groups: highly effective, partly effective, and not effective. In spite of different modes of actions, a number of antibiotics such as, Ampicillin, Carbenicillin, Penicillin, Cefalexin, Rifampicin and Sulfadimethoxine were all highly effective in eliminating or suppressing Candidatus Liberibacter asiaticus indicated by both the lowest Las infection rate and titers of the treated scions and inoculated rootstock. The non-effective group, including 11 antibiotics alone with three controls, such as Amikacin, Cinoxacin, Gentamicin, Kasugamycin, Lincomycin, Neomycin, Polymixin B and Tobramycin, did not eliminate or suppress Las in the tested concentrations, resulting in plants with increased titers of Las. The other 12 antibiotics partly eliminated or suppressed Las in the treated and graft-inoculated plants. The effective and non-phytotoxic antibiotics could be potential candidates for control of citrus HLB, either for the rescue of infected citrus germplasm or for restricted field application.

  14. Effective Antibiotics against ‘Candidatus Liberibacter asiaticus’ in HLB-Affected Citrus Plants Identified via the Graft-Based Evaluation

    PubMed Central

    Powell, Charles A.; Doud, Melissa S.; Yang, Chuanyu; Duan, Yongping

    2014-01-01

    Citrus huanglongbing (HLB), caused by three species of fastidious, phloem-limited ‘Candidatus Liberibacter’, is one of the most destructive diseases of citrus worldwide. To date, there is no established cure for this century-old and yet, newly emerging disease. As a potential control strategy for citrus HLB, 31 antibiotics were screened for effectiveness and phytotoxicity using the optimized graft-based screening system with ‘Candidatus Liberibacter asiaticus’ (Las)-infected citrus scions. Actidione and Oxytetracycline were the most phytotoxic to citrus with less than 10% of scions surviving and growing; therefore, this data was not used in additional analyses. Results of principal component (PCA) and hierarchical clustering analyses (HCA) demonstrated that 29 antibiotics were clustered into 3 groups: highly effective, partly effective, and not effective. In spite of different modes of actions, a number of antibiotics such as, Ampicillin, Carbenicillin, Penicillin, Cefalexin, Rifampicin and Sulfadimethoxine were all highly effective in eliminating or suppressing Candidatus Liberibacter asiaticus indicated by both the lowest Las infection rate and titers of the treated scions and inoculated rootstock. The non-effective group, including 11 antibiotics alone with three controls, such as Amikacin, Cinoxacin, Gentamicin, Kasugamycin, Lincomycin, Neomycin, Polymixin B and Tobramycin, did not eliminate or suppress Las in the tested concentrations, resulting in plants with increased titers of Las. The other 12 antibiotics partly eliminated or suppressed Las in the treated and graft-inoculated plants. The effective and non-phytotoxic antibiotics could be potential candidates for control of citrus HLB, either for the rescue of infected citrus germplasm or for restricted field application. PMID:25372135

  15. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing).

    PubMed

    Hajeri, Subhas; Killiny, Nabil; El-Mohtar, Choaa; Dawson, William O; Gowda, Siddarame

    2014-04-20

    A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control. Copyright © 2014. Published by Elsevier B.V.

  16. Metalized polyethylene mulch to repel Asian citrus psyllid, slow spread of huanglongbing and improve growth of new citrus plantings.

    PubMed

    Croxton, Scott D; Stansly, Philip A

    2014-02-01

    Greening or huanglongbing (HLB) is a debilitating disease of citrus caused by Candidatus Liberibactor asiaticus and transmitted by the Asian citrus psyllid (ACP), Diaphorina citri. HLB now occurs worldwide in all major citrus growing regions except the Mediterranean and Australia. Management relies principally on insecticidal control of the ACP vector, but is insufficient, even for young trees which are most susceptible to the disease. We tested the ability of metalized polyethylene mulch to repel adult ACP as well as effects on incidence of HLB and early tree growth. Metalized mulch significantly reduced ACP populations and HLB incidence compared to whiteface mulch or bare ground. In addition, metalized mulch, together with the associated drip irrigation and fertigation system, increased soil moisture, reduced weed pressure, and increased tree growth rate. Metalized mulch slows spread of ACP and therefore HLB pressure on young citrus trees. Metalized mulch can thereby augment current control measures for young trees based primarily on systemic insecticides. Additional costs could be compensated for by increased tree growth rate which would shorten time to crop profitability. These advantages make a compelling case for large-scale trials using metalized mulch in young citrus plantings threatened by HLB. © 2013 Society of Chemical Industry.

  17. Chemical control of the Asian citrus psyllid and of huanglongbing disease in citrus.

    PubMed

    Boina, Dhana Raj; Bloomquist, Jeffrey R

    2015-06-01

    By 2014, huanglongbing (HLB), the most destructive disease of citrus, and its insect vector, the Asian citrus psyllid (ACP), Diaphorina citri (Kuwayama), became established in all major citrus-growing regions of the world, including the United States, with the exception of California. At present, application of insecticides is the most widely followed option for reducing ACP populations, while application of antibiotics for suppressing HLB disease/symptoms is being practiced in some citrus-growing regions. Application of insecticides during the dormant winter season, along with cultivation of HLB-free seedlings and early detection and removal of symptomatic and asymptomatic trees, has been very effective in managing ACP. Area-wide management of ACP by application of insecticides at low volume in large areas of citrus cultivation has been shown to be effective in managing HLB and reducing management costs. As insecticide resistance is a major problem in sustainable management of ACP, rotation/alternation of insecticides with different chemistries and modes of action needs to be followed. Besides control of the insect vector, use of antibiotics has temporarily suppressed the symptoms of HLB in diseased trees. Recent efforts to discover and screen existing as well as new compounds for their antibiotic and antimicrobial activities have identified some promising molecules for HLB control. There is an urgent need to find a sustainable solution to the HLB menace through chemical control of ACP populations and within HLB-infected trees through the judicious use of labeled insecticides (existing and novel chemistries) and antibiotics in area-wide management programs with due consideration to the insecticide resistance problem. © 2014 Society of Chemical Industry.

  18. Characterization of Mycosphaerellaceae species associated with citrus greasy spot in Panama and Spain.

    PubMed

    Aguilera-Cogley, Vidal Antonio; Berbegal, Mónica; Català, Santiago; Brentu, Francis Collison; Armengol, Josep; Vicent, Antonio

    2017-01-01

    Greasy spot of citrus, caused by Zasmidium citri-griseum (= Mycosphaerella citri), is widely distributed in the Caribbean Basin, inducing leaf spots, premature defoliation, and yield loss. Greasy spot-like symptoms were frequently observed in humid citrus-growing regions in Panama as well as in semi-arid areas in Spain, but disease aetiology was unknown. Citrus-growing areas in Panama and Spain were surveyed and isolates of Mycosphaerellaceae were obtained from citrus greasy spot lesions. A selection of isolates from Panama (n = 22) and Spain (n = 16) was assembled based on their geographical origin, citrus species, and affected tissue. The isolates were characterized based on multi-locus DNA (ITS and EF-1α) sequence analyses, morphology, growth at different temperatures, and independent pathogenicity tests on the citrus species most affected in each country. Reference isolates and sequences were also included in the analysis. Isolates from Panama were identified as Z. citri-griseum complex, and others from Spain attributed to Amycosphaerella africana. Isolates of the Z. citri-griseum complex had a significantly higher optimal growth temperature (26.8°C) than those of A. africana (19.3°C), which corresponded well with their actual biogeographical range. The isolates of the Z. citri-griseum complex from Panama induced typical greasy spot symptoms in 'Valencia' sweet orange plants and the inoculated fungi were reisolated. No symptoms were observed in plants of the 'Ortanique' tangor inoculated with A. africana. These results demonstrate the presence of citrus greasy spot, caused by Z. citri-griseum complex, in Panama whereas A. africana was associated with greasy spot-like symptoms in Spain.

  19. Characterization of Mycosphaerellaceae species associated with citrus greasy spot in Panama and Spain

    PubMed Central

    Aguilera-Cogley, Vidal Antonio; Berbegal, Mónica; Català, Santiago; Brentu, Francis Collison; Armengol, Josep

    2017-01-01

    Greasy spot of citrus, caused by Zasmidium citri-griseum (= Mycosphaerella citri), is widely distributed in the Caribbean Basin, inducing leaf spots, premature defoliation, and yield loss. Greasy spot-like symptoms were frequently observed in humid citrus-growing regions in Panama as well as in semi-arid areas in Spain, but disease aetiology was unknown. Citrus-growing areas in Panama and Spain were surveyed and isolates of Mycosphaerellaceae were obtained from citrus greasy spot lesions. A selection of isolates from Panama (n = 22) and Spain (n = 16) was assembled based on their geographical origin, citrus species, and affected tissue. The isolates were characterized based on multi-locus DNA (ITS and EF-1α) sequence analyses, morphology, growth at different temperatures, and independent pathogenicity tests on the citrus species most affected in each country. Reference isolates and sequences were also included in the analysis. Isolates from Panama were identified as Z. citri-griseum complex, and others from Spain attributed to Amycosphaerella africana. Isolates of the Z. citri-griseum complex had a significantly higher optimal growth temperature (26.8°C) than those of A. africana (19.3°C), which corresponded well with their actual biogeographical range. The isolates of the Z. citri-griseum complex from Panama induced typical greasy spot symptoms in ‘Valencia’ sweet orange plants and the inoculated fungi were reisolated. No symptoms were observed in plants of the ‘Ortanique’ tangor inoculated with A. africana. These results demonstrate the presence of citrus greasy spot, caused by Z. citri-griseum complex, in Panama whereas A. africana was associated with greasy spot-like symptoms in Spain. PMID:29236789

  20. A stable RNA virus-based vector for citrus trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folimonov, Alexey S.; Folimonova, Svetlana Y.; Bar-Joseph, Moshe

    Virus-based vectors are important tools in plant molecular biology and plant genomics. A number of vectors based on viruses that infect herbaceous plants are in use for expression or silencing of genes in plants as well as screening unknown sequences for function. Yet there is a need for useful virus-based vectors for woody plants, which demand much greater stability because of the longer time required for systemic infection and analysis. We examined several strategies to develop a Citrus tristeza virus (CTV)-based vector for transient expression of foreign genes in citrus trees using a green fluorescent protein (GFP) as a reporter.more » These strategies included substitution of the p13 open reading frame (ORF) by the ORF of GFP, construction of a self-processing fusion of GFP in-frame with the major coat protein (CP), or expression of the GFP ORF as an extra gene from a subgenomic (sg) mRNA controlled either by a duplicated CTV CP sgRNA controller element (CE) or an introduced heterologous CE of Beet yellows virus. Engineered vector constructs were examined for replication, encapsidation, GFP expression during multiple passages in protoplasts, and for their ability to infect, move, express GFP, and be maintained in citrus plants. The most successful vectors based on the 'add-a-gene' strategy have been unusually stable, continuing to produce GFP fluorescence after more than 4 years in citrus trees.« less

  1. Home composting versus industrial composting: influence of composting system on compost quality with focus on compost stability.

    PubMed

    Barrena, Raquel; Font, Xavier; Gabarrell, Xavier; Sánchez, Antoni

    2014-07-01

    Stability is one of the most important properties of compost obtained from the organic fraction of municipal solid wastes. This property is essential for the application of compost to land to avoid further field degradation and emissions of odors, among others. In this study, a massive characterization of compost samples from both home producers and industrial facilities is presented. Results are analyzed in terms of chemical and respiration characterizations, the latter representing the stability of the compost. Results are also analyzed in terms of statistical validation. The main conclusion from this work is that home composting, when properly conducted, can achieve excellent levels of stability, whereas industrial compost produced in the studied facilities can also present a high stability, although an important dispersion is found in these composts. The study also highlights the importance of respiration techniques to have a reliable characterization of compost quality, while the chemical characterization does not provide enough information to have a complete picture of a compost sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Co-composting of palm oil mill sludge-sawdust.

    PubMed

    Yaser, Abu Zahrim; Abd Rahman, Rakmi; Kalil, Mohd Sahaid

    2007-12-15

    Composting of Palm Oil Mill Sludge (POMS) with sawdust was conducted in natural aerated reactor. Composting using natural aerated reactor is cheap and simple. The goal of this study is to observe the potential of composting process and utilizing compost as media for growing Cymbopogun citratus, one of Malaysia herbal plant. The highest maximum temperature achieved is about 40 degrees C and to increase temperature bed, more biodegradable substrate needs to be added. The pH value decrease along the process with final pH compost is acidic (pH 5.7). The highest maximum organic losses are about 50% with final C/N ratio of the compost is about 19. Final compost also showed some fertilizing value but need to be adjusted to obtain an ideal substrate. Addition of about 70% sandy soil causes highest yield and excellent root development for C. citratus in potted media. Beside that, compost from POMS-sawdust also found to have fertilizer value and easy to handle. Composting of POMS with sawdust shows potential as an alternative treatment to dispose and recycle waste components.

  3. Monitoring Citrus Soil Moisture and Nutrients Using an IoT Based System.

    PubMed

    Zhang, Xueyan; Zhang, Jianwu; Li, Lin; Zhang, Yuzhu; Yang, Guocai

    2017-02-23

    Chongqing mountain citrus orchard is one of the main origins of Chinese citrus. Its planting terrain is complex and soil parent material is diverse. Currently, the citrus fertilization, irrigation and other management processes still have great blindness. They usually use the same pattern and the same formula rather than considering the orchard terrain features, soil differences, species characteristics and the state of tree growth. With the help of the ZigBee technology, artificial intelligence and decision support technology, this paper has developed the research on the application technology of agricultural Internet of Things for real-time monitoring of citrus soil moisture and nutrients as well as the research on the integration of fertilization and irrigation decision support system. Some achievements were obtained including single-point multi-layer citrus soil temperature and humidity detection wireless sensor nodes and citrus precision fertilization and irrigation management decision support system. They were applied in citrus base in the Three Gorges Reservoir Area. The results showed that the system could help the grower to scientifically fertilize or irrigate, improve the precision operation level of citrus production, reduce the labor cost and reduce the pollution caused by chemical fertilizer.

  4. Antimicrobial and Antibiofilm Activities of Citrus Water-Extracts Obtained by Microwave-Assisted and Conventional Methods.

    PubMed

    Caputo, Leonardo; Quintieri, Laura; Cavalluzzi, Maria Maddalena; Lentini, Giovanni; Habtemariam, Solomon

    2018-06-17

    Citrus pomace is a huge agro-food industrial waste mostly composed of peels and traditionally used as compost or animal feed. Owing to its high content of compounds beneficial to humans (e.g., flavonoids, phenol-like acids, and terpenoids), citrus waste is increasingly used to produce valuable supplements, fragrance, or antimicrobials. However, such processes require sustainable and efficient extraction strategies by solvent-free techniques for environmentally-friendly good practices. In this work, we evaluated the antimicrobial and antibiofilm activity of water extracts of three citrus peels (orange, lemon, and citron) against ten different sanitary relevant bacteria. Both conventional extraction methods using hot water (HWE) and microwave-assisted extraction (MAE) were used. Even though no extract fully inhibited the growth of the target bacteria, these latter (mostly pseudomonads) showed a significant reduction in biofilm biomass. The most active extracts were obtained from orange and lemon peel by using MAE at 100 °C for 8 min. These results showed that citrus peel water infusions by MAE may reduce biofilm formation possibly enhancing the susceptibility of sanitary-related bacteria to disinfection procedures.

  5. Visible Light Image-Based Method for Sugar Content Classification of Citrus

    PubMed Central

    Wang, Xuefeng; Wu, Chunyan; Hirafuji, Masayuki

    2016-01-01

    Visible light imaging of citrus fruit from Mie Prefecture of Japan was performed to determine whether an algorithm could be developed to predict the sugar content. This nondestructive classification showed that the accurate segmentation of different images can be realized by a correlation analysis based on the threshold value of the coefficient of determination. There is an obvious correlation between the sugar content of citrus fruit and certain parameters of the color images. The selected image parameters were connected by addition algorithm. The sugar content of citrus fruit can be predicted by the dummy variable method. The results showed that the small but orange citrus fruits often have a high sugar content. The study shows that it is possible to predict the sugar content of citrus fruit and to perform a classification of the sugar content using light in the visible spectrum and without the need for an additional light source. PMID:26811935

  6. Extractability, plant yield and toxicity thresholds for boron in compost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinton, W.F.; Evans, E.; Blewett, C.

    Boron (B) is a trace element essential to crop growth in small soil concentrations (0.2-1.5ppm), yet may produce plant toxicity symptoms readily as the amount in the soil solution increases over 2ppm. Our study examined commercial compost made with coal fly-ash used to prepare growing media for cultivars of varying sensitivity (corn, beans, cucumber, peas). We examined total vs. extractable boron content and relate final visual symptoms of B-toxicity to yields and tissue concentrations. Visual toxicity effects included tip burn (corn), leaf mottling and necrosis (beans and peas) and leaf mottling and cupping (cucumbers). Fly ash added to compost increasedmore » hot-water soluble (HWS) B in proportion to rate and in dependence on pH, with 30% and 10% of total-B expressed as HWS-B at a media pH of 6 and 7.5, respectively. Biomass for bean and cucumber was significantly reduced by 45 to 55%, respectively, by addition of 33% fly-ash compost to growing media (28ppm total-B) while plant tissue-B increased by 6- to 4-fold, respectively. Economic yield depressions in compost media are evident for all crops and appeared at levels of HWS-B in compost media exceeding 5 ppm. The study underscores the need for careful management of exogenous factors that may be present in composts and suggests detailed understanding of media-pH and cultivar preferences may be required in preparation of growing media in order to reduce potential negative growth effects.« less

  7. Leaching composted lignocellulosic wastes to prepare container media: feasibility and environmental concerns.

    PubMed

    Fornes, Fernando; Carrión, Carolina; García-de-la-Fuente, Rosana; Puchades, Rosa; Abad, Manuel

    2010-08-01

    The leaching of salt and mineral elements from three composts prepared with residual vegetable crop biomass (melon, pepper or zucchini) was studied using methacrylate columns and distilled water. The benefits of the leached composts to be used for ornamental potted plant production were also analysed. After leaching 5 container capacities of effluent, both the electrical conductivity and the concentration of soluble mineral elements in compost leachates decreased substantially and remained close to the target levels. Composts reacted differently to leaching due to differences in the raw waste sources and the composting process and hence, in their physical and chemical characteristics. At the end of the experiment, after pouring 8 container capacities of water, the leaching efficiency of the salts was 96%, 93% and 87% for melon, pepper and zucchini-based composts, respectively. Mineral elements differed in their ability to be removed from the composts; N (NH(4)(+) and NO(3)(-)), K(+), Na(+), Cl(-), and SO(4)(2-) were leached readily, whereas H(2)PO(4)(-), Ca(2+), and Mg(2+) were removed hardly. Leached composts showed a range of physico-chemical and chemical characteristics suitable for use as growing media constituents. Potted Calendula and Calceolaria plants grew in the substrates prepared with the leached composts better than in those made with the non-leached ones. Finally, special emphasis must be paid to the management of the effluents produced under commercial conditions to avoid environmental pollution. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Variations on cardiovascular risk factors in metabolic syndrome after consume of a citrus-based juice.

    PubMed

    Mulero, Juana; Bernabé, Juana; Cerdá, Begoña; García-Viguera, Cristina; Moreno, Diego A; Albaladejo, Maria Dolores; Avilés, Francisco; Parra, Soledad; Abellán, José; Zafrilla, Pilar

    2012-06-01

    Inflammation and oxidative stress plays a critical role in cardiovascular disease and metabolic syndrome often occurs with these two variables. The aim of the study is to estimate variations on cardiovascular risk factors in Metabolic Syndrome patients after consume of a citrus-based juice compared with control groups. The study comprised 20 healthy subjects and 33 patients with Metabolic Syndrome. 18 patients consume daily 300 mL of a citrus-based juice during 6 month and 15 patients consume 300 mL of a placebo beverage. The control group consumes a citrus-based juice. Before, at fourth month and at sixth month after treatment the following parameters were determined: lipid profile, oxidized LDL, C-Reactive Protein and Homocysteine. The study was carried out in accordance with the Helsinki Declaration, and the Ethical Committee of the San Antonio Catholic University and approved the protocol (6 November 2006, register number: 1424). After six months of citrus-based juice consuming, there is significant differences at 95% confidence in oxidized LDL, C-Reactive Protein, and Homocysteine in Metabolic Syndrome patients who consume citrus-based juice. We have not found significant differences in other groups. Consume of citrus-based juice improve lipid profile and inflammation markers in Metabolic Syndrome patients. Copyright © 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  9. Composting of animal manures and chemical criteria for compost maturity assessment. A review.

    PubMed

    Bernal, M P; Alburquerque, J A; Moral, R

    2009-11-01

    New livestock production systems, based on intensification in large farms, produce huge amount of manures and slurries without enough agricultural land for their direct application as fertilisers. Composting is increasingly considered a good way for recycling the surplus of manure as a stabilised and sanitised end-product for agriculture, and much research work has been carried out in the last decade. However, high quality compost should be produced to overcome the cost of composting. In order to provide and review the information found in the literature about manure composting, the first part of this paper explains the basic concepts of the composting process and how manure characteristics can influence its performance. Then, a summary of those factors such as nitrogen losses (which directly reduce the nutrient content), organic matter humification and compost maturity which affect the quality of composts produced by manure composting is presented. Special attention has been paid to the relevance of using an adequate bulking agent for reducing N-losses and the necessity of standardising the maturity indices due to their great importance amongst compost quality criteria.

  10. Effect of organic waste compost on the crop productivity and soil quality

    NASA Astrophysics Data System (ADS)

    Astover, Alar; Toomsoo, Avo; Teesalu, Triin; Rossner, Helis; Kriipsalu, Mait

    2017-04-01

    Sustainable use of fertilizers is important for maintaining balanced nutrient cycling in agro-ecosystem, soil quality and crop productivity. Considering the high costs and energy demand of mineral fertilizers, it is increasingly important to use more alternative nutrient sources such composts. Nutrient release from organic fertilizers is slower compared to mineral fertilizers and thus their effects need to be evaluated over longer time periods. There is lack of knowledge on the residual effects of organic fertilizers, especially in Nordic climatic conditions. Residual effect of organic fertilizers is in most cases studied with animal manures, but even rare are studies with non-manure based composts. The aim of current study was to evaluate first year direct effect and residual effect of waste compost on the crop productivity and selected soil parameters. Crop rotation field experiment to reveal direct effect of compost to the spring barley yield and residual effect to potato and spring wheat yield was conducted in Tartu, Estonia on pseodopodzolic soil with low humus concentration (<2%). Compost was produced from source separated food and green waste, and category III animal by-products; and composted in aerated covered static piles for 6 weeks and after that matured in open windows for minimum six months. Compost was applied to soil with ploughing in autumn before spring barley growing season (in years 2012-2014). Compost was applied in three norms according to total N (200, 275 and 350 kg/ha). In addition there was unfertilized control plot and all experimental variants were in three replication with plot size 50 m2. First year effect of compost increased barley yield by 40-50%, first year residual effect resulted in increase of potato yield by 19-30% and second year residual effect to wheat yield was in range from 8 to 17%. First year residual effect to the potato yield was significant (F=8.9; p<0.001). All compost norms resulted significant yield increase

  11. Wind speed and wind-associated leaf injury affect severity of citrus canker on Swingle citrumelo

    USDA-ARS?s Scientific Manuscript database

    Citrus canker (caused by the bacterial pathogen Xanthomonas citri subsp. citri, Xcc) can cause severe damage to citrus. It is endemic in Florida, and occurs in other citrus growing regions. The bacterium is dispersed predominantly in rain splash. To simulate dispersal in splash, and to investigate t...

  12. 75 FR 34322 - Citrus Greening and Asian Citrus Psyllid; Quarantine and Interstate Movement Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... leaves. High populations feeding on a citrus shoot can kill the growing tip. ACP is currently present in... the public the availability of an environmental assessment, titled ``Movement of Regulated Articles... greening is a high-risk pathway for the spread of the disease. For example, a tourist visiting a...

  13. Acid-base properties of humic and fulvic acids formed during composting.

    PubMed

    Plaza, César; Senesi, Nicola; Polo, Alfredo; Brunetti, Gennaro

    2005-09-15

    The soil acid-base buffering capacity and the biological availability, mobilization, and transport of macro- and micronutrients, toxic metal ions, and xenobiotic organic cations in soil are strongly influenced by the acid-base properties of humic substances, of which humic and fulvic acids are the major fractions. For these reasons, the proton binding behavior of the humic acid-like (HA) and fulvic acid-like (FA) fractions contained in a compost are believed to be instrumental in its successful performance in soil. In this work, the acid-base properties of the HAs and FAs isolated from a mixture of the sludge residue obtained from olive oil mill wastewater (OMW) evaporated in an open-air pond and tree cuttings (TC) at different stages of composting were investigated by a current potentiometric titration method and the nonideal competitive adsorption (NICA)-Donnan model. The NICA-Donnan model provided an excellent description of the acid-base titration data, and pointed out substantial differences in site density and proton-binding affinity between the HAs and FAs examined. With respect to FAs, HAs were characterized by a smaller content of carboxylic- and phenolic-type groups and their larger affinities for proton binding. Further, HAs featured a greater heterogeneity in carboxylic-type groups than FAs. The composting process increased the content and decreased the proton affinity of carboxylic- and phenolic-type groups of HAs and FAs, and increased the heterogeneity of phenolic-type groups of HAs. As a whole, these effects indicated that the composting process could produce HA and FA fractions with greater cation binding capacities. These results suggest that composting of organic materials improves their agronomic and environmental value by increasing their potential to retain and exchange macro- and micronutrients, and to reduce the bioavailability of organic and inorganic pollutants.

  14. Precocious flowering of juvenile citrus induced by a viral vector based on Citrus leaf blotch virus: a new tool for genetics and breeding.

    PubMed

    Velázquez, Karelia; Agüero, Jesús; Vives, María C; Aleza, Pablo; Pina, José A; Moreno, Pedro; Navarro, Luis; Guerri, José

    2016-10-01

    The long juvenile period of citrus trees (often more than 6 years) has hindered genetic improvement by traditional breeding methods and genetic studies. In this work, we have developed a biotechnology tool to promote transition from the vegetative to the reproductive phase in juvenile citrus plants by expression of the Arabidopsis thaliana or citrus FLOWERING LOCUS T (FT) genes using a Citrus leaf blotch virus-based vector (clbvINpr-AtFT and clbvINpr-CiFT, respectively). Citrus plants of different genotypes graft inoculated with either of these vectors started flowering within 4-6 months, with no alteration of the plant architecture, leaf, flower or fruit morphology in comparison with noninoculated adult plants. The vector did not integrate in or recombine with the plant genome nor was it pollen or vector transmissible, albeit seed transmission at low rate was detected. The clbvINpr-AtFT is very stable, and flowering was observed over a period of at least 5 years. Precocious flowering of juvenile citrus plants after vector infection provides a helpful and safe tool to dramatically speed up genetic studies and breeding programmes. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. DNA Polymorphisms and Biocontrol of Bacillus Antagonistic to Citrus Bacterial Canker with Indication of the Interference of Phyllosphere Biofilms

    PubMed Central

    Huang, Tzu-Pi; Tzeng, Dean Der-Syh; Wong, Amy C. L.; Chen, Chun-Han; Lu, Kuan-Min; Lee, Ya-Huei; Huang, Wen-Di; Hwang, Bing-Fang; Tzeng, Kuo-Ching

    2012-01-01

    Citrus bacterial canker caused by Xanthomonas axonopodis pv. citri is a devastating disease resulting in significant crop losses in various citrus cultivars worldwide. A biocontrol agent has not been recommended for this disease. To explore the potential of bacilli native to Taiwan to control this disease, Bacillus species with a broad spectrum of antagonistic activity against various phytopathogens were isolated from plant potting mixes, organic compost and the rhizosphere soil. Seven strains TKS1-1, OF3-16, SP4-17, HSP1, WG6-14, TLB7-7, and WP8-12 showing superior antagonistic activity were chosen for biopesticide development. The genetic identity based on 16S rDNA sequences indicated that all seven native strains were close relatives of the B. subtilis group and appeared to be discrete from the B. cereus group. DNA polymorphisms in strains WG6-14, SP4-17, TKS1-1, and WP8-12, as revealed by repetitive sequence-based PCR with the BOXA1R primers were similar to each other, but different from those of the respective Bacillus type strains. However, molecular typing of the strains using either tDNA-intergenic spacer regions or 16S–23S intergenic transcribed spacer regions was unable to differentiate the strains at the species level. Strains TKS1-1 and WG6-14 attenuated symptom development of citrus bacterial canker, which was found to be correlated with a reduction in colonization and biofilm formation by X. axonopodis pv. citri on leaf surfaces. The application of a Bacillus strain TKS1-1 endospore formulation to the leaf surfaces of citrus reduced the incidence of citrus bacterial canker and could prevent development of the disease. PMID:22848728

  16. Bacterial diversity at different stages of the composting process

    PubMed Central

    2010-01-01

    Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants. PMID:20350306

  17. Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt.

    PubMed

    Blaya, Josefa; López-Mondéjar, Rubén; Lloret, Eva; Pascual, Jose Antonio; Ros, Margarita

    2013-09-01

    The addition of species of Trichoderma to compost is a widespread technique used to control different plant diseases. The biological control activity of these species is mainly attributable to a combination of several mechanisms of action, which may affect the microbiota involved in the suppressiveness of compost. This study was therefore performed to determine the effect of inoculation of Trichoderma harzianum (T. harzianum) on compost, focusing on bacterial community structure (16S rRNA) and chitinase gene diversity. In addition, the ability of vineyard pruning waste compost, amended (GCTh) or not (GC) with T. harzianum, to suppress Fusarium wilt was evaluated. The addition of T. harzianum resulted in a high relative abundance of certain chitinolytic bacteria as well as in remarkable protection against Fusarium oxysporum comparable to that induced by compost GC. Moreover, variations in the abiotic characteristics of the media, such as pH, C, N and iron levels, were observed. Despite the lower diversity of chitinolytic bacteria found in GCTh, the high relative abundance of Streptomyces spp. may be involved in the suppressiveness of this growing media. The higher degree of compost suppressiveness achieved after the addition of T. harzianum may be due not only to its biocontrol ability, but also to changes promoted in both abiotic and biotic characteristics of the growing media. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Composting

    ERIC Educational Resources Information Center

    Stanley, Andrew; Turner, Geraldine

    2010-01-01

    Composting can provide both a means of managing organic waste, and a vehicle to teach Science at all levels of schooling. In response to a local organic waste issue a process has been developed to compost waste from an olive oil press and analyse the resultant compost. In this article, the composting process is described in a manner that can be…

  19. Composting of empty fruit bunches in the tower composter - effect of air intake holes

    NASA Astrophysics Data System (ADS)

    Irvan; Husaini, T.; Trisakti, B.; Batubara, F.; Daimon, H.

    2018-02-01

    The process of composting empty fruit bunches (EFB) by mixing with activated liquid organic fertilizer (ALOF) is an alternative utilization of solid waste generated from palm oil mill. This study aims to find composting techniques of EFB and to obtain degradation data of composting EFB by varying the air intake holes to produce good quality compost. Composting process was carried out by tearing the EFB into four shreds, then put into the tower composter while adding ALOF until it reached the optimum moisture content of 55 -65%. During the composting process, we maintained moisture content at optimum conditions by adding ALOF. Variations of air intake holes area to the outer surface area of the composter are 0/44.314; 72.39/44.314 and 144.78/44.314 (cm2/cm2). Composting is carried out for forty days, however, based on the result, compost began to mature on the 10th day. The results revealed that there was an influence of air intake holes to the composting process. The best degradation of EFB was obtained on the variation of air intake holes 72.39/44.314 (cm2/cm2), pH 8.1, moisture content 79.14%, water holding capacity 60%, electrical conductivity 4.725 dS/m and C/N ratio 20.97.

  20. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times

    PubMed Central

    Neher, Deborah A.; Weicht, Thomas R.; Bates, Scott T.; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  1. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times.

    PubMed

    Neher, Deborah A; Weicht, Thomas R; Bates, Scott T; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  2. Monoclonal antibody-based serological methods for detecting Citrus tristeza virus in citrus groves.

    PubMed

    Liu, Zhen; Chen, Zhe; Hong, Jian; Wang, Xuefeng; Zhou, Changyong; Zhou, Xueping; Wu, Jianxiang

    2016-08-01

    Citrus tristeza virus (CTV) is one of the most economically important citrus viruses and harms the citrus industry worldwide. To develop reliable and effective serological detection assays of CTV, the major capsid protein (CP) gene of CTV was expressed in Escherichia coli BL21 (DE3) using the expression vector pET-28a and purified through Ni+-NTA affinity chromatography. The recombinant protein was used to immunize BALB/c mice. Four hybridoma cell lines (14B10, 14H11, 20D5, and 20G12) secreting monoclonal antibodies (MAbs) against CTV were obtained through conventional hybridoma technology. The titers of MAb-containing ascitic fluids secreted by the four hybridoma lines ranged from 10(-6) to 10(-7) in indirect enzyme-linked immunosorbent assay (ELISA). Western blots showed that all four MAbs could specifically react with CTV CP. Using the prepared MAbs, dot-ELISA, Tissue print-ELISA, and triple antibody sandwich (TAS)-ELISA were developed to detect CTV in tree nurseries and epidemiological studies. The developed dot-ELISA and TAS-ELISA methods could detect CTV in crude extracts of infected citrus leaves with dilutions of 1:2560 and 1:10, 240 (w/v, g/mL), respectively. Tissue print-ELISA was particularly useful for large-scale field sample detection, mainly owing to its simplicity and lack of sample preparation requirements. The field survey revealed that CTV is prevalent on citrus trees in the Chongqing Municipality, Jiangxi Province, and Zhejiang Province of China. The coincidence rate of serological and RT-PCR test results reached more than 99.5%. The prepared MAbs against CTV and established sensitive and specific serological assays have a significant role in the detection and prevention and control of CTV in our country.

  3. Simulation of Organic Matter and Pollutant Evolution during Composting: The COP-Compost Model.

    PubMed

    Lashermes, G; Zhang, Y; Houot, S; Steyer, J P; Patureau, D; Barriuso, E; Garnier, P

    2013-01-01

    Organic pollutants (OPs) are potentially present in composts and the assessment of their content and bioaccessibility in these composts is of paramount importance. In this work, we proposed a model to simulate the behavior of OPs and the dynamic of organic C during composting. This model, named COP-Compost, includes two modules. An existing organic C module is based on the biochemical composition of the initial waste mixture and simulates the organic matter transformation during composting. An additional OP module simulates OP mineralization and the evolution of its bioaccessibility. Coupling hypotheses were proposed to describe the interactions between organic C and OP modules. The organic C module, evaluated using experimental data obtained from 4-L composting pilots, was independently tested. The COP-Compost model was evaluated during composting experiments containing four OPs representative of the major pollutants detected in compost and targeted by current and future regulations. These OPs included a polycyclic aromatic hydrocarbon (fluoranthene), two surfactants (4--nonylphenol and a linear alkylbenzene sulfonate), and an herbicide (glyphosate). Residues of C-labeled OP with different bioaccessibility were characterized by sequential extraction and quantified as soluble, sorbed, and nonextractable fractions. The model was calibrated and coupling the organic C and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Distribution, genetic diversity and recombination analysis of Citrus tristeza virus of India

    USDA-ARS?s Scientific Manuscript database

    Citrus tristeza virus (CTV) isolates representing all the citrus growing geographical zones of India were analyzed for sequence of the 5'ORF1a fragments of the partial LProI domain and for the coat protein (CP) gene. The sequences were compared with previously reported Indian and CTV genotypes from...

  5. Limited and time-delayed internal resource allocation generates oscillations and chaos in the dynamics of citrus crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Xujun, E-mail: yexujun@cc.hirosaki-u.ac.jp; Faculty of Agriculture and Life Sciences, Hirosaki University, Aomori 036-8561; Sakai, Kenshi, E-mail: ken@cc.tuat.ac.jp

    Alternate bearing or masting is a yield variability phenomenon in perennial crops. The complex dynamics in this phenomenon have stimulated much ecological research. Motivated by data from an eight-year experiment with forty-eight individual trees, we explored the mechanism inherent to these dynamics in Satsuma mandarin (Citrus unshiu Marc.). By integrating high-resolution imaging technology, we found that the canopy structure and reproduction output of individual citrus crops are mutually dependent on each other. Furthermore, it was revealed that the mature leaves in early season contribute their energy to the fruiting of the current growing season, whereas the younger leaves show amore » delayed contribution to the next growing season. We thus hypothesized that the annual yield variability might be caused by the limited and time-delayed resource allocation in individual plants. A novel lattice model based on this hypothesis demonstrates that this pattern of resource allocation will generate oscillations and chaos in citrus yield.« less

  6. Study on the quality and stability of compost through a Demo Compost Plant.

    PubMed

    Hasan, K M M; Sarkar, G; Alamgir, M; Bari, Q H; Haedrich, G

    2012-11-01

    This study is concerned with the performance of a Demo Compost Plant for the development of acceptable composting technology in Bangladesh. The Demo Compost Plant was setup at the adjacent area of an existing compost plant located at Khulna city in Bangladesh. Four different composting technologies were considered, where Municipal Solid Waste (MSW) were used as a raw material for composting, collected from the adjacent areas of the plant. Initially the whole composting system was conducted through two experimental setups. In the 1st setup three different types of aerators (horizontal and vertical passively aerator and forced aerator) were selected. For a necessary observation four piles, using only MSW as the input materials in the first three compost pile, the fourth one was the existing Samadhan's compost pile. Based on the analysis of the experimental findings, the horizontal passively aerated composting technique is suitable for Bangladesh as it had better performance for reducing composting period than that of the others. It was being observed from the quality parameters of compost in the both 1st and 2nd setup that as the waste directly come from kitchen, degradation rate of waste shows a positive result for reducing this waste and there is no possibility of toxic contamination, when it would be used as a soil conditioner. Though there is no significant improvement in the quality of the final product in the 2nd setup as comparing with the 1st setup but it fulfills one of the main objectives of this study is to reduce the whole composting period as well as immediate management of the increasing amount of waste and reducing load on landfill. Selfheating tests reveal that degree of stability of compost with respect to maturation period was remained in the acceptable level, which was further accelerated due to the use of organic additives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Citrus Quality Control: An NMR/MRI Problem-Based Experiment

    ERIC Educational Resources Information Center

    Erhart, Sarah E.; McCarrick, Robert M.; Lorigan, Gary A.; Yezierski, Ellen J.

    2016-01-01

    An experiment seated in an industrial context can provide an engaging framework and unique learning opportunity for an upper-division physical chemistry laboratory. An experiment that teaches NMR/MRI through a problem-based quality control of citrus products was developed. In this experiment, using a problem-based learning (PBL) approach, students…

  8. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    PubMed

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effect of biochar amendment on compost organic matter composition following aerobic composting of manure.

    PubMed

    Hagemann, Nikolas; Subdiaga, Edisson; Orsetti, Silvia; de la Rosa, José María; Knicker, Heike; Schmidt, Hans-Peter; Kappler, Andreas; Behrens, Sebastian

    2018-02-01

    Biochar, a material defined as charred organic matter applied in agriculture, is suggested as a beneficial additive and bulking agent in composting. Biochar addition to the composting feedstock was shown to reduce greenhouse gas emissions and nutrient leaching during the composting process, and to result in a fertilizer and plant growth medium that is superior to non-amended composts. However, the impact of biochar on the quality and carbon speciation of the organic matter in bulk compost has so far not been the focus of systematic analyses, although these parameters are key to determine the long-term stability and carbon sequestration potential of biochar-amended composts in soil. In this study, we used different spectroscopic techniques to compare the organic carbon speciation of manure compost amended with three different biochars. A non-biochar-amended compost served as control. Based on Fourier-transformed infrared (FTIR) and 13 C nuclear magnetic resonance (NMR) spectroscopy we did not observe any differences in carbon speciation of the bulk compost independent of biochar type, despite a change in the FTIR absorbance ratio 2925cm -1 /1034cm -1 , that is suggested as an indicator for compost maturity. Specific UV absorbance (SUVA) and emission-excitation matrixes (EEM) revealed minor differences in the extractable carbon fractions, which only accounted for ~2-3% of total organic carbon. Increased total organic carbon content of biochar-amended composts was only due to the addition of biochar-C and not enhanced preservation of compost feedstock-C. Our results suggest that biochars do not alter the carbon speciation in compost organic matter under conditions optimized for aerobic decomposition of compost feedstock. Considering the effects of biochar on compost nutrient retention, mitigation of greenhouse gas emissions and carbon sequestration, biochar addition during aerobic composting of manure might be an attractive strategy to produce a sustainable, slow

  10. Citrus Waste Biomass Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karel Grohman; Scott Stevenson

    Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

  11. Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves

    USDA-ARS?s Scientific Manuscript database

    Citrus canker is caused by the bacterial pathogen Xanthomonas axonopodis pv citri (Xac) and infects several citrus species in wet tropical and subtropical citrus growing regions. Accurate, precise and reproducible disease assessment is needed for monitoring epidemics and disease response in breeding...

  12. The efficiency of home composting programmes and compost quality.

    PubMed

    Vázquez, M A; Soto, M

    2017-06-01

    The efficiency of home composting programmes and the quality of the produced compost was evaluated in eight rural areas carrying out home composting programmes (up to 880 composting bins) for all household biowaste including meat and fish leftovers. Efficiency was analysed in terms of reduction of organic waste collected by the municipal services. An efficiency of 77% on average was obtained, corresponding to a composting rate of 126kg/person·year of biowaste (or 380kg/composter·year). Compost quality was determined for a total of 90 composting bins. The operation of composting bins by users was successful, as indicated by a low C/N ratio (10-15), low inappropriate materials (or physical contaminant materials, mean of 0.27±0.44% dry matter), low heavy metal content (94% of samples met required standards for agricultural use) and high nutrient content (2.1% N, 0.6% P, 2.5% K, 0.7% Mg and 3.7% Ca on average, dry matter). The high moisture (above 70% in 48% of the samples) did not compromise the compost quality. Results of this study show that home composting of household organic waste including meat and fish leftovers is a feasible practice. Home composting helps individuals and families to reduce the amount of household waste at the same time gaining a fertiliser material (compost) of excellent quality for gardens or vegetable plots. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Design of experiment (DOE) based screening of factors affecting municipal solid waste (MSW) composting.

    PubMed

    Kazemi, Khoshrooz; Zhang, Baiyu; Lye, Leonard M; Cai, Qinghong; Cao, Tong

    2016-12-01

    A design of experiment (DOE) based methodology was adopted in this study to investigate the effects of multiple factors and their interactions on the performance of a municipal solid waste (MSW) composting process. The impact of four factors, carbon/nitrogen ratio (C/N), moisture content (MC), type of bulking agent (BA) and aeration rate (AR) on the maturity, stability and toxicity of compost product was investigated. The statistically significant factors were identified using final C/N, germination index (GI) and especially the enzyme activities as responses. Experimental results validated the use of enzyme activities as proper indices during the course of composting. Maximum enzyme activities occurred during the active phase of decomposition. MC has a significant effect on dehydrogenase activity (DGH), β-glucosidase activity (BGH), phosphodiesterase activity (PDE) and the final moisture content of the compost. C/N is statistically significant for final C/N, DGH, BGH, and GI. The results provided guidance to optimize a MSW composting system that will lead to increased decomposition rate and the production of more stable and mature compost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Varieties from the USDA are the foundation of the Florida specialty citrus industry

    USDA-ARS?s Scientific Manuscript database

    The Florida citrus industry is poised to grow diverse new cultivars from the USDA breeding program, the University of Florida breeding program, and from importation of budwood from new selections from around the world. The top six cultivars of specialty citrus from the USDA (‘Murcott’, ‘Sunburst’, ‘...

  15. Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost

    PubMed Central

    Jurak, Edita; Punt, Arjen M.; Arts, Wim; Kabel, Mirjam A.; Gruppen, Harry

    2015-01-01

    In wheat straw based composting, enabling growth of Agaricus bisporus mushrooms, it is unknown to which extent the carbohydrate-lignin matrix changes and how much is metabolized. In this paper we report yields and remaining structures of the major components. During the Phase II of composting 50% of both xylan and cellulose were metabolized by microbial activity, while lignin structures were unaltered. During A. bisporus’ mycelium growth (Phase III) carbohydrates were only slightly consumed and xylan was found to be partially degraded. At the same time, lignin was metabolized for 45% based on pyrolysis GC/MS. Remaining lignin was found to be modified by an increase in the ratio of syringyl (S) to guaiacyl (G) units from 0.5 to 0.7 during mycelium growth, while fewer decorations on the phenolic skeleton of both S and G units remained. PMID:26436656

  16. Bacillus subtilis based-formulation for the control of postbloom fruit drop of citrus.

    PubMed

    Klein, Mariana Nadjara; da Silva, Aline Caroline; Kupper, Katia Cristina

    2016-12-01

    Postbloom fruit drop (PFD) caused by Colletotrichum acutatum affects flowers and causes early fruit drop in all commercial varieties of citrus. Biological control with the isolate ACB-69 of Bacillus subtilis has been considered as a potential method for controlling this disease. This study aimed to develop and optimize a B. subtilis based-formulation with a potential for large-scale applications and evaluate its effect on C. acutatum in vitro and in vivo. Bacillus subtilis based-formulations were developed using different carrier materials, and their ability to control PFD was evaluated. The results of the assays led to the selection of the B. subtilis based-formulation with talc + urea (0.02 %) and talc + ammonium molybdate (1 mM), which inhibited mycelial growth and germination of C. acutatum. Studies with detached citrus flowers showed that the formulations were effective in controlling the pathogen. In field conditions, talc + urea (0.02 %) provided 73 % asymptomatic citrus flowers and 56 % of the average number of effective fruit (ANEF), equating with fungicide treatment. On the contrary, non-treated trees had 8.8 % of asymptomatic citrus flowers and 0.83 % ANEF. The results suggest that B. subtilis based-formulations with talc as the carrier supplemented with a nitrogen source had a high potential for PFD control.

  17. An RNA-Seq-based reference transcriptome for Citrus.

    PubMed

    Terol, Javier; Tadeo, Francisco; Ventimilla, Daniel; Talon, Manuel

    2016-03-01

    Previous RNA-Seq studies in citrus have been focused on physiological processes relevant to fruit quality and productivity of the major species, especially sweet orange. Less attention has been paid to vegetative or reproductive tissues, while most Citrus species have never been analysed. In this work, we characterized the transcriptome of vegetative and reproductive tissues from 12 Citrus species from all main phylogenetic groups. Our aims were to acquire a complete view of the citrus transcriptome landscape, to improve previous functional annotations and to obtain genetic markers associated with genes of agronomic interest. 28 samples were used for RNA-Seq analysis, obtained from 12 Citrus species: C. medica, C. aurantifolia, C. limon, C. bergamia, C. clementina, C. deliciosa, C. reshni, C. maxima, C. paradisi, C. aurantium, C. sinensis and Poncirus trifoliata. Four different organs were analysed: root, phloem, leaf and flower. A total of 3421 million Illumina reads were produced and mapped against the reference C. clementina genome sequence. Transcript discovery pipeline revealed 3326 new genes, the number of genes with alternative splicing was increased to 19,739, and a total of 73,797 transcripts were identified. Differential expression studies between the four tissues showed that gene expression is overall related to the physiological function of the specific organs above any other variable. Variants discovery analysis revealed the presence of indels and SNPs in genes associated with fruit quality and productivity. Pivotal pathways in citrus such as those of flavonoids, flavonols, ethylene and auxin were also analysed in detail. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Effect of covering composting piles with mature compost on ammonia emission and microbial community structure of composting process.

    PubMed

    Maeda, Koki; Morioka, Riki; Osada, Takashi

    2009-01-01

    To control ammonia (NH(3)) volatilization from the dairy cattle (Bos taurus) manure composting process, a compost pile was covered with mature compost and the gas emissions evaluated using the dynamic chamber system. The peak of NH(3) volatilization observed immediately after piling up of the compost was reduced from 196 to 62 mg/m(3) by covering the compost pile with mature compost. The accumulation of NH(4)-N to the covered mature compost was also observed. Covering and mixing the compost with mature compost had no effect on the microbial community structure. However, over time the microbial community structure changed because of a decrease in easily degradable organic compounds in the compost piles. The availability of volatile fatty acids (VFA) was considered to be important for microbial community structure in the compost. After the VFA had disappeared, the NO(3)-N concentration increased and the cellulose degrading bacteria such as Cytophaga increased in number.

  19. RNAi-based strategy for Asian citrus psyllid (Diaphorina citri) Control: A method to reduce the spread of citrus greening disease

    USDA-ARS?s Scientific Manuscript database

    Citrus greening disease is a serious bacterial disease of citrus worldwide and is vectored by the Asian citrus pysllid (Diaphorina Citri). The only effective control strategy includes vigorous control of the psyllid, primarily through heavy reliance on pesticides. As a more sustainable and environm...

  20. Effect of commercial mineral-based additives on composting and compost quality.

    PubMed

    Himanen, M; Hänninen, K

    2009-08-01

    The effectiveness of two commercial additives meant to improve the composting process was studied in a laboratory-scale experiment. Improver A (sulphates and oxides of iron, magnesium, manganese, and zinc mixed with clay) and B (mixture of calcium hydroxide, peroxide, and oxide) were added to source-separated biowaste:peat mixture (1:1, v/v) in proportions recommended by the producers. The composting process (T, emissions of CO(2), NH(3), and CH(4)) and the quality of the compost (pH, conductivity, C/N ratio, water-soluble NH(4)-N and NO(3)-N, water- and NaOH-soluble low-weight carboxylic acids, nutrients, heavy metals and phytotoxicity to Lepidium sarivum) were monitored during one year. Compared with the control, the addition of improver B increased pH by two units, led to an earlier elimination of water-soluble ammonia, an increase in nitrates, a 10-fold increase in concentrations of acetic acid, and shortened phytotoxicity period by half; as negative aspect it led to volatilization of ammonia. The addition of improver A led to a longer thermophilic stage by one week and lower concentrations of low-weight carboxylic acids (both water- and NaOH-extractable) with formic and acetic of similar amounts, however, most of the aspects claimed by the improver's producer were not confirmed in this trial.

  1. First report of citrus exocortis viroid and two citrus variants of the hop stunt viroid on lemon in Azerbaijan

    USDA-ARS?s Scientific Manuscript database

    Budwood received from a lemon tree growing at the Bioresources Institute Nakhichivan, Azerbaijan, produced symptoms corresponding with citrus viroids and cachexia on biological indicators ‘S-1’ citron and ‘Parson’s Special’ (PSM) mandarin, respectively. Sequential poly acrylamide gel electrophoresis...

  2. Comparison of characterization and microbial communities in rice straw- and wheat straw-based compost for Agaricus bisporus production.

    PubMed

    Wang, Lin; Mao, Jiugeng; Zhao, Hejuan; Li, Min; Wei, Qishun; Zhou, Ying; Shao, Heping

    2016-09-01

    Rice straw (RS) is an important raw material for the preparation of Agaricus bisporus compost in China. In this study, the characterization of composting process from RS and wheat straw (WS) was compared for mushroom production. The results showed that the temperature in RS compost increased rapidly compared with WS compost, and the carbon (C)/nitrogen (N) ratio decreased quickly. The microbial changes during the Phase I and Phase II composting process were monitored using denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid (PLFA) analysis. Bacteria were the dominant species during the process of composting and the bacterial community structure dramatically changed during heap composting according to the DGGE results. The bacterial community diversity of RS compost was abundant compared with WS compost at stages 4-5, but no distinct difference was observed after the controlled tunnel Phase II process. The total amount of PLFAs of RS compost, as an indicator of microbial biomass, was higher than that of WS. Clustering by DGGE and principal component analysis of the PLFA compositions revealed that there were differences in both the microbial population and community structure between RS- and WS-based composts. Our data indicated that composting of RS resulted in improved degradation and assimilation of breakdown products by A. bisporus, and suggested that the RS compost was effective for sustaining A. bisporus mushroom growth as well as conventional WS compost.

  3. Mining of haplotype-based expressed sequence tag single nucleotide polymorphisms in citrus

    PubMed Central

    2013-01-01

    Background Single nucleotide polymorphisms (SNPs), the most abundant variations in a genome, have been widely used in various studies. Detection and characterization of citrus haplotype-based expressed sequence tag (EST) SNPs will greatly facilitate further utilization of these gene-based resources. Results In this paper, haplotype-based SNPs were mined out of publicly available citrus expressed sequence tags (ESTs) from different citrus cultivars (genotypes) individually and collectively for comparison. There were a total of 567,297 ESTs belonging to 27 cultivars in varying numbers and consequentially yielding different numbers of haplotype-based quality SNPs. Sweet orange (SO) had the most (213,830) ESTs, generating 11,182 quality SNPs in 3,327 out of 4,228 usable contigs. Summed from all the individually mining results, a total of 25,417 quality SNPs were discovered – 15,010 (59.1%) were transitions (AG and CT), 9,114 (35.9%) were transversions (AC, GT, CG, and AT), and 1,293 (5.0%) were insertion/deletions (indels). A vast majority of SNP-containing contigs consisted of only 2 haplotypes, as expected, but the percentages of 2 haplotype contigs varied widely in these citrus cultivars. BLAST of the 25,417 25-mer SNP oligos to the Clementine reference genome scaffolds revealed 2,947 SNPs had “no hits found”, 19,943 had 1 unique hit / alignment, 1,571 had one hit and 2+ alignments per hit, and 956 had 2+ hits and 1+ alignment per hit. Of the total 24,293 scaffold hits, 23,955 (98.6%) were on the main scaffolds 1 to 9, and only 338 were on 87 minor scaffolds. Most alignments had 100% (25/25) or 96% (24/25) nucleotide identities, accounting for 93% of all the alignments. Considering almost all the nucleotide discrepancies in the 24/25 alignments were at the SNP sites, it served well as in silico validation of these SNPs, in addition to and consistent with the rate (81%) validated by sequencing and SNaPshot assay. Conclusions High-quality EST-SNPs from different

  4. Compost supplementation with nutrients and microorganisms in composting process.

    PubMed

    Sánchez, Óscar J; Ospina, Diego A; Montoya, Sandra

    2017-11-01

    The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost

  5. Effects of mixing and covering with mature compost on gaseous emissions during composting.

    PubMed

    Luo, Wen Hai; Yuan, Jing; Luo, Yi Ming; Li, Guo Xue; Nghiem, Long D; Price, William E

    2014-12-01

    This study investigated effects of mature compost on gaseous emissions during composting using pig manure amended with corn stalks. Apart from a control treatment, three treatments were conducted with the addition of 5% (wet weight of raw materials) of mature compost: (a) mixing raw materials with mature compost at the beginning of composting; (b) covering raw materials with mature compost throughout the experimental period; and (c) covering raw materials with mature compost at the start of composting, but incorporating it into composting pile on day 6 of composting. Mature compost used for the last treatment was inoculated with 2% (wet weight) of raw materials of strain M5 (a methanotrophic bacterium) solution. During 30-d of composting, three treatments with the addition of mature compost could reduce CH4 emission by 53-64% and N2O emission by 43-71%. However, covering with mature compost throughout the experimental period increased cumulative NH3 emission by 61%, although it could reduce 34% NH3 emission in the first 3d. Inoculating strain M5 in mature compost covered on the top of composting pile within first 6d enhanced CH4 oxidation, but simultaneously increased N2O emission. In addition, mixing with mature compost could improve compost maturity. Given the operational convenience in practice, covering with mature compost and then incorporating it into composting pile is a suitable approach to mitigate gaseous emissions during composting. Copyright © 2014. Published by Elsevier Ltd.

  6. Production of oil palm empty fruit bunch compost for ornamental plant cultivation

    NASA Astrophysics Data System (ADS)

    Trisakti, B.; Mhardela, P.; Husaini, T.; Irvan; Daimon, H.

    2018-02-01

    The aim of this research was to produce the oil palm empty fruit bunch (EFB) compost for ornamental plant cultivation. EFB compost was produced by chopping fresh EFB into 1-3 cm pieces, inserting the pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding activated liquid organic fertilizer (ALOF) until moisture content (MC) in the range of 55-65%. During composting, the compost pile was turned every 3 days and the MC was maintained at 55-65% range by adding the ALOF. The compost processed was then mixed with sand and rice husk with a ratio of 1:1:1; 1:3:1; 1:0:1 and was used as a potting medium for planting some valuable ornamental plants i.e. cactus (cactaceae), sansevieria, and anthurium. Composting was carried out for 40 days and the compost characteristic were pH 9.0; MC 52.59%; WHC 76%; CN ratio 12.15; N 1.96%; P 0.58%; and K 0.95%. The compost-sand-husk rice mixture can be used as a growing medium where the best ratio for cactus, sansevieria, and anthurium was 1:3:1; 1:1:1; and 1:0:1, respectively.

  7. Inferring Phylogenetic Relationships of Indian Citron (Citrus medica L.) based on rbcL and matK Sequences of Chloroplast DNA.

    PubMed

    Uchoi, Ajit; Malik, Surendra Kumar; Choudhary, Ravish; Kumar, Susheel; Rohini, M R; Pal, Digvender; Ercisli, Sezai; Chaudhury, Rekha

    2016-06-01

    Phylogenetic relationships of Indian Citron (Citrus medica L.) with other important Citrus species have been inferred through sequence analyses of rbcL and matK gene region of chloroplast DNA. The study was based on 23 accessions of Citrus genotypes representing 15 taxa of Indian Citrus, collected from wild, semi-wild, and domesticated stocks. The phylogeny was inferred using the maximum parsimony (MP) and neighbor-joining (NJ) methods. Both MP and NJ trees separated all the 23 accessions of Citrus into five distinct clusters. The chloroplast DNA (cpDNA) analysis based on rbcL and matK sequence data carried out in Indian taxa of Citrus was useful in differentiating all the true species and species/varieties of probable hybrid origin in distinct clusters or groups. Sequence analysis based on rbcL and matK gene provided unambiguous identification and disposition of true species like C. maxima, C. medica, C. reticulata, and related hybrids/cultivars. The separation of C. maxima, C. medica, and C. reticulata in distinct clusters or sub-clusters supports their distinctiveness as the basic species of edible Citrus. However, the cpDNA sequence analysis of rbcL and matK gene could not find any clear cut differentiation between subgenera Citrus and Papeda as proposed in Swingle's system of classification.

  8. A process-based model for cattle manure compost windrows: Model description

    USDA-ARS?s Scientific Manuscript database

    Composting is an alternative management practice for handling and storing manure in intensive cattle production systems. With composting, cattle manure is converted into a soil amendment with improved nutrient and physical properties and is easier to handle. Despite its benefits, composting can prod...

  9. Cost effective waste management through composting in Africa.

    PubMed

    Couth, R; Trois, C

    2012-12-01

    Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resulting gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost.

    PubMed

    Khan, Naser; Clark, Ian; Sánchez-Monedero, Miguel A; Shea, Syd; Meier, Sebastian; Qi, Fangjie; Kookana, Rai S; Bolan, Nanthi

    2016-01-01

    Two experiments were conducted where three biochars, made from macadamia nutshell (MS), hardwood shaving (WS) and chicken litter (CL), were co-composted with chicken manure and sawdust, and also incubated with a chicken litter based commercial compost. Biochars were added at the rates of 5% and 10% in the co-composting and 10% and 20% in the incubation experiment. The rates of biochar had no consistent effect on the change in element contents of composted- or incubated-biochars. The biochar C demonstrated recalcitrance in both composting and incubation systems. Composting increased the CEC of biochars probably due to thermophilic oxidation. The increases in CEC of WS and CL were 6.5 and 2.2 times, respectively, for composting. Translocation of elements, between biochar and compost medium, occurred in both directions. In most cases, biochars gained elements under the influence of positive difference of concentrations (i.e., when compost medium had higher concentration of elements than biochar), while in some cases they lost elements despite a positive difference. Biochar lost some elements (WS: B; CL: B, Mg and S) under the influence of negative difference of concentrations. Some biochars showed strong affinity for B, C, N and S: the concentration of these elements gained by biochars surpassed the concentration in the respective composting medium. The material difference in the biochars did not have influence on N retention: all three netbag-biochars increased their N content. The cost of production of biochar-compost will be lower in co-composting than incubation, which involves two separate processes, i.e., composting and subsequent incubation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Candidatus Liberibacter asiaticus titers in citrus cultivars in the field and in Asian citrus psyllid (ACP) inoculated greenhouse trees

    USDA-ARS?s Scientific Manuscript database

    A survey of seven citrus cultivars (C. sinensis, C. paradisi, ‘Temple’ tangor, ‘Minneola’ and ‘Orlando’ tangelos and, ‘Fallglo’ and ‘Sunburst’ mandarin hybrids) growing in commercial orchards in Florida revealed a correlation between visual ratings of HLB incidence and severity and CLas titer (Stove...

  12. 7 CFR 301.76-3 - Quarantined areas; citrus greening and Asian citrus psyllid.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Quarantined areas; citrus greening and Asian citrus... Greening and Asian Citrus Psyllid § 301.76-3 Quarantined areas; citrus greening and Asian citrus psyllid... quarantined area for Asian citrus psyllid in accordance with the criteria listed in paragraph (c) of this...

  13. 7 CFR 301.76-3 - Quarantined areas; citrus greening and Asian citrus psyllid.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Quarantined areas; citrus greening and Asian citrus... Greening and Asian Citrus Psyllid § 301.76-3 Quarantined areas; citrus greening and Asian citrus psyllid... quarantined area for Asian citrus psyllid in accordance with the criteria listed in paragraph (c) of this...

  14. 7 CFR 301.76-3 - Quarantined areas; citrus greening and Asian citrus psyllid.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Quarantined areas; citrus greening and Asian citrus... Greening and Asian Citrus Psyllid § 301.76-3 Quarantined areas; citrus greening and Asian citrus psyllid... quarantined area for Asian citrus psyllid in accordance with the criteria listed in paragraph (c) of this...

  15. 7 CFR 301.76-3 - Quarantined areas; citrus greening and Asian citrus psyllid.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Quarantined areas; citrus greening and Asian citrus... Greening and Asian Citrus Psyllid § 301.76-3 Quarantined areas; citrus greening and Asian citrus psyllid... quarantined area for Asian citrus psyllid in accordance with the criteria listed in paragraph (c) of this...

  16. Citrus Genomics

    PubMed Central

    Talon, Manuel; Gmitter Jr., Fred G.

    2008-01-01

    Citrus is one of the most widespread fruit crops globally, with great economic and health value. It is among the most difficult plants to improve through traditional breeding approaches. Currently, there is risk of devastation by diseases threatening to limit production and future availability to the human population. As technologies rapidly advance in genomic science, they are quickly adapted to address the biological challenges of the citrus plant system and the world's industries. The historical developments of linkage mapping, markers and breeding, EST projects, physical mapping, an international citrus genome sequencing project, and critical functional analysis are described. Despite the challenges of working with citrus, there has been substantial progress. Citrus researchers engaged in international collaborations provide optimism about future productivity and contributions to the benefit of citrus industries worldwide and to the human population who can rely on future widespread availability of this health-promoting and aesthetically pleasing fruit crop. PMID:18509486

  17. High-nitrogen compost as a medium for organic container-grown crops.

    PubMed

    Raviv, Michael; Oka, Yuji; Katan, Jaacov; Hadar, Yitzhak; Yogev, Anat; Medina, Shlomit; Krasnovsky, Arkady; Ziadna, Hammam

    2005-03-01

    Compost was tested as a medium for organic container-grown crops. Nitrogen (N) loss during composting of separated cow manure (SCM) was minimized using high C/N (wheat straw, WS; grape marc, GM) or a slightly acidic (orange peels, OP) additives. N conservation values in the resultant composts were 82%, 95% and 98% for GM-SCM, OP-SCM and WS-SCM, respectively. Physical characteristics of the composts were compatible with use as growing media. The nutritional contribution of the composts was assessed using cherry tomato (Lycopersicon esculantum Mill.) and by means of incubation experiments. Media were either unfertilized or fertilized with guano (sea-bird manure). Plant responses suggest that N availability is the main variable affecting growth. Unfertilized OP-SCM and WS-SCM supplied the N needed for at least 4 months of plant growth. Root-galling index (GI) of tomato roots and number of eggs of the nematode Meloidogyne javanica were reduced by the composts, with the highest reduction obtained by OP-SCM and WS-SCM, at 50% concentrations. These composts, but not peat, reduced the incidence of crown and root-rot disease in tomato as well as the population size of the causal pathogen, Fusarium oxysporum f. sp. radicis-lycopersici.

  18. 7 CFR 301.76-2 - Regulated articles for Asian citrus psyllid and citrus greening.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Regulated articles for Asian citrus psyllid and citrus... Greening and Asian Citrus Psyllid § 301.76-2 Regulated articles for Asian citrus psyllid and citrus greening. The following are regulated articles for Asian citrus psyllid and citrus greening: (a) All plants...

  19. 7 CFR 301.76-2 - Regulated articles for Asian citrus psyllid and citrus greening.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Regulated articles for Asian citrus psyllid and citrus... Greening and Asian Citrus Psyllid § 301.76-2 Regulated articles for Asian citrus psyllid and citrus greening. The following are regulated articles for Asian citrus psyllid and citrus greening: (a) All plants...

  20. 7 CFR 301.76-2 - Regulated articles for Asian citrus psyllid and citrus greening.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Regulated articles for Asian citrus psyllid and citrus... Greening and Asian Citrus Psyllid § 301.76-2 Regulated articles for Asian citrus psyllid and citrus greening. The following are regulated articles for Asian citrus psyllid and citrus greening: (a) All plants...

  1. 7 CFR 301.76-2 - Regulated articles for Asian citrus psyllid and citrus greening.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Regulated articles for Asian citrus psyllid and citrus... Greening and Asian Citrus Psyllid § 301.76-2 Regulated articles for Asian citrus psyllid and citrus greening. The following are regulated articles for Asian citrus psyllid and citrus greening: (a) All plants...

  2. Physico-chemical and biological characteristics of compost from decentralised composting programmes.

    PubMed

    Vázquez, M A; Sen, R; Soto, M

    2015-12-01

    Composts that originated from small-scale composting programmes including home, community and canteen waste composters were studied. Heavy metals concentration indicated compliance with current regulations for conventional and organic agriculture. Compost from canteen waste showed high organic matter content (74% VS), while community (44 ± 20% VS) and home composts (31 ± 16% VS) had moderate levels. N content increased from home compost (1.3 ± 0.9% dm) to community (2.0 ± 0.9%) and canteen compost (2.5-3.0%) while P content ranged from 0.4% to 0.6% dm. C/N, absorbance E4/E6 and N-NH4(+)/N-NO3(-) ratios as well as respiration index indicated well-stabilized final products. Culturable bacterial and fungal cfu linkage to composting dynamics were identified and higher diversity of invertebrates was found in the smaller scale static systems. With similar process evolution indicators to industrial systems, overall results support the sustainability of these small-scale, self-managed composting systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effects of age of cattle, turning technology and compost environment on disappearance of bone from mortality compost.

    PubMed

    Stanford, K; Hao, X; Xu, S; McAllister, T A; Larney, F; Leonard, J J

    2009-10-01

    As residual bones in mortality compost negatively impact subsequent tillage, two studies were performed. For the first study, windrows of mature cattle or calves were placed on a base of barley straw and covered with beef manure. Windrows were divided into two sections and turned at 3-month intervals. Approximately 5000 kg of finished compost per windrow was passed through a 6mm trommel screen, with bones collected and weighed. Bone weight was 0.66% of mature cattle compost and 0.38% of calf compost on a dry matter basis, but did not differ after adjustment for weights of compost ingredients. In a subsequent study, four windrows were constructed containing mortalities, straw and beef manure (STATC) or straw, manure and slaughter waste (STATW). Also, straw, beef manure and slaughter waste was added to an 850 L rolling drum composter (DRUMW). Fresh bovine long-bones from calves were collected, weighed and embedded in the compost. Bones were retrieved and weighed when windrows were turned, or with DRUMW, after 8 weeks. Temperatures achieved followed the order STATW>STATC>DRUMW (p<0.05). Rate of bone disappearance followed a pattern identical to temperature, with the weight of bones in STATW declining by 53.7% during 7 weeks of composting. For STATC, temperatures were uniform over three composting periods, but bone disappearance was improved (p<0.05) when compost dry matter was lower (46%), as compared to 58%. Using a ratio of five parts manure to one part mortalities, results of this study demonstrated that residual bone was <1% of cured cattle compost and may be reduced by maintaining a high compost temperature and moisture content.

  4. Physical analyses of compost from composting plants in Brazil.

    PubMed

    Barreira, L P; Philippi Junior, A; Rodrigues, M S; Tenório, J A S

    2008-01-01

    Nowadays the composting process has shown itself to be an alternative in the treatment of municipal solid wastes by composting plants. However, although more than 50% of the waste generated by the Brazilian population is composed of matter susceptible to organic composting, this process is, still today, insufficiently developed in Brazil, due to low compost quality and lack of investments in the sector. The objective of this work was to use physical analyses to evaluate the quality of the compost produced at 14 operative composting plants in the Sao Paulo State in Brazil. For this purpose, size distribution and total inert content tests were done. The results were analyzed by grouping the plants according to their productive processes: plants with a rotating drum, plants with shredders or mills, and plants without treatment after the sorting conveyor belt. Compost quality was analyzed considering the limits imposed by the Brazilian Legislation and the European standards for inert contents. The size distribution tests showed the influence of the machinery after the sorting conveyer on the granule sizes as well as the inert content, which contributes to the presence of materials that reduce the quality of the final product.

  5. Composting and compost utilization: accounting of greenhouse gases and global warming contributions.

    PubMed

    Boldrin, Alessio; Andersen, Jacob K; Møller, Jacob; Christensen, Thomas H; Favoino, Enzo

    2009-11-01

    Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (-900 kg CO(2)-equivalents tonne(-1) wet waste (ww)) and a net load (300 kg CO(2)-equivalents tonne( -1) ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.

  6. ACP and Citrus: Plant Responses to Psyllid Feeding

    USDA-ARS?s Scientific Manuscript database

    Progress is reported on the Citrus Research Board funded project: 5300-150 Biomarkers for the detection of Liberibacter infection in citrus through H-NMR-based metabolomics. Proton nuclear magnetic resonance (H-NMR) was used to determine the effects of Asian citrus psyllid (ACP) feeding on leaf meta...

  7. Application of Bacillus sp. TAT105 to reduce ammonia emissions during pilot-scale composting of swine manure.

    PubMed

    Kuroda, Kazutaka; Tanaka, Akihiro; Furuhashi, Kenich; Nakasaki, Kiyohiko

    2017-12-01

    Thermophilic ammonium-tolerant bacterium Bacillus sp. TAT105 grows and reduces ammonia (NH 3 ) emissions by assimilating ammonium nitrogen during composting of swine feces. To evaluate the efficacy of a biological additive containing TAT105 at reducing NH 3 emissions, composting tests of swine manure on a pilot scale (1.8 m 3 ) were conducted. In the TAT105-added treatment, NH 3 emissions and nitrogen loss were lower than those in the control treatment without TAT105. No significant difference was detected in losses in the weight and volatile solids between the treatments. Concentration of thermophilic ammonium-tolerant bacteria in the compost increased in both treatments at the initial stage of composting. In the TAT105-added treatment, bacterial concentration reached ~10 9 colony-forming units per gram of dry matter, several-fold higher than that in the control and stayed at the same level until the end. These results suggest that TAT105 grows during composting and reduces NH 3 emissions in TAT105-added treatment.

  8. Two-phase olive mill waste composting: enhancement of the composting rate and compost quality by grape stalks addition.

    PubMed

    Cayuela, Maria Luz; Sánchez-Monedero, Miguel A; Roig, Asunción

    2010-06-01

    Two-phase olive mill waste (TPOMW) is a semisolid sludge generated by the olive oil industry. Its recycling as a soil amendment, either unprocessed or composted, is being promoted as a beneficial agricultural practice in the Mediterranean area. One of the major difficulties when composting TPOMW is the compaction of the material due to its dough-like texture, which leads to an inadequate aeration. For this reason, the addition of bulking agents is particularly important to attain a proper composting process. In this study we followed the evolution of two composting mixtures (A and B) prepared by mixing equal amounts of TPOMW and sheep litter (SL) (in a dry weight basis). In pile B grape stalks (GS) were added (10% dry weight) as bulking agent to study their effect on the development of the composting process and the final compost quality. The incorporation of grape stalks to the composting mixture changed the organic matter (OM) degradation dynamics and notably reduced the total amount of lixiviates. The evolution of several maturation indices (C/N, germination index, water soluble carbon, humification indices, C/N in the leachates) showed a faster and improved composting process when GS were added. Moreover, chemical (NH4+, NO3(-), cation exchange capacity, macro and micronutrients, heavy metals) and physical properties (bulk and real densities, air content, total water holding capacity, porosity) of the final composts were analysed and confirmed the superior quality of the compost where GS were added.

  9. Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost.

    PubMed

    Gabhane, Jagdish; William, S P M Prince; Bidyadhar, Rajnikant; Bhilawe, Priya; Anand, Duraisamy; Vaidya, Atul N; Wate, Satish R

    2012-06-01

    The effect of various additives such as fly ash, phosphogypsum, jaggery, lime, and polyethylene glycol on green waste composting was investigated through assessing their influence on microbial growth, enzymatic activities, organic matter degradation, bulk density, quality of finished compost including gradation test, heavy metal analysis, etc. A perusal of results showed that addition of jaggery and polyethylene glycol were helpful to facilitate composting process as they significantly influenced the growth of microbes and cellulase activity. The quality of finished compost prepared from jaggery and polyethylene glycol added treatments were superior to other composts, wherein reduction in C/N ratio was more than 8% in jaggery treatment. All other parameters of compost quality including gradation test also favored jaggery and polyethylene glycol as the best additives for green waste composting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Citrus diseases with global ramifications including citrus canker and huanglongbing

    USDA-ARS?s Scientific Manuscript database

    Although there are a number of diseases that plague citrus production worldwide, two bacterial diseases are particularly problematic. Both are of Asian origin and currently cause severe economic damage: Asiatic citrus canker (ACC) and citrus huanglongbing (HLB). Although ACC has been found in the ...

  11. Incidence and epidemiology of Citrus tristeza virus in the Valencian community of Spain.

    PubMed

    Cambra, M; Gorris, M T; Marroquín, C; Román, M P; Olmos, A; Martínez, M C; de Mendoza, A H; López, A; Navarro, L

    2000-11-01

    The first outbreak of citrus tristeza disease in Spain caused by Citrus tristeza virus (CTV) was recorded in 1957 in the Valencian Community (VC). In total c. 40 million trees, mainly of sweet orange and mandarin grafted on sour orange rootstocks, declined due to CTV. Large-scale surveys in different municipalities of the VC indicated that the disease spread very fast. Incidence increased from 11% in 1989 to 53% in 1998. Toxoptera aurantii and Aphis spiraecola (inefficient aphid vectors of CTV) predominated before 1985-87. Since then the relatively efficient vector Aphis gossypii has become dominant and induced an epidemic that has been modelled. The large number of A.gossypii that visited each clementine tree (estimated to exceed 97000 per year) explained the difference between the temporal pattern of spread of CTV in clementine which followed the Gompertz model and that in sweet orange (logistic model). The susceptibility of the different citrus species to CTV infection by aphids seems to depend on the number of young, succulent shoots produced. The epidemiological data allowed specific recommendations to be made to growers in order to facilitate a change to a modern citrus industry based on the use of selected varieties grafted on tristeza-tolerant rootstocks produced within a certification scheme. This has been done already in almost 90% of the VC citrus-growing area. The tristeza problem has been solved unless more aggressive isolates are introduced and become prevalent.

  12. Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil.

    PubMed

    Zhang, Xu; Zhao, Yue; Zhu, Longji; Cui, Hongyang; Jia, Liming; Xie, Xinyu; Li, Jiming; Wei, Zimin

    2017-12-01

    In order to improve soil quality, reduce wastes and mitigate climate change, it is necessary to understand the balance between soil organic carbon (SOC) accumulation and depletion under different organic waste compost amended soils. The effects of proportion (5%, 15%, 30%), compost type (sewage sludge (SS), tomato stem waste (TSW), municipal solid waste (MSW), kitchen waste (KW), cabbage waste (CW), peat (P), chicken manure (CM), dairy cattle manure (DCM)) and the black soil (CK). Their initial biochemical composition (carbon, nitrogen, C:N ratio) on carbon (C) mineralization in soil amended compost have been investigated. The CO 2 -C production of different treatments were measured to indicate the levels of carbon (C) mineralization during 50d of laboratory incubation. And the one order E model (M1E) was used to quantify C mineralization kinetics. The results demonstrated that the respiration and C mineralization of soil were promoted by amending composts. The C mineralization ability increased when the percentage of compost added to the soil also increased and affected by compost type in the order CM>KW, CW>SS, DCM, TSW>MSW, P>CK at the same amended level. Based on the values of C 0 and k 1 from M1E model, a management method in agronomic application of compost products to the precise fertilization was proposed. The SS, DCM and TSW composts were more suitable in supplying fertilizer to the plant. Otherwise, The P and MSW composts can serve the purpose of long-term nutrient retention, whereas the CW and KW composts could be used as soil remediation agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of actinobacteria agent inoculation methods on cellulose degradation during composting based on redundancy analysis.

    PubMed

    Zhao, Yue; Lu, Qian; Wei, Yuquan; Cui, Hongyang; Zhang, Xu; Wang, Xueqin; Shan, Si; Wei, Zimin

    2016-11-01

    In this study, actinobacteria agent including Streptomyces sp. and Micromonospora sp. were inoculated during chicken manure composting by different inoculation methods. The effect of different treatments on cellulose degradation and the relationship between inoculants and indigenous actinobacteria were investigated during composting. The results showed that inoculation in different stages of composting all improved the actinobacteria community diversity particularly in the cooling stage of composting (M3). Moreover, inoculation could distinctly accelerate the degradation of organic matters (OM) especially celluloses. Redundancy analysis indicated that the correlation between indigenous actinobacteria and degradation of OM and cellulose were regulated by inoculants and there were significant differences between different inoculation methods. Furthermore, synergy between indigenous actinobacteria and inoculants for degradation of OM and cellulose in M3 was better than other treatments. Conclusively, we suggested an inoculation method to regulate the indigenous actinobacteria based on the relationship between inoculants and indigenous actinobacteria and degradation content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Toward zero waste: composting and recycling for sustainable venue based events.

    PubMed

    Hottle, Troy A; Bilec, Melissa M; Brown, Nicholas R; Landis, Amy E

    2015-04-01

    This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g. recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO2 equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO2 eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three bin collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO2 eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second night (with the staffed bins) and 23% contamination rates at the third game. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Host susceptibility of citrus cultivars to Queensland fruit fly (Diptera: Tephritidae).

    PubMed

    Lloyd, A C; Hamacek, E L; Smith, D; Kopittke, R A; Gu, H

    2013-04-01

    Citrus crops are considered to be relatively poor hosts for Queensland fruit fly, Bactrocera tryoni (Froggatt), as for other tephritid species. Australian citrus growers and crop consultants have reported observable differences in susceptibility of different citrus cultivars under commercial growing conditions. In this study we conducted laboratory tests and field surveys to determine susceptibility to B. tryoni of six citrus cultivars [(Eureka lemon (Citrus limon (L.) Osbeck); Navel and Valencia oranges (C. sinensis (L.) Osbeck); and Imperial, Ellendale, and Murcott mandarins (C. reticulata Blanco). The host susceptibility of these citrus cultivars was quantified by a Host Susceptibility Index, which is defined as the number of adult flies produced per gram of fruit infested at a calculated rate of one egg per gram of fruit. The HSI was ranked as Murcott (0.083) > Imperial (0.052) > Navel (0.026) - Ellendale (0.020) > Valencia (0.008) > Eureka (yellow) (0.002) > Eureka (green) (0). Results of the laboratory study were in agreement with the level of field infestation in the four citrus cultivars (Eureka lemon, Imperial, Ellendale, and Murcott mandarins) that were surveyed from commercial orchards under baiting treatments against fruit flies in the Central Burnett district of Queensland. Field surveys of citrus hosts from the habitats not subject to fruit fly management showed that the numbers of fruit flies produced per gram of fruit were much lower, compared with the more susceptible noncitrus hosts, such as guava (Psidium guajava L.), cherry guava (P. littorale Raddi), mulberry (Morus nigra L.), loquat (Eriobotrya japonica (Thunb.) Lindl.), and pear (Pyrus communis L.). Therefore, the major citrus crops commercially cultivated in Australia have a relatively low susceptibility to B. tryoni, with Eureka lemons being a particularly poor host for this tephritid fruit fly.

  16. Citrus Functional Genomics and Molecular Modeling in Relation to Citrus sinensis (Sweet Orange) Infection with Xylella fastidiosa (Citrus Variegated Chlorosis).

    PubMed

    Dwivedi, Upendra N; Tiwari, Sameeksha; Prasanna, Pragya; Awasthi, Manika; Singh, Swati; Pandey, Veda P

    2016-08-01

    Citrus are among the economically most important fruit tree crops in the world. Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa infection, is a serious disease limiting citrus production at a global scale. With availability of citrus genomic resources, it is now possible to compare citrus expressed sequence tag (EST) data sets and identify single-nucleotide polymorphisms (SNPs) within and among different citrus cultivars that can be exploited for citrus resistance to infections, citrus breeding, among others. We report here, for the first time, SNPs in the EST data sets of X. fastidiosa-infected Citrus sinensis (sweet orange) and their functional annotation that revealed the involvement of eight C. sinensis candidate genes in CVC pathogenesis. Among these genes were xyloglucan endotransglycosylase, myo-inositol-1-phosphate synthase, and peroxidase were found to be involved in plant cell wall metabolism. These have been further investigated by molecular modeling for their role in CVC infection and defense. Molecular docking analyses of the wild and the mutant (SNP containing) types of the selected three enzymes with their respective substrates revealed a significant decrease in the binding affinity of substrates for the mutant enzymes, thus suggesting a decrease in the catalytic efficiency of these enzymes during infection, thereby facilitating a favorable condition for infection by the pathogen. These findings offer novel agrigenomics insights in developing future molecular targets and strategies for citrus fruit cultivation in ways that are resistant to X. fastidiosa infection, and by extension, with greater harvesting efficiency and economic value.

  17. Characterization of dairy cattle manure/wallboard paper compost mixture.

    PubMed

    Saludes, Ronaldo B; Iwabuchi, Kazunori; Miyatake, Fumihito; Abe, Yoshiyuki; Honda, Yoshifumi

    2008-10-01

    The aim of this research was to evaluate the use of manufacturing wallboard paper scraps as an alternative bulking agent for dairy cattle manure composting. The characteristics of the composting process were studied based on the changes in physico-chemical parameters and final compost quality. Composting of dairy cattle manure with wallboard paper was performed in a 481-L cylindrical reactor with vacuum-type aeration. Rapid degradation of organic matter was observed during the thermophilic stage of composting due to high microbial activity. High temperature and alkaline pH conditions promoted intense ammonia emission during the early stage of composting. The number of mesophilic and thermophilic microorganisms were found to be affected by changes in temperature at different composting stages. The total nitrogen (N), phosphorus (P), potassium (K), and sodium (Na) concentrations of the mixture did not change significantly after 28days of composting. However, the presence of gypsum in the paper scraps increased the calcium content of the final compost. The wallboard paper had no phyto-inhibitory effects as shown by high germination index of final compost (GI=99%).

  18. Composting in advanced life support systems

    NASA Technical Reports Server (NTRS)

    Atkinson, C. F.; Sager, J. C.; Alazraki, M.; Loader, C.

    1998-01-01

    Space missions of extended duration are currently hampered by the prohibitive costs of external resupply. To reduce the need for resupply, the National Aeronautics and Space Administration (NASA) is currently testing methods to recycle solid wastes, water, and air. Composting can be an integral part of a biologically based waste treatment/recycling system. Results indicate that leachate from composted plant wastes is not inhibitory to seed germination and contains sufficient inorganic minerals to support plant growth. Other solid wastes, for example kitchen (food) wastes and human solid wastes, can be composted with inedible plant residues to safely reduce the volume of the wastes and levels of microorganisms potentially pathogenic to humans. Finished compost could serve as a medium for plant growth or mushroom production.

  19. Composting in advanced life support systems.

    PubMed

    Atkinson, C F; Sager, J C; Alazraki, M; Loader, C

    1998-01-01

    Space missions of extended duration are currently hampered by the prohibitive costs of external resupply. To reduce the need for resupply, the National Aeronautics and Space Administration (NASA) is currently testing methods to recycle solid wastes, water, and air. Composting can be an integral part of a biologically based waste treatment/recycling system. Results indicate that leachate from composted plant wastes is not inhibitory to seed germination and contains sufficient inorganic minerals to support plant growth. Other solid wastes, for example kitchen (food) wastes and human solid wastes, can be composted with inedible plant residues to safely reduce the volume of the wastes and levels of microorganisms potentially pathogenic to humans. Finished compost could serve as a medium for plant growth or mushroom production.

  20. Efficacy of microorganisms selected from compost to control soil-borne pathogens.

    PubMed

    Pugliese, M; Gullino, M L; Garibaldi, A

    2010-01-01

    Suppression of soil-borne plant pathogens with compost has been widely studied. Compost has been found to be suppressive against several soil-borne pathogens in various cropping systems. However, an increase of some diseases due to compost usage has also been observed, since compost is a product that varies considerably in chemical, physical and biotic composition, and, consequently, also in ability to suppress soil borne diseases. New opportunities in disease management can be obtained by the selection of antagonists from suppressive composts. The objective of the present work was to isolate microorganisms from a suppressive compost and to test them for their activity against soil-borne pathogens. A compost from green wastes, organic domestic wastes and urban sludge's that showed a good suppressive activity in previous trials was used as source of microorganisms. Serial diluted suspensions of compost samples were plated on five different media: selective for Fusarium sp., selective for Trichoderma sp., selective for oomycetes, potato dextrose agar (PDA) for isolation of fungi, lysogeny broth (LB) for isolation of bacteria. In total, 101 colonies were isolated from plates and tested under laboratory conditions on tomato seedlings growing on perlite medium in Petri plates infected with Fusarium oxysporum f.sp. radicis-lycopersici and compared to a commercial antagonist (Streptomyces griserovidis, Mycostop, Bioplanet). Among them, 28 showed a significant disease reduction and were assessed under greenhouse condition on three pathosystems: Fusarium oxysporum f.sp. basilica/basil, Phytophthora nicotianae/tomato and Rhizoctonia solani/bean. Fusarium spp. selected from compost generally showed a good disease control against Fusarium wilts, while only bacteria significantly controlled P. nicotianae on tomato under greenhouse conditions. None of the microorganisms was able to control the three soil-borne pathogens together, in particular Rhizoctonia solani. Results

  1. Toward zero waste: Composting and recycling for sustainable venue based events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hottle, Troy A., E-mail: troy.hottle@asu.edu; Bilec, Melissa M., E-mail: mbilec@pitt.edu; Brown, Nicholas R., E-mail: nick.brown@asu.edu

    Highlights: • Venues have billions of customers per year contributing to waste generation. • Waste audits of four university baseball games were conducted to assess venue waste. • Seven scenarios including composting were modeled using EPA’s WARM. • Findings demonstrate tradeoffs between emissions, energy, and landfill avoidance. • Sustainability of handling depends on efficacy of collection and treatment impacts. - Abstract: This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g.more » recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO{sub 2} equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO{sub 2} eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three bin collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO{sub 2} eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second

  2. Citrus leprosis research update

    USDA-ARS?s Scientific Manuscript database

    Citrus leprosis is one of the oldest citrus diseases, but is also one of the most important emerging citrus diseases in South and Central America, and it is apparently spreading northward towards the U.S. Research in our labs and by others has shown that citrus leprosis disease is caused by a compl...

  3. Chemotaxonomic Study of Citrus, Poncirus and Fortunella Genotypes Based on Peel Oil Volatile Compounds - Deciphering the Genetic Origin of Mangshanyegan (Citrus nobilis Lauriro)

    PubMed Central

    Liu, Cuihua; Jiang, Dong; Cheng, Yunjiang; Deng, Xiuxin; Chen, Feng; Fang, Liu; Ma, Zhaocheng; Xu, Juan

    2013-01-01

    Volatile profiles yielded from gas chromatography-mass spectrometry (GC-MS) analysis provide abundant information not only for metabolism-related research, but also for chemotaxonomy. To study the chemotaxonomy of Mangshanyegan, its volatile profiles of fruit and leaf and those of 29 other genotypes of Citrus, Poncirus, and Fortunella were subjected to phylogenetic analyses. Results showed that 145 identified (including 64 tentatively identified) and 15 unidentified volatile compounds were detected from their peel oils. The phylogenetic analysis of peel oils based on hierarchical cluster analysis (HCA) demonstrated a good agreement with the Swingle taxonomy system, in which the three genera of Citrus, Poncirus, and Fortunella were almost completely separated. As to Citrus, HCA indicated that Citrophorum, Cephalocitrus, and Sinocitrus fell into three subgroups, respectively. Also, it revealed that Mangshanyegan contain volatile compounds similar to those from pummelo, though it is genetically believed to be a mandarin. These results were further supported by the principal component analysis of the peel oils and the HCA results of volatile profiles of leaves in the study. PMID:23516475

  4. Production of transgenic citrus resistant to citrus canker and Huanglongbing diseases

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB or citrus greening disease) caused by Candidatus Liberibacter asiaticus (Las) is a great threat to the U.S. citrus industry. There are no proven strategies to eliminate HLB disease and no cultivars identified with strong HLB resistance. Citrus canker is also an economically import...

  5. Utilization of high temperature compost in space agriculture: the model compost kills Escherichia coli

    NASA Astrophysics Data System (ADS)

    Oshima, Tairo; Moriya, Toshiyuki; Yoshii, Takahiro

    The author and his colleagues have proposed the use of high temperature composting in space inhabitation. Composting has many advantages over burning in organic waste treatments. Composting is self-heating processes and needs no extra fuel. Composting requires no sophis-ticated equipment such as an incinerator. Composting emits no hazardous gases such as NOx, SOx and dioxines which are often produced by burning. The final product can be used as fer-tilizer in space farm land; resources recycling society can be constructed in space stations and space cities. In addition to these advantages, composting and compost soil may contribute to the environmental cleanup. During composting processes, harmful compounds to agricultural plants and animals can be destroyed. Seeds of weeds can be killed by high heat. Likewise pathogenic microbes in the waste can be eliminated during fermentation inside the composts. Recently we measured the survivability of E. coli in compost. E. coli was used as the represen-tative of the Gram-negative bacteria. Since many pathogenic strains belong to Gram-negative bacteria and Gram-negative bacteria are more resistant to antibiotics than gram-positive bac-teria. When E. coli cells were mixed in the compost pile of which inside temperature reaches up to 75oC, they died within a short period as expected. However, E. coli DNA was detected even after a day in high temperature compost. RNA has a shorter life-span than DNA, but was detected after incubation in compost for several hours. In addition to sterilizing effects due to high temperature, we found our compost soil has E. coli killing activity. When mixed with the compost soil at room temperature, E. coli died gradually. Extract of the compost soil also killed E. coli at room temperature, but it took a few days to eliminate E. coli completely. During the killing process, total number of living bacteria did not change, indicating that the killing activity is limited to some specific

  6. Successful School Composting.

    ERIC Educational Resources Information Center

    Mahar, Rhea Dawn

    2001-01-01

    School composting programs that have met the challenges inherent in long-term composting have several traits in common: a supportive educational program, schoolwide participation, and a consistent maintenance program. Examines the elements of success, offers examples of incorporating composting into the curriculum, and describes three methods of…

  7. Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems.

    PubMed

    Yang, Ying; Zhao, Chengying; Chen, Jingjing; Tian, Guifang; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-03-01

    The purpose of this work was to elucidate the effects of citrus oil type on polymethoxyflavone (PMF) solubility and on the physicochemical properties of PMF-loaded emulsion-based delivery systems. Citrus oils were extracted from mandarin, orange, sweet orange, and bergamot. The major constituents were determined by GC/MS: sweet orange oil (97.4% d-limonene); mandarin oil (72.4% d-limonene); orange oil (67.2% d-limonene); and bergamot oil (34.6% linalyl acetate and 25.3% d-limonene). PMF-loaded emulsions were fabricated using 10% oil phase (containing 0.1% w/v nobiletin or tangeretin) and 90% aqueous phase (containing 1% w/v Tween 80) using high-pressure homogenization. Delivery systems prepared using mandarin oil had the largest mean droplet diameters (386 or 400 nm), followed by orange oil (338 or 390 nm), bergamot oil (129 or 133 nm), and sweet orange oil (122 or 126 nm) for nobiletin- or tangeretin-loaded emulsions, respectively. The optical clarity of the emulsions increased with decreasing droplet size due to reduced light scattering. The viscosities of the emulsions (with or without PMFs) were similar (1.3 to 1.4 mPa·s), despite appreciable differences in oil phase viscosity. The loading capacity and encapsulation efficiency of the emulsions depended on carrier oil type, with bergamot oil giving the highest loading capacity. In summary, differences in the composition and physical characteristics of citrus oils led to PMF-loaded emulsions with different encapsulation and physicochemical characteristics. These results will facilitate the rational design of emulsion-based delivery systems for encapsulation of PMFs and other nutraceuticals in functional foods and beverages.

  8. Green waste compost as an amendment during induced phytoextraction of mercury-contaminated soil.

    PubMed

    Smolinska, Beata

    2015-03-01

    Phytoextraction of mercury-contaminated soils is a new strategy that consists of using the higher plants to make the soil contaminant nontoxic. The main problem that occurs during the process is the low solubility and bioavailability of mercury in soil. Therefore, some soil amendments can be used to increase the efficiency of the Hg phytoextraction process. The aim of the investigation was to use the commercial compost from municipal green wastes to increase the efficiency of phytoextraction of mercury-contaminated soil by Lepidium sativum L. plants and determine the leaching of Hg after compost amendment. The result of the study showed that Hg can be accumulated by L. sativum L. The application of compost increased both the accumulation by whole plant and translocation of Hg to shoots. Compost did not affect the plant biomass and its biometric parameters. Application of compost to the soil decreased the leaching of mercury in both acidic and neutral solutions regardless of growing medium composition and time of analysis. Due to Hg accumulation and translocation as well as its potential leaching in acidic and neutral solution, compost can be recommended as a soil amendment during the phytoextraction of mercury-contaminated soil.

  9. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality

    PubMed Central

    2013-01-01

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P < 0.05) compared to compost without EM. Although the Fe in compost with EM is much higher (P < 0.05) than in the compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction. PMID:23390930

  10. Composting rice straw with sewage sludge and compost effects on the soil-plant system.

    PubMed

    Roca-Pérez, L; Martínez, C; Marcilla, P; Boluda, R

    2009-05-01

    Composting organic residue is an interesting alternative to recycling waste as the compost obtained may be used as organic fertilizer. This study aims to assess the composting process of rice straw and sewage sludge on a pilot-scale, to evaluate both the quality of the composts obtained and the effects of applying such compost on soil properties and plant development in pot experiments. Two piles, with shredded and non-shredded rice straw, were composted as static piles with passive aeration. Throughout the composting process, a number of parameters were determined, e.g. colour, temperature, moisture, pH, electrical conductivity, organic matter, C/N ratio, humification index, cation exchange capacity, chemical oxygen demand, and germination index. Moreover, sandy and clayey soils were amended with different doses of mature compost and strewed with barley in pot experiments. The results show that compost made from shredded rice straw reached the temperatures required to maximise product sanitisation, and that the parameters indicating compost maturity were all positive; however, the humification index and NH(4) content were more selective. Therefore, using compost-amended soils at a dose of 34 Mg ha(-1) for sandy soil, and of 11 Mg ha(-1) for clayey soil improves soil properties and the growth of Hordeum vulgare plants. Under there conditions, the only limiting factor of agronomic compost utilisation was the increased soil salinity.

  11. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality.

    PubMed

    Jusoh, Mohd Lokman Che; Manaf, Latifah Abd; Latiff, Puziah Abdul

    2013-02-07

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P < 0.05) compared to compost without EM. Although the Fe in compost with EM is much higher (P < 0.05) than in the compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction.

  12. Effect of moisture and compost on fate of azoxystrobin in soils.

    PubMed

    Singh, Neera; Singh, Shashi B

    2010-10-01

    The effect of compost-amendment and moisture status on the persistence of azoxystrobin [methyl (E)-2-{2-(6-(2-cyanophenoxy) pyrimidin-4-yloxy) phenyl}-3-methoxyacrylate], a strobilurin fungicide, in two rice-growing soils was studied. Azoxystrobin is more sorbed in the silt loam (K f – 4.66) soil than the sandy loam (K f – 2.98) soil. Compost-amendment at 5 % levels further enhanced the azoxystrobin sorption and the respective Kf values in silt loam and sandy loam soils were 8.48 and 7.6. Azoxystrobin was more persistent in the sandy loam soil than the silt loam soil. The half–life values of azoxystrobin in nonflooded and flooded silt loam soil were 54.7 and 46.3 days, respectively. The corresponding half–life values in the sandy loam soils were 64 and 62.7 days, respectively. Compost application enhanced persistence of azoxystrobin in the silt loam soil under both moisture regimes and half-life values in non–flooded and flooded soils were 115.7 and 52.8 days, respectively. However, compost enhanced azoxystrobin degradation in the sandy loam soil and half-life values were 59 (nonflooded) and 54.7 days (flooded). The study indicates that compost amendment enhanced azoxystrobin sorption in the soils. Azoxystrobin is more persistent in non-flooded soils than the flooded soils. Compost applications to soils had mixed effect on the azoxystrobin degradation.

  13. Analysis of full-length sequences of two Citrus yellow mosaic badnavirus isolates infecting Citrus jambhiri (Rough Lemon) and Citrus sinensis L. Osbeck (Sweet Orange) from a nursery in India.

    PubMed

    Anthony Johnson, A M; Borah, B K; Sai Gopal, D V R; Dasgupta, I

    2012-12-01

    Citrus yellow mosaic badna virus (CMBV), a member of the Family Caulimoviridae, Genus Badnavirus is the causative agent of mosaic disease among Citrus species in southern India. Despite its reported prevalence in several citrus species, complete information on clear functional genomics or functional information of full-length genomes from all the CMBV isolates infecting citrus species are not available in publicly accessible databases. CMBV isolates from Rough Lemon and Sweet Orange collected from a nursery were cloned and sequenced. The analysis revealed high sequence homology of the two CMBV isolates with previously reported CMBV sequences implying that they represent new variants. Based on computational analysis of the predicted secondary structures, the possible functions of some CMBV proteins have been analyzed.

  14. Evaluation of composition and performance of composts derived from guacamole production residues.

    PubMed

    González-Fernández, J Jorge; Galea, Zesay; Alvarez, José M; Hormaza, J Iñaki; López, Rafael

    2015-01-01

    The utilization of organic wastes to improve soils or for growth media components in local farms and nurseries can reduce the environmental pollution linked to waste disposal while increasing the sustainability of crop production. This approach could be applied to waste products generated from the production of guacamole (an emerging activity in the avocado production areas in mainland Spain), where appropriate treatment of this oily and doughy waste product has not been previously reported. The aim of this work is to study the feasibility of co-composting guacamole production residues (GR) with garden pruning waste (PW) as bulking agent, and the possible use of the compost produced depending on its quality. A windrow composting trial using three GR:PW ratios, 2:1, 1:2, and 1:7 was carried out. Temperature, moisture, organic matter, and C/N ratio were used to follow the evolution of the composting process during 7 months. After an additional 3-month curing period, composts were sieved to less than 10 mm and a set of European quality criteria was used to assess compost quality and intended use. In general, the 3 composting mixtures followed the classical process evolution, with minor differences among them. The 1:2 GR:PW ratio appeared most adequate for combining better process evolution and maximum GR ratio. Except for their high pH that limits their use as growing media component in some particular cases, the obtained composts fulfilled the more stringent European standards for commercial composts. Self-heating tests confirmed the high stability of the composts produced. The germination of cress by the direct contact method was satisfactory for composts GR:PW 1:2 and 1:7, showing no signs of toxicity. Avocado seedlings planted in substrates containing 67% of the GR:PW composts exhibited greater plant growth than those in the control treatment, and with no signs of phytotoxicity. The results open an interesting opportunity for the sustainable treatment of avocado

  15. Dietary citrus pulp reduces lipid oxidation in lamb meat.

    PubMed

    Inserra, L; Priolo, A; Biondi, L; Lanza, M; Bognanno, M; Gravador, R; Luciano, G

    2014-04-01

    This study investigated the effect of replacing cereal concentrates with high levels of dried citrus pulp in the diet on lamb meat oxidative stability. Over 56 days, lambs were fed a barley-based concentrate (Control) or concentrates in which 24% and 35% dried citrus pulp were included to partially replace barley (Citrus 24% and Citrus 35%, respectively). Meat was aged under vacuum for 4 days and subsequently stored aerobically at 4 °C. The Control diet increased the redness, yellowness and saturation of meat after blooming (P<0.01). Regardless of the level of supplementation, dietary dried citrus pulp strongly reduced meat lipid oxidation over 6 days of aerobic storage (P<0.001), while colour parameters did not change noticeably over storage and their variation rate was not affected by the diet. In conclusion, replacing cereals with dried citrus pulp in concentrate-based diets might represent a feasible strategy to naturally improve meat oxidative stability and to promote the exploitation of this by-product. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Phylogenetic Relationships of Citrus and Its Relatives Based on matK Gene Sequences

    PubMed Central

    Penjor, Tshering; Uehara, Miki; Ide, Manami; Matsumoto, Natsumi; Matsumoto, Ryoji

    2013-01-01

    The genus Citrus includes mandarin, orange, lemon, grapefruit and lime, which have high economic and nutritional value. The family Rutaceae can be divided into 7 subfamilies, including Aurantioideae. The genus Citrus belongs to the subfamily Aurantioideae. In this study, we sequenced the chloroplast matK genes of 135 accessions from 22 genera of Aurantioideae and analyzed them phylogenetically. Our study includes many accessions that have not been examined in other studies. The subfamily Aurantioideae has been classified into 2 tribes, Clauseneae and Citreae, and our current molecular analysis clearly discriminate Citreae from Clauseneae by using only 1 chloroplast DNA sequence. Our study confirms previous observations on the molecular phylogeny of Aurantioideae in many aspects. However, we have provided novel information on these genetic relationships. For example, inconsistent with the previous observation, and consistent with our preliminary study using the chloroplast rbcL genes, our analysis showed that Feroniella oblata is not nested in Citrus species and is closely related with Feronia limonia. Furthermore, we have shown that Murraya paniculata is similar to Merrillia caloxylon and is dissimilar to Murraya koenigii. We found that “true citrus fruit trees” could be divided into 2 subclusters. One subcluster included Citrus, Fortunella, and Poncirus, while the other cluster included Microcitrus and Eremocitrus. Compared to previous studies, our current study is the most extensive phylogenetic study of Citrus species since it includes 93 accessions. The results indicate that Citrus species can be classified into 3 clusters: a citron cluster, a pummelo cluster, and a mandarin cluster. Although most mandarin accessions belonged to the mandarin cluster, we found some exceptions. We also obtained the information on the genetic background of various species of acid citrus grown in Japan. Because the genus Citrus contains many important accessions, we have

  17. Nitrogen losses to the environment following food-based digestate and compost applications to agricultural land.

    PubMed

    Nicholson, Fiona; Bhogal, Anne; Cardenas, Laura; Chadwick, Dave; Misselbrook, Tom; Rollett, Alison; Taylor, Matt; Thorman, Rachel; Williams, John

    2017-09-01

    The anaerobic digestion of food waste for energy recovery produces a nutrient-rich digestate which is a valuable source of crop available nitrogen (N). As with any 'new' material being recycled to agricultural land it is important to develop best management practices that maximise crop available N supply, whilst minimising emissions to the environment. In this study, ammonia (NH 3 ) and nitrous oxide (N 2 O) emissions to air and nitrate (NO 3 - ) leaching losses to water following digestate, compost and livestock manure applications to agricultural land were measured at 3 sites in England and Wales. Ammonia emissions were greater from applications of food-based digestate (c.40% of total N applied) than from livestock slurry (c.30% of total N applied) due to its higher ammonium-N content (mean 5.6 kg/t compared with 1-2 kg/t for slurry) and elevated pH (mean 8.3 compared with 7.7 for slurry). Whilst bandspreading was effective at reducing NH 3 emissions from slurry compared with surface broadcasting it was not found to be an effective mitigation option for food-based digestate in this study. The majority of the NH 3 losses occurred within 6 h of spreading highlighting the importance of rapid soil incorporation as a method for reducing NH 3 emissions. Nitrous oxide losses from food-based digestates were low, with emission factors all less than the IPCC default value of 1% (mean 0.45 ± 0.15%). Overwinter NO 3 - leaching losses from food-based digestate were similar to those from pig slurry, but much greater than from pig farmyard manure or compost. Both gaseous N losses and NO 3 - leaching from green and green/food composts were low, indicating that, in these terms, compost can be considered as an 'environmentally benign' material. These findings have been used in the development of best practice guidelines which provide a framework for the responsible use of digestates and composts in agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. TPK Sarimukti, Cipatat, West Bandung compost toxicity test using Allium test

    NASA Astrophysics Data System (ADS)

    Wardini, Trimurti Hesti; Notodarmojo, Peni Astrini

    2015-09-01

    TPK Sarimukti, Cipatat, West Bandung produced 2 kinds of compost from traditional market waste, liquid and solid compost. The aim of this research is to evaluate toxicity of compost produced in TPK Sarimukti using shallots (Allium cepa). Tests carried out by treated shallots with liquid compost (2,5%, 5%, 10% and 12,5% (w/v)) or solid compost (25%, 50%, 75% and 100% (w/v)) for 48 hours. Results showed reduced root growth rate and mitotic index (MI) in accordance with increased concentrations of compost. Sub lethal concentrations are liquid compost 5% and 10% and solid compost 75%. Lethal concentrations are liquid compost 12,5 % and solid compost 100%. Micronuclei (MN) increased with increase in liquid compost concentration. MN found at very high frequencies in highest solid compost concentration (100%), but very low at lower concentrations. Cells with binuclei and cell necrosis increased with increasing concentrations of given compost. Nuclear anomalies (NA) found in high frequency in 75% and 100% solid compost. Based on research, we can conclude that liquid compost is more toxic because it can reduce MI and root growth rate at lower concentrations than solid compost. Both types of compost have genotoxic properties because it can induce chromosome aberration (CA), MN, binuclei and NA formation.

  19. TPK Sarimukti, Cipatat, West Bandung compost toxicity test using Allium test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardini, Trimurti Hesti; Notodarmojo, Peni Astrini

    TPK Sarimukti, Cipatat, West Bandung produced 2 kinds of compost from traditional market waste, liquid and solid compost. The aim of this research is to evaluate toxicity of compost produced in TPK Sarimukti using shallots (Allium cepa). Tests carried out by treated shallots with liquid compost (2,5%, 5%, 10% and 12,5% (w/v)) or solid compost (25%, 50%, 75% and 100% (w/v)) for 48 hours. Results showed reduced root growth rate and mitotic index (MI) in accordance with increased concentrations of compost. Sub lethal concentrations are liquid compost 5% and 10% and solid compost 75%. Lethal concentrations are liquid compost 12,5more » % and solid compost 100%. Micronuclei (MN) increased with increase in liquid compost concentration. MN found at very high frequencies in highest solid compost concentration (100%), but very low at lower concentrations. Cells with binuclei and cell necrosis increased with increasing concentrations of given compost. Nuclear anomalies (NA) found in high frequency in 75% and 100% solid compost. Based on research, we can conclude that liquid compost is more toxic because it can reduce MI and root growth rate at lower concentrations than solid compost. Both types of compost have genotoxic properties because it can induce chromosome aberration (CA), MN, binuclei and NA formation.« less

  20. Co-composting of physic nut (Jatropha curcas) deoiled cake with rice straw and different animal dung.

    PubMed

    Das, Manab; Uppal, H S; Singh, Reena; Beri, Shanuja; Mohan, K S; Gupta, Vikas C; Adholeya, Alok

    2011-06-01

    To address the dispensing of this growing volume, a study on utilization of jatropha (Jatropha curcas) deoiled cake through compost production was carried out. The deoiled cake was composted with rice straw, four different animal dung (cow dung, buffalo dung, horse dung and goat dung) and hen droppings in different proportions followed by assessment, and comparison of biochemical characteristics among finished composts. Nutrient content in finished compost was within the desired level whereas metals such as copper, lead and nickel were much below the maximum allowable concentrations. Although a few finished material contained phorbol ester (0.12 mg/g), but it was far below the original level found in the deoiled cake. Such a study indicates that a huge volume of jatropha deoiled cake can be eliminated through composting. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Biochar, compost and biochar-compost blend as options to recover nutrients and sequester carbon.

    PubMed

    Oldfield, Thomas L; Sikirica, Nataša; Mondini, Claudio; López, Guadalupe; Kuikman, Peter J; Holden, Nicholas M

    2018-07-15

    This work assessed the potential environmental impact of recycling organic materials in agriculture via pyrolysis (biochar) and composting (compost), as well its combination (biochar-compost blend) versus business-as-usual represented by mineral fertiliser. Life cycle assessment methodology was applied using data sourced from experiments (FP7 project Fertiplus) in three countries (Spain, Italy and Belgium), and considering three environmental impact categories, (i) global warming; (ii) acidification and (iii) eutrophication. The novelty of this analysis is the inclusion of the biochar-compost blend with a focus on multiple European countries, and the inclusion of the acidification and eutrophication impact categories. Biochar, compost and biochar-compost blend all resulted in lower environmental impacts than mineral fertiliser from a systems perspective. Regional differences were found between biochar, compost and biochar-compost blend. The biochar-compost blend offered benefits related to available nutrients and sequestered C. It also produced yields of similar magnitude to mineral fertiliser, which makes its acceptance by farmers more likely whilst reducing environmental impacts. However, careful consideration of feedstock is required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Environmental impact of mushroom compost production.

    PubMed

    Leiva, Francisco; Saenz-Díez, Juan-Carlos; Martínez, Eduardo; Jiménez, Emilio; Blanco, Julio

    2016-09-01

    This research analyses the environmental impact of the creation of Agaricus bisporus compost packages. The composting process is the intermediate stage of the mushroom production process, subsequent to the mycelium cultivation stage and prior to the fruiting bodies cultivation stage. A full life cycle assessment model of the Agaricus bisporus composting process has been developed through the identification and analysis of the inputs-outputs and energy consumption of the activities involved in the production process. The study has been developed based on data collected from a plant during a 1 year campaign, thereby obtaining accurate information used to analyse the environmental impact of the process. A global analysis of the main stages of the process shows that the process that has the greatest impact in most categories is the compost batch preparation process. This is due to an increased consumption of energy resources by the machinery that mixes the raw materials to create the batch. At the composting process inside the tunnel stage, the activity that has the greatest impact in almost all categories studied is the initial stage of composting. This is due to higher energy consumption during the process compared to the other stages. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Isolation of Thermus strains from hot composts (60 to 80 degrees C).

    PubMed Central

    Beffa, T; Blanc, M; Lyon, P F; Vogt, G; Marchiani, M; Fischer, J L; Aragno, M

    1996-01-01

    High numbers (10(7) to 10(10) cells per g [dry weight]) of heterotrophic, gram-negative, rod-shaped, non-sporeforming, aerobic, thermophilic bacteria related to the genus Thermus were isolated from thermogenic composts at temperatures between 65 and 82 degrees C. These bacteria were present in different types of wastes (garden and kitchen wastes and sewage sludge) and in all the industrial composting systems studied (open-air windows, boxes with automated turning and aeration, and closed bioreactors with aeration). Isolates grew fast on a rich complex medium at temperatures between 40 and 80 degrees C, with optimum growth between 65 and 75 degrees C. Nutritional characteristics, total protein profiles, DNA-DNA hybridization (except strain JT4), and restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs (16S rDNAs) showed that Thermus strains isolated from hot composts were closely related to Thermus thermophilus HB8. These newly isolated T. thermophilus strains have probably adapted to the conditions in the hot-compost ecosystem. Heterotrophic, ovalspore-forming, thermophilic bacilli were also isolated from hot composts, but none of the isolates was able to grow at temperatures above 70 degrees C. This is the first report of hot composts as habitats for a high number of thermophilic bacteria related to the genus Thermus. Our study suggests that Thermus strains play an important role in organic-matter degradation during the thermogenic phase (65 to 80 degrees C) of the composting process. PMID:8633870

  4. Population structure and diversity of citrus tristeza virus (CTV) isolates in Hunan province, China.

    PubMed

    Xiao, Cui; Yao, Run-Xian; Li, Fang; Dai, Su-Ming; Licciardello, Grazia; Catara, Antonino; Gentile, Alessandra; Deng, Zi-Niu

    2017-02-01

    Stem-pitting (SP) is the main type of citrus tristeza virus (CTV) that causes severe damage to citrus trees, especially those of sweet orange, in Hunan province, China. Understanding the local CTV population structure should provide clues for effective mild strain cross-protection (MSCP) of the SP strain of CTV. In this study, markers for the p23 gene, multiple molecular markers (MMMs), and sequence analysis of the three silencing suppressor genes (p20, p23 and p25) were employed to analyze the genetic diversity and genotype composition of the CTV population based on 51 CTV-positive samples collected from 14 citrus orchards scattered around six major citrus-growing areas of Hunan. The results indicated that the CTV population structure was extremely complex and that infection was highly mixed. In total, p23 gene markers resulted in six profiles, and MMMs demonstrated 25 profiles. The severe VT and T3 types appeared to be predominantly associated with SP, while the mild T30 and RB types were related to asymptomatic samples. Based on phylogenetic analysis of the amino acid sequences of p20, p23 and p25, 19 representative CTV samples were classified into seven recently established CTV groups and a potentially novel one. A high level of genetic diversity, as well as potential recombination, was revealed among different CTV isolates. Five pure SP severe and two pure mild strains were identified by genotype composition analysis. Taken together, the results update the genetic diversity of CTV in Hunan with the detection of one possible novel strain, and this information might be applicable for the selection of appropriate mild CTV strains for controlling citrus SP disease through cross-protection.

  5. First report of Phyllosticta citricarpa and description of two new species, P. paracapitalensis and P. paracitricarpa, from citrus in Europe.

    PubMed

    Guarnaccia, V; Groenewald, J Z; Li, H; Glienke, C; Carstens, E; Hattingh, V; Fourie, P H; Crous, P W

    2017-06-01

    The genus Phyllosticta occurs worldwide, and contains numerous plant pathogenic, endophytic and saprobic species. Phyllosticta citricarpa is the causal agent of Citrus Black Spot disease (CBS), affecting fruits and leaves of several citrus hosts ( Rutaceae ), and can also be isolated from asymptomatic citrus tissues. Citrus Black Spot occurs in citrus-growing regions with warm summer rainfall climates, but is absent in countries of the European Union (EU). Phyllosticta capitalensis is morphologically similar to P. citricarpa , but is a non-pathogenic endophyte, commonly isolated from citrus leaves and fruits and a wide range of other hosts, and is known to occur in Europe. To determine which Phyllosticta spp. occur within citrus growing regions of EU countries, several surveys were conducted (2015-2017) in the major citrus production areas of Greece, Italy, Malta, Portugal and Spain to collect both living plant material and leaf litter in commercial nurseries, orchards, gardens, backyards and plant collections. A total of 64 Phyllosticta isolates were obtained from citrus in Europe, of which 52 were included in a multi-locus (ITS, actA , tef1 , gapdh , LSU and rpb2 genes) DNA dataset. Two isolates from Florida (USA), three isolates from China, and several reference strains from Australia, South Africa and South America were included in the overall 99 isolate dataset. Based on the data obtained, two known species were identified, namely P. capitalensis (from asymptomatic living leaves of Citrus spp.) in Greece, Italy, Malta, Portugal and Spain, and P. citricarpa (from leaf litter of C . sinensis and C . limon ) in Italy, Malta and Portugal. Moreover, two new species were described, namely P. paracapitalensis (from asymptomatic living leaves of Citrus spp.) in Italy and Spain, and P. paracitricarpa (from leaf litter of C . limon ) in Greece. On a genotypic level, isolates of P . citricarpa populations from Italy and Malta (MAT1-2-1) represented a single clone

  6. Greenhouse gas emission from the total process of swine manure composting and land application of compost

    NASA Astrophysics Data System (ADS)

    Zhong, Jia; Wei, Yuansong; Wan, Hefeng; Wu, Yulong; Zheng, Jiaxi; Han, Shenghui; Zheng, Bofu

    2013-12-01

    Greenhouse gas (GHG) emissions from animal manure management are of great concern in China. However, there are still great uncertainties about China's GHG inventory due to the GHG emission factors partly used default values from the Intergovernmental Panel of Climate Change (IPCC) guidelines. The purpose of this study was to use a case study in Beijing to determine the regional GHG emission factors based on the combination of swine manure composting and land application of the compost with both on-site examination and a life cycle assessment (LCA). The results showed that the total GHG emission factor was 240 kgCO2eq tDS-1 (dry solids), including the direct GHG emission factor of 115 kgCO2eq tDS-1 for swine manure composting and 48 kgCO2eq tDS-1 for land application of the compost. Among the total GHG emissions of 5.06 kgCH4 tDS-1 and 0.13 kgN2O tDS-1, the swine manure composting contributed approximately 89% to CH4 emissions while land application accounted for 92% of N2O emission. Meanwhile, the GHG emission profile from the full process in Beijing in 2015 and 2020 was predicted by the scenario analysis. The composting and land application is a cost-effective way for animal manure management in China considering GHG emissions.

  7. Field ID guide to citrus relative hosts of Asian citrus psyllid & Huanglongbing

    USDA-ARS?s Scientific Manuscript database

    The Rutaceae family of plants includes not only species within the genus Citrus, but also several other genera and species that may not be easily recognized as having any relationship to citrus at all. However, many of these citrus relatives are used for ornamental, culinary, or religious purposes. ...

  8. Heat inactivation of Salmonella spp. in fresh poultry compost by simulating early phase of composting process.

    PubMed

    Singh, R; Kim, J; Jiang, X

    2012-05-01

    The purpose of this study was to determine the effect of moisture on thermal inactivation of Salmonella spp. in poultry litter under optimal composting conditions. Thermal inactivation of Salmonella was studied in fresh poultry compost by simulating early phase of composting process. A mixture of three Salmonella serotypes grown in Tryptic soy broth with rifampin (TSB-R) was inoculated in fresh compost with 40 or 50% moisture at a final concentration of c. 7 log CFU g(-1). The inoculated compost was kept in an environmental chamber which was programmed to rise from room temperature to target composting temperatures in 2 days. In poultry compost with optimal moisture content (50%), Salmonella spp. survived for 96, 72 and 24 h at 50, 55 and 60°C, respectively, as compared with 264, 144 and 72 h at 50, 55 and 60°C, respectively, in compost with suboptimal moisture (40%). Pathogen decline was faster during the come-up time owing to higher ammonia volatilization. Our results demonstrated that Salmonella spp. survived longer in fresh poultry compost with suboptimal moisture of 40% than in compost with optimal moisture of 50% during thermophilic composting. High nitrogen content of the poultry compost is an additional factor contributing to Salmonella inactivation through ammonia volatilization during thermal exposure. This research validated the effectiveness of the current composting guidelines on Salmonella inactivation in fresh poultry compost. Both initial moisture level and ammonia volatilization are important factors affecting microbiological safety and quality of compost product. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  9. Genome wide selection in Citrus breeding.

    PubMed

    Gois, I B; Borém, A; Cristofani-Yaly, M; de Resende, M D V; Azevedo, C F; Bastianel, M; Novelli, V M; Machado, M A

    2016-10-17

    Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seq TM (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.

  10. Identification and characterization of Citrus yellow vein clearing virus, a putative new member of the genus Mandarivirus infecting Citrus spp.

    USDA-ARS?s Scientific Manuscript database

    Yellow vein clearing virus, an uncharacterized filamentous virus, was first observed in Pakistan in 1988 and later in India in 1997 in Etrog citron (Citrus medica). Based on electron microscopic evidence of filamentous particles, the virus, provisionally named Citrus yellow vein clearing virus (CYVC...

  11. Molecular characterization of Peruvian Citrus tristeza virus isolates based on 3’UTR sequences

    USDA-ARS?s Scientific Manuscript database

    Citrus in Peru was decimated by quick decline and stem pitting strains of Citrus tristeza virus (CTV). Commercial citrus production in Peru is being restored by use of CTV cross-protection. To characterize the predominant CTV strains involved, Peruvian CTV isolates from “protected” and “non-protecti...

  12. The WRKY Transcription Factor Family in Citrus: Valuable and Useful Candidate Genes for Citrus Breeding.

    PubMed

    Ayadi, M; Hanana, M; Kharrat, N; Merchaoui, H; Marzoug, R Ben; Lauvergeat, V; Rebaï, A; Mzid, R

    2016-10-01

    WRKY transcription factors belong to a large family of plant transcriptional regulators whose members have been reported to be involved in a wide range of biological roles including plant development, adaptation to environmental constraints and response to several diseases. However, little or poor information is available about WRKY's in Citrus. The recent release of completely assembled genomes sequences of Citrus sinensis and Citrus clementina and the availability of ESTs sequences from other citrus species allowed us to perform a genome survey for Citrus WRKY proteins. In the present study, we identified 100 WRKY members from C. sinensis (51), C. clementina (48) and Citrus unshiu (1), and analyzed their chromosomal distribution, gene structure, gene duplication, syntenic relation and phylogenetic analysis. A phylogenetic tree of 100 Citrus WRKY sequences with their orthologs from Arabidopsis has distinguished seven groups. The CsWRKY genes were distributed across all ten sweet orange chromosomes. A comprehensive approach and an integrative analysis of Citrus WRKY gene expression revealed variable profiles of expression within tissues and stress conditions indicating functional diversification. Thus, candidate Citrus WRKY genes have been proposed as potentially involved in fruit acidification, essential oil biosynthesis and abiotic/biotic stress tolerance. Our results provided essential prerequisites for further WRKY genes cloning and functional analysis with an aim of citrus crop improvement.

  13. Does citrus leaf miner impair hydraulics and fitness of citrus host plants?

    PubMed

    Raimondo, Fabio; Trifilò, Patrizia; Gullo, Maria A Lo

    2013-12-01

    Gas exchange and hydraulic features were measured in leaves of three different Citrus species (Citrus aurantium L., Citrus limon L., Citrus  ×  paradisii Macfad) infested by Phyllocnistis citrella Staiton, with the aim to quantify the impact of this pest on leaf hydraulics and, ultimately, on plant fitness. Infested leaves were characterized by the presence on the leaf blade of typical snake-shaped mines and, in some cases, of a crumpled leaf blade. Light microscopy showed that leaf crumpling was induced by damage to the cuticular layer. In all three Citrus species examined: (a) the degree of infestation did not exceed 10% of the total surface area of infested plants; (b) control and infested leaves showed similar values of minimum diurnal leaf water potential, leaf hydraulic conductance and functional vein density; and (c) maximum diurnal values of stomatal conductance to water vapour, transpiration rate and photosynthetic rate (An) were similar in both control leaves and the green areas of infested leaves. A strong reduction of An was recorded only in mined leaf areas. Our data suggest that infestation with P. citrella does not cause conspicuous plant productivity reductions in young Citrus plants, at least not in the three Citrus species studied here.

  14. Analysis of volatile organic compounds in compost samples: A potential tool to determine appropriate composting time.

    PubMed

    Zhu, Fengxiang; Pan, Zaifa; Hong, Chunlai; Wang, Weiping; Chen, Xiaoyang; Xue, Zhiyong; Yao, Yanlai

    2016-12-01

    Changes in volatile organic compound contents in compost samples during pig manure composting were studied using a headspace, solid-phase micro-extraction method (HS-SPME) followed by gas chromatography with mass spectrometric detection (GC/MS). Parameters affecting the SPME procedure were optimized as follows: the coating was carbon molecular sieve/polydimethylsiloxane (CAR/PDMS) fiber, the temperature was 60°C and the time was 30min. Under these conditions, 87 compounds were identified from 17 composting samples. Most of the volatile components could only be detected before day 22. However, benzenes, alkanes and alkenes increased and eventually stabilized after day 22. Phenol and acid substances, which are important factors for compost quality, were almost undetectable on day 39 in natural compost (NC) samples and on day 13 in maggot-treated compost (MC) samples. Our results indicate that the approach can be effectively used to determine the composting times by analysis of volatile substances in compost samples. An appropriate composting time not only ensures the quality of compost and reduces the loss of composting material but also reduces the generation of hazardous substances. The appropriate composting times for MC and NC were approximately 22days and 40days, respectively, during the summer in Zhejiang. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Assessment of bacterial diversity during composting of agricultural byproducts

    PubMed Central

    2013-01-01

    Background Composting is microbial decomposition of biodegradable materials and it is governed by physicochemical, physiological and microbiological factors. The importance of microbial communities (bacteria, actinomycetes and fungi) during composting is well established. However, the microbial diversity during composting may vary with the variety of composting materials and nutrient supplements. Therefore, it is necessary to study the diversity of microorganisms during composting of different agricultural byproducts like wheat bran, rice bran, rice husk, along with grass clippings and bulking agents. Here it has been attempted to assess the diversity of culturable bacteria during composting of agricultural byproducts. Results The culturable bacterial diversity was assessed during the process by isolating the most prominent bacteria. Bacterial population was found to be maximum during the mesophilic phase, but decreased during the thermophilic phase and declined further in the cooling and maturation phase of composting. The bacterial population ranged from 105 to 109 cfu g-1 compost. The predominant bacteria were characterized biochemically, followed by 16S rRNA gene sequencing. The isolated strains, both Gram-positive and Gram-negative groups belonged to the order Burkholderiales, Enterobacteriales, Actinobacteriales and Bacillales, which includes genera e.g. Staphylococcus, Serratia, Klebsiella, Enterobacter, Terribacillus, Lysinibacillus Kocuria, Microbacterium, Acidovorax and Comamonas. Genera like Kocuria, Microbacterium, Acidovorax, Comamonas and some new species of Bacillus were also identified for the first time from the compost made from agricultural byproducts. Conclusion The use of appropriate nitrogen amendments and bulking agents in composting resulted in good quality compost. The culture based strategy enabled us to isolate some novel bacterial isolates like Kocuria, Microbacterium, Acidovorax and Comamonas first time from agro-byproducts compost

  16. Comparison of different detection methods for citrus greening disease based on airborne multispectral and hyperspectral imagery

    USDA-ARS?s Scientific Manuscript database

    Citrus greening or Huanglongbing (HLB) is a devastating disease spread in many citrus groves since first found in 2005 in Florida. Multispectral (MS) and hyperspectral (HS) airborne images of citrus groves in Florida were taken to detect citrus greening infected trees in 2007 and 2010. Ground truthi...

  17. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation.

    PubMed

    Yu, Hang; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Yunshu; Zheng, Zhen; Hao, Xiaodi

    2015-10-01

    Bioelectrochemically-assisted anaerobic composting process (AnCBE) with dewatered sludge as the anode fuel was constructed to accelerate composting of dewatered sludge, which could increase the quality of the compost and harvest electric energy in comparison with the traditional anaerobic composting (AnC). Results revealed that the AnCBE yielded a voltage of 0.60 ± 0.02 V, and total COD (TCOD) removal reached 19.8 ± 0.2% at the end of 35 d. The maximum power density was 5.6 W/m(3). At the end of composting, organic matter content (OM) reduction rate increased to 19.5 ± 0.2% in AnCBE and to 12.9 ± 0.1% in AnC. The fuzzy comprehensive assessment (FCA) result indicated that the membership degree of class I of AnCBE compost (0.64) was higher than that of AnC compost (0.44). It was demonstrated that electrogenesis in the AnCBE could improve the sludge stabilization degree, accelerate anaerobic composting process and enhance composting maturity with bioelectricity generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of two different composts on soil quality and on the growth of various plant species in a polymetallic acidic mine soil.

    PubMed

    Rossini-Oliva, S; Mingorance, M D; Peña, A

    2017-02-01

    The effect of the addition (0-10%) of two types of sewage sludge composts (composted sewage sludge [CS] and sewage sludge co-composted with olive prune wastes [CSO]) on a polymetallic acidic soil from the Riotinto mining area was evaluated by i) a soil incubation experiment and ii) a greenhouse pot experiment using tomato (Solanum lycopersicum Mill.), ryegrass (Lolium perenne L.) and ahipa (Pachyrhizus ahipa (Wedd.) Parodi). Compost addition improved the soil organic carbon content, increased the pH and the electrical conductivity and enhanced enzyme activities and soil respiration, more for CSO than for CS. Plant growth was generally enhanced after compost addition, but not proportionally to the dose. Foliar concentrations of some hazardous elements (As, Cr, Fe) in tomato growing in non-amended soil were above the thresholds, questioning the adequacy of using this plant species. However, leaf concentrations of essential and potentially toxic elements (Fe, As, Cr and Pb) in tomato and/or ryegrass were reduced after the amendment with both composts, generally more for CSO than for CS. Conversely, foliar concentrations in ahipa, a plant species which is able to grow without the need of compost addition, were safe except for As and were only slightly affected by compost addition. This plant species would be a suitable candidate due to its low requirements and due to the limited element translocation to the leaves. Concerning the composts, amelioration of plant and soil properties was better accomplished when using CSO, a compost of sewage sludge and plant remains, than when using CS, which only contained the sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Influence of compost covers on the efficiency of biowaste composting process.

    PubMed

    Marešová, Karolina; Kollárová, Mária

    2010-12-01

    The temperature of matured compost is an indicator of feedstock quality and also a good feedback informing about the suitability of an applied technological procedure. Two independent experiments using the technology of windrow composting at open area were conducted with the final goal to evaluate the effect of compost pile covering (in comparison with uncovered piles) on the course of composting process - behaviour of temperature over time and oxygen content. Two types of sheets were used - Top Tex permeable sheet and impermeable polyethylene sheet. The experiment I (summer months) aimed at comparison of efficiency between the Top Tex sheet cover and the uncovered compost piles, while experiment II (autumn months) compared treatments using the Top Tex sheet and polyethylene sheet by contrast. Within the experiment I the composts consisted of cattle slurry and fresh grass matter at a ratio of 1:1, in case of experiment II consisted of pig/cattle manure, fresh grass matter and chipped material at a ratio of about 1:2:1. The obtained data showed no significant differences among the cover treatments according to ANOVA. The only exception was oxygen content in pile 4 (experiment II) under Top Tex sheet, where a markedly higher oxygen content than under polyethylene sheet was measured during the whole composting period. It was the only case where statistical analysis proved a significant difference; the p-value was 0.0002. Copyright © 2010. Published by Elsevier Ltd.

  20. Progress of organic matter degradation and maturity of compost produced in a large-scale composting facility.

    PubMed

    Nakasaki, Kiyohiko; Marui, Taketoshi

    2011-06-01

    To monitor the progress of organic matter degradation in a large-scale composting facility, the percentage of organic matter degradation was determined by measuring CO(2) evolution during recomposting of compost samples withdrawn from the facility. The percentage of organic matter degradation was calculated as the ratio of the amount of CO(2) evolved from compost raw material to that evolved from each sample during recomposting in the laboratory composting apparatus. It was assumed that the difference in the cumulative emission of CO(2) between the compost raw material and a sample corresponds to the amount of CO( 2) evolved from the sample in the composting facility. Using this method, the changes in organic matter degradation during composting in practical large-scale composting facilities were estimated and it was found that the percentage of organic matter degradation increased more vigorously in the earlier stages than in the later stages of composting. The percentage of organic matter degradation finally reached 78 and 55% for the compost produced from garbage-animal manure mixture and distillery waste (shochu residue), respectively. It was thus ascertained that organic matter degradation progressed well in both composting facilities. Furthermore, by performing a plant growth assay, it was observed that the compost products of both the facilities did not inhibit seed germination and thus were useful in promoting plant growth.

  1. Development of algorithms for detecting citrus canker based on hyperspectral reflectance imaging.

    PubMed

    Li, Jiangbo; Rao, Xiuqin; Ying, Yibin

    2012-01-15

    Automated discrimination of fruits with canker from other fruit with normal surface and different type of peel defects has become a helpful task to enhance the competitiveness and profitability of the citrus industry. Over the last several years, hyperspectral imaging technology has received increasing attention in the agricultural products inspection field. This paper studied the feasibility of classification of citrus canker from other peel conditions including normal surface and nine peel defects by hyperspectal imaging. A combination algorithm based on principal component analysis and the two-band ratio (Q(687/630)) method was proposed. Since fewer wavelengths were desired in order to develop a rapid multispectral imaging system, the canker classification performance of the two-band ratio (Q(687/630)) method alone was also evaluated. The proposed combination approach and two-band ratio method alone resulted in overall classification accuracy for training set samples and test set samples of 99.5%, 84.5% and 98.2%, 82.9%, respectively. The proposed combination approach was more efficient for classifying canker against various conditions under reflectance hyperspectral imagery. However, the two-band ratio (Q(687/630)) method alone also demonstrated effectiveness in discriminating citrus canker from normal fruit and other peel diseases except for copper burn and anthracnose. Copyright © 2011 Society of Chemical Industry.

  2. Comparative analysis of juice volatiles in selected mandarins, mandarin relatives and other citrus genotypes.

    PubMed

    Yu, Yuan; Bai, Jinhe; Chen, Chunxian; Plotto, Anne; Baldwin, Elizabeth A; Gmitter, Frederick G

    2018-02-01

    Citrus fruit flavor is an important attribute prioritized in variety improvement. The present study compared juice volatiles compositions from 13 selected citrus genotypes, including six mandarins (Citrus reticulata), three sour oranges (Citrus aurantium), one blood orange (Citrus sinensis), one lime (Citrus limonia), one Clementine (Citrus clementina) and one satsuma (Citrus unshiu). Large differences were observed with respect to volatile compositions among the citrus genotypes. 'Goutou' sour orange contained the greatest number of volatile compounds and the largest volatile production level. 'Ponkan' mandarin had the smallest number of volatiles and 'Owari' satsuma yielded the lowest volatile production level. 'Goutou' sour orange and 'Moro' blood orange were clearly distinguished from other citrus genotypes based on the analysis of volatile compositions, even though they were assigned into one single group with two other sour oranges by the molecular marker profiles. The clustering analysis based on the aroma volatile compositions was able to differentiate mandarin varieties and natural sub-groups, and was also supported by the molecular marker study. The gas chromatography-mass spectrometry analysis of citrus juice aroma volatiles can be used as a tool to distinguish citrus genotypes and assist in the assessment of future citrus breeding programs. The aroma volatile profiles of the different citrus genotypes and inter-relationships detected among volatile compounds and among citrus genotypes will provide fundamental information on the development of marker-assisted selection in citrus breeding. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Evaluation of microbially enhanced composting of sophora flavescens residues.

    PubMed

    Wang, Hai B; Han, Li R; Feng, Jun T; Zhang, Xing

    2016-02-01

    The effects of inoculants on the composting of Sophora flavescens residues were evaluated based on several physical, chemical and biological parameters, as well as the infrared spectra. Compared to the control compost without inoculants, the treatment compost with inoculants (Bacillus subtilis strain G-13 and Chaetomium thermophilum strain GF-1) had a significantly longer thermophilic duration, higher cellulase activity and a higher degradation rate of cellulose, hemicellulose and lignin (P < 0.05). Thus, a higher maturity degree of compost with apparently lower C:N ratio (15.88 vs. 17.77) and NH 4 -N:NO 3 -N ratio (0.16 vs. 0.20) was obtained with the inoculation comparing with the control (P < 0.05). Besides, the inoculants could markedly accelerate the composting process and increase the maturity degree of compost as indicated by the germination index (GI) in which the treatment reached the highest GI of 133.2% at day 15 while the control achieved the highest GI of 125.7% at day 30 of the composting. Inoculation with B. subtilis and C. thermophilum is a useful method to enhance the S. flavescens residues composting according to this study.

  4. Citrus Research Board-sponsored review of the University of California Riverside citrus breeding

    USDA-ARS?s Scientific Manuscript database

    In October 2015 the Citrus Research Board (CRB) assembled a panel of experts to review the Citrus Research Board-sponsored Citrus Research and Genetics Programs at University of California Riverside (UCR). The panel consisted of: Gennaro Fazio, USDA/ARS, Geneva, NY; Maria Angeles Forner-Giner, Insti...

  5. Compost feedstock characteristics and ratio modelling for organic waste materials co-composting in Malaysia.

    PubMed

    Chai, E W; H'ng, P S; Peng, S H; Wan-Azha, W M; Chin, K L; Chow, M J; Wong, W Z

    2013-01-01

    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of < 30 can be applied as a nitrogen source in EFB co-composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.

  6. Microbial diversity in a bagasse-based compost prepared for the production of Agaricus brasiliensis

    PubMed Central

    Silva, Cristina Ferreira; Azevedo, Raquel Santos; Braga, Claudia; da Silva, Romildo; Dias, Eustáquio Souza; Schwan, Rosane Freitas

    2009-01-01

    Edible mushrooms are renowned for their nutritional and medicinal properties and are thus of considerable commercial importance. Mushroom production depends on the chemical composition of the basic substrates and additional supplements employed in the compost as well as on the method of composting. In order to minimise the cost of mushroom production, considerable interest has been shown in the use of agro-industrial residues in the preparation of alternative compost mixtures. However, the interaction of the natural microbiota present in agricultural residues during the composting process greatly influences the subsequent colonisation by the mushroom. The aim of the present study was to isolate and identify the microbiota present in a sugar cane bagasse and coast-cross straw compost prepared for the production of Agaricus brasilienses. Composting lasted for 14 days, during which time the substrates and additives were mixed every 2 days, and this was followed by a two-step steam pasteurisation (55 - 65°C; 15 h each step). Bacteria, (mainly Bacillus and Paenibacillus spp. and members of the Enterobacteriaceae) were the predominant micro-organisms present throughout the composting process with an average population density of 3 x 108 CFU/g. Actinomycetes, and especially members of the genus Streptomyces, were well represented with a population density of 2 - 3 x 108 CFU/g. The filamentous fungi, however, exhibited much lower population densities and were less diverse than the other micro-organisms, although Aspergillus fumigatus was present during the whole composting process and after pasteurisation. PMID:24031404

  7. Recovery and characterization of a Citrus clementina Hort. ex Tan. 'Clemenules' haploid plant selected to establish the reference whole Citrus genome sequence.

    PubMed

    Aleza, Pablo; Juárez, José; Hernández, María; Pina, José A; Ollitrault, Patrick; Navarro, Luis

    2009-08-22

    In recent years, the development of structural genomics has generated a growing interest in obtaining haploid plants. The use of homozygous lines presents a significant advantage for the accomplishment of sequencing projects. Commercial citrus species are characterized by high heterozygosity, making it difficult to assemble large genome sequences. Thus, the International Citrus Genomic Consortium (ICGC) decided to establish a reference whole citrus genome sequence from a homozygous plant. Due to the existence of important molecular resources and previous success in obtaining haploid clementine plants, haploid clementine was selected as the target for the implementation of the reference whole genome citrus sequence. To obtain haploid clementine lines we used the technique of in situ gynogenesis induced by irradiated pollen. Flow cytometry, chromosome counts and SSR marker (Simple Sequence Repeats) analysis facilitated the identification of six different haploid lines (2n = x = 9), one aneuploid line (2n = 2x+4 = 22) and one doubled haploid plant (2n = 2x = 18) of 'Clemenules' clementine. One of the haploids, obtained directly from an original haploid embryo, grew vigorously and produced flowers after four years. This is the first haploid plant of clementine that has bloomed and we have, for the first time, characterized the histology of haploid and diploid flowers of clementine. Additionally a double haploid plant was obtained spontaneously from this haploid line. The first haploid plant of 'Clemenules' clementine produced directly by germination of a haploid embryo, which grew vigorously and produced flowers, has been obtained in this work. This haploid line has been selected and it is being used by the ICGC to establish the reference sequence of the nuclear genome of citrus.

  8. Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation.

    PubMed

    Quecholac-Piña, Xochitl; García-Rivera, Mariel Anel; Espinosa-Valdemar, Rosa María; Vázquez-Morillas, Alethia; Beltrán-Villavicencio, Margarita; Cisneros-Ramos, Adriana de la Luz

    2017-11-01

    Plastics are widely used in the production of short-life products, which are discarded producing an accumulation of these materials and problems due to their persistence in the environment and waste management systems. Degradable plastics (compostable, oxodegradable) have been presented as an alternative to decrease the negative effect of plastic waste. In this research, the feasibility of degrading a commercially available compostable film and oxodegradable polyethylene, with and without previous abiotic oxidation, is assessed in a home composting system. Reactors (200 L) were used to degrade the plastic films along with a mixture of organic food waste (50 %), mulch (25 %), and dry leaves (25 %), amended with yeast and a solution of brown sugar to increase the speed of the process. The presence of the plastic film did not affect the composting process, which showed an initial increase in temperature and typical profiles for moisture content, pH, with a final C/N of 17.4. After 57 days, the compostable plastic has decreased its mechanical properties in more than 90 %, while the oxodegradable film did not show significant degradation if it was not previously degraded by UV radiation. The use of these plastics should be assessed against the prevailing waste management system in each city or country. In the case of Mexico, which lacks the infrastructure for industrial composting, home composting could be an option to degrade compostable plastics along organic waste. However, more testing is needed in order to set the optimal parameters of the process.

  9. Assessing the effect of biodegradable and degradable plastics on the composting of green wastes and compost quality.

    PubMed

    Unmar, G; Mohee, R

    2008-10-01

    An assessment of the effect of the composting potential of Mater-Bi biodegradable plastic with green wastes, noted by GBIO, and degradable plastic (PDQ-H additive) with green wastes, noted by GDEG, was carried out in a lagged two-compartment compost reactor. The composting time was determined until constant mass of the composting substrates was reached. The green wastes composting process was used as control (G). After one week of composting, the biodegradable plastics disappeared completely, while 2% of the original degradable plastic still remained after about 8 weeks of composting. A net reduction in volatile solids contents of 61.8%, 56.5% and 53.2% were obtained for G, GBIO and GDEG, respectively. Compost quality was assessed in terms of nitrogen, potassium and phosphorus contents, which were found to be highest for GBIO compost. From the phytotoxicity test, it has been observed that a diluted extract of GBIO compost has produced the longest length of radicle. From the respiration test, no significant difference in the amount of carbon dioxide released by the composting of GDEG and G was observed. This study showed that the quality of the compost is not affected by the presence of the biodegradable and degradable plastics in the raw materials.

  10. Growing media alternatives for forest and native plant nurseries

    Treesearch

    Thomas D. Landis; Nancy Morgan

    2009-01-01

    The choice of growing medium, along with container type, is one of the critical decisions that must be made when starting a nursery. The first growing medium was called "compost" and was developed in the 1930s at the John Innes Horticultural Institute in Great Britain. It consisted of a loam soil that was amended with peat moss, sand, and fertilizers (Bunt...

  11. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    PubMed

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Heterogeneity of the electron exchange capacity of kitchen waste compost-derived humic acids based on fluorescence components.

    PubMed

    Yuan, Ying; Tan, Wen-Bing; He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Zhang, Hui; Dang, Qiu-Ling; Li, Dan

    2016-11-01

    Composting is widely used for recycling of kitchen waste to improve soil properties, which is mainly attributed to the nutrient and structural functions of compost-derived humic acids (HAs). However, the redox properties of compost-derived HAs are not fully explored. Here, a unique framework is employed to investigate the electron exchange capacity (EEC) of HAs during kitchen waste composting. Most components of compost-derived HAs hold EEC, but nearly two-thirds of them are found to be easily destroyed by Shewanella oneidensis MR-1 and thus result in an EEC lower than the electron - donating capacity in compost-derived HAs. Fortunately, a refractory component also existed within compost-derived HAs and could serve as a stable and effective electron shuttle to promote the MR-1 involved in Fe(III) reduction, and its EEC was significantly correlated with the aromaticity and the amount of quinones. Nevertheless, with the increase of composting time, the EEC of the refractory component did not show an increasing trend. These results implied that there was an optimal composting time to maximize the production of HAs with more refractory and redox molecules. Recognition of the heterogeneity of EEC of the compost-derived HAs enables an efficient utilization of the composts for a variety of environmental applications. Graphical abstract Microbial reduction of compost-derived HAs.

  13. Deep Sequencing Analysis of RNAs from Citrus Plants Grown in a Citrus Sudden Death-Affected Area Reveals Diverse Known and Putative Novel Viruses.

    PubMed

    Matsumura, Emilyn E; Coletta-Filho, Helvecio D; Nouri, Shahideh; Falk, Bryce W; Nerva, Luca; Oliveira, Tiago S; Dorta, Silvia O; Machado, Marcos A

    2017-04-24

    Citrus sudden death (CSD) has caused the death of approximately four million orange trees in a very important citrus region in Brazil. Although its etiology is still not completely clear, symptoms and distribution of affected plants indicate a viral disease. In a search for viruses associated with CSD, we have performed a comparative high-throughput sequencing analysis of the transcriptome and small RNAs from CSD-symptomatic and -asymptomatic plants using the Illumina platform. The data revealed mixed infections that included Citrus tristeza virus (CTV) as the most predominant virus, followed by the Citrus sudden death-associated virus (CSDaV), Citrus endogenous pararetrovirus (CitPRV) and two putative novel viruses tentatively named Citrus jingmen-like virus (CJLV), and Citrus virga-like virus (CVLV). The deep sequencing analyses were sensitive enough to differentiate two genotypes of both viruses previously associated with CSD-affected plants: CTV and CSDaV. Our data also showed a putative association of the CSD-symptomatic plants with a specific CSDaV genotype and a likely association with CitPRV as well, whereas the two putative novel viruses showed to be more associated with CSD-asymptomatic plants. This is the first high-throughput sequencing-based study of the viral sequences present in CSD-affected citrus plants, and generated valuable information for further CSD studies.

  14. Differential expression of genes of Xylella fastidiosa in xylem fluid of citrus and grapevine.

    PubMed

    Shi, Xiangyang; Bi, Jianlong; Morse, Joseph G; Toscano, Nick C; Cooksey, Donald A

    2010-03-01

    Xylella fastidiosa causes a serious Pierce's disease (PD) in grapevine. Xylella fastidiosa cells from a PD strain were grown in a pure xylem fluid of a susceptible grapevine cultivar vs. xylem fluid from citrus, which is not a host for this strain of X. fastidiosa. When grown in grapevine xylem fluid, cells of the PD strain formed clumps and biofilm formed to a greater extent than in citrus xylem fluid, although the PD strain did grow in xylem fluid of three citrus varieties. The differential expression of selected genes of a PD X. fastidiosa strain cultured in the two xylem fluids was analyzed using a DNA macroarray. Compared with citrus xylem fluid, grapevine xylem fluid stimulated the expression of X. fastidiosa genes involved in virulence regulation, such as gacA, algU, xrvA, and hsq, and also genes involved in the biogenesis of pili and twitching motility, such as fimT, pilI, pilU, and pilY1. Increased gene expression likely contributes to PD expression in grapevine, whereas citrus xylem fluid did not support or possibly suppressed the expression of these virulence genes.

  15. Composting toilets as a sustainable alternative to urban sanitation – A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, Chirjiv K., E-mail: chirjiv@gmail.com; Apul, Defne S., E-mail: defne.apul@utoledo.edu

    2014-02-15

    Highlights: • Composting toilets can be an alternative to flush based sanitation. • Many different composting toilet designs are available. • Composting is affected by moisture content, temperature, carbon to nitrogen ratio. • There are many barriers to composting toilets. • Research is needed in science based design of composting toilets. - Abstract: In today’s flush based urban sanitation systems, toilets are connected to both the centralized water and wastewater infrastructures. This approach is not a sustainable use of our water and energy resources. In addition, in the U.S., there is a shortfall in funding for maintenance and upgrade ofmore » the water and wastewater infrastructures. The goal of this paper was to review the current knowledge on composting toilets since this technology is decentralized, requires no water, creates a value product (fertilizer) and can possibly reduce the burden on the current infrastructure as a sustainable sanitation approach. We found a large variety of composting toilet designs and categorized the different types of toilets as being self contained or central; single or multi chamber; waterless or with water/foam flush, electric or non-electric, and no-mix or combined collection. Factors reported as affecting the composting process and their optimum values were identified as; aeration, moisture content (50–60%), temperature (40–65 °C), carbon to nitrogen ratio (25–35), pH (5.5–8.0), and porosity (35–50%). Mass and energy balance models have been created for the composting process. However there is a literature gap in the use of this knowledge in design and operation of composting toilets. To evaluate the stability and safety of compost for use as fertilizer, various methods are available and the temperature–time criterion approach is the most common one used. There are many barriers to the use of composting toilets in urban settings including public acceptance, regulations, and lack of knowledge and

  16. Citrus and Prunuscopia-like retrotransposons.

    PubMed

    Asíns, M J; Monforte, A J; Mestre, P F; Carbonell, E A

    1999-08-01

    Many of the world's most important citrus cultivars ("Washington Navel", satsumas, clementines) have arisen through somatic mutation. This phenomenon occurs fairly often in the various species and varieties of the genus.The presence of copia-like retrotransposons has been investigated in fruit trees, especially citrus, by using a PCR assay designed to detect copia-like reverse transcriptase (RT) sequences. Amplification products from a genotype of each the following species Citrus sinensis, Citrus grandis, Citrus clementina, Prunus armeniaca and Prunus amygdalus, were cloned and some of them sequenced. Southern-blot hybridization using RT clones as probes showed that multiple copies are integrated throughout the citrus genome, while only 1-3 copies are detected in the P. armeniaca genome, which is in accordance with the Citrus and Prunus genome sizes. Sequence analysis of RT clones allowed a search for homologous sequences within three gene banks. The most similar ones correspond to RT domains of copia-like retrotransposons from unrelated plant species. Cluster analysis of these sequences has shown a great heterogeneity among RT domains cloned from the same genotype. This finding supports the hypothesis that horizontal transmission of retrotransposons has occurred in the past. The species presenting a RT sequence most similar to citrus RT clones is Gnetum montanum, a gymnosperm whose distribution area coincides with two of the main centers of origin of Citrus spp. A new C-methylated restriction DNA fragment containing a RT sequence is present in navel sweet oranges, but not in Valencia oranges from which the former originated suggesting, that retrotransposon activity might be, at least in part, involved in the genetic variability among sweet orange cultivars. Given that retrotransposons are quite abundant throughout the citrus genome, their activity should be investigated thoroughly before commercializing any transgenic citrus plant where the transgene(s) is part

  17. Comparing composts formed by different technological processing

    NASA Astrophysics Data System (ADS)

    Lyckova, B.; Mudrunka, J.; Kucerova, R.; Glogarova, V.

    2017-10-01

    The presented article compares quality of composts which were formed by different technological processes. The subject to comparison was a compost which was created in a closed fermenter where ideal conditions for decomposition and organic substances conversion were ensured, with compost which was produced in an open box of community composting. The created composts were analysed to determine whether it is more important for the final compost to comply with the composting conditions or better sorting of raw materials needed for compost production. The results of the carried out experiments showed that quality of the resulting compost cannot be determined unequivocally.

  18. Effect of genotype and environment on citrus juice carotenoid content.

    PubMed

    Dhuique-Mayer, Claudie; Fanciullino, Anne-Laure; Dubois, Cecile; Ollitrault, Patrick

    2009-10-14

    A selection of orange and mandarin varieties belonging to the same Citrus accession and cultivated in Mediterranean (Corsica), subtropical (New Caledonia), and tropical areas (principally Tahiti) were studied to assess the effect of genotype and environmental conditions on citrus juice carotenoid content. Juices from three sweet orange cultivars, that is, Pera, Sanguinelli, and Valencia ( Citrus sinensis (L.) Osbeck), and two mandarin species ( Citrus deliciosa Ten and Citrus clementina Hort. ex Tan), were analyzed by HPLC using a C(30) column. Annual carotenoid content variations in Corsican fruits were evaluated. They were found to be very limited compared to variations due to varietal influences. The statistical analysis (PCA, dissimilarity tree) results based on the different carotenoid compounds showed that citrus juice from Corsica had a higher carotenoid content than citrus juices from tropical origins. The tropical citrus juices were clearly differentiated from citrus juices from Corsica, and close correlations were obtained between beta-cryptoxanthin and phytoene (r = 0.931) and beta-carotene and phytoene (r = 0.918). More broadly, Mediterranean conditions amplified interspecific differentiation, especially by increasing the beta-cryptoxanthin and cis-violaxanthin content in oranges and beta-carotene and phytoene-phytofluene content in mandarins. Thus, at a quantitative level, environmental conditions also had a major role in determining the levels of carotenoids of nutritional interest, such as the main provitamin A carotenoids in citrus juice (beta-cryptoxanthin and beta-carotene).

  19. Presence of Legionella and Free-Living Amoebae in Composts and Bioaerosols from Composting Facilities

    PubMed Central

    Conza, Lisa; Pagani, Simona Casati; Gaia, Valeria

    2013-01-01

    Several species of Legionella cause Legionnaires’ disease (LD). Infection may occur through inhalation of Legionella or amoebal vesicles. The reservoirs of Legionella are water, soil, potting soil and compost. Some species of free-living amoebae (FLA) that are naturally present in water and soil were described as hosts for Legionella. This study aimed to understand whether or not the composting facilities could be sources of community-acquired Legionella infections after development of bioaerosols containing Legionella or FLA. We looked for the presence of Legionella (by co-culture) and FLA (by culture) in composts and bioaerosols collected at four composting facilities located in southern Switzerland. We investigated the association between the presence of Legionella and compost and air parameters and presence of FLA. Legionella spp. (including L. pneumophila) were detected in 69.3% (61/88) of the composts and FLA (mainly Acanthamoeba, Vermamoeba, Naegleria and Stenamoeba) in 92.0% (81/88). L. pneumophila and L. bozemanii were most frequently isolated. FLA as potential host for Legionella spp. were isolated from 40.9% (36/88) of the composts in all facilities. In Legionella-positive samples the temperature of compost was significantly lower (P = 0.012) than in Legionella-negative samples. Of 47 bioaerosol samples, 19.1% (9/47) were positive for FLA and 10.6% (5/47) for L. pneumophila. Composts (62.8%) were positive for Legionella and FLA contemporaneously, but both microorganisms were never detected simultaneously in bioaerosols. Compost can release bioaerosol containing FLA or Legionella and could represent a source of infection of community-acquired Legionella infections for workers and nearby residents. PMID:23844174

  20. Assessment of the Fluorescence Spectra Characteristics of Dissolved Organic Matter Derived from Organic Waste Composting Based on Projection Pursuit Classification (PPC).

    PubMed

    Wei, Zi-min; Wang, Xing-lei; Pan, Hong-wei; Zhao, Yue; Xie, Xin-yu; Zhao, Yi; Zhang, Lin-xue; Zhao, Tao-zhi

    2015-10-01

    The characteristics of fluorescence spectra of dissolved organic matter (DOM) derived from composting is one of the key ways to assess the compost maturity. However, the existing methods mainly focus on the qualitative description for the humification degree of compost. In this paper, projection pursuit classification (PPC) was conducted to quantitative assess the grades of compost maturity, based on the characteristics of fluorescence spectra of DOM. Eight organic wastes (chicken manure, swine manure, kitchen waste, lawn waste, fruits and vegetables waste, straw, green waste, and municipal solid waste) composting were conducted, the germination percentage (GI) and fluorescence spectra of DOM were measured during composting. Statistic analysis with all fluorescence parameters of DOM indicated that I436/I383 (a ratio between the fluorescence intensities at 436 and 383 nm in excitation spectra), FLR (an area ratio between fulvic-like region from 308 to 363 nm and total region in emission spectra), P(HA/Pro) (a regional integration ratio between humic acid-like region to protein-like region in excitation emission matrix (EEM) spectra), A4/A1 (an area ratio of the last quarter to the first quarter in emission spectra), r(A,C) (a ratio between the fluorescence intensities of peak A and peak C in EEM spectra) were correlated with each other (p < 0.01), suggesting that this fluorescence parameters could be considered as comprehensive evaluation index system of PPC. Subsequently, the four degrades of compost maturity included the best degree of maturity (I, GI > 80%), better degree of compost maturity (II, 60% < GI < 80%), maturity (III, 50% < GI < 60%), and immaturity (IV, GI < 50%) were divided according the GI value during composting. The corresponding fluorescence parameter values were calculated at each degrade of compost maturity. Then the projection values were calculated based on PPC considering the above fluorescence parameter values. The projection value was 2

  1. Expressed Genes in Asian Citrus Psyllid adults feeding on citrus

    USDA-ARS?s Scientific Manuscript database

    We created and described the first genetic data set from the Asian citrus psyllid, AsCP, Diaphorina citri, Kuwayama (Hemiptera: Psyllidae). The AsCP spread the plant-infecting bacterium, Candidatus Liberibacter asiaticus, which is associated with the citrus disease Huanglongbing, HLB, known as Citru...

  2. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake.

    PubMed

    Vandecasteele, Bart; Sinicco, Tania; D'Hose, Tommy; Vanden Nest, Thijs; Mondini, Claudio

    2016-03-01

    We investigated the use of biochar (10% on a dry weight basis) to improve the composting process and/or the compost quality by adding it to either the feedstock mixture or the mature compost. The addition of biochar to the feedstocks was essayed in a full scale trial using a mixture of green waste and the organic fraction of municipal solid waste. Addition of biochar to mature compost was performed in a medium scale experiment. The use of biochar, even in small amounts, changed the composting process and the properties of the end products. However these effects depended on the time of application. We observed a faster decomposition in the bio-oxidative phase and lower greenhouse gas emissions when biochar was added at the beginning of the composting process, and a reduction in readily available P when biochar was applied during compost storage. Biochar as a means to increase the C content of the compost was only effective during compost storage. The P fertilizer replacement value of the compost with and without biochar was tested in a plant trial with annual ryegrass. While there was a clear effect on readily available P concentrations in the compost, adding biochar to the feedstock or the compost did not affect the P fertilizer replacement value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2014-07-01

    Composting is a potential alternative to green waste incineration or deposition in landfills. The effects of the biosurfactant rhamnolipid (RL) (at 0.0%, 0.15%, and 0.30%) and initial compost particle size (IPS) (10, 15, and 25 mm) on a new, two-stage method for composting green waste was investigated. A combination of RL addition and IPS adjustment improved the quality of the finished compost in terms of its physical characteristics, pH, C/N ratio, nutrient content, cellulose and hemicellulose contents, water-soluble carbon (WSC) content, xylanase and CMCase activities, numbers of culturable microorganisms (bacteria, actinomycetes, and fungi), and toxicity to germinating seeds. The production of a stable and mature compost required only 24 days with the optimized two-stage composting method described here rather than the 90-270 days required with traditional composting. The best quality compost was obtained with 0.15% RL and an IPS of 15 mm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Impact of a native Streptomyces flavovirens from mushroom compost on green mold control and yield of Agaricus bisporus.

    PubMed

    Šantrić, Ljiljana; Potočnik, Ivana; Radivojević, Ljiljana; Umiljendić, Jelena Gajić; Rekanović, Emil; Duduk, Bojan; Milijašević-Marčić, Svetlana

    2018-05-18

    Thirty-five actinobacterial isolates, obtained from button mushroom (Agaricus bisporus) substrates (i.e., compost in different phases of composting, black peat or casing layer) in Serbia in 2014-2016 were tested in vitro against the causal agents of green mold in cultivated mushroom. Out of six most promising isolates, A06 induced 42.4% in vitro growth inhibition of Trichoderma harzianum T54, and 27.6% inhibition of T. aggressivum f. europaeum T77. The novel strain A06 was identified as Streptomyces flavovirens based on macroscopic and cultural characteristics and 16S rDNA sequence and used in mushroom growing room experiments. Actinobacteria had no negative influence on mycelial growth of the cultivated mushroom in compost in situ. Isolate S. flavovirens A06 enhanced mushroom yield significantly, up to 31.5%. The A06 isolate was more efficient in enhancing yield after inoculation with the compost mold T. aggressivum (26.1%), compared to casing mold T. harzianum (8%). Considering disease incidence, actinobacteria significantly prevented green mold in compost caused by T. aggressivum (6.8%). However, fungicide prochloraz-Mn had a more significant role in reducing symptoms of casing mold, T. harzianum, in comparison with actinobacteria (24.2 and 11.8%, respectively). No significant differences between efficacies of S. flavovirens A06 and the fungicide prochloraz-Mn against T. aggressivum were revealed. These results imply that S. flavovirens A06 can be used to increase mushroom yield and contribute to disease control against the aggressive compost green mold disease caused by Trichoderma aggressivum.

  5. Good for sewage treatment and good for agriculture: Algal based compost and biochar.

    PubMed

    Cole, Andrew J; Paul, Nicholas A; de Nys, Rocky; Roberts, David A

    2017-09-15

    In this study we test a novel approach to closing the anthropogenic nutrient cycle, by using the freshwater macroalga, Oedogonium intermedium, to recover dissolved nitrogen (N) and phosphorous (P) from municipal wastewater. We then convert this cultivated algae into two types of soil ameliorant; compost and biochar. To produce compost, algae was combined with sugarcane bagasse and left to mature for 10 weeks, and to produce biochar, algae was processed through slow pyrolysis at 450 °C. The mature compost had a total N and P content of 2.5% and 0.6%, which was 2- to 4-times lower than the algal biochar, which had a total N and P content of 5.5% and 2.5% respectively. Composting stabilized the N and P recovered from wastewater, with 80% of the initial N and >99% of the initial P retained in the mature compost. In contrast, only 29% of the initial N and 62% of the initial P was retained in the biochar. When the mature compost was added to a low fertility soil it significantly increased the production of sweet corn (Zea mays). Treatments receiving 50 and 100% compost produced 4-9 times more corn biomass than when synthetic fertilizer alone was added to the low fertility soil. When biochar was applied in conjunction with compost there was an additional 15% increase in corn productivity, most likely due to the ability of the biochar to bind labile N and P and prevent its loss from the soil. This study demonstrates a unique model for recovering N and P from municipal wastewater and recycling these nutrients into the agricultural industry. This could be an ideal model for regional areas where agriculture and water treatment facilities are co-located and could ultimately reduce the reliance of agriculture on finite mineral sources of P. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Experimental and modeling approaches for food waste composting: a review.

    PubMed

    Li, Zhentong; Lu, Hongwei; Ren, Lixia; He, Li

    2013-10-01

    Composting has been used as a method to dispose food waste (FW) and recycle organic matter to improve soil structure and fertility. Considering the significance of composting in FW treatment, many researchers have paid their attention on how to improve FW composting efficiency, reduce operating cost, and mitigate the associated environmental damage. This review focuses on the overall studies of FW composting, not only various parameters significantly affecting the processes and final results, but also a number of simulation approaches that are greatly instrumental in well understanding the process mechanism and/or results prediction. Implications of many key ingredients on FW composting performance are also discussed. Perspects of effective laboratory experiments and computer-based simulation are finally investigated, demonstrating many demanding areas for enhanced research efforts, which include the screening of multi-functional additives, volatile organiccompound emission control, necessity of modeling and post-modeling analysis, and usefulness of developing more conjunctive AI-based process control techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Citrus Huanglongbing tolerance in Australian Citrus Relatives, Microcitrus and Eremocirus

    USDA-ARS?s Scientific Manuscript database

    Tolerance, or resistance to citrus huanglongbing will be important as a long term solution for this disease. In a field trial conducted with over 1000 plants belonging to different genera in the sub-family Aurantioideae, we observed field tolerance in many Australian citrus relatives. To confirm the...

  8. Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus.

    PubMed

    Jurak, Edita; Kabel, Mirjam A; Gruppen, Harry

    2014-01-30

    Changes of plant cell wall carbohydrate structures occurring during the process to make suitable compost for growth of Agaricus bisporus are unknown. In this paper, composition and carbohydrate structures in compost samples collected during composting and mycelium growth were analyzed. Furthermore, different extracts of compost samples were prepared with water, 1M and 4M alkali and analyzed. At the beginning of composting, 34% and after 16 days of mycelium growth 27% of dry matter was carbohydrates. Carbohydrate composition analysis showed that mainly cellulose and poorly substituted xylan chains with similar amounts and ratios of xylan building blocks were present in all phases studied. Nevertheless, xylan solubility increased 20% over the period of mycelium growth indicating partial degradation of xylan backbone. Apparently, degradation of carbohydrates occurred over the process studied by both bacteria and fungi, mainly having an effect on xylan-chain length and solubility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Molecular characterization and phylogenetic analysis of Citrus viroid VI variants from citrus in China

    USDA-ARS?s Scientific Manuscript database

    Citrus viroid VI (CVd-VI) was originally found from citrus and persimmon in Japan. We report here the identification and molecular characterization of CVd-VI from four production regions of China. A total of 90 cDNA clones from nine infected citrus cultivars were sequenced. The sequence homologies o...

  10. Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting.

    PubMed

    Wang, Tingting; Cheng, Lijun; Zhang, Wenhao; Xu, Xiuhong; Meng, Qingxin; Sun, Xuewei; Liu, Huajing; Li, Hongtao; Sun, Yu

    2017-07-28

    Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene ( hzo ) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between 2.13 × 10 5 and 1.15 × 10 6 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

  11. The information extraction of Gannan citrus orchard based on the GF-1 remote sensing image

    NASA Astrophysics Data System (ADS)

    Wang, S.; Chen, Y. L.

    2017-02-01

    The production of Gannan oranges is the largest in China, which occupied an important part in the world. The extraction of citrus orchard quickly and effectively has important significance for fruit pathogen defense, fruit production and industrial planning. The traditional spectra extraction method of citrus orchard based on pixel has a lower classification accuracy, difficult to avoid the “pepper phenomenon”. In the influence of noise, the phenomenon that different spectrums of objects have the same spectrum is graveness. Taking Xunwu County citrus fruit planting area of Ganzhou as the research object, aiming at the disadvantage of the lower accuracy of the traditional method based on image element classification method, a decision tree classification method based on object-oriented rule set is proposed. Firstly, multi-scale segmentation is performed on the GF-1 remote sensing image data of the study area. Subsequently the sample objects are selected for statistical analysis of spectral features and geometric features. Finally, combined with the concept of decision tree classification, a variety of empirical values of single band threshold, NDVI, band combination and object geometry characteristics are used hierarchically to execute the information extraction of the research area, and multi-scale segmentation and hierarchical decision tree classification is implemented. The classification results are verified with the confusion matrix, and the overall Kappa index is 87.91%.

  12. Evidence of behavior-based utilization by the Asian citrus psyllid of a combination of UV and green or yellow wavelengths

    PubMed Central

    Udell, Bradley J.

    2017-01-01

    The Asian citrus psyllid, Diaphorina citri, vectors huanglongbing (HLB), the most serious disease affecting citrus globally. D. citri and HLB have spread to the major citrus growing regions of North America causing billions of dollars of damage in Florida alone. The visual behavior of D. citri is not well characterized and more knowledge is needed to improve attractive traps for monitoring and control of the D. citri. Bioassays were conducted to evaluate attraction to light transmitted through different colored filters. The addition of ultra-violet light (< 400 nm) enhanced attraction of D. citri to transparent visual targets made of green or yellow filters. However, attraction to blue targets was unaffected by UV light. This is the first study to demonstrate a phytophagous insect responding to a hue that is a combination of long and short wavelengths. Further testing is needed to determine how D. citri uses such discriminatory powers in the field. Our results further imply that D. citri utilize color vision, as the less intense yellow and green hues were chosen over white light. In summary, this research provides an increased understanding of D. citri visual behavior and can be used for the development of a more attractive D. citri trap than those currently available. PMID:29236740

  13. Strike It Rich with Classroom Compost.

    ERIC Educational Resources Information Center

    Jones, Linda L. Cronin

    1992-01-01

    Discusses composting of organic materials as an alternative to landfills. Lists uses of composts and describes details of a simple composting activity for high school students. Includes an information sheet for students and a student data sheet. Suggests other composting activities. (PR)

  14. Antioxidant Capacity, Anticancer Ability and Flavonoids Composition of 35 Citrus (Citrus reticulata Blanco) Varieties.

    PubMed

    Wang, Yue; Qian, Jing; Cao, Jinping; Wang, Dengliang; Liu, Chunrong; Yang, Rongxi; Li, Xian; Sun, Chongde

    2017-07-05

    Citrus ( Citrus reticulate Blanco) is one of the most commonly consumed and widely distributed fruit in the world, which is possessing extensive bioactivities. Present study aimed to fully understand the flavonoids compositions, antioxidant capacities and in vitro anticancer abilities of different citrus resources. Citrus fruits of 35 varieties belonging to 5 types (pummelos, oranges, tangerines, mandarins and hybrids) were collected. Combining li quid chromatography combined with electrospray ionization mass spectrometry (LC-ESI-MS/MS) and ultra-performance liquid chromatography combined with diode array detector (UPLC-DAD), a total of 39 flavonoid compounds were identified, including 4 flavones, 9 flavanones and 26 polymethoxylated flavonoids (PMFs). Each citrus fruit was examined and compared by 4 parts, flavedo, albedo, segment membrane and juice sacs. The juice sacs had the lowest total phenolics, following by the segment membrane. Four antioxidant traits including 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) and cupric reducing antioxidant capacity (CUPRAC) were applied for the antioxidant capacities evaluation. Three gastric cancer cell lines, SGC-7901, BGC-823 and AGS were applied for the cytotoxicity evaluation. According to the results of correlation analysis, phenolics compounds might be the main contributor to the antioxidant activity of citrus extracts, while PMFs existing only in the flavedo might be closely related to the gastric cancer cell line cytotoxicity of citrus extracts. The results of present study might provide a theoretical guidance for the utilization of citrus resources.

  15. Development and application of EEAST: a life cycle based model for use of harvested rainwater and composting toilets in buildings.

    PubMed

    Devkota, J; Schlachter, H; Anand, C; Phillips, R; Apul, Defne

    2013-11-30

    Harvested rainwater systems and composting toilets are expected to be an important part of sustainable solutions in buildings. Yet, to this date, a model evaluating their economic and environmental impact has been missing. To address this need, a life cycle based model, EEAST was developed. EEAST was designed to compare the business as usual (BAU) case of using potable water for toilet flushing and irrigation to alternative scenarios of rainwater harvesting and composting toilet based technologies. In EEAST, building characteristics, occupancy, and precipitation are used to size the harvested rainwater and composting toilet systems. Then, life cycle costing and life cycle assessment methods are used to estimate cost, energy, and greenhouse gas (GHG) emission payback periods (PPs) for five alternative scenarios. The scenarios modeled include use of harvested rainwater for toilet flushing, for irrigation, or both; and use of composting toilets with or without harvested rainwater use for irrigation. A sample simulation using EEAST showed that for the office building modeled, the cost PPs were greater than energy PPs which in turn were greater than GHG emission PPs. This was primarily due to energy and emission intensive nature of the centralized water and wastewater infrastructure. The sample simulation also suggested that the composting toilets may have the best performance in all criteria. However, EEAST does not explicitly model solids management and as such may give composting toilets an unfair advantage compared to flush based toilets. EEAST results were found to be very sensitive to cost values used in the model. With the availability of EEAST, life cycle cost, energy, and GHG emissions can now be performed fairly easily by building designers and researchers. Future work is recommended to further improve EEAST and evaluate it for different types of buildings and climates so as to better understand when composting toilets and harvested rainwater systems

  16. Chemistry and Pharmacology of Citrus sinensis.

    PubMed

    Favela-Hernández, Juan Manuel J; González-Santiago, Omar; Ramírez-Cabrera, Mónica A; Esquivel-Ferriño, Patricia C; Camacho-Corona, María del Rayo

    2016-02-22

    Presently the search for new drugs from natural resources is of growing interest to the pharmaceutical industry. Natural products have been the source of new drugs since ancient times. Plants are a good source of secondary metabolites which have been found to have beneficial properties. The present study is a review of the chemistry and pharmacology of Citrus sinensis. This review reveals the therapeutic potential of C. sinensis as a source of natural compounds with important activities that are beneficial for human health that could be used to develop new drugs.

  17. Greenhouse gas emissions from green waste composting windrow.

    PubMed

    Zhu-Barker, Xia; Bailey, Shannon K; Paw U, Kyaw Tha; Burger, Martin; Horwath, William R

    2017-01-01

    The process of composting is a source of greenhouse gases (GHG) that contribute to climate change. We monitored three field-scale green waste compost windrows over a one-year period to measure the seasonal variance of the GHG fluxes. The compost pile that experienced the wettest and coolest weather had the highest average CH 4 emission of 254±76gCday -1 dry weight (DW) Mg -1 and lowest average N 2 O emission of 152±21mgNday -1 DW Mg -1 compared to the other seasonal piles. The highest N 2 O emissions (342±41mgNday -1 DW Mg -1 ) came from the pile that underwent the driest and hottest weather. The compost windrow oxygen (O 2 ) concentration and moisture content were the most consistent factors predicting N 2 O and CH 4 emissions from all seasonal compost piles. Compared to N 2 O, CH 4 was a higher contributor to the overall global warming potential (GWP) expressed as CO 2 equivalents (CO 2 eq.). Therefore, CH 4 mitigation practices, such as increasing O 2 concentration in the compost windrows through moisture control, feedstock changes to increase porosity, and windrow turning, may reduce the overall GWP of composting. Based on the results of the present study, statewide total GHG emissions of green waste composting were estimated at 789,000Mg of CO 2 eq., representing 2.1% of total annual GHG emissions of the California agricultural sector and 0.18% of the total state emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Slight Fermentation with Lactobacillus fermentium Improves the Taste (Sugar:Acid Ratio) of Citrus (Citrus reticulata cv. chachiensis) Juice.

    PubMed

    Yu, Yuanshan; Xiao, Gengsheng; Xu, Yujuan; Wu, Jijun; Fu, Manqin; Wen, Jing

    2015-11-01

    The aim of this study was to evaluate the hypothesis that fermentation with Lactobacillus fermentium, which can metabolize citric acid, could be applied in improving the taste (sugar:acid ratio) of citrus juice. During fermentation, the strain of L. fermentium can preferentially utilize citric acid of citrus (Citrus reticulata cv. Chachiensis) juice to support the growth without the consumption of sugar. After 6 h of fermentation with L. fermentium at 30 °C, the sugar:acid ratio of citrus juice increased to 22:1 from 12:1, which resulted in that the hedonic scores of sweetness, acidity and overall acceptability of fermented-pasteurized citrus juice were higher than the unfermented-pasteurized citrus juice. Compared with unfermented-pasteurized citrus juice, the ORAC value and total amino acid showed a reduction, and no significant change (P > 0.05) in the L*, a*, b*, total soluble phenolics and ascorbic acid (Vc) content in the fermented-pasteurized citrus juice was observed as compared with unfermented-pasteurized citrus juice. Hence, slight fermentation with L. fermentium can be used for improving the taste (sugar:acid ratio) of citrus juice with the well retaining of quality. © 2015 Institute of Food Technologists®

  19. Comprehensive comparative analysis of volatile compounds in citrus fruits of different species.

    PubMed

    Zhang, Haipeng; Xie, Yunxia; Liu, Cuihua; Chen, Shilin; Hu, Shuangshuang; Xie, Zongzhou; Deng, Xiuxin; Xu, Juan

    2017-09-01

    The volatile profiles of fruit peels and juice sacs from 108 citrus accessions representing seven species were analyzed. Using GC-MS 162 and 107 compounds were determined in the peels and juice sacs, respectively. In the peels, monoterpene alcohols were accumulated in loose-skin mandarins; clementine tangerines and papedas were rich in sesquiterpene alcohols, sesquiterpenes, monoterpene alcohols and monoterpene aldehydes. β-pinene and sabinene were specifically accumulated in 4 of 5 lemon germplasms. Furthermore, concentrations of 34 distinctive compounds were selected to best represent the volatile profiles of seven species for HCA analysis, and the clustering results were in agreement with classic citrus taxonomy. Comparison of profiles from different growing seasons and production areas indicated that environmental factors play important roles in volatile metabolism. In addition, a few citrus germplasms that accumulated certain compounds were determined as promising breeding materials. Notably, volatile biosynthesis via MVA pathway in C. ichangensis 'Huaihua' was enhanced. Copyright © 2017. Published by Elsevier Ltd.

  20. Composting of Sewage Sludge Using Recycled Matured Compost as a Single Bulking Agent

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyang; Ren, Jian; Niu, Huasi; Wu, Xingwu

    2010-11-01

    Pretreatment (bulking agent choice and mixing) is an essential phase of dewatered raw sludge (RS) composting affecting its industrialization significantly. In this paper recycled compost (RC) was chosen as a single bulking agent in the composting experiment instead of other agents such as sawdust, rice straw, MSW, and the mixing machine was developed for mixing of SS and RC. According to the mixing experiment, SS and RC can be mixed uniformly and formed into small particles of 10˜15 mm in diameter, which improved the availability of oxygen during composting. The effect of different volumetric ratios of RS to RC, 1:1 (Exp.1), 1:2 (Exp.2) and 1:4 (Exp.3), on the performance of composting was investigated in detail. Temperature, oxygen consumption rate, organic matter, C/N ratio and moisture content were monitored in each experiment. In despite of low initial C/N of the mixture, intensive fermentation happened in all the experiments. Exp.1 and Exp.2 achieved stability and sanitization, but Exp 1 took more days to accomplish the fermentation. Exp 3 maintained thermophilic temperatures for a shortest time and did not satisfy the necessary sanitation requirements because more RC was recycled. In all experiments, the moisture content of their final composts were too high to be used as bulking agents before extra moisture was reduced. RS: RC = 1:2 (v/v) was the optimum and advisable proportion for the industrialization of sewage sludge composting of, the composting period was about 10 days, and the aeration rate 0.05 m3/(m3ṡmin) was appropriate in this study.

  1. An Ecoinformatics Approach to Field-Scale Evaluation of Insecticide Effects in California Citrus: Are Citrus Thrips and Citrus Red Mite Induced Pests?

    PubMed

    Livingston, George; Hack, Lindsey; Steinmann, Kimberly P; Grafton-Cardwell, Elizabeth E; Rosenheim, Jay A

    2018-05-28

    Experimental approaches to studying the consequences of pesticide use, including impacts on beneficial insects, are vital; however, they can be limited in scale and realism. We show that an ecoinformatics approach that leverages existing data on pesticides, pests, and beneficials across multiple fields can provide complementary insights. We do this using a multi-year dataset (2002-2013) on pesticide applications and density estimates of two pests, citrus thrips (Scirtothrips citri (Moulton [Thysanoptera: Thripidae])) and citrus red mites (Panonychus citri McGregor [Acari: Tetranychidae]), and a natural enemy (Euseius spp. predatory mites) collected from citrus groves in the San Joaquin Valley of California. Using correlative analyses, we investigated the long-term consequences of pesticide use on S. citri and P. citri population densities to evaluate the hypothesis that the pest status of these species is largely due to the disruption of natural biological control-i.e., these are induced pests. We also evaluated short-term pesticide efficacy (suppression of citrus thrips and citrus red mite populations immediately post-application) and asked if it was correlated with the suppression of Euseius predator populations. Although the short-term efficacy of different pesticides varied significantly, our dataset does not suggest that the use of citrus pesticides suppressed Euseius densities or worsened pest problems. We also find that there is no general trade-off between pesticide efficacy and pesticide risk to Eusieus, such that highly effective and minimally disruptive compounds were available to citrus growers during the studied time period.

  2. Reuse of waste materials as growing media for ornamental plants.

    PubMed

    Hernández-Apaolaza, Lourdes; Gascó, Antonio M; Gascó, José M; Guerrero, Francisca

    2005-01-01

    The use of different waste materials: pine bark, coconut fibre and sewage sludge as substrates in the production of ornamental plants was studied, with an special interest on the suitability of coconut fibre as growing substrate for conifer plants. The plant species tested were Pinus pinea, Cupressus arizonica and C. sempervirens and the substrate mixtures were: (1) pine bark, (2) pine bark with 15% of sewage sludge compost, (3) pine bark with 30% of sewage sludge compost, (4) coconut fibre, (5) coconut fibre with 15% of sewage sludge compost and (6) coconut fibre with 30% of sewage sludge compost. Substrates were physically and chemically well characterized, and 75-cm plants were grown on them for one year. Plant and substrate status were periodically tested along the experiment. As biosolid recycling is the main objective of the present work, the mixtures with 30% of composted sewage sludge will be the most convenient substrate to use. For C. sempervirens and C. arizonica, a mixture between pine bark or coconut fibre and 30% of biosolid compost in volume gave the best results, but the lower cost of the pine bark than the coconut fibre substrate indicated the use of the PB+30% CSS. For P. pinea the research of new combinations between waste products is recommended to attain better results.

  3. Evaluation of resistance to asiatic citrus canker among selections of pera sweet orange (Citrus sinensis)

    USDA-ARS?s Scientific Manuscript database

    Asiatic citrus canker (ACC, caused by the bacterium Xanthomonas citri subsp. citri) is a destructive disease of citrus in Brazil and in several other citrus-producing countries. ACC management is problematic, and bactericides such as copper can be reasonably efficacious but do not completely control...

  4. Antennal and behavioral response of the Asian citrus psyllid (Diaphorina citri Kuwayama) to degradation products of citrus volatiles

    USDA-ARS?s Scientific Manuscript database

    Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) vectors the bacterial causal pathogen of the deadly citrus disease, Huanglongbing (citrus greening) which is a major threat to citrus industry worldwide. We studied antennal and behavioral responses to principal components of head...

  5. Quantitative distribution of 'Candidatus Liberibacter asiaticus' in citrus plants with citrus huanglongbing.

    PubMed

    Li, Wenbin; Levy, Laurene; Hartung, John S

    2009-02-01

    Citrus huanglongbing (HLB), or greening disease, is strongly associated with any of three nonculturable gram-negative bacteria belonging to 'Candidatus Liberibacter spp.' 'Ca. Liberibacter spp.' are transmitted by citrus psyllids to all commercial cultivars of citrus. The diseases can be lethal to citrus and have recently become widespread in both São Paulo, Brazil, and Florida, United States, the locations of the largest citrus industries in the world. Asiatic HLB, the form of the disease found in Florida, is associated with 'Ca. Liberibacter asiaticus' and is the subject of this report. The nonculturable nature of the pathogen has hampered research and little is known about the distribution of 'Ca. L. asiaticus' in infected trees. In this study, we have used a quantitative polymerase chain reaction assay to systematically quantify the distribution of 'Ca. L. asiaticus' genomes in tissues of six species of citrus either identified in the field during survey efforts in Florida or propagated in a greenhouse in Beltsville, MD. The populations of 'Ca. L. asiaticus' inferred from the distribution of 16S rDNA sequences specific for 'Ca. L. asiaticus' in leaf midribs, leaf blades, and bark samples varied by a factor of 1,000 among samples prepared from the six citrus species tested and by a factor of 100 between two sweet orange trees tested. In naturally infected trees, above-ground portions of the tree averaged 10(10) 'Ca. L. asiaticus' genomes per gram of tissue. Similar levels of 'Ca. L. asiaticus' genomes were observed in some but not all root samples from the same plants. In samples taken from greenhouse-inoculated trees, levels of 'Ca. L. asiaticus' genomes varied systematically from 10(4) genomes/g at the graft inoculation site to 10(10) genomes/g in some leaf petioles. Root samples from these trees also contained 'Ca. L. asiaticus' at 10(7) genomes/g. In symptomatic fruit tissues, 'Ca. L. asiaticus' genomes were also readily detected and quantified. The highest

  6. PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions.

    PubMed

    Dalio, Ronaldo J D; Magalhães, Diogo M; Rodrigues, Carolina M; Arena, Gabriella D; Oliveira, Tiago S; Souza-Neto, Reinaldo R; Picchi, Simone C; Martins, Paula M M; Santos, Paulo J C; Maximo, Heros J; Pacheco, Inaiara S; De Souza, Alessandra A; Machado, Marcos A

    2017-03-01

    Recent application of molecular-based technologies has considerably advanced our understanding of complex processes in plant-pathogen interactions and their key components such as PAMPs, PRRs, effectors and R-genes. To develop novel control strategies for disease prevention in citrus, it is essential to expand and consolidate our knowledge of the molecular interaction of citrus plants with their pathogens. This review provides an overview of our understanding of citrus plant immunity, focusing on the molecular mechanisms involved in the interactions with viruses, bacteria, fungi, oomycetes and vectors related to the following diseases: tristeza, psorosis, citrus variegated chlorosis, citrus canker, huanglongbing, brown spot, post-bloom, anthracnose, gummosis and citrus root rot. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  7. 78 FR 8435 - Importation of Fresh Citrus Fruit From Uruguay, Including Citrus Hybrids and Fortunella

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... gnidiella (the honeydew moth) and Gymnandrosoma aurantianum (citrus fruit borer); one fungus (Elsino[euml.... APHIS-2011-0060] RIN 0579-AD59 Importation of Fresh Citrus Fruit From Uruguay, Including Citrus Hybrids... Service, USDA. ACTION: Proposed rule. SUMMARY: We are proposing to amend the fruits and vegetables...

  8. Chemical structures and characteristics of animal manures and composts during composting and assessment of maturity indices

    PubMed Central

    Huang, Jieying; Yu, Zixuan; Gao, Hongjian; Yan, Xiaoming; Chang, Jiang; Wang, Chengming; Hu, Jingwei

    2017-01-01

    Changes in physicochemical characteristics, chemical structures and maturity of swine, cattle and chicken manures and composts during 70-day composting without addition of bulking agents were investigated. Physicochemical characteristics were measured by routine analyses and chemical structures by solid-state 13C NMR and FT-IR. Three manures were of distinct properties. Their changes in physicochemical characteristics, chemical structures, and maturity were different not only from each other but also from those with addition of bulking agents during composting. Aromaticity in chicken manure composts decreased at first, and then increased whereas that in cattle and swine manure composts increased. Enhanced ammonia volatilization occurred without addition of bulking agents. NMR structural information indicated that cattle and chicken composts were relatively stable at day 36 and 56, respectively, but swine manure composts were not mature up to day 70. Finally, the days required for three manures to reach the threshold values of different maturity indices were different. PMID:28604783

  9. Composting Phragmites australis Cav. plant material and compost effects on soil and tomato (Lycopersicon esculentum Mill.) growth.

    PubMed

    Toumpeli, Anna; Pavlatou-Ve, Athina K; Kostopoulou, Sofia K; Mamolos, Andreas P; Siomos, Anastasios S; Kalburtji, Kiriaki L

    2013-10-15

    Composting organic residues is a friendly to the environment alternative to producing fertilizer. This research was carried out to study the process of composting Phragmites australis Cav. plant material alone or with animal manure on a pilot-scale, to evaluate firstly the quality of the composts produced and secondly, using a pot experiment, the effects of their application on soil physicochemical characteristics and tomato plants development. For the compost production a randomized complete block design was used with five treatments (five compost types) and four replications. For the pot experiment, a completely randomized design was used with 17 treatments (plain soil, soil with synthetic fertilizer and the application of five compost types, at three rates each) and five replications. Compost N increased with composting time, while C/N ratio decreased significantly and by the end it ranged from 43.3 for CM to 22.6 for CY. Compost pH became almost neutral, ranging from 6.73 for CY to 7.21 for CM3Y3AM4 by the end. Compost combinations CY7AM3 and CM7AM3 had a more positive influence on the soil physicochemical characteristics than the others. Soil N, P, Ca and Mg concentrations and the reduction of clay dispersion were the highest when CM7AM3 compost was added. The macro-aggregate stability was the highest for CY7AM3, which also sustained plant growth. The latter compost combination improved most of the soil physicochemical characteristics and plant growth especially, when the application rate was 4% (w/w), which equals to 156 Mg ha(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Multivariate Analysis of the Determinants of the End-Product Quality of Manure-Based Composts and Vermicomposts Using Bayesian Network Modelling.

    PubMed

    Faverial, Julie; Cornet, Denis; Paul, Jacky; Sierra, Jorge

    2016-01-01

    Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement.

  11. Multivariate Analysis of the Determinants of the End-Product Quality of Manure-Based Composts and Vermicomposts Using Bayesian Network Modelling

    PubMed Central

    Faverial, Julie; Cornet, Denis; Paul, Jacky

    2016-01-01

    Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement. PMID:27314950

  12. Suppression of greasy spot disease caused by Mycosphaerella citri Whiteside on grapefruit trees in an organic orchard using an aqueous organic mixture of composted cornmeal, humic acid, molasses, and fish oil vs vegetable oil

    USDA-ARS?s Scientific Manuscript database

    Greasy spot disease of citrus, caused by the fungus Mycosphaerella citri Whiteside, afflicts citrus trees in all citrus-growing areas of the United States, eastern Mexico, Central America, and the Caribbean islands, causing premature defoliation, blemished fruit, and reduced tree vigor, yield, and f...

  13. Opportunities and barriers to on-farm composting and compost application: A case study from northwestern Europe.

    PubMed

    Viaene, J; Van Lancker, J; Vandecasteele, B; Willekens, K; Bijttebier, J; Ruysschaert, G; De Neve, S; Reubens, B

    2016-02-01

    Maintaining and increasing soil quality and fertility in a sustainable way is an important challenge for modern agriculture. The burgeoning bioeconomy is likely to put further pressure on soil resources unless they are managed carefully. Compost has the potential to be an effective soil improver because of its multiple beneficial effects on soil quality. Additionally, it fits within the bioeconomy vision because it can valorize biomass from prior biomass processing or valorize biomass unsuitable for other processes. However, compost is rarely used in intensive agriculture, especially in regions with high manure surpluses. The aim of this research is to identify the barriers to on-farm composting and the application of compost in agriculture, using a mixed method approach for the case of Flanders. The significance of the 28 identified barriers is analyzed and they are categorized as market and financial, policy and institutional, scientific and technological and informational and behavioral barriers. More specifically, the shortage of woody biomass, strict regulation, considerable financial and time investment, and lack of experience and knowledge are hindering on-farm composting. The complex regulation, manure surplus, variable availability and transport of compost, and variable compost quality and composition are barriers to apply compost. In conclusion, five recommendations are suggested that could alleviate certain hindering factors and thus increase attractiveness of compost use in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Meat waste as feedstock for home composting: Effects on the process and quality of compost.

    PubMed

    Storino, Francesco; Arizmendiarrieta, Joseba S; Irigoyen, Ignacio; Muro, Julio; Aparicio-Tejo, Pedro M

    2016-10-01

    Home composting is a powerful tool, which is spreading in different parts of the world, to reduce the generation of municipal waste. However, there is debate concerning the appropriateness, in terms of domestic hygiene and safety, of keeping a composter bin in the household deputed to kitchen waste of animal origin, such as meat or fish scraps and pet droppings. The purpose of our work was to study how the addition of meat scraps to household waste influences the composting process and the quality of the final compost obtained. We compared four raw material mixtures, characterized by a different combination of vegetable and meat waste and different ratios of woody bulking agent. Changes in temperature, mass and volume, phenotypic microbial diversity (by Biolog™) and organic matter humification were determined during the process. At the end of the experiment, the four composts were weighed and characterized by physicochemical analysis. In addition, the presence of viable weed seeds was investigated and a germination bioassay was carried out to determine the level of phytotoxicity. Finally, the levels of pathogens (Escherichia coli and Salmonella spp.) were also determined in the final compost. Here we show that the presence of meat waste as raw feedstock for composting in bins can improve the activity of the process, the physicochemical characteristics and maturity of the compost obtained, without significantly affecting its salinity, pH and phytotoxicity. Pathogen levels were low, showing that they can be controlled by an intensive management and proper handling of the composter bins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Compost: Brown gold or toxic trouble?

    USGS Publications Warehouse

    Kovacic, D.A.; Cahill, R.A.; Bicki, T.J.

    1992-01-01

    Limited data are available regarding the occurrence of potentially hazardous constituents in raw, uncomposted yard wastes, partially composted yard wastes, and finished compost (15, 16). Environmental monitoring at composting operations or facilities is lacking, and currently published research on the environmental fate of composted yard waste constituents is extremely limited. The cost of thoroughly investigating the fate of toxicants in yard waste may seem needlessly expensive, but it is much less than the cost of cleaning up contaminated sites and groundwater. Could yard waste compost sites become Superfund sites? The cost of a thorough testing program throughout the United States may be several million dollars, but that is only a fraction of the funds spent initiating and developing yard waste composting facilities, let alone the potentially much greater cost of environmental remediation. There is still time to address these problems and to develop sound state and federal guidelines for siting and operating yard waste compost facilities. The rush to implement landfill alternatives such as composting should not be the major driving force in determining legislation governing solid waste management. ?? 1991 American Chemical Society.

  16. Feasibility of medical stone amendment for sewage sludge co-composting and production of nutrient-rich compost.

    PubMed

    Awasthi, Mukesh Kumar; Wang, Quan; Awasthi, Sanjeev Kumar; Li, Ronghua; Zhao, Junchao; Ren, Xiuna; Wang, Meijing; Chen, Hongyu; Zhang, Zengqiang

    2018-06-15

    The feasibility of medical stone (MS) amendment as an innovative additive for dewatered fresh sewage sludge (DFSS) co-composting was assessed using a 130-L vessel-scale composter. To verify successful composting, five treatments were designed with four different dosages (2, 4, 6, and 10) % of MS with a 1:1 mixture (dry weight) of DFSS + wheat straw (WS). The WS was used as a bulking agent. A control without any amendment treatment was carried out for the purpose of comparison. For DFSS co-composting, the amendment with MS improved the mineralization efficiency and compost quality in terms of CO 2 emissions, dehydrogenase enzyme (DE), electrical conductivity (EC), water-solubility, and total nutrients transformation. The DTPA-extractable Cu and Zn were also estimated to confirm the immobilization ability of the applied MS. Seed germination and plant growth tests were conducted to ensure the compost stability and phytotoxicity for Chinese cabbage (Brassica rapa chinensis L.) growth and biomass, as well as chlorophyll content. The results showed that during the bio-oxidative phase, DOC, DON, AP, NH 4 + -N, and NO 3 - -N increased drastically in all the MS-blended treatments, except the application of 2% MS and the control treatment; significantly lower water-soluble nutrients were observed in the 2% MS and control treatments. A novel additive with 6-10% MS dosages considerably enhanced the organic matter conversion in the stable end-product (compost) and reduced the maturity period by two weeks compared to the 2% MS and control treatments. Consequently, the maturity parameters (e.g., EC, SGI, NH 4 + -N, DOC, and DON) confirmed that compost with 6-10% MS became more stable and mature within four weeks of DFSS co-composting. At the end of composting, significantly higher DTPA-extractable Cu and Zn contents were observed in the control treatment, and subsequently, in the very low application (10%) of MS. Higher MS dosage lowered the pH and EC to within the permissible

  17. Composting of waste algae: a review.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Microjets of citrus fruit

    NASA Astrophysics Data System (ADS)

    Smith, Nicholas; Dickerson, Andrew

    2017-11-01

    The rupture of oil glands in the citrus exocarp is a common experience to the discerning citrus consumer. When peeled, oil cavities housed with the citrus exocarp often rupture outwardly in response to externally applied bending stresses. Bending of the peel compresses the soft material surrounding the glands, the albedo, increasing fluid pressure. Ultimately, the fluid pressure exceeds the failure strength of the outermost membrane, the flavedo. The ensuing high-velocity discharge of oil and exhaustive emptying of oil glands creates a novel method for jetting small quantities of the aromatic and volatile oil. We compare the jetting behavior across five citrus hybrids through high-speed videography and material testing of exocarps. The jetting oil undergoes an initial acceleration surpassing 5,000 gravities, reaching velocities in excess of 10 m/s. Film of citrus jets and mimicking jets in the lab reveal their high level of instability is caused by irregular and non-circular orifice geometry. Through material characterization and bending simulations, we rationalize the combination of material properties necessary to generate the internal gland pressures required for explosive dispersal.

  19. Assessing thermal conductivity of composting reactor with attention on varying thermal resistance between compost and the inner surface.

    PubMed

    Wang, Yongjiang; Niu, Wenjuan; Ai, Ping

    2016-12-01

    Dynamic estimation of heat transfer through composting reactor wall was crucial for insulating design and maintaining a sanitary temperature. A model, incorporating conductive, convective and radiative heat transfer mechanisms, was developed in this paper to provide thermal resistance calculations for composting reactor wall. The mechanism of thermal transfer from compost to inner surface of structural layer, as a first step of heat loss, was important for improving insulation performance, which was divided into conduction and convection and discussed specifically in this study. It was found decreasing conductive resistance was responsible for the drop of insulation between compost and reactor wall. Increasing compost porosity or manufacturing a curved surface, decreasing the contact area of compost and the reactor wall, might improve the insulation performance. Upon modeling of heat transfers from compost to ambient environment, the study yielded a condensed and simplified model that could be used to conduct thermal resistance analysis for composting reactor. With theoretical derivations and a case application, the model was applicable for both dynamic estimation and typical composting scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Insight into effects of mature compost recycling on N2O emission and denitrification genes in sludge composting.

    PubMed

    Wang, Ke; Wu, Yiqi; Li, Weiguang; Wu, Chuandong; Chen, Zhiqiang

    2018-03-01

    Mature compost recycling is widely used to reduce the dosage of organic bulking agent in actual composting process. In this study, the effects of mature compost amendment on N 2 O emission and denitrification genes were investigated in 47 days composting of sewage sludge and rice husks. The results showed that mature compost amendment dramatically augmented N 2 O emission rate in mesophilic phase and CO 2 emission rate in thermophilic phase of composting, respectively. The cumulative amount of N 2 O emission increased by more than 23 times compared to the control. Mature compost amendment not only reduced moisture and pH, but also significantly increased NO 3 - -N and NO 2 - -N concentrations. The correlation matrices indicated that NO 3 - -N, narG and norB were the main factors influencing N 2 O emission rate in sludge composting with mature compost recycling, but the N 2 O emission rate was significantly correlated to NO 2 - -N, nirK and norB in the control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Bacterial brown leaf spot of citrus, a new disease caused by Burkholderia andropogonis

    USDA-ARS?s Scientific Manuscript database

    A new bacterial disease of citrus was recently identified in Florida and named as bacterial brown leaf spot (BBLS) of citrus. BBLS-infected citrus displayed flat, circular and brownish lesions with water-soaked margins surrounded by a chlorotic halo on leaves. Based on Biolog carbon source metabolic...

  2. Modelling for reactor-style aerobic composting based on coupling theory of mass-heat-momentum transport and Contois equation.

    PubMed

    He, Xueqin; Han, Lujia; Ge, Jinyi; Huang, Guangqun

    2018-04-01

    This study establishes an optimal mathematical modelling to rationally describe the dynamic changes and spatial distribution of temperature and oxygen concentration in the aerobic composting process using coupling mass-heat-momentum transfer based on the microbial mechanism. Two different conditional composting experiments, namely continuous aeration and intermittent aeration, were performed to verify the proposed model. The results show that the model accurately predicted the dynamic changes in temperature (case I: R 2  = 0.93, RMSE = 1.95 K; case II: R 2  = 0.86, RMSE = 4.69 K) and oxygen concentration (case I: R 2  = 0.90, RMSE = 1.26%; case II: R 2  = 0.75, RMSE = 2.93%) in the central point of compost substrates. It also systematically simulated fluctuations in oxygen concentration caused by boundary conditions and the spatial distribution of the actual temperature and oxygen concentration. The proposed model exhibits good applicability in simulating the actual working conditions of aerobic composting process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. [Co-composting high moisture vegetable waste and flower waste in a sequential fed operation].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-11-01

    Co-composting of high moisture vegetable wastes (celery and cabbage) and flower wastes (carnation) were studied in a sequential fed bed. The preliminary materials of composting were celery and carnation wastes. The sequential fed materials of composting were cabbage wastes and were fed every 4 days. Moisture content of mixture materials was between 60% and 70%. Composting was done in an aerobic static bed of composting based temperature feedback and control via aeration rate regulation. Aeration was ended when temperature of the pile was about 40 degrees C. Changes of composting of temperature, aeration rate, water content, organic matter, ash, pH, volume, NH4(+)-N, and NO3(-)-N were studied. Results show that co-composting of high moisture vegetable wastes and flower wastes, in a sequential fed aerobic static bed based temperature feedback and control via aeration rate regulation, can stabilize organic matter and removal water rapidly. The sequential fed operation are effective to overcome the difficult which traditional composting cannot applied successfully where high moisture vegetable wastes in more excess of flower wastes, such as Dianchi coastal.

  4. [Interaction Between Sulfonamide Antibiotics Fates and Chicken Manure Composting].

    PubMed

    Lin, Hui; Wang, Jian-mei; Sun, Wan-chun; Fu, Jian-rong; Chen, Hong-jin; Ma, Jun-wei

    2016-05-15

    Based on aerobic manure composting with or without the addition of a mixture of sulfadimethoxine SM2 and sulfamonomethoxine SMM (1:1, m/m), changes in the physic-chemical properties of manure compost, the microbial community physiological profiles, the antibiotics concentration and the abundances of five antibiotic resistance genes (ARGs) during the composting were tracked. The results indicated that the introduction of sulfonamide antibiotics led to inhibition on the basal respiration of manure compost during the early composting period, delayed the formation of thermophilic temperature and reduced the conversion of nutrients such as organic matter, ammonia nitrogen and nitrate nitrogen. Meanwhile, the introduction of sulfonamide antibiotics dramatically affected the physiological profile of microbial community in manure in the middle stage of composting. HPLC-MS/MS results showed that both SMM and SM2 in manure were completely degraded within 14 days, while the degradation rate of SMM was faster than that of SM2. For both composting treatments with or without addition of exogenous antibiotics, the relative abundance of sull and sul2 showed an initial decline in the first 14 or 21 days and a slight increase thereafter. The addition of exogenous antibiotics showed insignificant enhancement on increasing the relative abundance of sul1 and IntI1 in manure, but resulted in an apparent increase in sul2 relative abundance. Although the fates of tetQ and tetW during composting were different from that of sulfonamide ARGs, the introduction of sulfonamide antibiotics into manure increased the relative abundance of tetracycline ARGs. Redundancy analysis indicated that composting temperature correlated negatively with sul1, sul2 and IntI1 relative abundance in manure but had no obvious relationship with tetQ and tetW relative abundance. All the ARGs detected in this work correlated negatively with C/N ratio and the nitrate nitrogen concentration of manure compost but

  5. Effect of temperature on bacterial species diversity in thermophilic solid-waste composting.

    PubMed Central

    Strom, P F

    1985-01-01

    Continuously thermophilic composting was examined with a 4.5-liter reactor placed in an incubator maintained at representative temperatures. Feed was a mixture of dried table scraps and shredded newspaper wetted to 55% moisture. One run at 49 degrees C (run A) employed a 1:4 feed-to-compost ratio, while the other runs used a 10:1 ratio and were incubated at 50, 55, 60, or 65 degrees C. Due to self-heating, internal temperatures of the composting mass were 0 to 7 degrees C hotter than the incubator. Two full-scale composting plants (at Altoona, Pa., and Leicester, England) were also examined. Plate counts per gram (dry weight) on Trypticase soy broth (BBL Microbiology Systems) with 2% agar ranged from 0.7 X 10(9) to 5.3 X 10(9) for laboratory composting and 0.02 X 10(9) to 7.4 X 10(9) for field composting. Fifteen taxa were isolated, including 10 of genus Bacillus, which dominated all samples except that from run A. Species diversity decreased markedly in laboratory composting at 60 degrees C and above, but was similar for the three runs incubated at 49, 50, and 55 degrees C. The maximum desirable composting temperature based on species diversity is thus 60 degrees C, the same as that previously recommended based on measures of the rate of decomposition. PMID:4083885

  6. Antimycotic Activity and Genotoxic Evaluation of Citrus sinensis and Citrus latifolia Essential Oils.

    PubMed

    Ruiz-Pérez, Nancy J; González-Ávila, Marisela; Sánchez-Navarrete, Jaime; Toscano-Garibay, Julia D; Moreno-Eutimio, Mario A; Sandoval-Hernández, Teresa; Arriaga-Alba, Myriam

    2016-05-03

    The aim of this study was to evaluate the antifungal activity of essential oils (EOs) of Citrus sinensis (C. sinensis) and Citrus latifolia (C. latifolia) against five Candida species: Candida albicans, Candida tropicalis, Candida glabrata, Candida lusitaniae and Candida guilliermondii; and perform its genotoxic evaluation. The EOs of C. sinensis and C. latifolia were obtained from the peel by hydro-distillation. The major components determined by GC-MS were in C. sinensis, d-limonene (96%) and α-myrcene (2.79%); and in C. latifolia, d-limonene (51.64%), β-thujene (14.85%), β-pinene (12.79%) and γ-terpinene (12.8%). Antifungal properties were studied by agar diffusion method, where C. sinensis presented low activity and C. latifolia essential oil was effective to inhibit growing of C. lusitaniae and C. guilliermondii with IC50 of 6.90 and 2.92 μg respectively. The minimum inhibitory concentrations (MIC) for C. sinensis were in a range of 0.42-3.71 μg and for C. latifolia of 0.22-1.30 μg. Genotoxic evaluation was done by Ames test where none of the oils induced point mutations. Flow cytometry was used to measure toxicity in human oral epithelial cells, C. sinensis was not cytotoxic and C. latifolia was toxic at 21.8 μg. These properties might bestow different odontological applications to each essential oil.

  7. Performance of Elaeis Guineensis Leaves Compost in Filter Media for Stormwater Treament Through Column Study

    NASA Astrophysics Data System (ADS)

    Takaijudin, H.; Ghani, A. A.; Zakaria, N. A.; Tze, L. L.

    2016-07-01

    Compost based materials arv e widely used in filter media for improving soil capability and plant growth. The aim of this paper is to evaluate different types of compost materials used in engineered soil media through soil column investigation. Three (3) column, namely C1 (control), C2 and C3 had different types compost (10%) which were, commercial compost namely PEATGRO, Compost A and Compost B were prepared with 60% medium sand and 30% of topsoil. The diluted stormwater runoff was flushed to the columns and it was run for six (6) hour experiment. The influent and effluent samples were collected and tested for Water Quality Index (WQI) parameters. The results deduced that C3 with Elaeis Guineensis leaves compost (Compost B) achieved 90.45 (Class II) better than control condition which accomplished 84 (Class II) based on WQI Classification. C3 with Compost A (African Mahogany Leaves Compost) obtained only 59.39 (Class III). C3 with the composition of Compost B effectively removed most pollutants, including Chemical Oxygen Demand (COD, Ammoniacal Nitrogen (NH3-N), were reduced by 89±4% and 96.6±0.9%, respectively. The result concluded that Elaeis Guineensis leaves compost is recommended to be used as part of engineered soil media due to its capabilities in eliminating stormwater pollutants.

  8. Detection of Citrus Trees from Uav Dsms

    NASA Astrophysics Data System (ADS)

    Ok, A. O.; Ozdarici-Ok, A.

    2017-05-01

    This paper presents an automated approach to detect citrus trees from digitals surface models (DSMs) as a single source. The DSMs in this study are generated from Unmanned Aerial Vehicles (UAVs), and the proposed approach first considers the symmetric nature of the citrus trees, and it computes the orientation-based radial symmetry in an efficient way. The approach also takes into account the local maxima (LM) information to verify the output of the radial symmetry. Our contributions in this study are twofold: (i) Such an integrated approach (symmetry + LM) has not been tested to detect (citrus) trees (in orchards), and (ii) the validity of such an integrated approach has not been experienced for an input, e.g. a single DSM. Experiments are performed on five test patches. The results reveal that our approach is capable of counting most of the citrus trees without manual intervention. Comparison to the state-of-the-art reveals that the proposed approach provides notable detection performance by providing the best balance between precision and recall measures.

  9. Expression patterns of flowering genes in leaves of 'Pineapple' sweet orange [Citrus sinensis (L.) Osbeck] and pummelo (Citrus grandis Osbeck).

    PubMed

    Pajon, Melanie; Febres, Vicente J; Moore, Gloria A

    2017-08-30

    In citrus the transition from juvenility to mature phase is marked by the capability of a tree to flower and fruit consistently. The long period of juvenility in citrus severely impedes the use of genetic based strategies to improve fruit quality, disease resistance, and responses to abiotic environmental factors. One of the genes whose expression signals flower development in many plant species is FLOWERING LOCUS T (FT). In this study, gene expression levels of flowering genes CiFT1, CiFT2 and CiFT3 were determined using reverse-transcription quantitative real-time PCR in citrus trees over a 1 year period in Florida. Distinct genotypes of citrus trees of different ages were used. In mature trees of pummelo (Citrus grandis Osbeck) and 'Pineapple' sweet orange (Citrus sinensis (L.) Osbeck) the expression of all three CiFT genes was coordinated and significantly higher in April, after flowering was over, regardless of whether they were in the greenhouse or in the field. Interestingly, immature 'Pineapple' seedlings showed significantly high levels of CiFT3 expression in April and June, while CiFT1 and CiFT2 were highest in June, and hence their expression induction was not simultaneous as in mature plants. In mature citrus trees the induction of CiFTs expression in leaves occurs at the end of spring and after flowering has taken place suggesting it is not associated with dormancy interruption and further flower bud development but is probably involved with shoot apex differentiation and flower bud determination. CiFTs were also seasonally induced in immature seedlings, indicating that additional factors must be suppressing flowering induction and their expression has other functions.

  10. Compostability and biodegradation study of PLA-wheat straw and PLA-soy straw based green composites in simulated composting bioreactor.

    PubMed

    Pradhan, Ranjan; Misra, Manjusri; Erickson, Larry; Mohanty, Amar

    2010-11-01

    A laboratory scale simulated composting facility (as per ASTM D 5338) was designed and utilized to determine and evaluate the extent of degradation of polylactic acid (PLA), untreated wheat and soy straw and injection moulded composites of PLA-wheat straw (70:30) and PLA-soy straw (70:30). The outcomes of the study revealed the suitability of the test protocol, validity of the test system and defined the compostability of the composites of PLA with unmodified natural substrate. The study would help to design composites using modified soy straw and wheat straw as reinforcement/filler to satisfy ASTM D 6400 specifications. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Non-growing season nitrous oxide fluxes from agricultural soils

    NASA Astrophysics Data System (ADS)

    Kariyapperuma Athukoralage, Kumudinie

    A two-year field experiment was conducted at the Arkell Research Station, Ontario, Canada to evaluate composting as a mitigation strategy for greenhouse gases (GHGs). The objectives were to quantify and compare non-growing season nitrous oxide (N2O) fluxes from agricultural soils after fall manure application of composted and untreated liquid swine manure. Nitrous oxide fluxes were measured using a micrometeorological method. Compared to untreated liquid swine manure (LSM), composted swine manure (CSM) resulted in 57% reduction of soil N2O emissions during February to April in 2005, but emissions during the same period in 2006 were not affected by treatments. This effect was related to fall and winter weather conditions with the significant reduction occurring in the year when soil freezing was more pronounced. The DNDC (DeNitrification-DeComposition) model was tested against data measured during the non-growing seasons from 2000 to 2004, for farming with conventional management at the Elora Research Station, Ontario, Canada. The objective was to assess the ability of the DNDC model to simulate non-growing season N2O fluxes from soils in southwestern Ontario. Comparison between model-simulated and measured data indicated that background fluxes were relatively well predicted. The spring thaw N2O flux event was correctly timed by the DNDC model, but was smaller than the measured spring thaw event. Though there was no N2O emission event measured in early May, the DNDC model predicted a large event, simultaneous with the physical release of predicted ice-trapped N2O. Removing the large and late predicted emission peak and increasing the contribution of newly produced N2O due to denitrification to the early spring thaw event were proposed. Three data sets from studies conducted in Ontario, Canada were used to estimate and compare the overall GHG (N2O and methane) emissions from LSM and CSM. Compared to LSM storage, the composting process reduced GHG emissions by 35% (CO

  12. Genome-wide genetic variation and comparison of fruit-associated traits between kumquat (Citrus japonica) and Clementine mandarin (Citrus clementina).

    PubMed

    Liu, Tian-Jia; Li, Yong-Ping; Zhou, Jing-Jing; Hu, Chun-Gen; Zhang, Jin-Zhi

    2018-03-01

    The comprehensive genetic variation of two citrus species were analyzed at genome and transcriptome level. A total of 1090 differentially expressed genes were found during fruit development by RNA-sequencing. Fruit size (fruit equatorial diameter) and weight (fresh weight) are the two most important components determining yield and consumer acceptability for many horticultural crops. However, little is known about the genetic control of these traits. Here, we performed whole-genome resequencing to reveal the comprehensive genetic variation of the fruit development between kumquat (Citrus japonica) and Clementine mandarin (Citrus clementina). In total, 5,865,235 single-nucleotide polymorphisms (SNPs) and 414,447 insertions/deletions (InDels) were identified in the two citrus species. Based on integrative analysis of genome and transcriptome of fruit, 640,801 SNPs and 20,733 InDels were identified. The features, genomic distribution, functional effect, and other characteristics of these genetic variations were explored. RNA-sequencing identified 1090 differentially expressed genes (DEGs) during fruit development of kumquat and Clementine mandarin. Gene Ontology revealed that these genes were involved in various molecular functional and biological processes. In addition, the genetic variation of 939 DEGs and 74 multiple fruit development pathway genes from previous reports were also identified. A global survey identified 24,237 specific alternative splicing events in the two citrus species and showed that intron retention is the most prevalent pattern of alternative splicing. These genome variation data provide a foundation for further exploration of citrus diversity and gene-phenotype relationships and for future research on molecular breeding to improve kumquat, Clementine mandarin and related species.

  13. Development and systematic validation of qPCR assays for rapid and reliable differentiation of Xylella fastidiosa strains causing citrus variegated chlorosis.

    PubMed

    Li, Wenbin; Teixeira, Diva C; Hartung, John S; Huang, Qi; Duan, Yongping; Zhou, Lijuan; Chen, Jianchi; Lin, Hong; Lopes, Silvio; Ayres, A Juliano; Levy, Laurene

    2013-01-01

    The xylem-limited, Gram-negative, fastidious plant bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC), a destructive disease affecting approximately half of the citrus plantations in the State of São Paulo, Brazil. The disease was recently found in Central America and is threatening the multi-billion U.S. citrus industry. Many strains of X. fastidiosa are pathogens or endophytes in various plants growing in the U.S., and some strains cross infect several host plants. In this study, a TaqMan-based assay targeting the 16S rDNA signature region was developed for the identification of X. fastidiosa at the species level. Another TaqMan-based assay was developed for the specific identification of the CVC strains. Both new assays have been systematically validated in comparison with the primer/probe sets from four previously published assays on one platform and under similar PCR conditions, and shown to be superior. The species specific assay detected all X. fastidiosa strains and did not amplify any other citrus pathogen or endophyte tested. The CVC-specific assay detected all CVC strains but did not amplify any non-CVC X. fastidiosa nor any other citrus pathogen or endophyte evaluated. Both sets were multiplexed with a reliable internal control assay targeting host plant DNA, and their diagnostic specificity and sensitivity remained unchanged. This internal control provides quality assurance for DNA extraction, performance of PCR reagents, platforms and operators. The limit of detection for both assays was equivalent to 2 to 10 cells of X. fastidiosa per reaction for field citrus samples. Petioles and midribs of symptomatic leaves of sweet orange harbored the highest populations of X. fastidiosa, providing the best materials for detection of the pathogen. These new species specific assay will be invaluable for molecular identification of X. fastidiosa at the species level, and the CVC specific assay will be very powerful for the

  14. Two previously unknown Phytophthora species associated with brown rot of Pomelo (Citrus grandis) fruits in Vietnam.

    PubMed

    Puglisi, Ivana; De Patrizio, Alessandro; Schena, Leonardo; Jung, Thomas; Evoli, Maria; Pane, Antonella; Van Hoa, Nguyen; Van Tri, Mai; Wright, Sandra; Ramstedt, Mauritz; Olsson, Christer; Faedda, Roberto; Magnano di San Lio, Gaetano; Cacciola, Santa Olga

    2017-01-01

    Two distinct Phytophthora taxa were found to be associated with brown rot of pomelo (Citrus grandis), a new disease of this ancestral Citrus species, in the Vinh Long province, Mekong River Delta area, southern Vietnam. On the basis of morphological characters and using the ITS1-5.8S-ITS2 region of the rDNA and the cytochrome oxidase subunit 1 (COI) as barcode genes, one of the two taxa was provisionally named as Phytophthora sp. prodigiosa, being closely related to but distinct from P. insolita, a species in Phytophthora Clade 9, while the other one, was closely related to but distinct from the Clade 2 species P. meadii and was informally designated as Phytophthora sp. mekongensis. Isolates of P. sp. prodigiosa and P. sp. mekongensis were also obtained from necrotic fibrous roots of Volkamer lemon (C. volkameriana) rootstocks grafted with 'King' mandarin (Citrus nobilis) and from trees of pomelo, respectively, in other provinces of the Mekong River Delta, indicating a widespread occurrence of both Phytophthora species in this citrus-growing area. Koch's postulates were fulfilled via pathogenicity tests on fruits of various Citrus species, including pomelo, grapefruit (Citrus x paradisi), sweet orange (Citrus x sinensis) and bergamot (Citrus x bergamia) as well as on the rootstock of 2-year-old trees of pomelo and sweet orange on 'Carrizo' citrange (C. sinensis 'Washington Navel' x Poncirus trifoliata). This is the first report of a Phytophthora species from Clade 2 other than P. citricola and P. citrophthora as causal agent of fruit brown rot of Citrus worldwide and the first report of P. insolita complex in Vietnam. Results indicate that likely Vietnam is still an unexplored reservoir of Phytophthora diversity.

  15. Two previously unknown Phytophthora species associated with brown rot of Pomelo (Citrus grandis) fruits in Vietnam

    PubMed Central

    Schena, Leonardo; Jung, Thomas; Evoli, Maria; Pane, Antonella; Van Hoa, Nguyen; Van Tri, Mai; Wright, Sandra; Ramstedt, Mauritz; Olsson, Christer; Faedda, Roberto; Magnano di San Lio, Gaetano

    2017-01-01

    Two distinct Phytophthora taxa were found to be associated with brown rot of pomelo (Citrus grandis), a new disease of this ancestral Citrus species, in the Vinh Long province, Mekong River Delta area, southern Vietnam. On the basis of morphological characters and using the ITS1-5.8S-ITS2 region of the rDNA and the cytochrome oxidase subunit 1 (COI) as barcode genes, one of the two taxa was provisionally named as Phytophthora sp. prodigiosa, being closely related to but distinct from P. insolita, a species in Phytophthora Clade 9, while the other one, was closely related to but distinct from the Clade 2 species P. meadii and was informally designated as Phytophthora sp. mekongensis. Isolates of P. sp. prodigiosa and P. sp. mekongensis were also obtained from necrotic fibrous roots of Volkamer lemon (C. volkameriana) rootstocks grafted with ‘King’ mandarin (Citrus nobilis) and from trees of pomelo, respectively, in other provinces of the Mekong River Delta, indicating a widespread occurrence of both Phytophthora species in this citrus-growing area. Koch’s postulates were fulfilled via pathogenicity tests on fruits of various Citrus species, including pomelo, grapefruit (Citrus x paradisi), sweet orange (Citrus x sinensis) and bergamot (Citrus x bergamia) as well as on the rootstock of 2-year-old trees of pomelo and sweet orange on ‘Carrizo’ citrange (C. sinensis ‘Washington Navel’ x Poncirus trifoliata). This is the first report of a Phytophthora species from Clade 2 other than P. citricola and P. citrophthora as causal agent of fruit brown rot of Citrus worldwide and the first report of P. insolita complex in Vietnam. Results indicate that likely Vietnam is still an unexplored reservoir of Phytophthora diversity. PMID:28208159

  16. Effect of matured compost as an inoculating agent on odour removal and maturation of vegetable and fruit waste compost.

    PubMed

    Chen, Chih-Yu; Kuo, Jong-Tar; Chung, Ying-Chien

    2013-01-01

    The use of matured compost as an inoculation agent to improve the composting of vegetable and fruit wastes in a laboratory-scale composter was evaluated, and the commercial feasibility of this approach in a pilot-scale (1.8 x 10(4) L) composter was subsequently confirmed. The effect of aeration rate on the physico-chemical and biological properties of compost was also studied. Aeration rate affected the fermentation temperature, moisture content, pH, O2 consumption rate, CO2 production rate and the formation of odour. The optimal aeration rate was 2.5 L air/kg dry solid/min. The CO2 production rate approached the theoretical value during composting and was linearly dependent on temperature, indicating that the compost system had good operating characteristics. The inoculation of cellulolytic bacteria and deodorizing bacteria to compost in the pilot-scale composter led to an 18.2% volatile solids loss and a 64.3% volume reduction ratio in 52 h; only 1.5 ppm(v) odour was detected. This is the first study to focus on both operating performance and odour removal in a pilot-scale composter.

  17. The Learning of Compost Practice in University

    NASA Astrophysics Data System (ADS)

    Agustina, T. W.; Rustaman, N. Y.; Riandi; Purwianingsih, W.

    2017-09-01

    The compost as one of the topics of the Urban Farming Movement in Bandung city, Indonesia. The preliminary study aims to obtain a description of the performance capabilities and compost products made by students with STREAM (Science-Technology-Religion-Art-Mathematics) approach. The method was explanatory sequential mixed method. The study was conducted on one class of Biology Education students at the one of the universities in Bandung, Indonesia. The sample was chosen purposively with the number of students as many as 44 people. The instruments were making Student Worksheets, Observation Sheets of Performance and Product Assessment, Rubric of Performance and Product, and Field Notes. The indicators of performance assessment rubrics include Stirring of Compost Materials and Composting Technology in accordance with the design. The product assessment rubric are a Good Composting Criteria and Compost Packaging. The result of can be stated most students have good performance. However, the ability to design of compost technology, compost products and the ability to pack compost are still lacking. The implication of study is students of Biology Education require habituation in the ability of designing technology.

  18. Rapid differentiation of citrus Hop stunt viroid variants by real-time RT-PCR and high resolution melting analysis.

    PubMed

    Loconsole, Giuliana; Onelge, Nuket; Yokomi, Raymond K; Kubaa, Raied Abou; Savino, Vito; Saponari, Maria

    2013-01-01

    The RNA genome of pathogenic and non-pathogenic variants of citrus Hop stunt viroid (HSVd) differ by five to six nucleotides located within the variable (V) domain referred to as the "cachexia expression motif". Sensitive hosts such as mandarin and its hybrids are seriously affected by cachexia disease. Current methods to differentiate HSVd variants rely on lengthy greenhouse biological indexing on Parson's Special mandarin and/or direct nucleotide sequence analysis of amplicons from RT-PCR of HSVd-infected plants. Two independent high throughput assays to segregate HSVd variants by real-time RT-PCR and High-Resolution Melting Temperature (HRM) analysis were developed: one based on EVAGreen dye; the other based on TaqMan probes. Primers for both assays targeted three differentiating nucleotides in the V domain which separated HSVd variants into three clusters by distinct melting temperatures with a confidence level higher than 98%. The accuracy of the HRM assays were validated by nucleotide sequencing of representative samples within each HRM cluster and by testing 45 HSVd-infected field trees from California, Italy, Spain, Syria and Turkey. To our knowledge, this is the first report of a rapid and sensitive approach to detect and differentiate HSVd variants associated with different biological behaviors. Although, HSVd is found in several crops including citrus, cachexia variants are restricted to some citrus-growing areas, particularly the Mediterranean Region. Rapid diagnosis for cachexia and non-cachexia variants is, thus, important for the management of HSVd in citrus and reduces the need for bioindexing and sequencing analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Production of well-matured compost from night-soil sludge by an extremely short period of thermophilic composting.

    PubMed

    Nakasaki, Kiyohiko; Ohtaki, Akihito; Takemoto, Minoru; Fujiwara, Shunrokuro

    2011-03-01

    The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60°C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (E(C)), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., E(C)=10% and 20%). It was found that the larger the E(C), the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tambone, Fulvia, E-mail: fulvia.tambone@unimi.it; Terruzzi, Laura; Scaglia, Barbara

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops andmore » agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO{sub 2} kg V S{sup −1} h{sup −1}. Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS {sup 13}C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)« less

  1. Citrus leprosis virus N: A New Dichorhavirus Causing Citrus Leprosis Disease.

    PubMed

    Ramos-González, Pedro Luis; Chabi-Jesus, Camila; Guerra-Peraza, Orlene; Tassi, Aline Daniele; Kitajima, Elliot Watanabe; Harakava, Ricardo; Salaroli, Renato Barbosa; Freitas-Astúa, Juliana

    2017-08-01

    Citrus leprosis (CL) is a viral disease endemic to the Western Hemisphere that produces local necrotic and chlorotic lesions on leaves, branches, and fruit and causes serious yield reduction in citrus orchards. Samples of sweet orange (Citrus × sinensis) trees showing CL symptoms were collected during a survey in noncommercial citrus areas in the southeast region of Brazil in 2013 to 2016. Transmission electron microscopy analyses of foliar lesions confirmed the presence of rod-like viral particles commonly associated with CL in the nucleus and cytoplasm of infected cells. However, every attempt to identify these particles by reverse-transcription polymerase chain reaction tests failed, even though all described primers for the detection of known CL-causing cileviruses and dichorhaviruses were used. Next-generation sequencing of total RNA extracts from three symptomatic samples revealed the genome of distinct, although highly related (>92% nucleotide sequence identity), viruses whose genetic organization is similar to that of dichorhaviruses. The genome sequence of these viruses showed <62% nucleotide sequence identity with those of orchid fleck virus and coffee ringspot virus. Globally, the deduced amino acid sequences of the open reading frames they encode share 32.7 to 63.8% identity with the proteins of the dichorhavirids. Mites collected from both the naturally infected citrus trees and those used for the transmission of one of the characterized isolates to Arabidopsis plants were anatomically recognized as Brevipalpus phoenicis sensu stricto. Molecular and biological features indicate that the identified viruses belong to a new species of CL-associated dichorhavirus, which we propose to call Citrus leprosis N dichorhavirus. Our results, while emphasizing the increasing diversity of viruses causing CL disease, lead to a reevaluation of the nomenclature of those viruses assigned to the genus Dichorhavirus. In this regard, a comprehensive discussion is

  2. Effects of woody peat and superphosphate on compost maturity and gaseous emissions during pig manure composting.

    PubMed

    Zhang, Difang; Luo, Wenhai; Yuan, Jing; Li, Guoxue; Luo, Yuan

    2017-10-01

    This study investigated the effect of calcium superphosphate on compost maturity and gaseous emissions during pig manure composting with woody peat as the bulking agent. Two treatments were conducted with or without the addition of calcium superphosphate (10% dry weight of the composting mass), which were denoted as the control and superphosphate-amended treatment, respectively. Results show that the composting temperature of both treatments was higher than 50°C for more than 5days, which is typically required for pathogen destruction during manure composting. Compared to the control treatment, the superphosphate-amended treatment increased the emission of nitrogen oxide, but reduced the emission of methane, ammonia and hydrogen sulfide by approximately 35.5%, 37.9% and 65.5%, respectively. As a result, the total greenhouse gas (GHG) emission during manure composting was reduced by nearly 34.7% with the addition of calcium superphosphate. The addition of calcium superphosphate increased the content of humic acid (indicated by E 4 /E 6 ratio). Nevertheless, the superphosphate-amended treatment postponed the biological degradation of organic matter and produced the mature compost with a higher electrical conductivity in comparison with the control treatment. Copyright © 2017. Published by Elsevier Ltd.

  3. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties.

    PubMed

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO2 kg V S(-1)h(-1). Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS (13)C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Composting of bio-waste, aerobic and anaerobic sludges--effect of feedstock on the process and quality of compost.

    PubMed

    Himanen, Marina; Hänninen, Kari

    2011-02-01

    In-vessel composting of three stocks with originally different degree of organic matter degradation was conducted for: (1) kitchen source-separated bio-waste (BW), (2) aerobic (AS) as well as (3) anaerobic sludges (AnS) from municipal wastewater treatment plant. Composting experiment lasted over a year. The highest activity of the process was in the BW compost. It was implied by the highest temperature, CO(2) release, ammonification and nitrification, intensive accumulation and removal of low-weight carboxylic acids (water- and NaOH-extractable). Between the sludges higher mineralization and CO2 release was in AnS, while ammonification and nitrification were higher in AS compost; no significant difference between sludge composts was noticed for dynamics of pH, conductivity, concentrations of LWCA, and some nutrient compounds and heavy metals. Nitrogen content of the final compost increased in BW, but decreased in AS and AnS. Phytotoxicity of Lepidium sativum was eliminated faster in sludge composts compared to BW compost. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. In-vessel composting of household wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyengar, Srinath R.; Bhave, Prashant P.

    The process of composting has been studied using five different types of reactors, each simulating a different condition for the formation of compost; one of which was designed as a dynamic complete-mix type household compost reactor. A lab-scale study was conducted first using the compost accelerators culture (Trichoderma viridae, Trichoderma harzianum, Trichorus spirallis, Aspergillus sp., Paecilomyces fusisporus, Chaetomium globosum) grown on jowar (Sorghum vulgare) grains as the inoculum mixed with cow-dung slurry, and then by using the mulch/compost formed in the respective reactors as the inoculum. The reactors were loaded with raw as well as cooked vegetable waste for amore » period of 4 weeks and then the mulch formed was allowed to maturate. The mulch was analysed at various stages for the compost and other environmental parameters. The compost from the designed aerobic reactor provides good humus to build up a poor physical soil and some basic plant nutrients. This proves to be an efficient, eco-friendly, cost-effective, and nuisance-free solution for the management of household solid wastes.« less

  6. Improved composting of poultry feces via supplementation with ammonia oxidizing archaea.

    PubMed

    Xie, Kaizhi; Jia, Xiaoshan; Xu, Peizhi; Huang, Xu; Gu, Wenjie; Zhang, Fabao; Yang, Shaohai; Tang, Shuanhu

    2012-09-01

    Ammonia-oxidizing archaea (AOA) play an important role in the oxidation of ammonia. However, the participation of AOA in the composting process has not been established. The addition of AOA to a compost mix was able to speed up both the onset of the hyperthermic phase and the composting time. The composition of the microflora and the relative abundance were determined by using denaturing gradient gel electrophoresis and quantitative real-time PCR, based on the presence of the archaeal amoA genes. The amplicon profiles allowed some of the major AOA species present in the final compost to be identified, and their relative abundance to be estimated from their amplification intensity. The lower pH during the lower temperature phase of compost served to enhance the nitrogen content of the final compost. The addition of AOA resulted in the expanding diversity of microflora species than that of the natural colonization. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  7. Overexpression of a modified plant thionin enhances disease resistance to citrus canker and huanglongbing (HLB, citrus greening)

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB or citrus greening disease) caused by Candidatus Liberibacter asiaticus (Las) is a great threat to the United States citrus industry. Citrus canker is also an economically important disease associated with a bacterial pathogen (Xanthomonas citri). In this study, we characterized e...

  8. Compost Addition Enhanced Hyphal Growth and Sporulation of Arbuscular Mycorrhizal Fungi without Affecting Their Community Composition in the Soil

    PubMed Central

    Yang, Wei; Gu, Siyu; Xin, Ying; Bello, Ayodeji; Sun, Wenpeng; Xu, Xiuhong

    2018-01-01

    Arbuscular mycorrhizal (AM) fungi form symbiotic associations with most crop plant species in agricultural ecosystems, and are conspicuously influenced by various agricultural practices. To understand the impact of compost addition on AM fungi, we examined effect of four compost rates (0, 11.25, 22.5, and 45 Mg/ha) on the abundance and community composition of AM fungi in seedling, flowering, and mature stage of soybean in a 1-year compost addition experiment system in Northeast China. Soybean [Glycine max (L.) Merrill] was used as test plant. Moderate (22.5 Mg/ha) and high (45 Mg/ha) levels of compost addition significantly increased AM root colonization and extraradical hyphal (ERH) density compared with control, whereas low (11.5 Mg/ha) level of compost addition did not cause significant increase in AM root colonization and ERH density. AM fungal spore density was significantly enhanced by all the compost rates compared with control. The temporal variations analysis revealed that, AM root colonization in seedling stage was significantly lower than in flowering and mature stage. Although AM fungal operational taxonomic unit richness and community composition was unaffected by compost addition, some abundant AM fungal species showed significantly different response to compost addition. In mature stage, Rhizophagus fasciculatum showed increasing trend along with compost addition gradient, whereas the opposite was observed with Paraglomus sp. In addition, AM fungal community composition exhibited significant temporal variation during growing season. Further analysis indicated that the temporal variation in AM fungal community only occurred in control treatment, but not in low, moderate, and high level of compost addition treatments. Our findings highlighted the significant effects of compost addition on AM growth and sporulation, and emphasized that growth stage is a stronger determinant than 1-year compost addition in shaping AM fungal community in black soil of

  9. Compost Addition Enhanced Hyphal Growth and Sporulation of Arbuscular Mycorrhizal Fungi without Affecting Their Community Composition in the Soil.

    PubMed

    Yang, Wei; Gu, Siyu; Xin, Ying; Bello, Ayodeji; Sun, Wenpeng; Xu, Xiuhong

    2018-01-01

    Arbuscular mycorrhizal (AM) fungi form symbiotic associations with most crop plant species in agricultural ecosystems, and are conspicuously influenced by various agricultural practices. To understand the impact of compost addition on AM fungi, we examined effect of four compost rates (0, 11.25, 22.5, and 45 Mg/ha) on the abundance and community composition of AM fungi in seedling, flowering, and mature stage of soybean in a 1-year compost addition experiment system in Northeast China. Soybean [ Glycine max (L.) Merrill] was used as test plant. Moderate (22.5 Mg/ha) and high (45 Mg/ha) levels of compost addition significantly increased AM root colonization and extraradical hyphal (ERH) density compared with control, whereas low (11.5 Mg/ha) level of compost addition did not cause significant increase in AM root colonization and ERH density. AM fungal spore density was significantly enhanced by all the compost rates compared with control. The temporal variations analysis revealed that, AM root colonization in seedling stage was significantly lower than in flowering and mature stage. Although AM fungal operational taxonomic unit richness and community composition was unaffected by compost addition, some abundant AM fungal species showed significantly different response to compost addition. In mature stage, Rhizophagus fasciculatum showed increasing trend along with compost addition gradient, whereas the opposite was observed with Paraglomus sp. In addition, AM fungal community composition exhibited significant temporal variation during growing season. Further analysis indicated that the temporal variation in AM fungal community only occurred in control treatment, but not in low, moderate, and high level of compost addition treatments. Our findings highlighted the significant effects of compost addition on AM growth and sporulation, and emphasized that growth stage is a stronger determinant than 1-year compost addition in shaping AM fungal community in black soil of

  10. Composting of food wastes: Status and challenges.

    PubMed

    Cerda, Alejandra; Artola, Adriana; Font, Xavier; Barrena, Raquel; Gea, Teresa; Sánchez, Antoni

    2018-01-01

    This review analyses the main challenges of the process of food waste composting and examines the crucial aspects related to the quality of the produced compost. Although recent advances have been made in crucial aspects of the process, such composting microbiology, improvements are needed in process monitoring. Therefore, specific problems related to food waste composting, such as the presence of impurities, are thoroughly analysed in this study. In addition, environmental impacts related to food waste composting, such as emissions of greenhouse gases and odours, are discussed. Finally, the use of food waste compost in soil bioremediation is discussed in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Citrus Inventory

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An aerial color infrared (CIR) mapping system developed by Kennedy Space Center enables Florida's Charlotte County to accurately appraise its citrus groves while reducing appraisal costs. The technology was further advanced by development of a dual video system making it possible to simultaneously view images of the same area and detect changes. An image analysis system automatically surveys and photo interprets grove images as well as automatically counts trees and reports totals. The system, which saves both time and money, has potential beyond citrus grove valuation.

  12. Citrus Inventory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Florida's Charlotte County Property Appraiser is using an aerial color infrared mapping system for inventorying citrus trees for valuation purposes. The ACIR system has significantly reduced the time and manpower required for appraisal. Aerial photographs are taken and interpreted by a video system which makes it possible to detect changes from previous years. Potential problems can be identified. KSC's TU Office has awarded a contract to the Citrus Research and Education Center to adapt a prototype system which would automatically count trees and report totals.

  13. Pathogen re-colonization of in-house composted and non-composted broiler litter

    USDA-ARS?s Scientific Manuscript database

    “In-house” litter composting has been reintroduced to the industry and shown to reduce bacteria by as much as two orders of magnitude. Other industries have demonstrated that pathogens can recolonize a waste-residual when microbial competition has been reduced or inhibited following composting. Po...

  14. Weeping dragon, a unique ornamenal citrus

    USDA-ARS?s Scientific Manuscript database

    ‘Weeping Dragon’ is a new ornamental citrus cultivar developed by intercrossing of two unusual and unique citrus types, Poncirus trifoliata cultivated variety (cv.) Flying Dragon, and Citrus sinensis cv. ‘Cipo’. This new hybrid cultivar combines strongly contorted and weeping growth traits in a smal...

  15. Economic injury levels for Asian citrus psyllid control in process oranges from mature trees with high incidence of huanglongbing

    PubMed Central

    Monzo, Cesar; Stansly, Philip A.

    2017-01-01

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is the key pest of citrus wherever it occurs due to its role as vector of huanglongbing (HLB) also known as citrus greening disease. Insecticidal vector control is considered to be the primary strategy for HLB management and is typically intense owing to the severity of this disease. While this approach slows spread and also decreases severity of HLB once the disease is established, economic viability of increasingly frequent sprays is uncertain. Lacking until now were studies evaluating the optimum frequency of insecticide applications to mature trees during the growing season under conditions of high HLB incidence. We related different degrees of insecticide control with ACP abundance and ultimately, with HLB-associated yield losses in two four-year replicated experiments conducted in commercial groves of mature orange trees under high HLB incidence. Decisions on insecticide applications directed at ACP were made by project managers and confined to designated plots according to experimental design. All operational costs as well as production benefits were taken into account for economic analysis. The relationship between management costs, ACP abundance and HLB-associated economic losses based on current prices for process oranges was used to determine the optimum frequency and timing for insecticide applications during the growing season. Trees under the most intensive insecticidal control harbored fewest ACP resulting in greatest yields. The relationship between vector densities and yield loss was significant but differed between the two test orchards, possibly due to varying initial HLB infection levels, ACP populations or cultivar response. Based on these relationships, treatment thresholds during the growing season were obtained as a function of application costs, juice market prices and ACP densities. A conservative threshold for mature trees with high incidence of HLB would help maintain economic

  16. Economic injury levels for Asian citrus psyllid control in process oranges from mature trees with high incidence of huanglongbing.

    PubMed

    Monzo, Cesar; Stansly, Philip A

    2017-01-01

    The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is the key pest of citrus wherever it occurs due to its role as vector of huanglongbing (HLB) also known as citrus greening disease. Insecticidal vector control is considered to be the primary strategy for HLB management and is typically intense owing to the severity of this disease. While this approach slows spread and also decreases severity of HLB once the disease is established, economic viability of increasingly frequent sprays is uncertain. Lacking until now were studies evaluating the optimum frequency of insecticide applications to mature trees during the growing season under conditions of high HLB incidence. We related different degrees of insecticide control with ACP abundance and ultimately, with HLB-associated yield losses in two four-year replicated experiments conducted in commercial groves of mature orange trees under high HLB incidence. Decisions on insecticide applications directed at ACP were made by project managers and confined to designated plots according to experimental design. All operational costs as well as production benefits were taken into account for economic analysis. The relationship between management costs, ACP abundance and HLB-associated economic losses based on current prices for process oranges was used to determine the optimum frequency and timing for insecticide applications during the growing season. Trees under the most intensive insecticidal control harbored fewest ACP resulting in greatest yields. The relationship between vector densities and yield loss was significant but differed between the two test orchards, possibly due to varying initial HLB infection levels, ACP populations or cultivar response. Based on these relationships, treatment thresholds during the growing season were obtained as a function of application costs, juice market prices and ACP densities. A conservative threshold for mature trees with high incidence of HLB would help maintain economic

  17. Antimicrobial nanoemulsion formulation with improved penetration of foliar spray through citrus leaf cuticles to control citrus Huanglongbing

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB) is one of the most serious citrus diseases that threaten citrus industry worldwide. Because Candidatus Liberibacter asiaticus (Las) resides in citrus phloem, it is difficult to deliver an effective chemical compound into the phloem for control of HLB. In this study, a transcuticu...

  18. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and

  19. 78 FR 41259 - Importation of Fresh Citrus Fruit From Uruguay, Including Citrus

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... net increase in the U.S. supply of fresh citrus varieties, as well as some displacement of the... statement in the economic analysis that ``any product displacement that may occur because of the proposed... share (product displacement) for current foreign suppliers of fresh citrus to the United States. U.S...

  20. The Compost Pile Meets the 1990's.

    ERIC Educational Resources Information Center

    Paddock, Todd

    1991-01-01

    Advocates composting as a valuable alternative to the landfill for waste management. As much as two-thirds of garbage can be composted, and the process has become more cost effective. Some challenges to composting are producing a compost product that will sell and dealing with the odor created by the process. (KS)

  1. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting.

    PubMed

    Nakasaki, Kiyohiko; Araya, Shogo; Mimoto, Hiroshi

    2013-09-01

    In this study, the yeast strain Pichia kudriavzevii RB1 was used as an inoculum to accelerate organic matter degradation of rabbit food with added organic acids, which was used as a model food waste for composting. The RB1 strain rapidly degraded the organic acids present in the raw compost material, leading to an increase in pH beyond the neutral level, within 2 days. Both mesophilic and thermophilic bacteria proliferated faster in the compost with RB1 inoculation than in that without inoculation. Although the yeast died with the increase in compost temperature, it affected the early stages of composting prior to the thermophilic stage and accelerated the composting process by 2 days by eliminating the initial lag phase seen in the growth of other microorganisms. Moreover, populations of Bacillus thermoamylovorans, Bacillus foraminis, and Bacillus coagulans became dominant during the thermophilic stages of both composting with and without RB1 inoculation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Influence of different organic fertilizers on quality parameters and the delta(15)N, delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of orange fruit (Citrus sinensis L. Osbeck).

    PubMed

    Rapisarda, Paolo; Camin, Federica; Fabroni, Simona; Perini, Matteo; Torrisi, Biagio; Intrigliolo, Francesco

    2010-03-24

    To investigate the influence of different types of fertilizers on quality parameters, N-containing compounds, and the delta(15)N, delta(13)C, delta(2)H, delta (34)S, and delta(18)O values of citrus fruit, a study was performed on the orange fruit cv. 'Valencia late' (Citrus sinensis L. Osbeck), which was harvested in four plots (three organic and one conventional) located on the same farm. The results demonstrated that different types of organic fertilizers containing the same amount of nitrogen did not effect important changes in orange fruit quality parameters. The levels of total N and N-containing compounds such as synephrine in fruit juice were not statistically different among the different treatments. The delta(15)N values of orange fruit grown under fertilizer derived from animal origin as well as from vegetable compost were statistically higher than those grown with mineral fertilizer. Therefore, delta(15)N values can be used as an indicator of citrus fertilization management (organic or conventional), because even when applied organic fertilizers are of different origins, the natural abundance of (15)N in organic citrus fruit remains higher than in conventional ones. These treatments also did not effect differences in the delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of fruit.

  3. [Co-composting of high-moisture vegetable waste and flower waste in a batch operation].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-09-01

    Co-composting of different mixture made of vegetable waste and flower waste were studied. The first stage of composting was aerobic static bed based temperature feedback in a batch operation and control via aeration rate regulation. The second stage was window composting. The total composting period was 45 days. About the station of half of celery and half of carnation, the pile was insulated and temperatures of at least 55 degrees C were maintained for about 11 days. The highest temperature was up to 65 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 64.2% to 46.3% and organic matter was degraded from 74.7% to 55.6% during composting. The value of pH was had stable at 7. Analysis of maturity and nutrition of compost show that end-products of composting were bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste and flower waste can get high quality compost by optimizing composting process during 45 days. Composting can decrease non-point resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  4. Potential of a gypsum-free composting process of wheat straw for mushroom production.

    PubMed

    Mouthier, Thibaut M B; Kilic, Baris; Vervoort, Pieter; Gruppen, Harry; Kabel, Mirjam A

    2017-01-01

    Wheat straw based composting generates a selective substrate for mushroom production. The first phase of this process requires 5 days, and a reduction in time is wished. Here, we aim at understanding the effect of gypsum on the duration of the first phase and the mechanism behind it. Hereto, the regular process with gypsum addition and the same process without gypsum were studied during a 5-day period. The compost quality was evaluated based on compost lignin composition analysed by py-GC/MS and its degradability by a commercial (hemi-)cellulolytic enzyme cocktail. The composting phase lead to the decrease of the pyrolysis products 4-vinylphenol and 4-vinylguaiacol that can be associated with p-coumarates and ferulates linking xylan and lignin. In the regular compost, the enzymatic conversion reached 32 and 39% for cellulose, and 23 and 32% for xylan after 3 and 5 days, respectively. In absence of gypsum similar values were reached after 2 and 4 days, respectively. Thus, our data show that in absence of gypsum the desired compost quality was reached 20% earlier compared to the control process.

  5. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization.

    PubMed

    Sujitha, Mohanan V; Kannan, Soundarapandian

    2013-02-01

    This study reports the biological synthesis of gold nanoparticles by the reduction of HAuCl(4) by using citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) juice extract as the reducing and stabilizing agent. A various shape and size of gold nanoparticles were formed when the ratio of the reactants were altered with respect to 1.0mM chloroauric acid solution. The gold nanoparticles obtained were characterized by UV-visible spectra, transmission electron microscopy (TEM) and X-ray diffraction (XRD). TEM studies showed the particles to be of various shapes and sizes and particle size ranges from 15 to 80 nm. Selected-area electron diffraction (SAED) pattern confirmed fcc phase and crystallinity of the particles. The X-ray diffraction analysis revealed the distinctive facets (111, 200, 220 and 222 planes) of gold nanoparticles. Dynamic light scattering (DLS) studies revealed that the average size for colloid gp(3) of C. limon, C. reticulata and C. sinensis are 32.2 nm, 43.4 nm and 56.7 nm respectively. The DLS graph showed that the particles size was larger and more polydispersed compared to the one observed by TEM due to the fact that the measured size also includes the bio-organic compounds enveloping the core of the Au NPs. Zeta potential value for gold nanoparticles obtained from colloid gp(3) of C. limon, C. reticulata and C. sinensis are -45.9, -37.9 and -31.4 respectively indicating the stability of the synthesized nanoparticles. Herein we propose a novel, previously unexploited method for the biological syntheses of polymorphic gold nanoparticles with potent biological applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Whole Animal Composting of Beef Cattle

    USDA-ARS?s Scientific Manuscript database

    Composting is the natural decomposition of organic materials by microorganisms that require oxygen. Although many aspects of composting are not exact, there are several factors that affect the success of the composting process which are 1) carbon and nitrogen ratios (C:N ratio), 2) moisture content...

  7. The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant.

    PubMed

    Yu, Zhen; Tang, Jia; Liao, Hanpeng; Liu, Xiaoming; Zhou, Puxiong; Chen, Zhi; Rensing, Christopher; Zhou, Shungui

    2018-06-07

    The application of conventional thermophilic composting (TC) is limited by poor efficiency. Newly-developed hyperthermophilic composting (HTC) is expected to overcome this shortcoming. However, the characterization of microbial communities associated with HTC remains unclear. Here, we compared the performance of HTC and TC in a full-scale sludge composting plant, and found that HTC running at the hyperthermophilic and thermophilic phases for 21 days, led to higher composting efficiency and techno-economic advantages over TC. Results of high-throughput sequencing showed drastic changes in the microbial community during HTC. Thermaceae (35.5-41.7%) was the predominant family in the hyperthermophilic phase, while the thermophilic phase was dominated by both Thermaceae (28.0-53.3%) and Thermoactinomycetaceae (29.9-36.1%). The change of microbial community could be the cause of continuous high temperature in HTC, and thus improve composting efficiency by accelerating the maturation process. This work has provided theoretical and practical guidance for managing sewage sludge by HTC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Assessment of compost maturity by using an electronic nose.

    PubMed

    López, Rafael; Giráldez, Inmaculada; Palma, Alberto; Jesús Díaz, M

    2016-02-01

    The composting process produces and emits hundreds of different gases. Volatile organic compounds (VOCs) can provide information about progress of composting process. This paper is focused on the qualitative and quantitative relationships between compost age, as sign of compost maturity, electronic-nose (e-nose) patterns and composition of compost and composting gas at an industrial scale plant. Gas and compost samples were taken at different depths from composting windrows of different ages. Temperature, classical chemical parameters, O2, CO, combustible gases, VOCs and e-nose profiles were determined and related using principal component analysis (PCA). Factor analysis carried out to a data set including compost physical-chemical properties, pile pore gas composition and composting time led to few factors, each one grouping together standard composting parameters in an easy to understand way. PCA obtained from e-nose profiles allowed the classifying of piles, their aerobic-anaerobic condition, and a rough estimation of the composting time. That would allow for immediate and in-situ assessment of compost quality and maturity by using an on-line e-nose. The e-nose patterns required only 3-4 sensor signals to account for a great percentage (97-98%) of data variance. The achieved patterns both from compost (chemical analysis) and gas (e-nose analysis) samples are robust despite the high variability in feedstock characteristics (3 different materials), composting conditions and long composting time. GC-MS chromatograms supported the patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Improving sustainability in the remediation of contaminated soils by the use of compost and energy valorization by Paulownia fortunei.

    PubMed

    Madejón, Paula; Domínguez, María Teresa; Díaz, Manuel Jesús; Madejón, Engracia

    2016-01-01

    The plantation of fast growing trees in contaminated sites, in combination with the use of organic wastes, could partially solve a dual environmental problem: the disposal of these wastes and the improvement of soil quality in these degraded soils. This study evaluated the effects of two compost on the quantity and quality of Paulownia fortunei biomass and on syngas production by biomass gasification, produced by plants growing on trace elements contaminated soils. Compost increased biomass production to values similar to those produced in non-contaminated soils, due to the improvement in plant nutritional status. Moreover, biomass quality for gasification was increased by compost addition. Trace element accumulation in the biomass was relatively low and not related to biomass production or the gas quality obtained through gasification. Thus, P. fortunei plantations could pose an opportunity to improve the economic balance of the revegetation of contaminated soils, given that other commercial uses such as food or fodder crop production is not recommended in these soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. COP-compost: a software to study the degradation of organic pollutants in composts.

    PubMed

    Zhang, Y; Lashermes, G; Houot, S; Zhu, Y-G; Barriuso, E; Garnier, P

    2014-02-01

    Composting has been demonstrated to be effective in degrading organic pollutants (OP) whose behaviour depends on the composting conditions, the microbial populations activated and interactions with organic matters. The fate of OP during composting involves complex mechanisms and models can be helpful tools for educational and scientific purposes, as well as for industrialists who want to optimise the composting process for OP elimination. A COP-Compost model, which couples an organic carbon (OC) module and an organic pollutant (OP) module and which simulates the changes of organic matter, organic pollutants and the microbial activities during the composting process, has been proposed and calibrated for a first set of OP in a previous study. The objectives of the present work were (1) to introduce the COP-Compost model from its convenient interface to a potential panel of users, (2) to show the variety of OP that could be simulated, including the possibility of choosing between degradation through co-metabolism or specific metabolism and (3) to show the effect of the initial characteristics of organic matter quality and its microbial biomass on the simulated results of the OP dynamic. In the model, we assumed that the pollutants can be adsorbed on organic matter according to the biochemical quality of the OC and that the microorganisms can degrade the pollutants at the same time as they degrade OC (by co-metabolism). A composting experiment describing two different (14)C-labelled organic pollutants, simazine and pyrene, were chosen from the literature because the four OP fractions simulated in the model were measured during the study (the mineralised, soluble, sorbed and non-extractable fractions). Except for the mineralised fraction of simazine, a good agreement was achieved between the simulated and experimental results describing the evolution of the different organic fractions. For simazine, a specific biomass had to be added. To assess the relative importance

  11. [Climatic suitability of citrus in subtropical China].

    PubMed

    Duan, Hai-Lai; Qian, Huai-Sui; Li, Ming-Xia; Du, Yao-Dong

    2010-08-01

    By applying the theories of ecological suitability and the methods of fuzzy mathematics, this paper established a climatic suitability model for citrus, calculated and evaluated the climatic suitability and its spatiotemporal differences for citrus production in subtropical China, and analyzed the climatic suitability of citrus at its different growth stages and the mean climatic suitability of citrus in different regions of subtropical China. The results showed that the citrus in subtropical China had a lower climatic suitability and a higher risk at its flower bud differentiation stage, budding stage, and fruit maturity stage, but a higher climatic suitability and a lower risk at other growth stages. Cold damage and summer drought were the key issues affecting the citrus production in subtropical China. The citrus temperature suitability represented a latitudinal zonal pattern, i. e., decreased with increasing latitude; its precipitation suitability was high in the line of "Sheyang-Napo", medium in the southeast of the line, low in the northwest of the line, and non in high mountainous area; while the sunlight suitability was in line with the actual duration of sunshine, namely, higher in high-latitude areas than in low-latitude areas, and higher in high-altitude areas than in plain areas. Limited by temperature factor, the climatic suitability was in accordance with temperature suitability, i. e., south parts had a higher suitability than north parts, basically representing latitudinal zonal pattern. From the analysis of the inter-annual changes of citrus climatic suitability, it could be seen that the citrus climatic suitability in subtropical China was decreasing, and had obvious regional differences, suggesting that climate change could bring about the changes in the regions suitable for citrus production and in the key stages of citrus growth.

  12. A graft-based chemotherapy method for screening effective molecules and rescuing Huanglongbing (HLB)-affected citrus plants

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB), the most devastating disease of citrus worldwide, is associated with three species of fastidious and phloem-limited a-Proteobacteria in the genus of ‘Candidatus Liberibacter’. We previously reported a regeneration-based chemical screening system using periwinkle cuttings. In ...

  13. Bioleached sludge composting drastically reducing ammonia volatilization as well as decreasing bulking agent dosage and improving compost quality: A case study.

    PubMed

    Hu, Weitong; Zheng, Guanyu; Fang, Di; Cui, Chunhong; Liang, Jianru; Zhou, Lixiang

    2015-10-01

    Sludge bioleaching technology with Acidithiobacillus species has been commercially adopted for improving advanced dewatering of sludge in China since 2010. However, up to now, little information on bioleached dewatered sludge (BS) composting is available. Here, we report the changes of physicochemical and biological properties in BS composting and evaluate compost product quality compared to conventional dewatered sludge (CS) composting in an engineering scale composting facility. The results showed that the amount of bulking agents required in BS composting was only about 10% of CS composting to obtain optimum moisture content, reducing about 700 kg bulking agents per ton fresh sludge. pH of BS composting mixture was slightly lower consistently by about 0.2-0.3 pH units than that in CS mixture in the first 30 days. Organic matter biodegradation in BS system mainly occurred in the first 9 days of composting. In spite of higher content of NH4(+)-N was found in BS mixture in related to CS mixture; unexpectedly the cumulative ammonia volatilization in the former was only 51% of the latter, indicating that BS composting drastically reduced nitrogen loss. Compared to CS composting system, the relative lower pH, the higher intensity of microbial assimilation, and the presence of water soluble Fe in BS system might jointly reduce ammonia volatilization. Consequently, BS compost product exhibited higher fertilizer values (N+P2O5+K2O=8.38%) as well as lower heavy metal levels due to the solubilization of sludge-borne heavy metals during bioleaching process. Therefore, composting of BS possesses more advantages over the CS composting process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Inside the small-scale composting of kitchen and garden wastes: Thermal performance and stratification effect in vertical compost bins.

    PubMed

    Arrigoni, Juan Pablo; Paladino, Gabriela; Garibaldi, Lucas Alejandro; Laos, Francisca

    2018-06-01

    Decentralized composting has been proposed as a best available practice, with a highly positive impact on municipal solid wastes management plans. However, in cold climates, decentralized small-scale composting performance to reach thermophilic temperatures (required for the product sanitization) could be poor, due to a lack of critical mass to retain heat. In addition, in these systems the composting process is usually disturbed when new portions of fresh organic waste are combined with previous batches. This causes modifications in the well-known composting evolution pattern. The objective of this work was to improve the understanding of these technical aspects through a real-scale decentralized composting experience carried out under cold climate conditions, in order to assess sanitization performance and to study the effects of fresh feedstock additions in the process evolution. Kitchen and garden organic wastes were composted in 500 L-static compost bins (without turning) for 244 days under cold climate conditions (Bariloche, NW Patagonia, Argentina), using pine wood shavings in a ratio of 1.5:1 v: v (waste: bulking agent). Temperature profile, stability indicators (microbial activity, carbon and nitrogen contents and ratio) and other variables (pH and electrical conductivity), were monitored throughout the experience. Our results indicate that small-scale composting (average generation rate of 7 kg d -1 ) is viable under cold weather conditions, since thermophilic sanitization temperatures (> 55 °C) were maintained for 3 consecutive days in most of the composting mass, according to available USEPA regulations commonly used as a reference for pathogens control in sewage sludge. On the other hand, stability indicators showed a differentiated organic matter degradation process along the compost bins height. Particularly, in the bottommost composting mix layer the process took a longer period to achieve compost stability than the upper layers, suggesting

  15. Antimycotic Activity and Genotoxic Evaluation of Citrus sinensis and Citrus latifolia Essential Oils

    PubMed Central

    Ruiz-Pérez, Nancy J.; González-Ávila, Marisela; Sánchez-Navarrete, Jaime; Toscano-Garibay, Julia D.; Moreno-Eutimio, Mario A.; Sandoval-Hernández, Teresa; Arriaga-Alba, Myriam

    2016-01-01

    The aim of this study was to evaluate the antifungal activity of essential oils (EOs) of Citrus sinensis (C. sinensis) and Citrus latifolia (C. latifolia) against five Candida species: Candida albicans, Candida tropicalis, Candida glabrata, Candida lusitaniae and Candida guilliermondii; and perform its genotoxic evaluation. The EOs of C. sinensis and C. latifolia were obtained from the peel by hydro-distillation. The major components determined by GC-MS were in C. sinensis, d-limonene (96%) and α-myrcene (2.79%); and in C. latifolia, d-limonene (51.64%), β-thujene (14.85%), β-pinene (12.79%) and γ-terpinene (12.8%). Antifungal properties were studied by agar diffusion method, where C. sinensis presented low activity and C. latifolia essential oil was effective to inhibit growing of C. lusitaniae and C. guilliermondii with IC50 of 6.90 and 2.92 μg respectively. The minimum inhibitory concentrations (MIC) for C. sinensis were in a range of 0.42–3.71 μg and for C. latifolia of 0.22–1.30 μg. Genotoxic evaluation was done by Ames test where none of the oils induced point mutations. Flow cytometry was used to measure toxicity in human oral epithelial cells, C. sinensis was not cytotoxic and C. latifolia was toxic at 21.8 μg. These properties might bestow different odontological applications to each essential oil. PMID:27137128

  16. Evaluation of Composting for Reducing Volume of Solid Waste on Contingency Bases

    DTIC Science & Technology

    2012-05-23

    Incineration Two Stage Burn Higher Burn Temperature Smaller Footprint No Sorting High Cost – Capital and Fuel Scaling and Capacity Issues...National Def nse Cent rgy and Environment Nitrogen Carbon Vapor/Gas (Void Space) Water Moisture Dry Solids Water Vapor Carbon Nitrogen Two other elements...and Environment Compost to Reduce SW on Contingency Bases, 23 May 2012, E2S2 7 National Def nse Cent rgy and Environment  The stage of the

  17. Citrus essential oils and their influence on the anaerobic digestion process: an overview.

    PubMed

    Ruiz, B; Flotats, X

    2014-11-01

    Citrus waste accounts for more than half of the whole fruit when processed for juice extraction. Among valorisation possibilities, anaerobic digestion for methane generation appears to be the most technically feasible and environmentally friendly alternative. However, citrus essential oils can inhibit this biological process. In this paper, the characteristics of citrus essential oils, as well as the mechanisms of their antimicrobial effects and potential adaptation mechanisms are reviewed. Previous studies of anaerobic digestion of citrus waste under different conditions are presented; however, some controversy exists regarding the limiting dosage of limonene for a stable process (24-192 mg of citrus essential oil per liter of digester and day). Successful strategies to avoid process inhibition by citrus essential oils are based either on recovery or removal of the limonene, by extraction or fungal pre-treatment respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Phagostimulants for the Asian citrus psyllid also elicit volatile release from citrus leaves

    USDA-ARS?s Scientific Manuscript database

    Chemical cues that elicit orientation by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), are of great interest because it is the primary vector of the causal pathogen of citrus greening disease. We identified an optimal blend ratio of formic and acetic acids that stimulate...

  19. Yield and quality responses of citrus (Citrus reticulate) and tea (Podocarpus fleuryi Hickel.) to compound fertilizers*

    PubMed Central

    Wang, Rui; Shi, Xue-gen; Wei, You-zhang; Yang, Xiao-e; Uoti, Juhani

    2006-01-01

    Experiments were carried out with citrus (Citrus reticulate) and tea (Podocarpus fleuryi Hickel.) to study the effects of compound fertilizers on their yields and quality. In the citrus experiment, application of compound fertilizers increased available P, K and Mg contents in soil but decreased alkali-hydrolyzable N contents in soil and N, P and K contents in leaves. In the tea experiment, application of compound fertilizers increased available P, K and Mg contents in soil and N, P, K and Mg contents in leaves but decreased alkali-hydrolyzable N in soil compared with the urea treatment. Application of compound fertilizers could improve the quality of citrus and tea, increase their yields and enhance their economical profits significantly. Compared with the control, application of compound fertilizers increased citrus yields by 6.31, 12.94 and 17.69 t/ha, and those of tea by 0.51, 0.86 and 1.30 t/ha, respectively. Correspondingly, profits were increased by 21.4% to 61.1% for citrus and by 10.0% to 15.7% for tea. Optimal rates of compound fertilizers were recommended for both crops. PMID:16909469

  20. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2014-11-01

    This research determined whether the two-stage co-composting can be used to convert green waste (GW) into a useful compost. The GW was co-composted with spent mushroom compost (SMC) (at 0%, 35%, and 55%) and biochar (BC) (at 0%, 20%, and 30%). The combined addition of SMC and BC greatly increased the nutrient contents of the compost product and also improved the compost quality in terms of composting temperature, particle-size distribution, free air space, cation exchange capacity, nitrogen transformation, organic matter degradation, humification, element contents, abundance of aerobic heterotrophs, dehydrogenase activity, and toxicity to germinating seeds. The addition of 35% SMC and 20% BC to GW (dry weight % of initial GW) and the two-stage co-composting technology resulted in the production of the highest quality compost product in only 24 days rather than the 90-270 days required with traditional composting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Comparison of microbially enhanced compost extracts produced from composted cattle rumen content material and from commercially available inocula.

    PubMed

    Shrestha, Karuna; Adetutu, Eric M; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Ball, Andrew S; Midmore, David J

    2011-09-01

    A comparative study was performed on compost extracts prepared from cattle rumen content composted for three and nine months, nine month old compost inoculated with a Nutri-Life 4/20™ inoculum, and two commercial preparations (LivingSoil™ and Nutri-Life 4/20™), all incubated for 48h. Nutri-Life 4/20™ had the highest concentrations of NO(3)(-)-N and K(+)-K, while rumen compost extract had higher humic and fulvic acids concentration. The bacterial and fungal community level functional diversity of three month old compost extract and of LivingSoil™, assessed with Biolog™, were higher than that of nine month old rumen compost extract, with or without Nutri-Life 4/20™ inoculum, or Nutri-Life 4/20™. No difference in fungal diversity was observed between treatments, as indicated by Denaturing Gradient Gel Electrophoresis (DGGE) analysis, however, bacterial diversity was higher in all compost extracts and LivingSoil™ compared to the Nutri-Life 4/20™. Criteria for judging the quality of a microbially enhanced extract are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Spectral sensitivity of the Asian citrus psyllid, Diaphorina citri

    USDA-ARS?s Scientific Manuscript database

    The Asian Citrus psyllid, Diaphorina citri, as a vector of the bacteria causing citrus greening, is considered one of the most important citrus pests globally. Movement of infected psyllids onto uninfected young citrus remains a key concern for the maintenance of citrus production. Attraction of d...

  3. Universal ligation-detection-reaction microarray applied for compost microbes

    PubMed Central

    Hultman, Jenni; Ritari, Jarmo; Romantschuk, Martin; Paulin, Lars; Auvinen, Petri

    2008-01-01

    Background Composting is one of the methods utilised in recycling organic communal waste. The composting process is dependent on aerobic microbial activity and proceeds through a succession of different phases each dominated by certain microorganisms. In this study, a ligation-detection-reaction (LDR) based microarray method was adapted for species-level detection of compost microbes characteristic of each stage of the composting process. LDR utilises the specificity of the ligase enzyme to covalently join two adjacently hybridised probes. A zip-oligo is attached to the 3'-end of one probe and fluorescent label to the 5'-end of the other probe. Upon ligation, the probes are combined in the same molecule and can be detected in a specific location on a universal microarray with complementary zip-oligos enabling equivalent hybridisation conditions for all probes. The method was applied to samples from Nordic composting facilities after testing and optimisation with fungal pure cultures and environmental clones. Results Probes targeted for fungi were able to detect 0.1 fmol of target ribosomal PCR product in an artificial reaction mixture containing 100 ng competing fungal ribosomal internal transcribed spacer (ITS) area or herring sperm DNA. The detection level was therefore approximately 0.04% of total DNA. Clone libraries were constructed from eight compost samples. The LDR microarray results were in concordance with the clone library sequencing results. In addition a control probe was used to monitor the per-spot hybridisation efficiency on the array. Conclusion This study demonstrates that the LDR microarray method is capable of sensitive and accurate species-level detection from a complex microbial community. The method can detect key species from compost samples, making it a basis for a tool for compost process monitoring in industrial facilities. PMID:19116002

  4. Determining thermal inactivation of Escherichia coli O157:H7 in fresh compost by simulating early phases of the composting process.

    PubMed

    Singh, Randhir; Kim, Jinkyung; Shepherd, Marion W; Luo, Feng; Jiang, Xiuping

    2011-06-01

    A three-strain mixture of Escherichia coli O157:H7 was inoculated into fresh dairy compost (ca. 10(7) CFU/g) with 40 or 50% moisture and was placed in an environmental chamber (ca. 70% humidity) that was programmed to ramp from room temperature to selected composting temperatures in 2 and 5 days to simulate the early composting phase. The surviving E. coli O157:H7 population was analyzed by direct plating and enrichment. Optimal and suboptimal compost mixes, with carbon/nitrogen (C/N) ratios of 25:1 and 16:1, respectively, were compared in this study. In the optimal compost mix, E. coli O157:H7 survived for 72, 48, and 24 h in compost with 40% moisture and for 72, 24, and 24 h with 50% moisture at 50, 55, and 60°C, respectively, following 2 days of come-up time (rate of heating up). However, in the suboptimal compost mix, the pathogen survived for 288, 72, and 48 h in compost with 40% moisture and for 240, 72, 24 h in compost with 50% moisture at the same temperatures, respectively. Pathogen survival was longer, with 5 days of come-up time compared with 2 days of come-up. Overall, E. coli O157:H7 was inactivated faster in the compost with 50% moisture than in the compost with 40% at 55 and 60°C. Both moisture and come-up time were significant factors affecting Weibull model parameters. Our results suggest that slow come-up time at the beginning of composting can extend pathogen survival during composting. Additionally, both the C/N ratio and the initial moisture level in the compost mix affect the rate of pathogen inactivation as well.

  5. Composting Begins at Home.

    ERIC Educational Resources Information Center

    Dreckman, George P.

    1994-01-01

    Reports the results of a year-long home composting pilot program run by the city of Madison, Wisconsin. The study was designed to gather data on the amount and type of materials composted by 300 volunteer households and to determine the feasibility of a full-scale program. (LZ)

  6. Citrus breeding, genetics and genomics in Japan

    PubMed Central

    Omura, Mitsuo; Shimada, Takehiko

    2016-01-01

    Citrus is one of the most cultivated fruits in the world, and satsuma mandarin (Citrus unshiu Marc.) is a major cultivated citrus in Japan. Many excellent cultivars derived from satsuma mandarin have been released through the improvement of mandarins using a conventional breeding method. The citrus breeding program is a lengthy process owing to the long juvenility, and it is predicted that marker-assisted selection (MAS) will overcome the obstacle and improve the efficiency of conventional breeding methods. To promote citrus molecular breeding in Japan, a genetic mapping was initiated in 1987, and the experimental tools and resources necessary for citrus functional genomics have been developed in relation to the physiological analysis of satsuma mandarin. In this paper, we review the progress of citrus breeding and genome researches in Japan and report the studies on genetic mapping, expression sequence tag cataloguing, and molecular characterization of breeding characteristics, mainly in terms of the metabolism of bio-functional substances as well as factors relating to, for example, fruit quality, disease resistance, polyembryony, and flowering. PMID:27069387

  7. Comparison of antifungal activities of Vietnamese citrus essential oils.

    PubMed

    Van Hung, Pham; Chi, Pham Thi Lan; Phi, Nguyen Thi Lan

    2013-03-01

    Citrus essential oils (EOs) are volatile compounds from citrus peels and widely used in perfumes, cosmetics, soaps and aromatherapy. In this study, inhibition of citrus EOs extracted from Vietnamese orange (Citrus sinensis), mandarin (Citrus reticulata Blanco), pomelo (Citrus grandis Osbeck) and lime (Citrus aurantifolia Swingle) on the growth of plant pathogenic fungi, Mucor hiemalis, Penicillium expansum and Fusarium proliferatum was investigated. The EOs of the citrus peels were obtained by cold-pressing method and the antifungal activity of EOs was evaluated using the agar dilution method. The results show that the EOs had significant antifungal activity. Lime EO was the best inhibitor of M. hiemalis and F. proliferatum while pomelo EO was the most effective against P. expansum. These results indicate that citrus EOs can be used as antifungal natural products in the food, pharmaceutical and cosmetic industries.

  8. Removal of dissolved textile dyes from wastewater by a compost sorbent

    USGS Publications Warehouse

    Tsui, L.S.; Roy, W.R.; Cole, M.A.

    2003-01-01

    The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

  9. Antimicrobial Nanoemulsion Formulation with Improved Penetration of Foliar Spray through Citrus Leaf Cuticles to Control Citrus Huanglongbing.

    PubMed

    Yang, Chuanyu; Powell, Charles A; Duan, Yongping; Shatters, Robert; Zhang, Muqing

    2015-01-01

    Huanglongbing (HLB) is the most serious disease affecting the citrus industry worldwide to date. The causal agent, Candidatus Liberibacter asiaticus (Las), resides in citrus phloem, which makes it difficult to effectively treat with chemical compounds. In this study, a transcuticular nanoemulsion formulation was developed to enhance the permeation of an effective antimicrobial compound (ampicillin; Amp) against HLB disease through the citrus cuticle into the phloem via a foliar spray. The results demonstrated that efficiency of cuticle isolation using an enzymatic method (pectinase and cellulase) was dependent on the citrus cultivar and Las-infection, and it was more difficult to isolate cuticles from valencia orange (Citrus sinensis) and HLB-symptomatic leaves. Of eight adjuvants tested, Brij 35 provided the greatest increase in permeability of the HLB-affected cuticle with a 3.33-fold enhancement of cuticular permeability over water control. An in vitro assay using Bacillus subtilis showed that nanoemulsion formulations containing Amp (droplets size = 5.26 ± 0.04 nm and 94 ± 1.48 nm) coupled with Brij 35 resulted in greater inhibitory zone diameters (5.75 mm and 6.66 mm) compared to those of Brij 35 (4.34 mm) and Amp solution (2.83 mm) alone. Furthermore, the nanoemulsion formulations eliminated Las bacteria in HLB-affected citrus in planta more efficiently than controls. Our study shows that a water in oil (W/O) nanoemulsion formulation may provide a useful model for the effective delivery of chemical compounds into citrus phloem via a foliar spray for controlling citrus HLB.

  10. Antimicrobial Nanoemulsion Formulation with Improved Penetration of Foliar Spray through Citrus Leaf Cuticles to Control Citrus Huanglongbing

    PubMed Central

    Yang, Chuanyu; Powell, Charles A.; Duan, Yongping; Shatters, Robert; Zhang, Muqing

    2015-01-01

    Huanglongbing (HLB) is the most serious disease affecting the citrus industry worldwide to date. The causal agent, Candidatus Liberibacter asiaticus (Las), resides in citrus phloem, which makes it difficult to effectively treat with chemical compounds. In this study, a transcuticular nanoemulsion formulation was developed to enhance the permeation of an effective antimicrobial compound (ampicillin; Amp) against HLB disease through the citrus cuticle into the phloem via a foliar spray. The results demonstrated that efficiency of cuticle isolation using an enzymatic method (pectinase and cellulase) was dependent on the citrus cultivar and Las-infection, and it was more difficult to isolate cuticles from valencia orange (Citrus sinensis) and HLB-symptomatic leaves. Of eight adjuvants tested, Brij 35 provided the greatest increase in permeability of the HLB-affected cuticle with a 3.33-fold enhancement of cuticular permeability over water control. An in vitro assay using Bacillus subtilis showed that nanoemulsion formulations containing Amp (droplets size = 5.26 ± 0.04 nm and 94 ± 1.48 nm) coupled with Brij 35 resulted in greater inhibitory zone diameters (5.75 mm and 6.66 mm) compared to those of Brij 35 (4.34 mm) and Amp solution (2.83 mm) alone. Furthermore, the nanoemulsion formulations eliminated Las bacteria in HLB-affected citrus in planta more efficiently than controls. Our study shows that a water in oil (W/O) nanoemulsion formulation may provide a useful model for the effective delivery of chemical compounds into citrus phloem via a foliar spray for controlling citrus HLB. PMID:26207823

  11. Bioaerosols from composting facilities—a review

    PubMed Central

    Wéry, Nathalie

    2014-01-01

    Bioaerosols generated at composting plants are released during processes that involve the vigorous movement of material such as shredding, compost pile turning, or compost screening. Such bioaerosols are a cause of concern because of their potential impact on both occupational health and the public living in close proximity to such facilities. The biological hazards potentially associated with bioaerosol emissions from composting activities include fungi, bacteria, endotoxin, and 1-3 β-glucans. There is a major lack of knowledge concerning the dispersal of airborne microorganisms emitted by composting plants as well as the potential exposure of nearby residents. This is due in part to the difficulty of tracing specifically these microorganisms in air. In recent years, molecular tools have been used to develop new tracers which should help in risk assessments. This review summarizes current knowledge of microbial diversity in composting aerosols and of the associated risks to health. It also considers methodologies introduced recently to enhance understanding of bioaerosol dispersal, including new molecular indicators and modeling. PMID:24772393

  12. Survival of pathogenic bacteria in compost with special reference to Escherichia coli.

    PubMed

    Gong, Chun-ming; Koichi, Inoue; Shunji, Inanaga; Takashi, Someya

    2005-01-01

    Application of compost in agricultural practice could potentially cause contamination of foodstuffs with pathogenic bacteria such as Escherichia coli O157:H7 (E. Coli O157). We investigated pathogenic bacteria in compost collected from the compost facilities, and evaluated the survival of E. coli K12 and O157 in laboratory experiments. Out of 19 compost product samples, coliform bacteria and salmonella were detected in 7 and 3 samples respectively. The number of coliform bacteria was 1.8 x 10(2) to 2.5 x 10(6) CFU/g dw and that of salmonella was 4.2 x 10(1) to 6.0 x 10(3) CFU/g dw. Moreover, coliform bacteria, fecal coliform, E. coli and salmonella were detected during composting at 54 degrees C to 67 degrees C. The results indicated that moisture content was a very important factor to the heat sensitivity of pathogenic bacteria in compost, E. coil in compost of high moisture content was more sensitive than that in compost of low moisture content, cells harvested in logarithmic phase was more sensitive than these in stationary phase, and E. coli K12 was more sensitive than E. coli O157. Based on the D values, the lethal time of E. coli K12 and O157 from l0(8) to 10(0) CFU/g dw were 16.3 and 28.8 min, respectively, at 60 degrees C in compost with 40% moisture content. However, some E. coil cells survived in composting process at 54 degrees C to 67 degrees C. Water potential (low moisture content) and physiological aspects of bacteria (stationary phase) could explain only in part of the prolonged survival of E. coil in compost, and there should be some other factors that are conducive to bacterial survival in compost.

  13. Performance of five Montreal West Island home composters.

    PubMed

    Adhikari, Bijaya K; Trémier, Anne; Barrington, Suzelle

    2012-01-01

    Even if home composting can eliminate municipal organic waste collection, handling and treatment costs, its compost quality requires investigation outside the laboratory. A study was thus conducted to evaluate the influence of the following management practices on the compost quality produced by five backyards home composters in Montreal West Island from June to October 2010: the type and backyard location of the home composter (HC), and the rate and type of organic waste (OW) fed into the home composter. The parameters monitored were compost temperature and final characteristics including trace elements and pathogens. For all HC compost, maximum but not necessarily thermophilic temperatures were highly probable within one week of adding more than 10 kg of OW composed of equal volumes of food waste (FW) and yard trimmings (YT). Top and bottom HC perforations enhanced convective aeration but concentrated OW decomposition within the bottom layer. Fed an equal volume of FW and YT, the final HC compost had a dry and organic matter content exceeding 30%, and 50%, respectively, and a total nitrogen, phosphorous and potassium level of 2, 1 and 3% on a dry matter basis, representing a good quality soil amendment. Clean OW feeding resulted in compost respecting Canadian and European regulations for Escherichia coli and Salmonella, irrespective of the temperature regime. For trace elements, regulatory limits may be exceeded when the home composter is fed ashes and soil. Homeowners must also be careful when applying pesticides to their lawns and gardens and then feeding the residues to the home composter.

  14. [Co-composting of high moisture vegetable waste, flower waste and chicken litter in pilot scale].

    PubMed

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng; Qiu, Xiangyang

    2003-03-01

    Co-composting of different mixture made of vegetable waste, flower waste and chicken litter were studied. The first stage of composting was aerobic static bed based temperature feedback and control via aeration rate regulation. The second stage was window composting. At first stage, the pile was insulated and temperatures of at least 55 degrees C were maintained for a minimum of 3 days. The highest temperature was up to 73.3 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 75% to 56% and organic matter was degraded from 65% to 50% during composting. The value of pH was stable at 8. Analysis of maturity and nutrition of compost showed that end-products of composting ware bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste, flower waste and chicken litter can get high quality compost by optimizing composting process during 45 days. Composting can decrease nonpoint resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  15. Management of Citrus Canker in Argentina, a Success Story.

    PubMed

    Canteros, B I; Gochez, A M; Moschini, R C

    2017-10-01

    Citrus canker is an important bacterial disease of citrus in several regions of the world. Strains of Xanthomonas citri type-A (Xc-A) group are the primary pathogen where citrus canker occurs. After Xc-A entered the Northeast of Argentina in 1974, the disease spread rapidly from 1977 to 1980 and then slowed down and remained moving at slow pace until 1990 when it became endemic. Citrus canker was detected in Northwest Argentina in 2002. This paper presents the main steps in the fight of the disease and the management strategies that have been used to control citrus canker at this time. We think the process might be usefull to other countries with the same situation. Results from more than 40 years of research in Northeast (NE) Argentina indicate that we are at the limit of favorable environment for the disease. The severity of citrus canker is greatly affected by the environment and El Niño Southern Oscillation (ENSO) phenomenon which causes cyclic fluctuations on the disease intensity in the NE region. Weather-based logistic regression models adjusted to quantify disease levels in field conditions showed that the environmental effect was strongly modulated by the distance from a windbreak. Production of healthy fruits in citrus canker endemic areas is possible knowing the dynamics of the disease. A voluntary Integrated Plan to Reduce the Risk of Canker has been in place since 1994 and it allows growers to export unsymptomatic, uninfested fresh fruit to countries which are free of the disease and require healthy, pathogen free fruits. The experience from Argentina can be replicated in other countries after appropriate trials.

  16. Management of Citrus Canker in Argentina, a Success Story

    PubMed Central

    Canteros, B. I.; Gochez, A. M.; Moschini, R. C.

    2017-01-01

    Citrus canker is an important bacterial disease of citrus in several regions of the world. Strains of Xanthomonas citri type-A (Xc-A) group are the primary pathogen where citrus canker occurs. After Xc-A entered the Northeast of Argentina in 1974, the disease spread rapidly from 1977 to 1980 and then slowed down and remained moving at slow pace until 1990 when it became endemic. Citrus canker was detected in Northwest Argentina in 2002. This paper presents the main steps in the fight of the disease and the management strategies that have been used to control citrus canker at this time. We think the process might be usefull to other countries with the same situation. Results from more than 40 years of research in Northeast (NE) Argentina indicate that we are at the limit of favorable environment for the disease. The severity of citrus canker is greatly affected by the environment and El Niño Southern Oscillation (ENSO) phenomenon which causes cyclic fluctuations on the disease intensity in the NE region. Weather-based logistic regression models adjusted to quantify disease levels in field conditions showed that the environmental effect was strongly modulated by the distance from a windbreak. Production of healthy fruits in citrus canker endemic areas is possible knowing the dynamics of the disease. A voluntary Integrated Plan to Reduce the Risk of Canker has been in place since 1994 and it allows growers to export unsymptomatic, uninfested fresh fruit to countries which are free of the disease and require healthy, pathogen free fruits. The experience from Argentina can be replicated in other countries after appropriate trials. PMID:29018307

  17. Diversity of bacterial isolates from commercial and homemade composts.

    PubMed

    Vaz-Moreira, Ivone; Silva, Maria E; Manaia, Célia M; Nunes, Olga C

    2008-05-01

    The diversity of heterotrophic bacterial isolates of three commercial and two homemade composts was studied. The commercial composts were produced from poultry litter (PC), sewage sludge (SC), municipal solid waste (MC), and homemade composts (thermal compost [DC] and vermicompost [VC]) from food wastes. The taxonomic and physiological diversity of the heterotrophic culturable bacteria was assessed using phenotypic and genotypic characterization and the analysis of the partial 16S rRNA gene sequence. Composts DC and SC presented the higher genotypic diversity, as could be inferred from the number of distinct genotypic patterns observed, 28 and 21, respectively. Gram-positive bacteria, mainly Firmicutes, were predominant in all the composts. Some organisms related with taxa rarely reported in composts, as Rhodanobacter spathiphylli, Moraxella osloensis, Lysobacter, Corynebacterium, Pigmentiphaga kullae, and new taxa were also isolated. The highest relative proportion of isolates able to degrade starch was found in compost SC (> 70%), to degrade gelatine in compost DC (> 70%), to degrade Tween 80 in compost PC (> 90%), and to degrade poly-epsilon-caprolactones in compost DC (> 80%). Compost MC presented the lowest relative proportions of isolates able to degrade starch (< 25%), gelatine (< 20%), and poly-epsilon-caprolactone (< 40%). When compared with the others, the homemade composts presented higher relative proportions of Gram-positive isolates able to inhibit the target organisms Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, or Pseudomonas aeruginosa. In compost MC, none of the Gram-positive isolates was able to inhibit those targets.

  18. Changes in Anthocyanin Production during Domestication of Citrus.

    PubMed

    Butelli, Eugenio; Garcia-Lor, Andrés; Licciardello, Concetta; Las Casas, Giuseppina; Hill, Lionel; Recupero, Giuseppe Reforgiato; Keremane, Manjunath L; Ramadugu, Chandrika; Krueger, Robert; Xu, Qiang; Deng, Xiuxin; Fanciullino, Anne-Laure; Froelicher, Yann; Navarro, Luis; Martin, Cathie

    2017-04-01

    Mandarin ( Citrus reticulata ), citron ( Citrus medica ), and pummelo ( Citrus maxima ) are important species of the genus Citrus and parents of the interspecific hybrids that constitute the most familiar commercial varieties of Citrus : sweet orange, sour orange, clementine, lemon, lime, and grapefruit. Citron produces anthocyanins in its young leaves and flowers, as do species in genera closely related to Citrus , but mandarins do not, and pummelo varieties that produce anthocyanins have not been reported. We investigated the activity of the Ruby gene, which encodes a MYB transcription factor controlling anthocyanin biosynthesis, in different accessions of a range of Citrus species and in domesticated cultivars. A white mutant of lemon lacks functional alleles of Ruby , demonstrating that Ruby plays an essential role in anthocyanin production in Citrus Almost all the natural variation in pigmentation by anthocyanins in Citrus species can be explained by differences in activity of the Ruby gene, caused by point mutations and deletions and insertions of transposable elements. Comparison of the allelic constitution of Ruby in different species and cultivars also helps to clarify many of the taxonomic relationships in different species of Citrus , confirms the derivation of commercial varieties during domestication, elucidates the relationships within the subgenus Papeda , and allows a new genetic classification of mandarins. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Potential of a gypsum-free composting process of wheat straw for mushroom production

    PubMed Central

    Mouthier, Thibaut M. B.; Kilic, Baris; Vervoort, Pieter; Gruppen, Harry

    2017-01-01

    Wheat straw based composting generates a selective substrate for mushroom production. The first phase of this process requires 5 days, and a reduction in time is wished. Here, we aim at understanding the effect of gypsum on the duration of the first phase and the mechanism behind it. Hereto, the regular process with gypsum addition and the same process without gypsum were studied during a 5-day period. The compost quality was evaluated based on compost lignin composition analysed by py-GC/MS and its degradability by a commercial (hemi-)cellulolytic enzyme cocktail. The composting phase lead to the decrease of the pyrolysis products 4-vinylphenol and 4-vinylguaiacol that can be associated with p-coumarates and ferulates linking xylan and lignin. In the regular compost, the enzymatic conversion reached 32 and 39% for cellulose, and 23 and 32% for xylan after 3 and 5 days, respectively. In absence of gypsum similar values were reached after 2 and 4 days, respectively. Thus, our data show that in absence of gypsum the desired compost quality was reached 20% earlier compared to the control process. PMID:28982119

  20. Reclamation of river dredged sediments polluted by PAHs by co-composting with green waste.

    PubMed

    Mattei, P; Cincinelli, A; Martellini, T; Natalini, R; Pascale, E; Renella, G

    2016-10-01

    Polluted dredged sediments are classified as waste and cannot be re-used in civil and environmental engineering nor in agriculture, posing serious logistical, economic and environmental problems for their management. We tested co-composting of sediments (S) slightly polluted by PAHs with urban green waste (GW), as a sustainable technique to both degrade the organic pollutants and lend to sediments suitable properties to be reused as technosol. Four treatments were tested: sediments only (S), GW only (GW), 1:1 w:w S:GW (SGW1:1), and 3:1 w:w S:GW (SGW3:1) for a co-composting period of one year. The co-composting materials underwent to an initial short and moderate thermophilic phase. However, at the end of the co-composting process, SGW3:1 and SGW1:1 achieved suitable physical and chemical properties as plant substrate in terms of organic C, N and humic substances contents, electrical conductivity and bulk density. In the first six months of treatment, the PAHs concentration in SGW3:1 and SGW1:1 was reduced by 26% and 57%, respectively, reaching values below under 1mgg(-1), whereas such a reduction in S alone was observed only after nine months. We concluded that co-composting with green waste can be a suitable approach for reclamation of dredged sediments opening opportunities for their use as technosol or as plant growing substrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Enumerative and binomial sampling plans for citrus mealybug (Homoptera: pseudococcidae) in citrus groves.

    PubMed

    Martínez-Ferrer, María Teresa; Ripollés, José Luís; Garcia-Marí, Ferran

    2006-06-01

    The spatial distribution of the citrus mealybug, Planococcus citri (Risso) (Homoptera: Pseudococcidae), was studied in citrus groves in northeastern Spain. Constant precision sampling plans were designed for all developmental stages of citrus mealybug under the fruit calyx, for late stages on fruit, and for females on trunks and main branches; more than 66, 286, and 101 data sets, respectively, were collected from nine commercial fields during 1992-1998. Dispersion parameters were determined using Taylor's power law, giving aggregated spatial patterns for citrus mealybug populations in three locations of the tree sampled. A significant relationship between the number of insects per organ and the percentage of occupied organs was established using either Wilson and Room's binomial model or Kono and Sugino's empirical formula. Constant precision (E = 0.25) sampling plans (i.e., enumerative plans) for estimating mean densities were developed using Green's equation and the two binomial models. For making management decisions, enumerative counts may be less labor-intensive than binomial sampling. Therefore, we recommend enumerative sampling plans for the use in an integrated pest management program in citrus. Required sample sizes for the range of population densities near current management thresholds, in the three plant locations calyx, fruit, and trunk were 50, 110-330, and 30, respectively. Binomial sampling, especially the empirical model, required a higher sample size to achieve equivalent levels of precision.

  2. Production of mono- and polyclonal antibodies to Citrus leprosis virus C2 and their application in triple antibody sandwich ELISA and immunocapture RT-PCR diagnostic assays.

    PubMed

    Choudhary, Nandlal; Roy, Avijit; Leon, M G; Wei, G; Nakhla, M K; Levy, L; Brlansky, R H

    2017-05-01

    The newly discovered Citrus leprosis virus cytoplasmic type 2 (CiLV-C2) is one of the causal virus of citrus leprosis disease complex; which leads to substantial loss of citrus production in the states of Meta and Casanare of Colombia. Specific and sensitive detection methods are needed to monitor the dissemination of CiLV-C2 in Colombia, and to prevent introduction of CiLV-C2 to other citrus growing countries. Toward this end, putative coat protein gene (CPG) of CiLV-C2 was amplified from CiLV-C2 infected citrus tissues. The CPG was cloned, expressed and purified a recombinant coat protein of ∼31kDa which used to generate monoclonal antibodies and polyclonal antisera. Four monoclonal antibodies and two polyclonal antisera were selected as being specific following Western blotting. The monoclonal antibody MAb E5 and polyclonal antiserum PAb UF715 were selected testing with an extract of CiLV-C2 infected leaves using triple antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA). In addition, an immunocapture RT-PCR was standardized using MAb E5 for specific and sensitive detection of CiLV-C2. The standardized TAS-ELISA and IC-RT-PCR were able to detect CiLV-C2 in the extracts of symptomatic citrus leprosis tissues up to the dilutions of 1:160 and 1:2580, respectively. Result demonstrated that CiLV-C2 is present in citrus orchards in Meta and Casanare citrus growing areas of Colombia. TAS-ELISA could be used for routine detection of CiLV-C2, epidemiological studies, and for border inspections for quarantine purposes. IC-RT-PCR could be valuable for CiLV-C2 validation and viral genome analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Yield, nutrient utilization and soil properties in a melon crop amended with wine-distillery waste compost

    NASA Astrophysics Data System (ADS)

    Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2014-05-01

    In Spain, large quantities of wine are produced every year (3,339,700 tonnes in 2011) (FAO, 2011) with the consequent waste generation. During the winemaking process, solid residues like grape stalks are generated, as well as grape marc and wine lees as by-products. According to the Council Regulation (EC) 1493/1999 on the common organization of the wine market, by-products coming from the winery industry must be sent to alcohol-distilleries to generate exhausted grape marc and vinasses. With an adequate composting treatment, these wastes can be applied to soils as a source of nutrients and organic matter. A three-year field experiment (2011, 2012 and 2013) was carried out in Ciudad Real (central Spain) to study the effects of wine-distillery waste compost application in a melon crop (Cucumis melo L.). Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. In a randomized complete block design, four treatments were compared: three compost doses consisted of 6.7 (D1), 13.3 (D2) and 20 t compost ha-1 (D3), and a control treatment without compost addition (D0). The soil was a shallow sandy-loam (Petrocalcic Palexeralfs) with a depth of 0.60 m and a discontinuous petrocalcic horizon between 0.60 and 0.70 m, slightly basic (pH 8.4), poor in organic matter (0.24%), rich in potassium (410 ppm) and with a medium level of phosphorus (22.1 ppm). During each growing period four harvests were carried out and total and marketable yield (fruits weighting <1 kg or visually rotten were not considered), fruit average weight and fruit number per plant were determined. At the end of the crop cycle, four plants per treatment were sampled and the nutrient content (N, P and K) was determined. Soil samplings (0-30 cm depth) were carried before the application of compost and at the end of each growing season and available N and P, as well as exchangeable K content were analyzed

  4. Experimental evaluation of compost leachates.

    DOT National Transportation Integrated Search

    2015-09-01

    Compost is often used in raingardens, roadsides, and bioretention systems, not only because of : its beneficial properties on soil quality, but also because compost improves water infiltration and : retains stormwater contaminants. However, when comp...

  5. Impacts of sporulation temperature, exposure to compost matrix and temperature on survival of Bacillus cereus spores during livestock mortality composting.

    PubMed

    Stanford, K; Reuter, T; Gilroyed, B H; McAllister, T A

    2015-04-01

    To investigate impact of sporulation and compost temperatures on feasibility of composting for disposal of carcasses contaminated with Bacillus anthracis. Two strains of B. cereus, 805 and 1391, were sporulated at either 20 or 37°C (Sporulation temperature, ST) and 7 Log10 CFU g(-1) spores added to autoclaved manure in nylon bags (pore size 50 μm) or in sealed vials. Vials and nylon bags were embedded into compost in either a sawdust or manure matrix each containing 16 bovine mortalities (average weight 617 ± 33 kg), retrieved from compost at intervals over 217 days and survival of B. cereus spores assessed. A ST of 20°C decreased spore survival by 1·4 log10 CFU g(-1) (P < 0·05) compared to a 37°C ST. Spore survival was strain dependent. Compost temperatures >55°C reduced spore survival (P < 0·05) and more frequently occurred in the sawdust matrix. Sporulation and compost temperatures were key factors influencing survival of B. cereus spores in mortality compost. Composting may be most appropriate for the disposal of carcasses infected with B. anthracis at ambient temperatures ≤20°C under thermophillic composting conditions (>55°C). © 2015 The Society for Applied Microbiology.

  6. Evaluation of aerobic co-composting of penicillin fermentation fungi residue with pig manure on penicillin degradation, microbial population dynamics and composting maturity.

    PubMed

    Zhang, Zhenhua; Zhao, Juan; Yu, Cigang; Dong, Shanshan; Zhang, Dini; Yu, Ran; Wang, Changyong; Liu, Yan

    2015-12-01

    Improper treatment of penicillin fermentation fungi residue (PFFR), one of the by-products of penicillin production process, may result in environmental pollution due to the high concentration of penicillin. Aerobic co-composting of PFFR with pig manure was determined to degrade penicillin in PFFR. Results showed that co-composting of PFFR with pig manure can significantly reduce the concentration of penicillin in PFFR, make the PFFR-compost safer as organic fertilizer for soil application. More than 99% of penicillin in PFFR were removed after 7-day composting. PFFR did not affect the composting process and even promote the activity of the microorganisms in the compost. Quantitative PCR (qPCR) indicated that the bacteria and actinomycetes number in the AC samples were 40-80% higher than that in the pig-manure compost (CK) samples in the same composting phases. This research indicated that the aerobic co-composting was a feasible PFFR treatment method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Composting: Wastes to Resources. 4-H Leader's/Teacher's Guide.

    ERIC Educational Resources Information Center

    Bonhotal, Jean F.; Krasny, Marianne E.

    This guide is designed for adult volunteer leaders, camp counselors, and teachers who want to set up composting projects with youth. Five sections explore: (1) an introduction to composting with illustrated instructions for making compost; (2) different methods of composting and structures needed for various composting systems; (3) how to identify…

  8. Degradation products of citrus volatile organic compounds (VOCs) acting as phagostimulants that increase probing behavior of Asian citrus psyllid

    USDA-ARS?s Scientific Manuscript database

    Volatile phytochemicals play a role in orientation by phytophagous insects. We studied antennal and behavioral responses of the Asian citrus psyllid, Diaphorina citri Kuwayama, vector of the citrus greening disease pathogen. Little or no response to citrus leaf volatiles was detected by electroanten...

  9. Molecular Analysis of Ammonia-Oxidizing Bacteria of the β Subdivision of the Class Proteobacteria in Compost and Composted Materials

    PubMed Central

    Kowalchuk, George A.; Naoumenko, Zinaida S.; Derikx, Piet J. L.; Felske, Andreas; Stephen, John R.; Arkhipchenko, Irina A.

    1999-01-01

    Although the practice of composting animal wastes for use as biofertilizers has increased in recent years, little is known about the microorganisms responsible for the nitrogen transformations which occur in compost and during the composting process. Ammonia is the principle available nitrogenous compound in composting material, and the conversion of this compound to nitrite in the environment by chemolithotrophic ammonia-oxidizing bacteria is an essential step in nitrogen cycling. Therefore, the distribution of ammonia-oxidizing members of the β subdivision of the class Proteobacteria in a variety of composting materials was assessed by amplifying 16S ribosomal DNA (rDNA) and 16S rRNA by PCR and reverse transcriptase PCR (RT-PCR), respectively. The PCR and RT-PCR products were separated by denaturing gradient gel electrophoresis (DGGE) and were identified by hybridization with a hierarchical set of oligonucleotide probes designed to detect ammonia oxidizer-like sequence clusters in the genera Nitrosospira and Nitrosomonas. Ammonia oxidizer-like 16S rDNA was detected in almost all of the materials tested, including industrial and experimental composts, manure, and commercial biofertilizers. A comparison of the DGGE and hybridization results after specific PCR and RT-PCR suggested that not all of the different ammonia oxidizer groups detected in compost are equally active. amoA, the gene encoding the active-site-containing subunit of ammonia monooxygenase, was also targeted by PCR, and template concentrations were estimated by competitive PCR. Detection of ammonia-oxidizing bacteria in the composts tested suggested that such materials may not be biologically inert with respect to nitrification and that the fate of nitrogen during composting and compost storage may be affected by the presence of these organisms. PMID:9925559

  10. 7 CFR 3201.64 - Compost activators and accelerators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PROCUREMENT Designated Items § 3201.64 Compost activators and accelerators. (a) Definition. Products in liquid or powder form designed to be applied to compost piles to aid in speeding up the composting process... 7 Agriculture 15 2014-01-01 2014-01-01 false Compost activators and accelerators. 3201.64 Section...

  11. 7 CFR 3201.64 - Compost activators and accelerators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PROCUREMENT Designated Items § 3201.64 Compost activators and accelerators. (a) Definition. Products in liquid or powder form designed to be applied to compost piles to aid in speeding up the composting process... 7 Agriculture 15 2013-01-01 2013-01-01 false Compost activators and accelerators. 3201.64 Section...

  12. 7 CFR 3201.64 - Compost activators and accelerators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PROCUREMENT Designated Items § 3201.64 Compost activators and accelerators. (a) Definition. Products in liquid or powder form designed to be applied to compost piles to aid in speeding up the composting process... 7 Agriculture 15 2012-01-01 2012-01-01 false Compost activators and accelerators. 3201.64 Section...

  13. Effect of aeration rate, moisture content and composting period on availability of copper and lead during pig manure composting.

    PubMed

    Shen, Yujun; Zhao, Lixin; Meng, Haibo; Hou, Yueqing; Zhou, Haibin; Wang, Fei; Cheng, Hongsheng; Liu, Hongbin

    2016-06-01

    Pollution by heavy metals, such as copper and lead, has become a limiting factor for the land application of faecal manures, such as pig manure. This study was conducted to investigate the influence of composting process parameters, including aeration rate, moisture content and composting period, on the distribution of heavy metal species during composting, and to select an optimal parameter for copper and lead inactivation. Results showed that the distribution ratios of exchangeable fractions of copper and lead had a bigger decrease under conditions of aeration rate, 0.1 m(3) min(-1) m(-3), an initial moisture content of 65% and composting period of 50 days. Suboptimal composting process conditions could lead to increased availability of heavy metals. Statistical analysis indicated that the aeration rate was the main factor affecting copper and lead inactivation, while the effects of moisture content and composting period were not significant. The rates of reduction of copper-exchangeable fractions and lead-exchangeable fractions were positively correlated with increased pH. The optimal parameters for reducing heavy metal bioavailability during pig manure composting were aeration rate, 0.1 m(3) min(-1) m(-3), initial moisture content, 65%, and composting period, 20 days. © The Author(s) 2016.

  14. Effect of spent mushroom substrate as a bulking agent on gaseous emissions and compost quality during pig manure composting.

    PubMed

    Li, Shuyan; Li, Danyang; Li, Jijin; Li, Yangyang; Li, Guoxue; Zang, Bing; Li, Yun

    2018-05-01

    The aim of this study was to investigate the gaseous emissions (CH 4 , N 2 O, and NH 3 ) and compost quality during the pig manure composting by adding spent mushroom substrate (SMS) as a bulking agent. The control treatment was also studied using corn stalk (CS) as a bulking agent. The experiment was conducted in a pilot scale composting reactor under aerobic condition with the initial C/N ratio of 20. Results showed that bulking agents significantly affected gaseous emissions and compost quality. Using SMS as a bulking agent improved composting efficiency by shortening the time for maturity. SMS increased germination index and humic acid of the final compost (by 13.44 and 41.94%, respectively) compared with CS. Furthermore, composting with SMS as a bulking agent could reduce nitrogen loss, NH 3 , and N 2 O emissions (by 13.57, 35.56, and 46.48%, respectively) compared with the control. SMS slightly increased CH 4 emission about 1.1 times of the CS. However, a 33.95% decrease in the global warming potential of CH 4 and N 2 O was obtained by adding SMS treatment. These results indicate that SMS is a favorable bulking agent for reducing gaseous emissions and increasing compost quality.

  15. Investigation of the microbial community structure and activity as indicators of compost stability and composting process evolution.

    PubMed

    Chroni, Christina; Kyriacou, Adamadini; Manios, Thrassyvoulos; Lasaridi, Konstantia-Ekaterini

    2009-08-01

    In a bid to identify suitable microbial indicators of compost stability, the process evolution during windrow composting of poultry manure (PM), green waste (GW) and biowaste was studied. Treatments were monitored with regard to abiotic factors, respiration activity (determined using the SOUR test) and functional microflora. The composting process went through typical changes in temperature, moisture content and microbial properties, despite the inherent feedstock differences. Nitrobacter and pathogen indicators varied as a monotonous function of processing time. Some microbial groups have shown a potential to serve as fingerprints of the different process stages, but still they should be examined in context with respirometric tests and abiotic parameters. Respiration activity reflected well the process stage, verifying the value of respirometric tests to access compost stability. SOUR values below 1 mg O(2)/g VS/h were achieved for the PM and the GW compost.

  16. A filter paper-based liquid culture system for citrus shoot organogenesis - a mixture-amount experiment

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the effects of a static liquid culture system on shoot regeneration from citrus epicotyl explants. Two citrus types were used, Carrizo citrange and Ridge Pineapple sweet orange. A liquid culture system comprised of a Petri dish, cellulose filter paper dis...

  17. Determining Thermal Inactivation of Escherichia coli O157:H7 in Fresh Compost by Simulating Early Phases of the Composting Process ▿

    PubMed Central

    Singh, Randhir; Kim, Jinkyung; Shepherd, Marion W.; Luo, Feng; Jiang, Xiuping

    2011-01-01

    A three-strain mixture of Escherichia coli O157:H7 was inoculated into fresh dairy compost (ca. 107 CFU/g) with 40 or 50% moisture and was placed in an environmental chamber (ca. 70% humidity) that was programmed to ramp from room temperature to selected composting temperatures in 2 and 5 days to simulate the early composting phase. The surviving E. coli O157:H7 population was analyzed by direct plating and enrichment. Optimal and suboptimal compost mixes, with carbon/nitrogen (C/N) ratios of 25:1 and 16:1, respectively, were compared in this study. In the optimal compost mix, E. coli O157:H7 survived for 72, 48, and 24 h in compost with 40% moisture and for 72, 24, and 24 h with 50% moisture at 50, 55, and 60°C, respectively, following 2 days of come-up time (rate of heating up). However, in the suboptimal compost mix, the pathogen survived for 288, 72, and 48 h in compost with 40% moisture and for 240, 72, 24 h in compost with 50% moisture at the same temperatures, respectively. Pathogen survival was longer, with 5 days of come-up time compared with 2 days of come-up. Overall, E. coli O157:H7 was inactivated faster in the compost with 50% moisture than in the compost with 40% at 55 and 60°C. Both moisture and come-up time were significant factors affecting Weibull model parameters. Our results suggest that slow come-up time at the beginning of composting can extend pathogen survival during composting. Additionally, both the C/N ratio and the initial moisture level in the compost mix affect the rate of pathogen inactivation as well. PMID:21498743

  18. Simulating the dynamics of polycyclic aromatic hydrocarbon (PAH) in contaminated soil through composting by COP-Compost model.

    PubMed

    Zhang, Yuan; Guan, Yidong; Shi, Qi

    2015-02-01

    Organic pollutants (OPs) are potentially present in composts, and the assessment of their content and bioaccessibility in these composts is of paramount importance to minimize the risk of soil contamination and improve soil fertility. In this work, integration of the dynamics of organic carbon (OC) and OPs in an overall experimental framework is first proposed and adopted to validate the applicability of the COP-Compost model and to calibrate the model parameters on the basis of what has been achieved with the COP-Compost model. The COP-Compost model was evaluated via composting experiments containing 16 US Environmental Protection Agency (USEPA) polycyclic aromatic hydrocarbons (PAHs) and the sorption coefficient (Kd) values of two types of OP: fluorenthene (FLT) and pyrene (PHE). In our study, these compounds are used to characterize the sequential extraction and are quantified as soluble, sorbed, and non-extractable fractions. The model was calibrated, and coupling the OC and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. The results show good agreement between the simulated and experimental results describing the evolution of different organic pollutants using the OP module, as well as the coupling module. However, no clear relationship is found between the Kd and the property of organic fractions. Further estimation of parameters is still necessary to modify the insufficiency of this present research.

  19. Field trials of the integrated approach to control citrus huanglongbing in Florida

    USDA-ARS?s Scientific Manuscript database

    Developing strategies/approaches for managing HLB-affected trees in the field is the most urgent need facing Florida citrus industry. Based on our screened compounds and optimized nano-emulsion formulations, Three independent field trails were conducted on the integrated approach to combat citrus HL...

  20. Utilization of household organic compost in zinc adsorption system

    NASA Astrophysics Data System (ADS)

    Cundari, Lia; Isvaringga, Nyiayu Dita; Arinda, Yesica Maharani

    2017-11-01

    Zinc (Zn) is one of the heavy metals which is polluted to the environment in an amount greater than 15 mg/L [1]. Zinc contamination caused by the disposal of industrial waste such as batteries, electroplating, paint and other industries. One of the Zinc recovery technique that is relatively inexpensive, simple, high effectiveness and efficiency, and can be regenerated is adsorption using compost. This study has been carried out the preparation of compost from organic household waste and cow manure and its application to Zinc recovery. In this research, the raw material of compost is varied. There is an organic household waste (A1) and a mixture of organic household waste and cow manure with ratio 7:6 (A2). Decomposition of A1 and A2 with addition Effective Microorganism (EM4) requires 21 days, with 3 times inversion. Zinc adsorption is done by using a compost variation of 0.5 g, 1 g, and 2 g in every 100 and 200 mg/L Zn concentration solution. The batch process is applied to analyze the capacity of adsorption. Determination of capacity of adsorption based on the Langmuir, Freundlich, and Temkin isotherm model. Direct observation and spectrophotometry are applied in research methodology. The results show that compost A1 and A2 have fulfilled Indonesian Standart of compost and have the ability to reduce Zinc concentration to 94-96%. It indicates highly recommended biosorbent that can be applied to Zinc adsorption.

  1. Repeated compost application effects on phosphorus runoff in the Virginia Piedmont.

    PubMed

    Spargo, John T; Evanylo, Gregory K; Alley, Marcus M

    2006-01-01

    Increasing amounts of animal and municipal wastes are being composted before land application to improve handling and spreading characteristics, and to reduce odor and disease incidence. Repeated applications of composted biosolids and manure to cropland may increase the risk for P enrichment of agricultural runoff. We conducted field research in 2003 and 2004 on a Fauquier silty clay loam (Ultic Hapludalfs) to compare the effects of annual (since 1999) applications of composted and uncomposted organic residuals on P runoff characteristics. Biosolids compost (BSC), poultry litter-yard waste compost (PLC), and uncomposted poultry litter (PL) were applied based on estimated plant-available N. A commercial fertilizer treatment (CF) and an unamended control treatment (CTL) were also included. Corn (Zea mays L.) and a cereal rye (Secale cereal L.) cover crop were planted each year. We applied simulated rainfall in fall 2004 and analyzed runoff for dissolved reactive P (DRP), total dissolved P (TDP), total P (TP), total organic C (TOC), and total suspended solids (TSS). End of season soil samples were analyzed for Mehlich-3 P (M3P), EPA 3050 P (3050P), water soluble P (WSP), degree of P saturation (DPS), soil C, and bulk density. Compost treatments significantly increased soil C, decreased bulk density, and increased M3P, 3050P, WSP, and DPS. The concentration of DRP, TDP, and TP in runoff was highest in compost treatments, but the mass of DRP and TDP was not different among treatments because infiltration was higher and runoff lower in compost-amended soil. Improved soil physical properties associated with poultry litter-yard waste compost application decreased loss of TP and TSS.

  2. Assessment of Composting Feasibility at Army Installations

    DTIC Science & Technology

    2008-09-01

    The end product is a contaminant-free humus that can enhance landscaping and horticultural applications. Composting costs considerably less than...grasses, flowers, and trees by becoming the humus . Original wetland plants can be restored with the use of compost during planting. Compost provides

  3. Developing and implementing mating disruption for area-wide control of citrus leafminer and citrus canker disease

    USDA-ARS?s Scientific Manuscript database

    Successful development and commercial launch of the first semiochemical-based control method for a major exotic insect pest and associated disease of citrus in Florida have resulted from vigorous collaboration between university and government researchers with support from private industry and innov...

  4. Composting in small laboratory pilots: performance and reproducibility.

    PubMed

    Lashermes, G; Barriuso, E; Le Villio-Poitrenaud, M; Houot, S

    2012-02-01

    Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creating artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O(2) consumption and CO(2) emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the final compost. The TOM losses, compost stabilisation and evolution of the biochemical fractions were similar to observed in large reactors or on-site experiments, excluding the lignin degradation, which was less important than in full-scale systems. The reproducibility of the process and the quality of the final compost make it possible to propose the use of this experimental device for research requiring a mass reduction of the initial composted waste mixtures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The aconitate hydratase family from Citrus

    PubMed Central

    2010-01-01

    Background Research on citrus fruit ripening has received considerable attention because of the importance of citrus fruits for the human diet. Organic acids are among the main determinants of taste and organoleptic quality of fruits and hence the control of fruit acidity loss has a strong economical relevance. In citrus, organic acids accumulate in the juice sac cells of developing fruits and are catabolized thereafter during ripening. Aconitase, that transforms citrate to isocitrate, is the first step of citric acid catabolism and a major component of the citrate utilization machinery. In this work, the citrus aconitase gene family was first characterized and a phylogenetic analysis was then carried out in order to understand the evolutionary history of this family in plants. Gene expression analyses of the citrus aconitase family were subsequently performed in several acidic and acidless genotypes to elucidate their involvement in acid homeostasis. Results Analysis of 460,000 citrus ESTs, followed by sequencing of complete cDNA clones, identified in citrus 3 transcription units coding for putatively active aconitate hydratase proteins, named as CcAco1, CcAco2 and CcAco3. A phylogenetic study carried on the Aco family in 14 plant species, shows the presence of 5 Aco subfamilies, and that the ancestor of monocot and dicot species shared at least one Aco gene. Real-time RT-PCR expression analyses of the three aconitase citrus genes were performed in pulp tissues along fruit development in acidic and acidless citrus varieties such as mandarins, oranges and lemons. While CcAco3 expression was always low, CcAco1 and CcAco2 genes were generally induced during the rapid phase of fruit growth along with the maximum in acidity and the beginning of the acid reduction. Two exceptions to this general pattern were found: 1) Clemenules mandarin failed inducing CcAco2 although acid levels were rapidly reduced; and 2) the acidless "Sucreña" orange showed unusually high levels

  6. Biowaste home composting: experimental process monitoring and quality control.

    PubMed

    Tatàno, Fabio; Pagliaro, Giacomo; Di Giovanni, Paolo; Floriani, Enrico; Mangani, Filippo

    2015-04-01

    Because home composting is a prevention option in managing biowaste at local levels, the objective of the present study was to contribute to the knowledge of the process evolution and compost quality that can be expected and obtained, respectively, in this decentralized option. In this study, organized as the research portion of a provincial project on home composting in the territory of Pesaro-Urbino (Central Italy), four experimental composters were first initiated and temporally monitored. Second, two small sub-sets of selected provincial composters (directly operated by households involved in the project) underwent quality control on their compost products at two different temporal steps. The monitored experimental composters showed overall decreasing profiles versus composting time for moisture, organic carbon, and C/N, as well as overall increasing profiles for electrical conductivity and total nitrogen, which represented qualitative indications of progress in the process. Comparative evaluations of the monitored experimental composters also suggested some interactions in home composting, i.e., high C/N ratios limiting organic matter decomposition rates and final humification levels; high moisture contents restricting the internal temperature regime; nearly horizontal phosphorus and potassium evolutions contributing to limit the rates of increase in electrical conductivity; and prolonged biowaste additions contributing to limit the rate of decrease in moisture. The measures of parametric data variability in the two sub-sets of controlled provincial composters showed decreased variability in moisture, organic carbon, and C/N from the seventh to fifteenth month of home composting, as well as increased variability in electrical conductivity, total nitrogen, and humification rate, which could be considered compatible with the respective nature of decreasing and increasing parameters during composting. The modeled parametric kinetics in the monitored experimental

  7. Production of nitrate-rich compost from the solid fraction of dairy manure by a lab-scale composting system.

    PubMed

    Sun, Zhao-Yong; Zhang, Jing; Zhong, Xiao-Zhong; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2016-05-01

    In the present study, we developed an efficient composting process for the solid fraction of dairy manure (SFDM) using lab-scale systems. We first evaluated the factors affecting the SFDM composting process using different thermophilic phase durations (TPD, 6 or 3days) and aeration rates (AR, 0.4 or 0.2 lmin(-1)kg(-1)-total solid (TS)). Results indicated that a similar volatile total solid (VTS) degradation efficiency (approximately 60%) was achieved with a TPD of 6 or 3days and an AR of 0.4 l min(-1) kg(-1)-TS (hereafter called higher AR), and a TPD of 3days resulted in less N loss caused by ammonia stripping. N loss was least when AR was decreased to 0.2 l min(-1) kg(-1)-TS (hereafter called lower AR) during the SFDM composting process. However, moisture content (MC) in the composting pile increased at the lower AR because of water production by VTS degradation and less water volatilization. Reduced oxygen availability caused by excess water led to lower VTS degradation efficiency and inhibition of nitrification. Adding sawdust to adjust the C/N ratio and decrease the MC improved nitrification during the composing processes; however, the addition of increasing amounts of sawdust decreased NO3(-) concentration in matured compost. When an improved composting reactor with a condensate removal and collection system was used for the SFDM composting process, the MC of the composting pile was significantly reduced, and nitrification was detected 10-14days earlier. This was attributed to the activity of ammonia-oxidizing bacteria (AOB). Highly matured compost could be generated within 40-50days. The VTS degradation efficiency reached 62.0% and the final N content, NO3(-) concentration, and germination index (GI) at the end of the composting process were 3.3%, 15.5×10(3)mg kg(-1)-TS, and 112.1%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Composting in small laboratory pilots: Performance and reproducibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashermes, G.; Barriuso, E.; Le Villio-Poitrenaud, M.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We design an innovative small-scale composting device including six 4-l reactors. Black-Right-Pointing-Pointer We investigate the performance and reproducibility of composting on a small scale. Black-Right-Pointing-Pointer Thermophilic conditions are established by self-heating in all replicates. Black-Right-Pointing-Pointer Biochemical transformations, organic matter losses and stabilisation are realistic. Black-Right-Pointing-Pointer The organic matter evolution exhibits good reproducibility for all six replicates. - Abstract: Small-scale reactors (<10 l) have been employed in composting research, but few attempts have assessed the performance of composting considering the transformations of organic matter. Moreover, composting at small scales is often performed by imposing a fixed temperature, thus creatingmore » artificial conditions, and the reproducibility of composting has rarely been reported. The objectives of this study are to design an innovative small-scale composting device safeguarding self-heating to drive the composting process and to assess the performance and reproducibility of composting in small-scale pilots. The experimental setup included six 4-l reactors used for composting a mixture of sewage sludge and green wastes. The performance of the process was assessed by monitoring the temperature, O{sub 2} consumption and CO{sub 2} emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the

  9. A Simulation Study Comparing Incineration and Composting in a Mars-Based Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Hogan, John; Kang, Sukwon; Cavazzoni, Jim; Levri, Julie; Finn, Cory; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The objective of this study is to compare incineration and composting in a Mars-based advanced life support (ALS) system. The variables explored include waste pre-processing requirements, reactor sizing and buffer capacities. The study incorporates detailed mathematical models of biomass production and waste processing into an existing dynamic ALS system model. The ALS system and incineration models (written in MATLAB/SIMULINK(c)) were developed at the NASA Ames Research Center. The composting process is modeled using first order kinetics, with different degradation rates for individual waste components (carbohydrates, proteins, fats, cellulose and lignin). The biomass waste streams are generated using modified "Eneray Cascade" crop models, which use light- and dark-cycle temperatures, irradiance, photoperiod, [CO2], planting density, and relative humidity as model inputs. The study also includes an evaluation of equivalent system mass (ESM).

  10. Citrus sinensis annotation project (CAP): a comprehensive database for sweet orange genome.

    PubMed

    Wang, Jia; Chen, Dijun; Lei, Yang; Chang, Ji-Wei; Hao, Bao-Hai; Xing, Feng; Li, Sen; Xu, Qiang; Deng, Xiu-Xin; Chen, Ling-Ling

    2014-01-01

    Citrus is one of the most important and widely grown fruit crop with global production ranking firstly among all the fruit crops in the world. Sweet orange accounts for more than half of the Citrus production both in fresh fruit and processed juice. We have sequenced the draft genome of a double-haploid sweet orange (C. sinensis cv. Valencia), and constructed the Citrus sinensis annotation project (CAP) to store and visualize the sequenced genomic and transcriptome data. CAP provides GBrowse-based organization of sweet orange genomic data, which integrates ab initio gene prediction, EST, RNA-seq and RNA-paired end tag (RNA-PET) evidence-based gene annotation. Furthermore, we provide a user-friendly web interface to show the predicted protein-protein interactions (PPIs) and metabolic pathways in sweet orange. CAP provides comprehensive information beneficial to the researchers of sweet orange and other woody plants, which is freely available at http://citrus.hzau.edu.cn/.

  11. Comparative toxicity of an acetogenin-based extract and commercial pesticides against citrus red mite.

    PubMed

    Ribeiro, Leandro do Prado; Zanardi, Odimar Zanuzo; Vendramim, José Djair; Yamamoto, Pedro Takao

    2014-01-01

    Acetogenins, a class of natural compounds produced by some Annonaceae species, are potent inhibitors of mitochondrial electron transport systems. Although the cellular respiration processes are an important biochemical site for the acaricidal action of compounds, few studies have been performed to assess the bioactivity of acetogenin-based biopesticides on spider mites, mainly against species that occur in orchards. Using residual contact bioassays, this study aimed to evaluate the bioactivity of an ethanolic extract from Annona mucosa seeds (ESAM) (Annonaceae) against the citrus red mite Panonychus citri (McGregor) (Acari: Tetranychidae), an important pest of the Brazilian citriculture. ESAM is a homemade biopesticide which was previously characterized by its high concentration of acetogenins. It caused both high mortality of P. citri females (LC50 = 7,295, 4,662, 3,463, and 2,608 mg l(-1), after 48, 72, 96, and 120 h of exposure, respectively) and significant oviposition deterrence (EC50 = 3.194,80 mg l(-1)). However, there was no effect on P. citri female fertility (hatching rate). In addition, the ESAM efficacy (in terms of its LC90) was compared with commercial acaricides/insecticides (at its recommended rate) of both natural [Anosom(®) 1 EC (annonin), Derisom(®) 2 EC (karanjin), and Azamax(®) 1.2 EC (azadirachtin + 3-tigloylazadirachtol)] and synthetic origin [Envidor(®) 24 SC (spirodiclofen)]. Based on all of the analyzed variables, the ESAM exhibited levels of activity superior to other botanical commercial acaricides and similar to spirodiclofen. Thus, our results indicate that ESAM may constitute a biorational acaricide for citrus red mite integrated pest management in Brazilian citrus orchards, particularly for local use.

  12. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Beijing Municipal Research Institute of Environmental Protection, Beijing 100037; Li, Guoxue, E-mail: yangfan19870117@126.com

    2015-02-15

    Highlights: • Effect of phosphogypsum and superphosphate on composting gas emissions was studied. • The reduction mechanisms of composting gas were clarified in this study. • No negative effect was caused on maturity with phosphogypsum and superphosphate. • CH{sub 4} and NH{sub 3} emission was decreased with phosphogypsum and superphosphate addition. • GHG decreased by 17.4% and 7.3% with phosphogypsum and superphosphate addition. - Abstract: This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition ofmore » 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH{sub 4}, N{sub 2}O, and NH{sub 3} were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH{sub 4} emissions (by 85.8% and 80.5%, respectively) and decreased NH{sub 3} emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N{sub 2}O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively.« less

  13. PRACTICAL SIMULATION OF COMPOSTING IN THE LABORATORY

    EPA Science Inventory

    A closed incubation system was developed for laboratory simulation of composting conditions at the interior of a large compost pile. A conductive heat flux control system (CHFC) was used to adjust the temperature of the internal wall to that of the compost center and compensate f...

  14. Application of aerobic composting system for space agriculture

    NASA Astrophysics Data System (ADS)

    Oshima, Tairo; Yoshii, Takahiro; Moriya, Toshiyuki; Yamashita, Masamichi

    Composting is a classical technique to decompose organic wastes such as animal bodies, straw, paper, raw sludge, and so on. Compared with burning of wastes, the composting method has many advantages. It is an inexpensive and safer method because of its self-heating without spending extra energy resources. It does not emit toxic pollutants such as dioxin, NOx , and SOx . The composting products can be used as organic fertilizers for agricultural production. Composting is a promising way for digesting organic wastes safely on spaceships or manned exploration on extraterrestrial planets. We have developed a small scale high-temperature composter in order to examine its feasobility to operate food waste disposing facility and fertilizer production in space. This composter has a heated reaction vessel containing compost soil (seed bacteria) provided by a compost factory. To determine the optimal condition for its operation, we analyzed the effect of temperature on metabolic activity (CO2 production rate), and water content. The dynamics of microbial community was studied by polymerase chain reaction - denaturing gradient gel electrophoresis (PCR-DGGE). Water content was maintained to a range between 27% and 40% by continuously adding water. The highest CO2 emission was observed at around 70° C. PCR-DGGE analysis shows that the bacterial community of the compost soil is dramatically changed by changing reaction temperature. We will discuss the application of the composter in space in order to establish the closed recycling loop of bio-elements in space agriculture.

  15. Bacterial community structure transformed after thermophilically composting human waste in Haiti

    PubMed Central

    Kramer, Sasha; Roy, Monika; Reid, Francine C.; Dubinsky, Eric A.

    2017-01-01

    Recycling human waste for beneficial use has been practiced for millennia. Aerobic (thermophilic) composting of sewage sludge has been shown to reduce populations of opportunistically pathogenic bacteria and to inactivate both Ascaris eggs and culturable Escherichia coli in raw waste, but there is still a question about the fate of most fecal bacteria when raw material is composted directly. This study undertook a comprehensive microbial community analysis of composting material at various stages collected over 6 months at two composting facilities in Haiti. The fecal microbiota signal was monitored using a high-density DNA microarray (PhyloChip). Thermophilic composting altered the bacterial community structure of the starting material. Typical fecal bacteria classified in the following groups were present in at least half the starting material samples, yet were reduced below detection in finished compost: Prevotella and Erysipelotrichaceae (100% reduction of initial presence), Ruminococcaceae (98–99%), Lachnospiraceae (83–94%, primarily unclassified taxa remained), Escherichia and Shigella (100%). Opportunistic pathogens were reduced below the level of detection in the final product with the exception of Clostridium tetani, which could have survived in a spore state or been reintroduced late in the outdoor maturation process. Conversely, thermotolerant or thermophilic Actinomycetes and Firmicutes (e.g., Thermobifida, Bacillus, Geobacillus) typically found in compost increased substantially during the thermophilic stage. This community DNA-based assessment of the fate of human fecal microbiota during thermophilic composting will help optimize this process as a sanitation solution in areas where infrastructure and resources are limited. PMID:28570610

  16. Alternative methods for the control of postharvest citrus diseases.

    PubMed

    Talibi, I; Boubaker, H; Boudyach, E H; Ait Ben Aoumar, A

    2014-07-01

    The postharvest diseases of citrus fruit cause considerable losses during storage and transportation. These diseases are managed principally by the application of synthetic fungicides. However, the increasing concern for health hazards and environmental pollution due to chemical use has required the development of alternative strategies for the control of postharvest citrus diseases. Management of postharvest diseases using microbial antagonists, natural plant-derived products and Generally Recognized As Safe compounds has been demonstrated to be most suitable to replace the synthetic fungicides, which are either being banned or recommended for limited use. However, application of these alternatives by themselves may not always provide a commercially acceptable level of control of postharvest citrus diseases comparable to that obtained with synthetic fungicides. To provide more effective disease control, a multifaceted approach based on the combination of different postharvest treatments has been adopted. Actually, despite the distinctive features of these alternative methods, several reasons hinder the commercial use of such treatments. Consequently, research should emphasize the development of appropriate tools to effectively implement these alternative methods to commercial citrus production. © 2014 The Society for Applied Microbiology.

  17. Widespread applications of citrus cryopreservation

    USDA-ARS?s Scientific Manuscript database

    Citrus genetic resources can now be successfully cryopreserved, which means that they can be placed into long-term storage at liquid nitrogen temperatures. This cryopreservation technology was specifically developed to address the immediate need to have secure long-term back-up storage for citrus co...

  18. The flavor of citrus fruit

    USDA-ARS?s Scientific Manuscript database

    Citrus is the largest cultivated fruit tree crop in the world, with total production of more than 100 million tons per year. The genus Citrus consists of different species, including several producing economically important crops, such as oranges, mandarins, grapefruit, pummelo, lemons and limes, c...

  19. The presence of insect at composting

    NASA Astrophysics Data System (ADS)

    Mudruňka, J.; Lyčková, B.; Kučerová, R.; Glogarová, V.; Závada, J.; Gibesová, B.; Takač, D.

    2017-10-01

    During composting biodegradable waste, microbic organisms reproduce massively, most of which belong to serious biopathogens which are able to penetrate various environmental layers. Their vector species include dipterous insect (Diptera) which reaches considerable amounts in composting plant premises as well as home composting units, mainly during summer months. Therefore measures must be taken to eliminate or reduce this unwanted phenomenon (sanitisation, disinfection). For evaluating obtained results, relative abundance calculation was chosen.

  20. Biochar for composting improvement and contaminants reduction. A review.

    PubMed

    Godlewska, Paulina; Schmidt, Hans Peter; Ok, Yong Sik; Oleszczuk, Patryk

    2017-12-01

    Biochar is characterised by a large specific surface area, porosity, and a large amount of functional groups. All of those features cause that biochar can be a potentially good material in the optimisation of the process of composting and final compost quality. The objective of this study was to compile the current knowledge on the possibility of biochar application in the process of composting and on the effect of biochar on compost properties and on the content of contaminants in compost. The paper presents the effect of biochar on compost maturity indices, composting temperature and moisture, and also on the content and bioavailability of nutrients and of organic and inorganic contaminants. In the paper note is also taken of the effect of biochar added to composted material on plants, microorganisms and soil invertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Modelling of composting process of different organic waste at pilot scale: Biodegradability and odor emissions.

    PubMed

    Gutiérrez, M C; Siles, J A; Diz, J; Chica, A F; Martín, M A

    2017-01-01

    The composting process of six different compostable substrates and one of these with the addition of bacterial inoculums carried out in a dynamic respirometer was evaluated. Despite the heterogeneity of the compostable substrates, cumulative oxygen demand (OD, mgO 2 kgVS) was fitted adequately to an exponential regression growing until reaching a maximum in all cases. According to the kinetic constant of the reaction (K) values obtained, the wastes that degraded more slowly were those containing lignocellulosic material (green wastes) or less biodegradable wastes (sewage sludge). The odor emissions generated during the composting processes were also fitted in all cases to a Gaussian regression with R 2 values within the range 0.8-0.9. The model was validated representing real odor concentration near the maximum value against predicted odor concentration of each substrate, (R 2 =0.9314; 95% prediction interval). The variables of maximum odor concentration (ou E /m 3 ) and the time (h) at which the maximum was reached were also evaluated statistically using ANOVA and a post-hoc Tukey test taking the substrate as a factor, which allowed homogeneous groups to be obtained according to one or both of these variables. The maximum oxygen consumption rate or organic matter degradation during composting was directly related to the maximum odor emission generation rate (R 2 =0.9024, 95% confidence interval) when only the organic wastes with a low content in lignocellulosic materials and no inoculated waste (HRIO) were considered. Finally, the composting of OFMSW would produce a higher odor impact than the other substrates if this process was carried out without odor control or open systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Release of heavy metals during long-term land application of sewage sludge compost: Percolation leaching tests with repeated additions of compost.

    PubMed

    Fang, Wen; Delapp, Rossane C; Kosson, David S; van der Sloot, Hans A; Liu, Jianguo

    2017-02-01

    Leaching assessment procedures have been used to determine the leachability of heavy metals as input for evaluating the risk from sewage sludge compost land application. However, relatively little attention has been paid to understanding leaching from soils with repeated application of sewage sludge compost with elevated levels of heavy metals. In this paper, leaching assessment is extended to evaluate the potential leaching of heavy metals during repetitive application of composted sewage sludge to soils. Four cycling of compost additions and percolation leaching were conducted to investigate how leaching behavior of heavy metals changed with repeated additions of compost. Results showed that repetitive additions of compost to soil significantly increased the content of organic matter, which favored the formation of reducing condition due to improved microbial activities and oxygen consumption. Establishment of reducing conditions can enhance the leaching concentrations of As by approximately 1 order of magnitude, especially for the soil rich in organic matter. For Cd, Cr, Cu, and Pb, repeated additions of compost will cause accumulation in total contents but not enhancement in leaching concentrations. The infiltration following compost additions will leach out the mobile fraction and the residual fraction might not release in the next cycling of compost addition and infiltration. The cumulative release of Cd, Cr, Cu, and Pb accounted for less than 5% of the total contents during four times of compost applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [Effects of grape seed addition in swine manure-wheat straw composting on the compost microbial community and carbon and nitrogen contents].

    PubMed

    Huang, Yi-Mei; Liu, Xue-Ling; Jiang, Ji-Shao; Huang, Hua; Liu, Dong

    2012-08-01

    Taking substrates swine manure and wheat straw (fresh mass ratio 10.5:1) as the control (PMW), a composting experiment was conducted in a self-made aerated static composting bin to study the effects of adding 8% grape seed (treatment PMW + G) on the succession of microbial community and the transformation of carbon and nitrogen in the substrates during the composting. Seven samples were collected from each treatment, according to the temperature of the compost during the 30 d composting period. The microbial population and physiological groups were determined, and the NH4(+)-N, NO3(-)-N, organic N, and organic C concentrations in the compost were measured. Grape seed addition induced a slight increase of bacterial count and a significant increase of actinomycetes count, but decreased the fungal count significantly. Grape seed addition also decreased the ratio of bacteria to actinomycetes and the counts of ammonifiers and denitrifiers, but increased the counts of nitrifiers, N-fixing bacteria, and cellulose-decomposing microorganisms. The contents of NH4(+)-N and organic C decreased, while that of NO3(-)-N increased obviously. The NO3(-)-N content in the compost was positively correlated with the actinomycetes count. During composting, the compost temperature in treatment PMW + G increased more rapidly, and remained steady in thermophilic phase, while the water content changed little, which provided a stable and higher population of actinomycetes and nitrifiers in thermophilic phase, being beneficial to the increase of compost nitrate N.

  4. Seasonal Abundance and Suppression of Fruit-Piercing Moth Eudocima phalonia (L.) in a Citrus Orchard in Sarawak

    PubMed Central

    Leong, Stephen Chan Teck; Kueh, Roland Jui Heng

    2011-01-01

    Seasonal population of the fruit-piercing moths Eudocima spp. was monitored throughout the citrus growing seasons in a citrus orchard and in site adjacent to secondary forest from July 2007 to June 2009. The moth was detected practically throughout the year with activity lowest during the wet months (September-February) when fruits are still available and while highest during the dry months (May-June) which also coincided with the main fruiting season. The effects of an nC24 horticultural mineral oil (HMO) on the citrus fruit damage caused by fruit-piecing moths was also determined. The percent fruit damage was significantly lowest (P≤0.05) in HMO-treated plots (8.4), followed by Dimethoate-treated plots (11.6) and untreated plots (22.5). However, there was no significant difference between HMO and Dimethoate treated plots indicating HMO is effective in reducing percent fruit damage. PMID:22203789

  5. Growing Mediums in Different Environments for Sunflower and Cilantro Microgreens

    NASA Astrophysics Data System (ADS)

    Tran, B.; Gonzalez, O.

    2016-12-01

    The purpose of this experiment is to investigate the growth and subsequent harvest of young seedlings known as microgreens, which have expanded into a very profitable market. The goal of the experiment is to discover whether the nutrients, soil quality and climate influences the quality, flavor, and yield of the microgreens. To conduct this experiment, locations and soil types were chosen; the locations consisted of a greenhouse (an enclosed space which held consistent sunlight, warmth, and humidity) and a lath house (a somewhat shaded location that was open to the elements as well as temperature changes), while compost, Quick Root (a growing medium that is relatively devoid of nutrients), and a combination of the two is used in this experiment. This meant that a total of six different combinations could be tested. Along with that, two different seeds were selected, sunflower seeds and cilantro seeds. Each of the results are mainly influenced by the soil type, and a partial influence by the climate. Compost has an extreme lack in growth and did not produce enough plants to record in general. The Quick Root results show only a burst of growth would occur; also, the plants did not have a strong taste, but did grow slightly quicker within the greenhouse. Another advantage to the Quick Root results is that the root size nearly tripled compared to the 50/50 root size. 50/50 holds the strongest results i.e., growth consistency and holds a stronger taste. Originally, there was an attempt to grow sunflowers uncovered, but was not attempted again due to poor results. Overall the 50/50 held a stronger growth and taste, but also would easily excel in the long run compared to the Quick Root and the compost.

  6. Phenology of Asian citrus psyllid (Hemiptera: Liviidae) and associated parasitoids on two species of Citrus, kinnow mandarin and sweet orange, in Punjab Pakistan.

    PubMed

    Khan, Shouket Zaman; Arif, Muhammad Jalal; Hoddle, Christina D; Hoddle, Mark S

    2014-10-01

    The population phenology of Asian citrus psyllid, Diaphorina citri Kuwayama, was monitored weekly for 110 wk on two species of Citrus, kinnow mandarin and sweet orange, at two different research sites in Faisalabad, Punjab Pakistan. Citrus flush growth patterns were monitored and natural enemy surveys were conducted weekly. Flush patterns were similar for kinnow and sweet orange. However, flush on sweet orange was consistently more heavily infested with Asian citrus psyllid than kinnow flush; densities of Asian citrus psyllid eggs, nymphs, and adults were higher on sweet orange when compared with kinnow. When measured in terms of mean cumulative insect or Asian citrus psyllid days, eggs, nymphs, and adults were significantly higher on sweet orange than kinnow. Two parasitoids were recorded attacking Asian citrus psyllid nymphs, Tamarixia radiata (Waterston) and Diaphorencyrtus aligarhensis (Shafee, Alam and Agarwal). The dominant parasitoid species attacking Asian citrus psyllid nymphs on kinnow and sweet orange was T. radiata, with parasitism averaging 26%. D. aligarhensis parasitism averaged 17%. Generalist predators such as coccinellids and chrysopids were collected infrequently and were likely not important natural enemies at these study sites. Immature spiders, in particular, salticids and yellow sac spiders, were common and may be important predators of all Asian citrus psyllid life stages. Low year round Asian citrus psyllid densities on kinnow and possibly high summer temperatures, may, in part, contribute to the success of this cultivar in Punjab where Candidatus Liberibacter asiaticus, the putative causative agent of huanglongbing, a debilitating citrus disease, is widespread and vectored by Asian citrus psyllid.

  7. Biochar amendment for batch composting of nitrogen rich organic waste: Effect on degradation kinetics, composting physics and nutritional properties.

    PubMed

    Jain, Mayur Shirish; Jambhulkar, Rohit; Kalamdhad, Ajay S

    2018-04-01

    Composting is an efficient technology to reduce pathogenic bodies and stabilize the organic matter in organic wastes. This research work investigates an effect of biochar as amendment to improve the composting efficiency and its effect on degradation kinetics, physical and nutritional properties. Biochar (2.5, 5 and 10% (w/w)) were added into a mixture of Hydrilla verticillata, cow dung and sawdust having ratio of 8:1:1 (control), respectively. Biochar addition resulted in advanced thermophilic temperatures (59 °C) and could improve the physical properties of composting process. Owing to addition of 5% biochar as a bulking agent in composting mixture, the final product from composting, total nitrogen increased by 45% compared to the other trials, and air-filled porosity decreased by 39% and was found to be within recommended range from literature studies. Considering temperature, degradation rate and nitrogen transformation the amendment of 5% biochar is recommended for Hydrilla verticillata composting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Optimum moisture levels for biodegradation of mortality composting envelope materials.

    PubMed

    Ahn, H K; Richard, T L; Glanville, T D

    2008-01-01

    Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.

  9. A Pathogen Secreted Protein as a Detection Marker for Citrus Huanglongbing

    PubMed Central

    Pagliaccia, Deborah; Shi, Jinxia; Pang, Zhiqian; Hawara, Eva; Clark, Kelley; Thapa, Shree P.; De Francesco, Agustina D.; Liu, Jianfeng; Tran, Thien-Toan; Bodaghi, Sohrab; Folimonova, Svetlana Y.; Ancona, Veronica; Mulchandani, Ashok; Coaker, Gitta; Wang, Nian; Vidalakis, Georgios; Ma, Wenbo

    2017-01-01

    The citrus industry is facing an unprecedented crisis due to Huanglongbing (HLB, aka citrus greening disease), a bacterial disease associated with the pathogen Candidatus Liberibacter asiaticus (CLas) that affects all commercial varieties. Transmitted by the Asian citrus psyllid (ACP), CLas colonizes citrus phloem, leading to reduced yield and fruit quality, and eventually tree decline and death. Since adequate curative measures are not available, a key step in HLB management is to restrict the spread of the disease by identifying infected trees and removing them in a timely manner. However, uneven distribution of CLas cells in infected trees and the long latency for disease symptom development makes sampling of trees for CLas detection challenging. Here, we report that a CLas secreted protein can be used as a biomarker for detecting HLB infected citrus. Proteins secreted from CLas cells can presumably move along the phloem, beyond the site of ACP inoculation and CLas colonized plant cells, thereby increasing the chance of detecting infected trees. We generated a polyclonal antibody that effectively binds to the secreted protein and developed serological assays that can successfully detect CLas infection. This work demonstrates that antibody-based diagnosis using a CLas secreted protein as the detection marker for infected trees offers a high-throughput and economic approach that complements the approved quantitative polymerase chain reaction-based methods to enhance HLB management programs. PMID:29403441

  10. Integrated Management of Citrus Canker

    USDA-ARS?s Scientific Manuscript database

    Fruit losses due to citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), vary each crop season depending on citrus variety, tree age, flushing condition, leafminer control, and coincidence of weather events with occurrence of susceptible fruit and foliage. In 2012, crop losses in Hamlin f...

  11. H NMR analyses of Citrus macrophylla subjected to Asian citrus psyllid (Diaphorina citri Kuwayama) feeding

    USDA-ARS?s Scientific Manuscript database

    The Asian citrus psyllid (ACP) is a phloem feeding insect that can host and transmit the bacterium Candidatus Liberibacter asiaticus (CLas), which is the putative causative agent of the economically important citrus disease, Huanglongbing (HLB). ACP are widespread in Florida, and are spreading in Ca...

  12. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: monitoring by using an electronic nose.

    PubMed

    López, R; Cabeza, I O; Giráldez, I; Díaz, M J

    2011-09-01

    The concentration of volatile organic compounds (VOCs) during the composting of kitchen waste and pruning residues, and the abatement of VOCs by different compost biofilters was studied. VOCs removal efficiencies greater than 90% were obtained using composts of municipal solid waste (MSW) or MSW-pruning residue as biofilter material. An electronic nose identified qualitative differences among the biofilter output gases at very low concentrations of VOCs. These differences were related to compost constituents, compost particle size (2-7 or 7-20mm), and a combination of both factors. The total concentration of VOCs determined by a photoionization analyser and inferred from electronic nose data sets were correlated over an ample range of concentrations of VOCs, showing that these techniques could be specially adapted for the monitoring of these processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Compost applicators for horticulture

    NASA Astrophysics Data System (ADS)

    Iqbal; Achmad, M.; Sapsal, M. T.

    2018-05-01

    Horticulture is the art of planting fruit trees, vegetables, and ornamental or agricultural science that deals with the cultivation of gardens, including planting vegetable plants, fruit, flowers, and shrubs and ornamental trees. Fertilization is one of the important things to increase production, even until now regarded as a dominant factor in agricultural production. The use of compost can provide benefits for soil and plants. Problems that occur at the time of application of compost needed manpower and considerable expense, so it needs an efficient technology in the form of mechanical equipment that is simple and easy to operate. This study aims to modify applicator for sugar cane dry land so that it can be used on horticultural crops (vegetables) land and seeks to increase the efficiency of the applicator compost through modifications the system coupling that can be drawn using the tractor two wheels. The results show that the prototype model of applicator conveyor belt type had been made was functioning properly. Modification is done by replacing the joint connection between the applicator and the tractor. The volume of applicator compost is one meter cubic.

  14. Critical evaluation of municipal solid waste composting and potential compost markets.

    PubMed

    Farrell, M; Jones, D L

    2009-10-01

    Mechanical biological treatment (MBT) of mixed waste streams is becoming increasingly popular as a method for treating municipal solid waste (MSW). Whilst this process can separate many recyclates from mixed waste, the resultant organic residue can contain high levels of heavy metals and physical and biological contaminants. This review assesses the potential end uses and sustainable markets for this organic residue. Critical evaluation reveals that the best option for using this organic resource is in land remediation and restoration schemes. For example, application of MSW-derived composts at acidic heavy metal contaminated sites has ameliorated soil pollution with minimal risk. We conclude that although MSW-derived composts are of low value, they still represent a valuable resource particularly for use in post-industrial environments. A holistic view should be taken when regulating the use of such composts, taking into account the specific situation of application and the environmental pitfalls of alternative disposal routes.

  15. Temperature control strategy to enhance the activity of yeast inoculated into compost raw material for accelerated composting.

    PubMed

    Nakasaki, Kiyohiko; Hirai, Hidehira

    2017-07-01

    The effects of inoculating the mesophilic yeast Pichia kudriavzevii RB1, which is able to degrade organic acids, on organic matter degradation in composting were elucidated. When model food waste with high carbohydrate content (C/N=22.3) was used, fluctuation in the inoculated yeast cell density was observed, as well as fluctuation in the composting temperature until day 5 when the temperature rose to 60°C, which is lethal for the yeast. After the decrease in yeast, acetic acid accumulated to levels as high as 20mg/g-ds in the composting material and vigorous organic matter degradation was inhibited. However, by maintaining the temperature at 40°C for 2days during the heating phase in the early stage of composting, both the organic acids originally contained in the raw material and acetic acid produced during the heating phase were degraded by the yeast. The concentration of acetic acid was kept at a relatively low level (10.1mg/g-ds at the highest), thereby promoting the degradation of organic matter by other microorganisms and accelerating the composting process. These results indicate that temperature control enhances the effects of microbial inoculation into composts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Soil bioassays as tools for sludge compost quality assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domene, Xavier, E-mail: x.domene@creaf.uab.es; Sola, Laura; Ramirez, Wilson

    2011-03-15

    Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment. Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed inmore » bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts.« less

  17. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  18. Compost made of organic wastes suppresses fusariosis

    NASA Astrophysics Data System (ADS)

    Kuryntseva, Polina; Galitskaya, Polina; Biktasheva, Liliya; Selivanovkaya, Svetlana

    2017-04-01

    Fungal plant diseases cause dramatic yield losses worldwide. Usually, pesticides are used for soil sanitation, and it results in practically pest-free soils, although pesticides cause a biological vacuum, which present many horticultural disadvantages. Suppressive composts, which possess both fertilizing properties for plants and inhibiting properties for plant pathogens, represent an effective and environmentally friendly alternative to conventional pesticides. In this study, composts obtained from agricultural organic wastes were applied to suppress Fusarium oxysporum of tomato plants in model experiments. Composts were made of mixtures of the widespread organic wastes sampled in Tatarstan (Russia): straw (SW), corn wastes (CW), chicken manure (ChM), cattle manure (CM) and swine manure (SM). 11 two- and three-component mixtures were prepared to obtain the optimal carbon-nitrogen, moisture and pH balances, and composted for 210 days. It was found that the thermophilic phase of composting in all the mixtures lasted from 2 to 35 days, and was characterized by significant fluctuations in temperature, i.e. from 27°C to 59°C. In the initial mixtures, the dissolved organic carbon (DOC) content was between 10 and 62 mg kg-1; it fell significantly on day 13, and then continuously decreased up to day 102, and subsequently remained low. For all the mixtures, maximal respiration activity was observed in the beginning of composting (231.9 mg CO2-C g-1 day-1). After 23 days, this parameter decreased significantly, and fluctuations subsided. The phytotoxicity of the initial compost mixtures varied from 18% (SW+SM) to 100% (CW+ChM+SM, CW+ChM); however, the trends in the dynamics were similar. After 120 days of composting, 5 of 11 samples were not phytotoxic. After 120 days of composting, each mixture was divided into two parts; one was inoculated with a biopreparation consisting of four microbial strains (Trichoderma asperellum, Pseudomonas putida, Pseudomonas fluorescens and

  19. Development of SSR markers from Citrus clementina (Rutaceae) BAC end sequences and interspecific transferability in Citrus.

    PubMed

    Ollitrault, Frédérique; Terol, Javier; Pina, Jose Antonio; Navarro, Luis; Talon, Manuel; Ollitrault, Patrick

    2010-11-01

    Microsatellite primers were developed from bacterial artificial chromosome (BAC) end sequences of Citrus clementina and their transferability and polymorphism tested in the genus Citrus for future anchorage of physical and genetic maps and comparative interspecific genetic mapping. • Using PAGE and DNA silver staining, 79 primer pairs were selected for their transferability and polymorphism among 526 microsatellites mined in BES. A preliminary diversity study in Citrus was conducted with 18 of them, in C. reticulata, C. maxima, C. medica, C. sinensis, C. aurantium, C. paradisi, C. lemon, C. aurantifolia, and some papedas (wild citrus), using a capillary electrophoresis fragment analyzer. Intra- and interspecific polymorphism was observed, and heterozygous markers were identified for the different genotypes to be used for genetic mapping. • These results indicate the utility of the developed primers for comparative mapping studies and the integration of physical and genetic maps.

  20. Aeribacillus composti sp. nov., a thermophilic bacillus isolated from olive mill pomace compost.

    PubMed

    Finore, Ilaria; Gioiello, Alessia; Leone, Luigi; Orlando, Pierangelo; Romano, Ida; Nicolaus, Barbara; Poli, Annarita

    2017-11-01

    A Gram-stain-positive, aerobic, endospore-forming, thermophilic bacterium, strain N.8 T , was isolated from the curing step of an olive mill pomace compost sample, collected at the Composting Experimental Centre (CESCO, Salerno, Italy). Strain N.8 T , based on 16S rRNA gene sequence similarities, was most closely related to Aeribacillus pallidus strain H12 T (=DSM 3670 T ) (99.8 % similarity value) with a 25 % DNA-DNA relatedness value. Cells were rod-shaped, non-motile and grew optimally at 60 °C and pH 9.0, forming cream colonies. Strain N.8 was able to grow on medium containing up to 9.0 % (w/v) NaCl with an optimum at 6.0 % (w/v) NaCl. The cellular membrane contained MK-7, and C16 : 0 (48.4 %), iso-C17 : 0 (19.4 %) and anteiso-C17 : 0 (14.6 %) were the major cellular fatty acids. The DNA G+C content was 40.5 mol%. Based on phenotypic characteristics, 16S rRNA gene sequences, DNA-DNA hybridization values and chemotaxonomic characteristics, strain N.8 T represents a novel species of the genus Aeribacillus, for which the name Aeribacillus composti sp. nov. is proposed. The type strain is N.8 T (=KCTC 33824 T =JCM 31580 T ).

  1. Enumerating actinomycetes in compost bioaerosols at source—Use of soil compost agar to address plate 'masking'

    NASA Astrophysics Data System (ADS)

    Taha, M. P. M.; Drew, G. H.; Tamer Vestlund, A.; Aldred, D.; Longhurst, P. J.; Pollard, S. J. T.

    Actinomycetes are the dominant bacteria isolated from bioaerosols sampled at composting facilities. Here, a novel method for the isolation of actinomycetes is reported, overcoming masking of conventional agar plates, as well as reducing analysis time and costs. Repeatable and reliable actinomycetes growth was best achieved using a soil compost media at an incubation temperature of 44 °C and 7 days' incubation. The results are of particular value to waste management operators and their advisors undertaking regulatory risk assessments that support environmental approvals for compost facilities.

  2. Comparison of U.S. Environmental Protection Agency and U.S. Composting Council microbial detection methods in finished compost and regrowth potential of Salmonella spp. and Escherichia coli O157:H7 in finished compost.

    PubMed

    Reynnells, Russell; Ingram, David T; Roberts, Cheryl; Stonebraker, Richard; Handy, Eric T; Felton, Gary; Vinyard, Bryan T; Millner, Patricia D; Sharma, Manan

    2014-07-01

    Bacterial pathogens may survive and regrow in finished compost due to incomplete thermal inactivation during or recontamination after composting. Twenty-nine finished composts were obtained from 19 U.S. states and were separated into three broad feedstock categories: biosolids (n=10), manure (n=4), and yard waste (n=15). Three replicates of each compost were inoculated with ≈ 1-2 log CFU/g of nonpathogenic Escherichia coli, Salmonella spp., and E. coli O157:H7. The U.S. Environmental Protection Agency's (EPA) protocols and U.S. Composting Council's (USCC) Test Methods for the Examination of Composting and Compost (TMECC) were compared to determine which method recovered higher percentages of inoculated E. coli (representing fecal coliforms) and Salmonella spp. from 400-g samples of finished composts. Populations of Salmonella spp. and E. coli O157:H7 were determined over 3 days while stored at 25°C and compared to physicochemical parameters to predict their respective regrowth potentials. EPA Method 1680 recovered significantly (p=0.0003) more inoculated E. coli (68.7%) than TMECC 07.01 (48.1%) due to the EPA method using more compost in the initial homogenate, larger transfer dilutions, and a larger most probable number scheme compared to TMECC 07.01. The recoveries of inoculated Salmonella spp. by Environmental Protection Agency Method 1682 (89.1%) and TMECC 07.02 (72.4%) were not statistically significant (p=0.44). The statistically similar recovery percentages may be explained by the use of a nonselective pre-enrichment step used in both methods. No physicochemical parameter (C:N, moisture content, total organic carbon) was able to serve as a sole predictor of regrowth of Salmonella spp. or E. coli O157:H7 in finished compost. However, statistical analysis revealed that the C:N ratio, total organic carbon, and moisture content all contributed to pathogen regrowth potential in finished composts. It is recommended that the USCC modify TMECC protocols to test

  3. Composting toilets as a sustainable alternative to urban sanitation--a review.

    PubMed

    Anand, Chirjiv K; Apul, Defne S

    2014-02-01

    In today's flush based urban sanitation systems, toilets are connected to both the centralized water and wastewater infrastructures. This approach is not a sustainable use of our water and energy resources. In addition, in the U.S., there is a shortfall in funding for maintenance and upgrade of the water and wastewater infrastructures. The goal of this paper was to review the current knowledge on composting toilets since this technology is decentralized, requires no water, creates a value product (fertilizer) and can possibly reduce the burden on the current infrastructure as a sustainable sanitation approach. We found a large variety of composting toilet designs and categorized the different types of toilets as being self contained or central; single or multi chamber; waterless or with water/foam flush, electric or non-electric, and no-mix or combined collection. Factors reported as affecting the composting process and their optimum values were identified as; aeration, moisture content (50-60%), temperature (40-65°C), carbon to nitrogen ratio (25-35), pH (5.5-8.0), and porosity (35-50%). Mass and energy balance models have been created for the composting process. However there is a literature gap in the use of this knowledge in design and operation of composting toilets. To evaluate the stability and safety of compost for use as fertilizer, various methods are available and the temperature-time criterion approach is the most common one used. There are many barriers to the use of composting toilets in urban settings including public acceptance, regulations, and lack of knowledge and experience in composting toilet design and operation and program operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Integrating ecosystem services into risk management decisions: case study with Spanish citrus and the insecticide chlorpyrifos.

    PubMed

    Deacon, Samantha; Norman, Steve; Nicolette, Joseph; Reub, Gregory; Greene, Gretchen; Osborn, Rachel; Andrews, Paul

    2015-02-01

    The European regulatory system for the approval of pesticides includes a thorough evaluation of risks to the environment and is designed to be protective of ecosystems. However, a decision to ban an agrochemical could also potentially have a negative impact on the value of ecosystem services, if resulting changes in crop management are damaging to ecosystems or result in negative socio-economic impacts. To support regulatory decision-making, consideration of ecosystem services to identify best environmental management options could be a way forward. There is generally a growing trend for the consideration of ecosystem services in decision making. Ecosystems provide the conditions for growing food, regulate water and provide wildlife habitats; these, amongst others, are known as ecosystem services. The objectives of this case study were to bring a holistic approach to decision making by valuing the environmental, social and economic benefits derived from the use of chlorpyrifos in Valencian citrus production. Spanish growers harvest between 5 and 6 milliont of citrus annually, worth an estimated €5 to 7 billion in food markets throughout Europe. The approach highlighted the potential for unintended negative consequences of regulatory decisions if the full context is not considered. In this study, rather than a regulatory restriction, the best option was the continued use of chlorpyrifos together with vegetated conservation patches as refuges for non-target insects. The conservation patches offset potential insecticidal impacts to insects whilst maintaining citrus production, farm income and the amenity value of the citrus landscape of Valencia. This was an initial proof-of-concept study and illustrates the importance of a wider perspective; other cases may have different outcomes depending on policies, the pesticide, crop scenarios, farm economics and the region. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Reducing nitrogen loss and phytotoxicity during beer vinasse composting with biochar addition.

    PubMed

    Wang, Xueqin; Zhao, Yue; Wang, Huan; Zhao, Xinyu; Cui, Hongyang; Wei, Zimin

    2017-03-01

    The aim of this study was to investigate the feasibility of composting of beer vinasse generated from brewing industry, the effect of biochar amendment on beer vinasse composting was also evaluated based on the changes of different physicochemical parameters, phytotoxicity and final compost quality. Four different treatments were performed of beer vinasse with biochar addition at 0, 5%, 10%, 15% (w/w dry basis). The final product obtained from beer vinasse composting was phytotoxicity-free (GI: 120.8%), mature (C/N: 19.88, NH 4 + -N: 295.0mg/kg, DOC: 9.76g/kg) and nutrient-rich (especially for P: 1.92%) compost except high N loss (60.76%), which had the potential to be as soil amendment or fertilizer. Biochar addition contributed to decomposition of DOC indicating higher microbial activity and attain phytotoxicity-free standard rapidly. N loss significantly reduced by 27% with biochar at 15% addition. And 15% biochar addition ensured all parameters, which was involved in composts quality, to attain the mature standard. Therefore, it was suggested that biochar addition at 15% was optimal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A Study of Rapid Biodegradation of Oily Wastes through Composting.

    DTIC Science & Technology

    1979-10-01

    effective method for large-scale composting of organic wastes. This research project was based on the principles of the forced aeration technique. The...carbon results in heat loss and subsequent reduction in effectiveness of pathogen destruction. It is therefore desirable to maintain the C/N ratio at a...investigated the effect of composting on the degradation of hydrocarbons in sewage sludge. Sludge extracts were fractionated into classes of compounds and a

  7. Greenhouse gas emissions from home composting in practice.

    PubMed

    Ermolaev, Evgheni; Sundberg, Cecilia; Pell, Mikael; Jönsson, Håkan

    2014-01-01

    In Sweden, 16% of all biologically treated food waste is home composted. Emissions of the greenhouse gases CH4 and N2O and emissions of NH3 from home composts were measured and factors affecting these emissions were examined. Gas and substrate in the compost bins were sampled and the composting conditions assessed 13 times during a 1-year period in 18 home composts managed by the home owners. The influence of process parameters and management factors was evaluated by regression analysis. The mean CH4 and N2O concentration was 28.1 and 5.46 ppm (v/v), respectively, above the ambient level and the CH4:CO2 and N2O:CO2 ratio was 0.38% and 0.15%, respectively (median values 0.04% and 0.07%, respectively). The home composts emitted less CH4 than large-scale composts, but similar amounts of N2O. Overall NH3 concentrations were low. Increasing the temperature, moisture content, mixing frequency and amount of added waste all increased CH4 emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Studies on the development of functional powder from citrus peel.

    PubMed

    Kang, H J; Chawla, S P; Jo, C; Kwon, J H; Byun, M W

    2006-03-01

    The suitability of citrus peels, generated as a by-product of the juice industry, as a source of antioxidants was investigated. Citrus peel powder was prepared by lyophilizing 70% ethanol extract from citrus peels. Extraction was carried out at room temperature (20 degrees C) for 72 h. The extract was subjected to gamma-irradiation treatment (20 kGy). The aqueous solutions of citrus peel powder were examined for color characteristics and antioxidant potential in terms of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, beta-carotene bleaching and nitrite scavenging activities. There were significant changes in Hunter color values due to irradiation. The a*- and b*-values decreased due to radiation treatment. DPPH radical scavenging, beta-carotene bleaching and nitrite scavenging activities were not affected by irradiation treatment. Nitrite scavenging activity was the highest in the extract at pH 1.2 followed by pH 4.2 and 6.0. These functional properties of the aqueous solution were found to be stable in heat treatment. It could significantly improve oxidative stability of lipids in fish meat system. Based on these results there may be opportunities to use citrus peel powder as a functional component in the food processing industry with gamma irradiation treatment improving its color characteristics without adversely influencing the functional properties.

  9. Temporal Occurrence and Niche Preferences of Phytophthora spp. Causing Brown Rot of Citrus in the Central Valley of California.

    PubMed

    Hao, Wei; Miles, Timothy D; Martin, Frank N; Browne, Gregory T; Förster, Helga; Adaskaveg, James E

    2018-03-01

    Brown rot of citrus fruit is caused by several species of Phytophthora and is currently of serious concern for the California citrus industry. Two species, Phytophthora syringae and P. hibernalis, are quarantine pathogens in China, a major export market for California citrus. To maintain trade and estimate the risk of exporting a quarantine pathogen, the distribution and frequency of Phytophthora spp. causing brown rot of orange in major growing areas of California was investigated. Symptomatic fruit were collected from navel (winter to late spring) and Valencia (late spring to summer) orange orchards from 2013 to 2015. Species identification of isolates was based on morphological characteristics, random amplified polymorphic DNA banding patterns, and sequencing of the internal transcribed spacer and the partial cox2/spacer/cox1 regions from axenic cultures, or directly on DNA from fruit tissue using a multiplex TaqMan quantitative polymerase chain reaction assay. In winter samplings, the incidence of P. syringae based on the number of fruit with Phytophthora spp. detection ranged from 73.6 to 96.1% for the two counties surveyed. The remaining isolates were identified as P. citrophthora. In late spring or summer, only P. citrophthora was recovered. P. hibernalis and P. nicotianae were not detected in any fruit with brown rot symptoms. These results indicate that P. syringae is currently an important brown rot pathogen of citrus fruit in California during the cooler seasons of the year. In winter 2016 and 2017, P. syringae was recovered by pear baiting at a high incidence from leaf litter and from a small number of rhizosphere soil or root samples but not from living leaves on the tree. In contrast, P. citrophthora was rarely found in leaf litter but was commonly detected in the rhizosphere. Thus, leaf litter is a major inoculum source for P. syringae and this species occupies a distinct ecological niche.

  10. Enhanced Acquisition Rates of 'Candidatus Liberibacter asiaticus' by the Asian Citrus Psyllid (Hemiptera: Liviidae) in the Presence of Vegetative Flush Growth in Citrus.

    PubMed

    Sétamou, Mamoudou; Alabi, Olufemi J; Kunta, Madhurababu; Jifon, John L; da Graça, John V

    2016-10-01

    The Asian citrus psyllid preferentially feeds and exclusively reproduces on young, newly emerged flush shoots of citrus. Asian citrus psyllid nymphs feed and complete their life stages on these flush shoots. Recent studies conducted under greenhouse conditions have shown that the transmission rates of 'Candidatus Liberibacter asiaticus' (CLas), the putative causal agent of huanglongbing disease of citrus, are enhanced when flush shoots are present. However, it is unclear if CLas acquisition by migrant adult Asian citrus psyllids is similarly enhanced. To address this knowledge gap, cohorts of Asian citrus psyllid adults were allowed 1-wk acquisition access period (AAP) on flushing and nonflushing shoots of qPCR-tested symptomatic (CLas+) and asymptomatic (CLas-) 10-yr-old sweet orange trees under field conditions. After the AAP, they were tested for CLas by qPCR. Progeny Asian citrus psyllid adults that emerged 4 wk post-AAP were similarly retrieved and tested. Eighty percent of flushing and 30% of nonflushing CLas+ trees produced infective Asian citrus psyllid adults, indicating that flush shoots have greater potential to be inoculum sources for CLas acquisition. Concomitantly, 21.1% and 6.0% infective adults were retrieved, respectively, from flushing and nonflushing CLas+ trees, indicating that Asian citrus psyllid adults acquire CLas more efficiently from flush shoots relative to mature shoots. In addition, 12.1% of infective Asian citrus psyllid adult progeny were obtained from 70% of flushing CLas+ trees. Significantly lower mean Ct values were also obtained from infective adults retrieved from flushing relative to nonflushing trees. The results underscore the role of flush shoots in CLas acquisition and the need to protect citrus trees from Asian citrus psyllid infestations during flush cycles. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email

  11. Biological Indexing of Graft Transmissible Diseases of Citrus

    USDA-ARS?s Scientific Manuscript database

    Biological indexing for the detection of graft transmissible diseases of citrus is essential for maintaining a citrus certification program. Many of the graft transmissible diseases of citrus are harbored as latent infections in the scions, but when propagated on a susceptible rootstock that allow...

  12. Survival of Human Pathogens in Composted Sewage

    PubMed Central

    Wiley, B. Beauford; Westerberg, Stephen C.

    1969-01-01

    Studies were conducted to assess the effectiveness of an aerobic composter in destroying pathogens that may possibly be present in raw sewage sludge. Experiments conducted in this study were designed to determine whether or not selected indicator organisms (i.e., Salmonella newport, poliovirus type 1, Ascaris lumbricoides ova, and Candida albicans) could survive the composting process. The results of the assay showed that after 43 hr of composting, no viable indicator organisms could be detected. The poliovirus type I was the most sensitive, being inactivated within the first hour, whereas C. albicans was the most resistant, requiring more than 28 hr of composting for its inactivation. The data from this study indicated that aerobic composting of sewage sludge would destroy the indicator pathogens when a temperature of 60 to 70 C is maintained for a period of 3 days. PMID:4313209

  13. [Production of a compost accelerator inoculant].

    PubMed

    Medina Lara, M Socorro; Quintero Lizaola, Roberto; Espinosa Victoria, David; Alarcón, Alejandro; Etchevers Barra, Jorge D; Trinidad Santos, Antonio; Conde Martínez, F Víctor

    2017-10-26

    Composting was performed using a mixture of ovine manure and straw. Inoculum was extracted at five different phases of the composting process (18, 23, 28, 33 and 38 days after the start of the composting process) and its effect on reducing biotransformation time was evaluated in the composted ovine manure. The samples were preserved in a deep freezer, then lyophilized to obtain the inoculum, 50g of which was added to each treatment in the second experimental phase. Six treatments were established; C=straw (P)+ovine manure (E), T1=P+ E+inoculum 18 days after the start of the composting process (I18), T2=P+E+I23, T3=P+E+I28, T4=P+E+I33, T5=P+E+I38, with three replications. Treatments were placed in a controlled-environment chamber at 45% relative humidity and 30°C along with flasks containing 50g of material to measure daily production, CO 2 accumulation, temperature, pH, electric conductivity (dS/m), organic matter (%), total nitrogen (%), total carbon (%), C: N ratio, particle size (Tp) and bulk density (g/l). CO 2 production (mg) showed a significant difference (p ≤.05) of treatments T2 and T5 with respect to the others, which demonstrated that the inoculum of these treatments accelerated the dynamics of microorganisms and the composting process. The quality and maturity of the compost are guaranteed as the amount of CO 2 decreases. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. An isothermal based recombinase polymerase amplification assay for rapid, sensitive and robust indexing of citrus yellow mosaic virus.

    PubMed

    Kumar, P V; Sharma, S K; Rishi, N; Ghosh, D K; Baranwal, V K

    Management of viral diseases relies on definite and sensitive detection methods. Citrus yellow mosaic virus (CYMV), a double stranded DNA virus of the genus Badnavirus, causes yellow mosaic disease in citrus plants. CYMV is transmitted through budwood and requires a robust and simplified indexing protocol for budwood certification programme. The present study reports development and standardization of an isothermal based recombinase polymerase amplification (RPA) assay for a sensitive, rapid, easy, and cost-effective method for detection and diagnosis of CYMV. Two different oligonucleotide primer sets were designed from ORF III (coding for polyprotein) and ORF II (coding for virion associated protein) regions of CYMV to perform amplification assays. Comparative evaluation of RPA, PCR and immuno-capture recombinase polymerase amplification (IC-RPA) based assays were done using purified DNA and plant crude sap. CYMV infection was efficiently detected from the crude sap in RPA and IC-RPA assays. The primer set used in RPA was specific and did not show any cross-amplification with banana streak MY virus (BSMYV), another Badnavirus species. The results from the present study indicated that RPA assay can be used easily in routine indexing of citrus planting material. To the best of our knowledge, this is the first report on development of a rapid and simplified isothermal detection assay for CYMV and can be utilized as an effective technique in quarantine and budwood certification process.

  15. Transcriptome analysis of root response to citrus blight based on the newly assembled Swingle citrumelo draft genome.

    PubMed

    Zhang, Yunzeng; Barthe, Gary; Grosser, Jude W; Wang, Nian

    2016-07-08

    Citrus blight is a citrus tree overall decline disease and causes serious losses in the citrus industry worldwide. Although it was described more than one hundred years ago, its causal agent remains unknown and its pathophysiology is not well determined, which hampers our understanding of the disease and design of suitable disease management. In this study, we sequenced and assembled the draft genome for Swingle citrumelo, one important citrus rootstock. The draft genome is approximately 280 Mb, which covers 74 % of the estimated Swingle citrumelo genome and the average coverage is around 15X. The draft genome of Swingle citrumelo enabled us to conduct transcriptome analysis of roots of blight and healthy Swingle citrumelo using RNA-seq. The RNA-seq was reliable as evidenced by the high consistence of RNA-seq analysis and quantitative reverse transcription PCR results (R(2) = 0.966). Comparison of the gene expression profiles between blight and healthy root samples revealed the molecular mechanism underneath the characteristic blight phenotypes including decline, starch accumulation, and drought stress. The JA and ET biosynthesis and signaling pathways showed decreased transcript abundance, whereas SA-mediated defense-related genes showed increased transcript abundance in blight trees, suggesting unclassified biotrophic pathogen was involved in this disease. Overall, the Swingle citrumelo draft genome generated in this study will advance our understanding of plant biology and contribute to the citrus breeding. Transcriptome analysis of blight and healthy trees deepened our understanding of the pathophysiology of citrus blight.

  16. Unique hyper-thermal composting process in Kagoshima City forms distinct bacterial community structures.

    PubMed

    Tashiro, Yukihiro; Tabata, Hanae; Itahara, Asuka; Shimizu, Natsuki; Tashiro, Kosuke; Sakai, Kenji

    2016-11-01

    A unique compost, Satsuma soil, is produced from three types of wastewater sludge using hyper-thermal processes at temperatures much higher than that of general thermophilic processes in Kagoshima City, Japan. We analyzed the bacterial community structures of this hyper-thermal compost sample and other sludges and composts by a high-throughput barcoded pyrosequencing method targeting the 16S rRNA gene. In total, 621,076 reads were derived from 17 samples and filtered. Artificial sequences were deleted and the reads were clustered based on the operational taxonomic units (OTUs) at 97% similarity. Phylum-level analysis of the hyper-thermal compost revealed drastic changes of the sludge structures (each relative abundance) from Firmicutes (average 47.8%), Proteobacteria (average 22.3%), and Bacteroidetes (average 10.1%) to two main phyla including Firmicutes (73.6%) and Actinobacteria (25.0%) with less Proteobacteria (∼0.3%) and Bacteroidetes (∼0.1%). Furthermore, we determined the predominant species (each relative abundance) of the hyper-thermal compost including Firmicutes related to Staphylococcus cohnii (13.8%), Jeotgalicoccus coquinae (8.01%), and Staphylococcus lentus (5.96%), and Actinobacteria related to Corynebacterium stationis (6.41%), and found that these species were not predominant in wastewater sludge. In contrast, we did not observe any common structures among eight other composts produced, using the hyper-thermal composts as the inoculums, under thermophilic conditions from different materials. Principle coordinate analysis of the hyper-thermal compost indicated a large difference in bacterial community structures from material sludge and other composts. These results suggested that a distinct bacterial community structure was formed by hyper-thermal composting. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Site Plan & Site Section of Citrus Landscape (Showing Relationship ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Site Plan & Site Section of Citrus Landscape (Showing Relationship of Victoria Avenue to Citrus Groves) - Arlington Heights Citrus Landscape, Southwestern portion of city of Riverside, Riverside, Riverside County, CA

  18. Changes in the microbial communities during co-composting of digestates☆

    PubMed Central

    Franke-Whittle, Ingrid H.; Confalonieri, Alberto; Insam, Heribert; Schlegelmilch, Mirko; Körner, Ina

    2014-01-01

    Anaerobic digestion is a waste treatment method which is of increasing interest worldwide. At the end of the process, a digestate remains, which can gain added value by being composted. A study was conducted in order to investigate microbial community dynamics during the composting process of a mixture of anaerobic digestate (derived from the anaerobic digestion of municipal food waste), green wastes and a screened compost (green waste/kitchen waste compost), using the COMPOCHIP microarray. The composting process showed a typical temperature development, and the highest degradation rates occurred during the first 14 days of composting, as seen from the elevated CO2 content in the exhaust air. With an exception of elevated nitrite and nitrate levels in the day 34 samples, physical–chemical parameters for all compost samples collected during the 63 day process indicated typical composting conditions. The microbial communities changed over the 63 days of composting. According to principal component analysis of the COMPOCHIP microarray results, compost samples from the start of the experiment were found to cluster most closely with the digestate and screened compost samples. The green waste samples were found to group separately. All starting materials investigated were found to yield fewer and lower signals when compared to the samples collected during the composting experiment. PMID:24456768

  19. Changes in the microbial communities during co-composting of digestates.

    PubMed

    Franke-Whittle, Ingrid H; Confalonieri, Alberto; Insam, Heribert; Schlegelmilch, Mirko; Körner, Ina

    2014-03-01

    Anaerobic digestion is a waste treatment method which is of increasing interest worldwide. At the end of the process, a digestate remains, which can gain added value by being composted. A study was conducted in order to investigate microbial community dynamics during the composting process of a mixture of anaerobic digestate (derived from the anaerobic digestion of municipal food waste), green wastes and a screened compost (green waste/kitchen waste compost), using the COMPOCHIP microarray. The composting process showed a typical temperature development, and the highest degradation rates occurred during the first 14 days of composting, as seen from the elevated CO2 content in the exhaust air. With an exception of elevated nitrite and nitrate levels in the day 34 samples, physical-chemical parameters for all compost samples collected during the 63 day process indicated typical composting conditions. The microbial communities changed over the 63 days of composting. According to principal component analysis of the COMPOCHIP microarray results, compost samples from the start of the experiment were found to cluster most closely with the digestate and screened compost samples. The green waste samples were found to group separately. All starting materials investigated were found to yield fewer and lower signals when compared to the samples collected during the composting experiment. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Energy or compost from green waste? - A CO{sub 2} - Based assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kranert, Martin, E-mail: martin.kranert@iswa.uni-stuttgart.d; Gottschall, Ralf; Bruns, Christian

    2010-04-15

    Green waste is increasingly extracted from the material recycling chain and, as a result of the financial subsidy arising from the German renewable energy law for the generation of energy from renewable raw materials; it is fed into the energy recovery process in biomass power stations. A reduction in climate relevant gases is also linked to the material recovery of green waste - in particular when using composts gained from the process as a new raw material in different types of potting compost and plant culture media as a replacement for peat. Unlike energy recovery, material valorisation is not currentlymore » subsidised. Through the analysis of material and energy valorisation methods for green waste, with particular emphasis on primary resource consumption and CO{sub 2}-balance, it could be determined that the use of green waste for energy generation and its recovery for material and peat replacement purposes can be considered to be on a par. Based on energy recovery or material oriented scenarios, it can be further deduced that no method on its own will achieve the desired outcome and that a combination of recycling processes is more likely to lead to a significant decrease of greenhouse gas emissions.« less

  1. A comparison of plant species for rearing Asian citrus psyllid

    USDA-ARS?s Scientific Manuscript database

    Five plant genotypes were compared with respect to Asian citrus psyllid (ACP) reproduction potential: Bergera koenigii, Citrus aurantiifolia, C. macrophylla, C. taiwanica and Murraya paniculata. Asian citrus psyllid reproduction is dependent on young flush and thus Asian citrus psyllid production po...

  2. Biodegradable and compostable alternatives to conventional plastics.

    PubMed

    Song, J H; Murphy, R J; Narayan, R; Davies, G B H

    2009-07-27

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all 'good' or petrochemical-based products are all 'bad'. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated 'home' composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.

  3. Biodegradable and compostable alternatives to conventional plastics

    PubMed Central

    Song, J. H.; Murphy, R. J.; Narayan, R.; Davies, G. B. H.

    2009-01-01

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted. PMID:19528060

  4. Citrus leprosis and its status in Florida and Texas: past and present.

    PubMed

    Childers, C C; Rodrigues, J C V; Derrick, K S; Achor, D S; French, J V; Welbourn, W C; Ochoa, R; Kitajima, E W

    2003-01-01

    According to published reports from 1906 to 1968, leprosis nearly destroyed the Florida citrus industry prior to 1925. This was supported with photographs showing typical leprosis symptoms on citrus leaves, fruit, and twigs. Support for the past occurrence of citrus leprosis in Florida includes: (1) presence of twig lesions in affected orange blocks in addition to lesions on fruits and leaves and corresponding absence of similar lesions on grapefruit; (2) yield reduction and die-back on infected trees; and (3) spread of the disease between 1906 and 1925. Transmission electron microscopy (TEM) examination of tissue samples from leprosis-like injuries to orange and grapefruit leaves from Florida in 1997, and fruits from grapefruit and sweet orange varieties from Texas in 1999 and 2000 did not contain leprosis-like viral particles or viroplasm inclusions. In contrast, leprosis viroplasm inclusions were readily identified by TEM within green non-senescent tissues surrounding leprosis lesions in two of every three orange leaf samples and half of the fruit samples obtained from Piracicaba, Brazil. Symptoms of leprosis were not seen in any of the 24,555 orange trees examined across Florida during 2001 and 2002. The authors conclude that citrus leprosis no longer exists in Florida nor occurs in Texas citrus based on: (1) lack of leprosis symptoms on leaves, fruit, and twigs of sweet orange citrus varieties surveyed in Florida: (2) failure to find virus particles or viroplasm inclusion bodies in suspect samples from both Florida and Texas examined by TEM; (3) absence of documented reports by others on the presence of characteristic leprosis symptoms in Florida; (4) lack of its documented occurrence in dooryard trees or abandoned or minimal pesticide citrus orchard sites in Florida. In view of the serious threat to citrus in the U.S., every effort must be taken to quarantine the importation of both citrus and woody ornamental plants that serve as hosts for Brevipalpus

  5. Accelerated coffee pulp composting.

    PubMed

    Sánchez, G; Olguín, E J; Mercado, G

    1999-02-01

    The effect of two abundant, easily available and very low-cost agro-industrial organic residues, i.e., filter cake from the sugar industry and poultry litter, on the composting stabilization time of coffee pulp and on the quality of the produced compost, was evaluated. Piles of one cubic meter were built and monitored within the facilities of a coffee processing plant in the Coatepec region of the State of Veracruz, Mexico. Manual aeration was carried out once a week. A longer thermophilic period (28 days) and a much lower C/N ratio (in the range of 6.9-9.1) were observed in the piles containing the amendments, as compared to the control pile containing only coffee pulp (14 days and a C/N ratio of 14.4, respectively). The maximum assimilation rate of the reducing sugars was 1.6 g kg-1 d-1 (from 7.5 to 5.3%) during the first two weeks when accelerators were present in the proportion of 20% filter cake plus 20% poultry litter, while they accumulated at a rate of 1.2 g kg-1 d-1 (from 7.4 to 9.13%) during the same period in the control pile. The best combination of amendments was 30% filter cake with 20% poultry litter, resulting in a final nitrogen content as high as 4.81%. The second best combination was 20% filter cake with 10% poultry litter, resulting in a compost which also contained a high level of total nitrogen (4.54%). It was concluded that the use of these two residues enhanced the composting process of coffee pulp, promoting a shorter stabilization period and yielding a higher quality of compost.

  6. Rotary drum composting of vegetable waste and tree leaves.

    PubMed

    Kalamdhad, Ajay S; Singh, Yatish K; Ali, Muntjeer; Khwairakpam, Meena; Kazmi, A A

    2009-12-01

    High rate composting studies on institutional waste, i.e. vegetable wastes, tree leaves, etc., were conducted on a demonstration-scale (3.5 m(3)) rotary drum composter by evaluating changes in some physico-chemical and biological parameters. During composting, higher temperature (60-70 degrees C) at inlet zone and (50-60 degrees C) at middle zone were achieved which resulted in high degradation in the drum. As a result, all parameters including TOC, C/N ratio, CO(2) evolution and coliforms were decreased significantly within few days of composting. Within a week period, quality compost with total nitrogen (2.6%) and final total phosphorus (6 g/kg) was achieved; but relatively higher final values of fecal coliforms and CO(2) evolution, suggested further maturation. Thus, two conventional composting methods namely windrow (M1) and vermicomposting (M2) tried for maturation of primary stabilized compost. By examining these methods, it was suggested that M2 was found suitable in delivering fine grained, better quality matured compost within 20 days of maturation period.

  7. Removal of five fluoroquinolone antibiotics during broiler manure composting.

    PubMed

    Yang, Bing; Meng, Lei; Xue, Nandong

    2018-02-01

    Composting is a cost-effective approach for the removal of antibiotics from the environment; however, the consequence of this approach on fluoroquinolone antibiotics is limited. The fate of five representative fluoroquinolone antibiotics, namely ciprofloxacin, enrofloxacin, lomefloxacin, norfloxacin, and sarafloxacin, was investigated in a pilot-scale composting of broiler manure over 42 days. The effect of antibiotic concentrations (at a dose of 15, 30, or 60 mg/kg for each and a control without antibiotic addition) on the composting process was also assessed. The 42-day composting showed 45.3-75.4% of antibiotic removal with species-specific patterns. However, the observed variations in such removal among both antibiotics concentrations and composting times were not significant in most cases, possibly indicating a slight side-effect of the tested antibiotic concentrations on the composting process. To the best of our knowledge, this study is among few studies with a focus on the persistence of fluoroquinolone antibiotics during a pilot-scale composting, which warrants further study in regards to the mechanism underlying the removal of these compounds during composting.

  8. Life cycle assessment of Italian citrus-based products. Sensitivity analysis and improvement scenarios.

    PubMed

    Beccali, Marco; Cellura, Maurizio; Iudicello, Maria; Mistretta, Marina

    2010-07-01

    Though many studies concern the agro-food sector in the EU and Italy, and its environmental impacts, literature is quite lacking in works regarding LCA application on citrus products. This paper represents one of the first studies on the environmental impacts of citrus products in order to suggest feasible strategies and actions to improve their environmental performance. In particular, it is part of a research aimed to estimate environmental burdens associated with the production of the following citrus-based products: essential oil, natural juice and concentrated juice from oranges and lemons. The life cycle assessment of these products, published in a previous paper, had highlighted significant environmental issues in terms of energy consumption, associated CO(2) emissions, and water consumption. Starting from such results the authors carry out an improvement analysis of the assessed production system, whereby sustainable scenarios for saving water and energy are proposed to reduce environmental burdens of the examined production system. In addition, a sensitivity analysis to estimate the effects of the chosen methods will be performed, giving data on the outcome of the study. Uncertainty related to allocation methods, secondary data sources, and initial assumptions on cultivation, transport modes, and waste management is analysed. The results of the performed analyses allow stating that every assessed eco-profile is differently influenced by the uncertainty study. Different assumptions on initial data and methods showed very sensible variations in the energy and environmental performances of the final products. Besides, the results show energy and environmental benefits that clearly state the improvement of the products eco-profile, by reusing purified water use for irrigation, using the railway mode for the delivery of final products, when possible, and adopting efficient technologies, as the mechanical vapour recompression, in the pasteurisation and

  9. Determination of polymethoxylated flavones in peels of selected Jamaican and Mexican citrus (Citrus spp.) cultivars by high-performance liquid chromatography.

    PubMed

    Green, Curtis O; Wheatley, Andrew O; Osagie, Anthony U; St A Morrison, Errol Y; Asemota, Helen N

    2007-01-01

    The concentrations of the polymethoxylated flavones (PMFs) in peels of selected citrus cultivars grown in Jamaica and Mexico were determined. The PMFs were extracted from sun-dried citrus peels with reagent-grade methanol. Analyses were carried out by reverse-phase HPLC and UV detection. The column used was a C(18) 5 microm (150 x 4.6 mm) Discovery column. Elution was in the gradient mode, using a ternary mobile phase. The results showed that all the citrus cultivars used contained at least three of the six major PMFs quantified. Ortanique peel contained the highest quantity of PMFs (34,393 +/- 272 ppm), followed by tangerine (28,389 +/- 343 ppm) and Mexican sweet orange (sample 1; 21,627 +/- 494 ppm). The major PMFs, i.e. sinensetin, nobiletin, tangeretin, heptamethoxyflavone, tetramethylscutellarein and hexamethyl-o-quercetagetin, present in the peels of 20 citrus cultivars, was quantified. The results were compared with those of Florida citrus peels. A large amount of citrus peels and byproducts are produced in the Caribbean which could provide a cheap and convenient source of PMFs. Copyright 2006 John Wiley & Sons, Ltd.

  10. Pelleted organo-mineral fertilisers from composted pig slurry solids, animal wastes and spent mushroom compost for amenity grasslands.

    PubMed

    Rao, Juluri R; Watabe, Miyuki; Stewart, T Andrew; Millar, B Cherie; Moore, John E

    2007-01-01

    In Ireland, conversion of biodegradable farm wastes such as pig manure spent mushroom compost and poultry litter wastes to pelletised fertilisers is a desirable option for farmers. In this paper, results obtained from the composting of pig waste solids (20% w/w) blended with other locally available biodegradable wastes comprising poultry litter (26% w/w), spent mushroom compost (26% w/w), cocoa husks (18% w/w) and moistened shredded paper (10% w/w) are presented. The resulting 6-mo old 'mature' composts had a nutrient content of 2.3% total N, 1.6% P and 3.1% K, too 'low' for direct use as an agricultural fertiliser. Formulations incorporating dried blood or feather meal amendments enriched the organic N-content, reduced the moisture in mature compost mixtures and aided the granulation process. Inclusion of mineral supplements viz., sulphate of ammonia, rock phosphate and sulphate of potash, yielded slow release fertilisers with nutrient N:P:K ratios of 10:3:6 and 3:5:10 that were suited for amenity grasslands such as golf courses for spring or summer application and autumn dressing, respectively. Rigorous microbiological tests carried out throughout the composting, processing and pelletising phases indicated that the formulated organo-mineral fertilisers were free of vegetative bacterial pathogens.

  11. Effect of Aerated Compost Tea on the Growth Promotion of Lettuce, Soybean, and Sweet Corn in Organic Cultivation

    PubMed Central

    Kim, Min Jeong; Shim, Chang Ki; Kim, Yong Ki; Hong, Sung Jun; Park, Jong Ho; Han, Eun Jung; Kim, Jin Ho; Kim, Suk Chul

    2015-01-01

    This study investigated the chemical characteristics and microbial population during incubation of four kinds of aerated compost teas based on oriental medicinal herbs compost, vermicompost, rice straw compost, and mixtures of three composts (MOVR). It aimed to determine the effects of the aerated compost tea (ACT) based on MOVR on the growth promotion of red leaf lettuce, soybean and sweet corn. Findings showed that the pH level and EC of the compost tea slightly increased based on the incubation time except for rice straw compost tea. All compost teas except for oriental medicinal herbs and rice straw compost tea contained more NO−3-N than NH+4-N. Plate counts of bacteria and fungi were significantly higher than the initial compost in ACT. Microbial communities of all ACT were predominantly bacteria. The dominant bacterial genera were analyzed as Bacillus (63.0%), Ochrobactrum (13.0%), Spingomonas (6.0%) and uncultured bacterium (4.0%) by 16S rDNA analysis. The effect of four concentrations, 0.1%, 0.2%, 0.4% and 0.8% MOVR on the growth of red leaf lettuce, soybean and sweet corn was also studied in the greenhouse. The red leaf lettuce with 0.4% MOVR had the most effective concentration on growth parameters in foliage part. However, 0.8% MOVR significantly promoted the growth of root and shoot of both soybean and sweet corn. The soybean treated with higher MOVR concentration was more effective in increasing the root nodule formation by 7.25 times than in the lower MOVR concentrations Results indicated that ACT could be used as liquid nutrient fertilizer with active microorganisms for culture of variable crops under organic farming condition. PMID:26361474

  12. Effect of Aerated Compost Tea on the Growth Promotion of Lettuce, Soybean, and Sweet Corn in Organic Cultivation.

    PubMed

    Kim, Min Jeong; Shim, Chang Ki; Kim, Yong Ki; Hong, Sung Jun; Park, Jong Ho; Han, Eun Jung; Kim, Jin Ho; Kim, Suk Chul

    2015-09-01

    This study investigated the chemical characteristics and microbial population during incubation of four kinds of aerated compost teas based on oriental medicinal herbs compost, vermicompost, rice straw compost, and mixtures of three composts (MOVR). It aimed to determine the effects of the aerated compost tea (ACT) based on MOVR on the growth promotion of red leaf lettuce, soybean and sweet corn. Findings showed that the pH level and EC of the compost tea slightly increased based on the incubation time except for rice straw compost tea. All compost teas except for oriental medicinal herbs and rice straw compost tea contained more NO(-) 3-N than NH(+) 4-N. Plate counts of bacteria and fungi were significantly higher than the initial compost in ACT. Microbial communities of all ACT were predominantly bacteria. The dominant bacterial genera were analyzed as Bacillus (63.0%), Ochrobactrum (13.0%), Spingomonas (6.0%) and uncultured bacterium (4.0%) by 16S rDNA analysis. The effect of four concentrations, 0.1%, 0.2%, 0.4% and 0.8% MOVR on the growth of red leaf lettuce, soybean and sweet corn was also studied in the greenhouse. The red leaf lettuce with 0.4% MOVR had the most effective concentration on growth parameters in foliage part. However, 0.8% MOVR significantly promoted the growth of root and shoot of both soybean and sweet corn. The soybean treated with higher MOVR concentration was more effective in increasing the root nodule formation by 7.25 times than in the lower MOVR concentrations Results indicated that ACT could be used as liquid nutrient fertilizer with active microorganisms for culture of variable crops under organic farming condition.

  13. Improving culture media for the isolation of Clostridium difficile from compost.

    PubMed

    Dharmasena, Muthu; Jiang, Xiuping

    2018-06-01

    This study was to optimize the detection methods for Clostridium difficile from the animal manure-based composts. Both autoclaved and unautoclaved dairy composts were inoculated with a 12-h old suspension of a non-toxigenic C. difficile strain (ATCC 43593) and then plated on selected agar for vegetative cells and endospores. Six types of enrichment broths supplemented with taurocholate and l-cysteine were assessed for detecting a low level of artificially inoculated C. difficile (ca. 5 spores/g) from dairy composts. The efficacy of selected enrichment broths was further evaluated by isolating C. difficile from 29 commercial compost samples. Our results revealed that using heat-shock was more effective than using ethanol-shock for inducing endospore germination, and the highest endospore count (p < 0.05) was yielded at 60 °C for 25 min. C. difficile agar base, supplemented with 0.1% l-cysteine, 7% defibrinated horse blood, and cycloserine-cefoxitin (CDA-CYS-H-CC agar) was the best medium (p < 0.05) for recovering vegetative cells from compost. C. difficile endospore populations from both types of composts enumerated on both CDA-CYS-H-CC agar supplemented with 0.1% sodium taurocholate (CDA-CYS-H-CC-T agar) and brain heart infusion agar supplemented with 0.5% yeast extract, 0.1% l-cysteine, cycloserine-cefoxitin, and 0.1% sodium taurocholate (BHIA-YE-CYS-CC-T agar) media were not significantly different from each other (p > 0.05). Overall, enrichment of inoculated compost samples in broths containing moxalactam-norfloxacin (MN) produced significantly higher (p < 0.05) spore counts than in non-selective broths or broths supplemented with CC. Enrichment in BHIB-YE-CYS-MN-T broth followed by culturing on an agar containing 7% horse blood and 0.1% taurocholate provided a more sensitive and selective combination of media for detecting a low population of C. difficile from environmental samples with high background microflora. Copyright © 2018

  14. Comparison of evapotranspiration rates for flatwoods and ridge citrus

    USGS Publications Warehouse

    Jia, X.; Swancar, A.; Jacobs, J.M.; Dukes, M.D.; Morgan, K.

    2007-01-01

    Florida citrus groves are typically grown in two regions of the state: flatwoods and ridge. The southern flatwoods citrus area has poorly drained fine textured sands with low organic matter in the shallow root zone. Ridge citrus is located in the northern ridge citrus zone and has fine to coarse textured sands with low water-holding capacity. Two commercial citrus groves, selected from each region, were studied from 15 July 2004 to 14 July 2005. The flatwoods citrus (FC) grove had a grass cover and used drainage ditches to remove excess water from the root zone. The ridge citrus (RC) grove had a bare soil surface with weeds periodically eliminated by tillage. Citrus crop evapotranspiration (ETc) rates at the two citrus groves were measured by the eddy correlation method, and components in the energy balance were also examined and compared. The study period had higher than average rainfall, and as a result, the two locations had similar annual ETc rates (1069 and 1044 mm for RC and FC, respectively). The ETc rates were 59% (RC) and 47% (FC) of the rainfall amounts during the study period. The annual reference crop evapotranspiration (ETo) rates were 1180 mm for RC and 1419 mm for FC, estimated using the standardized reference evapotranspiration equation. The citrus crop coefficients (Kc, ratio of ETc to ET o) were different between the two locations because of differences in latitude, ground cover, and rainfall amounts. The Kc values ranged from 0.70 between December and March to 1.05 between July and November for RC, and from 0.65 between November and May to 0.85 between June and October for FC. The results are consistent with other Kc values reported from field studies on citrus in both Florida and elsewhere using these and alternate methods.

  15. Changes in Anthocyanin Production during Domestication of Citrus1[OPEN

    PubMed Central

    Garcia-Lor, Andrés; Licciardello, Concetta; Las Casas, Giuseppina; Ramadugu, Chandrika; Krueger, Robert; Fanciullino, Anne-Laure; Froelicher, Yann

    2017-01-01

    Mandarin (Citrus reticulata), citron (Citrus medica), and pummelo (Citrus maxima) are important species of the genus Citrus and parents of the interspecific hybrids that constitute the most familiar commercial varieties of Citrus: sweet orange, sour orange, clementine, lemon, lime, and grapefruit. Citron produces anthocyanins in its young leaves and flowers, as do species in genera closely related to Citrus, but mandarins do not, and pummelo varieties that produce anthocyanins have not been reported. We investigated the activity of the Ruby gene, which encodes a MYB transcription factor controlling anthocyanin biosynthesis, in different accessions of a range of Citrus species and in domesticated cultivars. A white mutant of lemon lacks functional alleles of Ruby, demonstrating that Ruby plays an essential role in anthocyanin production in Citrus. Almost all the natural variation in pigmentation by anthocyanins in Citrus species can be explained by differences in activity of the Ruby gene, caused by point mutations and deletions and insertions of transposable elements. Comparison of the allelic constitution of Ruby in different species and cultivars also helps to clarify many of the taxonomic relationships in different species of Citrus, confirms the derivation of commercial varieties during domestication, elucidates the relationships within the subgenus Papeda, and allows a new genetic classification of mandarins. PMID:28196843

  16. [Using UV-Vis Absorbance for Characterization of Maturity in Composting Process with Different Materials].

    PubMed

    Zhao, Yue; Wei, Yu-quan; Li, Yang; Xi, Bei-dou; Wei, Zi-min; Wang, Xing-lei; Zhao, Zhi-nan; Ding, Jei

    2015-04-01

    The present study was conducted to assess the degree of humification in DOM during composting using different raw materials, and their effect on maturity of compost based on UV-Vis spectra measurements and chemometrics method. The raw materials of composting studied included chicken manure, pig manure, kitchen waste, lawn waste, fruits and vegetables waste, straw waste, green waste, sludge, and municipal solid waste. During composting, the parameters of UV-Vis spectra of DOM, including SUVA254 , SUVA280 , E250/E365, E4/E6, E2/E4, E2/E6, E253/E203, E253/E220, A226-400, S275-295 and S350-400 were calculated, Statistical analysis indicated that all the parameter were significantly changed during composting. SUVA254 and SUVA280 of DOM were continuously increased, E250/E365 and E4/E6 were continuously decreased in DOM, while A226-400, S275-295 and S350-400 of DOM at the final stage were significantly different with those at other stages of composting. Correlation analysis indicated that the parameters were significantly correlated with each other except for E2/E4 and E235/E203. Furthermore, principal component analysis suggested that A226-400, SUVA254, S350-400, SUVA280 and S275~295 were reasonable parameters for assessing the compost maturity. To distinguish maturity degree among different composts, hierarchical cluster analysis, an integrated tool utilizing multiple UV-Vis parameters, was performed based on the data (A226-400, SUVA254, S350-400, SUVA280 and S275-295) of DOM derived from the final stage of composting. Composts from different sources were clustered into 2 groups. The first group included chicken manure, pig manure, lawn waste, fruits and vegetables waste, green waste, sludge, and municipal solid waste characterized by a lower maturity degree, and the second group contained straw waste and kitchen waste associated with a higher maturity degree. The above results suggest that a multi-index of UV-Vis spectra could accurately evaluate the compost maturity

  17. Melanogenesis of murine melanoma cells induced by hesperetin, a Citrus hydrolysate-derived flavonoid.

    PubMed

    Huang, Yu-Chun; Liu, Kao-Chih; Chiou, Yi-Ling

    2012-03-01

    Melanogenesis is a complex process that modulates skin pigmentation to defend photodamage. Citrus is the most widely produced fruit crop in the world. People ingest various citrus fruits in their common diets. In the present study, the acid-hydrolyzed and un-hydrolyzed extracts of orange-type citrus fruits were subjected to analyze flavonoid compositions and assess their effects on melanin synthesis in murine B16-F10 melanoma cells. The acid-hydrolyzed extracts of Citrus sinensis, C. reticulata, and C. aurantium enhanced melanin production. Based on high-performance liquid chromatography (HPLC) analysis, the most abundant flavonoids that were found in citrus hydrolyzed extracts were hesperetin and naringenin. Hesperetin exhibited the most potent activity on melanin synthesis and induced tyrosinase and microphthalmia-associated transcription factor (MITF) expression. Moreover, hesperetin stimulated the activation of mitogen-activated protein kinases (MAPKs), phosphorylation of cAMP-responsive element binding protein (CREB) and glycogen synthase kinase-3β (GSK3β), and subsequently induced the accumulation of β-catenin. This study suggests that the citrus constituent hesperetin might have protective melanogenic potential as a cosmeceutical agent against skin photodamage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Tropical soils degraded by slash-and-burn cultivation can be recultivated when amended with ashes and compost.

    PubMed

    Gay-des-Combes, Justine Marie; Sanz Carrillo, Clara; Robroek, Bjorn Jozef Maria; Jassey, Vincent Eric Jules; Mills, Robert Thomas Edmund; Arif, Muhammad Saleem; Falquet, Leia; Frossard, Emmanuel; Buttler, Alexandre

    2017-07-01

    In many tropical regions, slash-and-burn agriculture is considered as a driver of deforestation; the forest is converted into agricultural land by cutting and burning the trees. However, the fields are abandoned after few years because of yield decrease and weed invasion. Consequently, new surfaces are regularly cleared from the primary forest. We propose a reclamation strategy for abandoned fields allowing and sustaining re-cultivation. In the dry region of south-western Madagascar, we tested, according to a split-plot design, an alternative selective slash-and-burn cultivation technique coupled with compost amendment on 30-year-old abandoned fields. Corn plants ( Zea mays L.) were grown on four different types of soil amendments: no amendment (control), compost, ashes (as in traditional slash-and-burn cultivation), and compost + ashes additions. Furthermore, two tree cover treatments were applied: 0% tree cover (as in traditional slash-and-burn cultivation) and 50% tree cover (selective slash-and-burn). Both corn growth and soil fertility parameters were monitored during the growing season 2015 up to final harvest. The amendment compost + ashes strongly increased corn yield, which was multiplied by 4-5 in comparison with ashes or compost alone, reaching 1.5 t/ha compared to 0.25 and 0.35 t/ha for ashes and compost, respectively. On control plots, yield was negligible as expected on these degraded soils. Structural equation modeling evidenced that compost and ashes were complementary fertilizing pathways promoting soil fertility through positive effects on soil moisture, pH, organic matter, and microbial activity. Concerning the tree cover treatment, yield was reduced on shaded plots (50% tree cover) compared to sunny plots (0% tree cover) for all soil amendments, except ashes. To conclude, our results provide empirical evidence on the potential of recultivating tropical degraded soils with compost and ashes. This would help mitigating deforestation of the

  19. Field validation of a system for autodissemination of an entomopathogenic fungus, Isaria fumosorosea, to control the Asian citrus psyllid on residential citrus

    USDA-ARS?s Scientific Manuscript database

    The citrus industries of California and Texas share a pressing problem with the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) and huanglongbing (HLB) spreading in residential citrus near commercial groves. Insecticidal treatment of residential trees for the psyllid is problem...

  20. Early events of citrus greening (Huanglongbing) disease development at the ultrastructural level.

    PubMed

    Folimonova, Svetlana Y; Achor, Diann S

    2010-09-01

    Citrus greening (Huanglongbing [HLB]) is one of the most destructive diseases of citrus worldwide. The causal agent of HLB in Florida is thought to be 'Candidatus Liberibacter asiaticus'. Understanding of the early events in HLB infection is critical for the development of effective measures to control the disease. In this work, we conducted cytopathological studies by following the development of the disease in citrus trees graft inoculated with 'Ca. L. asiaticus'-containing material under greenhouse conditions to examine the correlation between ultrastructural changes and symptom production, with the main objective of characterizing the early events of infection. Based on our observations, one of the first degenerative changes induced upon invasion of the pathogen appears to be swelling of middle lamella between cell walls surrounding sieve elements. This anatomical aberration was often observed in samples from newly growing flushes in inoculated sweet orange and grapefruit trees at the early "presymptomatic" stage of HLB infection. Development of symptoms and their progression correlated with an increasing degree of microscopic aberrations. Remarkably, the ability to observe the bacterium in the infected tissue also correlated with the degree of the disease progression. Large numbers of bacterial cells were found in phloem sieve tubes in tissue samples from presymptomatic young flushes. In contrast, we did not observe the bacteria in highly symptomatic leaf samples, suggesting a possibility that, at more advanced stages of the disease, a major proportion of 'Ca. L. asiaticus' is present in a nonviable state. We trust that observations reported here advance our understanding of how 'Ca. L. asiaticus' causes disease. Furthermore, they may be an important aid in answering a question: when and where within an infected tree the tissue serves as a better inoculum source for acquisition and transmission of the bacterium by its psyllid vector.

  1. Comparison of U.S. Environmental Protection Agency and U.S. Composting Council... Escherichia coli O157:H7 in finished compost

    USDA-ARS?s Scientific Manuscript database

    Composting management or conditions that result in inadequate exposure of the compostable materials to destructive time-temperature regimens can result in survival of enteric human pathogens. Bacterial pathogens, such as Escherichia coli O157:H7 and Salmonella spp., can regrow in finished compost. ...

  2. Development of functional composts using spent coffee grounds, poultry manure and biochar through microbial bioaugmentation.

    PubMed

    Emmanuel, S Aalfin; Yoo, Jangyeon; Kim, Eok-Jo; Chang, Jae-Soo; Park, Young-In; Koh, Sung-Cheol

    2017-11-02

    Spent coffee grounds (SCG), poultry manure, and agricultural waste-derived biochar were used to manufacture functional composts through microbial bioaugmentation. The highest yield of tomato stalk-based biochar (40.7%) was obtained at 450°C with a surface area of 2.35 m 2 g -1 . Four pilot-scale composting reactors were established to perform composting for 45 days. The ratios of NH 4 + -N/NO 3 - -N, which served as an indicator of compost maturity, indicate rapid, and successful composting via microbial bioaugmentation and biochar amendment. Moreover, germination indices for radish also increased by 14-34% through augmentation and biochar amendment. Microbial diversity was also enhanced in the augmented and biochar-amended composts by 7.1-8.9%, where two species of Sphingobacteriaceae were dominant (29-43%). The scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) were enhanced by 14.1% and 8.6% in the fruits of pepper plants grown in the presence of the TR-2 (augmentation applied only) and TR-3 (both augmentation and biochar amendment applied) composts, respectively. Total phenolic content was also enhanced by 68% in the fruits of the crops grown in TR-3. Moreover, the other compost, TR-L (augmentation applied only), boosted DPPH scavenging activity by 111% in leeks compared with commercial organic fertilizer, while TR-3 increased the phenolic content by 44.8%. Composting facilitated by microbial augmentation and biochar amendment shortened the composting time and enhanced the quality of the functional compost. These results indicate that functional compost has great potential to compete with commercially available organic fertilizers and that the novel composting technology could significantly contribute to the eco-friendly recycling of organic wastes such as spent coffee grounds, poultry manure, and agricultural wastes.

  3. Monitoring of biopile composting of oily sludge.

    PubMed

    Kriipsalu, Mait; Nammari, Diauddin

    2010-05-01

    This paper describes a bioreactor set-up used to simulate degradation of petroleum hydrocarbons in a static biopile. The large-scale test was performed in a 28 m(3) custom-designed reactor. Oily sludge (40% by weight, having 7% dry matter [DM], and hydrocarbons C(10)-C(40) 160,000 mg kg(-1) DM) was mixed with organic-rich amendments - mature oil-compost (40%) and garden waste compost (20%). Within the reactor, the temperature and soil gases were monitored continuously during 370 days via 24 measurement points. Also, moisture content was continuously recorded and airflow through compost mix occasionally measured. Three-dimensional ordinary kriging spatial models were created to describe the dynamic variations of temperature, air distribution, and hydrocarbon concentration. There were large temperature differences in horizontal and vertical sections during initial months of composting only. Water content of the mixture was uneven by layers, referring on relocation of moisture due to aeration and condensation. The air distribution through the whole reactor varied largely despite of continuous aeration, while the concentration of O(2) was never reduced less than 1-2% on average. The results showed that composting of sludge using force-aerated static biopile technology was justified during the first 3-4 months, after which the masses could be re-mixed and heaped for further maturation in low-tech compost windrows. After 370 days of treatment, the content of hydrocarbons (C( 10)-C(40)) in the compost mixture was reduced by 68.7%.

  4. Inactivation mechanisms of pathogenic bacteria in several matrixes during the composting process in a composting toilet.

    PubMed

    Sossou, S K; Hijikata, N; Sou, M; Tezuka, R; Maiga, A H; Funamizu, N

    2014-01-01

    This study aimed to compare the inactivation rate and the mechanisms of pathogenic bacteria in three matrixes (sawdust, rice husk and charcoal) during the composting process. The inactivation rate was evaluated with Escherichia coli strain and the damaged parts and/or functions were evaluated with three different media. Normalized inactivation rate constant in three media and from three matrixes had no significant difference in each process (pure, 1 month and 2 months). The value in rice husk was relatively increased during 2 months but there was no significant difference. The inactivation rate constants of Tryptic Soy Agar (TSA) and Compact Dry E. coli/Coliform in pure sawdust and rice husk were relatively lower than that of Desoxycholate Agar, but increased in 2 months. This indicated that damaging part was changed from outer membrane to enzymes and metabolisms during the 2-month composting process. In the case of charcoal, only the TSA value in apure matrix was relatively lower than that of others, but it increased in 2 months. This indicated that damaging part was changed from outer membrane and enzyme to metabolisms during the composting process. Composting matrix and composting process did not significantly affect inactivation rate of pathogenic bacteria during the process but affected the damaging part of the bacteria.

  5. The effects of compost prepared from waste material of banana plants on the nutrient contents of banana leaves.

    PubMed

    Doran, Ilhan; Sen, Bahtiyar; Kaya, Zülküf

    2003-10-01

    In this study, the possible utilization of removed shoots and plant parts of banana as compost after fruit harvest were investigated. Three doses (15-30-45 kg plan(-1)) of the compost prepared from the clone of Dwarf Cavendish banana were compared with Farmyard manure (50 kg plant(-1), Mineral fertilizers (180 g N + 150 g P + 335 g K plant(-1)) and Farmyard manure + Mineral fertilizers (25 kg FM + 180 g N + 150 g P + 335 g K plant(-1)) which determined positive effects on the nutrient contents of banana leaves. The banana plants were grown under a heated glasshouse and in a soil with physical and chemical properties suitable for banana growing. The contents of N, P, K and Mg in compost and in farmyard manure were found to be similar. Nitrogen, phosphorus and potassium contents of leaves in all applications except control, and Ca, Mg, Fe, Zn, Mn, Cu contents in all applications were determined between optimum levels of reference values. There were positive correlations among some nutrient contents of leaves, growth, yield and fruit quality characteristics. Farmyard manure, Farmyard manure + Mineral fertilizers and 45 kg plant(-1) of compost increased the nutrient contents of banana leaves. According to obtained results, 45 kg plant(-1) of compost was determined more suitable in terms of economical production and organic farming than the other fertiliser types.

  6. HEAVY METAL ASPECTS OF COMPOST USE

    EPA Science Inventory

    Composts prepared from municipal solid waste, biosolids, food processing wastes, manures, yard debris, and agricultural byproducts and residues are increasingly available for agricultural use. Although many benefits are possible from use of composts, these products must be safe f...

  7. Indigenous microorganisms production and the effect on composting process

    NASA Astrophysics Data System (ADS)

    Abu-Bakar, Nurul-Ain; Ibrahim, Nazlina

    2013-11-01

    In this study, production of indigenous microorganisms (IMO) and effect on addition of IMO in composting process were done. Production of IMO was done in a series of steps to allow propagation of beneficial microorganisms. Effect of IMO addition in composting process was investigated by having 4 treatments; 1) rice straw without IMO nor manure and rice bran, 2) rice straw with IMO only, 3) rice straw with manure and rice bran, 4) rice straw with IMO, manure and rice bran. Production of IMO using cooked rice yields white molds. Addition of IMO during composting did not affect temperature increment. However, there were differences in numbers of microorganisms found during each stages of composting. Initial composting stage was dominated by mesophilic bacteria and actinomycetes, followed by thermophilic bacteria and later by actinomycetes upon composting completion. In conclusion, this study showed that IMO addition in composting increased microorganisms which are responsible in organic decomposition.

  8. Nitrogen availability in composted poultry litter using natural amendments.

    PubMed

    Turan, N Gamze

    2009-02-01

    Poultry litter compost is used as fertilizer on agricultural land because of its high nutrient content. A major limitation of land application of poultry litter compost is the loss of nitrogen via NH3 volatilization. The present work was conducted to monitor nitrogen availability during composting of poultry litter with natural zeolite, expanded perlite, pumice and expanded vermiculite. Poultry litter was composted for 100 days using five in-vessel composting simulators with a volumetric ratio of natural materials:poultry litter of 1:10. It was found that natural materials significantly reduced NH3 volatilization. At the end of the process, the control treatment without any natural materials had the lowest rate of total N: 72% of the initial total N was lost from the compost made with no amendment, while 53, 42, 26 and 16% of initial total N was lost from compost containing expandable perlite, expandable vermiculite, pumice and natural zeolite, respectively.

  9. Composting oily sludges: Characterizing microflora using randomly amplified polymorphic DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, A.; Quednau, M.; Ahrne, S.

    1995-12-31

    Laboratory-scale composts in which oily sludge was composted under mesophilic conditions with amendments such as peat, bark, and fresh or decomposed horse manure, were studied with respect to basic parameters such as oil degradation, respirometry, and bacterial numbers. Further, an attempt was made to characterize a part of the bacterial flora using randomly amplified polymorphic DNA (RAPD). The compost based on decomposed horse manure showed the greatest reduction of oil (85%). Comparison with a killed control indicated that microbial degradation actually had occurred. However, a substantial part of the oil was stabilized rather than totally broken down. Volatiles, on themore » contrary, accounted for a rather small percentage (5%) of the observed reduction. RAPD indicated that a selection had taken place and that the dominating microbial flora during the active degradation of oil were not the same as the ones dominating the different basic materials. The stabilized compost, on the other hand, had bacterial flora with similarities to the ones found in peat and bark.« less

  10. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting.

    PubMed

    Yang, Fan; Li, Guoxue; Shi, Hong; Wang, Yiming

    2015-02-01

    This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition of 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH4, N2O, and NH3 were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH4 emissions (by 85.8% and 80.5%, respectively) and decreased NH3 emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N2O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Compost in plant microbial fuel cell for bioelectricity generation.

    PubMed

    Moqsud, M A; Yoshitake, J; Bushra, Q S; Hyodo, M; Omine, K; Strik, David

    2015-02-01

    Recycling of organic waste is an important topic in developing countries as well as developed countries. Compost from organic waste has been used for soil conditioner. In this study, an experiment has been carried out to produce green energy (bioelectricity) by using paddy plant microbial fuel cells (PMFCs) in soil mixed with compost. A total of six buckets filled with the same soil were used with carbon fiber as the electrodes for the test. Rice plants were planted in five of the buckets, with the sixth bucket containing only soil and an external resistance of 100 ohm was used for all cases. It was observed that the cells with rice plants and compost showed higher values of voltage and power density with time. The highest value of voltage showed around 700 mV when a rice plant with 1% compost mixed soil was used, however it was more than 95% less in the case of no rice plant and without compost. Comparing cases with and without compost but with the same number of rice plants, cases with compost depicted higher voltage to as much as 2 times. The power density was also 3 times higher when the compost was used in the paddy PMFCs which indicated the influence of compost on bio-electricity generation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Quality assessment of compost prepared with municipal solid waste

    NASA Astrophysics Data System (ADS)

    Jodar, J. R.; Ramos, N.; Carreira, J. A.; Pacheco, R.; Fernández-Hernández, A.

    2017-11-01

    One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample) with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  13. Imidacloprid soil movement under micro-sprinkler irrigation and soil-drench applications to control Asian citrus psyllid (ACP) and citrus leafminer (CLM).

    PubMed

    Fletcher, Evelyn; Morgan, Kelly T; Qureshi, Jawwad A; Leiva, Jorge A; Nkedi-Kizza, Peter

    2018-01-01

    Imidacloprid (IM) is used to control the Asian Citrus Psyllid (ACP) and citrus leafminer (CLM), which are related to the spread of huanglongbing (HLB or citrus greening) and citrus canker diseases, respectively. In Florida citrus, imidacloprid is mainly soil-drenched around the trees for proper root uptake and translocation into plant canopy to impact ACP and CLM. The objective of this study was to determine the effect of imidacloprid rate, and irrigate amount on concentration of imidacloprid in the soil following drench application to citrus trees in three age classes. The plots were established at the Southwest Florida Research and Education Center, Immokalee, using a randomized complete-block design for three age classes of trees: one-year-old trees (B1), three to five-year-old trees (B2), and eight-year-old trees (B3). The treatments were a combination of two rates each of imidacloprid (1D, 2D) and micro-sprinkling irrigation (1I, 2I). Imidacloprid and bromide (Br-) used as tracer were applied simultaneously. Soil moisture and concentrations of imidacloprid and Br were monitored using soil cores from hand held augers. Soil moisture content (θV) did not differ under two irrigation rates at any given observation day or depth, except following heavy rainfall events. Br- was lost from the observation depths (0-45 cm) about two weeks after soil-drench. Contrarily, imidacloprid persisted for a much longer time (4-8 weeks) at all soil depths, regardless of treatment combinations. The higher retardation of imidacloprid was related to the predominantly unsaturated conditions of the soil (which in turn reduced soil hydraulic conductivities by orders of magnitude), the imidacloprid sorption on soil organic matter, and the citrus root uptake. Findings of this study are important for citrus growers coping with the citrus greening and citrus canker diseases because they suggest that imidacloprid soil drenches can still be an effective control measure of ACP and CLM, and the

  14. Imidacloprid soil movement under micro-sprinkler irrigation and soil-drench applications to control Asian citrus psyllid (ACP) and citrus leafminer (CLM)

    PubMed Central

    Fletcher, Evelyn; Qureshi, Jawwad A.; Leiva, Jorge A.; Nkedi-Kizza, Peter

    2018-01-01

    Imidacloprid (IM) is used to control the Asian Citrus Psyllid (ACP) and citrus leafminer (CLM), which are related to the spread of huanglongbing (HLB or citrus greening) and citrus canker diseases, respectively. In Florida citrus, imidacloprid is mainly soil-drenched around the trees for proper root uptake and translocation into plant canopy to impact ACP and CLM. The objective of this study was to determine the effect of imidacloprid rate, and irrigate amount on concentration of imidacloprid in the soil following drench application to citrus trees in three age classes. The plots were established at the Southwest Florida Research and Education Center, Immokalee, using a randomized complete-block design for three age classes of trees: one-year-old trees (B1), three to five-year-old trees (B2), and eight-year-old trees (B3). The treatments were a combination of two rates each of imidacloprid (1D, 2D) and micro-sprinkling irrigation (1I, 2I). Imidacloprid and bromide (Br-) used as tracer were applied simultaneously. Soil moisture and concentrations of imidacloprid and Br were monitored using soil cores from hand held augers. Soil moisture content (θV) did not differ under two irrigation rates at any given observation day or depth, except following heavy rainfall events. Br- was lost from the observation depths (0–45 cm) about two weeks after soil-drench. Contrarily, imidacloprid persisted for a much longer time (4–8 weeks) at all soil depths, regardless of treatment combinations. The higher retardation of imidacloprid was related to the predominantly unsaturated conditions of the soil (which in turn reduced soil hydraulic conductivities by orders of magnitude), the imidacloprid sorption on soil organic matter, and the citrus root uptake. Findings of this study are important for citrus growers coping with the citrus greening and citrus canker diseases because they suggest that imidacloprid soil drenches can still be an effective control measure of ACP and CLM, and

  15. Citrus Flavonoids as Regulators of Lipoprotein Metabolism and Atherosclerosis.

    PubMed

    Mulvihill, Erin E; Burke, Amy C; Huff, Murray W

    2016-07-17

    Citrus flavonoids are polyphenolic compounds with significant biological properties. This review summarizes recent advances in understanding the ability of citrus flavonoids to modulate lipid metabolism, other metabolic parameters related to the metabolic syndrome, and atherosclerosis. Citrus flavonoids, including naringenin, hesperitin, nobiletin, and tangeretin, have emerged as potential therapeutics for the treatment of metabolic dysregulation. Epidemiological studies reveal an association between the intake of citrus flavonoid-containing foods and a decreased incidence of cardiovascular disease. Studies in cell culture and animal models, as well as a limited number of clinical studies, reveal the lipid-lowering, insulin-sensitizing, antihypertensive, and anti-inflammatory properties of citrus flavonoids. In animal models, supplementation of rodent diets with citrus flavonoids prevents hepatic steatosis, dyslipidemia, and insulin resistance primarily through inhibition of hepatic fatty acid synthesis and increased fatty acid oxidation. Citrus flavonoids blunt the inflammatory response in metabolically important tissues including liver, adipose, kidney, and the aorta. The mechanisms underlying flavonoid-induced metabolic regulation have not been completely established, although several potential targets have been identified. In mouse models, citrus flavonoids show marked suppression of atherogenesis through improved metabolic parameters as well as through direct impact on the vessel wall. Recent studies support a role for citrus flavonoids in the treatment of dyslipidemia, insulin resistance, hepatic steatosis, obesity, and atherosclerosis. Larger human studies examining dose, bioavailability, efficacy, and safety are required to promote the development of these promising therapeutic agents.

  16. Rapid cyling plant breeding in citrus

    USDA-ARS?s Scientific Manuscript database

    Resistance or tolerance to huanglongbing (HLB) and other important traits have been identified in several citrus types and relatives and associated markers should be identified soon. What is urgently needed in addition is an accelerated strategy for citrus variety breeding. Identification and use of...

  17. The Utilization of Banana Peel in the Fermentation Liquid in Food Waste Composting

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Rahman, N. A.; Azhari, N. W.

    2016-07-01

    Municipal solid waste in Malaysia contains a high amount of organic matters, particularly food waste. Food waste represents almost 60% from the total municipal solid waste disposed in the landfill. Food waste can be converted into useful materials such as compost. However, source separation of food waste for recycling is not commonly practiced in Malaysia due to various constraints. These constraints include low awareness among the waste generators and low demand of the products produced from the food waste such as composts. Composting is one of the alternatives that can be used in food waste disposal from Makanan Ringan Mas. The aim of the study is to convert food waste generated from Makanan Ringan Mas which is a medium sale industry located at Parit Kuari Darat, Batu Pahat by using composting method. The parameters which include temperature, pH value, NPK (Nitrogen, Phosphorus, Potassium) values has been examined. Banana peel is being used as the fermentation liquid whilst soil and coconut husk were used as the composting medium. Based on the results during the composting process, most of the pH value in each reactor is above 5 and approximately at neutral. This shown that the microbial respiration in the well controlled composting reactor was inhibited and had approached the mature phase. On the other hand, during the period of composting, the overall temperature range from 25 °C to 47 °C which shown the active phase for composting will occoured. As for NPK content Nitrogen value range is 35325 mg/L to 78775 mg/L, Phosphorus, 195.83 mg/L to 471 mg/L and potassium is 422.3 mg/L to 2046 mg/L which is sufficient to use for agricultural purpose. The comparison was made with available organic compost in the market and only showed slightly difference. Nevertheless, in comparison with common fertilizer, the NPK value of organic compost are considerably very low.

  18. Biochar and compost as amendments in copper-enriched vineyard soils - stabilization or mobilization of copper?

    NASA Astrophysics Data System (ADS)

    Soja, Gerhard; Fristak, Vladimir; Wimmer, Bernhard; Bell, Stephen; Chamier Glisczinski, Julia; Pardeller, Georg; Dersch, Georg; Rosner, Franz; Wenzel, Walter; Zehetner, Franz

    2016-04-01

    Copper is an important ingredient for several fungicides that have been used in agriculture. For organic viticulture, several diseases as e.g. downy mildew (Plasmopara viticola) can only be antagonized with Cu-containing fungicides. This long-lasting dependence on Cu-fungicides has led to a gradual Cu enrichment of vineyard soils in traditional wine-growing areas, occasionally exceeding 300 mg/kg. Although these concentrations do not affect the vines or wine quality, they may impair soil microbiological functions in the top soil layer or the root growth of green cover plants. Therefore measures are demanded that reduce the bioavailability of copper, thereby reducing the ecotoxicological effects. The use of biochar and compost as soil amendment has been suggested as a strategy to immobilize Cu and reduce the exchangeable fractions. This study consisted of lab and greenhouse experiments that were designed to test the sorption and desorption behavior of copper in vineyard soils with or without biochar and/or compost as soil amendment. Slightly acidic soils (pH<6) showed a clearer biochar-induced immobilization of copper with biochar than neutral or alkaline soils. The analyses of leachate waters of microlysimeter experiments showed that the biochar effects were more evident for a reduction of the ionic form Cu2+ than for total soluble copper, even in alkaline soils. Biochar modified with citric or tartaric acid did not significantly decrease the solubility of copper based on total dissolved concentrations although CEC was higher than in unmodified biochar. Treatments consisting of compost only or that had an equal amount of compost and biochar rather had a mobilizing effect on biochar. Sorption experiments with different DOC concentrations and biochar, however, showed a positive effect on copper sorption. Apparently in vineyard soils the predisposition to form organic-Cu-complexes may outbalance the binding possibilities of these complexes to biochar, occasionally

  19. Viability of and Escherichia coli O157:H7 and Listeria monocytogenes in a delicatessen appetizer (yogurt-based) salad as affected by citrus extract (Citrox©) and storage temperature.

    PubMed

    Tsiraki, Maria I; Yehia, Hany M; Elobeid, Tahra; Osaili, Tareq; Sakkas, Hercules; Savvaidis, Ioannis N

    2018-02-01

    The antimicrobial effect of citrus extract (at 1 mL/kg [C1] and 2 mL/kg [C2]) on naturally occurring microbiota and inoculated pathogens (E. coli O157:H7 and L. monocytogenes at ca. 6 log cfu/g) in the traditional Greek yogurt-based salad Tzatziki stored at 4, 10, or 21 °C, was examined. Lactic acid bacteria (LAB) were high (8.0-8.5 log cfu/g) and varied only minimally for both the control (untreated) and the citrus extract-treated salad samples, whereas the higher citrus extract concentration yielded the lowest yeast populations, irrespective of temperature, during the entire storage period. Populations of inoculated E. coli (6 log cfu/g) declined in both untreated and citrus extract-treated samples from day 0-70, 35, and 15 at 4, 10, and 21 °C, respectively. Citrus extract had a significant effect on the survival of the inoculated E. coli O157:H7, with reductions of 2.8-4.8 log cfu/g in the citrus extract-treated samples at the end of the storage period. Our data show that L. monocytogenes survived in both untreated and citrus extract-treated samples during the entire storage period, irrespective of the storage temperature. The higher concentration of citrus extract had a significant effect on the survival of L. monocytogenes in the treated samples, and reductions of 1.5-3.0 logs were noted on final day 70, 35 and 15 at 4, 10 and 21 °C, respectively. The results of our study demonstrated the potential of citrus extract as a natural compound that can control the growth of food-borne pathogenic bacteria, such as E. coli O157:H7 and L. monocytogenes in Tzatziki, a yogurt-based salad. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Methodological interference of biochar in the determination of extracellular enzyme activities in composting samples

    NASA Astrophysics Data System (ADS)

    Jindo, K.; Matsumoto, K.; García Izquierdo, C.; Sonoki, T.; Sanchez-Monedero, M. A.

    2014-07-01

    Biochar application has received increasing attention as a means to trap recalcitrant carbon and enhance soil fertility. Hydrolytic enzymatic assays, such as β-glucosidase and phosphatase activities, are used for the assessment of soil quality and composting process, which are based on use of p-nitrophenol (PNP) derivatives as substrate. However, sorption capacity of biochar can interfere with colorimetric determination of the hydrolysed PNP, either by the sorption of the substrate or the reaction product of hydrolysis into biochar surface. The aim of the present work is to study the biochar sorption capacity for PNP in biochar-blended composting mixtures in order to assess its impact on the estimation of the colorimetric-based enzymatic assays. A retention test was conducted by adding a solution of known amounts of PNP in universal buffer solution (pH = 5, 6.5 and 11, corresponding to the β-glucosidase, acid and alkaline phosphatase activity assays, respectively), in samples taken at the initial stage and after maturation stage from four different composting piles (two manure composting piles; PM: poultry manure, CM: cow manure and two other similar piles containing 10% of additional biochar (PM + B, CM + B)). The results show that biochar-blended composts (PM + B, CM + B) generally exhibited low enzymatic activities, compared to manure compost without biochar (PM, CM). In terms of the difference between the initial and maturation stage of composting process, the PNP retention in biochar was shown higher at maturation stage, caused most probably by an enlarged proportion of biochar inside compost mixture after the selective degradation of easily decomposable organic matter. TThe retention of PNP on biochar was influenced by pH dependency of sorption capacity of biochar and/or PNP solubility, since PNP was more efficiently retained by biochar at low pH values (5 and 6.5) than at high pH values (11).

  1. Methodological interference of biochar in the determination of extracellular enzyme activities in composting samples

    NASA Astrophysics Data System (ADS)

    Jindo, K.; Matsumoto, K.; García Izquierdo, C.; Sonoki, T.; Sanchez-Monedero, M. A.

    2014-03-01

    Biochar application has received increasing attention as a means to trap recalcitrant carbon and enhance soil fertility. Hydrolytic enzymatic assays, such as β-glucosidase and phosphatase activities, are used for the assessment of soil quality and composting process, which are based on use of p-nitrophenol (PNP) derivatives as substrate. However, sorption capacity of biochar can interfere colorimetric determination of the hydrolysed PNP, either by the sorption of the substrate or the reaction-product of hydrolysis into biochar surface. The aim of the present work is to study the biochar sorption capacity for PNP in biochar-blended composting mixtures in order to assess its impact on the estimation of the colorimetric-based enzymatic assays. A retention test was conducted by adding a solution of known amounts of PNP in universal buffer solution (pH = 5, 6.5 and 11, corresponding to the β-glucosidase, acid and alkaline phosphatase activity assays, respectively), in samples taken at the initial stage and after maturation stage from 4 different composting piles (two manure composting piles (PM: poultry manure, CM: cow manure) and two other similar piles containing 10% of additional biochar (PM + B, CM + B)). The results show that biochar blended composts (PM + B, CM + B) generally exhibited low enzymatic activities, compared to manure compost without biochar (PM, CM). In terms of the difference between the initial and maturation stage of composting process, the PNP retention in biochar was shown more clearly at maturation stage, caused by an enlarged proportion of biochar inside compost mixture after the selective degradation of easily decomposable organic matter. The retention of PNP was more pronounced at low pH (5 and 6.5) than at high pH (11), 3 reflecting on pH dependency of sorption 49 capacity of biochar and/or PNP 50 solubility.

  2. Impacts of delayed addition of N-rich and acidic substrates on nitrogen loss and compost quality during pig manure composting.

    PubMed

    Jiang, Jishao; Kang, Kang; Chen, Dan; Liu, Ningning

    2018-02-01

    Delayed addition of Nitrogen (N)-rich and acidic substrates was investigated to evaluate its effects on N loss and compost quality during the composting process. Three different delayed adding methods of N-rich (pig manure) and acidic substrates (phosphate fertilizer and rotten apples) were tested during the pig manure and wheat straw is composting. The results showed that delayed addition of pig manure and acidic materials led two temperature peaks, and the durations of two separate thermophilic phase were closely related to the amount of pig manure. Delayed addition reduced total N loss by up to 14% when using superphosphate as acidic substrates, and by up to 12% when using rotten apples as acidic substrates, which is mainly due to the decreased NH 3 emissions. At the end of composting, delayed the addition of pig manure caused a significant increase in the HS (humus substance) content, and the highest HS content was observed when 70% of the pig manure was applied at day 0 and the remaining 30% was applied on day 27. In the final compost, the GI in all treatments almost reached the maturity requirement by exceeding 80%. The results suggest that delayed addition of animal manure and acidic substrates could prevent the N loss during composting and improve the compost quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Photographic Remote Sensing of Sick Citrus Trees

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.

    1971-01-01

    Remote sensing with infrared color aerial photography (Kodak Ektachrome Infrared Aero 8443 film) for detecting citrus tree anomalies is described. Illustrations and discussions are given for detecting nutrient toxicity symptoms, for detecting foot rot and sooty mold fungal diseases, and for distinguishing among citrus species. Also, the influence of internal leaf structure on light reflectance, transmittance, and absorptance are considered; and physiological and environmental factors that affect citrus leaf light reflectance are reviewed briefly and illustrated.

  4. Heterogeneity of zeolite combined with biochar properties as a function of sewage sludge composting and production of nutrient-rich compost.

    PubMed

    Kumar Awasthi, Mukesh; Wang, Meijing; Pandey, Ashok; Chen, Hongyu; Kumar Awasthi, Sanjeev; Wang, Quan; Ren, Xiuna; Hussain Lahori, Altaf; Li, Dong-Sheng; Li, Ronghua; Zhang, Zengqiang

    2017-10-01

    In the present study, biochar combined with a higher dosage of zeolite (Z) and biochar (B) alone were applied as additives for dewatered fresh sewage sludge (DFSS) composting using 130-L working volume lab-scale reactors. We first observed that the addition of a mixture of B and Z to DFSS equivalent to 12%B+10% (Z-1), 15% (Z-2) and 30% (Z-3) zeolite (dry weight basis) worked synergistically as an amendment and increased the composting efficiency compared with a treatment of 12%B alone amended and a control without any amendment. In a composting reactor, the addition of B+Z may serve as a novel approach for improving DFSS composting and the quality of the end product in terms of the temperature, water-holding capacity, CO 2 emissions, electrical conductivity, water-soluble and total macro-nutrient content and phytotoxicity. The results indicated that during the thermophilic phase, dissolved organic carbon, NH 4 + -N and NO 3 - -N increased drastically in all biochar amended treatments, whereas considerably low water-soluble nutrients were observed in the control treatment throughout and at the end of the composting. Furthermore, the maturity parameters and dissolved organic carbon (DOC) indicated that compost with 12%B+15%Z became more mature and humified within 35days of DFSS composting, with the maturity parameters, such as CO 2 evolution and the concentration of NH 4 + -N in the compost, being within the permissible limits of organic farming in contrast to the control. Furthermore, at the end of composting, the addition of higher dosage of biochar (12%) alone and 12% B+Z lowered the pH by 7.15 to 7.86 and the electrical conductivity by 2.65 to 2.95mScm -1 as compared to the control, while increased the concentrations of water-soluble nutrients (gkg -1 ) including available phosphorus, sodium and potassium. In addition, greenhouse experiments demonstrated that the treatment of 150kgha -1 biochar combined with zeolite and that of 12%B alone improved the yield of

  5. Potential Re-utilization of Composted Mangrove Litters for Pond Environment Quality Improvement

    NASA Astrophysics Data System (ADS)

    Dwi Hastuti, Endah; Budi Hastuti, Rini; Hariyati, Riche

    2018-05-01

    Production of mangrove litter from pruning and thinning activities is potential source of organic materials which could be re-utilized to improve pond environment quality and fertility. This research aimed to analyze the nutrient composition compost produced from mangrove litter and to describe the effect of compost application on pond quality. This research was conducted through two phases, including composting trial and application of compost on pond trial. Composting process was conducted for 45-60 days on mangrove litter achieved from pruning activities in the silvofishery pond using composting container, while application of compost in pond was conducted by pouring 2 kg of compost in 25 m2 pond. Production of compost included solid compost and liquid compost. Nutrient concentration of solid compost was ranged from 0.47-0.52% for N; 0.36-0.44% for P; and 5.45-6.39% for organic C, while liquid compost provided 0.62-0.69%; 0.24-0.32%; and 3.98-4.45% respectively for N, P and organic C. While C/N ratio was ranged from 11.60-12.78 and 5.77-7.18 respectively for solid and liquid compost. Solid compost quality resulted that N, P and C/N ration had fulfilled the standart criteria defined by Indonesia National Standart for compost. Observed impact of compost application on pond water quality were the improvement of water clarity and increasing abundance of klekap (lab-lab). This showed that mangrove litters could be converted into a more productive materials to enhance pond environment quality and productivity, decrease management cost and increase benefit. Scheduled fertilization with compost is suggested to be conducted to provide best benefit on silvofishery management.

  6. Bioremediation of diesel oil-contaminated soil by composting with biowaste.

    PubMed

    Van Gestel, Kristin; Mergaert, Joris; Swings, Jean; Coosemans, Jozef; Ryckeboer, Jaak

    2003-01-01

    Soil spiked with diesel oil was mixed with biowaste (vegetable, fruit and garden waste) at a 1:10 ratio (fresh weight) and composted in a monitored composting bin system for 12 weeks. Pure biowaste was composted in parallel. In order to discern the temperature effect from the additional biowaste effect on diesel degradation, one recipient with contaminated soil was hold at room temperature, while another was kept at the actual composting temperature. Measurements of composting parameters together with enumerations and identifications of microorganisms demonstrate that the addition of the contaminated soil had a minor impact on the composting process. The first-order rate constant of diesel degradation in the biowaste mixture was four times higher than in the soil at room temperature, and 1.2 times higher than in the soil at composting temperature.

  7. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.

    PubMed

    Kästner, Matthias; Miltner, Anja

    2016-04-01

    Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature

  8. Growth of ammonia-oxidizing archaea and bacteria in cattle manure compost under various temperatures and ammonia concentrations.

    PubMed

    Oishi, Ryu; Tada, Chika; Asano, Ryoki; Yamamoto, Nozomi; Suyama, Yoshihisa; Nakai, Yutaka

    2012-05-01

    A recent study showed that ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) coexist in the process of cattle manure composting. To investigate their physiological characteristics, liquid cultures seeded with fermenting cattle manure compost were incubated at various temperatures (37°C, 46°C, or 60°C) and ammonium concentrations (0.5, 1, 4, or 10 mM NH (4) (+) -N). The growth rates of the AOB and AOA were monitored using real-time polymerase chain reaction analysis targeting the bacterial and archaeal ammonia monooxygenase subunit A genes. AOB grew at 37°C and 4 or 10 mM NH (4) (+) -N, whereas AOA grew at 46°C and 10 mM NH (4) (+) -N. Incubation with allylthiourea indicated that the AOB and AOA grew by oxidizing ammonia. Denaturing gradient gel electrophoresis and subsequent sequencing analyses revealed that a bacterium related to Nitrosomonas halophila and an archaeon related to Candidatus Nitrososphaera gargensis were the predominant AOB and AOA, respectively, in the seed compost and in cultures after incubation. This is the first report to demonstrate that the predominant AOA in cattle manure compost can grow and can probably oxidize ammonia under moderately thermophilic conditions.

  9. Homologues of CsLOB1 in citrus function as disease susceptibility genes in citrus canker.

    PubMed

    Zhang, Junli; Huguet-Tapia, Jose Carlos; Hu, Yang; Jones, Jeffrey; Wang, Nian; Liu, Sanzhen; White, Frank F

    2017-08-01

    The lateral organ boundary domain (LBD) genes encode a group of plant-specific proteins that function as transcription factors in the regulation of plant growth and development. Citrus sinensis lateral organ boundary 1 (CsLOB1) is a member of the LBD family and functions as a disease susceptibility gene in citrus bacterial canker (CBC). Thirty-four LBD members have been identified from the Citrus sinensis genome. We assessed the potential for additional members of LBD genes in citrus to function as surrogates for CsLOB1 in CBC, and compared host gene expression on induction of different LBD genes. Using custom-designed transcription activator-like (TAL) effectors, two members of the same clade as CsLOB1, named CsLOB2 and CsLOB3, were found to be capable of functioning similarly to CsLOB1 in CBC. RNA sequencing and quantitative reverse transcription-polymerase chain reaction analyses revealed a set of cell wall metabolic genes that are associated with CsLOB1, CsLOB2 and CsLOB3 expression and may represent downstream genes involved in CBC. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  10. Effect of Nigerian citrus (Citrus sinensis Osbeck) honey on ethanol metabolism.

    PubMed

    Onyesom, I

    2004-12-01

    The effect of Nigerian citrus (Citrus sinensis Osbeck) honey on ethanol metabolism was tested using 45 consenting individuals in apparent good health and between the ages of 25 and 35 years. The subjects were moderate social drinkers matched in terms of body weight and build. The results obtained showed that on average, honey significantly (p < 0.05) increased the blood ethanol clearance rate by 68% and decreased the intoxication period by 43%, but insignificantly (p > 0.05) reduced the degree of intoxication by 9%. Honey could be a promising anti-intoxicating agent, but its long-term biochemical evaluation, possibly as a complement in the management of alcohol intoxication, deserves further study.

  11. The Distribution of Coumarins and Furanocoumarins in Citrus Species Closely Matches Citrus Phylogeny and Reflects the Organization of Biosynthetic Pathways

    PubMed Central

    Dugrand-Judek, Audray; Olry, Alexandre; Hehn, Alain; Costantino, Gilles; Ollitrault, Patrick; Froelicher, Yann; Bourgaud, Frédéric

    2015-01-01

    Citrus plants are able to produce defense compounds such as coumarins and furanocoumarins to cope with herbivorous insects and pathogens. In humans, these chemical compounds are strong photosensitizers and can interact with medications, leading to the “grapefruit juice effect”. Removing coumarins and furanocoumarins from food and cosmetics imply additional costs and might alter product quality. Thus, the selection of Citrus cultivars displaying low coumarin and furanocoumarin contents constitutes a valuable alternative. In this study, we performed ultra-performance liquid chromatography coupled with mass spectrometry analyses to determine the contents of these compounds within the peel and the pulp of 61 Citrus species representative of the genetic diversity all Citrus. Generally, Citrus peel contains larger diversity and higher concentrations of coumarin/furanocoumarin than the pulp of the same fruits. According to the chemotypes found in the peel, Citrus species can be separated into 4 groups that correspond to the 4 ancestral taxa (pummelos, mandarins, citrons and papedas) and extended with their respective secondary species descendants. Three of the 4 ancestral taxa (pummelos, citrons and papedas) synthesize high amounts of these compounds, whereas mandarins appear practically devoid of them. Additionally, all ancestral taxa and their hybrids are logically organized according to the coumarin and furanocoumarin pathways described in the literature. This organization allows hypotheses to be drawn regarding the biosynthetic origin of compounds for which the biogenesis remains unresolved. Determining coumarin and furanocoumarin contents is also helpful for hypothesizing the origin of Citrus species for which the phylogeny is presently not firmly established. Finally, this work also notes favorable hybridization schemes that will lead to low coumarin and furanocoumarin contents, and we propose to select mandarins and Ichang papeda as Citrus varieties for use in

  12. Spatio-temporal distribution and natural variation of metabolites in citrus fruits.

    PubMed

    Wang, Shouchuang; Tu, Hong; Wan, Jian; Chen, Wei; Liu, Xianqing; Luo, Jie; Xu, Juan; Zhang, Hongyan

    2016-05-15

    To study the natural variation and spatio-temporal accumulation of citrus metabolites, liquid chromatography tandem mass spectrometry (LC-MS) based metabolome analysis was performed on four fruit tissues (flavedo, albedo, segment membrane and juice sacs) and different Citrus species (lemon, pummelo and grapefruit, sweet orange and mandarin). Using a non-targeted metabolomics approach, more than 2000 metabolite signals were detected, from which more than 54 metabolites, including amino acids, flavonoids and limonoids, were identified/annotated. Differential accumulation patterns of both primary metabolites and secondary metabolites in various tissues and species were revealed by our study. Further investigation indicated that flavedo accumulates more flavonoids while juice sacs contain more amino acids. Besides this, cluster analysis based on the levels of metabolites detected in 47 individual Citrus accessions clearly grouped them into four distinct clusters: pummelos and grapefruits, lemons, sweet oranges and mandarins, while the cluster of pummelos and grapefruits lay distinctly apart from the other three species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting.

    PubMed

    Li, Shuyan; Li, Jijin; Yuan, Jing; Li, Guoxue; Zang, Bing; Li, Yangyang

    2017-07-01

    The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.

  14. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Fabao; Gu Wenjie, E-mail: guwenjie1982@yahoo.cn; Xu Peizhi

    2011-06-15

    Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a 'green' surfactant. This study aims to determine whether APG addition into amore » compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.« less

  15. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes.

    PubMed

    Zhang, Fabao; Gu, Wenjie; Xu, Peizhi; Tang, Shuanhu; Xie, Kaizhi; Huang, Xu; Huang, Qiaoyi

    2011-06-01

    Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a "green" surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Conditions for energy generation as an alternative approach to compost utilization.

    PubMed

    Raclavska, H; Juchelkova, D; Skrobankova, H; Wiltowski, T; Campen, A

    2011-01-01

    Very strict limits constrain the current possibilities for compost utilization in agriculture and for land reclamation, thus creating a need for other compost utilization practices. A favourable alternative can be compost utilization as a renewable heat source - alternative fuel. The changes of the basic physical-chemical parameters during the composting process are evaluated. During the composting process, energy losses of 920 kJ/kg occur, caused by carbohydrate decomposition (loss of 12.64% TOC). The net calorific value for mature compost was 11.169 kJ/kg dry matter. The grain size of compost below 0.045 mm has the highest ash content. The energetic utilization of compost depended on moisture, which can be influenced by paper addition or by prolonging the time of maturation to six months.

  17. Optimization of food waste compost with the use of biochar.

    PubMed

    Waqas, M; Nizami, A S; Aburiazaiza, A S; Barakat, M A; Ismail, I M I; Rashid, M I

    2018-06-15

    This paper aims to examine the influence of biochar produced from lawn waste in accelerating the degradation and mineralization rates of food waste compost. Biochar produced at two different temperatures (350 and 450 °C) was applied at the rates 10 and 15% (w/w) of the total waste to an in-vessel compost bioreactor for evaluating its effects on food waste compost. The quality of compost was assessed against stabilization indices such as moisture contents (MC), electrical conductivity (EC), organic matters (OM) degradation, change in total carbon (TC) and mineral nitrogen contents such as ammonium (NH 4 + ) and nitrate (NO 3 - ). The use of biochar significantly improved the composting process and physiochemical properties of the final compost. Results showed that in comparison to control trial, biochar amended compost mixtures rapidly achieved the thermophilic temperature, increased the OM degradation by 14.4-15.3%, concentration of NH 4 + by 37.8-45.6% and NO 3 - by 50-62%. The most prominent effects in term of achieving rapid thermophilic temperature and a higher concentration of NH 4 + and NO 3 - were observed at 15% (w/w) biochar. According to compost quality standard of United States (US), California, Germany, and Austria, the compost stability as a result of biochar addition was achieved in 50-60 days. Nonetheless, the biochar produced at 450 °C had similar effects as to biochar produced at 350 °C for most of the compost parameters. Therefore, it is recommended to produce biochar at 350 °C to reduce the energy requirements for resource recovery of biomass and should be added at a concentration of 15% (w/w) to the compost bioreactor for achieving a stable compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 7 CFR 301.75-5 - Commercial citrus-producing areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Commercial citrus-producing areas. 301.75-5 Section... and Regulations § 301.75-5 Commercial citrus-producing areas. (a) The following are designated as commercial citrus-producing areas: American Samoa Arizona California Florida Guam Hawaii Louisiana Northern...

  19. 7 CFR 301.75-5 - Commercial citrus-producing areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Commercial citrus-producing areas. 301.75-5 Section... and Regulations § 301.75-5 Commercial citrus-producing areas. (a) The following are designated as commercial citrus-producing areas: American Samoa Arizona California Florida Guam Hawaii Louisiana Northern...

  20. Network Analysis of Postharvest Senescence Process in Citrus Fruits Revealed by Transcriptomic and Metabolomic Profiling1[OPEN

    PubMed Central

    Ding, Yuduan; Chang, Jiwei; Ma, Qiaoli; Chen, Lingling; Liu, Shuzhen; Jin, Shuai; Han, Jingwen; Xu, Rangwei; Zhu, Andan; Guo, Jing; Luo, Yi; Xu, Juan; Xu, Qiang; Zeng, YunLiu; Deng, Xiuxin

    2015-01-01

    Citrus (Citrus spp.), a nonclimacteric fruit, is one of the most important fruit crops in global fruit industry. However, the biological behavior of citrus fruit ripening and postharvest senescence remains unclear. To better understand the senescence process of citrus fruit, we analyzed data sets from commercial microarrays, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry and validated physiological quality detection of four main varieties in the genus Citrus. Network-based approaches of data mining and modeling were used to investigate complex molecular processes in citrus. The Citrus Metabolic Pathway Network and correlation networks were constructed to explore the modules and relationships of the functional genes/metabolites. We found that the different flesh-rind transport of nutrients and water due to the anatomic structural differences among citrus varieties might be an important factor that influences fruit senescence behavior. We then modeled and verified the citrus senescence process. As fruit rind is exposed directly to the environment, which results in energy expenditure in response to biotic and abiotic stresses, nutrients are exported from flesh to rind to maintain the activity of the whole fruit. The depletion of internal substances causes abiotic stresses, which further induces phytohormone reactions, transcription factor regulation, and a series of physiological and biochemical reactions. PMID:25802366

  1. Expression and functional analysis of citrus carotene hydroxylases: unravelling the xanthophyll biosynthesis in citrus fruits.

    PubMed

    Ma, Gang; Zhang, Lancui; Yungyuen, Witchulada; Tsukamoto, Issei; Iijima, Natsumi; Oikawa, Michiru; Yamawaki, Kazuki; Yahata, Masaki; Kato, Masaya

    2016-06-29

    Xanthophylls are oxygenated carotenoids and fulfill critical roles in plant growth and development. In plants, two different types of carotene hydroxylases, non-heme di-iron and heme-containing cytochrome P450, were reported to be involved in the biosynthesis of xanthophyll. Citrus fruits accumulate a high amount of xanthophylls, especially β,β-xanthophylls. To date, however, the roles of carotene hydroxylases in regulating xanthophyll content and composition have not been elucidated. In the present study, the roles of four carotene hydroxylase genes (CitHYb, CitCYP97A, CitCYP97B, and CitCYP97C) in the biosynthesis of xanthophyll in citrus fruits were investigated. Phylogenetic analysis showed that the four citrus carotene hydroxylases presented in four distinct clusters which have been identified in higher plants. CitHYb was a non-heme di-iron carotene hydroxylase, while CitCYP97A, CitCYP97B, and CitCYP97C were heme-containing cytochrome P450-type carotene hydroxylases. Gene expression results showed that the expression of CitHYb increased in the flavedo and juice sacs during the ripening process, which was well consistent with the accumulation of β,β-xanthophyll in citrus fruits. The expression of CitCYP97A and CitCYP97C increased with a peak in November, which might lead to an increase of lutein in the juice sacs during the ripening process. The expression level of CitCYP97B was much lower than that of CitHYb, CitCYP97A, and CitCYP97C in the juice sacs during the ripening process. Functional analysis showed that the CitHYb was able to catalyze the hydroxylation of the β-rings of β-carotene and α-carotene in Escherichia coli BL21 (DE3) cells. Meanwhile, when CitHYb was co-expressed with CitCYP97C, α-carotene was hydroxylated on the β-ring and ε-ring sequentially to produce lutein. CitHYb was a key gene for β,β-xanthophyll biosynthesis in citrus fruits. CitCYP97C functioned as an ε-ring hydroxylase to produce lutein using zeinoxanthin as a substrate

  2. Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration.

    PubMed

    Khan, Eakalak; Khaodhir, Sutha; Ruangrote, Darin

    2009-10-01

    Heavy metals are common contaminants in stormwater runoff. One of the devices that can be used to effectively and economically remove heavy metals from runoff is a yard waste compost stormwater filter. The primary goal of composting is to reduce waste volume rather than to produce stormwater filter media. Moisture content (MC) and initial pH, the two important parameters in composting, were studied for their effects on yard waste volume reduction and heavy metal adsorption performances of the compost. The main objective of this investigation was to examine whether the conditions that provided high yard waste volume reduction would also result in compost with good heavy metal removal performances. Manila grass was composted at different initial pHs (5-9) and MCs (30-70%) and the composts were used to adsorb cadmium, copper, lead and zinc from water. Results indicated that MC is more critical than initial pH for both volume reduction and production of compost with high metal adsorption performances. The most optimal conditions for the two attributes were not exactly the same but lower MCs of 30-40% and pH 7 or higher tended to satisfy both high volume reduction and effective metal adsorption.

  3. Occupational hygiene in a Finnish drum composting plant.

    PubMed

    Tolvanen, Outi; Nykänen, Jenni; Nivukoski, Ulla; Himanen, Marina; Veijanen, Anja; Hänninen, Kari

    2005-01-01

    Bioaerosols (microbes, dust and endotoxins) and volatile organic compounds (VOCs) were determined in the working air of a drum composting plant treating source-separated catering waste. Different composting activities at the Oulu drum composting plant take place in their own units separated by modular design and constructions. Important implication of this is that the control room is a relatively clean working environment and the risk of exposure to harmful factors is low. However, the number of viable airborne microbes was high both in the biowaste receiving hall and in the drum composting hall. The concentration (geometric average) of total microbes was 21.8 million pcs/m3 in the biowaste receiving hall, 13.9 million pcs/m3 in the drum composting hall, and just 1.4 million pcs/m3 in the control room. Endotoxin concentrations were high in the biowaste receiving hall and in the drum composting hall. The average (arithmetic) endotoxin concentration was over the threshold value of 200 EU/m3 in both measurement locations. In all working areas, the average (arithmetic) dust concentrations were in a low range of 0.6-0.7 mg/m3, being below the Finnish threshold value of 5 mg/m3. In the receiving hall and drum composting hall, the concentrations of airborne microbes and endotoxins may rise to levels hazardous to health during prolonged exposure. It is advisable to use a respirator mask (class P3) in these areas. Detected volatile organic compounds were typical compounds of composting plants: carboxylic acids and their esters, alcohols, ketones, aldehydes, and terpenes. Concentrations of VOCs were much lower than the Finnish threshold limit values (Finnish TLVs), many of the quantified compounds exceeded their threshold odour concentrations (TOCs). Primary health effects due VOCs were not presumable at these concentrations but unpleasant odours may cause secondary symptoms such as nausea and hypersensitivity reactions. This situation is typical of composting plants where

  4. Land cover classification of VHR airborne images for citrus grove identification

    NASA Astrophysics Data System (ADS)

    Amorós López, J.; Izquierdo Verdiguier, E.; Gómez Chova, L.; Muñoz Marí, J.; Rodríguez Barreiro, J. Z.; Camps Valls, G.; Calpe Maravilla, J.

    Managing land resources using remote sensing techniques is becoming a common practice. However, data analysis procedures should satisfy the high accuracy levels demanded by users (public or private companies and governments) in order to be extensively used. This paper presents a multi-stage classification scheme to update the citrus Geographical Information System (GIS) of the Comunidad Valenciana region (Spain). Spain is the first citrus fruit producer in Europe and the fourth in the world. In particular, citrus fruits represent 67% of the agricultural production in this region, with a total production of 4.24 million tons (campaign 2006-2007). The citrus GIS inventory, created in 2001, needs to be regularly updated in order to monitor changes quickly enough, and allow appropriate policy making and citrus production forecasting. Automatic methods are proposed in this work to facilitate this update, whose processing scheme is summarized as follows. First, an object-oriented feature extraction process is carried out for each cadastral parcel from very high spatial resolution aerial images (0.5 m). Next, several automatic classifiers (decision trees, artificial neural networks, and support vector machines) are trained and combined to improve the final classification accuracy. Finally, the citrus GIS is automatically updated if a high enough level of confidence, based on the agreement between classifiers, is achieved. This is the case for 85% of the parcels and accuracy results exceed 94%. The remaining parcels are classified by expert photo-interpreters in order to guarantee the high accuracy demanded by policy makers.

  5. Characterization of the biosolids composting process by hyperspectral analysis.

    PubMed

    Ilani, Talli; Herrmann, Ittai; Karnieli, Arnon; Arye, Gilboa

    2016-02-01

    Composted biosolids are widely used as a soil supplement to improve soil quality. However, the application of immature or unstable compost can cause the opposite effect. To date, compost maturation determination is time consuming and cannot be done at the composting site. Hyperspectral spectroscopy was suggested as a simple tool for assessing compost maturity and quality. Nevertheless, there is still a gap in knowledge regarding several compost maturation characteristics, such as dissolved organic carbon, NO3, and NH4 contents. In addition, this approach has not yet been tested on a sample at its natural water content. Therefore, in the current study, hyperspectral analysis was employed in order to characterize the biosolids composting process as a function of composting time. This goal was achieved by correlating the reflectance spectra in the range of 400-2400nm, using the partial least squares-regression (PLS-R) model, with the chemical properties of wet and oven-dried biosolid samples. The results showed that the proposed method can be used as a reliable means to evaluate compost maturity and stability. Specifically, the PLS-R model was found to be an adequate tool to evaluate the biosolids' total carbon and dissolved organic carbon, total nitrogen and dissolved nitrogen, and nitrate content, as well as the absorbance ratio of 254/365nm (E2/E3) and C/N ratios in the dry and wet samples. It failed, however, to predict the ammonium content in the dry samples since the ammonium evaporated during the drying process. It was found that in contrast to what is commonly assumed, the spectral analysis of the wet samples can also be successfully used to build a model for predicting the biosolids' compost maturity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Evaluating citrus germplasm for huanglongbing (HLB) resistance: USDA-ARS Inoculation Program

    USDA-ARS?s Scientific Manuscript database

    The Asian citrus psyllid (ACP), Diaphorina citri, is an important pest because it vectors bacteria responsible for a serious disease of citrus known as huanglongbing (citrus greening disease). USDA-ARS researchers recently established a program for screening citrus germplasm for resistance to the di...

  7. Changes in cadmium mobility during composting and after soil application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanc, Ales; Tlustos, Pavel; Szakova, Jirina

    2009-08-15

    The effect of twelve weeks of composting on the mobility and bioavailability of cadmium in six composts containing sewage sludge, wood chips and grass was studied, along with the cadmium immobilization capacity of compost. Two different soils were used and Cd accumulation measured in above-ground oat biomass (Avena sativa L.). Increasing pH appears to be an important cause of the observed decreases in available cadmium through the composting process. A pot experiment was performed with two different amounts of compost (9.6 and 28.8 g per kg of soil) added into Fluvisol with total Cd 0.255 mg kg{sup -1}, and contaminatedmore » Cambisol with total Cd 6.16 mg kg{sup -1}. Decrease of extractable Cd (0.01 mol l{sup -1} CaCl{sub 2}) was found in both soils after compost application. The higher amount of compost immobilized an exchangeable portion of Cd (0.11 mol l{sup -1} CH{sub 3}COOH extractable) in contaminated Cambisol unlike in light Fluvisol. The addition of a low amount of compost decreased the content of Cd in associated above-ground oat biomass grown in both soils, while a high amount of compost decreased the Cd content in oats only in the Cambisol.« less

  8. Huanglongbing increases Diplodia Stem End Rot in Citrus sinensis

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB), one of the most devastating diseases of citrus is caused by the a-Proteobacteria Candidatus Liberibacter. Diplodia natalensis Pole-Evans is a fungal pathogen which has been known to cause a postharvest stem-end rot of citrus, the pathogen infects citrus fruit under the calyx, an...

  9. Technical note: nitrogen fertilization effects on the degradation of aged diesel oil in composted drilling wastes.

    PubMed

    Choi, Woo-Jung; Chang, Scott X

    2009-07-01

    Hydrocarbon-contaminated wastes generated from oil and gas drilling activities may be used as a soil amendment once composted and further decomposition of residual hydrocarbons can be accomplished after the composts are applied to soils. To test if N fertilization may enhance hydrocarbon decomposition, we investigated the effects of N application on hydrocarbon degradation in different-aged composts (1-, 2-, 3-, and 4-year-old composts, coded as 1Y, 2Y, 3Y, and 4Y composts, respectively) through a pot experiment planted with white spruce (Picea glauca [Moench] Voss) seedlings. The percentage degradation of total petroleum hydrocarbon (TPH, C11 to C40) in the composts without N fertilization was correlated to initial NH4+ concentrations (R = 0.99, P < 0.001). The percentage degradation of TPH was highest in the 3Y compost (41.1%) that had an initial level of 325.3 mg NH4+ -N kg(-1) and the lowest in the IY compost (9.3%) that had an initial level of 8.3 mg NH4+ -N kg(-1). The degradation of TPH was enhanced by Nfertilization in the 1Y (from 9.3 to 15.3%) and 4Y composts (from 14.3 to 22.6%) that had low initial NH4+ concentrations. Our results show that application of NH4+ -based fertilizers may enhance the degradation of TPH when initial NH4+ concentrations in the compost are low.

  10. Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost.

    PubMed

    Awasthi, Mukesh Kumar; Wang, Quan; Chen, Hongyu; Wang, Meijing; Ren, Xiuna; Zhao, Junchao; Li, Jiao; Guo, Di; Li, Dong-Sheng; Awasthi, Sanjeev Kumar; Sun, Xining; Zhang, Zengqiang

    2017-08-01

    The influence of biochar amended dewatered fresh sewage sludge (DFSS)-wheat straw co-composting on nutrients transformation and end products quality was investigated. This is the first study to examine the biochar applied compost quality with different kgha -1 TKN on Brassica rapa L. growth. Seven mixtures were composted over 8-weeks period in 130-L reactor using the same DFSS with different concentration of biochar (2%, 4%, 6%, 8%, 12% and 18% on dry weight basis) and without additive added treatment served as control. The results indicated that compost with 8-12% biochar became more humified within 35days of composting, and the compost maturity parameters also showed that this could be much more feasible approach to increased water-soluble nutrients including NO 3 , DOC, DON, PO 4 3- , K + and Na + , but bioavailability of Cu, Zn, Ni and Pb content reduced as compared to control. Finally, results showed that 8-12% biochar was recommended for DFSS composting and 150kgha -1 TKN of compost dosages for organic farming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Continuous feed, on-site composting of kitchen garbage.

    PubMed

    Hwang, Eung-Ju; Shin, Hang-Sik; Tay, Joo-Hwa

    2002-04-01

    Kitchen garbage generated at a school cafeteria was treated and stabilised in a controlled on-site composting unit for volume reduction and on-site utilisation of processed garbage. The on-site composter was fed with the garbage on a daily basis during the two-months experimental period. Compost was not removed from the unit but was entirely reused as a bulking agent in order to minimise the need for additional bulking agent and compost handling. Performance of the composter tinder this condition was investigated. Most of the easily degradable organic matter (EDM) in the garbage was biodegraded rapidly, and the final product had a low content of EDM. Lipids, total sugar, and hemi-cellulose were degraded 96%, 81%, and 66% respectively. Free air space (FAS) was higher than 0.5 all the time, so accumulation of dry matter in the unit was not significant in reducing reaction efficiency. Other reaction parameters such as pH and MC were kept within a suitable range; however, it was advisable to maintain MC at over 46%. As a result, this method of operation was able to stabilise the garbage with low sawdust demand and little compost production.

  12. Evaluation of maifanite and silage as amendments for green waste composting.

    PubMed

    Zhang, Lu; Sun, Xiangyang

    2018-04-23

    Composting is a popular method for recycling organic solid wastes including agricultural and forestry residues. However, traditional composting method is time consuming, generates foul smells, and produces an immature product. The effects of maifanite (MF; at 0%, 8.5%, and 13.5%) and/or silage (SG; at 0%, 25%, and 45%) as amendments on an innovative, two-stage method for composting green waste (GW) were investigated. The combined addition of MF and SG greatly improved composting conditions, reduced composting time, and enhanced compost quality in terms of composting temperature, bulk density, water-holding capacity, void ratio, pH, cation exchange capacity, ammonia nitrogen content, dissolved organic carbon content, crude fibre degradation, microbial numbers, enzyme activities, nutrient contents, and phytotoxicity. The two-stage composting of GW with 8.5% MF and 45% SG generated the highest quality and the most mature compost product and did so in only 21 days. With the optimized composting, the degradation rate of cellulose and hemicellulose reached 46.3 and 82.3%, respectively, and the germination index of Chinese cabbage and lucerne was 153 and 172%, respectively, which were all far higher than values obtained with the control. The combined effects of MF and SG on GW composting have not been previously explored, and this study therefore provided new and practical information. The comprehensive analyses of compost properties during and at the end of the process provided insight into underlying mechanisms. The optimized two-stage composting method may be a viable and sustainable alternative for GW management in that it converts the waste into a useful product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. High rate composting of herbal pharmaceutical industry solid waste.

    PubMed

    Ali, M; Duba, K S; Kalamdhad, A S; Bhatia, A; Khursheed, A; Kazmi, A A; Ahmed, N

    2012-01-01

    High rate composting studies of hard to degrade herbal wastes were conducted in a 3.5 m(3) capacity rotary drum composter. Studies were spread out in four trials: In trial 1 and 2, one and two turns per day rotation was observed, respectively, by mixing of herbal industry waste with cattle (buffalo) manure at a ratio of 3:1 on wet weight basis. In trial 3 inocula was added in raw waste to enhance the degradation and in trial 4 composting of a mixture of vegetable market waste and herbal waste was conducted at one turn per day. Results demonstrated that the operation of the rotary drum at one turn a day (trial 1) could provide the most conducive composting conditions and co-composting (trial 4) gave better quality compost in terms of temperature, moisture, nitrogen, and Solvita maturity index. In addition a FT-IR study also revealed that trial 1 and trial 4 gave quality compost in terms of stability and maturity due to the presence of more intense peaks in the aromatic region and less intense peaks were found in the aliphatic region compared with trial 2 and trial 3.

  14. [Estimation and Visualization of Nitrogen Content in Citrus Canopy Based on Two Band Vegetation Index (TBVI)].

    PubMed

    Wang, Qiao-nan; Ye, Xu-jun; Li, Jin-meng; Xiao, Yu-zhao; He, Yong

    2015-03-01

    Nitrogen is a necessary and important element for the growth and development of fruit orchards. Timely, accurate and nondestructive monitoring of nitrogen status in fruit orchards would help maintain the fruit quality and efficient production of the orchard, and mitigate the pollution of water resources caused by excessive nitrogen fertilization. This study investigated the capability of hyperspectral imagery for estimating and visualizing the nitrogen content in citrus canopy. Hyperspectral images were obtained for leaf samples in laboratory as well as for the whole canopy in the field with ImSpector V10E (Spectral Imaging Ltd., Oulu, Finland). The spectral datas for each leaf sample were represented by the average spectral data extracted from the selected region of interest (ROI) in the hyperspectral images with the aid of ENVI software. The nitrogen content in each leaf sample was measured by the Dumas combustion method with the rapid N cube (Elementar Analytical, Germany). Simple correlation analysis and the two band vegetation index (TBVI) were then used to develop the spectra data-based nitrogen content prediction models. Results obtained through the formula calculation indicated that the model with the two band vegetation index (TBVI) based on the wavelengths 811 and 856 nm achieved the optimal estimation of nitrogen content in citrus leaves (R2 = 0.607 1). Furthermore, the canopy image for the identified TBVI was calculated, and the nitrogen content of the canopy was visualized by incorporating the model into the TBVI image. The tender leaves, middle-aged leaves and elder leaves showed distinct nitrogen status from highto low-levels in the canopy image. The results suggested the potential of hyperspectral imagery for the nondestructive detection and diagnosis of nitrogen status in citrus canopy in real time. Different from previous studies focused on nitrogen content prediction at leaf level, this study succeeded in predicting and visualizing the nutrient

  15. Exogenous application of the plant signalers methyl jasmonate and salicylic acid induces changes in volatile emissions from citrus foliage and influences the aggregation behavior of Asian citrus psyllid (Diaphorina citri), vector of Huanglongbing

    PubMed Central

    Robbins, Paul S.; Niedz, Randy; McCollum, Greg; Alessandro, Rocco

    2018-01-01

    Huanglongbing, also known as citrus greening, is a destructive disease that threatens citrus production worldwide. It is putatively caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (Las). Currently, the disease is untreatable and efforts focus on intensive insecticide use to control the vector, Asian citrus psyllid (Diaphorina citri). Emerging psyllid resistance to multiple insecticides has generated investigations into the use of exogenously applied signaling compounds to enhance citrus resistance to D. citri and Las. In the present study, we examined whether foliar applications of methyl jasmonate (MJ), a volatile signaling compound associated with the induced systemic resistance pathway, and salicylic acid, a constituent of the systemic acquired resistance pathway, would elicit the emission of defense-related volatiles in citrus foliage, and what effect this might have on the host-plant searching behavior of D. citri. Comparisons were made of volatiles emitted from growing shoots of uninfected and Las-infected ‘Valencia’ sweet orange (Citrus sinensis) trees over two consecutive sampling days. A settling behavioral assay was used to compare psyllid attraction to MJ-treated vs. Tween-treated citrus sprigs. All three main effects, Las infection status, plant signaler application, and sampling day, influenced the proportions of individual volatile compounds emitted in different treatment groups. MJ- and SA-treated trees had higher emission rates than Tween-treated trees. Methyl salicylate (MeSA) and β-caryophyllene were present in higher proportions in the volatiles collected from Las-infected + trees. On the other hand, Las-infected + MJ-treated trees emitted lower proportions of MeSA than did Las-infected + Tween-treated trees. Because MeSA is a key D. citri attractant, this result suggests that MJ application could suppress MeSA emission from Las-infected trees, an approach that could be used to discourage psyllid colonization during

  16. Exogenous application of the plant signalers methyl jasmonate and salicylic acid induces changes in volatile emissions from citrus foliage and influences the aggregation behavior of Asian citrus psyllid (Diaphorina citri), vector of Huanglongbing.

    PubMed

    Patt, Joseph M; Robbins, Paul S; Niedz, Randy; McCollum, Greg; Alessandro, Rocco

    2018-01-01

    Huanglongbing, also known as citrus greening, is a destructive disease that threatens citrus production worldwide. It is putatively caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (Las). Currently, the disease is untreatable and efforts focus on intensive insecticide use to control the vector, Asian citrus psyllid (Diaphorina citri). Emerging psyllid resistance to multiple insecticides has generated investigations into the use of exogenously applied signaling compounds to enhance citrus resistance to D. citri and Las. In the present study, we examined whether foliar applications of methyl jasmonate (MJ), a volatile signaling compound associated with the induced systemic resistance pathway, and salicylic acid, a constituent of the systemic acquired resistance pathway, would elicit the emission of defense-related volatiles in citrus foliage, and what effect this might have on the host-plant searching behavior of D. citri. Comparisons were made of volatiles emitted from growing shoots of uninfected and Las-infected 'Valencia' sweet orange (Citrus sinensis) trees over two consecutive sampling days. A settling behavioral assay was used to compare psyllid attraction to MJ-treated vs. Tween-treated citrus sprigs. All three main effects, Las infection status, plant signaler application, and sampling day, influenced the proportions of individual volatile compounds emitted in different treatment groups. MJ- and SA-treated trees had higher emission rates than Tween-treated trees. Methyl salicylate (MeSA) and β-caryophyllene were present in higher proportions in the volatiles collected from Las-infected + trees. On the other hand, Las-infected + MJ-treated trees emitted lower proportions of MeSA than did Las-infected + Tween-treated trees. Because MeSA is a key D. citri attractant, this result suggests that MJ application could suppress MeSA emission from Las-infected trees, an approach that could be used to discourage psyllid colonization during

  17. Complex history of admixture during citrus domestication revealed by genome analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, G. Albert; Prochnik, Simon; Jenkins, Jerry

    vulnerable to disease outbreaks, including citrus greening disease (also known as Huanglongbing) that is rapidly spreading throughout the world's major citrus producing regions1. Understanding the population genomics and domestication of citrus will enable strategies for improvements to citrus including resistance to greening and other diseases. The domestication and distribution of edible citrus types began several thousand years ago in Southeast Asia and spread globally following ancient land and sea routes. The lineages that gave rise to most modern cultivated varieties, however, are lost in undocumented antiquity, and their identities remain controversial2, 3. Several features of Citrus biology and cultivation make deciphering these origins difficult. Cultivated varieties are typically propagated clonally by grafting and through asexual seed production (apomixis via nucellar polyembryony) to maintain desirable combinations of traits (Fig. 1). Thus many important cultivar groups have characteristic basic genotypes that presumably arose through interspecific hybridization and/or successive introgressive hybridizations of wild ancestral species. These domestication events predated the global expansion of citrus cultivation by hundreds or perhaps thousands of years, with no record of the domestication process. Diversity within such groups arises through accumulated somatic mutations, generally without sexual recombination, either as limb sports on trees or variants among apomictic seedling progeny. Two wild species are believed to have contributed to domesticated pummelos, mandarins and oranges. Based on morphology and genetic markers, pummelos have generally been identified with the wild species C. maxima (Burm.) Merrill that is indigenous to Southeast Asia. Although mandarins are similarly widely identified with the species C. reticulata Blanco 4-6, wild populations of C. reticulata have not been definitively described. Various authors have taken dif« less

  18. The impact of using mature compost on nitrous oxide emission and the denitrifier community in the cattle manure composting process.

    PubMed

    Maeda, Koki; Morioka, Riki; Hanajima, Dai; Osada, Takashi

    2010-01-01

    The diversity and dynamics of the denitrifying genes (nirS, nirK, and nosZ) encoding nitrite reductase and nitrous oxide (N(2)O) reductase in the dairy cattle manure composting process were investigated. A mixture of dried grass with a cattle manure compost pile and a mature compost-added pile were used, and denaturing gradient gel electrophoresis was used for denitrifier community analysis. The diversity of nirK and nosZ genes significantly changed in the initial stage of composting. These variations might have been induced by the high temperature. The diversity of nirK was constant after the initial variation. On the other hand, the diversity of nosZ changed in the latter half of the process, a change which might have been induced by the accumulation of nitrate and nitrite. The nirS gene fragments could not be detected. The use of mature compost that contains nitrate and nitrite promoted the N(2)O emission and significantly affected the variation of nosZ diversity in the initial stage of composting, but did not affect the variation of nirK diversity. Many Pseudomonas-like nirK and nosZ gene fragments were detected in the stage in which N(2)O was actively emitted.

  19. Quantitation of flavonoid constituents in citrus fruits.

    PubMed

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    1999-09-01

    Twenty-four flavonoids have been determined in 66 Citrus species and near-citrus relatives, grown in the same field and year, by means of reversed phase high-performance liquid chromatography analysis. Statistical methods have been applied to find relations among the species. The F ratios of 21 flavonoids obtained by applying ANOVA analysis are significant, indicating that a classification of the species using these variables is reasonable to pursue. Principal component analysis revealed that the distributions of Citrus species belonging to different classes were largely in accordance with Tanaka's classification system.

  20. Assessment of a composting process for the treatment of beef cattle manure.

    PubMed

    Magrí, Albert; Teira-Esmatges, M Rosa

    2015-01-01

    The intensive breeding of beef cattle in Juncosa de les Garrigues (Catalonia, Spain) leads to the production of a large volume of manure that needs appropriate management. Land application in the area at agronomic rates is not enough to ensure good management practices, making necessary extended on-farm storage and the export of part of the production to long distances. In this context, the implementation of a collective treatment based on composting could help in enhancing the handling of manure. We assessed a full-scale composting process based on turned windrows (W), and involving treatment of beef cattle manure (CM) alone (two typologies were considered according to carbon-to-nitrogen ratios of ~25 (CM1, W1) and ~14 (CM2, W2)), or mixed with bulking agent (CM2/BA, W3) and dewatered digested sewage sludge (CM2/BA/DDSS, W4). Composting significantly improved the transportability of nutrients (final volumes were 40-54% of the initial volume). Temperature >55°C was reached in all the treatments but following different time patterns. Under the applied conditions of turning and rewetting, 14 weeks of processing did not ensure the production of stable, and mature, compost. Thus, only compost from W1 attained the maximum degree of stability as well as concentration of ammonium-N < 0.01% (with ammonium-N/nitrate-N ratio of 0.2) and low phytotoxicity. However, high pH, salinity, and heavy metal contents (Cu and Zn) may limit its final use. Addition of BA was advised to be kept to minimum, whereas use of DDSS as a co-substrate was not recommended in agreement to the higher loss of N and levels of heavy metals in the final compost.

  1. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil.

    PubMed

    Agegnehu, Getachew; Bass, Adrian M; Nelson, Paul N; Bird, Michael I

    2016-02-01

    Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha(-1) biochar (B)+F; 3) 25 t ha(-1) compost (Com)+F; 4) 2.5 t ha(-1) B+25 t ha(-1) Com mixed on site+F; and 5) 25 t ha(-1) co-composted biochar-compost (COMBI)+F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ(15)N and δ(13)C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO3(-)N), ammonium-nitrogen (NH4(+)-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO2 and N2O were higher from the organic-amended soils than from the fertilizer-only control. However, N2O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar-compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. Copyright © 2015. Published by Elsevier B.V.

  2. Characterisation of source-separated household waste intended for composting

    PubMed Central

    Sundberg, Cecilia; Franke-Whittle, Ingrid H.; Kauppi, Sari; Yu, Dan; Romantschuk, Martin; Insam, Heribert; Jönsson, Håkan

    2011-01-01

    Large-scale composting of source-separated household waste has expanded in recent years in the Nordic countries. One problem can be low pH at the start of the process. Incoming biowaste at four composting plants was characterised chemically, physically and microbiologically. The pH of food waste ranged from 4.7 to 6.1 and organic acid concentration from 24 to 81 mmol kg−1. The bacterial diversity in the waste samples was high, with all samples dominated by Gammaproteobacteria, particularly Pseudomonas and Enterobacteria (Escherichia coli, Klebsiella, Enterobacter). Lactic acid bacteria were also numerically important and are known to negatively affect the composting process because the lactic acid they produce lowers the pH, inhibiting other bacteria. The bacterial groups needed for efficient composting, i.e. Bacillales and Actinobacteria, were present in appreciable amounts. The results indicated that start-up problems in the composting process can be prevented by recycling bulk material and compost. PMID:21075618

  3. Characterisation of source-separated household waste intended for composting.

    PubMed

    Sundberg, Cecilia; Franke-Whittle, Ingrid H; Kauppi, Sari; Yu, Dan; Romantschuk, Martin; Insam, Heribert; Jönsson, Håkan

    2011-02-01

    Large-scale composting of source-separated household waste has expanded in recent years in the Nordic countries. One problem can be low pH at the start of the process. Incoming biowaste at four composting plants was characterised chemically, physically and microbiologically. The pH of food waste ranged from 4.7 to 6.1 and organic acid concentration from 24 to 81 mmol kg(-1). The bacterial diversity in the waste samples was high, with all samples dominated by Gammaproteobacteria, particularly Pseudomonas and Enterobacteria (Escherichia coli, Klebsiella, Enterobacter). Lactic acid bacteria were also numerically important and are known to negatively affect the composting process because the lactic acid they produce lowers the pH, inhibiting other bacteria. The bacterial groups needed for efficient composting, i.e. Bacillales and Actinobacteria, were present in appreciable amounts. The results indicated that start-up problems in the composting process can be prevented by recycling bulk material and compost. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Enhancement of β-Carotene Synthesis by Citrus Products

    PubMed Central

    Ciegler, Alex; Nelson, George E. N.; Hall, Harlow H.

    1963-01-01

    β-Ionone, a stimulatory compound in the microbiological production of β-carotene by mated cultures of Blakeslea trispora, could be replaced with low-cost agricultural by-products (citrus oils, citrus pulp, or citrus molasses) with as good or better carotene yields. Peak yields (81 to 129 mg of carotene per g of dry solids) were achieved in 5 days. The various citrus products tested did not change the pigments produced; all trans-β-carotene remained the pre-dominant pigment. The acid-hydrolyzed soybean meal and corn used in previous production media could be replaced with unhydrolyzed cottonseed embryo meal and corn in a medium that also contained a natural lipid, deodorized kerosene, nonionic detergent, and a precursor. PMID:14021337

  5. Citrus peel extract incorporated ice cubes to protect the quality of common pandora: Fish storage in ice with citrus.

    PubMed

    Yerlikaya, Pinar; Ucak, Ilknur; Gumus, Bahar; Gokoglu, Nalan

    2015-12-01

    The objective of this study was to investigate the effects of ice with albedo and flavedo fragments of Citrus (Grapefruit (Citrus paradisi) and Bitter orange (Citrus aurantium L.)) extracts on the quality of common pandora (Pagellus erythrinus). Concentrated citrus extracts were diluted with distilled water (1/100 w/v) before making of ice. The ice cubes were spread on each layer of fishes and stored at 0 °C for 15 days. The pH value showed a regular increase in all samples. TVB-N levels of bitter orange treatment groups were recorded lower than the other groups reaching to 25.11 ± 0.02 mg/100 g at the end of the storage. The TMA-N values of bitter orange treatment groups were lower than that of control and grapefruit treatment groups. In terms of TBARS value, alteration was observed in the control samples and this value significantly (p < 0.01) increased from 0.101 ± 0.011 mg MA/kg to 0.495 ± 0.083 mg MA/kg, while remained lower in the citrus extracts treatment groups at the end of storage since their antioxidant capacity. The oxidation was suppressed in citrus extracts treatment groups, especially in bitter orange flavedo treatment. The results showed the bitter orange albedo and bitter orange flavedo extracts in combination with ice storage have more effectiveness in controlling the biochemical indices in common pandora.

  6. Variation in microbial population during composting of agro-industrial waste.

    PubMed

    Coelho, Luísa; Reis, Mário; Dionísio, Lídia

    2013-05-01

    Two compost piles were prepared, using two ventilation systems: forced ventilation and ventilation through mechanical turning. The material to compost was a mixture of orange waste, olive pomace, and grass clippings (2:1:1 v/v). During the composting period (375 days), samples were periodically taken from both piles, and the enumeration of fungi, actinomycetes, and heterotrophic bacteria was carried out. All studied microorganisms were incubated at 25 and 55 °C after inoculation in appropriate growth media. Fungi were dominant in the early stages of both composting processes; heterotrophic bacteria proliferated mainly during the thermophilic stage, and actinomycetes were more abundant in the final stage of the composting process. Our results showed that the physical and chemical parameters: temperature, pH, moisture, and aeration influenced the variation of the microbial population along the composting process. This study demonstrated that composting of these types of wastes, despite the prolonged mesophilic stage, provided an expected microbial variation.

  7. Immunoblotting Quantification Approach for Identifying Potential Hypoallergenic Citrus Cultivars.

    PubMed

    Wu, Jinlong; Deng, Wenjun; Lin, Dingbo; Deng, Xiuxin; Ma, Zhaocheng

    2018-02-28

    The inherent allergens of citrus fruits, such as Cit s 1, Cit s 2, Cit s 3 can cause allergic reactions. A better understanding of the genetic factors (cultivar to cultivar) affecting the allergenic potential of citrus fruits would be beneficial for further identification of hypoallergenic genotypes. In the present study, an immunoblotting quantification approach was adopted to assess the potential allergenicity of 21 citrus cultivars, including nine subgroups (tangerine, satsuma, orange, pummelo, grapefruit, lemon, kumquat, tangor, and tangelo). To prepare highly sensitive and specific rabbit polyclonal antibodies, antigenicity of purified rCit s 1.01, rCit s 2.01, and rCit s 3.01 peptides were enhanced with high epitope density in a single protein molecule. The data integration of three citrus allergen quantifications demonstrated that the four pummelo cultivars (Kao Phuang Pummelo, Wanbai Pummelo, Shatian Pummelo, and Guanxi Pummelo) were potential hypoallergenic, compared with other 8 subgroups. Moreover, the immunological analyses with sera of allergic subjects revealed that Shatian Pummelo and Guanxi Pummelo showed the lowest immunoreactivity in 8 representative citrus cultivars. These potential hypoallergenic genotypes are of great significance to not only allergic consumers but also citrus breeders in the genetic improvement of hypoallergenic citrus as breeding resources.

  8. Bioavailable Citrus sinensis Extract: Polyphenolic Composition and Biological Activity.

    PubMed

    Pepe, Giacomo; Pagano, Francesco; Adesso, Simona; Sommella, Eduardo; Ostacolo, Carmine; Manfra, Michele; Chieppa, Marcello; Sala, Marina; Russo, Mariateresa; Marzocco, Stefania; Campiglia, Pietro

    2017-04-15

    Citrus plants contain large amounts of flavonoids with beneficial effects on human health. In the present study, the antioxidant and anti-inflammatory potential of bioavailable polyphenols from Citrus sinensis was evaluated in vitro and ex vivo, using the murine macrophages cell line J774A.1 and primary peritoneal macrophages. Following simulated gastro-intestinal digestion, the in vitro bioavailability of Citrus sinensis polyphenolic extract was assessed using the human cell line Caco-2 grown as monolayers on a transwell membrane. Data demonstrated a relative permeation of its compounds (8.3%). Thus, the antioxidant and anti-inflammatory effect of polyphenolic Citrus sinensis fraction (Cs) was compared to the bioavailable one (CsB). Results revealed that Citrus extract were able to reduce macrophages pro-inflammatory mediators, including nitric oxide, iNOS, COX-2 and different cytokines. Moreover, the effect of Citrus sinensis polyphenols was associated with antioxidant effects, such as a reduction of reactive oxygen species (ROS) and heme-oxygenase-1 (HO-1) increased expression. Our results provide evidence that the bioavailable polyphenolic constituents of the Citrus sinensis extract accumulate prevalently at intestinal level and could reach systemic circulation exerting their effect. The bioavailable fraction showed a higher anti-inflammatory and antioxidant potential compared to the initial extract, thus highlighting its potential nutraceutical value.

  9. Efficiency of chemotherapy coupled with thermotherapy against citrus HLB

    USDA-ARS?s Scientific Manuscript database

    Six independent experiments were carried out to evaluate the effectiveness of the chemotherapy coupled with the thermotherapy on pot-contained HLB-affected plants based on our previous results from graft-based methods. Three-year old potted HLB-affected citrus plants were exposed to 4 thermotherapy ...

  10. High resolution melting analysis is a more sensitive and effective alternative to gel-based platforms in analysis of SSR--an example in citrus.

    PubMed

    Distefano, Gaetano; Caruso, Marco; La Malfa, Stefano; Gentile, Alessandra; Wu, Shu-Biao

    2012-01-01

    High resolution melting curve analysis (HRM) has been used as an efficient, accurate and cost-effective tool to detect single nucleotide polymorphisms (SNPs) or insertions or deletions (INDELs). However, its efficiency, accuracy and applicability to discriminate microsatellite polymorphism have not been extensively assessed. The traditional protocols used for SSR genotyping include PCR amplification of the DNA fragment and the separation of the fragments on electrophoresis-based platform. However, post-PCR handling processes are laborious and costly. Furthermore, SNPs present in the sequences flanking repeat motif cannot be detected by polyacrylamide-gel-electrophoresis based methods. In the present study, we compared the discriminating power of HRM with the traditional electrophoresis-based methods and provided a panel of primers for HRM genotyping in Citrus. The results showed that sixteen SSR markers produced distinct polymorphic melting curves among the Citrus spp investigated through HRM analysis. Among those, 10 showed more genotypes by HRM analysis than capillary electrophoresis owing to the presence of SNPs in the amplicons. For the SSR markers without SNPs present in the flanking region, HRM also gave distinct melting curves which detected same genotypes as were shown in capillary electrophoresis (CE) analysis. Moreover, HRM analysis allowed the discrimination of most of the 15 citrus genotypes and the resulting genetic distance analysis clustered them into three main branches. In conclusion, it has been approved that HRM is not only an efficient and cost-effective alternative of electrophoresis-based method for SSR markers, but also a method to uncover more polymorphisms contributed by SNPs present in SSRs. It was therefore suggested that the panel of SSR markers could be used in a variety of applications in the citrus biodiversity and breeding programs using HRM analysis. Furthermore, we speculate that the HRM analysis can be employed to analyse SSR

  11. Composting of a solid olive-mill by-product ("alperujo") and the potential of the resulting compost for cultivating pepper under commercial conditions.

    PubMed

    Alburquerque, J A; Gonzálvez, J; García, D; Cegarra, J

    2006-01-01

    A pollutant solid material called "alperujo" (AL), which is the main by-product from the Spanish olive oil industry, was composted with a cotton waste as bulking agent, and the compost obtained (ALC) was compared with a cattle manure (CM) and a sewage sludge compost (SSC) for use as organic amendment on a calcareous soil. The experiment was conducted with a commercial pepper crop in a greenhouse using fertigation. Composting AL involved a relatively low level of organic matter biodegradation, an increase in pH and clear decreases in the C/N and the fat, water-soluble organic carbon and phenol contents. The resulting compost, which was rich in organic matter and free of phytotoxicity, had a high potassium and organic nitrogen content but was low in phosphorus and micronutrients. The marketable yields of pepper obtained with all three organic amendments were similar, thus confirming the composting performance of the raw AL. When CM and SSC were used for soil amendment, the soil organic matter content was significantly reduced after cultivation, while it remained almost unchanged in the ALC-amended plots.

  12. Microbiological degradation of pesticides in yard waste composting.

    PubMed

    Fogarty, A M; Tuovinen, O H

    1991-06-01

    Changes in public opinion and legislation have led to the general recognition that solid waste treatment practices must be changed. Solid-waste disposal by landfill is becoming increasingly expensive and regulated and no longer represents a long-term option in view of limited land space and environmental problems. Yard waste, a significant component of municipal solid waste, has previously not been separated from the municipal solid-waste stream. The treatment of municipal solid waste including yard waste must urgently be addressed because disposal via landfill will be prohibited by legislation. Separation of yard waste from municipal solid waste will be mandated in many localities, thus stressing the importance of scrutinizing current composting practices in treating grass clippings, leaves, and other yard residues. Yard waste poses a potential environmental health problem as a result of the widespread use of pesticides in lawn and tree care and the persistence of the residues of these chemicals in plant tissue. Yard waste containing pesticides may present a problem due to the recalcitrant and toxic nature of the pesticide molecules. Current composting processes are based on various modifications of either window systems or in-vessel systems. Both types of processes are ultimately dependent on microbial bioconversions of organic material to innocuous end products. The critical stage of the composting process is the thermophilic phase. The fate and mechanism of removal of pesticides in composting processes is largely unknown and in need of comprehensive analysis.

  13. Biopesticide effect of green compost against fusarium wilt on melon plants.

    PubMed

    Ros, M; Hernandez, M T; Garcia, C; Bernal, A; Pascual, J A

    2005-01-01

    The biopesticide effect of four green composts against fusarium wilt in melon plants and the effect of soil quality in soils amended with composts were assayed. The composts consisted of pruning wastes, with or without addition of coffee wastes (3/1 and 4/1, dry wt/dry wt) or urea (1000/1, dry wt/dry wt). In vitro experiments suggested the biopesticide effect of the composts against Fusarium oxysporum, while only the compost of pine bark and urea (1000/1dry wt/dry wt) had an abiotic effect. Melon plant growth with composts and F. oxysporum was one to four times greater than in the non-amended soil, although there was no significant decrease in the level of the F. oxysporum in the soil. The addition of composts to the soil also improved its biological quality, as assessed by microbiological and biochemical parameters: ATP and hydrolases involved in the P (phosphatase), C (beta-glucosidase) and N (urease) cycles. Green composts had greater beneficial characteristics, improved plant growth and controlled fusarium wilt in melon plants. These composts improve the soil quality of semi-arid agricultural soils. Biotic and abiotic factors from composts have been tested as responsible of their biopesticide activity against fusarium wilt.

  14. Aerobic Food Waste Composting: Measurement of Green House Gases

    NASA Astrophysics Data System (ADS)

    Chung, J.

    2016-12-01

    Greenhouse gases (GHGs) are a major cause of global warming. While food waste composting can reduce the amount of waste being sent to traditional landfills, it also produces GHGs during the process. The objective of this research is to evaluate the GHGs emitted from an aerobic food composting machine, which is used in ISF. The Independent Schools Foundation Academy is a private independent school in Hong Kong with approximately 1500 students. Each academic year, the school produces 27 metric tons of food waste. In November 2013, the school installed a food waste composting system. Over the past 3 years, various improvements, such as installing a bio-filter to reduce the smell of the compost, have been made to the composting process. Meanwhile the compost is used by the primary students, as part of their experiential learning curriculum and organic farming projects. The composting process employs two machines: the Dehydra and A900 Rocket. The Dehydra reduces the mass of the food waste by separating the ground food waste and excessive water. The A900 Rocket, a composter made by Tidy Planet, processes food waste into compost in 14 days. This machine runs in an aerobic process, in which oxygen is used as an input gas and gases, such as carbon dioxide, are released. Carbon Dioxide is one of the greenhouse gases (GHGs). This research focuses on GHGs that are emitted from the A900 Rocket. The data is collected by the Gasmet DX 4015, a Fourier transform infrared spectroscopy (FTIR) multi gas analyser. This equipment measures the concentration (ppm) of different GHGs, including N2O, CO2, CH4, NH3 and CO.

  15. Accelerated In-vessel Composting for Household Waste

    NASA Astrophysics Data System (ADS)

    Bhave, Prashant P.; Joshi, Yadnyeshwar S.

    2017-12-01

    Composting at household level will serve as a viable solution in managing and treating the waste efficiently. The aim of study was to design and study household composting reactors which would treat the waste at source itself. Keeping this aim in mind, two complete mix type aerobic reactors were fabricated. A comparative study between manually operated and mechanically operated reactor was conducted which is the value addition aspect of present study as it gives an effective option of treatment saving the time and manpower. Reactors were loaded with raw vegetable waste and cooked food waste i.e. kitchen waste for a period of 30 days after which mulch was allowed to mature for 10 days. Mulch was analyzed for its C/N ratio, nitrate, phosphorous, potassium and other parameters to determine compost quality, every week during its period of operation. The results showed that compost obtained from both the reactors satisfied almost all compost quality criteria as per CPHEEO manual on municipal solid waste management and thus can be used as soil amendment to increase the fertility of soil.In terms of knowledge contribution, this study puts forth an effective way of decentralized treatment.

  16. An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment.

    PubMed

    Kalemelawa, Frank; Nishihara, Eiji; Endo, Tsuneyoshi; Ahmad, Zahoor; Yeasmin, Rumana; Tenywa, Moses M; Yamamoto, Sadahiro

    2012-12-01

    This study sought to evaluate the efficacy of aerobic and anaerobic composting of inoculated banana peels, and assess the agronomic value of banana peel-based compost. Changes in the chemical composition under aerobic and anaerobic conditions were examined for four formulations of banana peel-based wastes over a period of 12 weeks. The formulations i.e. plain banana peel (B), and a mixture with either cow dung (BC), poultry litter (BP) or earthworm (BE) were separately composted under aerobic and anaerobic conditions under laboratory conditions. Inoculation with either cow dung or poultry litter significantly facilitated mineralization in the order: BP>BC>B. The rate of decomposition was significantly faster under aerobic than in anaerobic composting conditions. The final composts contained high K (>100 g kg(-1)) and TN (>2%), indicating high potential as a source of K and N fertilizer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The fate of the recombinant DNA in corn during composting.

    PubMed

    Guan, Jiewen; Spencer, J Lloyd; Ma, Bao-Luo

    2005-01-01

    In order to make regulations that safeguard food and the environment, an understanding of the fate oftransgenes from genetically modified (GM) plants is of crucial importance. A compost experiment including mature transgenic corn plants and seeds of event Bt 176 (Zea mays L.) was conducted to trace the fate of the transgene cryIA(b) during the period of composting. In bin 1, shredded corn plants including seeds were composted above a layer of cow manure and samples from the corn layer were collected at intervals during a 12-month period. The samples were tested for the transgene persistence and microbial counts and also the compost was monitored for temperature. In bin 2, piles of corn seeds, surrounded by sheep manure and straw, were composted for 12 months. A method combining nested polymerase chain reaction (PCR) and southern hybridization was developed for detection of the transgene in compost. The detection sensitivity was 200 copies of the transgene per gram of dry composted corn material. Composting commenced on day 0, and the transgene was detected in specimens from bin 1 on days 0 and 7 but not on day 14 or thereafter. The transgene in corn seeds was not detectable after 12 months of composting in bin 2. Temperatures in both bins rose to about 50 degrees C within 2 weeks and remained above that temperature for about 3 months, even when the ambient temperature dropped below -20 degrees C. Extracts from compost were inoculated onto culture plates and then were incubated at 23 to 55 degrees C. Within the first 2 weeks of composting in bin 1, the counts of bacteria incubated at 55 degrees C increased from 3.5 to 7.5 log10, whereas those incubated at 23 degrees C remained at about 7.5 log10. The counts of fungi incubated at 45 degrees C increased slightly from 2.5 to 3.1 log10, but those incubated at 23 degrees C decreased from 6.3 to 3.0 log10. The rapid degradation of the transgene during composting of Bt corn plants suggested that the composting process

  18. The Early Years: Composting with Children

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2016-01-01

    "Composting" is a way to purposefully use the process of decay to break down organic materials in a location where the resulting mixture can be harvested for enriching garden soil. The large body of literature about the science of composting provides many options for early childhood educators to choose from to incorporate into their…

  19. Source Separation and Composting of Organic Municipal Solid Waste.

    ERIC Educational Resources Information Center

    Gould, Mark; And Others

    1992-01-01

    Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…

  20. Resistance and tolerance to Huanglongbing in citrus

    USDA-ARS?s Scientific Manuscript database

    The Stover-led research team focuses on developing improved citrus scion varieties, through both conventional breeding and transgenics, with special attention to confronting the threat of citrus huanglongbing (HLB). Collaborations are underway with more than 20 research groups around the world to ha...

  1. Effects of fragmentation, supplementation and the addition of phase II compost to 2nd break compost on mushroom (Agaricus bisporus) yield.

    PubMed

    Royse, Daniel J

    2010-01-01

    Double-cropping offers growers an opportunity to increase production efficiency while reducing costs. We evaluated degree of fragmentation, supplementation, and addition of phase II compost (PIIC) to 2nd break compost (2BkC) on mushroom yield and biological efficiency (BE%). One crop was extended as a triple crop in which we evaluated effect of compost type, and addition of phase II compost and supplement. All crops involved removing the casing layer after 2nd break and then using 2BkC for the various treatments. Simple fragmentation of the compost increased mushroom yield by 30% compared to non-fragmented compost. Addition of a commercial supplement to fragmented compost increased mushroom yield by 53-56% over non-supplemented, fragmented 2BkC. Fragmented, supplemented 2BkC resulted in a 99% and 108% yield increase over the non-fragmented control depending on degree of fragmentation (3x, 1x, respectively). A 3rd crop of mushrooms was produced from 2BkC, but yields were about one-half that of the 1st and 2nd crops. Double-cropping (and even triple-cropping) offers growers an opportunity to increase bio-efficiency, reduce production costs, and increase profitability. The cost of producing Agaricus bisporus continues to rise due to increasing expenses including materials, energy, and labor. Optimizing production practices, through double- or triple-cropping, could help growers become more efficient and competitive, and ensure the availability of mushrooms for consumers.

  2. Passive aeration composting of chicken litter: effects of aeration pipe orientation and perforation size on losses of compost elements.

    PubMed

    Ogunwande, Gbolabo A; Osunade, James A

    2011-01-01

    A passive aeration composting study was undertaken to investigate the effects of aeration pipe orientation (PO) and perforation size (PS) on some physico-chemical properties of chicken litter (chicken manure + sawdust) during composting. The experimental set up was a two-factor completely randomised block design with two pipe orientations: horizontal (Ho) and vertical (Ve), and three perforation sizes: 15, 25 and 35 mm diameter. The properties monitored during composting were pile temperature, moisture content (MC), pH, electrical conductivity (EC), total carbon (C(T)), total nitrogen (N(T)) and total phosphorus (P(T)). Moisture level in the piles was periodically replenished to 60% for efficient microbial activities. The results of the study showed that optimum composting conditions (thermophilic temperatures and sanitation requirements) were attained in all the piles. During composting, both PO and PS significantly affected pile temperature, moisture level, pH, C(T) loss and P(T) gain. EC was only affected by PO while N(T) was affected by PS. Neither PO nor PS had a significant effect on the C:N ratio. A vertical pipe was effective for uniform air distribution, hence, uniform composting rate within the composting pile. The final values showed that PO of Ve and PS of 35 mm diameter resulted in the least loss in N(T). The PO of Ho was as effective as Ve in the conservation of C(T) and P(T). Similarly, the three PSs were equally effective in the conservation of C(T) and P(T). In conclusion, the combined effects of PO and PS showed that treatments Ve35 and Ve15 were the most effective in minimizing N(T) loss. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. [Emissions of greenhouse gas and ammonia from the full process of sewage sludge composting and land application of compost].

    PubMed

    Zhong, Jia; Wei, Yuan-Song; Zhao, Zhen-Feng; Ying, Mei-Juan; Zhou, Guo-Sheng; Xiong, Jian-Jun; Liu, Pei-Cai; Ge, Zhen; Ding, Gang-Qiang

    2013-11-01

    There is a great uncertainty of greenhouse gas (GHG) reduction and nitrogen conservation from the full process of sludge composting and land application of compost in China due to the lack of emission data of GHG such as N2O and CH4 and ammonia (NH3). The purpose of this study is to get emission characteristics of GHGs and NH3 from the full process with on-site observation. Results showed that the total GHG emission factor from full process of the turning windrow (TW) system (eCO2/dry sludge, 196.21 kg x t(-1)) was 1.61 times higher of that from the ATP system. Among the full process, N2O was mostly from the land application of compost, whereas CH4 mainly resulted from the sludge composting. In the sludge composting of ATP, the GHG emission equivalence of the ATP (eCO2/dry sludge, 12.47 kg x t(-1) was much lower than that of the TW (eCO2/dry sludge, 86.84 kg x t(-1)). The total NH3 emission factor of the TW (NH3/dry sludge, 6.86 kg x t(-1)) was slightly higher than that of the ATP (NH3/dry sludge, 6.63 kg x t(-1)). NH3 was the major contributor of nitrogen loss in the full process. During the composting, the nitrogen loss as NH3 from both TW and ATP was nearly the same as 30% of TN loss from raw materials, and the N and C loss caused by N2O and CH4 were negligible. These results clearly showed that the ATP was a kind of environmentally friendly composting technology.

  4. Improving bioaerosol exposure assessments of composting facilities — Comparative modelling of emissions from different compost ages and processing activities

    NASA Astrophysics Data System (ADS)

    Taha, M. P. M.; Drew, G. H.; Tamer, A.; Hewings, G.; Jordinson, G. M.; Longhurst, P. J.; Pollard, S. J. T.

    We present bioaerosol source term concentrations from passive and active composting sources and compare emissions from green waste compost aged 1, 2, 4, 6, 8, 12 and 16 weeks. Results reveal that the age of compost has little effect on the bioaerosol concentrations emitted for passive windrow sources. However emissions from turning compost during the early stages may be higher than during the later stages of the composting process. The bioaerosol emissions from passive sources were in the range of 10 3-10 4 cfu m -3, with releases from active sources typically 1-log higher. We propose improvements to current risk assessment methodologies by examining emission rates and the differences between two air dispersion models for the prediction of downwind bioaerosol concentrations at off-site points of exposure. The SCREEN3 model provides a more precautionary estimate of the source depletion curves of bioaerosol emissions in comparison to ADMS 3.3. The results from both models predict that bioaerosol concentrations decrease to below typical background concentrations before 250 m, the distance at which the regulator in England and Wales may require a risk assessment to be completed.

  5. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review.

    PubMed

    Wu, Haipeng; Lai, Cui; Zeng, Guangming; Liang, Jie; Chen, Jin; Xu, Jijun; Dai, Juan; Li, Xiaodong; Liu, Junfeng; Chen, Ming; Lu, Lunhui; Hu, Liang; Wan, Jia

    2017-09-01

    Compost and biochar, used for the remediation of soil, are seen as attractive waste management options for the increasing volume of organic wastes being produced. This paper reviews the interaction of biochar and composting and its implication for soil amendment and pollution remediation. The interaction of biochar and composting affect each other's properties. Biochar could change the physico-chemical properties, microorganisms, degradation, humification and gas emission of composting, such as the increase of nutrients, cation exchange capacity (CEC), organic matter and microbial activities. The composting could also change the physico-chemical properties and facial functional groups of biochar, such as the improvement of nutrients, CEC, functional groups and organic matter. These changes would potentially improve the efficiency of the biochar and composting for soil amendment and pollution remediation. Based on the above review, this paper also discusses the future research required in this field.

  6. Quantification of Xylella fastidiosa from Citrus Trees by Real-Time Polymerase Chain Reaction Assay.

    PubMed

    Oliveira, Antonio C; Vallim, Marcelo A; Semighini, Camile P; Araújo, Welington L; Goldman, Gustavo H; Machado, Marcos A

    2002-10-01

    ABSTRACT Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC), a destructive disease of sweet orange cultivars in Brazil. Polymerase chain reaction (PCR)-based assays constitute the principal diagnostic method for detection of these bacteria. In this work, we established a real-time quantitative PCR (QPCR) assay to quantify X. fastidiosa in naturally and artificially infected citrus. The X. fastidiosa cell number detected in the leaves increased according to the age of the leaf, and bacteria were not detected in the upper midrib section in young leaves, indicating temporal and spatial distribution patterns of bacteria, respectively. In addition, the X. fastidiosa cell number quantified in leaves of 'Pera' orange and 'Murcott' tangor reflected the susceptible and resistant status of these citrus cultivars. None of the 12 endophytic citrus bacteria or the four strains of X. fastidiosa nonpathogenic to citrus that were tested showed an increase in the fluorescence signal during QPCR. In contrast, all 10 CVC-causing strains exhibited an increase in fluorescence signal, thus indicating the specificity of this QPCR assay. Our QPCR provides a powerful tool for studies of different aspects of the Xylella-citrus interactions, and can be incorporated into breeding programs in order to select CVC-resistant plants more quickly.

  7. Revamping of entisol soil physical characteristics with compost treatment

    NASA Astrophysics Data System (ADS)

    Sumono; Loka, S. P.; Nasution, D. L. S.

    2018-02-01

    Physical characteristic of Entisol soil is an important factor for the growth of plant. The aim of this research was to know the effect of compost application on physical characteristics of Entisol soil. The research method used was experimental method with 6 (six) treatments and 3 replications of which K1 = 10 kg Entisol soil without compost, K2 = 9 Kg Entisol soil with 1 kg compost, K3 = 8 kg Entisol soil with 2 kg compost, K4 = 7 kg Entisol soilwith3 kg compost, K5 = 6 kg Entisol soil with 4 kg compost and K6 = 5 kg Entisol soil with 5 kg compost. The observed parameters were soil texture, soil organic matter, soil thickness, porosity, soil pore size, soil permeability and water availability. The results showed that the Entisol soil texture was loamy sand texture, the value of soil organic matter ranged from 0.74% to 4.69%, soil thickness ranged from 13.83 to 20.16 cm, porosity ranged from16% to 37%, soil pore size ranged from 2.859 to 5.493 µm, permeability ranged from 1.24 to 5.64 cm/hour and water availability ranged from 6.67% to 9.12% by each treatment.

  8. Composting-derived organic coating on biochar enhances its affinity to nitrate

    NASA Astrophysics Data System (ADS)

    Hagemann, Nikolas; Joseph, Stephen; Conte, Pellegrino; Albu, Mihaela; Obst, Martin; Borch, Thomas; Orsetti, Silvia; Subdiaga, Edisson; Behrens, Sebastian; Kappler, Andreas

    2017-04-01

    Biochar is defined charcoal that is produced by the thermal treatment of biomass in the (partial) absence of oxygen (pyrolysis) for non-oxidative applications, especially in agriculture. Due to its high surface area and porous structure, it is suggested as a beneficial soil amendment to increase crop yields and to tailor biogeochemical cycles in agro-ecosystems to reduce both greenhouse gas emissions and nutrient leaching. While early research focused on single applications of large amounts of biochar (>10 t ha-1), economic and ecological boundaries as well as practical considerations and recent findings shifted the focus towards low-dose (˜1 t ha-1) and potentially repeated applications of nutrient-enriched biochars, i.e. biochar-based fertilizers in the root-zone. Thus, biochar must be "loaded" with nutrients prior to its use as a root-zone amendment. Co-composting is suggested as a superior method, as co-composted biochar was shown to promote plant growth and showed the desired slow release of nutrients such as nitrate ("nitrate capture", Kammann et al., 2015 SR5:11080). However, the underlying mechanisms are not understood and nitrate capture has been quantified only for isolated biochars but not for e.g. biochar-amended composts without prior separation of the biochar. In the present study, we used repeated extractions with 2 M KCl and found that up to 30% of the nitrate present in a biochar-amended compost is captured in biochar, although biochar was amended to the initial composting feedstock (manure) only at 4% (w/w). Additionally, we quantified nitrate capture by pristine biochar after soaking the biochar in NH4NO3 solution in the absence of any additional organic carbon and nitrate capture of separated co-composted biochar. Assuming pseudo-first order kinetics for biochar nitrate release, we found an increase of biochar's affinity to nitrate after co-composting. Spectro-microscopical investigations (scanning transmission electron microscopy with electron

  9. School Compost Programs: Pathways to Success

    ERIC Educational Resources Information Center

    Schumpert, Kary; Dietz, Cyndra

    2012-01-01

    After the oft-repeated three Rs (reduce, reuse, recycle) comes the lesser-known but equally important fourth R: rot. In this case, rot means compost. Classrooms, schools, and school districts can use a number of methods to establish a compost program. The finished product is a valuable soil amendment that adds fertility to local farmland, school…

  10. Anti-inflammatory effects of Citrus sinensis L., Citrus paradisi L. and their combinations.

    PubMed

    Khan, Rafeeq Alam; Mallick, Neelam; Feroz, Zeeshan

    2016-05-01

    Citrus bioflavonoids embrace a wide group of phenolic compounds effecting the production and scavenging of reactive oxygen species and the processes relating free radical-mediated injury. Keeping in view of the antioxidant and anti-inflammatory properties of Citrus sinensis and Citrus paradisi, present study was undertaken to explore the effects of C. sinensis (orange juice) and C. paradisi (grapefruit juice) at three different doses alone and their two combinations with the objective to examine the effects of these compounds in an experimental model of rat colitis induced by trinitrobenzenesulphonic acid (TNBS). Hence biochemical parameters e.g. myeloperoxidase, alkaline phosphatase, C-reactive protein (CRP) and glutathione were assessed. Data entry and analysis was accomplished by Statistical Package for the Social Sciences version 17 and was presented as mean ± S.E.M with 95% confidence interval. Present result shows that these juices, mainly C. paradisi, may be efficacious for the management of inflammatory bowel disease. In acute colitis model, C. paradise encouraged a decrease in the extension of the lesion escorted by a decrease in the occurrence of diarrhea and reinstatement of the glutathione content. Related effects were produced by the administration of C. sinensis, which also prevented the myeloperoxidase and alkaline phosphatase actions in acute intestinal inflammatory process. The effect of the citrus juices on the inflammatory process may be associated to their antioxidant and anti-inflammatory properties, as revealed in present investigation. The favorable effects exerted were demonstrated both by histological and biochemical changes and were related with a progress in the colonic oxidative status.

  11. Asian citrus psyllid RNAi pathway - RNAi evidence

    USDA-ARS?s Scientific Manuscript database

    In silico analyses of the draft genome of Diaphorina citri, the Asian citrus psyllid, for genes within the Ribonucleic acid interference(RNAi), pathway was successful. The psyllid is the vector of the plant-infecting bacterium, Candidatus Liberibacter asiaticus (CLas), which is linked to citrus gree...

  12. 76 FR 23449 - Citrus Canker, Citrus Greening, and Asian Citrus Psyllid; Interstate Movement of Regulated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... conditions, the articles are treated with methyl bromide and shipped in a container that has been sealed with... of any regulated article, including citrus nursery stock, provided that: The article is treated with methyl bromide in accordance with 7 CFR part 305. That part contains our phytosanitary treatment...

  13. Somatic Embryogenesis: Still a Relevant Technique in Citrus Improvement.

    PubMed

    Omar, Ahmad A; Dutt, Manjul; Gmitter, Frederick G; Grosser, Jude W

    2016-01-01

    The genus Citrus contains numerous fresh and processed fruit cultivars that are economically important worldwide. New cultivars are needed to battle industry threatening diseases and to create new marketing opportunities. Citrus improvement by conventional methods alone has many limitations that can be overcome by applications of emerging biotechnologies, generally requiring cell to plant regeneration. Many citrus genotypes are amenable to somatic embryogenesis, which became a key regeneration pathway in many experimental approaches to cultivar improvement. This chapter provides a brief history of plant somatic embryogenesis with focus on citrus, followed by a discussion of proven applications in biotechnology-facilitated citrus improvement techniques, such as somatic hybridization, somatic cybridization, genetic transformation, and the exploitation of somaclonal variation. Finally, two important new protocols that feature plant regeneration via somatic embryogenesis are provided: protoplast transformation and Agrobacterium-mediated transformation of embryogenic cell suspension cultures.

  14. Effects of biochar, compost and biochar-compost on growth and nutrient status of maize in two Mediterranean soils

    NASA Astrophysics Data System (ADS)

    Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    During the past years, studies have shown that biochar alone or combined with compost, has the potential to improve soil fertility and maize yield mostly on tropical soils whereas experiments on Mediterranean soils are rare. Therefore, the influence of biochar, compost and mixtures of the two, on maize (Zea mays L.) growth and nutrient status were investigated, in this study. Biochars were produced from 2 feedstocks: grape pomace (GP) and rice husks (RH) pyrolyzed at 300°C. Maize was grown for 30 days in a greenhouse pot trial on two Mediterranean soils amended with biochar or/with compost at application rates of 0% and 2% (w/w) (equivalent to 0 and 16 t ha-1) and N fertilization. Total aboveground dry matter yield of maize was significantly improved relative to the control for all organic amendments, with increases in yield 43-60.8%, in sandy loam soil, while, in loam soil a statistically significant increase of 70.6-81.3% was recorded for all the amendments apart from compost. Some morphological traits, such as aboveground height of plants, shoot diameter and belowground dry matter yield were significantly increased by the organic treatments. Aboveground concentration of P was significantly increased from 1.46 mg g-1 at control to 1.69 mg g-1 at 2% GP biochar in sandy loam soil, whereas GP biochar combined with compost gave an increase of 2.03 mg g-1 compared to control 1.23 mg g-1. K and Mn concentrations of above ground tissues were significantly increased only in sandy loam soil, while Fe in both soils. N concentration of aboveground tissues declined for all the amendments in loam soil and in sandy loam soil apart from compost amendment. Significant positive impacts of amended soils on nutrients uptake were observed in both soils as compared to the control related to the improved dry matter yield of plant. The current study demonstrated that maize production could be greatly improved by biochar and compost because of the nutrients they supply and their

  15. Loading and removal of PAHs, fragrance compounds, triclosan and toxicity by composting process from sewage sludge.

    PubMed

    Ozaki, Noriatsu; Nakazato, Akihiro; Nakashima, Kazuki; Kindaichi, Tomonori; Ohashi, Akiyoshi

    2017-12-15

    Although the production of compost from sewage sludge is well established in developed countries, the use of sludge-based compost may represent a source of pollutants. The present study assessed the levels of potentially harmful compounds in compost as well as their rates of decrease during composting. The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs), three fragrance compounds (OTNE, HHCB and AHTN) and triclosan were determined in the initial sewage sludge and in compost over the span of 1year. Simultaneously, the toxicity to luminescent bacteria (Aliivibrio fischeri) and aryl hydrocarbon receptor reactivity of organic solvent extracts of sludge and compost samples were assessed. Higher PAH, fragrance compounds, and triclosan concentrations were found in sewage sludge from urban areas compared with rural regions, and the urban sludge was also more toxic than the rural sludge. The high pollutant concentrations in urban sludge raised the concentrations of these compounds in the raw materials for composting and in the resulting composts. The organic matter was decomposed by 65% during the composting process, and the measured toxic substances were decreased by a similar amount, with the exception of triclosan, which decreased by only 35%. The toxicity to A. fischeri decreased to a greater extent (90%) than did the organic matter, while the aryl hydrocarbon receptor reactivity decreased by only 35%. This lower decrease coincided with that of the aryl hydrocarbon receptor-reactive PAHs (37%). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Optimization of waste combinations during in-vessel composting of agricultural waste.

    PubMed

    Varma, V Sudharsan; Kalamdhad, Ajay S; Kumar, Bimlesh

    2017-01-01

    In-vessel composting of agricultural waste is a well-described approach for stabilization of compost within a short time period. Although composting studies have shown the different combinations of waste materials for producing good quality compost, studies of the particular ratio of the waste materials in the mix are still limited. In the present study, composting was conducted with a combination of vegetable waste, cow dung, sawdust and dry leaves using a 550 L rotary drum composter. Application of a radial basis functional neural network was used to simulate the composting process. The model utilizes physico-chemical parameters with different waste materials as input variables and three output variables: volatile solids, soluble biochemical oxygen demand and carbon dioxide evolution. For the selected model, the coefficient of determination reached the high value of 0.997. The complicated interaction of agricultural waste components during composting makes it a nonlinear problem so it is difficult to find the optimal waste combinations for producing quality compost. Optimization of a trained radial basis functional model has yielded the optimal proportion as 62 kg, 17 kg and 9 kg for vegetable waste, cow dung and sawdust, respectively. The results showed that the predictive radial basis functional model described for drum composting of agricultural waste was well suited for organic matter degradation and can be successfully applied.

  17. Evaluation of Effective Microorganisms on home scale organic waste composting.

    PubMed

    Fan, Yee Van; Lee, Chew Tin; Klemeš, Jiří Jaromír; Chua, Lee Suan; Sarmidi, Mohamad Roji; Leow, Chee Woh

    2018-06-15

    Home composting can be an effective way to reduce the volume of municipal solid waste. The aim of this study is to evaluate the effect of Effective Microorganism™ (EM) for the home scale co-composting of food waste, rice bran and dried leaves. A general consensus is lacking regarding the efficiency of inoculation composting. Home scale composting was carried out with and without EM (control) to identify the roles of EM. The composting parameters for both trials showed a similar trend of changes during the decomposition. As assayed by Fourier Transform Infrared Spectroscopy (FTIR), the functional group of humic acid was initially dominated by aliphatic structure but was dominated by the aromatic in the final compost. The EM compost has a sharper peak of aromatic CC bond presenting a better degree of humification. Compost with EM achieved a slightly higher temperature at the early stage, with foul odour suppressed, enhanced humification process and a greater fat reduction (73%). No significant difference was found for the final composts inoculated with and without EM. The properties included pH (∼7), electric conductivity (∼2), carbon-to-nitrogen ratio (C: N < 14), colour (dark brown), odour (earthy smell), germination index (>100%), humic acid content (4.5-4.8%) and pathogen content (no Salmonella, <1000 Most Probable Number/g E. coli). All samples were well matured within 2 months. The potassium and phosphate contents in both cases were similar however the EM compost has a higher nitrogen content (+1.5%). The overall results suggested the positive effect provided by EM notably in odour control and humification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Legionella spp. in UK composts--a potential public health issue?

    PubMed

    Currie, S L; Beattie, T K; Knapp, C W; Lindsay, D S J

    2014-04-01

    Over the past 5 years, a number of cases of legionellosis in Scotland have been associated with compost use; however, studies investigating sources of infection other than water systems remain limited. This study delivers the first comprehensive survey of composts commonly available in the UK for the presence of Legionella species. Twenty-two store-bought composts, one green-waste compost and one home-made compost were tested for Legionella by culture methods on BCYE-α medium, and the findings were confirmed by macrophage infectivity potentiator (mip) speciation. Twenty-two of the samples were retested after an enrichment period of 8 weeks. In total, 15 of 24 composts tested positive for Legionella species, a higher level of contamination than previously seen in Europe. Two isolates of Legionella pneumophila were identified, and Legionella longbeachae serogroup 1 was found to be one of the most commonly isolated species. L. longbeachae infection would not be detected by routine Legionella urinary antigen assay, so such testing should not be used as the sole diagnostic technique in atypical pneumonia cases, particularly where there is an association with compost use. The occurrence of Legionella in over half of the samples tested indicates that compost could pose a public health risk. The addition of general hygiene warnings to compost packages may be beneficial in protecting public health. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  19. The potential applications of using compost chars for removing the hydrophobic herbicide atrazine from solution.

    PubMed

    Tsui, Lo; Roy, William R

    2008-09-01

    One commercial compost sample was pyrolyzed to produce chars as a sorbent for removing the herbicide atrazine from solution. The sorption behavior of compost-based char was compared with that of an activated carbon derived from corn stillage. When compost was pyrolyzed, the char yield was greater than 45% when heated under air, and 52% when heated under N(2). In contrast, when the corn stillage was pyrolyzed under N(2), the yield was only 22%. The N(2)-BET surface area of corn stillage activated carbon was 439 m(2)/g, which was much greater than the maximum compost char surface area of 72 m(2)/g. However, the sorption affinity of the compost char for dissolved atrazine was comparable to that of the corn stillage activated carbon. This similarity could have resulted from the initial organic waste being subjected to a relatively long period of thermal processes during composting, and thus, the compost was more thermally stable when compared with the raw materials. In addition, microorganisms transformed the organic wastes into amorphous humic substances, and thus, it was likely that the microporisity was enhanced. Although this micropore structure could not be detected by the N(2)-BET method, it was apparent in the atrazine sorption experiment. Overall, the experimental results suggested that the compost sample in current study was a relatively stable material thermally for producing char, and that it has the potential as a feed stock for making high-quality activated carbon.

  20. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting.

    PubMed

    Nikaeen, Mahnaz; Nafez, Amir Hossein; Bina, Bijan; Nabavi, BiBi Fatemeh; Hassanzadeh, Akbar

    2015-05-01

    The objective of this work was to study the evolution of physico-chemical and microbial parameters in the composting process of sewage sludge (SS) with pruning wastes (PW) in order to compare these parameters with respect to their applicability in the evaluation of organic matter (OM) stabilization. To evaluate the composting process and organic matter stability, different microbial activities were compared during composting of anaerobically digested SS with two volumetric ratios, 1:1 and 3:1 of PW:SS and two aeration techniques including aerated static piles (ASP) and turned windrows (TW). Dehydrogenase activity, fluorescein diacetate hydrolysis, and specific oxygen uptake rate (SOUR) were used as microbial activity indices. These indices were compared with traditional parameters, including temperature, pH, moisture content, organic matter, and C/N ratio. The results showed that the TW method and 3:1 (PW:SS) proportion was superior to the ASP method and 1:1 proportion, since the former accelerate the composting process by catalyzing the OM stabilization. Enzymatic activities and SOUR, which reflect microbial activity, correlated well with temperature fluctuations. Based on these results it appears that SOUR and the enzymatic activities are useful parameters to monitor the stabilization of SS compost. Copyright © 2015 Elsevier Ltd. All rights reserved.